Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela
2013-01-01
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan
2016-01-01
Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.
Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer
2005-02-08
Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.
Neurotoxic lesions of ventrolateral prefrontal cortex impair object-in-place scene memory
Wilson, Charles R E; Gaffan, David; Mitchell, Anna S; Baxter, Mark G
2007-01-01
Disconnection of the frontal lobe from the inferotemporal cortex produces deficits in a number of cognitive tasks that require the application of memory-dependent rules to visual stimuli. The specific regions of frontal cortex that interact with the temporal lobe in performance of these tasks remain undefined. One capacity that is impaired by frontal–temporal disconnection is rapid learning of new object-in-place scene problems, in which visual discriminations between two small typographic characters are learned in the context of different visually complex scenes. In the present study, we examined whether neurotoxic lesions of ventrolateral prefrontal cortex in one hemisphere, combined with ablation of inferior temporal cortex in the contralateral hemisphere, would impair learning of new object-in-place scene problems. Male macaque monkeys learned 10 or 20 new object-in-place problems in each daily test session. Unilateral neurotoxic lesions of ventrolateral prefrontal cortex produced by multiple injections of a mixture of ibotenate and N-methyl-d-aspartate did not affect performance. However, when disconnection from inferotemporal cortex was completed by ablating this region contralateral to the neurotoxic prefrontal lesion, new learning was substantially impaired. Sham disconnection (injecting saline instead of neurotoxin contralateral to the inferotemporal lesion) did not affect performance. These findings support two conclusions: first, that the ventrolateral prefrontal cortex is a critical area within the frontal lobe for scene memory; and second, the effects of ablations of prefrontal cortex can be confidently attributed to the loss of cell bodies within the prefrontal cortex rather than to interruption of fibres of passage through the lesioned area. PMID:17445247
Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.
Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P
2013-07-24
Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.
Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex.
Calford, M B; Schmid, L M; Rosa, M G
1999-01-01
Electrophysiological recording in primary visual cortex (VI) was performed both prior to and in the hours immediately following the creation of a discrete retinal lesion in one eye with an argon laser. Lesion projection zones (LPZs; 21-64 mm2) were defined in the visual cortex by mapping the extent of the lesion onto the topographic representation in cortex. There was no effect on neuronal responses to the unlesioned eye or on its topographic representation. However, within hours of producing the retinal lesion, receptive fields obtained from stimulation of the lesioned eye were displaced onto areas surrounding the scotoma and were enlarged compared with the corresponding field obtained through the normal eye. The proportion of such responsive recording sites increased during the experiment such that 8-11 hours post-lesion, 56% of recording sites displayed neurons responsive to the lesioned eye. This is an equivalent proportion to that previously reported with long-term recovery (three weeks to three months). Responsive neurons were evident as far as 2.5 mm inside the border of the LPZ. The reorganization of the lesioned eye representation produced binocular disparities as great as 15 degrees, suggesting interactions between sites in VI up to 5.5 mm apart. PMID:10189714
Hippocampus, perirhinal cortex, and complex visual discriminations in rats and humans
Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.
2015-01-01
Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory. PMID:25593294
The functional neuroanatomy of object agnosia: a case study.
Konen, Christina S; Behrmann, Marlene; Nishimura, Mayu; Kastner, Sabine
2011-07-14
Cortical reorganization of visual and object representations following neural injury was examined using fMRI and behavioral investigations. We probed the visual responsivity of the ventral visual cortex of an agnosic patient who was impaired at object recognition following a lesion to the right lateral fusiform gyrus. In both hemispheres, retinotopic mapping revealed typical topographic organization and visual activation of early visual cortex. However, visual responses, object-related, and -selective responses were reduced in regions immediately surrounding the lesion in the right hemisphere, and also, surprisingly, in corresponding locations in the structurally intact left hemisphere. In contrast, hV4 of the right hemisphere showed expanded response properties. These findings indicate that the right lateral fusiform gyrus is critically involved in object recognition and that an impairment to this region has widespread consequences for remote parts of cortex. Finally, functional neural plasticity is possible even when a cortical lesion is sustained in adulthood. Copyright © 2011 Elsevier Inc. All rights reserved.
Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde
2011-12-01
In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms.
Shankar, S; Ellard, C
2000-02-01
Past research has indicated that many species use the time-to-collision variable but little is known about its neural underpinnings in rodents. In a set of three experiments we set out to replicate and extend the findings of Sun et al. (Sun H-J, Carey DP, Goodale MA. Exp Brain Res 1992;91:171-175) in a visually guided task in Mongolian gerbils, and then investigated the effects of lesions to different cortical areas. We trained Mongolian gerbils to run in the dark toward a target on a computer screen. In some trials the target changed in size as the animal ran toward it in such a way as to produce 'virtual targets' if the animals were using time-to-collision or contact information. In experiment 1 we confirmed that gerbils use time-to-contact information to modulate their speed of running toward a target. In experiment 2 we established that visual cortex lesions attenuate the ability of lesioned animals to use information from the visual target to guide their run, while frontal cortex lesioned animals are not as severely affected. In experiment 3 we found that small radio-frequency lesions, of either area VI or of the lateral extrastriate regions of the visual cortex also affected the use of information from the target to modulate locomotion.
NASA Technical Reports Server (NTRS)
Hof, P. R.; Vogt, B. A.; Bouras, C.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1997-01-01
In recent years, the existence of visual variants of Alzheimer's disease characterized by atypical clinical presentation at onset has been increasingly recognized. In many of these cases post-mortem neuropathological assessment revealed that correlations could be established between clinical symptoms and the distribution of neurodegenerative lesions. We have analyzed a series of Alzheimer's disease patients presenting with prominent visual symptomatology as a cardinal sign of the disease. In these cases, a shift in the distribution of pathological lesions was observed such that the primary visual areas and certain visual association areas within the occipito-parieto-temporal junction and posterior cingulate cortex had very high densities of lesions, whereas the prefrontal cortex had fewer lesions than usually observed in Alzheimer's disease. Previous quantitative analyses have demonstrated that in Alzheimer's disease, primary sensory and motor cortical areas are less damaged than the multimodal association areas of the frontal and temporal lobes, as indicated by the laminar and regional distribution patterns of neurofibrillary tangles and senile plaques. The distribution of pathological lesions in the cerebral cortex of Alzheimer's disease cases with visual symptomatology revealed that specific visual association pathways were disrupted, whereas these particular connections are likely to be affected to a less severe degree in the more common form of Alzheimer's disease. These data suggest that in some cases with visual variants of Alzheimer's disease, the neurological symptomatology may be related to the loss of certain components of the cortical visual pathways, as reflected by the particular distribution of the neuropathological markers of the disease.
Bruffaerts, Rose; De Weer, An-Sofie; De Grauwe, Sophie; Thys, Miek; Dries, Eva; Thijs, Vincent; Sunaert, Stefan; Vandenbulcke, Mathieu; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik
2014-09-01
We investigated the critical contribution of right ventral occipitotemporal cortex to knowledge of visual and functional-associative attributes of biological and non-biological entities and how this relates to category-specificity during confrontation naming. In a consecutive series of 7 patients with lesions confined to right ventral occipitotemporal cortex, we conducted an extensive assessment of oral generation of visual-sensory and functional-associative features in response to the names of biological and nonbiological entities. Subjects also performed a confrontation naming task for these categories. Our main novel finding related to a unique case with a small lesion confined to right medial fusiform gyrus who showed disproportionate naming impairment for nonbiological versus biological entities, specifically for tools. Generation of visual and functional-associative features was preserved for biological and non-biological entities. In two other cases, who had a relatively small posterior lesion restricted to primary visual and posterior fusiform cortex, retrieval of visual attributes was disproportionately impaired compared to functional-associative attributes, in particular for biological entities. However, these cases did not show a category-specific naming deficit. Two final cases with the largest lesions showed a classical dissociation between biological versus nonbiological entities during naming, with normal feature generation performance. This is the first lesion-based evidence of a critical contribution of the right medial fusiform cortex to tool naming. Second, dissociations along the dimension of attribute type during feature generation do not co-occur with category-specificity during naming in the current patient sample. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vuilleumier, Patrik; Richardson, Mark P; Armony, Jorge L; Driver, Jon; Dolan, Raymond J
2004-11-01
Emotional visual stimuli evoke enhanced responses in the visual cortex. To test whether this reflects modulatory influences from the amygdala on sensory processing, we used event-related functional magnetic resonance imaging (fMRI) in human patients with medial temporal lobe sclerosis. Twenty-six patients with lesions in the amygdala, the hippocampus or both, plus 13 matched healthy controls, were shown pictures of fearful or neutral faces in task-releant or task-irrelevant positions on the display. All subjects showed increased fusiform cortex activation when the faces were in task-relevant positions. Both healthy individuals and those with hippocampal damage showed increased activation in the fusiform and occipital cortex when they were shown fearful faces, but this was not the case for individuals with damage to the amygdala, even though visual areas were structurally intact. The distant influence of the amygdala was also evidenced by the parametric relationship between amygdala damage and the level of emotional activation in the fusiform cortex. Our data show that combining the fMRI and lesion approaches can help reveal the source of functional modulatory influences between distant but interconnected brain regions.
Espuny-Camacho, Ira; Michelsen, Kimmo A; Linaro, Daniele; Bilheu, Angéline; Acosta-Verdugo, Sandra; Herpoel, Adèle; Giugliano, Michele; Gaillard, Afsaneh; Vanderhaeghen, Pierre
2018-05-29
The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Altered figure-ground perception in monkeys with an extra-striate lesion.
Supèr, Hans; Lamme, Victor A F
2007-11-05
The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.
Arcaro, Michael J; Thaler, Lore; Quinlan, Derek J; Monaco, Simona; Khan, Sarah; Valyear, Kenneth F; Goebel, Rainer; Dutton, Gordon N; Goodale, Melvyn A; Kastner, Sabine; Culham, Jody C
2018-05-09
Patients with injury to early visual cortex or its inputs can display the Riddoch phenomenon: preserved awareness for moving but not stationary stimuli. We provide a detailed case report of a patient with the Riddoch phenomenon, MC. MC has extensive bilateral lesions to occipitotemporal cortex that include most early visual cortex and complete blindness in visual field perimetry testing with static targets. Nevertheless, she shows a remarkably robust preserved ability to perceive motion, enabling her to navigate through cluttered environments and perform actions like catching moving balls. Comparisons of MC's structural magnetic resonance imaging (MRI) data to a probabilistic atlas based on controls reveals that MC's lesions encompass the posterior, lateral, and ventral early visual cortex bilaterally (V1, V2, V3A/B, LO1/2, TO1/2, hV4 and VO1 in both hemispheres) as well as more extensive damage to right parietal (inferior parietal lobule) and left ventral occipitotemporal cortex (VO1, PHC1/2). She shows some sparing of anterior occipital cortex, which may account for her ability to see moving targets beyond ~15 degrees eccentricity during perimetry. Most strikingly, functional and structural MRI revealed robust and reliable spared functionality of the middle temporal motion complex (MT+) bilaterally. Moreover, consistent with her preserved ability to discriminate motion direction in psychophysical testing, MC also shows direction-selective adaptation in MT+. A variety of tests did not enable us to discern whether input to MT+ was driven by her spared anterior occipital cortex or subcortical inputs. Nevertheless, MC shows rich motion perception despite profoundly impaired static and form vision, combined with clear preservation of activation in MT+, thus supporting the role of MT+ in the Riddoch phenomenon. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Squire, Larry R.; Levy, Daniel A.; Shrager, Yael
2005-01-01
The perirhinal cortex is known to be important for memory, but there has recently been interest in the possibility that it might also be involved in visual perceptual functions. In four experiments, we assessed visual discrimination ability and visual discrimination learning in severely amnesic patients with large medial temporal lobe lesions that…
Goodale, M A; Murison, R C
1975-05-02
The effects of bilateral removal of the superior colliculus or visual cortex on visually guided locomotor movements in rats performing a brightness discrimination task were investigated directly with the use of cine film. Rats with collicular lesions showed patterns of locomotion comparable to or more efficient than those of normal animals when approaching one of 5 small doors located at one end of a large open area. In contrast, animals with large but incomplete lesions of visual cortex were distinctly impaired in their visual control of approach responses to the same stimuli. On the other hand, rats with collicular damage showed no orienting reflex or evidence of distraction in the same task when novel visual or auditory stimuli were presented. However, both normal and visual-decorticate rats showed various components of the orienting reflex and disturbance in task performance when the same novel stimuli were presented. These results suggest that although the superior colliculus does not appear to be essential to the visual control of locomotor orientation, this midbrain structure might participate in the mediation of shifts in visual fixation and attention. Visual cortex, while contributing to visuospatial guidance of locomotor movements, might not play a significant role in the control and integration of the orienting reflex.
Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.
Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde
2016-09-01
Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Funk, Agnes P; Rosa, Marcello G P
1998-01-01
The first (V1) and second (V2) cortical visual areas exist in all mammals. However, the functional relationship between these areas varies between species. While in monkeys the responses of V2 cells depend on inputs from V1, in all non-primates studied so far V2 cells largely retain responsiveness to photic stimuli after destruction of V1.We studied the visual responsiveness of neurones in V2 of flying foxes after total or partial lesions of the primary visual cortex (V1). The main finding was that visual responses can be evoked in the region of V2 corresponding, in visuotopic co-ordinates, to the lesioned portion of V1 (‘lesion projection zone’; LPZ).The visuotopic organization of V2 was not altered by V1 lesions.The proportion of neurones with strong visual responses was significantly lower within the LPZs (31.5 %) than outside these zones, or in non-lesioned control hemispheres (> 70 %). LPZ cells showed weak direction and orientation bias, and responded consistently only at low spatial and temporal frequencies.The data demonstrate that the functional relationship between V1 and V2 of flying foxes resembles that observed in non-primate mammals. This observation contrasts with the ‘primate-like’ characteristics of the flying fox visual system reported by previous studies. PMID:9806999
Prefrontal Cortex Is Critical for Contextual Processing: Evidence from Brain Lesions
ERIC Educational Resources Information Center
Fogelson, Noa; Shah, Mona; Scabini, Donatella; Knight, Robert T.
2009-01-01
We investigated the role of prefrontal cortex (PFC) in local contextual processing using a combined event-related potentials and lesion approach. Local context was defined as the occurrence of a short predictive series of visual stimuli occurring before delivery of a target event. Targets were preceded by either randomized sequences of standards…
Glasauer, S; Dieterich, M; Brandt, T
2018-05-29
Acute unilateral lesions of vestibular graviceptive pathways from the otolith organs and semicircular canals via vestibular nuclei and the thalamus to the parieto-insular vestibular cortex regularly cause deviations of perceived verticality in the frontal roll plane. These tilts are ipsilateral in peripheral and in ponto-medullary lesions and contralateral in ponto-mesencephalic lesions. Unilateral lesions of the vestibular thalamus or cortex cause smaller tilts of the perceived vertical, which may be either ipsilateral or contralateral. Using a neural network model, we previously explained why unilateral vestibular midbrain lesions rarely manifest with rotational vertigo. We here extend this approach, focussing on the direction-specific deviations of perceived verticality in the roll plane caused by acute unilateral vestibular lesions from the labyrinth to the cortex. Traditionally, the effect of unilateral peripheral lesions on perceived verticality has been attributed to a lesion-based bias of the otolith system. We here suggest, on the basis of a comparison of model simulations with patient data, that perceived visual tilt after peripheral lesions is caused by the effect of a torsional semicircular canal bias on the central gravity estimator. We further argue that the change of gravity coding from a peripheral/brainstem vectorial representation in otolith coordinates to a distributed population coding at thalamic and cortical levels can explain why unilateral thalamic and cortical lesions have a variable effect on perceived verticality. Finally, we propose how the population-coding network for gravity direction might implement the elements required for the well-known perceptual underestimation of the subjective visual vertical in tilted body positions.
Objective visual assessment of antiangiogenic treatment for wet age-related macular degeneration.
Baseler, Heidi A; Gouws, André; Crossland, Michael D; Leung, Carmen; Tufail, Adnan; Rubin, Gary S; Morland, Antony B
2011-10-01
To assess cortical responses in patients undergoing antiangiogenic treatment for wet age-related macular degeneration (AMD) using functional magnetic resonance imaging (fMRI) as an objective, fixation-independent measure of topographic visual function. A patient with bilateral neovascular AMD was scanned using fMRI before and at regular intervals while undergoing treatment with intravitreal antiangiogenic injections (ranibizumab). Blood oxygenation level-dependent signals were measured in the brain while the patient viewed a stimulus consisting of a full-field flickering (6 Hz) white light alternating with a uniform gray background (18 s on and 18 s off). Topographic distribution and magnitude of activation in visual cortex were compared longitudinally throughout the treatment period (<1 year) and with control patients not currently undergoing treatment. Clinical behavioral tests were also administered, including visual acuity, microperimetry, and reading skills. The area of visual cortex activated increased significantly after the first treatment to include more posterior cortex that normally receives inputs from lesioned parts of the retina. Subsequent treatments yielded no significant further increase in activation area. Behavioral measures all generally showed an improvement with treatment but did not always parallel one another. The untreated control patient showed a consistent lack of significant response in the cortex representing retinal lesions. Retinal treatments may not only improve vision but also result in a concomitant improvement in fixation stability. Current clinical behavioral measures (e.g., acuity and perimetry) are largely dependent on fixation stability and therefore cannot separate improvements of visual function from fixation improvements. fMRI, which provides an objective and sensitive measure of visual function independent of fixation, reveals a significant increase in visual cortical responses in patients with wet AMD after treatment with antiangiogenic injections. Despite recent evidence that visual cortex degenerates subsequent to retinal lesions, our results indicate that it can remain responsive as its inputs are restored.
Visual attention capacity: a review of TVA-based patient studies.
Habekost, Thomas; Starrfelt, Randi
2009-02-01
Psychophysical studies have identified two distinct limitations of visual attention capacity: processing speed and apprehension span. Using a simple test, these cognitive factors can be analyzed by Bundesen's Theory of Visual Attention (TVA). The method has strong specificity and sensitivity, and measurements are highly reliable. As the method is theoretically founded, it also has high validity. TVA-based assessment has recently been used to investigate a broad range of neuropsychological and neurological conditions. We present the method, including the experimental paradigm and practical guidelines to patient testing, and review existing TVA-based patient studies organized by lesion anatomy. Lesions in three anatomical regions affect visual capacity: The parietal lobes, frontal cortex and basal ganglia, and extrastriate cortex. Visual capacity thus depends on large, bilaterally distributed anatomical networks that include several regions outside the visual system. The two visual capacity parameters are functionally separable, but seem to rely on largely overlapping brain areas.
Organization of area hV5/MT+ in subjects with homonymous visual field defects.
Papanikolaou, Amalia; Keliris, Georgios A; Papageorgiou, T Dorina; Schiefer, Ulrich; Logothetis, Nikos K; Smirnakis, Stelios M
2018-04-06
Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However, it remains unknown whether the organization of hV5/MT+ changes following early visual cortical lesions. We studied the organization of area hV5/MT+ of five patients with dense homonymous defects in a quadrant of the visual field as a result of partial V1+ or optic radiation lesions. To do so, we developed a new method, which models the boundaries of population receptive fields directly from the BOLD signal of each voxel in the visual cortex. We found responses in hV5/MT+ arising inside the scotoma for all patients and identified two possible sources of activation: 1) responses might originate from partially lesioned parts of area V1 corresponding to the scotoma, and 2) responses can also originate independent of area V1 input suggesting the existence of functional V1-bypassing pathways. Apparently, visually driven activity observed in hV5/MT+ is not sufficient to mediate conscious vision. More surprisingly, visually driven activity in corresponding regions of V1 and early extrastriate areas including hV5/MT+ did not guarantee visual perception in the group of patients with post-geniculate lesions that we examined. This suggests that the fine coordination of visual activity patterns across visual areas may be an important determinant of whether visual perception persists following visual cortical lesions. Copyright © 2018 Elsevier Inc. All rights reserved.
Pathology of Minamata disease.
Eto, K
1997-01-01
Minamata disease, or methylmercury poisoning, was first discovered in 1956 around Minamata Bay, Kumamoto Prefecture, Japan. A similar epidemic occurred in 1965 along the Agano River, Niigata Prefecture, Japan. The neuropathology of Minamata disease has been well studied; this review focuses on human cases of Minamata disease in Kumamoto Prefecture. Nervous system lesions associated with Minamata disease have a characteristic distribution. In the cerebral cortex, the calcarine cortex was found to be involved in all cases of Minamata disease, particularly along the calcarine fissure. The destruction of nerve tissue was prominent in the anterior portions of the calcarine cortex. Occasionally, the centrifugal route from the visual and visual association areas (internal sagittal stratum) showed secondary degeneration in prolonged cases after acute onset. Postcentral, precentral, and temporal transverse cortices showed similar changes, though they were less severe. Intense lesions in the precentral cortex caused the development of secondary bilateral degeneration of the pyramidal tracts. In the cerebellum, the lesions occurred deeper in the hemisphere. The granule cell population was most affected. In the peripheral nerves, sensory nerves were more affected than motor nerves. Secondary degeneration of Goll's tracts was occasionally seen in prolonged or chronic cases.
Baxter, Mark G; Gaffan, David; Kyriazis, Diana A; Mitchell, Anna S
2008-01-01
Theories of dorsolateral prefrontal cortex (DLPFC) involvement in cognitive function variously emphasize its involvement in rule implementation, cognitive control, or working and/or spatial memory. These theories predict broad effects of DLPFC lesions on tests of visual learning and memory. We evaluated the effects of DLPFC lesions (including both banks of the principal sulcus) in rhesus monkeys on tests of scene learning and strategy implementation that are severely impaired following crossed unilateral lesions of frontal cortex and inferotemporal cortex. Dorsolateral lesions had no effect on learning of new scene problems postoperatively, or on the implementation of preoperatively acquired strategies. They were also without effect on the ability to adjust choice behaviour in response to a change in reinforcer value, a capacity that requires interaction between the amygdala and frontal lobe. These intact abilities following DLPFC damage support specialization of function within the prefrontal cortex, and suggest that many aspects of memory and strategic and goal-directed behaviour can survive ablation of this structure. PMID:18702721
Liu, Tina T; Behrmann, Marlene
2017-10-01
Understanding the nature and extent of neural plasticity in humans remains a key challenge for neuroscience. Importantly, however, a precise characterization of plasticity and its underlying mechanism has the potential to enable new approaches for enhancing reorganization of cortical function. Investigations of the impairment and subsequent recovery of cognitive and perceptual functions following early-onset cortical lesions in humans provide a unique opportunity to elucidate how the brain changes, adapts, and reorganizes. Specifically, here, we focus on restitution of visual function, and we review the findings on plasticity and re-organization of the ventral occipital temporal cortex (VOTC) in published reports of 46 patients with a lesion to or resection of the visual cortex early in life. Findings reveal that a lesion to the VOTC results in a deficit that affects the visual recognition of more than one category of stimuli (faces, objects and words). In addition, the majority of pediatric patients show limited recovery over time, especially those in whom deficits in low-level vision also persist. Last, given that neither the equipotentiality nor the modularity view on plasticity was clearly supported, we suggest some intermediate possibilities in which some plasticity may be evident but that this might depend on the area that was affected, its maturational trajectory as well as its structural and functional connectivity constraints. Finally, we offer suggestions for future research that can elucidate plasticity further. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schiller, P H; Chou, I
2000-01-01
This study examined the effects of anterior arcuate and dorsomedial frontal cortex lesions on the execution of saccadic eye movements made to paired and multiple targets in rhesus monkeys. Identical paired targets were presented with various temporal asynchronies to determine the temporal offset required to yield equal probability choices to either target. In the intact animal equal probability choices were typically obtained when the targets appeared simultaneously. After unilateral anterior arcuate lesions a major shift arose in the temporal offset required to obtain equal probability choices for paired targets that necessitated presenting the target in the hemifield contralateral to the lesion more than 100 ms prior to the target in the ipsilateral hemifield. This deficit was still pronounced 1 year after the lesion. Dorsomedial frontal cortex lesions produced much smaller but significant shifts in target selection that recovered more rapidly. Paired lesions produced deficits similar to those observed with anterior arcuate lesions alone. Major deficits were also observed on a multiple target temporal discrimination task after anterior arcuate but not after dorsomedial frontal cortex lesions. These results suggest that the frontal eye fields that reside in anterior bank of the arcuate sulcus play an important role in temporal processing and in target selection. Dorsomedial frontal cortex, that contains the medial eye fields, plays a much less important role in the execution of these tasks.
McCoy, P A; McMahon, L L
2010-07-14
Cholinergic innervation of hippocampus and cortex is required for some forms of learning and memory. Several reports have shown that activation of muscarinic m1 receptors induces a long-term depression (mLTD) at glutamate synapses in hippocampus and in several areas of cortex, including perirhinal and visual cortices. This plasticity likely contributes to cognitive function dependent upon the cholinergic system. In rodent models, degeneration of hippocampal cholinergic innervation following lesion of the medial septum stimulates sprouting of adrenergic sympathetic axons, originating from the superior cervical ganglia (SCG), into denervated hippocampal subfields. We previously reported that this adrenergic sympathetic sprouting occurs simultaneously with a reappearance of cholinergic fibers in hippocampus and rescue of mLTD at CA3-CA1 synapses. Because cholinergic neurons throughout basal forebrain degenerate in aging and Alzheimer's disease, it is critical to determine if this compensatory sprouting occurs in other regions impacted by cholinergic cell loss. To this end, we investigated whether lesion of the nucleus basalis magnocellularis (NbM) to cholinergically denervate cortex stimulates adrenergic sympathetic sprouting and the accompanying increase in cholinergic innervation. Further, we assessed whether the presence of sprouting positively correlates with the ability of glutamate synapses in acute visual cortex slices to express mLTD and low frequency stimulation induced LTD (LFS LTD), another cholinergic dependent form of plasticity in visual cortex. We found that both mLTD and LFS LTD are absent in animals when NbM lesion is combined with bilateral removal of the SCG to prevent possible compensatory sprouting. In contrast, when the SCG remain intact to permit sprouting in animals with NbM lesion, cholinergic fiber density is increased concurrently with adrenergic sympathetic sprouting, and mLTD and LFS LTD are preserved. Our findings suggest that autonomic compensation for central cholinergic degeneration is not specific to hippocampus, but is a general repair mechanism occurring in other brain regions important for normal cognitive function. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Dumont, Julie R; Petrides, Michael; Sziklas, Viviane
2010-05-01
Rats with combined bilateral lesions of the retrosplenial cortex and the fornix or rats with unilateral lesions to the anterior thalamus and the hippocampus, made in opposite hemispheres (disconnection preparation), and combined with unilateral damage of the retrosplenial cortex in either hemisphere, were tested on a spatial-visual conditional learning task in which they learned arbitrary associations between stimuli and the scene in which they were embedded. All experimental groups were impaired in comparison with normal animals. The more severe deficits occurred when (1) both the fornix and the retrosplenial cortex were damaged bilaterally thus depriving the hippocampus both from subcortical interactions via the fornix and retrosplenial-mediated interactions and (2) when, in the crossed lesion preparation, the unilateral retrosplenial lesion was made in the hemisphere with the intact hippocampus, again because this lesion would be maximally disconnecting the hippocampus from functional interaction with the anterior thalamic nucleus and retrosplenial-mediated input.
Zepeda, Angelica; Sengpiel, Frank; Guagnelli, Miguel Angel; Vaca, Luis; Arias, Clorinda
2004-02-25
Reorganization of cortical representations after focal visual cortex lesions has been documented. It has been suggested that functional reorganization may rely on cellular mechanisms involving modifications in the excitatory/inhibitory neurotransmission balance and on morphological changes of neurons peripheral to the lesion. We explored functional reorganization of cortical retinotopic maps after a focal ischemic lesion in primary visual cortex of kittens using optical imaging of intrinsic signals. After 1, 2, and 5 weeks postlesion (wPL), we addressed whether functional reorganization correlated in time with changes in the expression of MAP-2, GAP-43, GFAP, GABA(A) receptor subunit alpha1 (GABA(A)alpha1), subunit 1 of the NMDA receptor (NMDAR1), and in neurotransmitter levels at the border of the lesion. Our results show that: (1) retinotopic maps reorganize with time after an ischemic lesion; (2) MAP-2 levels increase gradually from 1wPL to 5wPL; (3) MAP-2 upregulation is associated with an increase in dendritic-like structures surrounding the lesion and a decrease in GFAP-positive cells; (4) GAP-43 levels reach the highest point at 2wPL; (5) NMDAR1 and glutamate contents increase in parallel from 1wPL to 5wPL; (6) GABA(A)alpha1 levels increase from 1wPL to 2wPL but do not change after this time point; and (7) GABA contents remain low from 1wPL to 5wPL. This is a comprehensive study showing for the first time that functional reorganization correlates in time with dendritic sprouting and with changes in the excitatory/inhibitory neurotransmission systems previously proposed to participate in cortical remodeling and suggests mechanisms by which plasticity of cortical representations may occur.
Burnat, Kalina; Hu, Tjing-Tjing; Kossut, Małgorzata; Eysel, Ulf T; Arckens, Lutgarde
2017-09-13
Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7. SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli. Copyright © 2017 the authors 0270-6474/17/378989-11$15.00/0.
Maffei, Vincenzo; Mazzarella, Elisabetta; Piras, Fabrizio; Spalletta, Gianfranco; Caltagirone, Carlo; Lacquaniti, Francesco; Daprati, Elena
2016-05-01
Rich behavioral evidence indicates that the brain estimates the visual direction and acceleration of gravity quite accurately, and the underlying mechanisms have begun to be unraveled. While the neuroanatomical substrates of gravity direction processing have been studied extensively in brain-damaged patients, to our knowledge no such study exists for the processing of visual gravitational motion. Here we asked 31 stroke patients to intercept a virtual ball moving along the vertical under either natural gravity or artificial reversed gravity. Twenty-seven of them also aligned a luminous bar to the vertical direction (subjective visual vertical, SVV). Using voxel-based lesion-symptom mapping as well as lesion subtraction analysis, we found that lesions mainly centered on the posterior insula are associated with greater deviations of SVV, consistent with several previous studies. Instead, lesions mainly centered on the parietal operculum decrease the ability to discriminate natural from unnatural gravitational acceleration with a timed motor response in the interception task. Both the posterior insula and the parietal operculum belong to the vestibular cortex, and presumably receive multisensory information about the gravity vector. We speculate that an internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of mechanical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, which are stored in the cortical vestibular network. The present lesion data suggest a specific role for the parietal operculum in detecting the mismatch between predictive signals from the internal model and the online visual signals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Urgesi, Cosimo; Candidi, Matteo; Avenanti, Alessio
2014-01-01
Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding. PMID:24910603
Orjuela-Rojas, Juan Manuel; Ramírez-Bermúdez, Jesús; Martínez-Juárez, Iris E; Kerik, Nora Estela; Diaz Meneses, Iván; Pérez-Gay, Fernanda Juárez
2015-01-01
The current study describes the case of a woman with symptomatic epilepsy due to brain cysticercosis acquired during childhood. During her adolescence, she developed seizures characterized by metamorphopsia, hallucinations of autobiographic memory and, finally, asomatognosia. Magnetic brain imaging showed a calcified lesion in the right occipitotemporal cortex, and positron emission tomography imaging confirmed the presence of interictal hypometabolism in two regions: the right parietal cortex and the right lateral and posterior temporal cortex. We discuss the link between these brain areas and the symptoms described under the concepts of epileptogenic lesion, epileptogenic zone, functional deficit zone, and symptomatogenic zone.
Chudasama, Y; Robbins, Trevor W
2003-09-24
To examine possible heterogeneity of function within the ventral regions of the rodent frontal cortex, the present study compared the effects of excitotoxic lesions of the orbitofrontal cortex (OFC) and the infralimbic cortex (ILC) on pavlovian autoshaping and discrimination reversal learning. During the pavlovian autoshaping task, in which rats learn to approach a stimulus predictive of reward [conditional stimulus (CS+)], only the OFC group failed to acquire discriminated approach but was unimpaired when preoperatively trained. In the visual discrimination learning and reversal task, rats were initially required to discriminate a stimulus positively associated with reward. There was no effect of either OFC or ILC lesions on discrimination learning. When the stimulus-reward contingencies were reversed, both groups of animals committed more errors, but only the OFC-lesioned animals were unable to suppress the previously rewarded stimulus-reward association, committing more "stimulus perseverative" errors. In contrast, the ILC group showed a pattern of errors that was more attributable to "learning" than perseveration. These findings suggest two types of dissociation between the effects of OFC and ILC lesions: (1) OFC lesions impaired the learning processes implicated in pavlovian autoshaping but not instrumental simultaneous discrimination learning, whereas ILC lesions were unimpaired at autoshaping and their reversal learning deficit did not reflect perseveration, and (2) OFC lesions induced perseverative responding in reversal learning but did not disinhibit responses to pavlovian CS-. In contrast, the ILC lesion had no effect on response inhibitory control in either of these settings. The findings are discussed in the context of dissociable executive functions in ventral sectors of the rat prefrontal cortex.
Making memories: the development of long-term visual knowledge in children with visual agnosia.
Metitieri, Tiziana; Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo
2013-01-01
There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment.
Making Memories: The Development of Long-Term Visual Knowledge in Children with Visual Agnosia
Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo
2013-01-01
There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment. PMID:24319599
MR findings of Minamata disease--organic mercury poisoning.
Korogi, Y; Takahashi, M; Okajima, T; Eto, K
1998-01-01
We describe MR findings in patients with Minamata disease who have been followed for a long time. All patients examined were affected after daily eating of a large quantity of methylmercury-contaminated seafood, from 1955 to 1958, and showed typical neurological findings. On MR images, the visual cortex, the cerebellar vermis and hemispheres, and the postcentral cortex are significantly atrophic in Minamata disease. The visual cortex is slightly hypointense on T1-weighted images and hyperintense on T2-weighted images, probably representing the pathologic changes of status spongiosus. MRI can demonstrate the lesions located in the calcarine area, cerebellum, and postcentral gyri, which are probably related to three of the characteristic manifestations of this disease: the constriction of the visual fields, ataxia, and sensory disturbance, respectively.
Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico
2006-10-01
We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.
When apperceptive agnosia is explained by a deficit of primary visual processing.
Serino, Andrea; Cecere, Roberto; Dundon, Neil; Bertini, Caterina; Sanchez-Castaneda, Cristina; Làdavas, Elisabetta
2014-03-01
Visual agnosia is a deficit in shape perception, affecting figure, object, face and letter recognition. Agnosia is usually attributed to lesions to high-order modules of the visual system, which combine visual cues to represent the shape of objects. However, most of previously reported agnosia cases presented visual field (VF) defects and poor primary visual processing. The present case-study aims to verify whether form agnosia could be explained by a deficit in basic visual functions, rather that by a deficit in high-order shape recognition. Patient SDV suffered a bilateral lesion of the occipital cortex due to anoxia. When tested, he could navigate, interact with others, and was autonomous in daily life activities. However, he could not recognize objects from drawings and figures, read or recognize familiar faces. He was able to recognize objects by touch and people from their voice. Assessments of visual functions showed blindness at the centre of the VF, up to almost 5°, bilaterally, with better stimulus detection in the periphery. Colour and motion perception was preserved. Psychophysical experiments showed that SDV's visual recognition deficits were not explained by poor spatial acuity or by the crowding effect. Rather a severe deficit in line orientation processing might be a key mechanism explaining SDV's agnosia. Line orientation processing is a basic function of primary visual cortex neurons, necessary for detecting "edges" of visual stimuli to build up a "primal sketch" for object recognition. We propose, therefore, that some forms of visual agnosia may be explained by deficits in basic visual functions due to widespread lesions of the primary visual areas, affecting primary levels of visual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Audiovisual Association Learning in the Absence of Primary Visual Cortex.
Seirafi, Mehrdad; De Weerd, Peter; Pegna, Alan J; de Gelder, Beatrice
2015-01-01
Learning audiovisual associations is mediated by the primary cortical areas; however, recent animal studies suggest that such learning can take place even in the absence of the primary visual cortex. Other studies have demonstrated the involvement of extra-geniculate pathways and especially the superior colliculus (SC) in audiovisual association learning. Here, we investigated such learning in a rare human patient with complete loss of the bilateral striate cortex. We carried out an implicit audiovisual association learning task with two different colors of red and purple (the latter color known to minimally activate the extra-genicular pathway). Interestingly, the patient learned the association between an auditory cue and a visual stimulus only when the unseen visual stimulus was red, but not when it was purple. The current study presents the first evidence showing the possibility of audiovisual association learning in humans with lesioned striate cortex. Furthermore, in line with animal studies, it supports an important role for the SC in audiovisual associative learning.
The role of human ventral visual cortex in motion perception
Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene
2013-01-01
Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030
From motor cortex to visual cortex: the application of noninvasive brain stimulation to amblyopia.
Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F
2012-04-01
Noninvasive brain stimulation is a technique for inducing changes in the excitability of discrete neural populations in the human brain. A current model of the underlying pathological processes contributing to the loss of motor function after stroke has motivated a number of research groups to investigate the potential therapeutic application of brain stimulation to stroke rehabilitation. The loss of motor function is modeled as resulting from a combination of reduced excitability in the lesioned motor cortex and an increased inhibitory drive from the nonlesioned hemisphere over the lesioned hemisphere. This combination of impaired neural function and pathological suppression resonates with current views on the cause of the visual impairment in amblyopia. Here, we discuss how the rationale for using noninvasive brain stimulation in stroke rehabilitation can be applied to amblyopia, review a proof-of-principle study demonstrating that brain stimulation can temporarily improve amblyopic eye function, and propose future research avenues. Copyright © 2010 Wiley Periodicals, Inc.
MR findings in seven patients with organic mercury poisoning (Minamata disease).
Korogi, Y; Takahashi, M; Shinzato, J; Okajima, T
1994-09-01
To study the long-term MR findings in seven patients with Minamata disease. All patients examined were affected after eating daily considerable amounts of the methylmercury-contaminated seafoods from 1955 through 1958 and showed typical neurologic findings. T1- and T2-weighted images were obtained in axial, coronal, and sagittal sections. The visual cortex, the cerebellar vermis and hemispheres, and the postcentral cortex were significantly atrophic. The visual cortex was slightly hypointense on T1-weighted images and hyperintense on T2-weighted images, probably representing the pathologic changes of status spongiosus. MR demonstrated the lesions, located in the calcarine area, cerebellum, and postcentral gyri, which are probably related to three of the characteristic manifestations of this disease: the constriction of the visual fields, ataxia, and sensory disturbance, respectively.
Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.
Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris
2016-05-04
Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour.
Liu, Bao-Hua; Huberman, Andrew D; Scanziani, Massimo
2016-10-20
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei, cortical lesions have suggested that the visual cortex might also be involved. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function, to plastically adapt the execution of innate motor behaviours.
ERIC Educational Resources Information Center
Woollams, Anna M.; Silani, Giorgia; Okada, Kayoko; Patterson, Karalyn; Price, Cathy J.
2011-01-01
Prior lesion and functional imaging studies have highlighted the importance of the left ventral occipito-temporal (LvOT) cortex for visual word recognition. Within this area, there is a posterior-anterior hierarchy of subregions that are specialized for different stages of orthographic processing. The aim of the present fMRI study was to…
Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention.
Ljubojevic, Vladimir; Luu, Paul; Gill, Patrick Robert; Beckett, Lee-Anne; Takehara-Nishiuchi, Kaori; De Rosa, Eve
2018-04-18
A critical function of attention is to support a state of readiness to enhance stimulus detection, independent of stimulus modality. The nucleus basalis magnocellularis (NBM) is the major source of the neurochemical acetylcholine (ACh) for frontoparietal cortical networks thought to support attention. We examined a potential supramodal role of ACh in a frontoparietal cortical attentional network supporting target detection. We recorded local field potentials (LFPs) in the prelimbic frontal cortex (PFC) and the posterior parietal cortex (PPC) to assess whether ACh contributed to a state of readiness to alert rats to an impending presentation of visual or olfactory targets in one of five locations. Twenty male Long-Evans rats underwent training and then lesions of the NBM using the selective cholinergic immunotoxin 192 IgG-saporin (0.3 μg/μl; ACh-NBM-lesion) to reduce cholinergic afferentation of the cortical mantle. Postsurgery, ACh-NBM-lesioned rats had less correct responses and more omissions than sham-lesioned rats, which changed parametrically as we increased the attentional demands of the task with decreased target duration. This parametric deficit was found equally for both sensory targets. Accurate detection of visual and olfactory targets was associated specifically with increased LFP coherence, in the beta range, between the PFC and PPC, and with increased beta power in the PPC before the target's appearance in sham-lesioned rats. Readiness-associated changes in brain activity and visual and olfactory target detection were attenuated in the ACh-NBM-lesioned group. Accordingly, ACh may support supramodal attention via modulating activity in a frontoparietal cortical network, orchestrating a state of readiness to enhance target detection. SIGNIFICANCE STATEMENT We examined whether the neurochemical acetylcholine (ACh) contributes to a state of readiness for target detection, by engaging frontoparietal cortical attentional networks independent of modality. We show that ACh supported alerting attention to an impending presentation of either visual or olfactory targets. Using local field potentials, enhanced stimulus detection was associated with an anticipatory increase in power in the beta oscillation range before the target's appearance within the posterior parietal cortex (PPC) as well as increased synchrony, also in beta, between the prefrontal cortex and PPC. These readiness-associated changes in brain activity and behavior were attenuated in rats with reduced cortical ACh. Thus, ACh may act, in a supramodal manner, to prepare frontoparietal cortical attentional networks for target detection. Copyright © 2018 the authors 0270-6474/18/383988-18$15.00/0.
Adult Visual Cortical Plasticity
Gilbert, Charles D.; Li, Wu
2012-01-01
The visual cortex has the capacity for experience dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate level vision - contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex. PMID:22841310
Domain-specific impairment of source memory following a right posterior medial temporal lobe lesion.
Peters, Jan; Koch, Benno; Schwarz, Michael; Daum, Irene
2007-01-01
This single case analysis of memory performance in a patient with an ischemic lesion affecting posterior but not anterior right medial temporal lobe (MTL) indicates that source memory can be disrupted in a domain-specific manner. The patient showed normal recognition memory for gray-scale photos of objects (visual condition) and spoken words (auditory condition). While memory for visual source (texture/color of the background against which pictures appeared) was within the normal range, auditory source memory (male/female speaker voice) was at chance level, a performance pattern significantly different from the control group. This dissociation is consistent with recent fMRI evidence of anterior/posterior MTL dissociations depending upon the nature of source information (visual texture/color vs. auditory speaker voice). The findings are in good agreement with the view of dissociable memory processing by the perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL), depending upon the neocortical input that these regions receive. (c) 2007 Wiley-Liss, Inc.
The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning
Nelson, A. J. D.; Hindley, E. L.; Pearce, J. M.; Vann, S. D.; Aggleton, J. P.
2015-01-01
The study examined the importance of the retrosplenial cortex for the incidental learning of the spatial arrangement of distinctive features within a scene. In a modified Morris water-maze, rats spontaneously learnt the location of an escape platform prior to swimming to that location. For this, rats were repeatedly placed on a submerged platform in one corner of either a rectangular (Experiment 1) or square (Experiments 2, 3) pool with walls of different appearance. The rats were then released in the center of the pool for their first test trial. In Experiment 1, the correct corner and its diagonally opposite partner (also correct) were specified by the geometric properties of the pool. Rats with retrosplenial lesions took longer to first reach a correct corner, subsequently showing an attenuated preference for the correct corners. A reduced preference for the correct corner was also found in Experiment 2, when platform location was determined by the juxtaposition of highly salient visual cues (black vs. white walls). In Experiment 3, less salient visual cues (striped vs. white walls) led to a robust lesion impairment, as the retrosplenial lesioned rats showed no preference for the correct corner. When subsequently trained actively to swim to the correct corner over successive trials, retrosplenial lesions spared performance on all three discriminations. The findings not only reveal the importance of the retrosplenial cortex for processing various classes of visuospatial information but also highlight a broader role in the incidental learning of the features of a spatial array, consistent with the translation of scene information. PMID:25705182
Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour
Liu, Bao-hua; Huberman, Andrew D.; Scanziani, Massimo
2017-01-01
The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections1. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood1–4. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system3,5,6, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision5. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life7–11. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei10–13, cortical lesions have suggested that the visual cortex might also be involved9,14,15. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment11,16–18, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function19, to plastically adapt the execution of innate motor behaviours. PMID:27732573
Vossel, S; Eschenbeck, P; Weiss, P H; Weidner, R; Saliger, J; Karbe, H; Fink, G R
2011-08-01
Visual neglect and extinction are two common neurological syndromes in patients with right-hemispheric brain damage. Whether and how these two syndromes are associated or share common neural substrates is still a matter of debate. To address these issues, the authors investigated 56 patients with right-hemispheric stroke with a novel diagnostic test to detect extinction and neglect. In this computerised task, subjects had to respond to target stimuli in uni- and bilateral stimulation conditions with detection probabilities being assessed. A cluster-analytical approach identified 18 patients with neglect and 13 patients with extinction. Statistical lesion-symptom mapping analyses with measures for extinction and neglect were performed. Extinction and neglect co-occurred in a subset of patients but were also observed independently from each other, thereby constituting a double dissociation. Lesions within the right inferior parietal cortex were significantly associated with the severity of visual extinction. Visuospatial neglect was related to damage of fronto-parietal brain regions, with parieto-occipital areas affecting line bisection and dorsal fronto-parietal areas affecting cancellation task performance, respectively. Quantifying lesion-induced symptoms with this novel paradigm shows that extinction and neglect are dissociable syndromes in patients with right-hemispheric stroke. Furthermore, extinction and neglect can be related to differential neural substrates, with extinction being related to focal brain damage within the right inferior parietal cortex.
Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition.
Wolf, Richard C; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael
2014-06-01
The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex-the basic attentional process of controlling eye movements to faces expressing emotion. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro
2016-10-01
Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation
ERIC Educational Resources Information Center
Battelli, Lorella; Alvarez, George A.; Carlson, Thomas; Pascual-Leone, Alvaro
2009-01-01
Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of…
Zeamer, Alyson; Richardson, Rebecca L; Weiss, Alison R; Bachevalier, Jocelyne
2015-02-01
To investigate the role of the perirhinal cortex on the development of recognition measured by the visual paired-comparison (VPC) task, infant monkeys with neonatal perirhinal lesions and sham-operated controls were tested at 1.5, 6, 18, and 48 months of age on the VPC task with color stimuli and intermixed delays of 10 s, 30 s, 60 s, and 120 s. Monkeys with neonatal perirhinal lesions showed an increase in novelty preference between 1.5 and 6 months of age similar to controls, although at these two ages, performance remained significantly poorer than that of control animals. With age, performance in animals with neonatal perirhinal lesions deteriorated as compared to that of controls. In contrast to the lack of novelty preference in monkeys with perirhinal lesions acquired in adulthood, novelty preference in the neonatally operated animals remained above chance at all delays and all ages. The data suggest that, although incidental recognition memory processes can be supported by the perirhinal cortex in early infancy, other temporal cortical areas may support these processes in the absence of a functional perirhinal cortex early in development. The neural substrates mediating incidental recognition memory processes appear to be more widespread in early infancy than in adulthood. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
The neural basis of body form and body action agnosia.
Moro, Valentina; Urgesi, Cosimo; Pernigo, Simone; Lanteri, Paola; Pazzaglia, Mariella; Aglioti, Salvatore Maria
2008-10-23
Visual analysis of faces and nonfacial body stimuli brings about neural activity in different cortical areas. Moreover, processing body form and body action relies on distinct neural substrates. Although brain lesion studies show specific face processing deficits, neuropsychological evidence for defective recognition of nonfacial body parts is lacking. By combining psychophysics studies with lesion-mapping techniques, we found that lesions of ventromedial, occipitotemporal areas induce face and body recognition deficits while lesions involving extrastriate body area seem causatively associated with impaired recognition of body but not of face and object stimuli. We also found that body form and body action recognition deficits can be double dissociated and are causatively associated with lesions to extrastriate body area and ventral premotor cortex, respectively. Our study reports two category-specific visual deficits, called body form and body action agnosia, and highlights their neural underpinnings.
Pavlova, Marina; Sokolov, Alexander; Krägeloh-Mann, Ingeborg
2007-02-01
Visual navigation in familiar and unfamiliar surroundings is an essential ingredient of adaptive daily life behavior. Recent brain imaging work helps to recognize that establishing connectivity between brain regions is of importance for successful navigation. Here, we ask whether the ability to navigate is impaired in adolescents who were born premature and suffer congenital bilateral periventricular brain damage that might affect the pathways interconnecting subcortical structures with cortex. Performance on a set of visual labyrinth tasks was significantly worse in patients with periventricular leukomalacia (PVL) as compared with premature-born controls without lesions and term-born adolescents. The ability for visual navigation inversely relates to the severity of motor disability, leg-dominated bilateral spastic cerebral palsy. This agrees with the view that navigation ability substantially improves with practice and might be compromised in individuals with restrictions in active spatial exploration. Visual navigation is negatively linked to the volumetric extent of lesions over the right parietal and frontal periventricular regions. Whereas impairments of visual processing of point-light biological motion are associated in patients with PVL with bilateral parietal periventricular lesions, navigation ability is specifically linked to the frontal lesions in the right hemisphere. We suggest that more anterior periventricular lesions impair the interrelations between the right hippocampus and cortical areas leading to disintegration of neural networks engaged in visual navigation. For the first time, we show that the severity of right frontal periventricular damage and leg-dominated motor disorders can serve as independent predictors of the visual navigation disability.
Temporal kinetics of prefrontal modulation of the extrastriate cortex during visual attention.
Yago, Elena; Duarte, Audrey; Wong, Ting; Barceló, Francisco; Knight, Robert T
2004-12-01
Single-unit, event-related potential (ERP), and neuroimaging studies have implicated the prefrontal cortex (PFC) in top-down control of attention and working memory. We conducted an experiment in patients with unilateral PFC damage (n = 8) to assess the temporal kinetics of PFC-extrastriate interactions during visual attention. Subjects alternated attention between the left and the right hemifields in successive runs while they detected target stimuli embedded in streams of repetitive task-irrelevant stimuli (standards). The design enabled us to examine tonic (spatial selection) and phasic (feature selection) PFC-extrastriate interactions. PFC damage impaired performance in the visual field contralateral to lesions, as manifested by both larger reaction times and error rates. Assessment of the extrastriate P1 ERP revealed that the PFC exerts a tonic (spatial selection) excitatory input to the ipsilateral extrastriate cortex as early as 100 msec post stimulus delivery. The PFC exerts a second phasic (feature selection) excitatory extrastriate modulation from 180 to 300 msec, as evidenced by reductions in selection negativity after damage. Finally, reductions of the N2 ERP to target stimuli supports the notion that the PFC exerts a third phasic (target selection) signal necessary for successful template matching during postselection analysis of target features. The results provide electrophysiological evidence of three distinct tonic and phasic PFC inputs to the extrastriate cortex in the initial few hundred milliseconds of stimulus processing. Damage to this network appears to underlie the pervasive deficits in attention observed in patients with prefrontal lesions.
Clarke, Hannah F.; Robbins, Trevor W.; Roberts, Angela C.
2014-01-01
The ability to switch responding between two visual stimuli based on their changing relationship with reward is dependent on the orbitofrontal cortex (OFC). OFC lesions in humans, monkeys, and rats disrupt performance on a common test of this ability, the visual serial discrimination reversal task. This finding is of particular significance to our understanding of psychiatric disorders such as obsessive–compulsive disorder (OCD) and schizophrenia, in which behavioral inflexibility is a prominent symptom. Although OFC dysfunction can occur in these disorders, there is considerable evidence for more widespread dysfunction within frontostriatal and frontoamygdalar circuitry. Because the contribution of these subcortical structures to behavioral flexibility is poorly understood, the present study compared the effects of excitotoxic lesions of the medial striatum (MS), amygdala, and OFC in the marmoset monkey on performance of the serial reversal task. All monkeys were able to learn a novel stimulus–reward association but, compared with both control and amygdala-lesioned monkeys, those with MS or OFC lesions showed a perseverative impairment in their ability to reverse this association. However, whereas both MS and OFC groups showed insensitivity to negative feedback, only OFC-lesioned monkeys showed insensitivity to positive feedback. These findings suggest that, for different reasons, both the MS and OFC support behavioral flexibility after changes in reward contingencies, and are consistent with the hypothesis that striatal and OFC dysfunction can contribute to pathological perseveration. PMID:18945905
Converging levels of analysis in the cognitive neuroscience of visual attention.
Duncan, J
1998-01-01
Experiments using behavioural, lesion, functional imaging and single neuron methods are considered in the context of a neuropsychological model of visual attention. According to this model, inputs compete for representation in multiple visually responsive brain systems, sensory and motor, cortical and subcortical. Competition is biased by advance priming of neurons responsive to current behavioural targets. Across systems competition is integrated such that the same, selected object tends to become dominant throughout. The behavioural studies reviewed concern divided attention within and between modalities. They implicate within-modality competition as one main restriction on concurrent stimulus identification. In contrast to the conventional association of lateral attentional focus with parietal lobe function, the lesion studies show attentional bias to be a widespread consequence of unilateral cortical damage. Although the clinical syndrome of unilateral neglect may indeed be associated with parietal lesions, this probably reflects an assortment of further deficits accompanying a simple attentional imbalance. The functional imaging studies show joint involvement of lateral prefrontal and occipital cortex in lateral attentional focus and competition. The single unit studies suggest how competition in several regions of extrastriate cortex is biased by advance priming of neurons responsive to current behavioural targets. Together, the concepts of competition, priming and integration allow a unified theoretical approach to findings from behavioural to single neuron levels. PMID:9770224
NASA Astrophysics Data System (ADS)
Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel
2014-12-01
Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.
Beyond the visual word form area: the orthography-semantics interface in spelling and reading.
Purcell, Jeremy J; Shea, Jennifer; Rapp, Brenda
2014-01-01
Lexical orthographic information provides the basis for recovering the meanings of words in reading and for generating correct word spellings in writing. Research has provided evidence that an area of the left ventral temporal cortex, a subregion of what is often referred to as the visual word form area (VWFA), plays a significant role specifically in lexical orthographic processing. The current investigation goes beyond this previous work by examining the neurotopography of the interface of lexical orthography with semantics. We apply a novel lesion mapping approach with three individuals with acquired dysgraphia and dyslexia who suffered lesions to left ventral temporal cortex. To map cognitive processes to their neural substrates, this lesion mapping approach applies similar logical constraints to those used in cognitive neuropsychological research. Using this approach, this investigation: (a) identifies a region anterior to the VWFA that is important in the interface of orthographic information with semantics for reading and spelling; (b) determines that, within this orthography-semantics interface region (OSIR), access to orthography from semantics (spelling) is topographically distinct from access to semantics from orthography (reading); (c) provides evidence that, within this region, there is modality-specific access to and from lexical semantics for both spoken and written modalities, in both word production and comprehension. Overall, this study contributes to our understanding of the neural architecture at the lexical orthography-semantic-phonological interface within left ventral temporal cortex.
Calford, M B; Wang, C; Taglianetti, V; Waleszczyk, W J; Burke, W; Dreher, B
2000-01-01
In eight adult cats intense, sharply circumscribed, monocular laser lesions were used to remove all cellular layers of the retina. The extents of the retinal lesions were subsequently confirmed with counts of α-ganglion cells in retinal whole mounts; in some cases these revealed radial segmental degeneration of ganglion cells distal to the lesion.Two to 24 weeks later, area 17 (striate cortex; V1) was studied electrophysiologically in a standard anaesthetized, paralysed (artificially respired) preparation. Recording single- or multineurone activity revealed extensive topographical reorganization within the lesion projection zone (LPZ).Thus, with stimulation of the lesioned eye, about 75 % of single neurones in the LPZ had ‘ectopic’ visual discharge fields which were displaced to normal retina in the immediate vicinity of the lesion.The sizes of the ectopic discharge fields were not significantly different from the sizes of the normal discharge fields. Furthermore, binocular cells recorded from the LPZ, when stimulated via their ectopic receptive fields, exhibited orientation tuning and preferred stimulus velocities which were indistinguishable from those found when the cells were stimulated via the normal eye.However, the responses to stimuli presented via ectopic discharge fields were generally weaker (lower peak discharge rates) than those to presentations via normal discharge fields, and were characterized by a lower-than-normal upper velocity limit.Overall, the properties of the ectopic receptive fields indicate that cortical mechanisms rather than a retinal ‘periphery’ effect underlie the topographic reorganization of area 17 following monocular retinal lesions. PMID:10767137
Network localization of neurological symptoms from focal brain lesions
Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S.; Fox, Michael D.
2015-01-01
A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10−5) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10−4). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. PMID:26264514
The posterior parietal cortex in recognition memory: a neuropsychological study.
Haramati, Sharon; Soroker, Nachum; Dudai, Yadin; Levy, Daniel A
2008-01-01
Several recent functional neuroimaging studies have reported robust bilateral activation (L>R) in lateral posterior parietal cortex and precuneus during recognition memory retrieval tasks. It has not yet been determined what cognitive processes are represented by those activations. In order to examine whether parietal lobe-based processes are necessary for basic episodic recognition abilities, we tested a group of 17 first-incident CVA patients whose cortical damage included (but was not limited to) extensive unilateral posterior parietal lesions. These patients performed a series of tasks that yielded parietal activations in previous fMRI studies: yes/no recognition judgments on visual words and on colored object pictures and identifiable environmental sounds. We found that patients with left hemisphere lesions were not impaired compared to controls in any of the tasks. Patients with right hemisphere lesions were not significantly impaired in memory for visual words, but were impaired in recognition of object pictures and sounds. Two lesion--behavior analyses--area-based correlations and voxel-based lesion symptom mapping (VLSM)---indicate that these impairments resulted from extra-parietal damage, specifically to frontal and lateral temporal areas. These findings suggest that extensive parietal damage does not impair recognition performance. We suggest that parietal activations recorded during recognition memory tasks might reflect peri-retrieval processes, such as the storage of retrieved memoranda in a working memory buffer for further cognitive processing.
Cardinal, Rudolf N; Parkinson, John A; Lachenal, Guillaume; Halkerston, Katherine M; Rudarakanchana, Nung; Hall, Jeremy; Morrison, Caroline H; Howes, Simon R; Robbins, Trevor W; Everitt, Barry J
2002-08-01
The nucleus accumbens core (AcbC), anterior cingulate cortex (ACC), and central nucleus of the amygdala (CeA) are required for normal acquisition of tasks based on stimulus-reward associations. However, it is not known whether they are involved purely in the learning process or are required for behavioral expression of a learned response. Rats were trained preoperatively on a Pavlovian autoshaping task in which pairing a visual conditioned stimulus (CS+) with food causes subjects to approach the CS+ while not approaching an unpaired stimulus (CS-). Subjects then received lesions of the AcbC, ACC, or CeA before being retested. AcbC lesions severely impaired performance; lesioned subjects approached the CS+ significantly less often than controls, failing to discriminate between the CS+ and CS-. ACC lesions also impaired performance but did not abolish discrimination entirely. CeA lesions had no effect on performance. Thus, the CeA is required for learning, but not expression, of a conditioned approach response, implying that it makes a specific contribution to the learning of stimulus-reward associations.
Leopold, David A.; Humphreys, Glyn W.; Welchman, Andrew E.
2016-01-01
The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269606
Penhune, V B; Zatorre, R J; Feindel, W H
1999-03-01
This experiment examined the participation of the auditory cortex of the temporal lobe in the perception and retention of rhythmic patterns. Four patient groups were tested on a paradigm contrasting reproduction of auditory and visual rhythms: those with right or left anterior temporal lobe removals which included Heschl's gyrus (HG), the region of primary auditory cortex (RT-A and LT-A); and patients with right or left anterior temporal lobe removals which did not include HG (RT-a and LT-a). Estimation of lesion extent in HG using an MRI-based probabilistic map indicated that, in the majority of subjects, the lesion was confined to the anterior secondary auditory cortex located on the anterior-lateral extent of HG. On the rhythm reproduction task, RT-A patients were impaired in retention of auditory but not visual rhythms, particularly when accurate reproduction of stimulus durations was required. In contrast, LT-A patients as well as both RT-a and LT-a patients were relatively unimpaired on this task. None of the patient groups was impaired in the ability to make an adequate motor response. Further, they were unimpaired when using a dichotomous response mode, indicating that they were able to adequately differentiate the stimulus durations and, when given an alternative method of encoding, to retain them. Taken together, these results point to a specific role for the right anterior secondary auditory cortex in the retention of a precise analogue representation of auditory tonal patterns.
Changes in oxidative metabolism and memory and learning in an cerebral hypoperfusion model in rats.
Castaño Guerrero, Y; González Fraguela, M E; Fernández Verdecia, I; Horruitiner Gutiérrez, I; Piedras Carpio, S
2013-01-01
Chronic hypoperfusion in rats produces memory and learning impairments due to permanent occlusion of commun carotid arteries (POCCA). Molecular mechanisms leading to behavioural disorders have been poorly studied. For this reason, the aim of the present study was to characterise oxidative metabolism disorders and their implications in memory and learning impairments. Superoxide dismutase (SOD) and catalase (CAT) activities were determined in cortex, hippocampus and striatum homogenates at 24 hours and at 22 days after the lesion. Haematoxylin-eosin staining and glial fibrillary acidic protein (GFAP) immunoreactivity were performed on coronal sections. Behavioural impairments were explored using the Morris water maze (MWM). Escape latencies were determined in all behavioural studies. The lesion induced a significant increase (P<.01) in CAT activity in the cortex at 24 hours, while SOD activity was significantly higher (P<.01) in the cortex and hippocampus at 22 days. An intense vacuolization was observed in the cortex and striatum as a result of the lesion. A neuronal loss in the striatum and hippocampus was observed. The glial reaction increased in the cortex and striatum. Visual alterations were observed in the lesion group with the lowest evolution time (P<.001). Escape latencies, corresponding to MWM schemes for long-term and short-term memory evaluation increased significantly (P<.05) in both groups of lesioned animals. It was concluded that changes in SOD and CAT activities indicate a possible implication of oxidative imbalance in the pathology associated with chronic cerebral hypoperfusion. In addition, the POCCA model in rats is useful for understanding mechanisms by which cerebral hypoperfusion produces memory and learning impairments. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Goldstein, L B
1997-01-01
The recovery of beam-walking ability following a unilateral sensorimotor cortex lesion in the rat is hypothesized to be noradrenergically-mediated. We carried out two experiments to further test this hypothesis. In the first experiment, bilateral 6-hydroxydopamine locus coeruleus (LC) lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex suction-ablation lesion or sham cortex lesion. In the second experiment, unilateral left or right LC lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex lesion or sham cortex lesion. Beam-walking recovery was measured over the 12 days following cortex lesioning in each experiment. Bilateral, unilateral left, and unilateral right LC lesions resulted in impaired recovery. These data provide additional support for the hypothesis that beam-walking recovery after sensorimotor cortex injury is, at least in part, noradrenergically mediated.
Neuronal correlate of visual associative long-term memory in the primate temporal cortex
NASA Astrophysics Data System (ADS)
Miyashita, Yasushi
1988-10-01
In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.
Posterior insular cortex - a site of vestibular-somatosensory interaction?
Baier, Bernhard; Zu Eulenburg, Peter; Best, Christoph; Geber, Christian; Müller-Forell, Wibke; Birklein, Frank; Dieterich, Marianne
2013-09-01
Background In previous imaging studies the insular cortex (IC) has been identified as an essential part of the processing of a wide spectrum of perception and sensorimotor integration. Yet, there are no systematic lesion studies in a sufficient number of patients examining whether processing of vestibular and the interaction of somatosensory and vestibular signals take place in the IC. Methods We investigated acute stroke patients with lesions affecting the IC in order to fill this gap. In detail, we explored signs of a vestibular tone imbalance such as the deviation of the subjective visual vertical (SVV). We applied voxel-lesion behaviour mapping analysis in 27 patients with acute unilateral stroke. Results Our data demonstrate that patients with lesions of the posterior IC have an abnormal tilt of SVV. Furthermore, re-analysing data of 20 patients from a previous study, we found a positive correlation between thermal perception contralateral to the stroke and the severity of the SVV tilt. Conclusions We conclude that the IC is a sensory brain region where different modalities might interact.
Carter, Alex R; McAvoy, Mark P; Siegel, Joshua S; Hong, Xin; Astafiev, Serguei V; Rengachary, Jennifer; Zinn, Kristi; Metcalf, Nicholas V; Shulman, Gordon L; Corbetta, Maurizio
2017-03-01
Visuospatial attention depends on the integration of multiple processes, and people with right hemisphere lesions after a stroke may exhibit severe or no visuospatial deficits. The anatomy of core components of visuospatial attention is an area of intense interest. Here we examine the relationship between the disruption of core components of attention and lesion distribution in a heterogeneous group (N = 70) of patients with right hemisphere strokes regardless of the presence of clinical neglect. Deficits of lateralized spatial orienting, measured as the difference in reaction times for responding to visual targets in the contralesional or ipsilesional visual field, and deficits in re-orienting attention, as measured by the difference in reaction times for invalidly versus validly cued targets, were measured using a computerized spatial orienting task. Both measures were related through logistic regression and a novel ridge regression method to anatomical damage measured with magnetic resonance imaging. While many regions were common to both deficit maps, a deficit in lateralized spatial orienting was more associated with lesions in the white matter underlying the posterior parietal cortex, and middle and inferior frontal gyri. A deficit in re-orienting of attention toward unattended locations was associated with lesions in the white matter of the posterior parietal cortex, insular cortex and less so with white matter involvement of the anterior frontal lobe. An hodological analysis also supports this partial dissociation between the white matter tracts that are damaged in lateralized spatial biases versus impaired re-orienting. Our results underscore that the integrity of fronto-parietal white matter tracts is crucial for visuospatial attention and that different attention components are mediated by partially distinct neuronal substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grating test of contrast sensitivity in patients with Minamata disease.
Mukuno, K; Ishikawa, S; Okamura, R
1981-01-01
Thirty cases of Minamata disease caused by methyl mercury poisoning with the lesion mainly at the occipital cortex were selected and their spatial contrast sensitivity of vision was examined by the Arden grating chart. At the same time their visual acuity, visual field, and visual evoked cortical potential (VECP) were also investigated. In all cases the results of the Arden test indicated abnormality. Poor results were obtained at higher frequencies of the gratings. VECP elicited by grating pattern reversal stimulus was undertaken in 12 cases out of the 30. The results revealed abnormality almost equal to that shown by the Arden test. Seven out of the 12 cases showed no VECP response. The other 5, giving a response, showed abnormality: when the size of the grating became smaller at higher frequencies, the VECP paused or was not recorded, whereas at low frequencies it was recorded. This finding was in good agreement or was not recorded, whereas at low frequencies it was recorded. This finding was in good agreement with the results of the Arden test. Visual acuity and visual field tests were less sensitive in detecting abnormality. The Arden chart is a sensitive clinical tool for patients with lesions at the cerebral cortex. Furthermore, the test can be used for screening patients who may have come in contrast with organic mercury. PMID:7236573
Network localization of neurological symptoms from focal brain lesions.
Boes, Aaron D; Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S; Fox, Michael D
2015-10-01
A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10(-5)) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10(-4)). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Preserved Haptic Shape Processing after Bilateral LOC Lesions.
Snow, Jacqueline C; Goodale, Melvyn A; Culham, Jody C
2015-10-07
The visual and haptic perceptual systems are understood to share a common neural representation of object shape. A region thought to be critical for recognizing visual and haptic shape information is the lateral occipital complex (LOC). We investigated whether LOC is essential for haptic shape recognition in humans by studying behavioral responses and brain activation for haptically explored objects in a patient (M.C.) with bilateral lesions of the occipitotemporal cortex, including LOC. Despite severe deficits in recognizing objects using vision, M.C. was able to accurately recognize objects via touch. M.C.'s psychophysical response profile to haptically explored shapes was also indistinguishable from controls. Using fMRI, M.C. showed no object-selective visual or haptic responses in LOC, but her pattern of haptic activation in other brain regions was remarkably similar to healthy controls. Although LOC is routinely active during visual and haptic shape recognition tasks, it is not essential for haptic recognition of object shape. The lateral occipital complex (LOC) is a brain region regarded to be critical for recognizing object shape, both in vision and in touch. However, causal evidence linking LOC with haptic shape processing is lacking. We studied recognition performance, psychophysical sensitivity, and brain response to touched objects, in a patient (M.C.) with extensive lesions involving LOC bilaterally. Despite being severely impaired in visual shape recognition, M.C. was able to identify objects via touch and she showed normal sensitivity to a haptic shape illusion. M.C.'s brain response to touched objects in areas of undamaged cortex was also very similar to that observed in neurologically healthy controls. These results demonstrate that LOC is not necessary for recognizing objects via touch. Copyright © 2015 the authors 0270-6474/15/3513745-16$15.00/0.
Reilly, Jamie; Harnish, Stacy; Garcia, Amanda; Hung, Jinyi; Rodriguez, Amy D.; Crosson, Bruce
2014-01-01
Embodied cognition offers an approach to word meaning firmly grounded in action and perception. A strong prediction of embodied cognition is that sensorimotor simulation is a necessary component of lexical-semantic representation. One semantic distinction where motor imagery is likely to play a key role involves the representation of manufactured artifacts. Many questions remain with respect to the scope of embodied cognition. One dominant unresolved issue is the extent to which motor enactment is necessary for representing and generating words with high motor salience. We investigated lesion correlates of manipulable relative to non-manipulable name generation (e.g., name a school supply; name a mountain range) in patients with nonfluent aphasia (N=14). Lesion volumes within motor (BA4) and premotor (BA6) cortices were not predictive of category discrepancies. Lesion symptom mapping linked impairment for manipulable objects to polymodal convergence zones and to projections of the left, primary visual cortex specialized for motion perception (MT/V5+). Lesions to motor and premotor cortex were not predictive of manipulability impairment. This lesion correlation is incompatible with an embodied perspective premised on necessity of motor cortex for the enactment and subsequent production of motor-related words. These findings instead support a graded or ‘soft’ approach to embodied cognition premised on an ancillary role of modality-specific cortical regions in enriching modality-neutral representations. We discuss a dynamic, hybrid approach to the neurobiology of semantic memory integrating both embodied and disembodied components. PMID:24839997
Rossion, Bruno; Dricot, Laurence; Goebel, Rainer; Busigny, Thomas
2011-01-01
How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (two-tones Mooney figures and Arcimboldo's facelike paintings). Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (“Fusiform face area”) and superior temporal sulcus (pSTS), with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no “occipital face area”). This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex. PMID:21267432
Posterior insular cortex – a site of vestibular–somatosensory interaction?
Baier, Bernhard; zu Eulenburg, Peter; Best, Christoph; Geber, Christian; Müller-Forell, Wibke; Birklein, Frank; Dieterich, Marianne
2013-01-01
Background In previous imaging studies the insular cortex (IC) has been identified as an essential part of the processing of a wide spectrum of perception and sensorimotor integration. Yet, there are no systematic lesion studies in a sufficient number of patients examining whether processing of vestibular and the interaction of somatosensory and vestibular signals take place in the IC. Methods We investigated acute stroke patients with lesions affecting the IC in order to fill this gap. In detail, we explored signs of a vestibular tone imbalance such as the deviation of the subjective visual vertical (SVV). We applied voxel-lesion behaviour mapping analysis in 27 patients with acute unilateral stroke. Results Our data demonstrate that patients with lesions of the posterior IC have an abnormal tilt of SVV. Furthermore, re-analysing data of 20 patients from a previous study, we found a positive correlation between thermal perception contralateral to the stroke and the severity of the SVV tilt. Conclusions We conclude that the IC is a sensory brain region where different modalities might interact. PMID:24392273
Neural networks supporting audiovisual integration for speech: A large-scale lesion study.
Hickok, Gregory; Rogalsky, Corianne; Matchin, William; Basilakos, Alexandra; Cai, Julia; Pillay, Sara; Ferrill, Michelle; Mickelsen, Soren; Anderson, Steven W; Love, Tracy; Binder, Jeffrey; Fridriksson, Julius
2018-06-01
Auditory and visual speech information are often strongly integrated resulting in perceptual enhancements for audiovisual (AV) speech over audio alone and sometimes yielding compelling illusory fusion percepts when AV cues are mismatched, the McGurk-MacDonald effect. Previous research has identified three candidate regions thought to be critical for AV speech integration: the posterior superior temporal sulcus (STS), early auditory cortex, and the posterior inferior frontal gyrus. We assess the causal involvement of these regions (and others) in the first large-scale (N = 100) lesion-based study of AV speech integration. Two primary findings emerged. First, behavioral performance and lesion maps for AV enhancement and illusory fusion measures indicate that classic metrics of AV speech integration are not necessarily measuring the same process. Second, lesions involving superior temporal auditory, lateral occipital visual, and multisensory zones in the STS are the most disruptive to AV speech integration. Further, when AV speech integration fails, the nature of the failure-auditory vs visual capture-can be predicted from the location of the lesions. These findings show that AV speech processing is supported by unimodal auditory and visual cortices as well as multimodal regions such as the STS at their boundary. Motor related frontal regions do not appear to play a role in AV speech integration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tanaka, Satoshi; Seki, Keiko; Hanakawa, Takashi; Harada, Madoka; Sugawara, Sho K; Sadato, Norihiro; Watanabe, Katsumi; Honda, Manabu
2012-01-01
The abacus, a traditional physical calculation device, is still widely used in Asian countries. Previous behavioral work has shown that skilled abacus users perform rapid and precise mental arithmetic by manipulating a mental representation of an abacus, which is based on visual imagery. However, its neurophysiological basis remains unclear. Here, we report the case of a patient who was a good abacus user, but transiently lost her "mental abacus" and superior arithmetic performance after a stroke owing to a right hemispheric lesion including the dorsal premotor cortex (PMd) and inferior parietal lobule (IPL). Functional magnetic resonance imaging experiments were conducted 6 and 13 months after her stroke. In the mental calculation task, her brain activity was shifted from the language-related areas, including Broca's area and the left dorsolateral prefrontal and IPLs, to the visuospatial-related brain areas including the left superior parietal lobule (SPL), according to the recovery of her arithmetic abilities. In the digit memory task, activities in the bilateral SPL, and right visual association cortex were also observed after recovery. The shift of brain activities was consistent with her subjective report that she was able to shift the calculation strategy from linguistic to visuospatial as her mental abacus became stable again. In a behavioral experiment using an interference paradigm, a visual presentation of an abacus picture, but not a human face picture, interfered with the performance of her digit memory, confirming her use of the mental abacus after recovery. This is the first case report on the impairment of the mental abacus by a brain lesion and on recovery-related brain activity. We named this rare case "abacus-based acalculia." Together with previous neuroimaging studies, the present result suggests an important role for the PMd and parietal cortex in the superior arithmetic ability of abacus users.
Ostrander, Serena; Cazares, Victor A.; Kim, Charissa; Cheung, Shauna; Gonzalez, Isabel; Izquierdo, Alicia
2011-01-01
The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) are important neural regions in responding adaptively to changes in the incentive value of reward. Recent evidence suggests these structures may be differentially engaged in effort and cue-guided choice behavior. In two t-maze experiments, we examined the effects of bilateral lesions of either BLA or OFC on 1) effortful choices where rats could climb a barrier for a high reward or select a low reward with no effort and 2) effortful choices when a visual cue signaled changes in reward magnitude. In both experiments, BLA rats displayed transient work aversion, choosing the effortless low reward option. OFC rats were work averse only in the no cue conditions, displaying a pattern of attenuated recovery from the cue conditions signaling reward unavailability in the effortful arm. Control measures rule out an inability to discriminate the cue in either lesion group. PMID:21639604
Coy, Heidi; Young, Jonathan R; Douek, Michael L; Brown, Matthew S; Sayre, James; Raman, Steven S
2017-07-01
To evaluate the performance of a novel, quantitative computer-aided diagnostic (CAD) algorithm on four-phase multidetector computed tomography (MDCT) to detect peak lesion attenuation to enable differentiation of clear cell renal cell carcinoma (ccRCC) from chromophobe RCC (chRCC), papillary RCC (pRCC), oncocytoma, and fat-poor angiomyolipoma (fp-AML). We queried our clinical databases to obtain a cohort of histologically proven renal masses with preoperative MDCT with four phases [unenhanced (U), corticomedullary (CM), nephrographic (NP), and excretory (E)]. A whole lesion 3D contour was obtained in all four phases. The CAD algorithm determined a region of interest (ROI) of peak lesion attenuation within the 3D lesion contour. For comparison, a manual ROI was separately placed in the most enhancing portion of the lesion by visual inspection for a reference standard, and in uninvolved renal cortex. Relative lesion attenuation for both CAD and manual methods was obtained by normalizing the CAD peak lesion attenuation ROI (and the reference standard manually placed ROI) to uninvolved renal cortex with the formula [(peak lesion attenuation ROI - cortex ROI)/cortex ROI] × 100%. ROC analysis and area under the curve (AUC) were used to assess diagnostic performance. Bland-Altman analysis was used to compare peak ROI between CAD and manual method. The study cohort comprised 200 patients with 200 unique renal masses: 106 (53%) ccRCC, 32 (16%) oncocytomas, 18 (9%) chRCCs, 34 (17%) pRCCs, and 10 (5%) fp-AMLs. In the CM phase, CAD-derived ROI enabled characterization of ccRCC from chRCC, pRCC, oncocytoma, and fp-AML with AUCs of 0.850 (95% CI 0.732-0.968), 0.959 (95% CI 0.930-0.989), 0.792 (95% CI 0.716-0.869), and 0.825 (95% CI 0.703-0.948), respectively. On Bland-Altman analysis, there was excellent agreement of CAD and manual methods with mean differences between 14 and 26 HU in each phase. A novel, quantitative CAD algorithm enabled robust peak HU lesion detection and discrimination of ccRCC from other renal lesions with similar performance compared to the manual method.
Kalénine, Solène; Buxbaum, Laurel J.
2016-01-01
Converging evidence supports the existence of functionally and neuroanatomically distinct taxonomic (similarity-based; e.g., hammer-screwdriver) and thematic (event-based; e.g., hammer-nail) semantic systems. Processing of thematic relations between objects has been shown to selectively recruit the left posterior temporoparietal cortex. Similar posterior regions have been also been shown to be critical for knowledge of relationships between actions and manipulable human-made objects (artifacts). Based on the hypothesis that thematic relationships for artifacts are based, at least in part, on action relationships, we assessed the prediction that the same regions of the left posterior temporoparietal cortex would be critical for conceptual processing of artifact-related actions and thematic relations for artifacts. To test this hypothesis, we evaluated processing of taxonomic and thematic relations for artifact and natural objects as well as artifact action knowledge (gesture recognition) abilities in a large sample of 48 stroke patients with a range of lesion foci in the left hemisphere. Like control participants, patients identified thematic relations faster than taxonomic relations for artifacts, whereas they identified taxonomic relations faster than thematic relations for natural objects. Moreover, response times for identifying thematic relations for artifacts selectively predicted performance in gesture recognition. Whole brain Voxel Based Lesion-Symptom Mapping (VLSM) analyses and Region of Interest (ROI) regression analyses further demonstrated that lesions to the left posterior temporal cortex, overlapping with LTO and visual motion area hMT+, were associated both with relatively slower response times in identifying thematic relations for artifacts and poorer artifact action knowledge in patients. These findings provide novel insights into the functional role of left posterior temporal cortex in thematic knowledge, and suggest that the close association between thematic relations for artifacts and action representations may reflect their common dependence on visual motion and manipulation information. PMID:27389801
Gardner, Hannah E; Lambon Ralph, Matthew A; Dodds, Naomi; Jones, Theresa; Ehsan, Sheeba; Jefferies, Elizabeth
2012-04-01
Aphasic patients with multimodal semantic impairment following pFC or temporo-parietal (TP) cortex damage (semantic aphasia [SA]) have deficits characterized by poor control of semantic activation/retrieval, as opposed to loss of semantic knowledge per se. In line with this, SA patients show "refractory effects"; that is, declining accuracy in cyclical word-picture matching tasks when semantically related sets are presented rapidly and repeatedly. This is argued to follow a build-up of competition between targets and distractors. However, the link between poor semantic control and refractory effects is still controversial for two reasons. (1) Some theories propose that refractory effects are specific to verbal or auditory tasks, yet SA patients show poor control over semantic processing in both word and picture semantic tasks. (2) SA can result from lesions to either the left pFC or TP cortex, yet previous work suggests that refractory effects are specifically linked to the left inferior frontal cortex. For the first time, verbal, visual, and nonverbal auditory refractory effects were explored in nine SA patients who had pFC (pFC+) or TP cortex (TP-only) lesions. In all modalities, patient accuracy declined significantly over repetitions. This refractory effect at the group level was driven by pFC+ patients and was not shown by individuals with TP-only lesions. These findings support the theory that SA patients have reduced control over multimodal semantic retrieval and, additionally, suggest there may be functional specialization within the posterior versus pFC elements of the semantic control network.
Top-down alpha oscillatory network interactions during visuospatial attention orienting.
Doesburg, Sam M; Bedo, Nicolas; Ward, Lawrence M
2016-05-15
Neuroimaging and lesion studies indicate that visual attention is controlled by a distributed network of brain areas. The covert control of visuospatial attention has also been associated with retinotopic modulation of alpha-band oscillations within early visual cortex, which are thought to underlie inhibition of ignored areas of visual space. The relation between distributed networks mediating attention control and more focal oscillatory mechanisms, however, remains unclear. The present study evaluated the hypothesis that alpha-band, directed, network interactions within the attention control network are systematically modulated by the locus of visuospatial attention. We localized brain areas involved in visuospatial attention orienting using magnetoencephalographic (MEG) imaging and investigated alpha-band Granger-causal interactions among activated regions using narrow-band transfer entropy. The deployment of attention to one side of visual space was indexed by lateralization of alpha power changes between about 400ms and 700ms post-cue onset. The changes in alpha power were associated, in the same time period, with lateralization of anterior-to-posterior information flow in the alpha-band from various brain areas involved in attention control, including the anterior cingulate cortex, left middle and inferior frontal gyri, left superior temporal gyrus, and right insula, and inferior parietal lobule, to early visual areas. We interpreted these results to indicate that distributed network interactions mediated by alpha oscillations exert top-down influences on early visual cortex to modulate inhibition of processing for ignored areas of visual space. Copyright © 2016. Published by Elsevier Inc.
Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A
2013-11-01
Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.
Consolidation of visual associative long-term memory in the temporal cortex of primates.
Miyashita, Y; Kameyama, M; Hasegawa, I; Fukushima, T
1998-01-01
Neuropsychological theories have proposed a critical role for the interaction between the medial temporal lobe and the neocortex in the formation of long-term memory for facts and events, which has often been tested by learning of a series of paired words or figures in humans. We have examined neural mechanisms underlying the memory "consolidation" process by single-unit recording and molecular biological methods in an animal model of a visual pair-association task in monkeys. In our previous studies, we found that long-term associative representations of visual objects are acquired through learning in the neural network of the anterior inferior temporal (IT) cortex. In this article, we propose the hypothesis that limbic neurons undergo rapid modification of synaptic connectivity and provide backward signals that guide the reorganization of neocortical neural circuits. Two experiments tested this hypothesis: (1) we examined the role of the backward connections from the medial temporal lobe to the IT cortex by injecting ibotenic acid into the entorhinal and perirhinal cortices, which provided massive backward projections ipsilaterally to the IT cortex. We found that the limbic lesion disrupted the associative code of the IT neurons between the paired associates, without impairing the visual response to each stimulus. (2) We then tested the first half of this hypothesis by detecting the expression of immediate-early genes in the monkey temporal cortex. We found specific expression of zif268 during the learning of a new set of paired associates in the pair-association task, most intensively in area 36 of the perirhinal cortex. All these results with the visual pair-association task support our hypothesis and demonstrate that the consolidation process, which was first proposed on the basis of clinico-psychological evidence, can now be examined in primates using neurophysiolocical and molecular biological approaches. Copyright 1998 Academic Press.
Dissociable spatial and non-spatial attentional deficits after circumscribed thalamic stroke.
Kraft, Antje; Irlbacher, Kerstin; Finke, Kathrin; Kaufmann, Christian; Kehrer, Stefanie; Liebermann, Daniela; Bundesen, Claus; Brandt, Stephan A
2015-03-01
Thalamic nuclei act as sensory, motor and cognitive relays between multiple subcortical areas and the cerebral cortex. They play a crucial role in cognitive functions such as executive functioning, memory and attention. In the acute period after thalamic stroke attentional deficits are common. The precise functional relevance of specific nuclei or vascular sub regions of the thalamus for attentional sub functions is still unclear. The theory of visual attention (TVA) allows the measurement of four independent attentional parameters (visual short term memory storage capacity (VSTM), visual perceptual processing speed, selective control and spatial weighting). We combined parameter-based assessment based on TVA with lesion symptom mapping in standard stereotactic space in sixteen patients (mean age 41.2 ± 11.0 SD, 6 females), with focal thalamic lesions in the medial (N = 9), lateral (N = 5), anterior (N = 1) or posterior (N = 1) vascular territories of the thalamus. Compared with an age-matched control group of 52 subjects (mean age 40.1 ± 6.4, 35 females), the patients with thalamic lesions were, on the group level, mildly impaired in visual processing speed and VSTM. Patients with lateral thalamic lesions showed a deficit in processing speed while all other TVA parameters were within the normal range. Medial thalamic lesions can be associated with a spatial bias and extinction of targets either in the ipsilesional or the contralesional field. A posterior case with a thalamic lesion of the pulvinar replicated a finding of Habekost and Rostrup (2006), demonstrating a spatial bias to the ipsilesional field, as suggested by the neural theory of visual attention (NTVA) (Bundesen, Habekost, & Kyllingsbæk, 2011). A case with an anterior-medial thalamic lesion showed reduced selective attentional control. We conclude that lesions in distinct vascular sub regions of the thalamus are associated with distinct attentional syndromes (medial = spatial bias, lateral = processing speed). Copyright © 2015 Elsevier Ltd. All rights reserved.
Acute visual neglect and extinction: distinct functional state of the visuospatial attention system.
Umarova, Roza M; Saur, Dorothee; Kaller, Christoph P; Vry, Magnus-Sebastian; Glauche, Volkmar; Mader, Irina; Hennig, Jürgen; Weiller, Cornelius
2011-11-01
The neural mechanisms underlying spatial neglect are still disputed. Abnormal left parietal hyperactivation is proposed to lead to the rightward attentional bias, a clinical hallmark of neglect. Extinction, another deficit of visuospatial attention, is regarded as either a 'mild' form of neglect or a distinct syndrome. Although both neglect and extinction are typical syndromes of acute right hemispheric stroke, all imaging studies investigating these syndromes were conducted at least several weeks after stroke onset, in a phase when brain reorganization has already progressed. The present study aimed at comparing the activation patterns in acute stroke patients with neglect and extinction during visuospatial processing. Using functional magnetic resonance imaging, we examined the functional state of the attention system in 33 patients with a first ever stroke (53 ± 5 h after stroke onset) and age-matched healthy subjects (n = 15). All patients had embolic infarcts within the territory of the right middle cerebral artery. Patients were divided into three groups: (i) normal visuospatial processing (control patients, n = 11); (ii) patients with visual extinction but with no signs of neglect (n = 9); and (iii) patients with visual neglect (n = 13). While undergoing functional magnetic resonance imaging, patients performed a Posner-like task for visuospatial attention with detection of the targets in the left and right visual hemifields. Patients with neglect showed the expected imbalance in the left versus right parietal activation, which however, was present also in control and extinction patients, thus representing an epiphenomenon of the acute structural lesion in the right hemisphere. Compared with control patients, neglect was characterized by reduced activation in the right parietal and lateral occipital cortex, as well as in the left frontal eye field. In contrast, the activation pattern in patients with extinction differed from all other groups by an increased activation of the left prefrontal cortex. In both patients with neglect and extinction, detection of targets in the left hemifield correlated with an activation in the left prefrontal and parietal cortex. Thus at least in acute stroke, a relative hyperactivation of the left parietal cortex is not a particular characteristic of neglect. The specific signature of neglect is represented by the dysfunction of the right parietal and lateral occipital cortex. The function of the left attentional centres might provide a compensatory role after critical right hemisphere lesions and be relevant for the contralesional spatial processing.
Walker, Susannah C; Robbins, Trevor W; Roberts, Angela C
2009-05-06
Prefrontal cortex (PFC) is critical for self-ordered response sequencing. Patients with frontal lobe damage are impaired on response sequencing tasks, and increased blood flow has been reported in ventrolateral and dorsolateral PFC in subjects performing such tasks. Previously, we have shown that large excitotoxic lesions of the lateral PFC (LPFC) and orbitofrontal cortex FC (OFC), but not global prefrontal dopamine depletion, markedly impaired marmoset performance on a spatial self-ordered sequencing task (SSOST). To determine whether LPFC or OFC was responsible for the previously observed impairments and whether the underlying neural mechanism was modulated by serotonin, the present study compared the effects of selective LPFC and OFC excitotoxic lesions and 5,7-DHT-induced PFC serotonin depletions in marmosets on SSOST performance. Severe and long-lasting impairments in SSOST performance, including robust perseverative responding, followed LPFC but not OFC lesions. The deficit was ameliorated by task manipulations that precluded perseveration. Depletions of serotonin within LPFC and OFC had no effect, despite impairing performance on a visual discrimination reversal task, thus providing further evidence for differential monaminergic regulation of prefrontal function. In the light of the proposed attentional control functions of ventrolateral PFC and the failure of LPFC-lesioned animals to disengage from the immediately preceding response, it is proposed that this deficit may be due to a failure to attend to and register that a response has been made and thus should not be repeated. However, 5-HT does not appear to be implicated in this response inhibitory capacity.
Spatial integration and cortical dynamics.
Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G
1996-01-23
Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.
Zavaglia, Melissa; Hilgetag, Claus C
2016-06-01
Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.
Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro
2006-01-01
To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.
Mundinano, Inaki-Carril; Chen, Juan; de Souza, Mitchell; Sarossy, Marc G; Joanisse, Marc F; Goodale, Melvyn A; Bourne, James A
2017-11-13
Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans. These findings initiated a concerted effort on multiple fronts, including nonhuman primate studies, to uncover the neural substrate/s of the spared conscious vision. In both adult and early-life cases of V1 injury, evidence suggests the involvement of the Middle Temporal area (MT) of the extrastriate visual cortex, which is an integral component area of the dorsal stream and is also associated with visually-guided behaviors. Because of the limited number of early-life V1 injury cases for humans, the outstanding question in the field is what secondary visual pathways are responsible for this extraordinary capacity? Here we report for the first time a case of a child (B.I.) who suffered a bilateral occipital-lobe injury in the first two weeks postnatally due to medium-chain acyl-Co-A dehydrogenase deficiency. At 6 years of age, B.I. underwent a battery of neurophysiological tests, as well as structural and diffusion MRI and ophthalmic examination at 7 years. Despite the extensive bilateral occipital cortical damage, B.I. has extensive conscious visual abilities, is not blind, and can use vision to navigate his environment. Furthermore, unlike blindsight patients, he can readily and consciously identify happy and neutral faces and colors, tasks associated with ventral stream processing. These findings suggest significant re-routing of visual information. To identify the putative visual pathway/s responsible for this ability, MRI tractography of secondary visual pathways connecting MT with the lateral geniculate nucleus (LGN) and the inferior pulvinar (PI) were analysed. Results revealed an increased PI-MT pathway in the left hemisphere, suggesting that this pulvinar relay could be the neural pathway affording the preserved visual capacity following an early-life lesion of V1. These findings corroborate anatomical evidence from monkeys showing an enhanced PI-MT pathway following an early-life lesion of V1, compared to adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire
2014-07-01
The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.
Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk
2009-11-01
Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity.
Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk
2009-01-01
Affective neuroscience has been strongly influenced by the view that a ‘feeling’ is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients’ response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients’ phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity. PMID:19767414
Visual Space and Object Space in the Cerebral Cortex of Retinal Disease Patients
Spileers, Werner; Wagemans, Johan; Op de Beeck, Hans P.
2014-01-01
The lower areas of the hierarchically organized visual cortex are strongly retinotopically organized, with strong responses to specific retinotopic stimuli, and no response to other stimuli outside these preferred regions. Higher areas in the ventral occipitotemporal cortex show a weak eccentricity bias, and are mainly sensitive for object category (e.g., faces versus buildings). This study investigated how the mapping of eccentricity and category sensitivity using functional magnetic resonance imaging is affected by a retinal lesion in two very different low vision patients: a patient with a large central scotoma, affecting central input to the retina (juvenile macular degeneration), and a patient where input to the peripheral retina is lost (retinitis pigmentosa). From the retinal degeneration, we can predict specific losses of retinotopic activation. These predictions were confirmed when comparing stimulus activations with a no-stimulus fixation baseline. At the same time, however, seemingly contradictory patterns of activation, unexpected given the retinal degeneration, were observed when different stimulus conditions were directly compared. These unexpected activations were due to position-specific deactivations, indicating the importance of investigating absolute activation (relative to a no-stimulus baseline) rather than relative activation (comparing different stimulus conditions). Data from two controls, with simulated scotomas that matched the lesions in the two patients also showed that retinotopic mapping results could be explained by a combination of activations at the stimulated locations and deactivations at unstimulated locations. Category sensitivity was preserved in the two patients. In sum, when we take into account the full pattern of activations and deactivations elicited in retinotopic cortex and throughout the ventral object vision pathway in low vision patients, the pattern of (de)activation is consistent with the retinal loss. PMID:24505449
Nakae, Yoshiharu; Kudo, Yosuke; Yamamoto, Ryoo; Dobashi, Yuichi; Kawabata, Yuichi; Ikeda, Shingo; Yokoyama, Mutsumi; Higashiyama, Yuichi; Doi, Hiroshi; Johkura, Ken; Tanaka, Fumiaki
2016-01-01
The aim of this study was to analyze the pattern of magnetic resonance diffusion-weighted imaging (DWI) findings in status epilepticus in terms of clinical characteristics. Participants comprised 106 patients with status epilepticus who were admitted to our hospital and underwent DWI. Forty-five patients (42.5 %) showed abnormal findings on DWI and were divided into two groups, comprising 26 patients (24.5 %) with cortex lesions alone and 19 patients (17.9 %) with cortex and pulvinar lesions in the same hemisphere. A long duration of status epilepticus (>120 min) tended to be more prevalent among patients with cortex and pulvinar lesions (57.9 %) than among patients with cortex lesions alone (30.8 %) by univariate and multivariate analyses. Todd's palsy tended to be more frequent in patients with abnormalities on DWI (24/45, 53.3 %) than in patients with normal DWI (21/61, 34.4 %). Six of the 26 patients with cortex lesions alone (23.1 %) had taken anti-epileptic drugs before the attack compared to none of the 19 patients with both cortex and pulvinar lesions. The trend toward a longer duration of status epilepticus in patients with both cortex and pulvinar lesions favors a spreading pattern of seizure discharge from cortex to pulvinar via cortico-pulvinar pathways, and anti-epileptic drugs might, to some extent, prevent spreading of seizure discharge from cortex to pulvinar. In addition, existence of high-intensity areas on DWI at the onset of epilepsy may be a predictive factor for the occurrence of Todd's palsy.
[Visual Texture Agnosia in Humans].
Suzuki, Kyoko
2015-06-01
Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.
Vann, Seralynne D; Aggleton, John P
2002-02-01
Despite the connections of the retrosplenial cortex strongly suggesting a role in spatial memory, the lesion data to date have been equivocal. Whether subjects are impaired after retrosplenial lesions seems to depend on whether the lesions were aspirative or excitotoxic, with the latter failing to produce an impairment. A shortcoming of previous excitotoxic lesion studies is that they spared the most caudal part of the retrosplenial cortex. The present study thus used rats with extensive neurotoxic lesions of the retrosplenial cortex that encompassed the entire rostrocaudal extent of this region. These rats were consistently impaired on several tests that tax allocentric memory. In contrast, they were unimpaired on an egocentric discrimination task. Although the lesions did not appear to affect object recognition, clear deficits were found for an object-in-place discrimination. The present study not only demonstrates a role for the retrosplenial cortex in allocentric spatial memory, but also explains why previous excitotoxic lesions have failed to detect any deficits.
Nguyen, Quoc-Thang; Matute, Carlos; Miledi, Ricardo
1998-01-01
It has been postulated that, in the adult visual cortex, visual inputs modulate levels of mRNAs coding for neurotransmitter receptors in an activity-dependent manner. To investigate this possibility, we performed a monocular enucleation in adult rabbits and, 15 days later, collected their left and right visual cortices. Levels of mRNAs coding for voltage-activated sodium channels, and for receptors for kainate/α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl-d-aspartate (NMDA), γ-aminobutyric acid (GABA), and glycine were semiquantitatively estimated in the visual cortices ipsilateral and contralateral to the lesion by the Xenopus oocyte/voltage-clamp expression system. This technique also allowed us to study some of the pharmacological and physiological properties of the channels and receptors expressed in the oocytes. In cells injected with mRNA from left or right cortices of monocularly enucleated and control animals, the amplitudes of currents elicited by kainate or AMPA, which reflect the abundance of mRNAs coding for kainate and AMPA receptors, were similar. There was no difference in the sensitivity to kainate and in the voltage dependence of the kainate response. Responses mediated by NMDA, GABA, and glycine were unaffected by monocular enucleation. Sodium channel peak currents, activation, steady-state inactivation, and sensitivity to tetrodotoxin also remained unchanged after the enucleation. Our data show that mRNAs for major neurotransmitter receptors and ion channels in the adult rabbit visual cortex are not obviously modified by monocular deafferentiation. Thus, our results do not support the idea of a widespread dynamic modulation of mRNAs coding for receptors and ion channels by visual activity in the rabbit visual system. PMID:9501250
In search of a recognition memory engram
Brown, M.W.; Banks, P.J.
2015-01-01
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening. PMID:25280908
Ouerchefani, Riadh; Ouerchefani, Naoufel; Allain, Philippe; Ben Rejeb, Mohamed Riadh; Le Gall, Didier
2017-02-01
Few studies have examined the contribution of different sub-regions of the prefrontal cortex and lesion laterality to decision-making abilities. In addition, there are inconsistent findings about the role of ventromedial and dorsolateral lesions in decision-making deficit. In this study, decision-making processes are investigated following different damaged areas of the prefrontal cortex. We paid particular attention to the contribution of laterality, lesion location and lesion volume in decision-making deficit. Twenty-seven patients with discrete ventromedial lesions, dorsolateral lesions or extended-frontal lesions were compared with normal subjects on the Iowa Gambling Task (IGT). Our results showed that all frontal subgroups were impaired on the IGT in comparison with normal subjects. We noted also that IGT performance did not vary systematically based on lesion laterality or location. More precisely, our lesion analysis revealed that decision-making processes depend on a large cerebral network, including both ventromedial and dorsolateral areas of the prefrontal cortex. Consistent with past findings, our results support the claim that IGT deficit is not solitarily associated with ventromedial prefrontal cortex lesions. Copyright © 2016 Elsevier Inc. All rights reserved.
Beyond the VWFA: The orthography-semantics interface in spelling and reading
Purcell, Jeremy J.; Shea, Jennifer; Rapp, Brenda
2014-01-01
Lexical orthographic information provides the basis for recovering the meanings of words in reading and for generating correct word spellings in writing. Research has provided evidence that an area of the left ventral temporal cortex, a sub-region of what is often referred to as the Visual Word Form Area (VWFA), plays a significant role specifically in lexical orthographic processing. The current investigation goes beyond this previous work by examining the neurotopography of the interface of lexical orthography with semantics. We apply a novel lesion mapping approach with three individuals with acquired dysgraphia and dyslexia who suffered lesions to left ventral temporal cortex. To map cognitive processes to their neural substrates, this lesion mapping approach applies similar logical constraints as used in cognitive neuropsychological research. Using this approach, this investigation: (1) Identifies a region anterior to the VWFA that is important in the interface of orthographic information with semantics for reading and spelling; (2) Determines that, within this Orthography-Semantics Interface Region (OSIR), access to orthography from semantics (spelling) is topographically distinct from access to semantics from orthography (reading); (3) Provides evidence that, within this region, there is modality-specific access to and from lexical semantics for both spoken and written modalities, in both word production and comprehension. Overall, this study contributes to our understanding of the neural architecture at the lexical orthography-semantic-phonological interface within left ventral temporal cortex. PMID:24833190
Parietal substrates for dimensional effects in visual search: evidence from lesion-symptom mapping
Humphreys, Glyn W.; Chechlacz, Magdalena
2013-01-01
In visual search, the detection of pop-out targets is facilitated when the target-defining dimension remains the same compared with when it changes across trials. We tested the brain regions necessary for these dimensional carry-over effects using a voxel-based morphometry study with brain-lesioned patients. Participants had to search for targets defined by either their colour (red or blue) or orientation (right- or left-tilted), and the target dimension either stayed the same or changed on consecutive trials. Twenty-five patients were categorized according to whether they showed an effect of dimensional change on search or not. The two groups did not differ with regard to their performance on several working memory tasks, and the dimensional carry-over effects were not correlated with working memory performance. With spatial, sustained attention and working memory deficits as well as lesion volume controlled, damage within the right inferior parietal lobule (the angular and supramarginal gyri) extending into the intraparietal sulcus was associated with an absence of dimensional carry-over (P < 0.001, cluster-level corrected for multiple comparisons). The data suggest that these regions of parietal cortex are necessary to implement attention shifting in the context of visual dimensional change. PMID:23404335
Unseen stimuli modulate conscious visual experience: evidence from inter-hemispheric summation.
de Gelder, B; Pourtois, G; van Raamsdonk, M; Vroomen, J; Weiskrantz, L
2001-02-12
Emotional facial expression can be discriminated despite extensive lesions of striate cortex. Here we report differential performance with recognition of facial stimuli in the intact visual field depending on simultaneous presentation of congruent or incongruent stimuli in the blind field. Three experiments were based on inter-hemispheric summation. Redundant stimulation in the blind field led to shorter latencies for stimulus detection in the intact field. Recognition of the expression of a half-face expression in the intact field was faster when the other half of the face presented to the blind field had a congruent expression. Finally, responses to the expression of whole faces to the intact field were delayed for incongruent facial expressions presented in the blind field. These results indicate that the neuro-anatomical pathways (extra-striate cortical and sub-cortical) sustaining inter-hemispheric summation can operate in the absence of striate cortex.
Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats.
Kolb, B; Cioe, J; Muirhead, D
1998-03-01
Rats were given suction lesions of the presumptive frontal cortex on embryonic day 18 (E18) and subsequently tested, as adults, on tests of spatial navigation (Morris water task, radial arm maze), motor tasks (Whishaw reaching task, beam walking), and locomotor activity. Frontal cortical lesions at E18 affected cerebral morphogenesis, producing unusual morphological structures including abnormal patches of neurons in the cortex and white matter as well as neuronal bridges between the hemispheres. A small sample of E18 operates also had hydrocephaly. The animals with E18 lesions without hydrocephalus were behaviorally indistinguishable from littermate controls. The results demonstrate that animals with focal lesions of the presumptive frontal cortex have gross abnormalities in cerebral morphology but the lesions leave the functions normally subserved by the frontal cortex in adult rats unaffected. The results are discussed in the context of a hypothesis regarding the optimal times for functional recovery from cortical injury.
[Neural correlates of priming in vision: evidence from neuropsychology and neuroimaging].
Kristjánsson, Arni
2005-04-01
When we look around us, we are overall more likely to notice objects that we have recently looked at; an effect known as priming. For example, when the color or shape of a visual search target is repeated, observers find the target faster than otherwise. Here I summarize recent research undertaken to uncover the temporary changes in brain activity that accompany these priming effects. In light of the fact that priming seems to have a large effect on how attention is allocated, we investigated priming effects in a visual search task on patients suffering from the neurological disorder "hemispatial neglect" in which patients typically fail to notice display items in one of their visual hemifields. Priming of target color was relatively normal for these patients, while priming of target location seemed to require awareness of the briefly presented visual search target. An experiment with functional magnetic resonance imaging of normal observers revealed that both color and location priming had a strong modulatory influence on attentional mechanisms of the frontal and parietal cortex. Color priming was also correlated with changes in activity in visual cortex as well as color processing areas in the temporal lobe. Location priming was correlated with changes in activity near the temporo- parietal junction and lateral inferior frontal cortex, areas that have been connected with attentional capture; which ties well with our finding of deficits of location priming for the neglect patients who indeed have lesions in the temporo-parietal junction. Overall, the results confirm the tight coupling of visual attention and priming in vision, and also that the visual areas of the brain show some modulation of activity as priming develops.
Wolf, Richard C; Pujara, Maia; Baskaya, Mustafa K; Koenigs, Michael
2016-09-01
Facial emotion recognition is a critical aspect of human communication. Since abnormalities in facial emotion recognition are associated with social and affective impairment in a variety of psychiatric and neurological conditions, identifying the neural substrates and psychological processes underlying facial emotion recognition will help advance basic and translational research on social-affective function. Ventromedial prefrontal cortex (vmPFC) has recently been implicated in deploying visual attention to the eyes of emotional faces, although there is mixed evidence regarding the importance of this brain region for recognition accuracy. In the present study of neurological patients with vmPFC damage, we used an emotion recognition task with morphed facial expressions of varying intensities to determine (1) whether vmPFC is essential for emotion recognition accuracy, and (2) whether instructed attention to the eyes of faces would be sufficient to improve any accuracy deficits. We found that vmPFC lesion patients are impaired, relative to neurologically healthy adults, at recognizing moderate intensity expressions of anger and that recognition accuracy can be improved by providing instructions of where to fixate. These results suggest that vmPFC may be important for the recognition of facial emotion through a role in guiding visual attention to emotionally salient regions of faces. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dysgranular Retrosplenial Cortex Lesions in Rats Disrupt Cross-Modal Object Recognition
ERIC Educational Resources Information Center
Hindley, Emma L.; Nelson, Andrew J. D.; Aggleton, John P.; Vann, Seralynne D.
2014-01-01
The retrosplenial cortex supports navigation, with one role thought to be the integration of different spatial cue types. This hypothesis was extended by examining the integration of nonspatial cues. Rats with lesions in either the dysgranular subregion of retrosplenial cortex (area 30) or lesions in both the granular and dysgranular subregions…
Rousseaux, Marc; Braem, Bérenger; Honoré, Jacques; Saj, Arnaud
2015-08-01
Brain hemisphere lesions often cause a contralesional tilt of the subjective vertical (SV) a phenomenon related to spatial neglect and postural disorders. Depending on the method employed, different perceptual systems come into play when this gravitational vertical is assessed. Here, we compared the anatomical and psychophysical characteristics of modality-dependent SV biases in patients with right hemisphere stroke. The SV was measured with visual, haptic and visual-haptic modalities (SV, SVV, SVHV) in 46 patients with a relatively recent stroke. Voxel-based lesion-symptom mapping (performed with NPM(®)) was used to highlight brain areas in which lesions best explained the severity of task biases (p < .05). Lesions explaining the SVV tilt (TSVV) were centered on the posterior part of the middle temporal gyrus, those explaining the TSHV were more limited and anterior, without convergence with the former. Lesions explaining the TSVHV were centered on the superior temporal gyrus and more anterior those explaining the TSVV, with convergence with lesions explaining both the TSVV and the TSHV. Patients showed counterclockwise deviations in the SVs. Constant and variable errors were greater for the SHV than for the SVV and for the SVHV. The TSVV and TVHV were closely related to the presence of left spatial neglect and hemianopia. Errors in the SVV and (at a lesser degree) SVHV were preferentially related to lesions in visual associative cortex. The SVV and especially the SVHV provide valuable estimates of patient difficulties, in view of the lower associated variable errors (i.e., greater precision) and closer relationships with clinical disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Meng; Baskin, David S; Fung, Steve
2016-05-01
Rapid word recognition and reading fluency is a specialized cortical process governed by the visual word form area (VWFA), which is localized to the dominant posterior lateral occipitotemporal sulcus/fusiform gyrus. A lesion of the VWFA results in pure alexia without agraphia characterized by letter-by-letter reading. Palinopsia is a visual processing distortion characterized by persistent afterimages and has been reported in lesions involving the nondominant occipitotemporal cortex. A 67-year-old right-handed woman with no neurologic history presented to our emergency department with acute cortical ischemic symptoms that began with a transient episode of receptive aphasia. She also reported inability to read, albeit with retained writing ability. She also saw afterimages of objects. During her stroke workup, an intra-axial circumscribed enhancing mass lesion was discovered involving her dominant posterolateral occipitotemporal lobe. Given the eloquent brain involvement, she underwent preoperative functional magnetic resonance imaging with diffusion tensor imaging tractography and awake craniotomy to maximize resection and preserve function. Many organic lesions involving these regions have been reported in the literature, but to the best of our knowledge, glioblastoma involving the VWFA resulting in both clinical syndromes of pure alexia and palinopsia with superimposed functional magnetic resonance imaging and fiber tract mapping has never been reported before. Copyright © 2015 Elsevier Inc. All rights reserved.
Goldstein, L B
1995-03-13
The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F; Mir, Anis; Schwab, Martin E; Belhaj-Saif, Abderraouf; Rouiller, Eric M
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns ("true" recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F.; Mir, Anis; Schwab, Martin E.; Belhaj-Saif, Abderraouf; Rouiller, Eric M.
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns (“true” recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex. PMID:23885254
In search of a recognition memory engram.
Brown, M W; Banks, P J
2015-03-01
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
van Assche, Mitsouko; Kebets, Valeria; Lopez, Ursula; Saj, Arnaud; Goldstein, Rachel; Bernasconi, Françoise; Vuilleumier, Patrik; Assal, Frédéric
2016-01-01
The parahippocampal cortex (PHC) participates in both perception and memory. However, the way perceptual and memory processes cooperate when we navigate in our everyday life environment remains poorly understood. We studied a stroke patient presenting a brain lesion in the right PHC, which resulted in a mild and quantifiable topographic agnosia, and allowed us to investigate the role of this structure in overt place recognition. Photographs of personally familiar and unfamiliar places were displayed during functional magnetic resonance imaging (fMRI). Familiar places were either recognized or unrecognized by the patient and 6 age- and education-matched controls in a visual post-scan recognition test. In fMRI, recognized places were associated with a network comprising the fusiform gyrus in the intact side, but also the right anterior PHC, which included the lesion site. Moreover, this right PHC showed increased connectivity with the left homologous PHC in the intact hemisphere. By contrasting recognized with unrecognized familiar places, we replicate the finding of the joint involvement of the retrosplenial cortex, occipito-temporal areas, and posterior parietal cortex in place recognition. This study shows that the ability for left and right anterior PHC to communicate despite the neurological damage conditioned place recognition success in this patient. It further highlights a hemispheric asymmetry in this process, by showing the fundamental role of the right PHC in topographic agnosia.
The Cerebellum and Emotional Experience
Turner, Beth M.; Paradiso, Sergio; Marvel, Cherie L.; Pierson, Ronald; Boles Ponto, Laura L.; Hichwa, Richard D.; Robinson, Robert G.
2007-01-01
Summary While the role of the cerebellum in motor coordination is widely accepted, the notion that it is involved in emotion has only recently gained popularity. To date, functional neuroimaging has not been used in combination with lesion studies to elucidate the role of the cerebellum in the processing of emotional material. We examined six participants with cerebellar stroke and nine age and education matched healthy volunteers. In addition to a complete neuropsychological, neurologic, and psychiatric examination, participants underwent [15O]water positron emission tomography (PET) while responding to emotion-evoking visual stimuli. Cerebellar lesions were associated with reduced pleasant experience in response to happiness-evoking stimuli. Stroke patients reported an unpleasant experience to frightening stimuli similar to healthy controls, yet showed significantly lower activity in the right ventral lateral and left dorsolateral prefrontal cortex, amygdala, thalamus, and retrosplenial cingulate gyrus. Frightening stimuli led to increased activity in the ventral medial prefrontal, anterior cingulate, pulvinar, and insular cortex. This suggests that alternate neural circuitry became responsible for maintaining the evolutionarily critical fear response after cerebellar damage. PMID:17123557
Crottaz-Herbette, Sonia; Fornari, Eleonora; Notter, Michael P; Bindschaedler, Claire; Manzoni, Laura; Clarke, Stephanie
2017-09-01
Prismatic adaptation has been repeatedly reported to alleviate neglect symptoms; in normal subjects, it was shown to enhance the representation of the left visual space within the left inferior parietal cortex. Our study aimed to determine in humans whether similar compensatory mechanisms underlie the beneficial effect of prismatic adaptation in neglect. Fifteen patients with right hemispheric lesions and 11 age-matched controls underwent a prismatic adaptation session which was preceded and followed by fMRI using a visual detection task. In patients, the prismatic adaptation session improved the accuracy of target detection in the left and central space and enhanced the representation of this visual space within the left hemisphere in parts of the temporal convexity, inferior parietal lobule and prefrontal cortex. Across patients, the increase in neuronal activation within the temporal regions correlated with performance improvements in this visual space. In control subjects, prismatic adaptation enhanced the representation of the left visual space within the left inferior parietal lobule and decreased it within the left temporal cortex. Thus, a brief exposure to prismatic adaptation enhances, both in patients and in control subjects, the competence of the left hemisphere for the left space, but the regions extended beyond the inferior parietal lobule to the temporal convexity in patients. These results suggest that the left hemisphere provides compensatory mechanisms in neglect by assuming the representation of the whole space within the ventral attentional system. The rapidity of the change suggests that the underlying mechanism relies on uncovering pre-existing synaptic connections. Copyright © 2017 Elsevier Ltd. All rights reserved.
Harrison, Daniel M; Oh, Jiwon; Roy, Snehashis; Wood, Emily T; Whetstone, Anna; Seigo, Michaela A; Jones, Craig K; Pham, Dzung; van Zijl, Peter; Reich, Daniel S; Calabresi, Peter A
2015-08-01
Pathology in both cortex and deep gray matter contribute to disability in multiple sclerosis (MS). We used the increased signal-to-noise ratio of 7-tesla (7T) MRI to visualize small lesions within the thalamus and to relate this to clinical information and cortical lesions. We obtained 7T MRI scans on 34 MS cases and 15 healthy volunteers. Thalamic lesion number and volume were related to demographic data, clinical disability measures, and lesions in cortical gray matter. Thalamic lesions were found in 24/34 of MS cases. Two lesion subtypes were noted: discrete, ovoid lesions, and more diffuse lesional areas lining the periventricular surface. The number of thalamic lesions was greater in progressive MS compared to relapsing-remitting (mean ±SD, 10.7 ±0.7 vs. 3.0 ±0.7, respectively, p < 0.001). Thalamic lesion burden (count and volume) correlated with EDSS score and measures of cortical lesion burden, but not with white matter lesion burden or white matter volume. Using 7T MRI allows identification of thalamic lesions in MS, which are associated with disability, progressive disease, and cortical lesions. Thalamic lesion analysis may be a simpler, more rapid estimate of overall gray matter lesion burden in MS. © The Author(s), 2015.
Neural Pathways Conveying Novisual Information to the Visual Cortex
2013-01-01
The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed. PMID:23840972
Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions.
Price, C J; Warburton, E A; Moore, C J; Frackowiak, R S; Friston, K J
2001-05-15
Functional neuroimaging was used to investigate how lesions to the Broca's area impair neuronal responses in remote undamaged cortical regions. Four patients with speech output problems, but relatively preserved comprehension, were scanned while viewing words relative to consonant letter strings. In normal subjects, this results in left lateralized activation in the posterior inferior frontal, middle temporal, and posterior inferior temporal cortices. Each patient activated normally in the middle temporal region but abnormally in the damaged posterior inferior frontal cortex and the undamaged posterior inferior temporal cortex. In the damaged frontal region, activity was insensitive to the presence of words but in the undamaged posterior inferior temporal region, activity decreased in the presence of words rather than increasing as it did in the normal individuals. The reversal of responses in the left posterior inferior temporal region illustrate the context-sensitive nature of the abnormality and that failure to activate the left posterior temporal region could not simply be accounted for by insufficient demands on the underlying function. We propose that, in normal individuals, visual word presentation changes the effective connectivity among reading areas and, in patients, posterior temporal responses are abnormal when they depend upon inputs from the damaged inferior frontal cortex. Our results serve to introduce the concept of dynamic diaschisis; the anatomically remote and context-sensitive effects of focal brain lesions. Dynamic diaschisis reveals abnormalities of functional integration that may have profound implications for neuropsychological inference, functional anatomy and, vicariously, cognitive rehabilitation.
Brain mechanisms of recovery from pure alexia: A single case study with multiple longitudinal scans.
Cohen, Laurent; Dehaene, Stanislas; McCormick, Samantha; Durant, Szonya; Zanker, Johannes M
2016-10-01
Pure alexia is an acquired reading disorder, typically due to a left occipito-temporal lesion affecting the Visual Word Form Area (VWFA). It is unclear whether the VWFA acts as a unique bottleneck for reading, or whether alternative routes are available for recovery. Here, we address this issue through the single-case longitudinal study of a neuroscientist who experienced pure alexia and participated in 17 behavioral, 9 anatomical, and 9 fMRI assessment sessions over a period of two years. The origin of the impairment was assigned to a small left fusiform lesion, accompanied by a loss of VWFA responsivity and by the degeneracy of the associated white matter pathways. fMRI experiments allowed us to image longitudinally the visual perception of words, as compared to other classes of stimuli, as well as the mechanisms of letter-by-letter reading. The progressive improvement of reading was not associated with the re-emergence of a new area selective to words, but with increasing responses in spared occipital cortex posterior to the lesion and in contralateral right occipital cortex. Those regions showed a non-specific increase of activations over time and an increase in functional correlation with distant language areas. Those results confirm the existence of an alternative occipital route for reading, bypassing the VWFA, but they also point to its key limitation: the patient remained a slow letter-by-letter reader, thus supporting the critical importance of the VWFA for the efficient parallel recognition of written words. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brain-Stimulation Induced Blindsight: Unconscious Vision or Response Bias?
Lloyd, David A.; Abrahamyan, Arman; Harris, Justin A.
2013-01-01
A dissociation between visual awareness and visual discrimination is referred to as “blindsight”. Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the “gate” of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects’ performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious. PMID:24324837
Brain-stimulation induced blindsight: unconscious vision or response bias?
Lloyd, David A; Abrahamyan, Arman; Harris, Justin A
2013-01-01
A dissociation between visual awareness and visual discrimination is referred to as "blindsight". Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the "gate" of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects' performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious.
Perirhinal Cortex Lesions in Rats: Novelty Detection and Sensitivity to Interference
2015-01-01
Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal. PMID:26030425
Brain Activity During the Encoding, Retention, and Retrieval of Stimulus Representations
de Zubicaray, Greig I.; McMahon, Katie; Wilson, Stephen J.; Muthiah, Santhi
2001-01-01
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory. PMID:11584070
Ventromedial prefrontal cortex modulates fatigue after penetrating traumatic brain injury
Pardini, Matteo; Krueger, Frank; Raymont, Vanessa; Grafman, Jordan
2010-01-01
Background: Fatigue is a common and disabling symptom in neurologic disorders including traumatic penetrating brain injury (PBI). Despite fatigue's prevalence and impact on quality of life, its pathophysiology is not understood. Studies on effort perception in healthy subjects, animal behavioral paradigms, and recent evidence in different clinical populations suggest that ventromedial prefrontal cortex could play a significant role in fatigue pathophysiology in neurologic conditions. Methods: We enrolled 97 PBI patients and 37 control subjects drawn from the Vietnam Head Injury Study registry. Fatigue was assessed with a self-report questionnaire and a clinician-rated instrument; lesion location and volume were evaluated on CT scans. PBI patients were divided in 3 groups according to lesion location: a nonfrontal lesion group, a ventromedial prefrontal cortex lesion (vmPFC) group, and a dorso/lateral prefrontal cortex (d/lPFC) group. Fatigue scores were compared among the 3 PBI groups and the healthy controls. Results: Individuals with vmPFC lesions were significantly more fatigued than individuals with d/lPFC lesions, individuals with nonfrontal lesions, and healthy controls, while these 3 latter groups were equally fatigued. VmPFC volume was correlated with fatigue scores, showing that the larger the lesion volume, the higher the fatigue scores. Conclusions: We demonstrated that ventromedial prefrontal cortex lesion (vmPFC) plays a critical role in penetrating brain injury–related fatigue, providing a rationale to link fatigue to different vmPFC functions such as effort and reward perception. The identification of the anatomic and cognitive basis of fatigue can contribute to developing pathophysiology-based treatments for this disabling symptom. GLOSSARY AAL = Automated Anatomic Labeling; ANOVA = analysis of variance; BDI = Beck Depression Inventory; d/lPFC = dorso/lateral prefrontal cortex; DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, 4th edition; NBRS = Neurobehavioral Rating Scale; NF = nonfrontal lesion; PBI = penetrating brain injury; ROI = region of interest; SCID-I = Structured Clinical Interview for DSM-IV, Axis I; VHIS = Vietnam Head Injury Study; vmPFC = ventromedial prefrontal cortex lesion. PMID:20194914
Prism adaptation improves ego-centered but not allocentric neglect in early rehabilitation patients.
Gossmann, Anja; Kastrup, Andreas; Kerkhoff, Georg; López-Herrero, Carmen; Hildebrandt, Helmut
2013-01-01
Unilateral neglect due to parieto-temporo-frontal lesions has a negative impact on the success of rehabilitation, and prism adaptation (PA) enhances recovery from neglect. However, it is unclear if this effect holds also in severely impaired patients and/or in the postacute phase of rehabilitation. Moreover, it is not known whether PA affects all aspects of neglect recovery or ego-centered spatial orientation only. Sixteen patients in a postacute stage (on average 36 days after a large right cerebrovascular stroke) were entered into a series of single case design studies with 4 measurements: 2 before and 2 after 1 week of PA treatment. All patients had severe neglect (showing trunk, head, and eye deviation; canceling less than 20% of targets in a visual cancellation test). Lesions were transferred to a standard brain to analyze size and location. Patients improved in cued body orientation and in the cancellation task, that is, in ego-centered neglect. However, none of the measures used to evaluate neglect of left side of objects irrespective of their position on the right or left side of the patient (allocentric neglect) showed an improvement. Treatment effects were not influenced by total lesion size, but lesions including the postcentral cortex were related to smaller recovery gains. PA is helpful in treating severely impaired patients in the postacute phase, but the effect is restricted to ego-centered neglect. Lesions in the postcentral cortex (middle occipito-temporal, middle temporal, and posterior parietal areas) seem to limit the effect of PA.
Ventral aspect of the visual form pathway is not critical for the perception of biological motion
Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J.; Rees, Geraint; Behrmann, Marlene
2015-01-01
Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504
Ortega, Leonardo A; Glueck, Amanda C; Uhelski, Megan; Fuchs, Perry N; Papini, Mauricio R
2013-05-01
The present research evaluated the role of two prefrontal cortex areas, the ventrolateral orbital cortex (VLO) and the medial prefrontal cortex (mPFC), on two situations involving incentive downshifts, consummatory successive negative contrast (cSNC) with sucrose solutions and Pavlovian autoshaping following continuous vs. partial reinforcement with food pellets. Animals received electrolytic lesions and then were tested on cSNC, autoshaping, open-field activity, and sucrose sensitivity. Lesions of the VLO reduced suppression of consummatory behavior after the incentive downshift, but only during the first downshift trial, and also eliminated the enhancement of anticipatory behavior during partial reinforcement, relative to continuous reinforcement, in autoshaping. There was no evidence of specific effects of mPFC lesions on incentive downshifts. Open-field activity was also reduced by VLO lesions, but only in the central area, whereas mPFC lesions had no observable effects on activity. Animals with mPFC lesions exhibited decreased consumption of the lowest sucrose concentration, whereas no effects were observed in animals with VLO lesions. These results suggest that the VLO may exert nonassociative (i.e., motivational, emotional) influences on behavior in situations involving incentive downshifts. No clear role on incentive downshift was revealed by mPFC lesions. Copyright © 2013 Elsevier B.V. All rights reserved.
Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko
2009-10-01
We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.
Right-hemispheric dominance for visual remapping in humans.
Pisella, L; Alahyane, N; Blangero, A; Thery, F; Blanc, S; Pelisson, D
2011-02-27
We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans--and present additional original data--which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward. This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized.
Right-hemispheric dominance for visual remapping in humans
Pisella, L.; Alahyane, N.; Blangero, A.; Thery, F.; Blanc, S.; Pelisson, D.
2011-01-01
We review evidence showing a right-hemispheric dominance for visuo-spatial processing and representation in humans. Accordingly, visual disorganization symptoms (intuitively related to remapping impairments) are observed in both neglect and constructional apraxia. More specifically, we review findings from the intervening saccade paradigm in humans—and present additional original data—which suggest a specific role of the asymmetrical network at the temporo-parietal junction (TPJ) in the right hemisphere in visual remapping: following damage to the right dorsal posterior parietal cortex (PPC) as well as part of the corpus callosum connecting the PPC to the frontal lobes, patient OK in a double-step saccadic task exhibited an impairment when the second saccade had to be directed rightward. This singular and lateralized deficit cannot result solely from the patient's cortical lesion and, therefore, we propose that it is due to his callosal lesion that may specifically interrupt the interhemispheric transfer of information necessary to execute accurate rightward saccades towards a remapped target location. This suggests a specialized right-hemispheric network for visuo-spatial remapping that subsequently transfers target location information to downstream planning regions, which are symmetrically organized. PMID:21242144
Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita
NASA Astrophysics Data System (ADS)
Miyashita, Yasushi; Chang, Han Soo
1988-01-01
It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.
Chareyron, Loïc J; Banta Lavenex, Pamela; Amaral, David G; Lavenex, Pierre
2017-12-01
Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.
Motor cortex is required for learning but not for executing a motor skill.
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P
2015-05-06
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A
2017-01-01
After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400
Motor cortex is required for learning but not executing a motor skill
Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.
2018-01-01
Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304
White and gray matter damage in primary progressive MS
Chard, Declan; Altmann, Daniel R.; Tozer, Daniel; Miller, David H.; Thompson, Alan J.; Wheeler-Kingshott, Claudia; Ciccarelli, Olga
2016-01-01
Objective: The temporal relationship between white matter (WM) and gray matter (GM) damage in vivo in early primary progressive multiple sclerosis (PPMS) was investigated testing 2 hypotheses: (1) WM tract abnormalities predict subsequent changes in the connected cortex (“primary WM damage model”); and (2) cortical abnormalities predict later changes in connected WM tracts (“primary GM damage model”). Methods: Forty-seven patients with early PPMS and 18 healthy controls had conventional and magnetization transfer imaging at baseline; a subgroup of 35 patients repeated the protocol after 2 years. Masks of the corticospinal tracts, genu of the corpus callosum and optic radiations, and of connected cortical regions, were used for extracting the mean magnetization transfer ratio (MTR). Multiple regressions within each of 5 tract-cortex pairs were performed, adjusting for the dependent variable's baseline MTR; tract lesion load and MTR, spinal cord area, age, and sex were examined for potential confounding. Results: The baseline MTR of most regions was lower in patients than in healthy controls. The tract-cortex pair relationships in the primary WM damage model were significant for the bilateral motor pair and right visual pair, while those in the primary GM damage model were only significant for the right motor pair. Lower lesion MTR at baseline was associated with lower MTR in the same tract normal-appearing WM at 2 years in 3 tracts. Conclusion: These results are consistent with the hypothesis that in early PPMS, cortical damage is for the most part a sequela of normal-appearing WM pathology, which, in turn, is predicted by abnormalities within WM lesions. PMID:26674332
White and gray matter damage in primary progressive MS: The chicken or the egg?
Bodini, Benedetta; Chard, Declan; Altmann, Daniel R; Tozer, Daniel; Miller, David H; Thompson, Alan J; Wheeler-Kingshott, Claudia; Ciccarelli, Olga
2016-01-12
The temporal relationship between white matter (WM) and gray matter (GM) damage in vivo in early primary progressive multiple sclerosis (PPMS) was investigated testing 2 hypotheses: (1) WM tract abnormalities predict subsequent changes in the connected cortex ("primary WM damage model"); and (2) cortical abnormalities predict later changes in connected WM tracts ("primary GM damage model"). Forty-seven patients with early PPMS and 18 healthy controls had conventional and magnetization transfer imaging at baseline; a subgroup of 35 patients repeated the protocol after 2 years. Masks of the corticospinal tracts, genu of the corpus callosum and optic radiations, and of connected cortical regions, were used for extracting the mean magnetization transfer ratio (MTR). Multiple regressions within each of 5 tract-cortex pairs were performed, adjusting for the dependent variable's baseline MTR; tract lesion load and MTR, spinal cord area, age, and sex were examined for potential confounding. The baseline MTR of most regions was lower in patients than in healthy controls. The tract-cortex pair relationships in the primary WM damage model were significant for the bilateral motor pair and right visual pair, while those in the primary GM damage model were only significant for the right motor pair. Lower lesion MTR at baseline was associated with lower MTR in the same tract normal-appearing WM at 2 years in 3 tracts. These results are consistent with the hypothesis that in early PPMS, cortical damage is for the most part a sequela of normal-appearing WM pathology, which, in turn, is predicted by abnormalities within WM lesions. © 2015 American Academy of Neurology.
Right fusiform response patterns reflect visual object identity rather than semantic similarity.
Bruffaerts, Rose; Dupont, Patrick; De Grauwe, Sophie; Peeters, Ronald; De Deyne, Simon; Storms, Gerrit; Vandenberghe, Rik
2013-12-01
We previously reported the neuropsychological consequences of a lesion confined to the middle and posterior part of the right fusiform gyrus (case JA) causing a partial loss of knowledge of visual attributes of concrete entities in the absence of category-selectivity (animate versus inanimate). We interpreted this in the context of a two-step model that distinguishes structural description knowledge from associative-semantic processing and implicated the lesioned area in the former process. To test this hypothesis in the intact brain, multi-voxel pattern analysis was used in a series of event-related fMRI studies in a total of 46 healthy subjects. We predicted that activity patterns in this region would be determined by the identity of rather than the conceptual similarity between concrete entities. In a prior behavioral experiment features were generated for each entity by more than 1000 subjects. Based on a hierarchical clustering analysis the entities were organised into 3 semantic clusters (musical instruments, vehicles, tools). Entities were presented as words or pictures. With foveal presentation of pictures, cosine similarity between fMRI response patterns in right fusiform cortex appeared to reflect both the identity of and the semantic similarity between the entities. No such effects were found for words in this region. The effect of object identity was invariant for location, scaling, orientation axis and color (grayscale versus color). It also persisted for different exemplars referring to a same concrete entity. The apparent semantic similarity effect however was not invariant. This study provides further support for a neurobiological distinction between structural description knowledge and processing of semantic relationships and confirms the role of right mid-posterior fusiform cortex in the former process, in accordance with previous lesion evidence. © 2013.
Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao
2015-09-09
Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.
Philips, Ryan T; Chakravarthy, V Srinivasa
2015-01-01
Primate vision research has shown that in the retinotopic map of the primary visual cortex, eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto the dorsoventral axis. Theoretically such a map has been approximated by a complex log map. Neural models with correlational learning have explained the development of other visual maps like orientation maps and ocular-dominance maps. In this paper it is demonstrated that activity based mechanisms can drive a self-organizing map (SOM) into such a configuration that dilations and rotations of a particular image (in this case a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an appropriate boundary and realistic initial conditions, that a retinotopic map which maps eccentricity and meridional angle to the horizontal and vertical axes respectively can be developed. This developed map bears a strong resemblance to the complex log map. We also simulated lesion studies which indicate that the lateral excitatory connections play a crucial role in development of the retinotopic map.
Bohbot, Véronique D; Allen, John J B; Dagher, Alain; Dumoulin, Serge O; Evans, Alan C; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus.
OCT-based in vivo tissue injury mapping
NASA Astrophysics Data System (ADS)
Baran, Utku; Li, Yuandong; Wang, Ruikang K.
2016-03-01
Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.
Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo
2003-05-01
Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.
Sreenivasan, Varun; Kyriakatos, Alexandros; Mateo, Celine; Jaeger, Dieter; Petersen, Carl C.H.
2016-01-01
Abstract. The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs. PMID:27921067
Functional asymmetry of left and right avian piriform cortex in homing pigeons' navigation.
Gagliardo, Anna; Odetti, Francesca; Ioalè, Paolo; Pecchia, Tommaso; Vallortigara, Giorgio
2005-07-01
It has been shown that homing pigeons rely on olfactory cues to navigate over unfamiliar areas and that any kind of olfactory impairment produces a dramatic reduction of navigational performance from unfamiliar sites. The avian piriform cortex is the main projection field of olfactory bulbs and it is supposed to process olfactory information; not surprisingly bilateral lesions to this telencephalic region disrupt homing pigeon navigation. In the present study, we attempted to assess whether the left and right piriform cortex are differentially involved in the use of the olfactory navigational map. Therefore, we released from unfamiliar locations pigeons subjected, when adult, to unilateral ablation of the piriform cortex. After being released, the pigeons lesioned to the right piriform cortex orientated similarly to the intact controls. On the contrary, the left lesioned birds were significantly more scattered than controls, showing a crucial role of the left piriform cortex in processing the olfactory cues needed for determining the direction of displacement. However, both lesioned groups were significantly slower than controls in flying back to the home loft, showing that the integrity of both sides of the piriform cortex is necessary to accomplish the whole homing process.
Differential Effects of Insular and Ventromedial Prefrontal Cortex Lesions on Risky Decision-Making
ERIC Educational Resources Information Center
Clark, L.; Bechara, A.; Damasio, H.; Aitken, M. R. F.; Sahakian, B. J.; Robbins, T. W.
2008-01-01
The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear…
Agnosia for Mirror Stimuli: A New Case Report with a Small Parietal Lesion
Martinaud, Olivier; Mirlink, Nicolas; Bioux, Sandrine; Bliaux, Evangéline; Lebas, Axel; Gerardin, Emmanuel; Hannequin, Didier
2014-01-01
Only seven cases of agnosia for mirror stimuli have been reported, always with an extensive lesion. We report a new case of an agnosia for mirror stimuli due to a circumscribed lesion. An extensive battery of neuropsychological tests and a new experimental procedure to assess visual object mirror and orientation discrimination were assessed 10 days after the onset of clinical symptoms, and 5 years later. The performances of our patient were compared with those of four healthy control subjects matched for age. This test revealed an agnosia for mirror stimuli. Brain imaging showed a small right occipitoparietal hematoma, encompassing the extrastriate cortex adjoining the inferior parietal lobe. This new case suggests that: (i) agnosia for mirror stimuli can persist for 5 years after onset and (ii) the posterior part of the right intraparietal sulcus could be critical in the cognitive process of mirror stimuli discrimination. PMID:25037846
Brené, S; Lindefors, N; Persson, H
1992-06-01
Intracerebroventricular 6-hydroxydopamine injections were performed at postnatal days 3 and 6 in animals pretreated with the norepinephrine uptakeblocker desimipramine in order to generate a selective lesion of dopamine neurons. In situ hybridization was then used to analyze preprotachykinin-A (PPT-A) mRNA expression in the lesioned as well as in saline-injected control animals. The midbrain dopaminergic lesion caused a 22-25% increase in the level of PPT-A mRNA in cingulate cortex and frontoparietal cortex when analysed at 2 weeks of age, compared to saline-injected control animals. In contrast, the lesion caused no change in PPT-A mRNA expression in the neonatal caudate-putamen. These results indicate that dopamine neurons downregulate the expression of PPT-A mRNA specifically in cingulate cortex and frontoparietal cortex during early postnatal brain development. In the adult rat forebrain, lesioned at P3 and P6, no change in the level of PPT-A mRNA was seen in cingulate cortex and frontoparietal cortex. However, a 29% decrease in PPT-A mRNA was seen in the lateral caudate-putamen with no significant change in neurons of medial caudate-putamen. Thus, dopamine neurons appears to exert a region specific influence on PPT-A mRNA expression during brain development.
Transient visual pathway critical for normal development of primate grasping behavior.
Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A
2018-02-06
An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.
Semantically induced distortions of visual awareness in a patient with Balint's syndrome.
Soto, David; Humphreys, Glyn W
2009-02-01
We present data indicating that visual awareness for a basic perceptual feature (colour) can be influenced by the relation between the feature and the semantic properties of the stimulus. We examined semantic interference from the meaning of a colour word (''RED") on simple colour (ink related) detection responses in a patient with simultagnosia due to bilateral parietal lesions. We found that colour detection was influenced by the congruency between the meaning of the word and the relevant ink colour, with impaired performance when the word and the colour mismatched (on incongruent trials). This result held even when remote associations between meaning and colour were used (i.e. the word ''PEA" influenced detection of the ink colour red). The results are consistent with a late locus of conscious visual experience that is derived at post-semantic levels. The implications for the understanding of the role of parietal cortex in object binding and visual awareness are discussed.
Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping.
Milne, E; Grafman, J
2001-06-15
Patients with prefrontal cortex lesions and controls were administered an implicit association task (IAT) that measured the degree of association between male and female names and their stereotypical attributes of strength and weakness. They also completed three questionnaires measuring their explicit judgment regarding gender-related stereotypical attributes. There were no between-group differences on the explicit measures. On the IAT, patients with dorsolateral lesions and controls showed a strong association, whereas patients with ventromedial prefrontal cortex lesions had a significantly lower association, between the stereotypical attributes of men and women and their concepts of gender. This finding provides support for the hypothesis that patients with ventromedial prefrontal lesions have a deficit in automatically accessing certain aspects of overlearned associated social knowledge.
Ouchi, Y; Kakiuchi, T; Okada, H; Nishiyama, S; Tsukada, H
1999-03-15
To evaluate the effect of aniracetam, a potent modulator of the glutamatergic and cholinergic systems, on the altered cerebral glucose metabolism after lesioning of the basal forebrain, we measured the cerebral metabolic rate of glucose (CMRGlc) with positron emission tomography and the choline acetyltransferase (ChAT) activity in the frontal cortex of the lesioned rats after treating them with aniracetam. Continuous administration of aniracetam for 7 days after the surgery prevented CMRGlc reduction in the frontal cortex ipsilateral to the lesion while the lesioned rats without aniracetam showed significant CMRGlc reduction in the frontal cortex. The level of CMRGlc in the lesion-side basal forebrain was lower in all rats regardless of the aniracetam treatment. Biochemical studies showed that aniracetam did not alter the reduction in the frontal ChAT activity. These results showed that aniracetam prevents glucose metabolic reduction in the cholinergically denervated frontal cortex with little effect on the cortical cholinergic system. The present study suggested that a neurotransmitter system other than the cholinergic system, e.g. the glutamatergic system, plays a central role in the cortical metabolic recovery after lesioning of the basal forebrain.
Yosida, Shigeto; Okanoya, Kazuo
2012-02-01
Generation of the motor patterns of emotional sounds in mammals occurs in the periaqueductal gray matter of the midbrain and is not directly controlled by the cortex. The medial frontal cortex indirectly controls vocalizations, based on the recognition of social context. We examined whether the medial frontal cortex was responsible for antiphonal vocalization, or turn-taking, in naked mole-rats. In normal turn-taking, naked mole-rats vocalize more frequently to dominant individuals than to subordinate ones. Bilateral lesions of the medial frontal cortex disrupted differentiation of call rates to the stimulus animals, which had varied social relationships to the subject. However, medial frontal cortex lesions did not affect either the acoustic properties of the vocalizations or the timing of the vocal exchanges. This suggests that the medial frontal cortex may be involved in social cognition or decision making during turn-taking, while other regions of the brain regulate when animals vocalize and the vocalizations themselves.
Vision restoration therapy does not benefit from costimulation: A pilot study.
Kasten, Erich; Bunzenthal, Ulrike; Müller-Oehring, Eva M; Mueller, Iris; Sabel, Bernhard A
2007-08-01
Visual field deficits in patients have long been considered to be nontreatable, but in previous studies we have found an enlargement of the intact visual field following vision restoration therapy (VRT). In the present pilot study, we wished to determine whether a double-stimulation approach would facilitate visual field enlargements beyond those achieved by the single-stimulus paradigm used in standard VRT. This was motivated by the findings that following visual cortex injury in animals, the size of receptive fields could be enlarged by systematic costimulation, where two stimuli were used to excite visual cortex neurons (Eysel, Eyding, & Schweigart, 1998). Patients (n = 23) with stable homonymous field deficits after trauma, cerebral ischemia, or hemorrhage (lesion age > 6 months) carried out either (a) standard VRT with a single stimulation (n = 9), or vision therapy with (b) a parallel costimulation (n = 7) or (c) a moving costimulation paradigm (n = 7). Training was carried out twice daily for 30 min over a 3-month period. Before and after therapy, visual fields were tested with 30 degrees and 90 degrees Tübinger automatic perimetry (TAP) and with high-resolution perimetry (HRP). Eye movements were recorded with an eye tracking system. When data of all three types of visual field training were pooled, we found significant improvements of stimulus detection in HRP (4.2%) and fewer misses within the central 30 degrees perimetrically (-3.7% right eye, OD, or -4.4% left eye, OS). However, the type of training did not make any difference such that the three training groups profited equally. A more detailed analysis of trained versus untrained visual field areas in 16 patients revealed a superiority of the trained area of only 1.1% in HRP and between 3.5% (OS) and 4.4% (OD) in TAP. Spatial attention and alertness improved significantly in all three groups and correlated significantly with visual field enlargements. While vision training had no influence on the patient's testimonials concerning their visual abilities, the patients significantly improved in a practical paper-and-pencil number tracking task (Zahlen-Verbindungs Test; ZVT). Visual field enlargement does not benefit from a double-stimulation paradigm, but visual attention seems to play an important role in vision restoration. The improvements in trained as well as in untrained areas are explained by top-down attentional control mechanisms interacting with local visual cortex plasticity.
ERIC Educational Resources Information Center
Lovstad, M.; Funderud, I.; Meling, T.; Kramer, U. M.; Voytek, B.; Due-Tonnessen, P.; Endestad, T.; Lindgren, M.; Knight, R. T.; Solbakk, A. K.
2012-01-01
Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial…
Edmiston, E. Kale; McHugo, Maureen; Dukic, Mildred S.; Smith, Stephen D.; Abou-Khalil, Bassel; Eggers, Erica
2013-01-01
Emotionally arousing pictures induce increased activation of visual pathways relative to emotionally neutral images. A predominant model for the preferential processing and attention to emotional stimuli posits that the amygdala modulates sensory pathways through its projections to visual cortices. However, recent behavioral studies have found intact perceptual facilitation of emotional stimuli in individuals with amygdala damage. To determine the importance of the amygdala to modulations in visual processing, we used functional magnetic resonance imaging to examine visual cortical blood oxygenation level-dependent (BOLD) signal in response to emotionally salient and neutral images in a sample of human patients with unilateral medial temporal lobe resection that included the amygdala. Adults with right (n = 13) or left (n = 5) medial temporal lobe resections were compared with demographically matched healthy control participants (n = 16). In the control participants, both aversive and erotic images produced robust BOLD signal increases in bilateral primary and secondary visual cortices relative to neutral images. Similarly, all patients with amygdala resections showed enhanced visual cortical activations to erotic images both ipsilateral and contralateral to the lesion site. All but one of the amygdala resection patients showed similar enhancements to aversive stimuli and there were no significant group differences in visual cortex BOLD responses in patients compared with controls for either aversive or erotic images. Our results indicate that neither the right nor left amygdala is necessary for the heightened visual cortex BOLD responses observed during emotional stimulus presentation. These data challenge an amygdalo-centric model of emotional modulation and suggest that non-amygdalar processes contribute to the emotional modulation of sensory pathways. PMID:23825407
Roffman, J L; Lipska, B K; Bertolino, A; Van Gelderen, P; Olson, A W; Khaing, Z Z; Weinberger, D R
2000-04-01
The rat medial prefrontal cortex (mPFC) regulates subcortical dopamine transmission via projections to the striatum and ventral tegmental area. We used in vivo proton magnetic resonance spectroscopy (1H-MRS) at 4.7 T to determine whether excitotoxic lesions of the mPFC result in alterations of N-acetylaspartate (NAA), a marker of neuronal integrity, both locally and downstream in the striatum. Lesioned rats exhibited persistent reductions of NAA and other metabolites within the prefrontal cortex; selective reductions of NAA were seen in the striatum, but not in the parietal cortex. Consistent with earlier reports, lesioned rats exhibited a transient enhancement in amphetamine-induced hyperlocomotion. Prefrontal NAA losses correlated with lesion extent. In the striatum, while there was no change in tissue volume, expression of striatal glutamic acid decarboxylase-67 mRNA was significantly reduced. In vivo NAA levels thus appear sensitive to both local and downstream alterations in neuronal integrity, and may signal meaningful effects at cellular and behavioral levels.
Bussey, T J; Everitt, B J; Robbins, T W
1997-10-01
The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.
Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.
2016-01-01
While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975
Zilles, K; Qü, M; Schleicher, A; Schroeter, M; Kraemer, M; Witte, O W
1995-03-01
According to recently published data, the propagation of the typical neurofibrillary changes in Alzheimer's disease follows gradually and systematically the main pathways of fiber connections between different cortical areas. The functional deficits show a parallel development. Memory deficits as the first symptom of Alzheimer's disease can be explained by the initial lesion of the entorhinal-hippocampal connection. The next symptom is the impairment of emotional behaviour, which is caused by lesions in the hippocampus and the other parts of the limbic cortex. The following gnostic and praxic alterations can be explained by lesions in the association areas of the neocortex. Finally also motor disturbances become apparent, caused by lesions in the motor cortex. The tissue alterations in Alzheimer's disease represent a systemically spreading lesion in the cortex based on the destruction of synapses and finally of whole neurons, and on the impairment of normal neurotransmission. Since neurotransmission depends on transmitters and their receptors, the densities of transmitter receptors in the hippocampus, parietal association and premotor cortices in Alzheimer's disease were measured with quantitative receptor autoradiography. The degree of receptor changes in these regions decreases with the direction of the propagation of neurofibrillary changes from the hippocampus to the premotor cortex. With the exception of the GABAA receptor, the receptors in the hippocampus are reduced by approximately 70%. The reduction in the parietal association cortex amounts to only 30%. An upregulation of muscarinic M1 receptors was seen in the premotor cortex. The latter result is surprising in the context of a lesion model, but is in agreement with earlier immunohistochemical data about muscarinic receptors in the frontal cortex of Alzheimer patients.(ABSTRACT TRUNCATED AT 250 WORDS)
Karl, Jenni M; Sacrey, Lori-Ann R; McDonald, Robert J; Whishaw, Ian Q
2008-09-05
Neurotoxic, cell-specific lesions of the rat caudate-putamen (CPu) have been proposed as a model of human Huntington's disease and as such impair performance on many motor tasks, including skilled forelimbs tasks such as reaching for food. Because the CPu and motor cortex share reciprocal connections, it has been proposed that the motor deficits are due in part to a secondary disruption of motor cortex. The purpose of the present study was to examine the functionality of the motor cortex using intracortical microstimulation (ICMS) following neurotoxic lesions of the CPu. ICMS maps have been shown to be sensitive indicators of motor skill, cortical injury, learning, and experience. Long-evans hooded rats received a sham, a medial, or a lateral CPu lesion using the neurotoxin, quinolinic acid (2,3-pyridinedicarboxylic acid). Two weeks later the motor cortex was stimulated under light ketamine anesthesia. Neither lateral nor medial lesions of the CPu altered the stimulation threshold for eliciting forelimb movements, the type of movements elicited, or the size of the rostral forelimb (RFA) and caudal forelimb areas (CFA) from which movements were elicited. The preservation of ICMS forelimb movement representations (the forelimb map) in rats with cell-specific CPu lesions suggests motor impairments following lesions of the lateral striatum are not due to the disruption of the motor map. Therefore, the impairments that follow striatal cell loss are due either to alterations in circuitry that is independent of motor cortex or to alterations in circuitry afferent to the motor cortex projections.
Imprinting modulates processing of visual information in the visual wulst of chicks.
Maekawa, Fumihiko; Komine, Okiru; Sato, Katsushige; Kanamatsu, Tomoyuki; Uchimura, Motoaki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko
2006-11-14
Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium.
Imprinting modulates processing of visual information in the visual wulst of chicks
Maekawa, Fumihiko; Komine, Okiru; Sato, Katsushige; Kanamatsu, Tomoyuki; Uchimura, Motoaki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko
2006-01-01
Background Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. Results A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. Conclusion These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium. PMID:17101060
Miotto, Eliane C; Savage, Cary R; Evans, Jonathan J; Wilson, Barbara A; Martin, Maria G M; Balardin, Joana B; Barros, Fabio G; Garrido, Griselda; Teixeira, Manoel J; Amaro Junior, Edson
2013-03-01
Memory deficit is a frequent cognitive disorder following acquired prefrontal cortex lesions. In the present study, we investigated the brain correlates of a short semantic strategy training and memory performance of patients with distinct prefrontal cortex lesions using fMRI and cognitive tests. Twenty-one adult patients with post-acute prefrontal cortex (PFC) lesions, twelve with left dorsolateral PFC (LPFC) and nine with bilateral orbitofrontal cortex (BOFC) were assessed before and after a short cognitive semantic training using a verbal memory encoding paradigm during scanning and neuropsychological tests outside the scanner. After the semantic strategy training both groups of patients showed significant behavioral improvement in verbal memory recall and use of semantic strategies. In the LPFC group, greater activity in left inferior and medial frontal gyrus, precentral gyrus and insula was found after training. For the BOFC group, a greater activation was found in the left parietal cortex, right cingulated and precuneus after training. The activation of these specific areas in the memory and executive networks following cognitive training was associated to compensatory brain mechanisms and application of the semantic strategy. Copyright © 2012 Elsevier B.V. All rights reserved.
Lesions to polar/orbital prefrontal cortex selectively impair reasoning about emotional material.
Goel, Vinod; Lam, Elaine; Smith, Kathleen W; Goel, Amit; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan
2017-05-01
While it is widely accepted that lesions to orbital prefrontal cortex lead to emotion related disruptions and poor decision-making, there is very little patient data on this issue involving actual logical reasoning tasks. We tested patients with circumscribed, focal lesions largely confined to polar/orbital prefrontal cortex (BA 10 & 11) (N=17) on logical reasoning tasks involving neutral and emotional content, and compared their performance to that of an age and education-matched normal control group (N=22) and a posterior lesion control group (N=24). Our results revealed a significant group by content interaction driven by a selective impairment in the polar/orbital prefrontal cortex group compared to healthy normal controls and to the parietal patient group, in the emotional content reasoning trials. Subsequent analyses of congruent and incongruent reasoning trials indicated that this impairment was driven by the poor performance of patients with polar/orbital lesions in the incongruent trials. We conclude that the polar/orbital prefrontal cortex plays a critical role in filtering emotionally charged content from the material before it is passed on to the reasoning system in lateral/dorsal regions of prefrontal cortex. Where unfiltered content is passed to the reasoning engine, either as a result of pathology (as in the case of our patients) or as a result of individual differences, reasoning performance suffers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lesions to Polar/Orbital Prefrontal Cortex Selectively Impair Reasoning about Emotional Material
Goel, Vinod; Lam, Elaine; Smith, Kathleen W.; Goel, Amit; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan
2017-01-01
While it is widely accepted that lesions to orbital prefrontal cortex lead to emotion related disruptions and poor decision-making, there is very little patient data on this issue involving actual logical reasoning tasks. We tested patients with circumscribed, focal lesions largely confined to polar/orbital prefrontal cortex (BA 10 & 11) (N=17) on logical reasoning tasks involving neutral and emotional content, and compared their performance to that of an age and education-matched normal control group (N=22) and a posterior lesion control group (N=24). Our results revealed a significant group by content interaction driven by a selective impairment in the polar/orbital prefrontal cortex group compared to healthy normal controls and to the parietal patient group, in the emotional content reasoning trials. Subsequent analyses of congruent and incongruent reasoning trials indicated that this impairment was driven by the poor performance of patients with polar/orbital lesions in the incongruent trials. We conclude that the polar/orbital prefrontal cortex plays a critical role in filtering emotionally charged content from the material before it is passed on to the reasoning system in lateral/dorsal regions of prefrontal cortex. Where unfiltered content is passed to the reasoning engine, either as a result of pathology (as in the case of our patients) or as a result of individual differences, reasoning performance suffers. PMID:28263798
Bohbot, Véronique D.; Allen, John J. B.; Dagher, Alain; Dumoulin, Serge O.; Evans, Alan C.; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn
2015-01-01
The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus. PMID:26283949
Melzer, P; Morgan, V L; Pickens, D R; Price, R R; Wall, R S; Ebner, F F
2001-11-01
Functional magnetic resonance imaging was performed on blind adults resting and reading Braille. The strongest activation was found in primary somatic sensory/motor cortex on both cortical hemispheres. Additional foci of activation were situated in the parietal, temporal, and occipital lobes where visual information is processed in sighted persons. The regions were differentiated most in the correlation of their time courses of activation with resting and reading. Differences in magnitude and expanse of activation were substantially less significant. Among the traditionally visual areas, the strength of correlation was greatest in posterior parietal cortex and moderate in occipitotemporal, lateral occipital, and primary visual cortex. It was low in secondary visual cortex as well as in dorsal and ventral inferior temporal cortex and posterior middle temporal cortex. Visual experience increased the strength of correlation in all regions except dorsal inferior temporal and posterior parietal cortex. The greatest statistically significant increase, i.e., approximately 30%, was in ventral inferior temporal and posterior middle temporal cortex. In these regions, words are analyzed semantically, which may be facilitated by visual experience. In contrast, visual experience resulted in a slight, insignificant diminution of the strength of correlation in dorsal inferior temporal cortex where language is analyzed phonetically. These findings affirm that posterior temporal regions are engaged in the processing of written language. Moreover, they suggest that this function is modified by early visual experience. Furthermore, visual experience significantly strengthened the correlation of activation and Braille reading in occipital regions traditionally involved in the processing of visual features and object recognition suggesting a role for visual imagery. Copyright 2001 Wiley-Liss, Inc.
Motor cortex stimulation does not improve dystonia secondary to a focal basal ganglia lesion.
Rieu, Isabelle; Aya Kombo, Magaly; Thobois, Stéphane; Derost, Philippe; Pollak, Pierre; Xie, Jing; Pereira, Bruno; Vidailhet, Marie; Burbaud, Pierre; Lefaucheur, Jean Pascal; Lemaire, Jean Jacques; Mertens, Patrick; Chabardes, Stephan; Broussolle, Emmanuel; Durif, Franck
2014-01-14
To assess the efficacy of epidural motor cortex stimulation (MCS) on dystonia, spasticity, pain, and quality of life in patients with dystonia secondary to a focal basal ganglia (BG) lesion. In this double-blind, crossover, multicenter study, 5 patients with dystonia secondary to a focal BG lesion were included. Two quadripolar leads were implanted epidurally over the primary motor (M1) and premotor cortices, contralateral to the most dystonic side. The leads were placed parallel to the central sulcus. Only the posterior lead over M1 was activated in this study. The most lateral or medial contact of the lead (depending on whether the dystonia predominated in the upper or lower limb) was selected as the anode, and the other 3 as cathodes. One month postoperatively, patients were randomly assigned to on- or off-stimulation for 3 months each, with a 1-month washout between the 2 conditions. Voltage, frequency, and pulse width were fixed at 3.8 V, 40 Hz, and 60 μs, respectively. Evaluations of dystonia (Burke-Fahn-Marsden Scale), spasticity (Ashworth score), pain intensity (visual analog scale), and quality of life (36-Item Short Form Health Survey) were performed before surgery and after each period of stimulation. Burke-Fahn-Marsden Scale, Ashworth score, pain intensity, and quality of life were not statistically significantly modified by MCS. Bipolar epidural MCS failed to improve any clinical feature in dystonia secondary to a focal BG lesion. This study provides Class I evidence that bipolar epidural MCS with the anode placed over the motor representation of the most affected limb failed to improve any clinical feature in dystonia secondary to a focal BG lesion.
Mapping visual cortex in monkeys and humans using surface-based atlases
NASA Technical Reports Server (NTRS)
Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.
2001-01-01
We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.
Is orbital volume associated with eyeball and visual cortex volume in humans?
Pearce, Eiluned; Bridge, Holly
2013-01-01
In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.
Is orbital volume associated with eyeball and visual cortex volume in humans?
Pearce, Eiluned; Bridge, Holly
2013-01-01
Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766
NASA Astrophysics Data System (ADS)
Peuser, Jörn; Belhaj-Saif, Abderraouf; Hamadjida, Adjia; Schmidlin, Eric; Gindrat, Anne-Dominique; Völker, Andreas Charles; Zakharov, Pavel; Hoogewoud, Henri-Marcel; Rouiller, Eric M.; Scheffold, Frank
2011-09-01
The nonhuman primate model is suitable to study mechanisms of functional recovery following lesion of the cerebral cortex (motor cortex), on which therapeutic strategies can be tested. To interpret behavioral data (time course and extent of functional recovery), it is crucial to monitor the properties of the experimental cortical lesion, induced by infusion of the excitotoxin ibotenic acid. In two adult macaque monkeys, ibotenic acid infusions produced a restricted, permanent lesion of the motor cortex. In one monkey, the lesion was monitored over 3.5 weeks, combining laser speckle imaging (LSI) as metabolic readout (cerebral blood flow) and anatomical assessment with magnetic resonance imaging (T2-weighted MRI). The cerebral blood flow, measured online during subsequent injections of the ibotenic acid in the motor cortex, exhibited a dramatic increase, still present after one week, in parallel to a MRI hypersignal. After 3.5 weeks, the cerebral blood flow was strongly reduced (below reference level) and the hypersignal disappeared from the MRI scan, although the lesion was permanent as histologically assessed post-mortem. The MRI data were similar in the second monkey. Our experiments suggest that LSI and MRI, although they reflect different features, vary in parallel during a few weeks following an excitotoxic cortical lesion.
ERIC Educational Resources Information Center
Garcia, Rene; Farinelli, Melissa; Deschaux, Olivier; Hugues, Sandrine; Thevenet, Aurelie
2006-01-01
It has been shown that long-term potentiation (LTP) develops in the connection between the mediodorsal thalamus (MD) and the medial prefrontal cortex (mPFC) and between the hippocampus (HPC) and the mPFC following fear extinction, and correlates with extinction retention. However, recent lesion studies have shown that combined lesions of the MD…
Spatial attention increases high-frequency gamma synchronisation in human medial visual cortex.
Koelewijn, Loes; Rich, Anina N; Muthukumaraswamy, Suresh D; Singh, Krish D
2013-10-01
Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range. Copyright © 2013 Elsevier Inc. All rights reserved.
Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.
2013-01-01
When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186
On the domain-specificity of the visual and non-visual face-selective regions.
Axelrod, Vadim
2016-08-01
What happens in our brains when we see a face? The neural mechanisms of face processing - namely, the face-selective regions - have been extensively explored. Research has traditionally focused on visual cortex face-regions; more recently, the role of face-regions outside the visual cortex (i.e., non-visual-cortex face-regions) has been acknowledged as well. The major quest today is to reveal the functional role of each this region in face processing. To make progress in this direction, it is essential to understand the extent to which the face-regions, and particularly the non-visual-cortex face-regions, process only faces (i.e., face-specific, domain-specific processing) or rather are involved in a more domain-general cognitive processing. In the current functional MRI study, we systematically examined the activity of the whole face-network during face-unrelated reading task (i.e., written meaningful sentences with content unrelated to faces/people and non-words). We found that the non-visual-cortex (i.e., right lateral prefrontal cortex and posterior superior temporal sulcus), but not the visual cortex face-regions, responded significantly stronger to sentences than to non-words. In general, some degree of sentence selectivity was found in all non-visual-cortex cortex. Present result highlights the possibility that the processing in the non-visual-cortex face-selective regions might not be exclusively face-specific, but rather more or even fully domain-general. In this paper, we illustrate how the knowledge about domain-general processing in face-regions can help to advance our general understanding of face processing mechanisms. Our results therefore suggest that the problem of face processing should be approached in the broader scope of cognition in general. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf
Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao
2016-01-01
Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461
[Facial nerve injuries cause changes in central nervous system microglial cells].
Cerón, Jeimmy; Troncoso, Julieta
2016-12-01
Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.
Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making
Bechara, A.; Damasio, H.; Aitken, M. R. F.; Sahakian, B. J.; Robbins, T. W.
2008-01-01
The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear whether vmPFC is also necessary for decision-making under risk, when outcome probabilities are explicit. It is not known whether the effect of insular damage is analogous to the effect of vmPFC damage, or whether these regions contribute differentially to choice behaviour. Four groups of participants were compared on the Cambridge Gamble Task, a well-characterized measure of risky decision-making where outcome probabilities are presented explicitly, thus minimizing additional learning and working memory demands. Patients with focal, stable lesions to the vmPFC (n = 20) and the insular cortex (n = 13) were compared against healthy subjects (n = 41) and a group of lesion controls (n = 12) with damage predominantly affecting the dorsal and lateral frontal cortex. The vmPFC and insular cortex patients showed selective and distinctive disruptions of betting behaviour. VmPFC damage was associated with increased betting regardless of the odds of winning, consistent with a role of vmPFC in biasing healthy individuals towards conservative options under risk. In contrast, patients with insular cortex lesions failed to adjust their bets by the odds of winning, consistent with a role of the insular cortex in signalling the probability of aversive outcomes. The insular group attained a lower point score on the task and experienced more ‘bankruptcies’. There were no group differences in probability judgement. These data confirm the necessary role of the vmPFC and insular regions in decision-making under risk. Poor decision-making in clinical populations can arise via multiple routes, with functionally dissociable effects of vmPFC and insular cortex damage. PMID:18390562
Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making.
Clark, L; Bechara, A; Damasio, H; Aitken, M R F; Sahakian, B J; Robbins, T W
2008-05-01
The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear whether vmPFC is also necessary for decision-making under risk, when outcome probabilities are explicit. It is not known whether the effect of insular damage is analogous to the effect of vmPFC damage, or whether these regions contribute differentially to choice behaviour. Four groups of participants were compared on the Cambridge Gamble Task, a well-characterized measure of risky decision-making where outcome probabilities are presented explicitly, thus minimizing additional learning and working memory demands. Patients with focal, stable lesions to the vmPFC (n = 20) and the insular cortex (n = 13) were compared against healthy subjects (n = 41) and a group of lesion controls (n = 12) with damage predominantly affecting the dorsal and lateral frontal cortex. The vmPFC and insular cortex patients showed selective and distinctive disruptions of betting behaviour. VmPFC damage was associated with increased betting regardless of the odds of winning, consistent with a role of vmPFC in biasing healthy individuals towards conservative options under risk. In contrast, patients with insular cortex lesions failed to adjust their bets by the odds of winning, consistent with a role of the insular cortex in signalling the probability of aversive outcomes. The insular group attained a lower point score on the task and experienced more 'bankruptcies'. There were no group differences in probability judgement. These data confirm the necessary role of the vmPFC and insular regions in decision-making under risk. Poor decision-making in clinical populations can arise via multiple routes, with functionally dissociable effects of vmPFC and insular cortex damage.
Midline thalamic reuniens lesions improve executive behaviors.
Prasad, J A; Abela, A R; Chudasama, Y
2017-03-14
The role of the thalamus in complex cognitive behavior is a topic of increasing interest. Here we demonstrate that lesions of the nucleus reuniens (NRe), a midline thalamic nucleus interconnected with both hippocampal and prefrontal circuitry, lead to enhancement of executive behaviors typically associated with the prefrontal cortex. Rats were tested on four behavioral tasks: (1) the combined attention-memory (CAM) task, which simultaneously assessed attention to a visual target and memory for that target over a variable delay; (2) spatial memory using a radial arm maze, (3) discrimination and reversal learning using a touchscreen operant platform, and (4) decision-making with delayed outcomes. Following NRe lesions, the animals became more efficient in their performance, responding with shorter reaction times but also less impulsively than controls. This change, combined with a decrease in perseverative responses, led to focused attention in the CAM task and accelerated learning in the visual discrimination task. There were no observed changes in tasks involving either spatial memory or value-based decision making. These data complement ongoing efforts to understand the role of midline thalamic structures in human cognition, including the development of thalamic stimulation as a therapeutic strategy for acquired cognitive disabilities (Schiff, 2008; Mair et al., 2011), and point to the NRe as a potential target for clinical intervention. Published by Elsevier Ltd.
Ronchi, Roberta; Bello-Ruiz, Javier; Lukowska, Marta; Herbelin, Bruno; Cabrilo, Ivan; Schaller, Karl; Blanke, Olaf
2015-04-01
Recent evidence suggests that multisensory integration of bodily signals involving exteroceptive and interoceptive information modulates bodily aspects of self-consciousness such as self-identification and self-location. In the so-called Full Body Illusion subjects watch a virtual body being stroked while they perceive tactile stimulation on their own body inducing illusory self-identification with the virtual body and a change in self-location towards the virtual body. In a related illusion, it has recently been shown that similar changes in self-identification and self-location can be observed when an interoceptive signal is used in association with visual stimulation of the virtual body (i.e., participants observe a virtual body illuminated in synchrony with their heartbeat). Although brain imaging and neuropsychological evidence suggest that the insular cortex is a core region for interoceptive processing (such as cardiac perception and awareness) as well as for self-consciousness, it is currently not known whether the insula mediates cardio-visual modulation of self-consciousness. Here we tested the involvement of insular cortex in heartbeat awareness and cardio-visual manipulation of bodily self-consciousness in a patient before and after resection of a selective right neoplastic insular lesion. Cardio-visual stimulation induced an abnormally enhanced state of bodily self-consciousness; in addition, cardio-visual manipulation was associated with an experienced loss of the spatial unity of the self (illusory bi-location and duplication of his body), not observed in healthy subjects. Heartbeat awareness was found to decrease after insular resection. Based on these data we propose that the insula mediates interoceptive awareness as well as cardio-visual effects on bodily self-consciousness and that insular processing of interoceptive signals is an important mechanism for the experienced unity of the self. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lee, Chang Mok; Hong, In Hwan; Park, Sung Pyo
2011-10-01
We report a case of ophthalmic artery obstruction combined with brain infarction following periocular autologous fat injection. The patient, a 44-year-old woman, visited our hospital for decreased visual acuity in her left eye and dysarthria one hour after receiving an autologous fat injection in the periocular area. Her best corrected visual acuity for the concerned eye was no light perception. Also, a relative afferent pupillary defect was detected in this eye. The left fundus exhibited widespread retinal whitening with visible emboli in several retinal arterioles. Diffusion-weighted magnetic resonance imaging of the brain showed a hyperintense lesion at the left insular cortex. Therefore, we diagnosed ophthalmic artery obstruction and left middle cerebral artery infarction due to fat emboli. The patient was managed with immediate ocular massage, carbon dioxide, and oxygen therapy. Following treatment, dysarthria improved considerably but there was no improvement in visual acuity.
Kolb, Bryan
2010-12-01
The article by Malkova, Mishkin, Suomo, and Bachevalier (2010, this issue) adds an important piece to our understanding of the role of the medial versus lateral temporal regions in socioemotional behavior. In their paper, they evaluate the effect of infant and adult amygdala lesions and infant inferotemporal cortex lesions on the social interactions of monkeys in infancy and adulthood. The results show that medial temporal lesions performed in infants produce greater effects on socioaffective behavior than similar lesions in adulthood and that infant monkeys with inferotemporal lesions exhibit social deficits that are resolved by adulthood. These results are relevant to three significant issues: (1) the role of the medial temporal and lateral temporal cortex in the symptoms of the Kluver-Bucy syndrome; (2) the role of age at injury in behavioral change after cerebral injuries; and (3) the importance of lesion locus and behavioral measure for recovery from infant and adult cerebral injury. © 2010 APA, all rights reserved.
A case of tactile agnosia with a lesion restricted to the post-central gyrus.
Estañol, Bruno; Baizabal-Carvallo, José Fidel; Sentíes-Madrid, Horacio
2008-01-01
Tactile agnosia has been described after lesions of the primary sensory cortex but the exact location and extension of those lesions is not clear. We report the clinical features and imaging findings in a patient with an acute ischemic stroke restricted to the primary sensory area (S1). A 73-year-old man had a sudden onset of a left alien hand, without left hemiparesis. Neurological examination showed intact primary sensory functions, but impaired recognition of shape, size (macrogeometrical) and texture (microgeometrical) of objects; damage confined to the post-central gyrus, sparing the posterior parietal cortex was demonstrated on MRI. An embolic occlusion of the anterior parietal artery was suspected as mechanism of stroke. Tactile agnosia with impaired microgeometrical and macrogeometrical features' recognition can result from a single lesion in the primary sensory cortex (S1) in the right parietal hemisphere, sparing other regions of the cerebral cortex which presumably participate in tactile object recognition.
[Agnosia for streets and defective root finding].
Takahashi, Nobuyoshi
2011-08-01
Topographical disorientation is identified as a condition in which patients are unable to find their way in familiar surroundings, such as their home neighborhood or the admitting hospital after the onset of illness. I proposed to classify topographical disorientation into two categories: agnosia for streets (landmark agnosia) and defective root finding (heading disorientation). Patients with agnosia for streets are unable to identify familiar buildings and landscapes. They can, however, morphologically perceive them and remember their way around familiar areas. The lesions are located in the right posterior part of the parahippocampus gyrus, anterior half of the lingual gyrus and adjacent fusiform gyrus. Clinical findings and functional imaging studies suggest that these regions play a crucial role in the interaction between the visual information of streets and memories of them, which are thought to be retained in the right anterior part of the temporal lobe. In particular, the posterior part of the parahippocampus gyrus is critical for the acquisition of novel information. On the other hand, patients with defective root finding can identify familiar streets, but cannot remember their own location or positional relation between two points within a comparatively wide range not surveyable at one time. The lesions are located in the right retrosplenial cortex (Areas 29, 30), posterior cingulate cortex (Areas 23, 31) and precuneus. Clinical findings and functional imaging studies suggest that these regions are involved in the orientation function for navigating in wide spaces. In particular, the retrosplenial cortex is critical for encoding novel information.
Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C
2016-06-01
While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.
Darling, Warren G.; Pizzimenti, Marc A.; Morecraft, Robert J.
2013-01-01
This review discusses selected classical works and contemporary research on recovery of contralesional fine hand motor function following lesions to motor areas of the cerebral cortex in non-human primates. Findings from both the classical literature and contemporary studies show that lesions of cortical motor areas induce paresis initially, but are followed by remarkable recovery of fine hand/digit motor function that depends on lesion size and post-lesion training. Indeed, in recent work where considerable quantification of fine digit function associated with grasping and manipulating small objects has been observed, very favorable recovery is possible with minimal forced use of the contralesional limb. Studies of the mechanisms underlying recovery have shown that following small lesions of the digit areas of primary motor cortex (M1), there is expansion of the digit motor representations into areas of M1 that did not produce digit movements prior to the lesion. However, after larger lesions involving the elbow, wrist and digit areas of M1, no such expansion of the motor representation was observed, suggesting that recovery was due to other cortical or subcortical areas taking over control of hand/digit movements. Recently, we showed that one possible mechanism of recovery after lesion to the arm areas of M1 and lateral premotor cortex is enhancement of corticospinal projections from the medially located supplementary motor area (M2) to spinal cord laminae containing neurons which have lost substantial input from the lateral motor areas and play a critical role in reaching and digit movements. Because human stroke and brain injury patients show variable, and usually poorer, recovery of hand motor function than that of nonhuman primates after motor cortex damage, we conclude with a discussion of implications of this work for further experimentation to improve recovery of hand function in human stroke patients. PMID:21960307
Bilateral Theta-Burst TMS to Influence Global Gestalt Perception
Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto
2012-01-01
While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects – a deficit termed simultanagnosia – greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres. PMID:23110106
Bilateral theta-burst TMS to influence global gestalt perception.
Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto
2012-01-01
While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects - a deficit termed simultanagnosia - greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres.
Seeing without Seeing? Degraded Conscious Vision in a Blindsight Patient.
Overgaard, Morten; Fehl, Katrin; Mouridsen, Kim; Bergholt, Bo; Cleeremans, Axel
2008-08-21
Blindsight patients, whose primary visual cortex is lesioned, exhibit preserved ability to discriminate visual stimuli presented in their "blind" field, yet report no visual awareness hereof. Blindsight is generally studied in experimental investigations of single patients, as very few patients have been given this "diagnosis". In our single case study of patient GR, we ask whether blindsight is best described as unconscious vision, or rather as conscious, yet severely degraded vision. In experiment 1 and 2, we successfully replicate the typical findings of previous studies on blindsight. The third experiment, however, suggests that GR's ability to discriminate amongst visual stimuli does not reflect unconscious vision, but rather degraded, yet conscious vision. As our finding results from using a method for obtaining subjective reports that has not previously used in blindsight studies (but validated in studies of healthy subjects and other patients with brain injury), our results call for a reconsideration of blindsight, and, arguably also of many previous studies of unconscious perception in healthy subjects.
Higo, Noriyuki; Sato, Akira; Yamamoto, Tatsuya; Oishi, Takao; Nishimura, Yukio; Murata, Yumi; Onoe, Hirotaka; Isa, Tadashi; Kojima, Toshio
2018-05-01
The present study aimed to assess the molecular bases of cortical compensatory mechanisms following spinal cord injury in primates. To accomplish this, comprehensive changes in gene expression were investigated in the bilateral primary motor cortex (M1), dorsal premotor cortex (PMd), and ventral premotor cortex (PMv) after a unilateral lesion of the lateral corticospinal tract (l-CST). At 2 weeks after the lesion, a large number of genes exhibited altered expression levels in the contralesional M1, which is directly linked to the lesioned l-CST. Gene ontology and network analyses indicated that these changes in gene expression are involved in the atrophy and plasticity changes observed in neurons. Orchestrated gene expression changes were present when behavioral recovery was attained 3 months after the lesion, particularly among the bilateral premotor areas, and a large number of these genes are involved in plasticity. Moreover, several genes abundantly expressed in M1 of intact monkeys were upregulated in both the PMd and PMv after the l-CST lesion. These area-specific and time-dependent changes in gene expression may underlie the molecular mechanisms of functional recovery following a lesion of the l-CST. © 2018 Wiley Periodicals, Inc.
Agnosia for mirror stimuli: a new case report with a small parietal lesion.
Martinaud, Olivier; Mirlink, Nicolas; Bioux, Sandrine; Bliaux, Evangéline; Lebas, Axel; Gerardin, Emmanuel; Hannequin, Didier
2014-11-01
Only seven cases of agnosia for mirror stimuli have been reported, always with an extensive lesion. We report a new case of an agnosia for mirror stimuli due to a circumscribed lesion. An extensive battery of neuropsychological tests and a new experimental procedure to assess visual object mirror and orientation discrimination were assessed 10 days after the onset of clinical symptoms, and 5 years later. The performances of our patient were compared with those of four healthy control subjects matched for age. This test revealed an agnosia for mirror stimuli. Brain imaging showed a small right occipitoparietal hematoma, encompassing the extrastriate cortex adjoining the inferior parietal lobe. This new case suggests that: (i) agnosia for mirror stimuli can persist for 5 years after onset and (ii) the posterior part of the right intraparietal sulcus could be critical in the cognitive process of mirror stimuli discrimination. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
West, Elizabeth A.; Forcelli, Patrick A.; McCue, David L.; Malkova, Ludise
2013-01-01
The orbitofrontal cortex (OFC) is critical for behavioral adaptation in response to changes in reward value. Here we investigated, in rats, the role of OFC and, specifically, serotonergic neurotransmission within OFC in a reinforcer devaluation task (which measures behavioral flexibility). This task used two visual cues, each predicting one of two foods, with the spatial position (left-right) of the cues above two levers pseudorandomized across trials. An instrumental action (lever press) was required for reinforcer delivery. After training, rats received either excitotoxic OFC lesions made by NMDA (N-methyl-D-aspartic acid), serotonin-specific OFC lesions made by 5,7-DHT (5,7-dihydroxytryptamine), or sham lesions. In sham-lesioned rats, devaluation of one food (by feeding to satiety) significantly decreased responding to the cue associated with that food, when both cues were presented simultaneously during extinction. Both types of OFC lesions disrupted the devaluation effect. In contrast, extinction learning was not affected by serotonin-specific lesions and was only mildly retarded in rats with excitotoxic lesions. Thus, serotonin within OFC is necessary for appropriately adjusting behavior towards cues that predict reward but not for reducing responses in the absence of reward. Our results are the first to demonstrate that serotonin in OFC is necessary for reinforcer devaluation, but not extinction. PMID:23458741
West, Elizabeth A; Forcelli, Patrick A; McCue, David L; Malkova, Ludise
2013-06-01
The orbitofrontal cortex (OFC) is critical for behavioral adaptation in response to changes in reward value. Here we investigated, in rats, the role of OFC and, specifically, serotonergic neurotransmission within OFC in a reinforcer devaluation task (which measures behavioral flexibility). This task used two visual cues, each predicting one of two foods, with the spatial position (left-right) of the cues above two levers pseudorandomized across trials. An instrumental action (lever press) was required for reinforcer delivery. After training, rats received either excitotoxic OFC lesions made by NMDA (N-methyl-d-aspartic acid), serotonin-specific OFC lesions made by 5,7-DHT (5,7-dihydroxytryptamine), or sham lesions. In sham-lesioned rats, devaluation of one food (by feeding to satiety) significantly decreased responding to the cue associated with that food, when both cues were presented simultaneously during extinction. Both types of OFC lesions disrupted the devaluation effect. In contrast, extinction learning was not affected by serotonin-specific lesions and was only mildly retarded in rats with excitotoxic lesions. Thus, serotonin within OFC is necessary for appropriately adjusting behavior toward cues that predict reward but not for reducing responses in the absence of reward. Our results are the first to demonstrate that serotonin in OFC is necessary for reinforcer devaluation, but not extinction. Copyright © 2013 Elsevier B.V. All rights reserved.
Hadj-Bouziane, Fadila; Liu, Ning; Bell, Andrew H.; Gothard, Katalin M.; Luh, Wen-Ming; Tootell, Roger B. H.; Murray, Elisabeth A.; Ungerleider, Leslie G.
2012-01-01
We previously showed that facial expressions modulate functional MRI activity in the face-processing regions of the macaque monkey’s amygdala and inferior temporal (IT) cortex. Specifically, we showed that faces expressing emotion yield greater activation than neutral faces; we term this difference the “valence effect.” We hypothesized that amygdala lesions would disrupt the valence effect by eliminating the modulatory feedback from the amygdala to the IT cortex. We compared the valence effects within the IT cortex in monkeys with excitotoxic amygdala lesions (n = 3) with those in intact control animals (n = 3) using contrast agent-based functional MRI at 3 T. Images of four distinct monkey facial expressions—neutral, aggressive (open mouth threat), fearful (fear grin), and appeasing (lip smack)—were presented to the subjects in a blocked design. Our results showed that in monkeys with amygdala lesions the valence effects were strongly disrupted within the IT cortex, whereas face responsivity (neutral faces > scrambled faces) and face selectivity (neutral faces > non-face objects) were unaffected. Furthermore, sparing of the anterior amygdala led to intact valence effects in the anterior IT cortex (which included the anterior face-selective regions), whereas sparing of the posterior amygdala led to intact valence effects in the posterior IT cortex (which included the posterior face-selective regions). Overall, our data demonstrate that the feedback projections from the amygdala to the IT cortex mediate the valence effect found there. Moreover, these modulatory effects are consistent with an anterior-to-posterior gradient of projections, as suggested by classical tracer studies. PMID:23184972
Newman, Lori A.; Creer, David J.; McGaughy, Jill A.
2014-01-01
Converging evidence supports the hypothesis that the prefrontal cortex is critical for cognitive control. One prefrontal subregion, the anterior cingulate cortex, is hypothesized to be necessary to resolve response conflicts, disregard salient distractors and alter behavior in response to the generation of an error. These situations all involve goal-oriented monitoring of performance in order to effectively adjust cognitive processes. Several neuropsychological disorders, e.g., schizophrenia, attention deficit hyperactivity and obsessive compulsive disorder, are accompanied by morphological changes in the anterior cingulate cortex. These changes are hypothesized to underlie the impairments on tasks that require cognitive control found in these subjects. A novel conflict monitoring task was used to assess the effects on cognitive control of excitotoxic lesions to anterior cingulate cortex in rats. Prior to surgery all subjects showed improved accuracy on the second of two consecutive, incongruent trials. Lesions to the anterior cingulate cortex abolished this. Lesioned animals had difficulty in adjusting cognitive control on a trial-by-trial basis regardless of whether cognitive changes were increased or decreased. These results support a role for the anterior cingulate cortex in adjustments in cognitive control. PMID:25051488
Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory
Lee, Sue-Hyun; Baker, Chris I.
2016-01-01
The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997
High-intensity erotic visual stimuli de-activate the primary visual cortex in women.
Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert
2012-06-01
The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.
Contextual modulation of primary visual cortex by auditory signals.
Petro, L S; Paton, A T; Muckli, L
2017-02-19
Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.
Contextual modulation of primary visual cortex by auditory signals
Paton, A. T.
2017-01-01
Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015
Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M; López, Juan Carlos
2017-01-01
Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex.
Scarlet, Janina; Delamater, Andrew R; Campese, Vincent; Fein, Matthew; Wheeler, Daniel S
2012-06-01
Four experiments examined the roles of the basolateral amygdala and orbitofrontal cortex in the formation of sensory-specific associations in conditioned flavor preference and conditioned magazine approach paradigms using unconditioned stimulus (US) devaluation and selective Pavlovian-instrumental transfer procedures in Long Evans rats. Experiment 1 found that pre-training amygdala and orbitofrontal cortex lesions had no detectable effect on the formation or flexible use of sensory-specific flavor-nutrient associations in a US devaluation task, where flavor cues were paired either simultaneously or sequentially with nutrient rewards in water-deprived subjects. In Experiment 2, pre-training amygdala and orbitofrontal cortex lesions both attenuated outcome-specific Pavlovian-instrumental transfer. Experiment 3 indicated that amygdala lesions have no effect on the formation of sensory-specific flavor-nutrient associations in a US devaluation task in food-deprived subjects. Finally, Experiment 4 demonstrated that the outcomes used in Experiment 3 were sufficiently motivationally significant to support conditioned flavor preference. These findings suggest that, although both orbitofrontal cortex and amygdala lesions attenuate the acquisition of sensory-specific associations in magazine approach conditioning, neither lesion reduces the ability to appropriately respond to a flavor cue that was paired with a devalued outcome. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M.
2017-01-01
Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex. PMID:29240804
Simultaneous selection by object-based attention in visual and frontal cortex
Pooresmaeili, Arezoo; Poort, Jasper; Roelfsema, Pieter R.
2014-01-01
Models of visual attention hold that top-down signals from frontal cortex influence information processing in visual cortex. It is unknown whether situations exist in which visual cortex actively participates in attentional selection. To investigate this question, we simultaneously recorded neuronal activity in the frontal eye fields (FEF) and primary visual cortex (V1) during a curve-tracing task in which attention shifts are object-based. We found that accurate performance was associated with similar latencies of attentional selection in both areas and that the latency in both areas increased if the task was made more difficult. The amplitude of the attentional signals in V1 saturated early during a trial, whereas these selection signals kept increasing for a longer time in FEF, until the moment of an eye movement, as if FEF integrated attentional signals present in early visual cortex. In erroneous trials, we observed an interareal latency difference because FEF selected the wrong curve before V1 and imposed its erroneous decision onto visual cortex. The neuronal activity in visual and frontal cortices was correlated across trials, and this trial-to-trial coupling was strongest for the attended curve. These results imply that selective attention relies on reciprocal interactions within a large network of areas that includes V1 and FEF. PMID:24711379
ERIC Educational Resources Information Center
Schepers, Inga M.; Hipp, Joerg F.; Schneider, Till R.; Roder, Brigitte; Engel, Andreas K.
2012-01-01
Many studies have shown that the visual cortex of blind humans is activated in non-visual tasks. However, the electrophysiological signals underlying this cross-modal plasticity are largely unknown. Here, we characterize the neuronal population activity in the visual and auditory cortex of congenitally blind humans and sighted controls in a…
Kinnavane, L; Amin, E; Horne, M; Aggleton, J P
2014-01-01
The present study examined immediate-early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c-fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of rats were examined. Rats with hippocampal lesions and their surgical controls were given either a recognition memory task (novel vs. familiar objects) or a relative recency task (objects with differing degrees of familiarity). Perirhinal Fos expression in the hippocampal-lesioned groups correlated with both recognition and recency performance. The hippocampal lesions, however, had no apparent effect on overall levels of perirhinal or entorhinal cortex c-fos expression in response to novel objects, with only restricted effects being seen in the recency condition. Network analyses showed that whereas the patterns of parahippocampal interactions were differentially affected by novel or familiar objects, these correlated networks were not altered by hippocampal lesions. Additional analyses in control rats revealed two modes of correlated medial temporal activation. Novel stimuli recruited the pathway from the lateral entorhinal cortex (cortical layer II or III) to hippocampal field CA3, and thence to CA1. Familiar stimuli recruited the direct pathway from the lateral entorhinal cortex (principally layer III) to CA1. The present findings not only reveal the independence from the hippocampus of some perirhinal systems associated with recognition memory, but also show how novel stimuli engage hippocampal subfields in qualitatively different ways from familiar stimuli. PMID:25264133
Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.
Morrill, Ryan J; Hasenstaub, Andrea R
2018-03-14
The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.
Focal retrograde amnesia and the episodic-semantic distinction.
Wheeler, M A; McMillan, C T
2001-03-01
This article reports a review of focal retrograde amnesia (FRA), or the phenomenon of organically based severe memory loss restricted to retrograde, or pretraumatic, memory. Cases of FRA are classified according to the type of memory loss: episodic, semantic, or both. A few different clusters of the disorder were identified. Lesions to either the anterior temporal lobes or the posterior/visual cortex can result in an FRA that devastates retrograde episodic memory, while having smaller effects on semantic memory. A number of left-hemisphere patients have FRA confined to semantic memory. There are several additional examples of FRA following minor cerebral trauma that disrupts either episodic memory alone or both episodic and semantic memory that are not accompanied by evidence of structural brain lesions. We discuss these different profiles of FRA and their implications for the understanding of memory retrieval.
Cognitive processing in the primary visual cortex: from perception to memory.
Supèr, Hans
2002-01-01
The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.
The Neuropsychology of Ventral Prefrontal Cortex: Decision-Making and Reversal Learning
ERIC Educational Resources Information Center
Clark, L.; Cools, R.; Robbins, T. W.
2004-01-01
Converging evidence from human lesion, animal lesion, and human functional neuroimaging studies implicates overlapping neural circuitry in ventral prefrontal cortex in decision-making and reversal learning. The ascending 5-HT and dopamine neurotransmitter systems have a modulatory role in both processes. There is accumulating evidence that…
Sounds Activate Visual Cortex and Improve Visual Discrimination
Störmer, Viola S.; Martinez, Antigona; McDonald, John J.; Hillyard, Steven A.
2014-01-01
A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. PMID:25031419
Butz, Markus; van Ooyen, Arjen
2013-01-01
Lasting alterations in sensory input trigger massive structural and functional adaptations in cortical networks. The principles governing these experience-dependent changes are, however, poorly understood. Here, we examine whether a simple rule based on the neurons' need for homeostasis in electrical activity may serve as driving force for cortical reorganization. According to this rule, a neuron creates new spines and boutons when its level of electrical activity is below a homeostatic set-point and decreases the number of spines and boutons when its activity exceeds this set-point. In addition, neurons need a minimum level of activity to form spines and boutons. Spine and bouton formation depends solely on the neuron's own activity level, and synapses are formed by merging spines and boutons independently of activity. Using a novel computational model, we show that this simple growth rule produces neuron and network changes as observed in the visual cortex after focal retinal lesions. In the model, as in the cortex, the turnover of dendritic spines was increased strongest in the center of the lesion projection zone, while axonal boutons displayed a marked overshoot followed by pruning. Moreover, the decrease in external input was compensated for by the formation of new horizontal connections, which caused a retinotopic remapping. Homeostatic regulation may provide a unifying framework for understanding cortical reorganization, including network repair in degenerative diseases or following focal stroke. PMID:24130472
Awake right hemisphere brain surgery.
Hulou, M Maher; Cote, David J; Olubiyi, Olutayo I; Smith, Timothy R; Chiocca, E Antonio; Johnson, Mark D
2015-12-01
We report the indications and outcomes of awake right hemispheric brain surgery, as well as a rare patient with crossed aphasia. Awake craniotomies are often performed to protect eloquent cortex. We reviewed the medical records for 35 of 96 patients, in detail, who had awake right hemisphere brain operations. Intraoperative cortical mapping of motor and/or language function was performed in 29 of the 35 patients. A preoperative speech impairment and left hand dominance were the main indicators for awake right-sided craniotomies in patients with right hemisphere lesions. Four patients with lesion proximity to eloquent areas underwent awake craniotomies without cortical mapping. In addition, one patient had a broncho-pulmonary fistula, and another had a recent major cardiac procedure that precluded awake surgery. An eloquent cortex representation was identified in 14 patients (48.3%). Postoperatively, seven of 17 patients (41.1%) who presented with weakness, experienced improvements in their motor functions, 11 of 16 (68.7%) with seizures became seizure-free, and seven of nine (77.7%) with moderate to severe headaches and one of two with a visual field deficit improved significantly. There were also improvements in speech and language functions in all patients who presented with speech difficulties. A right sided awake craniotomy is an excellent option for left handed patients, or those with right sided cortical lesions that result in preoperative speech impairments. When combined with intraoperative cortical mapping, both speech and motor function can be well preserved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation.
Shatz, C J; Stryker, M P
1978-01-01
1. The relation between the physiological pattern of ocular dominance and the anatomical distribution of geniculocortical afferents serving each eye was studied in layer IV of the primary visual cortex of normal and monocularly deprived cats. 2. One eye was injected with radioactive label. After allowing sufficient time for transeuronal transport, micro-electrode recordings were made, and the geniculocoritcal afferents serving the injected eye were located autoradiographically. 3. In layer IV of normal cats, cell were clustered according to eye preference, and fewer cells were binocularly driven than in other layers. Points of transition between groups of cells dominated by one eye and those dominated by the other were marked with electrolytic lesions. A good correspondence was found between the location of cells dominated by the injected eye and the patches of radioactively labelled geniculocortical afferents. 4. Following prolonged early monocular deprivation, the patches of geniculocortical afferents in layer IV serving the deprived eye were smaller, and those serving the non-deprived eye larger, than normal. Again there was a coincidence between the patches of radioactively labelled afferents and the location of cells dominated by the injected eye. 5. The deprived eye was found to dominate a substantial fraction (22%) of cortical cells in the fourth layer. In other cortical layers, only 7% of the cells were dominated by the deprived eye. 6. These findings suggest that the thalamocortical projection is physically rearranged as a consequence of monocular deprivation, as has been demonstrated for layer IVc of the monkey's visual cortex (Hubel, Wiesel & Le Vay, 1977). Images Plate 1 Plate 2 Plate 3 Plate 4 Plate 5 Plate 6 PMID:702379
Cicmil, Nela; Krug, Kristine
2015-01-01
Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making. PMID:26240421
Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi
2015-11-01
Spatio-temporal distributions of cortical activity to audio-visual presentations of meaningless vowel-consonant-vowels and the effects of audio-visual congruence/incongruence, with emphasis on the McGurk effect, were studied. The McGurk effect occurs when a clearly audible syllable with one consonant, is presented simultaneously with a visual presentation of a face articulating a syllable with a different consonant and the resulting percept is a syllable with a consonant other than the auditorily presented one. Twenty subjects listened to pairs of audio-visually congruent or incongruent utterances and indicated whether pair members were the same or not. Source current densities of event-related potentials to the first utterance in the pair were estimated and effects of stimulus-response combinations, brain area, hemisphere, and clarity of visual articulation were assessed. Auditory cortex, superior parietal cortex, and middle temporal cortex were the most consistently involved areas across experimental conditions. Early (<200 msec) processing of the consonant was overall prominent in the left hemisphere, except right hemisphere prominence in superior parietal cortex and secondary visual cortex. Clarity of visual articulation impacted activity in secondary visual cortex and Wernicke's area. McGurk perception was associated with decreased activity in primary and secondary auditory cortices and Wernicke's area before 100 msec, increased activity around 100 msec which decreased again around 180 msec. Activity in Broca's area was unaffected by McGurk perception and was only increased to congruent audio-visual stimuli 30-70 msec following consonant onset. The results suggest left hemisphere prominence in the effects of stimulus and response conditions on eight brain areas involved in dynamically distributed parallel processing of audio-visual integration. Initially (30-70 msec) subcortical contributions to auditory cortex, superior parietal cortex, and middle temporal cortex occur. During 100-140 msec, peristriate visual influences and Wernicke's area join in the processing. Resolution of incongruent audio-visual inputs is then attempted, and if successful, McGurk perception occurs and cortical activity in left hemisphere further increases between 170 and 260 msec.
Spatial updating in human parietal cortex
NASA Technical Reports Server (NTRS)
Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.
2003-01-01
Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.
van den Hurk, Job; Van Baelen, Marc; Op de Beeck, Hans P.
2017-01-01
To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience. PMID:28507127
How cortical neurons help us see: visual recognition in the human brain
Blumberg, Julie; Kreiman, Gabriel
2010-01-01
Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161
Role of right posterior parietal cortex in maintaining attention to spatial locations over time
Coulthard, Elizabeth J.; Husain, Masud
2009-01-01
Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with hemispatial neglect have revealed significant overall deficits on vigilance tasks, but to date there has been no demonstration of a deterioration of performance over time—a vigilance decrement—considered by some to be a key index of a deficit in maintaining attention. Moreover, sustained attention deficits in neglect have not specifically been related to PPC lesions, and it remains unclear whether they interact with spatial impairments in this syndrome. Here we examined the ability of right-hemisphere patients with neglect to maintain attention, comparing them to stroke controls and healthy individuals. We found evidence of an overall deficit in sustaining attention associated with PPC lesions, even for a simple detection task with stimuli presented centrally. In a second experiment, we demonstrated a vigilance decrement in neglect patients specifically only when they were required to maintain attention to spatial locations, but not verbal material. Lesioned voxels in the right PPC spanning a region between the intraparietal sulcus and inferior parietal lobe were significantly associated with this deficit. Finally, we compared performance on a task that required attention to be maintained either to visual patterns or spatial locations, matched for task difficulty. Again, we found a vigilance decrement but only when attention had to be maintained on spatial information. We conclude that sustaining attention to spatial locations is a critical function of the human right PPC which needs to be incorporated into models of normal parietal function as well as those of the clinical syndrome of hemispatial neglect. PMID:19158107
A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control.
Tolomeo, Serenella; Christmas, David; Jentzsch, Ines; Johnston, Blair; Sprengelmeyer, Reiner; Matthews, Keith; Douglas Steele, J
2016-06-01
Converging evidence has linked the anterior mid-cingulate cortex to negative affect, pain and cognitive control. It has previously been proposed that this region uses information about punishment to control aversively motivated actions. Studies on the effects of lesions allow causal inferences about brain function; however, naturally occurring lesions in the anterior mid-cingulate cortex are rare. In two studies we therefore recruited 94 volunteers, comprising 15 patients with treatment-resistant depression who had received bilateral anterior cingulotomy, which consists of lesions made within the anterior mid-cingulate cortex, 20 patients with treatment-resistant depression who had not received surgery and 59 healthy control subjects. Using the Ekman 60 faces paradigm and two Stroop paradigms, we tested the hypothesis that patients who received anterior cingulotomy were impaired in recognizing negative facial affect expressions but not positive or neutral facial expressions, and impaired in Stroop cognitive control, with larger lesions being associated with more impairment. Consistent with this hypothesis, we found that larger volume lesions predicted more impairment in recognizing fear, disgust and anger, and no impairment in recognizing facial expressions of surprise or happiness. However, we found no impairment in recognizing expressions of sadness. Also consistent with the hypothesis, we found that larger volume lesions predicted impaired Stroop cognitive control. Notably, this relationship was only present when anterior mid-cingulate cortex lesion volume was defined as the overlap between cingulotomy lesion volume and Shackman's meta-analysis-derived binary masks for negative affect and cognitive control. Given substantial evidence from healthy subjects that the anterior mid-cingulate cortex is part of a network associated with the experience of negative affect and pain, engaging cognitive control processes for optimizing behaviour in the presence of such stimuli, our findings support the assertion that this region has a causal role in these processes. While the clinical justification for cingulotomy is empirical and not theoretical, it is plausible that lesions within a brain region associated with the subjective experience of negative affect and pain may be therapeutic for patients with otherwise intractable mood, anxiety and pain syndromes. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Thaler, Christian; Faizy, Tobias; Sedlacik, Jan; Holst, Brigitte; Stellmann, Jan-Patrick; Young, Kim Lea; Heesen, Christoph; Fiehler, Jens; Siemonsen, Susanne
2015-01-01
Magnetic Resonance Imaging (MRI) is an established tool in diagnosing and evaluating disease activity in Multiple Sclerosis (MS). While clinical-radiological correlations are limited in general, hypointense T1 lesions (also known as Black Holes (BH)) have shown some promising results. The definition of BHs is very heterogeneous and depends on subjective visual evaluation. We aimed to improve clinical-radiological correlations by defining BHs using T1 relaxation time (T1-RT) thresholds to achieve best possible correlation between BH lesion volume and clinical disability. 40 patients with mainly relapsing-remitting MS underwent MRI including 3-dimensional fluid attenuated inversion recovery (FLAIR), magnetization-prepared rapid gradient echo (MPRAGE) before and after Gadolinium (GD) injection and double inversion-contrast magnetization-prepared rapid gradient echo (MP2RAGE) sequences. BHs (BHvis) were marked by two raters on native T1-weighted (T1w)-MPRAGE, contrast-enhancing lesions (CE lesions) on T1w-MPRAGE after GD and FLAIR lesions (total-FLAIR lesions) were detected separately. BHvis and total-FLAIR lesion maps were registered to MP2RAGE images, and the mean T1-RT were calculated for all lesion ROIs. Mean T1 values of the cortex (CTX) were calculated for each patient. Subsequently, Spearman rank correlations between clinical scores (Expanded Disability Status Scale and Multiple Sclerosis Functional Composite) and lesion volume were determined for different T1-RT thresholds. Significant differences in T1-RT were obtained between all different lesion types with highest T1 values in visually marked BHs (BHvis: 1453.3±213.4 ms, total-FLAIR lesions: 1394.33±187.38 ms, CTX: 1305.6±35.8 ms; p<0.05). Significant correlations between BHvis/total-FLAIR lesion volume and clinical disability were obtained for a wide range of T1-RT thresholds. The highest correlation for BHvis and total-FLAIR lesion masks were found at T1-RT>1500 ms (Expanded Disability Status Scale vs. lesion volume: rBHvis = 0.442 and rtotal-FLAIR = 0.497, p<0.05; Multiple Sclerosis Functional Composite vs. lesion volume: rBHvis = -0.53 and rtotal-FLAIR = -0.627, p<0.05). Clinical-radiological correlations in MS patients are increased by application of T1-RT thresholds. With the short acquisition time of the MP2RAGE sequences, quantitative T1 maps could be easily established in clinical studies.
Neuroinflammatory component of gray matter pathology in multiple sclerosis.
Herranz, Elena; Giannì, Costanza; Louapre, Céline; Treaba, Constantina A; Govindarajan, Sindhuja T; Ouellette, Russell; Loggia, Marco L; Sloane, Jacob A; Madigan, Nancy; Izquierdo-Garcia, David; Ward, Noreen; Mangeat, Gabriel; Granberg, Tobias; Klawiter, Eric C; Catana, Ciprian; Hooker, Jacob M; Taylor, Norman; Ionete, Carolina; Kinkel, Revere P; Mainero, Caterina
2016-11-01
In multiple sclerosis (MS), using simultaneous magnetic resonance-positron emission tomography (MR-PET) imaging with 11 C-PBR28, we quantified expression of the 18kDa translocator protein (TSPO), a marker of activated microglia/macrophages, in cortex, cortical lesions, deep gray matter (GM), white matter (WM) lesions, and normal-appearing WM (NAWM) to investigate the in vivo pathological and clinical relevance of neuroinflammation. Fifteen secondary-progressive MS (SPMS) patients, 12 relapsing-remitting MS (RRMS) patients, and 14 matched healthy controls underwent 11 C-PBR28 MR-PET. MS subjects underwent 7T T2*-weighted imaging for cortical lesion segmentation, and neurological and cognitive evaluation. 11 C-PBR28 binding was measured using normalized 60- to 90-minute standardized uptake values and volume of distribution ratios. Relative to controls, MS subjects exhibited abnormally high 11 C-PBR28 binding across the brain, the greatest increases being in cortex and cortical lesions, thalamus, hippocampus, and NAWM. MS WM lesions showed relatively modest TSPO increases. With the exception of cortical lesions, where TSPO expression was similar, 11 C-PBR28 uptake across the brain was greater in SPMS than in RRMS. In MS, increased 11 C-PBR28 binding in cortex, deep GM, and NAWM correlated with neurological disability and impaired cognitive performance; cortical thinning correlated with increased thalamic TSPO levels. In MS, neuroinflammation is present in the cortex, cortical lesions, deep GM, and NAWM, is closely linked to poor clinical outcome, and is at least partly linked to neurodegeneration. Distinct inflammatory-mediated factors may underlie accumulation of cortical and WM lesions. Quantification of TSPO levels in MS could prove to be a sensitive tool for evaluating in vivo the inflammatory component of GM pathology, particularly in cortical lesions. Ann Neurol 2016;80:776-790. © 2016 American Neurological Association.
Structural reorganization of the early visual cortex following Braille training in sighted adults.
Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin
2017-12-12
Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.
Zhao, Yan; Liu, Peng; Chu, Zheng; Liu, Fei; Han, Wei; Xun, Xi; Dang, Yong-Hui
2015-10-22
The memories that are formed between rewarding and drug-associated contextual cues have been suggested to contribute to drug addiction relapse. Recent evidence has indicated that the ventrolateral orbital cortex (VLO) plays important roles in reward-based learning and reversal learning. However, whether the VLO is required for methamphetamine-induced contextual memory formation is not well understood. In the present study, a three-phase methamphetamine-induced conditioned place preference (CPP) model was used to investigate the effects of VLO lesions on the formation of drug-associated contextual memories in rats. We found that the VLO lesions themselves elicited no observable effects on place preferences. However, the VLO lesions delayed the acquisition and extinction phases of CPP without affecting the expression level. Furthermore, the VLO lesions did not have an obvious influence on CPP reinstatement. These results indicate that electrolytic lesions of the bilateral ventrolateral orbital cortex can inhibit the formation of methamphetamine-induced contextual memories in rats. Moreover, VLO may not be critically involved in memory storage and retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.
Neurocognitive Elements of Antisocial Behavior: Relevance of an Orbitofrontal Cortex Account
ERIC Educational Resources Information Center
Seguin, Jean R.
2004-01-01
This paper reviews the role of orbitofrontal cortex (OFC) lesions in antisocial behaviors and the adequacy of a strict OFC account of antisocial disorders where there is no evidence of lesion. Neurocognitive accounts of antisocial behaviors are extended beyond the OFC. Several methodological shortcomings specific to this neuroscience approach to…
Developmental outcomes after early prefrontal cortex damage.
Eslinger, Paul J; Flaherty-Craig, Claire V; Benton, Arthur L
2004-06-01
The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical profiles and real life developmental outcomes. Based on these cases, there is preliminary evidence to support distinctive developmental differences after: (1) dorsolateral, (2) mesial, and (3) orbital-polar prefrontal lesions, for more profound impairments after bilateral damage, and possibly for recovery differences after very early vs. later childhood lesion onset. Further case and group studies are needed to confirm reliable effects of specific lesion locations, the influence of age of lesion onset, and related experiential and treatment variables in determining adult outcomes. Rather than a single underlying deficit associated with early prefrontal cortex damage, we interpret the findings to suggest that it is the altered integration and interplay of cognitive, emotional, self-regulatory, and executive/metacognitive deficits that contribute to diverse developmental frontal lobe syndromes. The findings support the fundamental importance of prefrontal cortex maturation in protracted cognitive, social-emotional, and moral development.
Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex.
Takahashi, Yuji K; Roesch, Matthew R; Wilson, Robert C; Toreson, Kathy; O'Donnell, Patricio; Niv, Yael; Schoenbaum, Geoffrey
2011-10-30
The orbitofrontal cortex has been hypothesized to carry information regarding the value of expected rewards. Such information is essential for associative learning, which relies on comparisons between expected and obtained reward for generating instructive error signals. These error signals are thought to be conveyed by dopamine neurons. To test whether orbitofrontal cortex contributes to these error signals, we recorded from dopamine neurons in orbitofrontal-lesioned rats performing a reward learning task. Lesions caused marked changes in dopaminergic error signaling. However, the effect of lesions was not consistent with a simple loss of information regarding expected value. Instead, without orbitofrontal input, dopaminergic error signals failed to reflect internal information about the impending response that distinguished externally similar states leading to differently valued future rewards. These results are consistent with current conceptualizations of orbitofrontal cortex as supporting model-based behavior and suggest an unexpected role for this information in dopaminergic error signaling.
Striemer, Christopher L; Whitwell, Robert L; Goodale, Melvyn A
2017-11-12
Previous research suggests that the implicit recognition of emotional expressions may be carried out by pathways that bypass primary visual cortex (V1) and project to the amygdala. Some of the strongest evidence supporting this claim comes from case studies of "affective blindsight" in which patients with V1 damage can correctly guess whether an unseen face was depicting a fearful or happy expression. In the current study, we report a new case of affective blindsight in patient MC who is cortically blind following extensive bilateral lesions to V1, as well as face and object processing regions in her ventral visual stream. Despite her large lesions, MC has preserved motion perception which is related to sparing of the motion sensitive region MT+ in both hemispheres. To examine affective blindsight in MC we asked her to perform gender and emotion discrimination tasks in which she had to guess, using a two-alternative forced-choice procedure, whether the face presented was male or female, happy or fearful, or happy or angry. In addition, we also tested MC in a four-alternative forced-choice target localization task. Results indicated that MC was not able to determine the gender of the faces (53% accuracy), or localize targets in a forced-choice task. However, she was able to determine, at above chance levels, whether the face presented was depicting a happy or fearful (67%, p = .006), or a happy or angry (64%, p = .025) expression. Interestingly, although MC was better than chance at discriminating between emotions in faces when asked to make rapid judgments, her performance fell to chance when she was asked to provide subjective confidence ratings about her performance. These data lend further support to the idea that there is a non-conscious visual pathway that bypasses V1 which is capable of processing affective signals from facial expressions without input from higher-order face and object processing regions in the ventral visual stream. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mitchell, Anna S.; Baxter, Mark G.; Gaffan, David
2008-01-01
Monkeys with aspiration lesions of the magnocellular division of the mediodorsal thalamus (MDmc) are impaired in object-in-place scene learning, object recognition and stimulus-reward association. These data have been interpreted to mean that projections from MDmc to prefrontal cortex are required to sustain normal prefrontal function in a variety of task settings. In the present study, we investigated the extent to which bilateral neurotoxic lesions of the MDmc impair a pre-operatively learnt strategy implementation task that is impaired by a crossed lesion technique that disconnects the frontal cortex in one hemisphere from the contralateral inferotemporal cortex. Postoperative memory impairments were also examined using the object-in-place scene memory task. Monkeys learnt both strategy implementation and scene memory tasks separately to a stable level pre-operatively. Bilateral neurotoxic lesions of the MDmc, produced by 10 × 1 μl injections of a mixture of ibotenate and N-methyl-D-aspartate did not affect performance in the strategy implementation task. However, new learning of object-in-place scene memory was substantially impaired. These results provide new evidence about the role of the magnocellular mediodorsal thalamic nucleus in memory processing, indicating that interconnections with the prefrontal cortex are essential during new learning but are not required when implementing a preoperatively acquired strategy task. Thus not all functions of the prefrontal cortex require MDmc input. Instead the involvement of MDmc in prefrontal function may be limited to situations in which new learning must occur. PMID:17978029
Galvez-Pol, A; Calvo-Merino, B; Capilla, A; Forster, B
2018-07-01
Working memory (WM) supports temporary maintenance of task-relevant information. This process is associated with persistent activity in the sensory cortex processing the information (e.g., visual stimuli activate visual cortex). However, we argue here that more multifaceted stimuli moderate this sensory-locked activity and recruit distinctive cortices. Specifically, perception of bodies recruits somatosensory cortex (SCx) beyond early visual areas (suggesting embodiment processes). Here we explore persistent activation in processing areas beyond the sensory cortex initially relevant to the modality of the stimuli. Using visual and somatosensory evoked-potentials in a visual WM task, we isolated different levels of visual and somatosensory involvement during encoding of body and non-body-related images. Persistent activity increased in SCx only when maintaining body images in WM, whereas visual/posterior regions' activity increased significantly when maintaining non-body images. Our results bridge WM and embodiment frameworks, supporting a dynamic WM process where the nature of the information summons specific processing resources. Copyright © 2018 Elsevier Inc. All rights reserved.
Ocular Dominance Plasticity after Stroke Was Preserved in PSD-95 Knockout Mice.
Greifzu, Franziska; Parthier, Daniel; Goetze, Bianka; Schlüter, Oliver M; Löwel, Siegrid
2016-01-01
Neuronal plasticity is essential to enable rehabilitation when the brain suffers from injury, such as following a stroke. One of the most established models to study cortical plasticity is ocular dominance (OD) plasticity in the primary visual cortex (V1) of the mammalian brain induced by monocular deprivation (MD). We have previously shown that OD-plasticity in adult mouse V1 is absent after a photothrombotic (PT) stroke lesion in the adjacent primary somatosensory cortex (S1). Exposing lesioned mice to conditions which reduce the inhibitory tone in V1, such as raising animals in an enriched environment or short-term dark exposure, preserved OD-plasticity after an S1-lesion. Here we tested whether modification of excitatory circuits can also be beneficial for preserving V1-plasticity after stroke. Mice lacking postsynaptic density protein-95 (PSD-95), a signaling scaffold present at mature excitatory synapses, have lifelong juvenile-like OD-plasticity caused by an increased number of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) -silent synapses in V1 but unaltered inhibitory tone. In fact, using intrinsic signal optical imaging, we show here that OD-plasticity was preserved in V1 of adult PSD-95 KO mice after an S1-lesion but not in PSD-95 wildtype (WT)-mice. In addition, experience-enabled enhancement of the optomotor reflex of the open eye after MD was compromised in both lesioned PSD-95 KO and PSD-95 WT mice. Basic V1-activation and retinotopic map quality were, however, not different between lesioned PSD-95 KO mice and their WT littermates. The preserved OD-plasticity in the PSD-95 KO mice indicates that V1-plasticity after a distant stroke can be promoted by either changes in excitatory circuitry or by lowering the inhibitory tone in V1 as previously shown. Furthermore, the present data indicate that an increased number of AMPA-silent synapses preserves OD-plasticity not only in the healthy brain, but also in another experimental paradigm of cortical plasticity, namely the long-range influence on V1-plasticity after an S1-lesion.
Ocular Dominance Plasticity after Stroke Was Preserved in PSD-95 Knockout Mice
Greifzu, Franziska; Parthier, Daniel; Goetze, Bianka; Schlüter, Oliver M.; Löwel, Siegrid
2016-01-01
Neuronal plasticity is essential to enable rehabilitation when the brain suffers from injury, such as following a stroke. One of the most established models to study cortical plasticity is ocular dominance (OD) plasticity in the primary visual cortex (V1) of the mammalian brain induced by monocular deprivation (MD). We have previously shown that OD-plasticity in adult mouse V1 is absent after a photothrombotic (PT) stroke lesion in the adjacent primary somatosensory cortex (S1). Exposing lesioned mice to conditions which reduce the inhibitory tone in V1, such as raising animals in an enriched environment or short-term dark exposure, preserved OD-plasticity after an S1-lesion. Here we tested whether modification of excitatory circuits can also be beneficial for preserving V1-plasticity after stroke. Mice lacking postsynaptic density protein-95 (PSD-95), a signaling scaffold present at mature excitatory synapses, have lifelong juvenile-like OD-plasticity caused by an increased number of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) -silent synapses in V1 but unaltered inhibitory tone. In fact, using intrinsic signal optical imaging, we show here that OD-plasticity was preserved in V1 of adult PSD-95 KO mice after an S1-lesion but not in PSD-95 wildtype (WT)-mice. In addition, experience-enabled enhancement of the optomotor reflex of the open eye after MD was compromised in both lesioned PSD-95 KO and PSD-95 WT mice. Basic V1-activation and retinotopic map quality were, however, not different between lesioned PSD-95 KO mice and their WT littermates. The preserved OD-plasticity in the PSD-95 KO mice indicates that V1-plasticity after a distant stroke can be promoted by either changes in excitatory circuitry or by lowering the inhibitory tone in V1 as previously shown. Furthermore, the present data indicate that an increased number of AMPA-silent synapses preserves OD-plasticity not only in the healthy brain, but also in another experimental paradigm of cortical plasticity, namely the long-range influence on V1-plasticity after an S1-lesion. PMID:26930616
Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin
2016-12-01
Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (P<0.001). H max (H-wave maximum amplitude)/M max (M-wave maximum amplitude) ratio of gastrocnemius and plantaris muscles (PMs) significantly reduced in group C (P<0.01). Average VGLUT1 positive boutons per CTB-labelled motoneurons significantly reduced in group C (P<0.001). We demonstrated for the first time that contralateral L4 ventral root transfer to L5 ventral root of the affected side was effective in relieving unilateral motor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential therapeutic candidate to improve the function of lower extremity in patients with spastic hemiplegia. © 2016 The Author(s).
Sounds activate visual cortex and improve visual discrimination.
Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A
2014-07-16
A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. Copyright © 2014 the authors 0270-6474/14/349817-08$15.00/0.
Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans
2015-01-01
Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.
"What" and "where" in word reading: ventral coding of written words revealed by parietal atrophy.
Vinckier, Fabien; Naccache, Lionel; Papeix, Caroline; Forget, Joaquim; Hahn-Barma, Valerie; Dehaene, Stanislas; Cohen, Laurent
2006-12-01
The visual system of literate adults develops a remarkable perceptual expertise for printed words. To delineate the aspects of this competence intrinsic to the occipitotemporal "what" pathway, we studied a patient with bilateral lesions of the occipitoparietal "where" pathway. Depending on critical geometric features of the display (rotation angle, letter spacing, mirror reversal, etc.), she switched from a good performance, when her intact ventral pathway was sufficient to encode words, to severely impaired reading, when her parietal lesions prevented the use of alternative reading strategies as a result of spatial and attentional impairments. In particular, reading was disrupted (a) by rotating word by more than 50 degrees , providing an approximation of the invariance range for words encoding in the ventral pathway; (b) by separating letters with double spaces, revealing the limits of letter grouping into perceptual wholes; (c) by mirror-reversing words, showing that words escape the default mirror-invariant representation of visual objects in the ventral pathway. Moreover, because of her parietal lesions, she was unable to discriminate mirror images of common objects, although she was excellent with reversible pseudowords, confirming that the breaking of mirror symmetry was intrinsic to the occipitotemporal cortex. Thus, charting the display conditions associated with preserved or impaired performance allowed us to infer properties of word coding in the normal ventral pathway and to delineate the roles of the parietal lobes in single-word recognition.
A Cortical Network for the Encoding of Object Change
Hindy, Nicholas C.; Solomon, Sarah H.; Altmann, Gerry T.M.; Thompson-Schill, Sharon L.
2015-01-01
Understanding events often requires recognizing unique stimuli as alternative, mutually exclusive states of the same persisting object. Using fMRI, we examined the neural mechanisms underlying the representation of object states and object-state changes. We found that subjective ratings of visual dissimilarity between a depicted object and an unseen alternative state of that object predicted the corresponding multivoxel pattern dissimilarity in early visual cortex during an imagery task, while late visual cortex patterns tracked dissimilarity among distinct objects. Early visual cortex pattern dissimilarity for object states in turn predicted the level of activation in an area of left posterior ventrolateral prefrontal cortex (pVLPFC) most responsive to conflict in a separate Stroop color-word interference task, and an area of left ventral posterior parietal cortex (vPPC) implicated in the relational binding of semantic features. We suggest that when visualizing object states, representational content instantiated across early and late visual cortex is modulated by processes in left pVLPFC and left vPPC that support selection and binding, and ultimately event comprehension. PMID:24127425
Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin
2017-01-01
Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.
Mechanisms of migraine aura revealed by functional MRI in human visual cortex
Hadjikhani, Nouchine; Sanchez del Rio, Margarita; Wu, Ona; Schwartz, Denis; Bakker, Dick; Fischl, Bruce; Kwong, Kenneth K.; Cutrer, F. Michael; Rosen, Bruce R.; Tootell, Roger B. H.; Sorensen, A. Gregory; Moskowitz, Michael A.
2001-01-01
Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex. PMID:11287655
de Graaf, Tom A; de Jong, Maartje C; Goebel, Rainer; van Ee, Raymond; Sack, Alexander T
2011-10-01
In bistable vision, one constant ambiguous stimulus leads to 2 alternating conscious percepts. This perceptual switching occurs spontaneously but can also be influenced through voluntary control. Neuroimaging studies have reported that frontal regions are activated during spontaneous perceptual switches, leading some researchers to suggest that frontal regions causally induce perceptual switches. But the opposite also seems possible: frontal activations may themselves be caused by spontaneous switches. Classically implicated in attentional processes, these same regions are also candidates for the origins of voluntary control over bistable vision. Here too, it remains unknown whether frontal cortex is actually functionally relevant. It is even possible that spontaneous perceptual switches and voluntarily induced switches are mediated by the same top-down mechanisms. To directly address these issues, we here induced "virtual lesions," with transcranial magnetic stimulation, in frontal, parietal, and 2 lower level visual cortices using an established ambiguous structure-from-motion stimulus. We found that dorsolateral prefrontal cortex was causally relevant for voluntary control over perceptual switches. In contrast, we failed to find any evidence for an active role of frontal cortex in passive bistable vision. Thus, it seems the same pathway used for willed top-down modulation of bistable vision is not used during passive bistable viewing.
Eimontaite, Iveta; Goel, Vinod; Raymont, Vanessa; Krueger, Frank; Schindler, Igor; Grafman, Jordan
2018-05-14
To answer the question of how brain pathology affects reasoning about negative emotional content, we administered a disjunctive logical reasoning task involving arguments with neutral content (e.g. Either there are tigers or women in NYC, but not both; There are no tigers in NYC; There are women in NYC) and emotionally laden content (e.g. Either there are pedophiles or politicians in Texas, but not both; There are politicians in Texas; There are no pedophiles in Texas) to 92 neurological patients with focal lesions to various parts of the brain. A Voxel Lesion Symptom Mapping (VLSM) analysis identified 16 patients, all with lesions to the orbital polar prefrontal cortex (BA 10 & 11), as being selectively impaired in the emotional reasoning condition. Another 17 patients, all with lesions to the parietal cortex, were identified as being impaired in the neutral content condition. The reasoning scores of these two patient groups, along with 23 matched normal controls, underwent additional analysis to explore the effect of belief bias. This analysis revealed that the differences identified above were largely driven by trials where there was an incongruency between the believability of the conclusion and the validity of the argument (i.e. valid argument /false conclusion or invalid argument /true conclusion). Patients with lesions to polar orbital prefrontal cortex underperformed in incongruent emotional content trials and over performed in incongruent neutral content trials (compared to both normal controls and patients with parietal lobe lesions). Patients with lesions to parietal lobes underperformed normal controls (at a trend level) in neutral trials where there was a congruency between the believability of the conclusion and the validity of the argument (i.e. valid argument/true conclusion or invalid argument/false conclusion). We conclude that lesions to the polar orbital prefrontal cortex (i) prevent these patients from enjoying any emotionally induced cognitive boost, and (ii) block the belief bias processing route in the neutral condition. Lesions to parietal lobes result in a generalized impairment in logical reasoning with neutral content. Copyright © 2018. Published by Elsevier Ltd.
McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.
2014-01-01
Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075
Removing interictal fast ripples on electrocorticography linked with seizure freedom in children.
Wu, J Y; Sankar, R; Lerner, J T; Matsumoto, J H; Vinters, H V; Mathern, G W
2010-11-09
Fast ripples (FR, 250-500 Hz) detected with chronic intracranial electrodes are proposed biomarkers of epileptogenesis. This study determined whether resection of FR-containing neocortex recorded during intraoperative electrocorticography (ECoG) was associated with postoperative seizure freedom in pediatric patients with mostly extratemporal lesions. FRs were retrospectively reviewed in 30 consecutive pediatric cases. ECoGs were recorded at 2,000 Hz sampling rate and visually inspected for FR, with reviewer blinded to the resection and outcome. Average age at surgery was 9.1 ± 6.7 years, ECoG duration was 11.8 ± 8.1 minutes, and postoperative follow-up was 27 ± 4 months. FRs were undetected in 6 ECoGs with remote or extensive lesions. FR episodes (n = 273) were identified in ECoGs from 24 patients, and in 64% FRs were independent of spikes, sharp waves, voltage attenuation, and paroxysmal fast activity. Of these 24 children, FR-containing cortex was removed in 19 and all became seizure-free, including 1 child after a second surgery. The remaining 5 children had incomplete FR resection and all continued with seizures postoperatively. In 2 ECoGs, the location of electrographic seizures matched FR location. FR-containing cortex was found outside of MRI and FDG-PET abnormalities in 6 children. FRs were detected during intraoperative ECoG in 80% of pediatric epilepsy cases, and complete resection of FR cortex correlated with postoperative seizure freedom. These findings support the view that interictal FRs are excellent surrogate markers of epileptogenesis, can be recorded during brief ECoG, and could be used to guide future surgical resections in children.
ERIC Educational Resources Information Center
Garcia, Rene; Chang, Chun-hui; Maren, Stephen
2006-01-01
Lesion studies indicate that rats without the medial prefrontal cortex (mPFC) have difficulty recalling fear extinction acquired the previous day. Several electrophysiological studies have also supported this observation by demonstrating that extinction-related increases in neuronal activity in the mPFC participate in expression of fear…
Prefrontal Cortex Lesions and Sex Differences in Fear Extinction and Perseveration
ERIC Educational Resources Information Center
Baran, Sarah E.; Armstrong, Charles E.; Niren, Danielle C.; Conrad, Cheryl D.
2010-01-01
Electrolytic lesions of the medial prefrontal cortex (PFCX) were examined using fear conditioning to assess the recall of fear extinction and performance in the Y-maze, open field, and object location/recognition in male and female Sprague-Dawley rats. Rats were conditioned to seven tone/footshocks, followed by extinction after 1-h and 24-h…
False memory for context and true memory for context similarly activate the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2017-06-01
The role of the parahippocampal cortex is currently a topic of debate. One view posits that the parahippocampal cortex specifically processes spatial layouts and sensory details (i.e., the visual-spatial processing view). In contrast, the other view posits that the parahippocampal cortex more generally processes spatial and non-spatial contexts (i.e., the general contextual processing view). A large number of studies have found that true memories activate the parahippocampal cortex to a greater degree than false memories, which would appear to support the visual-spatial processing view as true memories are typically associated with greater visual-spatial detail than false memories. However, in previous studies, contextual details were also greater for true memories than false memories. Thus, such differential activity in the parahippocampal cortex may have reflected differences in contextual processing, which would challenge the visual-spatial processing view. In the present functional magnetic resonance imaging (fMRI) study, we employed a source memory paradigm to investigate the functional role of the parahippocampal cortex during true memory and false memory for contextual information to distinguish between the visual-spatial processing view and the general contextual processing view. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old shapes were presented at fixation and participants indicated whether each shape was previously on the "left" or "right" followed by an "unsure", "sure", or "very sure" confidence rating. The conjunction of confident true memories for context and confident false memories for context produced activity in the parahippocampal cortex, which indicates that this region is associated with contextual processing. Furthermore, the direct contrast of true memory and false memory produced activity in the visual cortex but did not produce activity in the parahippocampal cortex. The present evidence suggests that the parahippocampal cortex is associated with general contextual processing rather than only being associated with visual-spatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perceptual learning increases the strength of the earliest signals in visual cortex.
Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A
2010-11-10
Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.
Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.
Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein
2012-10-15
Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
The multisensory function of the human primary visual cortex.
Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J
2016-03-01
It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.
van Hof, M W; Hobbelen, J F; Gramsbergen, A
1990-01-01
In 5 groups of rabbits (0-1, 2-3, 4-5, 6-7 and 12-13 weeks old) the left frontal, parieto-temporal and occipital cortex were removed. Beginning two weeks after the operations the hopping reaction was tested during 15 weeks. It was found in the groups operated 0-1, 2-3 and 4-5 weeks after birth, that the hopping reaction developed normally. This was not the case in the animals operated 6-7 and 12-13 weeks after birth. Brightness descrimination with the left and right eye was tested in the same animals, beginning 12 weeks after the operation. Contrary to the motor system, no age-development recovery was found in the visual system. In all age groups, brightness discrimination with the eye contralateral to the lesion was impaired.
The role of early visual cortex in visual short-term memory and visual attention.
Offen, Shani; Schluppeck, Denis; Heeger, David J
2009-06-01
We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.
Brewer, Alyssa A.; Barton, Brian
2012-01-01
Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1) during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimer's disease (AD), the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM) organization and population receptive fields (pRFs) between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD. PMID:24570669
Decoding information about dynamically occluded objects in visual cortex
Erlikhman, Gennady; Caplovitz, Gideon P.
2016-01-01
During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder, even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or, non-object-specific information such as its position or velocity as it is tracked behind an occluder as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by “invisible” objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine the representation of information within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may represent the dynamically occluded object’s position or motion path, while later visual areas represent object-specific information. PMID:27663987
Figueiredo, Helmer F; Bruestle, Amy; Bodie, Bryan; Dolgas, Charles M; Herman, James P
2003-10-01
The medial prefrontal cortex (mPFC) plays an important inhibitory role in the hypothalamic-pituitary-adrenal (HPA) axis response. The involvement of the mPFC appears to depend on the type of stressor, preferentially affecting 'psychogenic' stimuli. In this study, we mapped expression of c-fos mRNA to assess the neural circuitry underlying stressor-specific actions of the mPFC on HPA reactivity. Thus, groups of mPFC-lesioned and sham-operated rats were restrained for 20 min or exposed to ether fumes for 2 min. In both cases, the animals were killed at 40 min from the onset of stress. Interestingly, bilateral lesions of the mPFC significantly enhanced c-fos mRNA expression in the hypothalamic paraventricular nucleus of restrained animals, an effect that was paralleled by potentiation of circulating ACTH concentrations in these animals. On the other hand, lesions of the mPFC did not affect neither PVN c-fos mRNA expression nor plasma ACTH concentrations in animals exposed to ether. Lesions of the mPFC also enhanced c-fos activation in the medial amygdala following restraint, but not following ether exposure. Additional regions whose activity was affected by mPFC lesions or stressor differences included the ventrolateral division of the bed nucleus of the stria terminalis, CA3 hippocampus, piriform cortex, and dorsal endopiriform nucleus. Expression of c-fos mRNA was nearly absent in the central amygdala of all stressed animals, regardless of lesion. Furthermore, prefrontal cortex lesions did not change stress-induction levels of c-fos in the CA1 hippocampus, dentate gyrus, anteromedial division of the bed nucleus of the stria terminalis, lateral septum, and claustrum. Taken together, this study indicates that the medial prefrontal cortex differentially regulates cellular activation of specific stress-related brain regions, thus exerting stressor-dependent inhibition of the HPA axis.
Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J
2014-01-01
Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.
1980-12-01
primary and secondary visual cortex or in the secondary visual cortex itself. When the secondary visual cortex is electrically stimulated , the subject...effect enhances their excitability, which reduces the additional stimulation ( electrical or chemical) required to elicit an action potential. These...and the peripheral area with rods. The rods have a very low light intensity threshold and provide stimulation to optic nerve fibers for low light
Chen, H Isaac; Bohman, Leif-Erik; Emery, Lyndsey; Martinez-Lage, Maria; Richardson, Andrew G; Davis, Kathryn A; Pollard, John R; Litt, Brian; Gausas, Roberta E; Lucas, Timothy H
2015-01-01
Transorbital approaches traditionally have focused on skull base and cavernous sinus lesions medial to the globe. Lateral orbital approaches to the temporal lobe have not been widely explored despite several theoretical advantages compared to open craniotomy. Recently, we demonstrated the feasibility of the lateral transorbital technique in cadaveric specimens with endoscopic visualization. We describe our initial clinical experience with the endoscope-assisted lateral transorbital approach to lesions in the temporal lobe. Two patients with mesial temporal lobe pathology presenting with seizures underwent surgery. The use of a transpalpebral or Stallard-Wright eyebrow incision enabled access to the intraorbital compartment, and a lateral orbital wall 'keyhole' opening permitted visualization of the anterior temporal pole. This approach afforded adequate access to the surgical target and surrounding structures and was well tolerated by the patients. To the best of our knowledge, this report constitutes the first case series describing the endoscope-assisted lateral transorbital approach to the temporal lobe. We discuss the limits of exposure, the nuances of opening and closing, and comparisons to open craniotomy. Further prospective investigation of this approach is warranted for comparison to traditional approaches to the mesial temporal lobe. © 2015 S. Karger AG, Basel.
The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex
Touvykine, Boris; Mansoori, Babak K.; Jean-Charles, Loyda; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa
2015-01-01
Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)—the putative premotor area in rats—in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions. PMID:25967757
The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex.
Touvykine, Boris; Mansoori, Babak K; Jean-Charles, Loyda; Deffeyes, Joan; Quessy, Stephan; Dancause, Numa
2016-03-01
Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. In rats, we induced lesions of different sizes in the caudal forelimb area (CFA), the equivalent of M1. The effective lesion volume in each animal was quantified histologically. Behavioral recovery was evaluated with the Montoya Staircase task for 28 days after the lesion. Then, the organization of the CFA and the rostral forelimb area (RFA)--the putative premotor area in rats--in the 2 cerebral hemispheres was studied with intracortical microstimulation mapping techniques. The distal forelimb representation in the RFA of both the ipsilesional and contralesional hemispheres was positively correlated with the size of the lesion. In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions. © The Author(s) 2015.
Preprocessing of emotional visual information in the human piriform cortex.
Schulze, Patrick; Bestgen, Anne-Kathrin; Lech, Robert K; Kuchinke, Lars; Suchan, Boris
2017-08-23
This study examines the processing of visual information by the olfactory system in humans. Recent data point to the processing of visual stimuli by the piriform cortex, a region mainly known as part of the primary olfactory cortex. Moreover, the piriform cortex generates predictive templates of olfactory stimuli to facilitate olfactory processing. This study fills the gap relating to the question whether this region is also capable of preprocessing emotional visual information. To gain insight into the preprocessing and transfer of emotional visual information into olfactory processing, we recorded hemodynamic responses during affective priming using functional magnetic resonance imaging (fMRI). Odors of different valence (pleasant, neutral and unpleasant) were primed by images of emotional facial expressions (happy, neutral and disgust). Our findings are the first to demonstrate that the piriform cortex preprocesses emotional visual information prior to any olfactory stimulation and that the emotional connotation of this preprocessing is subsequently transferred and integrated into an extended olfactory network for olfactory processing.
Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A F
2003-04-15
When stimulus information enters the visual cortex, it is rapidly processed for identification. However, sometimes the processing of the stimulus is inadequate and the subject fails to notice the stimulus. Human psychophysical studies show that this occurs during states of inattention or absent-mindedness. At a neurophysiological level, it remains unclear what these states are. To study the role of cortical state in perception, we analyzed neural activity in the monkey primary visual cortex before the appearance of a stimulus. We show that, before the appearance of a reported stimulus, neural activity was stronger and more correlated than for a not-reported stimulus. This indicates that the strength of neural activity and the functional connectivity between neurons in the primary visual cortex participate in the perceptual processing of stimulus information. Thus, to detect a stimulus, the visual cortex needs to be in an appropriate state.
Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel
2017-07-26
Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by electrical stimulation: phosphene size saturates at a relatively low current level. This finding implies that, with current methods, visual prosthetics will have a limited dynamic range available to control the production of spatial forms and that more advanced stimulation methods may be required. Copyright © 2017 the authors 0270-6474/17/377188-10$15.00/0.
Frequency spectrum might act as communication code between retina and visual cortex I
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156
Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka
2015-01-01
Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.
Frequency spectrum might act as communication code between retina and visual cortex I.
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.
Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj
2013-07-01
Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Karmonik, Christof; Fung, Steve H; Dulay, M; Verma, A; Grossman, Robert G
2013-01-01
Graph-theoretical analysis algorithms have been used for identifying subnetworks in the human brain during the Default Mode State. Here, these methods are expanded to determine the interaction of the sensory and the motor subnetworks during the performance of an approach-avoidance paradigm utilizing the correlation strength between the signal intensity time courses as measure of synchrony. From functional magnetic resonance imaging (fMRI) data of 9 healthy volunteers, two signal time courses, one from the primary visual cortex (sensory input) and one from the motor cortex (motor output) were identified and a correlation difference map was calculated. Graph networks were created from this map and visualized with spring-embedded layouts and 3D layouts in the original anatomical space. Functional clusters in these networks were identified with the MCODE clustering algorithm. Interactions between the sensory sub-network and the motor sub-network were quantified through the interaction strengths of these clusters. The percentages of interactions involving the visual cortex ranged from 85 % to 18 % and the motor cortex ranged from 40 % to 9 %. Other regions with high interactions were: frontal cortex (19 ± 18 %), insula (17 ± 22 %), cuneus (16 ± 15 %), supplementary motor area (SMA, 11 ± 18 %) and subcortical regions (11 ± 10 %). Interactions between motor cortex, SMA and visual cortex accounted for 12 %, between visual cortex and cuneus for 8 % and between motor cortex, SMA and cuneus for 6 % of all interactions. These quantitative findings are supported by the visual impressions from the 2D and 3D network layouts.
Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.
2014-01-01
To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072
Arrested development: early prefrontal lesions impair the maturation of moral judgement.
Taber-Thomas, Bradley C; Asp, Erik W; Koenigs, Michael; Sutterer, Matthew; Anderson, Steven W; Tranel, Daniel
2014-04-01
Learning to make moral judgements based on considerations beyond self-interest is a fundamental aspect of moral development. A deficit in such learning is associated with poor socialization and criminal behaviour. The neural systems required for the acquisition and maturation of moral competency are not well understood. Here we show in a unique sample of neurological patients that focal lesions involving ventromedial prefrontal cortex, acquired during development, result in an abnormally egocentric pattern of moral judgement. In response to simple hypothetical moral scenarios, the patients were more likely than comparison participants to endorse self-interested actions that involved breaking moral rules or physically harming others in order to benefit themselves. This pattern (which we also found in subjects with psychopathy) differs from that of patients with adult-onset ventromedial prefrontal cortex lesions--the latter group showed normal rejection of egocentric rule violations. This novel contrast of patients with ventromedial prefrontal cortex lesions acquired during development versus during adulthood yields new evidence suggesting that the ventromedial prefrontal cortex is a critical neural substrate for the acquisition and maturation of moral competency that goes beyond self-interest to consider the welfare of others. Disruption to this affective neural system early in life interrupts moral development.
Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok
2016-01-01
Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.
Massé, Ian O; Guillemette, Sonia; Laramée, Marie-Eve; Bronchti, Gilles; Boire, Denis
2014-11-07
Anophthalmia is a condition in which the eye does not develop from the early embryonic period. Early blindness induces cross-modal plastic modifications in the brain such as auditory and haptic activations of the visual cortex and also leads to a greater solicitation of the somatosensory and auditory cortices. The visual cortex is activated by auditory stimuli in anophthalmic mice and activity is known to alter the growth pattern of the cerebral cortex. The size of the primary visual, auditory and somatosensory cortices and of the corresponding specific sensory thalamic nuclei were measured in intact and enucleated C57Bl/6J mice and in ZRDCT anophthalmic mice (ZRDCT/An) to evaluate the contribution of cross-modal activity on the growth of the cerebral cortex. In addition, the size of these structures were compared in intact, enucleated and anophthalmic fourth generation backcrossed hybrid C57Bl/6J×ZRDCT/An mice to parse out the effects of mouse strains and of the different visual deprivations. The visual cortex was smaller in the anophthalmic ZRDCT/An than in the intact and enucleated C57Bl/6J mice. Also the auditory cortex was larger and the somatosensory cortex smaller in the ZRDCT/An than in the intact and enucleated C57Bl/6J mice. The size differences of sensory cortices between the enucleated and anophthalmic mice were no longer present in the hybrid mice, showing specific genetic differences between C57Bl/6J and ZRDCT mice. The post natal size increase of the visual cortex was less in the enucleated than in the anophthalmic and intact hybrid mice. This suggests differences in the activity of the visual cortex between enucleated and anophthalmic mice and that early in-utero spontaneous neural activity in the visual system contributes to the shaping of functional properties of cortical networks. Copyright © 2014 Elsevier B.V. All rights reserved.
Skipper-Kallal, Laura M.; Lacey, Elizabeth H.; Xing, Shihui
2017-01-01
The study of language network plasticity following left hemisphere stroke is foundational to the understanding of aphasia recovery and neural plasticity in general. Damage in different language nodes may influence whether local plasticity is possible and whether right hemisphere recruitment is beneficial. However, the relationships of both lesion size and location to patterns of remapping are poorly understood. In the context of a picture naming fMRI task, we tested whether lesion size and location relate to activity in surviving left hemisphere language nodes, as well as homotopic activity in the right hemisphere during covert name retrieval and overt name production. We found that lesion size was positively associated with greater right hemisphere activity during both phases of naming, a pattern that has frequently been suggested but has not previously been clearly demonstrated. During overt naming, lesions in the inferior frontal gyrus led to deactivation of contralateral frontal areas, while lesions in motor cortex led to increased right motor cortex activity. Furthermore, increased right motor activity related to better naming performance only when left motor cortex was lesioned, suggesting compensatory takeover of speech or language function by the homotopic node. These findings demonstrate that reorganization of language function, and the degree to which reorganization facilitates aphasia recovery, is dependent on the size and site of the lesion. PMID:28168061
Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César
2015-10-01
Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.
Visual dot interaction with short-term memory.
Etindele Sosso, Faustin Armel
2017-06-01
Many neurodegenerative diseases have a memory component. Brain structures related to memory are affected by environmental stimuli, and it is difficult to dissociate effects of all behavior of neurons. Here, visual cortex of mice was stimulated with gratings and dot, and an observation of neuronal activity before and after was made. Bandwidth, firing rate and orientation selectivity index were evaluated. A primary communication between primary visual cortex and short-term memory appeared to show an interesting path to train cognitive circuitry and investigate the basics mechanisms of the neuronal learning. The findings also suggested the interplay between primary visual cortex and short-term plasticity. The properties inside a visual target shape the perception and affect the basic encoding. Using visual cortex, it may be possible to train the memory and improve the recovery of people with cognitive disabilities or memory deficit.
Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.
2012-01-01
It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535
Evidence for unlimited capacity processing of simple features in visual cortex
White, Alex L.; Runeson, Erik; Palmer, John; Ernst, Zachary R.; Boynton, Geoffrey M.
2017-01-01
Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level–dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. PMID:28654964
The role of the medial prefrontal cortex in the play fighting of rats.
Bell, Heather C; McCaffrey, David R; Forgie, Margaret L; Kolb, Bryan; Pellis, Sergio M
2009-12-01
Although decorticated rats are able to engage in play, their play is abnormal in three ways. First, decorticates do not display the normal, age-related shifts in defensive strategies during development. Second, decorticates do not modify their defensive tactics in response to the social identity of their partners. Third, decorticates display a global shift in defensive tactics from more complex to less complex strategies. It has been shown that lesions of the motor cortex (MC) selectively produce the abnormal developmental effects on play, and that lesions of the orbitofrontal cortex (OFC) selectively produce the deficits in behavioral discrimination between social partners. In the current set of experiments, we demonstrate that lesions of the medial prefrontal cortex (mPFC) produce the shift from more complex to less complex defensive tactics, while leaving intact the age-related and partner-related modulation of defensive strategies. Thus, we have evidence for a triple dissociation of function between the MC, the OFC, and the mPFC with respect to social play behavior.
Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia.
Spiegel, Daniel P; Li, Jinrong; Hess, Robert F; Byblow, Winston D; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2013-10-01
Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.
Wang, Zhuo; Myers, Kalisa G.; Guo, Yumei; Ocampo, Marco A.; Pang, Raina D.; Jakowec, Michael W.; Holschneider, Daniel P.
2013-01-01
Exercise training is widely used for neurorehabilitation of Parkinson’s disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases in rCBF in the medial prefrontal cortex (cingulate, prelimbic, infralimbic). Our results in this PD rat model uniquely highlight the breadth of functional reorganizations in motor and limbic circuits following lesion and long-term, aerobic exercise, and provide a framework for understanding the neural substrates underlying exercise-based neurorehabilitation. PMID:24278239
Salient sounds activate human visual cortex automatically.
McDonald, John J; Störmer, Viola S; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A
2013-05-22
Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, this study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2-4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of colocalized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task.
Salient sounds activate human visual cortex automatically
McDonald, John J.; Störmer, Viola S.; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A.
2013-01-01
Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, the present study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2, 3, and 4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of co-localized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task. PMID:23699530
Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning. PMID:25243168
Lanska, Douglas J
2016-01-01
As a result of the wars in the early 20th century, elaboration of the visual pathways was greatly facilitated by the meticulous study of visual defects in soldiers who had suffered focal injuries to the visual cortex. Using relatively crude techniques, often under difficult wartime circumstances, investigators successfully mapped key features of the visual pathways. Studies during the Russo- Japanese War (1904-1905) by Tatsuji Inouye (1881-1976) and during World War I by Gordon Holmes (1876-1965), William Lister (1868-1944), and others produced increasingly refined retinotopic maps of the primary visual cortex, which were later supported and refined by studies during and after World War II. Studies by George Riddoch (1888-1947) during World War I also demonstrated that some patients could still perceive motion despite blindness caused by damage to their visual cortex and helped to establish the concept of functional partitioning of visual processes in the occipital cortex. © 2016 S. Karger AG, Basel.
Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.
Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan
2014-01-01
Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.
Jones, Theresa A.; Liput, Daniel J.; Maresh, Erin L.; Donlan, Nicole; Parikh, Toral J.; Marlowe, Dana
2012-01-01
Abstract Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3–28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI. PMID:22352953
Jones, Theresa A; Liput, Daniel J; Maresh, Erin L; Donlan, Nicole; Parikh, Toral J; Marlowe, Dana; Kozlowski, Dorothy A
2012-05-01
Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.
Liang, Shengxiang; Lin, Yunjiao; Lin, Bingbing; Li, Jianhong; Liu, Weilin; Chen, Lidian; Zhao, Shujun; Tao, Jing
2017-09-01
To evaluate whether electro-acupuncture (EA) treatment at acupoints of Zusanli (ST 36) and Quchi (LI 11) could reduce motor impairments and enhance brain functional recovery in rats with ischemic stroke. A rat model of middle cerebral artery occlusion (MCAO) was established. EA at ST 36 and LI 11was started at 24 hours (MCAO + EA group) after ischemic stroke. The nontreatment (MCAO) and sham-operated control (SC) groups were included as controls. The neurologic deficits of all groups were assessed by Zea Longa scores and the modified neurologic severity scores on 24 hours and 8 days after MCAO. To further investigate the effect of EA on infract volume and brain function, magnetic resonance imaging was used to estimate the brain lesion and brain neural activities of each group at 8 days after ischemic stroke. Within 1 week after EA treatment, the neurologic deficits were significantly alleviated, and the cerebral infarctions were improved, including visual cortex, motor cortex, striatum, dorsal thalamus, and hippocampus. Furthermore, whole brain neural activities of auditory cortex, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, orbital cortex, sensory cortex, and striatum were decreased in MCAO group, whereas that of brain neural activities were increased after EA treatment, suggesting these brain regions are in accordance with the brain structure analysis. EA at ST 36 and LI 11 could enhance the neural activity of motor function-related brain regions, including motor cortex, dorsal thalamus, and striatum in rats, which is a potential treatment for ischemia stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
"Visual" Cortex Responds to Spoken Language in Blind Children.
Bedny, Marina; Richardson, Hilary; Saxe, Rebecca
2015-08-19
Plasticity in the visual cortex of blind individuals provides a rare window into the mechanisms of cortical specialization. In the absence of visual input, occipital ("visual") brain regions respond to sound and spoken language. Here, we examined the time course and developmental mechanism of this plasticity in blind children. Nineteen blind and 40 sighted children and adolescents (4-17 years old) listened to stories and two auditory control conditions (unfamiliar foreign speech, and music). We find that "visual" cortices of young blind (but not sighted) children respond to sound. Responses to nonlanguage sounds increased between the ages of 4 and 17. By contrast, occipital responses to spoken language were maximal by age 4 and were not related to Braille learning. These findings suggest that occipital plasticity for spoken language is independent of plasticity for Braille and for sound. We conclude that in the absence of visual input, spoken language colonizes the visual system during brain development. Our findings suggest that early in life, human cortex has a remarkably broad computational capacity. The same cortical tissue can take on visual perception and language functions. Studies of plasticity provide key insights into how experience shapes the human brain. The "visual" cortex of adults who are blind from birth responds to touch, sound, and spoken language. To date, all existing studies have been conducted with adults, so little is known about the developmental trajectory of plasticity. We used fMRI to study the emergence of "visual" cortex responses to sound and spoken language in blind children and adolescents. We find that "visual" cortex responses to sound increase between 4 and 17 years of age. By contrast, responses to spoken language are present by 4 years of age and are not related to Braille-learning. These findings suggest that, early in development, human cortex can take on a strikingly wide range of functions. Copyright © 2015 the authors 0270-6474/15/3511674-08$15.00/0.
Differential effect of visual motion adaption upon visual cortical excitability.
Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer
2017-03-01
The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.
Inhibitory rTMS applied on somatosensory cortex in Wilson's disease patients with hand dystonia.
Lozeron, Pierre; Poujois, Aurélia; Meppiel, Elodie; Masmoudi, Sana; Magnan, Thierry Peron; Vicaut, Eric; Houdart, Emmanuel; Guichard, Jean-Pierre; Trocello, Jean-Marc; Woimant, France; Kubis, Nathalie
2017-10-01
Hand dystonia is a common complication of Wilson's disease (WD), responsible for handwriting difficulties and disability. Alteration of sensorimotor integration and overactivity of the somatosensory cortex have been demonstrated in dystonia. This study investigated the immediate after effect of an inhibitory repetitive transcranial magnetic stimulation (rTMS) applied over the somatosensory cortex on the writing function in WD patients with hand dystonia. We performed a pilot prospective randomized double-blind sham-controlled crossover rTMS study. A 20-min 1-Hz rTMS session, stereotaxically guided, was applied over the left somatosensory cortex in 13 WD patients with right dystonic writer's cramp. After 3 days, each patient was crossed-over to the alternative treatment. Patients were clinically evaluated before and immediately after each rTMS session with the Unified Wilson's Disease rating scale (UWDRS), the Writers' Cramp Rating Scale (WCRS), a specifically designed scale for handwriting difficulties in Wilson's disease patients (FAR, flow, accuracy, and rhythmicity evaluation), and a visual analog scale (VAS) for handwriting discomfort. No significant change in UWDRS, WCRS, VAS, or FAR scores was observed in patients treated with somatosensory inhibitory rTMS compared to the sham protocol. The FAR negatively correlated with UWDRS (r = -0.6; P = 0.02), but not with the WCRS score, disease duration, MRI diffusion lesions, or with atrophy scores. In our experimental conditions, a single inhibitory rTMS session applied over somatosensory cortex did not improve dystonic writer cramp in WD patients.
Rosen, Allyson C; Soman, Salil; Bhat, Jyoti; Laird, Angela R; Stephens, Jeffrey; Eickhoff, Simon B; Fox, P Mickle; Long, Becky; Dinishak, David; Ortega, Mario; Lane, Barton; Wintermark, Max; Hitchner, Elizabeth; Zhou, Wei
2018-01-01
Carotid revascularization (endarterectomy, stenting) prevents stroke; however, procedure-related embolization is common and results in small brain lesions easily identified by diffusion weighted magnetic resonance imaging (DWI). A crucial barrier to understanding the clinical significance of these lesions has been the lack of a statistical approach to identify vulnerable brain areas. The problem is that the lesions are small, numerous, and non-overlapping. Here we address this problem with a new method, the Convergence Analysis of Micro-Lesions (CAML) technique, an extension of the Anatomic Likelihood Analysis (ALE). The method combines manual lesion tracing, constraints based on known lesion patterns, and convergence analysis to represent regions vulnerable to lesions as probabilistic brain atlases. Two studies were conducted over the course of 12 years in an active, vascular surgery clinic. An analysis in an initial group of 126 patients at 1.5 T MRI was cross-validated in a second group of 80 patients at 3T MRI. In CAML, lesions were manually defined and center points identified. Brains were aligned according to side of surgery since this factor powerfully determines lesion distribution. A convergence based analysis, was performed on each of these groups. Results indicated the most consistent region of vulnerability was in motor and premotor cortex regions. Smaller regions common to both groups included the dorsolateral prefrontal cortex and medial parietal regions. Vulnerability of motor cortex is consistent with previous work showing changes in hand dexterity associated with these procedures. The consistency of CAML also demonstrates the feasibility of this new approach to characterize small, diffuse, non-overlapping lesions in patients with multifocal pathologies.
Minimizing Retraction by Pia-Arachnoidal 10-0 Sutures in Intrasulcal Dissection.
Uluc, Kutluay; Cikla, Ulas; Morkan, Deniz B; Sirin, Alperen; Ahmed, Azam S; Swanson, Kyle; Baskaya, Mustafa K
2018-07-01
In contemporary microneurosurgery reducing retraction-induced injury to the brain is essential. Self-retaining retractor systems are commonly used to improve visualization and decrease the repetitive microtrauma, but sometimes self-retaining retractor systems can be cumbersome and the force applied can cause focal ischemia or contusions. This may increase the morbidity and mortality. Here, we describe a technique of retraction using 10-0 sutures in the arachnoid. To evaluate the imaging and clinical results in patients where 10-0 suture retraction was used to aid the surgical procedure. Adjacent cortex was retracted by placing 10-0 nylon suture in the arachnoid of the bank or banks of the sulcus. The suture was secured to the adjacent dural edge by using aneurysm clips, allowing for easy adjustability of the amount of retraction. We retrospectively analyzed the neurological outcome, signal changes in postoperative imaging, and ease of performing surgery in 31 patients with various intracranial lesions including intracranial aneurysms, intra- and extra-axial tumors, and cerebral ischemia requiring arterial bypass. Clinically, there were no injuries, vascular events, or neurological deficits referable to the relevant cortex. Postoperative imaging did not show changes consistent with ischemia or contusion due to the retraction. This technique improved the visualization and illumination of the surgical field in all cases. Retraction of the arachnoid can be used safely in cases where trans-sulcal dissection is required. This technique may improve initial visualization and decrease the need for dynamic or static retraction.
Korogi, Y; Takahashi, M; Hirai, T; Ikushima, I; Kitajima, M; Sugahara, T; Shigematsu, Y; Okajima, T; Mukuno, K
1997-01-01
To compare MR imaging findings of the striate cortex with visual field deficits in patients with Minamata disease and to reestimate the classical Holmes retinotopic map by using the data obtained from comparing visual field abnormalities with degree of visual cortex atrophy. MR imaging was performed in eight patients with Minamata disease who had been given a full neuroophthalmic examination, including Goldmann dynamic perimetry. The atrophic portions of the calcarine area were measured in the sagittal plane next to the midsagittal image and represented as a percentage of atrophy of the total length of the calcarine fissure. MR findings were compared with results of a visual field test. The visual field test revealed moderate to severe concentric constriction of the visual fields, with central vision ranging from 7 degrees to 42 degrees (mean, 19 degrees). The ventral portion of the calcarine sulcus was significantly dilated on MR images in all patients. A logarithmic correlation was found between the visual field defect and the extent of dilatation of the calcarine fissure. The central 10 degrees and 30 degrees of vision seemed to fill about 20% and 50% of the total surface area of the calcarine cortex, respectively. Visual field deficits in patients with Minamata disease correlated well with MR findings of the striate cortex. Our data were consistent with the classical Holmes retinotopic map.
ERIC Educational Resources Information Center
Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.
2008-01-01
Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…
TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.
Ptito, M; Fumal, A; de Noordhout, A Martens; Schoenen, J; Gjedde, A; Kupers, R
2008-01-01
Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex. The number of cortical sites inducing tactile sensations appeared to be related to the number of hours of Braille reading per day, Braille reading speed and dexterity. These data, taken in conjunction with previous anatomical, behavioural and functional imaging results, suggest the presence of a polysynaptic cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference hypothesis.
Optical images of visible and invisible percepts in the primary visual cortex of primates
Macknik, Stephen L.; Haglund, Michael M.
1999-01-01
We optically imaged a visual masking illusion in primary visual cortex (area V-1) of rhesus monkeys to ask whether activity in the early visual system more closely reflects the physical stimulus or the generated percept. Visual illusions can be a powerful way to address this question because they have the benefit of dissociating the stimulus from perception. We used an illusion in which a flickering target (a bar oriented in visual space) is rendered invisible by two counter-phase flickering bars, called masks, which flank and abut the target. The target and masks, when shown separately, each generated correlated activity on the surface of the cortex. During the illusory condition, however, optical signals generated in the cortex by the target disappeared although the image of the masks persisted. The optical image thus was correlated with perception but not with the physical stimulus. PMID:10611363
Causal evidence for retina dependent and independent visual motion computations in mouse cortex
Hillier, Daniel; Fiscella, Michele; Drinnenberg, Antonia; Trenholm, Stuart; Rompani, Santiago B.; Raics, Zoltan; Katona, Gergely; Juettner, Josephine; Hierlemann, Andreas; Rozsa, Balazs; Roska, Botond
2017-01-01
How neuronal computations in the sensory periphery contribute to computations in the cortex is not well understood. We examined this question in the context of visual-motion processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal direction selectivity – either exclusively along the horizontal axis using FRMD7 mutants or along all directions by ablating starburst amacrine cells – and monitored neuronal activity in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found an overrepresentation of cortical cells preferring posterior visual motion, the dominant motion direction an animal experiences when it moves forward. In mice with disrupted retinal direction selectivity, the overrepresentation of posterior-motion-preferring cortical cells disappeared, and their response at higher stimulus speeds was reduced. This work reveals the existence of two functionally distinct, sensory-periphery-dependent and -independent computations of visual motion in the cortex. PMID:28530661
Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R
2010-04-01
Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.
Correlation between brain injury and dysphagia in adult patients with stroke
Nunes, Maria Cristina de Alencar; Jurkiewicz, Ari Leon; Santos, Rosane Sampaio; Furkim, Ana Maria; Massi, Giselle; Pinto, Gisele Sant Ana; Lange, Marcos Christiano
2012-01-01
Summary Introduction: In the literature, the incidence of oropharyngeal dysphagia in patients with cerebrovascular accident (AVE) ranges 20–90%. Some studies correlate the location of a stroke with dysphagia, while others do not. Objective: To correlate brain injury with dysphagia in patients with stroke in relation to the type and location of stroke. Method: A prospective study conducted at the Hospital de Clinicas with 30 stroke patients: 18 women and 12 men. All patients underwent clinical evaluation and swallowing nasolaryngofibroscopy (FEES®), and were divided based on the location of the injury: cerebral cortex, cerebellar cortex, subcortical areas, and type: hemorrhagic or transient ischemic. Results: Of the 30 patients, 18 had ischemic stroke, 10 had hemorrhagic stroke, and 2 had transient stroke. Regarding the location, 10 lesions were in the cerebral cortex, 3 were in the cerebral and cerebellar cortices, 3 were in the cerebral cortex and subcortical areas, and 3 were in the cerebral and cerebellar cortices and subcortical areas. Cerebral cortex and subcortical area ischemic strokes predominated in the clinical evaluation of dysphagia. In FEES®, decreased laryngeal sensitivity persisted following cerebral cortex and ischemic strokes. Waste in the pharyngeal recesses associated with epiglottic valleculae predominated in the piriform cortex in all lesion areas and in ischemic stroke. A patient with damage to the cerebral and cerebellar cortices from an ischemic stroke exhibited laryngeal penetration and tracheal aspiration of liquid and honey. Conclusion: Dysphagia was prevalent when a lesion was located in the cerebral cortex and was of the ischemic type. PMID:25991951
Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?
Eyre, Janet A; Smith, Martin; Dabydeen, Lyvia; Clowry, Gavin J; Petacchi, Eliza; Battini, Roberta; Guzzetta, Andrea; Cioni, Giovanni
2007-11-01
Subjects with severe hemiplegic cerebral palsy have increased ipsilateral corticospinal projections from their noninfarcted cortex. We investigated whether their severe impairment might, in part, be caused by activity-dependent, competitive displacement of surviving contralateral corticospinal projections from the affected cortex by more active ipsilateral corticospinal projections from the nonaffected cortex, thereby compounding the impairment. Transcranial magnetic stimulation (TMS) characterized corticospinal tract development from each hemisphere over the first 2 years in 32 healthy children, 14 children with unilateral stroke, and 25 with bilateral lesions. Magnetic resonance imaging and anatomic studies compared corticospinal tract growth in 13 patients with perinatal stroke with 46 healthy subjects. Infants with unilateral lesions initially had responses after TMS of the affected cortex, which became progressively more abnormal, and seven were eventually lost. There was associated hypertrophy of the ipsilateral corticospinal axons projecting from the noninfarcted cortex. Magnetic resonance imaging and anatomic studies demonstrated hypertrophy of the corticospinal tract from the noninfarcted hemisphere. TMS findings soon after the stroke did not predict impairment; subsequent loss of responses and hypertrophy of ipsilateral corticospinal axons from the noninfarcted cortex predicted severe impairment at 2 years. Infants with bilateral lesions maintained responses to TMS from both hemispheres with a normal pattern of development. Rather than representing "reparative plasticity," increased ipsilateral projections from the noninfarcted cortex compound disability by competitively displacing surviving contralateral corticospinal projections from the infarcted cortex. This may provide a pathophysiological explanation for why signs of hemiplegic cerebral palsy appear late and progress over the first 2 years of life.
Task-specific reorganization of the auditory cortex in deaf humans
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-01
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964
Task-specific reorganization of the auditory cortex in deaf humans.
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-24
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.
Functional connectivity of visual cortex in the blind follows retinotopic organization principles
Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S.; Villringer, Arno
2015-01-01
Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. PMID:25869851
Arc restores juvenile plasticity in adult mouse visual cortex
Jenks, Kyle R.; Kim, Taekeun; Pastuzyn, Elissa D.; Okuno, Hiroyuki; Taibi, Andrew V.; Bear, Mark F.
2017-01-01
The molecular basis for the decline in experience-dependent neural plasticity over age remains poorly understood. In visual cortex, the robust plasticity induced in juvenile mice by brief monocular deprivation during the critical period is abrogated by genetic deletion of Arc, an activity-dependent regulator of excitatory synaptic modification. Here, we report that augmenting Arc expression in adult mice prolongs juvenile-like plasticity in visual cortex, as assessed by recordings of ocular dominance (OD) plasticity in vivo. A distinguishing characteristic of juvenile OD plasticity is the weakening of deprived-eye responses, believed to be accounted for by the mechanisms of homosynaptic long-term depression (LTD). Accordingly, we also found increased LTD in visual cortex of adult mice with augmented Arc expression and impaired LTD in visual cortex of juvenile mice that lack Arc or have been treated in vivo with a protein synthesis inhibitor. Further, we found that although activity-dependent expression of Arc mRNA does not change with age, expression of Arc protein is maximal during the critical period and declines in adulthood. Finally, we show that acute augmentation of Arc expression in wild-type adult mouse visual cortex is sufficient to restore juvenile-like plasticity. Together, our findings suggest a unifying molecular explanation for the age- and activity-dependent modulation of synaptic sensitivity to deprivation. PMID:28790183
Minimally invasive trans-portal resection of deep intracranial lesions.
Raza, S M; Recinos, P F; Avendano, J; Adams, H; Jallo, G I; Quinones-Hinojosa, A
2011-02-01
The surgical management of deep intra-axial lesions still requires microsurgical approaches that utilize retraction of deep white matter to obtain adequate visualization. We report our experience with a new tubular retractor system, designed specifically for intracranial applications, linked with frameless neuronavigation for a cohort of intraventricular and deep intra-axial tumors. The ViewSite Brain Access System (Vycor, Inc) was used in a series of 9 adult and pediatric patients with a variety of pathologies. Histological diagnoses either resected or biopsied with the system included: colloid cyst, DNET, papillary pineal tumor, anaplastic astrocytoma, toxoplasmosis and lymphoma. The locations of the lesions approached include: lateral ventricle, basal ganglia, pulvinar/posterior thalamus and insular cortex. Post-operative imaging was assessed to determine extent of resection and extent of white matter damage along the surgical trajectory (based on T (2)/FLAIR and diffusion restriction/ADC signal). Satisfactory resection or biopsy was obtained in all patients. Radiographic analysis demonstrated evidence of white matter damage along the surgical trajectory in one patient. None of the patients experienced neurological deficits as a result of white matter retraction/manipulation. Based on a retrospective review of our experience, we feel that this access system, when used in conjunction with frameless neuronavigational systems, provides adequate visualization for tumor resection while permitting the use of standard microsurgical techniques through minimally invasive craniotomies. Our initial data indicate that this system may minimize white matter injury, but further studies are necessary. © Georg Thieme Verlag KG Stuttgart · New York.
Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY
2018-01-01
A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853
Unravelling the development of the visual cortex: implications for plasticity and repair
Bourne, James A
2010-01-01
The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain. PMID:20722872
Mori, Kentaro; Iwata, Junko; Miyazaki, Masahiro; Nakao, Yasuaki; Maeda, Minoru
2005-07-01
The effect of transplantation of adult bone marrow stromal cells (MSCs) into the freeze-lesioned left barrel field cortex in the rat was investigated by measurement of local cerebral glucose utilization (lCMR(glc)) in the anatomic structures of the whisker-to-barrel cortex sensory pathway. Bone marrow stromal cells or phosphate-buffered saline (PBS) were injected intracerebrally into the boundary zone 1 h after induction of the freezing cortical lesion. Three weeks after surgery, the 2-[(14)C]deoxyglucose method was used to measure lCMR(glc) during right whisker stimulation. The volume of the primary necrotic freezing lesion was significantly reduced (P<0.05), and secondary retrograde degeneration in the left ventral posteromedial (VPM) thalamic nucleus was diminished in the MSC-treated group. Local cerebral glucose utilization measurements showed that the freezing cortical lesion did not alter the metabolic responses to stimulation in the brain stem trigeminal nuclei, but eliminated the responses in the left VPM nucleus and periphery of the barrel cortex in the PBS-treated group. The left/right (stimulated/unstimulated) lCMR(glc) ratios were significantly improved in both the VPM nucleus and periphery of the barrel cortex in the MSC-treated group compared with the PBS-treated group (P<0.05). These results indicate that MSC transplantation in adults may stimulate metabolic and functional recovery in injured neuronal pathways.
Impaired "affective theory of mind" is associated with right ventromedial prefrontal damage.
Shamay-Tsoory, S G; Tomer, R; Berger, B D; Goldsher, D; Aharon-Peretz, J
2005-03-01
To examine the hypothesis that patients with ventromedial (VM) frontal lesions are impaired in the affective rather than cognitive facets of theory of mind (ToM). Prefrontal brain damage may result in impaired social behavior, especially when the damage involves the orbitofrontal/VM prefrontal cortex (PFC). It has been previously suggested that deficits in ToM may account for such aberrant behavior. However, inconsistent results have been reported, and different regions within the frontal cortex have been associated with ToM impairment. The performance of 26 patients with localized lesions in the PFC was compared with responses of 13 patients with posterior lesions and 13 normal control subjects. Three ToM tasks differing in the level of emotional processing involved were used: second-order false belief task, understanding ironic utterances, and identifying social faux pas. The results indicated that patients with VM (but not dorsolateral) prefrontal lesions were significantly impaired in irony and faux pas but not in second-order false belief as compared with patients with posterior lesions and normal control subjects. Lesions in the right VM area were associated with the most severe ToM deficit. These results are discussed in terms of the cognitive and affective facets of "mind-reading" processes mediated by the VM cortex.
Prakash, Neal; Uhleman, Falk; Sheth, Sameer A.; Bookheimer, Susan; Martin, Neil; Toga, Arthur W.
2009-01-01
Resection of a cerebral arteriovenous malformation (AVM), epileptic focus, or glioma, ideally has a prerequisite of microscopic delineation of the lesion borders in relation to the normal gray and white matter that mediate critical functions. Currently, Wada testing and functional magnetic resonance imaging (fMRI) are used for preoperative mapping of critical function, whereas electrical stimulation mapping (ESM) is used for intraoperative mapping. For lesion delineation, MRI and positron emission tomography (PET) are used preoperatively, whereas microscopy and histological sectioning are used intraoperatively. However, for lesions near eloquent cortex, these imaging techniques may lack sufficient resolution to define the relationship between the lesion and language function, and thus not accurately determine which patients will benefit from neurosurgical resection of the lesion without iatrogenic aphasia. Optical techniques such as intraoperative optical imaging of intrinsic signals (iOIS) show great promise for the precise functional mapping of cortices, as well as delineation of the borders of AVMs, epileptic foci, and gliomas. Here we first review the physiology of neuroimaging, and then progress towards the validation and justification of using intraoperative optical techniques, especially in relation to neurosurgical planning of resection AVMs, epileptic foci, and gliomas near or in eloquent cortex. We conclude with a short description of potential novel intraoperative optical techniques. PMID:18786643
Moussa, Malaak Nasser; Wesley, Michael J; Porrino, Linda J; Hayasaka, Satoru; Bechara, Antoine; Burdette, Jonathan H; Laurienti, Paul J
2014-04-01
Human decision making is dependent on not only the function of several brain regions but also their synergistic interaction. The specific function of brain areas within the ventromedial prefrontal cortex has long been studied in an effort to understand choice evaluation and decision making. These data specifically focus on whole-brain functional interconnectivity using the principles of network science. The Iowa Gambling Task (IGT) was the first neuropsychological task used to model real-life decisions in a way that factors reward, punishment, and uncertainty. Clinically, it has been used to detect decision-making impairments characteristic of patients with prefrontal cortex lesions. Here, we used performance on repeated blocks of the IGT as a behavioral measure of advantageous and disadvantageous decision making in young and mature adults. Both adult groups performed poorly by predominately making disadvantageous selections in the beginning stages of the task. In later phases of the task, young adults shifted to more advantageous selections and outperformed mature adults. Modularity analysis revealed stark underlying differences in visual, sensorimotor and medial prefrontal cortex community structure. In addition, changes in orbitofrontal cortex connectivity predicted behavioral deficits in IGT performance. Contrasts were driven by a difference in age but may also prove relevant to neuropsychiatric disorders associated with poor decision making, including the vulnerability to alcohol and/or drug addiction.
Experience-enabled enhancement of adult visual cortex function.
Tschetter, Wayne W; Alam, Nazia M; Yee, Christopher W; Gorz, Mario; Douglas, Robert M; Sagdullaev, Botir; Prusky, Glen T
2013-03-20
We previously reported in adult mice that visuomotor experience during monocular deprivation (MD) augmented enhancement of visual-cortex-dependent behavior through the non-deprived eye (NDE) during deprivation, and enabled enhanced function to persist after MD. We investigated the physiological substrates of this experience-enabled form of adult cortical plasticity by measuring visual behavior and visually evoked potentials (VEPs) in binocular visual cortex of the same mice before, during, and after MD. MD on its own potentiated VEPs contralateral to the NDE during MD and shifted ocular dominance (OD) in favor of the NDE in both hemispheres. Whereas we expected visuomotor experience during MD to augment these effects, instead enhanced responses contralateral to the NDE, and the OD shift ipsilateral to the NDE were attenuated. However, in the same animals, we measured NMDA receptor-dependent VEP potentiation ipsilateral to the NDE during MD, which persisted after MD. The results indicate that visuomotor experience during adult MD leads to enduring enhancement of behavioral function, not simply by amplifying MD-induced changes in cortical OD, but through an independent process of increasing NDE drive in ipsilateral visual cortex. Because the plasticity is resident in the mature visual cortex and selectively effects gain of visual behavior through experiential means, it may have the therapeutic potential to target and non-invasively treat eye- or visual-field-specific cortical impairment.
Cholinergic enhancement of visual attention and neural oscillations in the human brain.
Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon
2012-03-06
Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.
Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices
Mansouri, Farshad A.; Buckley, Mark J.; Mahboubi, Majid; Tanaka, Keiji
2015-01-01
Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys’ ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals’ abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals. PMID:26150522
Testing the dual-pathway model for auditory processing in human cortex.
Zündorf, Ida C; Lewald, Jörg; Karnath, Hans-Otto
2016-01-01
Analogous to the visual system, auditory information has been proposed to be processed in two largely segregated streams: an anteroventral ("what") pathway mainly subserving sound identification and a posterodorsal ("where") stream mainly subserving sound localization. Despite the popularity of this assumption, the degree of separation of spatial and non-spatial auditory information processing in cortex is still under discussion. In the present study, a statistical approach was implemented to investigate potential behavioral dissociations for spatial and non-spatial auditory processing in stroke patients, and voxel-wise lesion analyses were used to uncover their neural correlates. The results generally provided support for anatomically and functionally segregated auditory networks. However, some degree of anatomo-functional overlap between "what" and "where" aspects of processing was found in the superior pars opercularis of right inferior frontal gyrus (Brodmann area 44), suggesting the potential existence of a shared target area of both auditory streams in this region. Moreover, beyond the typically defined posterodorsal stream (i.e., posterior superior temporal gyrus, inferior parietal lobule, and superior frontal sulcus), occipital lesions were found to be associated with sound localization deficits. These results, indicating anatomically and functionally complex cortical networks for spatial and non-spatial auditory processing, are roughly consistent with the dual-pathway model of auditory processing in its original form, but argue for the need to refine and extend this widely accepted hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.
The Essential Role of Primate Orbitofrontal Cortex in Conflict-Induced Executive Control Adjustment
Buckley, Mark J.; Tanaka, Keiji
2014-01-01
Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions. PMID:25122901
Weiss, Alison R; Nadji, Ryhan; Bachevalier, Jocelyne
2015-01-01
The lateral prefrontal cortex is known for its contribution to working memory (WM) processes in both humans and animals. Yet, recent studies indicate that the prefrontal cortex is part of a broader network of interconnected brain areas involved in WM. Within the medial temporal lobe (MTL) structures, the perirhinal cortex, which has extensive direct interactions with the lateral and orbital prefrontal cortex, is required to form active/flexible representations of familiar objects. However, its participation in WM processes has not be fully explored. The goal of this study was to assess the effects of neonatal perirhinal lesions on maintenance and monitoring WM processes. As adults, animals with neonatal perirhinal lesions and their matched controls were tested in three object-based (non-spatial) WM tasks that tapped different WM processing domains, e.g., maintenance only (Session-unique Delayed-nonmatching-to Sample, SU-DNMS), and maintenance and monitoring (Object-Self-Order, OBJ-SO; Serial Order Memory Task, SOMT). Neonatal perirhinal lesions transiently impaired the acquisition of SU-DNMS at a short (5 s) delay, but not when re-tested with a longer delay (30 s). The same neonatal lesions severely impacted acquisition of OBJ-SO task, and the impairment was characterized by a sharp increase in perseverative errors. By contrast, neonatal perirhinal lesion spared the ability to monitor the temporal order of items in WM as measured by the SOMT. Contrary to the SU-DNMS and OBJ-SO, which re-use the same stimuli across trials and thus produce proactive interference, the SOMT uses novel objects on each trial and is devoid of interference. Therefore, the impairment of monkeys with neonatal perirhinal lesions on SU-DNMS and OBJ-SO tasks is likely to be caused by an inability to solve working memory tasks with high proactive interference. The sparing of performance on the SOMT demonstrates that neonatal perirhinal lesions do not alter working memory processes per se but rather impact processes modulating impulse control and/or behavioral flexibility.
The onset of visual experience gates auditory cortex critical periods
Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.
2016-01-01
Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281
ERIC Educational Resources Information Center
Cattaneo, Zaira; Mattavelli, Giulia; Papagno, Costanza; Herbert, Andrew; Silvanto, Juha
2011-01-01
The human visual system is able to efficiently extract symmetry information from the visual environment. Prior neuroimaging evidence has revealed symmetry-preferring neuronal representations in the dorsolateral extrastriate visual cortex; the objective of the present study was to investigate the necessity of these representations in symmetry…
Cristofori, Irene; Viola, Vanda; Chau, Aileen; Zhong, Wanting; Krueger, Frank; Zamboni, Giovanna; Grafman, Jordan
2015-01-01
Given the determinant role of ventromedial prefrontal cortex (vmPFC) in valuation, we examined whether vmPFC lesions also modulate how people scale political beliefs. Patients with penetrating traumatic brain injury (pTBI; N = 102) and healthy controls (HCs; N = 31) were tested on the political belief task, where they rated 75 statements expressing political opinions concerned with welfare, economy, political involvement, civil rights, war and security. Each statement was rated for level of agreement and scaled along three dimensions: radicalism, individualism and conservatism. Voxel-based lesion-symptom mapping (VLSM) analysis showed that diminished scores for the radicalism dimension (i.e. statements were rated as less radical than the norms) were associated with lesions in bilateral vmPFC. After dividing the pTBI patients into three groups, according to lesion location (i.e. vmPFC, dorsolateral prefrontal cortex [dlPFC] and parietal cortex), we found that the vmPFC, but not the dlPFC, group had reduced radicalism scores compared with parietal and HC groups. These findings highlight the crucial role of the vmPFC in appropriately valuing political behaviors and may explain certain inappropriate social judgments observed in patients with vmPFC lesions. PMID:25656509
Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex
Imhof, Fabia; Martini, Francisco J.; Hofer, Sonja B.
2017-01-01
Sensory perception depends on the context within which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher-order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context – yet the nature of the signals conveyed to cortex by higher-order thalamus remains poorly understood. Here we use axonal calcium imaging to measure information provided to visual cortex by the pulvinar equivalent in mice, the lateral posterior nucleus (LP), as well as the dorsolateral geniculate nucleus (dLGN). We found that dLGN conveys retinotopically precise visual signals, while LP provides distributed information from the visual scene. Both LP and dLGN projections carry locomotion signals. However, while dLGN inputs often respond to positive combinations of running and visual flow speed, LP signals discrepancies between self-generated and external visual motion. This higher-order thalamic nucleus therefore conveys diverse contextual signals that inform visual cortex about visual scene changes not predicted by the animal’s own actions. PMID:26691828
Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats.
Viaro, Riccardo; Morari, Michele; Franchi, Gianfranco
2011-03-23
Many studies have attempted to correlate changes of motor cortex activity with progression of Parkinson's disease, although results have been controversial. In the present study we used intracortical microstimulation (ICMS) combined with behavioral testing in 6-hydroxydopamine hemilesioned rats to evaluate the impact of dopamine depletion on movement representations in primary motor cortex (M1) and motor behavior. ICMS allows for motor-effective stimulation of corticofugal neurons in motor areas so as to obtain topographic movements representations based on movement type, area size, and threshold currents. Rats received unilateral 6-hydroxydopamine in the nigrostriatal bundle, causing motor impairment. Changes in M1 were time dependent and bilateral, although stronger in the lesioned than the intact hemisphere. Representation size and threshold current were maximally impaired at 15 d, although inhibition was still detectable at 60-120 d after lesion. Proximal forelimb movements emerged at the expense of the distal ones. Movement lateralization was lost mainly at 30 d after lesion. Systemic L-3,4-dihydroxyphenylalanine partially attenuated motor impairment and cortical changes, particularly in the caudal forelimb area, and completely rescued distal forelimb movements. Local application of the GABA(A) antagonist bicuculline partially restored cortical changes, particularly in the rostral forelimb area. The local anesthetic lidocaine injected into the M1 of the intact hemisphere restored movement lateralization in the lesioned hemisphere. This study provides evidence for motor cortex remodeling after unilateral dopamine denervation, suggesting that cortical changes were associated with dopamine denervation, pathogenic intracortical GABA inhibition, and altered interhemispheric activity.
Discrimination of brief speech sounds is impaired in rats with auditory cortex lesions
Porter, Benjamin A.; Rosenthal, Tara R.; Ranasinghe, Kamalini G.; Kilgard, Michael P.
2011-01-01
Auditory cortex (AC) lesions impair complex sound discrimination. However, a recent study demonstrated spared performance on an acoustic startle response test of speech discrimination following AC lesions (Floody et al., 2010). The current study reports the effects of AC lesions on two operant speech discrimination tasks. AC lesions caused a modest and quickly recovered impairment in the ability of rats to discriminate consonant-vowel-consonant speech sounds. This result seems to suggest that AC does not play a role in speech discrimination. However, the speech sounds used in both studies differed in many acoustic dimensions and an adaptive change in discrimination strategy could allow the rats to use an acoustic difference that does not require an intact AC to discriminate. Based on our earlier observation that the first 40 ms of the spatiotemporal activity patterns elicited by speech sounds best correlate with behavioral discriminations of these sounds (Engineer et al., 2008), we predicted that eliminating additional cues by truncating speech sounds to the first 40 ms would render the stimuli indistinguishable to a rat with AC lesions. Although the initial discrimination of truncated sounds took longer to learn, the final performance paralleled rats using full-length consonant-vowel-consonant sounds. After 20 days of testing, half of the rats using speech onsets received bilateral AC lesions. Lesions severely impaired speech onset discrimination for at least one-month post lesion. These results support the hypothesis that auditory cortex is required to accurately discriminate the subtle differences between similar consonant and vowel sounds. PMID:21167211
Jackson, Stacey A. W.; Horst, Nicole K.; Pears, Andrew; Robbins, Trevor W.; Roberts, Angela C.
2016-01-01
Two learning mechanisms contribute to decision-making: goal-directed actions and the “habit” system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. PMID:27130662
2012-01-01
Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306
Lee, Wei-Chung Allen; Nedivi, Elly
2011-01-01
cpg15 is an activity-regulated gene that encodes a membrane-bound ligand that coordinately regulates growth of apposing dendritic and axonal arbors and the maturation of their synapses. These properties make it an attractive candidate for participating in plasticity of the mammalian visual system. Here we compare cpg15 expression during normal development of the rat visual system with that seen in response to dark rearing, monocular blockade of retinal action potentials, or monocular deprivation. Our results show that the onset of cpg15 expression in the visual cortex is coincident with eye opening, and it increases until the peak of the critical period at postnatal day 28 (P28). This early expression is independent of both retinal activity and visual experience. After P28, a component of cpg15 expression in the visual cortex, lateral geniculate nucleus (LGN), and superior colliculus (SC) develops a progressively stronger dependence on retinally driven action potentials. Dark rearing does not affect cpg15 mRNA expression in the LGN and SC at any age, but it does significantly affect its expression in the visual cortex from the peak of the critical period and into adulthood. In dark-reared rats, the peak level of cpg15 expression in the visual cortex at P28 is lower than in controls. Rather than showing the normal decline with maturation, these levels are maintained in dark-reared animals. We suggest that the prolonged plasticity in the visual cortex that is seen in dark-reared animals may result from failure to downregulate genes such as cpg15 that could promote structural remodeling and synaptic maturation. PMID:11880509
Ratner, Kyle G; Kaul, Christian; Van Bavel, Jay J
2013-10-01
Several theories suggest that people do not represent race when it does not signify group boundaries. However, race is often associated with visually salient differences in skin tone and facial features. In this study, we investigated whether race could be decoded from distributed patterns of neural activity in the fusiform gyri and early visual cortex when visual features that often covary with race were orthogonal to group membership. To this end, we used multivariate pattern analysis to examine an fMRI dataset that was collected while participants assigned to mixed-race groups categorized own-race and other-race faces as belonging to their newly assigned group. Whereas conventional univariate analyses provided no evidence of race-based responses in the fusiform gyri or early visual cortex, multivariate pattern analysis suggested that race was represented within these regions. Moreover, race was represented in the fusiform gyri to a greater extent than early visual cortex, suggesting that the fusiform gyri results do not merely reflect low-level perceptual information (e.g. color, contrast) from early visual cortex. These findings indicate that patterns of activation within specific regions of the visual cortex may represent race even when overall activation in these regions is not driven by racial information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosier, A.M.; Vandesande, F.; Orban, G.A.
1991-03-08
The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites,more » while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.« less
Giraud, Anne Lise; Truy, Eric
2002-01-01
Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.
Bakken, Trygve E; Roddey, J Cooper; Djurovic, Srdjan; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Jernigan, Terry L; Kaufmann, Walter E; Kenet, Tal; Kennedy, David N; Kuperman, Joshua M; Murray, Sarah S; Sowell, Elizabeth R; Rimol, Lars M; Mattingsdal, Morten; Melle, Ingrid; Agartz, Ingrid; Andreassen, Ole A; Schork, Nicholas J; Dale, Anders M; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R; Jagust, William; Trojanowki, John Q; Toga, Arthur W; Beckett, Laurel; Green, Robert C; Saykin, Andrew J; Morris, John; Liu, Enchi; Montine, Tom; Gamst, Anthony; Thomas, Ronald G; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Harvey, Danielle; Kornak, John; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Bandy, Dan; Koeppe, Robert A; Foster, Norm; Reiman, Eric M; Chen, Kewei; Mathis, Chet; Cairns, Nigel J; Taylor-Reinwald, Lisa; Trojanowki, J Q; Shaw, Les; Lee, Virginia M Y; Korecka, Magdalena; Crawford, Karen; Neu, Scott; Foroud, Tatiana M; Potkin, Steven; Shen, Li; Kachaturian, Zaven; Frank, Richard; Snyder, Peter J; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S; Pawluczyk, Sonia; Spann, Bryan M; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L; Lord, Joanne L; Johnson, Kris; Doody, Rachelle S; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S; Bell, Karen L; Morris, John C; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P Murali; Petrella, Jeffrey R; Coleman, R Edward; Arnold, Steven E; Karlawish, Jason H; Wolk, David; Smith, Charles D; Jicha, Greg; Hardy, Peter; Lopez, Oscar L; Oakley, MaryAnn; Simpson, Donna M; Porsteinsson, Anton P; Goldstein, Bonnie S; Martin, Kim; Makino, Kelly M; Ismail, M Saleem; Brand, Connie; Mulnard, Ruth A; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I; Lah, James J; Cellar, Janet S; Burns, Jeffrey M; Anderson, Heather S; Swerdlow, Russell H; Apostolova, Liana; Lu, Po H; Bartzokis, George; Silverman, Daniel H S; Graff-Radford, Neill R; Parfitt, Francine; Johnson, Heather; Farlow, Martin R; Hake, Ann Marie; Matthews, Brandy R; Herring, Scott; van Dyck, Christopher H; Carson, Richard E; MacAvoy, Martha G; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Ging-Yuek; Hsiung, Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A; Johnson, Keith A; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O; Wolday, Saba; Bwayo, Salome K; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; Kittur, Smita; Borrie, Michael; Lee, T-Y; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M; Potkin, Steven G; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W; Kataki, Maria; Zimmerman, Earl A; Celmins, Dzintra; Brown, Alice D; Pearlson, Godfrey D; Blank, Karen; Anderson, Karen; Santulli, Robert B; Schwartz, Eben S; Sink, Kaycee M; Williamson, Jeff D; Garg, Pradeep; Watkins, Franklin; Ott, Brian R; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J; Miller, Bruce L; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabether; Rachinsky, Irina; Drost, Dick; Jernigan, Terry; McCabe, Connor; Grant, Ellen; Ernst, Thomas; Kuperman, Josh; Chung, Yoon; Murray, Sarah; Bloss, Cinnamon; Darst, Burcu; Pritchett, Lexi; Saito, Ashley; Amaral, David; DiNino, Mishaela; Eyngorina, Bella; Sowell, Elizabeth; Houston, Suzanne; Soderberg, Lindsay; Kaufmann, Walter; van Zijl, Peter; Rizzo-Busack, Hilda; Javid, Mohsin; Mehta, Natasha; Ruberry, Erika; Powers, Alisa; Rosen, Bruce; Gebhard, Nitzah; Manigan, Holly; Frazier, Jean; Kennedy, David; Yakutis, Lauren; Hill, Michael; Gruen, Jeffrey; Bosson-Heenan, Joan; Carlson, Heatherly
2012-03-06
Visual cortical surface area varies two- to threefold between human individuals, is highly heritable, and has been correlated with visual acuity and visual perception. However, it is still largely unknown what specific genetic and environmental factors contribute to normal variation in the area of visual cortex. To identify SNPs associated with the proportional surface area of visual cortex, we performed a genome-wide association study followed by replication in two independent cohorts. We identified one SNP (rs6116869) that replicated in both cohorts and had genome-wide significant association (P(combined) = 3.2 × 10(-8)). Furthermore, a metaanalysis of imputed SNPs in this genomic region identified a more significantly associated SNP (rs238295; P = 6.5 × 10(-9)) that was in strong linkage disequilibrium with rs6116869. These SNPs are located within 4 kb of the 5' UTR of GPCPD1, glycerophosphocholine phosphodiesterase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is more highly expressed in occipital cortex compared with the remainder of cortex than 99.9% of genes genome-wide. Based on these findings, we conclude that this common genetic variation contributes to the proportional area of human visual cortex. We suggest that identifying genes that contribute to normal cortical architecture provides a first step to understanding genetic mechanisms that underlie visual perception.
Wiyor, Hanniebey D.; Ntuen, Celestine A.
2013-01-01
The purpose of this study was to investigate the effect of stereoscopic display alignment errors on visual fatigue and prefrontal cortical tissue hemodynamic responses. We collected hemodynamic data and perceptual ratings of visual fatigue while participants performed visual display tasks on 8 ft × 6 ft NEC LT silver screen with NEC LT 245 DLP projectors. There was statistical significant difference between subjective measures of visual fatigue before air traffic control task (BATC) and after air traffic control task (ATC 3), (P < 0.05). Statistical significance was observed between left dorsolateral prefrontal cortex oxygenated hemoglobin (l DLPFC-HbO2), left dorsolateral prefrontal cortex deoxygenated hemoglobin (l DLPFC-Hbb), and right dorsolateral prefrontal cortex deoxygenated hemoglobin (r DLPFC-Hbb) on stereoscopic alignment errors (P < 0.05). Thus, cortical tissue oxygenation requirement in the left hemisphere indicates that the effect of visual fatigue is more pronounced in the left dorsolateral prefrontal cortex. PMID:27006917
The neurobiological basis of seeing words
Wandell, Brian A.
2011-01-01
This review summarizes recent ideas about the cortical circuits for seeing words, an important part of the brain system for reading. Historically, the link between the visual cortex and reading has been contentious. One influential position is that the visual cortex plays a minimal role, limited to identifying contours, and that information about these contours is delivered to cortical regions specialized for reading and language. An alternative position is that specializations for seeing words develop within the visual cortex itself. Modern neuroimaging measurements—including both functional magnetic resonance imaging (fMRI) and diffusion weighted imaging with tractography data—support the position that circuitry for seeing the statistical regularities of word forms develops within the ventral occipitotemporal cortex, which also contains important circuitry for seeing faces, colors, and forms. The review explains new findings about the visual pathways, including visual field maps, as well as new findings about how we see words. The measurements from the two fields are in close cortical proximity, and there are good opportunities for coordinating theoretical ideas about function in the ventral occipitotemporal cortex. PMID:21486296
The neurobiological basis of seeing words.
Wandell, Brian A
2011-04-01
This review summarizes recent ideas about the cortical circuits for seeing words, an important part of the brain system for reading. Historically, the link between the visual cortex and reading has been contentious. One influential position is that the visual cortex plays a minimal role, limited to identifying contours, and that information about these contours is delivered to cortical regions specialized for reading and language. An alternative position is that specializations for seeing words develop within the visual cortex itself. Modern neuroimaging measurements-including both functional magnetic resonance imaging (fMRI) and diffusion weighted imaging with tractography (DTI) data-support the position that circuitry for seeing the statistical regularities of word forms develops within the ventral occipitotemporal cortex, which also contains important circuitry for seeing faces, colors, and forms. This review explains new findings about the visual pathways, including visual field maps, as well as new findings about how we see words. The measurements from the two fields are in close cortical proximity, and there are good opportunities for coordinating theoretical ideas about function in the ventral occipitotemporal cortex. © 2011 New York Academy of Sciences.
Hou, Zhongyu; Zhang, Zhonghe; Meng, Haiwei; Lin, Xiangtao; Sun, Bo; Lei, Hao; Fang, Ke; Fang, Fang; Liu, Maili; Liu, Shuwei
2014-02-01
This study aims to investigate metabolic changes in frontal and parietal cortices in the 6-OHDA induced Parkinson's rats. Ratios of N-acetyl-aspartic acid/creatine (NAA/Cr), choline/creatine (Cho/Cr), and glumatic acid and glutamine glutaminic acid/creatine (Glx/Cr) of regions of interests (ROIs) in the frontal and parietal cortices, and the substantia nigra were analyzed. NAA/Cr, Cho/Cr and Glx/Cr in the frontal and parietal cortices in the lesion side did not show any significant differences two weeks after operation compared with the contralateral side (p > 0.05). NAA/Cr in the frontal cortex in the lesion side was significantly lower in the five weeks after operation; Cho/Cr remained normal; Glx/Cr increased (p < 0.05), and all ratios of parietal cortex were normal. In the eight weeks after operation, NAA/Cr in the frontal cortex in the lesion side was lower than that of the five weeks (p < 0.01), Cho/Cr still remained normal while Glx/Cr was higher than before (p < 0.01). Regarding the parietal cortex, NAA/Cr increased significantly, while Cho/Cr and Glx/Cr remained normal. In the 12 weeks after operation, NAA/Cr, Cho/Cr and Glx/Cr in frontal cortex were consistent with that of the eight weeks, while they remained at the normal level in parietal cortex. The NAA/Cr in the substantia nigra decreased and Cho/Cr increased significantly during 2-8 weeks, and remained at the same level during 8-12 weeks. There are metabolic disturbances in PD rats. The transient hyperfunction in the parietal cortex can be considered as a compensation for the dysfunction of the frontal cortex and substantia nigra.
Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans
ERIC Educational Resources Information Center
Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.
2015-01-01
Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…
Multisensory connections of monkey auditory cerebral cortex
Smiley, John F.; Falchier, Arnaud
2009-01-01
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628
Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George
2013-01-01
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697
Braille alexia during visual hallucination in a blind man with selective calcarine atrophy.
Maeda, Kengo; Yasuda, Hitoshi; Haneda, Masakazu; Kashiwagi, Atsunori
2003-04-01
The case of a 56-year-old man who has been blind for 25 years due to retinal degeneration is herein described. The patient complained of elementary visual hallucination, during which it was difficult for him to read Braille. Brain magnetic resonance imaging showed marked atrophy of the bilateral striate cortex. Visual hallucination as a release phenomenon of the primary visual cortex has never been reported to cause alexia for Braille. The present case supports the results of recent functional imaging studies of the recruitment of striate and prestriate cortex for Braille reading.
Degraded attentional modulation of cortical neural populations in strabismic amblyopia
Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti
2016-01-01
Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI–informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye. PMID:26885628
Degraded attentional modulation of cortical neural populations in strabismic amblyopia.
Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti
2016-01-01
Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI-informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye.
Top-down influence on the visual cortex of the blind during sensory substitution
Murphy, Matthew C.; Nau, Amy C.; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S.; Chan, Kevin C.
2017-01-01
Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine. PMID:26584776
Coding the presence of visual objects in a recurrent neural network of visual cortex.
Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard
2007-01-01
Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.
Epileptogenic networks in nodular heterotopia: A stereoelectroencephalography study.
Pizzo, Francesca; Roehri, Nicolas; Catenoix, Hélène; Medina, Samuel; McGonigal, Aileen; Giusiano, Bernard; Carron, Romain; Scavarda, Didier; Ostrowsky, Karine; Lepine, Anne; Boulogne, Sébastien; Scholly, Julia; Hirsch, Edouard; Rheims, Sylvain; Bénar, Christian-George; Bartolomei, Fabrice
2017-12-01
Defining the roles of heterotopic and normotopic cortex in the epileptogenic networks in patients with nodular heterotopia is challenging. To elucidate this issue, we compared heterotopic and normotopic cortex using quantitative signal analysis on stereoelectroencephalography (SEEG) recordings. Clinically relevant biomarkers of epileptogenicity during ictal (epileptogenicity index; EI) and interictal recordings (high-frequency oscillation and spike) were evaluated in 19 patients undergoing SEEG. These biomarkers were then compared between heterotopic cortex and neocortical regions. Seizures were classified as normotopic, heterotopic, or normoheterotopic according to respective values of quantitative analysis (EI ≥0.3). A total of 1,246 contacts were analyzed: 259 in heterotopic tissue (heterotopic cortex), 873 in neocortex in the same lobe of the lesion (local neocortex), and 114 in neocortex distant from the lesion (distant neocortex). No significant difference in EI values, high-frequency oscillations, and spike rate was found comparing local neocortex and heterotopic cortex at a patient level, but local neocortex appears more epileptogenic (p < 0.001) than heterotopic cortex analyzing EI values at a seizure level. According to EI values, seizures were mostly normotopic (48.5%) or normoheterotopic (45.5%); only 6% were purely heterotopic. A good long-term treatment response was obtained in only two patients after thermocoagulation and surgical disconnection. This is the first quantitative SEEG study providing insight into the mechanisms generating seizures in nodular heterotopia. We demonstrate that both the heterotopic lesion and particularly the normotopic cortex are involved in the epileptogenic network. This could open new perspectives on multitarget treatments, other than resective surgery, aimed at modifying the epileptic network. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Three-dimensional visual feature representation in the primary visual cortex
Tanaka, Shigeru; Moon, Chan-Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi
2011-01-01
In the cat primary visual cortex, it is accepted that neurons optimally responding to similar stimulus orientations are clustered in a column extending from the superficial to deep layers. The cerebral cortex is, however, folded inside a skull, which makes gyri and fundi. The primary visual area of cats, area 17, is located on the fold of the cortex called the lateral gyrus. These facts raise the question of how to reconcile the tangential arrangement of the orientation columns with the curvature of the gyrus. In the present study, we show a possible configuration of feature representation in the visual cortex using a three-dimensional (3D) self-organization model. We took into account preferred orientation, preferred direction, ocular dominance and retinotopy, assuming isotropic interaction. We performed computer simulation only in the middle layer at the beginning and expanded the range of simulation gradually to other layers, which was found to be a unique method in the present model for obtaining orientation columns spanning all the layers in the flat cortex. Vertical columns of preferred orientations were found in the flat parts of the model cortex. On the other hand, in the curved parts, preferred orientations were represented in wedge-like columns rather than straight columns, and preferred directions were frequently reversed in the deeper layers. Singularities associated with orientation representation appeared as warped lines in the 3D model cortex. Direction reversal appeared on the sheets that were delimited by orientation-singularity lines. These structures emerged from the balance between periodic arrangements of preferred orientations and vertical alignment of same orientations. Our theoretical predictions about orientation representation were confirmed by multi-slice, high-resolution functional MRI in the cat visual cortex. We obtained a close agreement between theoretical predictions and experimental observations. The present study throws a doubt about the conventional columnar view of orientation representation, although more experimental data are needed. PMID:21724370
Three-dimensional visual feature representation in the primary visual cortex.
Tanaka, Shigeru; Moon, Chan-Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi
2011-12-01
In the cat primary visual cortex, it is accepted that neurons optimally responding to similar stimulus orientations are clustered in a column extending from the superficial to deep layers. The cerebral cortex is, however, folded inside a skull, which makes gyri and fundi. The primary visual area of cats, area 17, is located on the fold of the cortex called the lateral gyrus. These facts raise the question of how to reconcile the tangential arrangement of the orientation columns with the curvature of the gyrus. In the present study, we show a possible configuration of feature representation in the visual cortex using a three-dimensional (3D) self-organization model. We took into account preferred orientation, preferred direction, ocular dominance and retinotopy, assuming isotropic interaction. We performed computer simulation only in the middle layer at the beginning and expanded the range of simulation gradually to other layers, which was found to be a unique method in the present model for obtaining orientation columns spanning all the layers in the flat cortex. Vertical columns of preferred orientations were found in the flat parts of the model cortex. On the other hand, in the curved parts, preferred orientations were represented in wedge-like columns rather than straight columns, and preferred directions were frequently reversed in the deeper layers. Singularities associated with orientation representation appeared as warped lines in the 3D model cortex. Direction reversal appeared on the sheets that were delimited by orientation-singularity lines. These structures emerged from the balance between periodic arrangements of preferred orientations and vertical alignment of the same orientations. Our theoretical predictions about orientation representation were confirmed by multi-slice, high-resolution functional MRI in the cat visual cortex. We obtained a close agreement between theoretical predictions and experimental observations. The present study throws a doubt about the conventional columnar view of orientation representation, although more experimental data are needed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multiple Transient Signals in Human Visual Cortex Associated with an Elementary Decision
Nolte, Guido
2017-01-01
The cerebral cortex continuously undergoes changes in its state, which are manifested in transient modulations of the cortical power spectrum. Cortical state changes also occur at full wakefulness and during rapid cognitive acts, such as perceptual decisions. Previous studies found a global modulation of beta-band (12–30 Hz) activity in human and monkey visual cortex during an elementary visual decision: reporting the appearance or disappearance of salient visual targets surrounded by a distractor. The previous studies disentangled neither the motor action associated with behavioral report nor other secondary processes, such as arousal, from perceptual decision processing per se. Here, we used magnetoencephalography in humans to pinpoint the factors underlying the beta-band modulation. We found that disappearances of a salient target were associated with beta-band suppression, and target reappearances with beta-band enhancement. This was true for both overt behavioral reports (immediate button presses) and silent counting of the perceptual events. This finding indicates that the beta-band modulation was unrelated to the execution of the motor act associated with a behavioral report of the perceptual decision. Further, changes in pupil-linked arousal, fixational eye movements, or gamma-band responses were not necessary for the beta-band modulation. Together, our results suggest that the beta-band modulation was a top-down signal associated with the process of converting graded perceptual signals into a categorical format underlying flexible behavior. This signal may have been fed back from brain regions involved in decision processing to visual cortex, thus enforcing a “decision-consistent” cortical state. SIGNIFICANCE STATEMENT Elementary visual decisions are associated with a rapid state change in visual cortex, indexed by a modulation of neural activity in the beta-frequency range. Such decisions are also followed by other events that might affect the state of visual cortex, including the motor command associated with the report of the decision, an increase in pupil-linked arousal, fixational eye movements, and fluctuations in bottom-up sensory processing. Here, we ruled out the necessity of these events for the beta-band modulation of visual cortex. We propose that the modulation reflects a decision-related state change, which is induced by the conversion of graded perceptual signals into a categorical format underlying behavior. The resulting decision signal may be fed back to visual cortex. PMID:28495972
Brain plasticity in the adult: modulation of function in amblyopia with rTMS.
Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F
2008-07-22
Amblyopia is a cortically based visual disorder caused by disruption of vision during a critical early developmental period. It is often thought to be a largely intractable problem in adult patients because of a lack of neuronal plasticity after this critical period [1]; however, recent advances have suggested that plasticity is still present in the adult amblyopic visual cortex [2-6]. Here, we present data showing that repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in the amblyopic visual cortex. The results indicate continued plasticity of the amblyopic visual system in adulthood and open the way for a potential new therapeutic approach to the treatment of amblyopia.
Long-Lasting Crossmodal Cortical Reorganization Triggered by Brief Postnatal Visual Deprivation.
Collignon, Olivier; Dormal, Giulia; de Heering, Adelaide; Lepore, Franco; Lewis, Terri L; Maurer, Daphne
2015-09-21
Animal and human studies have demonstrated that transient visual deprivation early in life, even for a very short period, permanently alters the response properties of neurons in the visual cortex and leads to corresponding behavioral visual deficits. While it is acknowledged that early-onset and longstanding blindness leads the occipital cortex to respond to non-visual stimulation, it remains unknown whether a short and transient period of postnatal visual deprivation is sufficient to trigger crossmodal reorganization that persists after years of visual experience. In the present study, we characterized brain responses to auditory stimuli in 11 adults who had been deprived of all patterned vision at birth by congenital cataracts in both eyes until they were treated at 9 to 238 days of age. When compared to controls with typical visual experience, the cataract-reversal group showed enhanced auditory-driven activity in focal visual regions. A combination of dynamic causal modeling with Bayesian model selection indicated that this auditory-driven activity in the occipital cortex was better explained by direct cortico-cortical connections with the primary auditory cortex than by subcortical connections. Thus, a short and transient period of visual deprivation early in life leads to enduring large-scale crossmodal reorganization of the brain circuitry typically dedicated to vision. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lesions of the medial prefrontal cortex cause maladaptive sexual behavior in male rats.
Davis, Jon F; Loos, Maarten; Di Sebastiano, Andrea R; Brown, Jennifer L; Lehman, Michael N; Coolen, Lique M
2010-06-15
An inability to inhibit behaviors once they become maladaptive is a component of several psychiatric illnesses, and the medial prefrontal cortex (mPFC) was identified as a potential mediator of behavioral inhibition. The current study tested if the mPFC is involved in inhibition of sexual behavior when associated with aversive outcomes. Using male rats, effects of lesions of the infralimbic and prelimbic areas of the mPFC on expression of sexual behavior and ability to inhibit mating were tested using a paradigm of copulation-contingent aversion. Medial prefrontal cortex lesions did not alter expression of sexual behavior. In contrast, mPFC lesions completely blocked the acquisition of sex-aversion conditioning and lesioned animals continued to mate, in contrast to the robust behavioral inhibition toward copulation in mPFC intact male animals, resulting in only 22% of intact male animals continuing to mate. However, rats with mPFC lesions were capable of forming a conditioned place preference to sexual reward and conditioned place aversion for lithium chloride, suggesting that these lesions did not alter associative learning or sensitivity for lithium chloride. The current study indicates that animals with mPFC lesions are likely capable of forming the associations with aversive outcomes of their behavior but lack the ability to suppress seeking of sexual reward in the face of aversive consequences. These data may contribute to a better understanding of a common pathology underlying impulse control disorders, as compulsive sexual behavior has a high prevalence of comorbidity with psychiatric disorders and Parkinson's disease.
Functional connectivity of visual cortex in the blind follows retinotopic organization principles.
Striem-Amit, Ella; Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S; Villringer, Arno; Amedi, Amir
2015-06-01
Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Horie, Junichi; Suzuki, Keisuke; Nakamura, Toshiki; Okamura, Madoka; Iwasaki, Akio; Hirata, Koichi
2017-04-28
A 26-year-old, otherwise healthy man presented with visual abnormality followed by loss of consciousness and convulsion. The patient then developed headache and fever 14 days later. Brain MRI showed hyperintensities in the left cingulate cortex. The cerrebrospinal fluid examinations showed mononuclear pleocytosis and positive PCR results for human herpesvirus 6 (HHV-6). A diagnosis of HHV-6 encephalitis and symptomatic epilepsy was made. The patient's clinical symptoms improved promptly following acyclovir treatment. However, 3 months later the patient noticed dysesthesia in the trunk, the left upper limb and the right lower limb. Brain and spine MRI showed multiple brain white matter lesions, the middle cerebellar peduncle and cervical spinal lesions. The symptoms resolved following methylprednisolone pulse therapy only. We report an adult patient with HHV-6 encephalitis followed by acute disseminated encephalomyelitis whose initial presentation was epilepsy. HHV-6 encephalitis should be included in the differential diagnosis of encephalitis of unknown etiology in an immunocompetent adult.
miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity
Mellios, Nikolaos; Sugihara, Hiroki; Castro, Jorge; Banerjee, Abhishek; Le, Chuong; Kumar, Arooshi; Crawford, Benjamin; Strathmann, Julia; Tropea, Daniela; Levine, Stuart S.; Edbauer, Dieter; Sur, Mriganka
2011-01-01
Using multiple quantitative analyses, we discovered microRNAs (miRNAs) abundantly expressed in visual cortex that respond to dark-rearing (DR) and/or monocular deprivation (MD). The most significantly altered miRNA, miR-132, was rapidly upregulated after eye-opening and delayed by DR. In vivo inhibition of miR-132 prevented ocular dominance plasticity in identified neurons following MD, and affected maturation of dendritic spines, demonstrating its critical role in the plasticity of visual cortex circuits. PMID:21892155
Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei
2006-11-08
Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.
Lateral Entorhinal Cortex Lesions Impair Local Spatial Frameworks
Kuruvilla, Maneesh V.; Ainge, James A.
2017-01-01
A prominent theory in the neurobiology of memory processing is that episodic memory is supported by contextually gated spatial representations in the hippocampus formed by combining spatial information from medial entorhinal cortex (MEC) with non-spatial information from lateral entorhinal cortex (LEC). However, there is a growing body of evidence from lesion and single-unit recording studies in rodents suggesting that LEC might have a role in encoding space, particularly the current and previous locations of objects within the local environment. Landmarks, both local and global, have been shown to control the spatial representations hypothesized to underlie cognitive maps. Consequently, it has recently been suggested that information processing within this network might be organized with reference to spatial scale with LEC and MEC providing information about local and global spatial frameworks respectively. In the present study, we trained animals to search for food using either a local or global spatial framework. Animals were re-tested on both tasks after receiving excitotoxic lesions of either the MEC or LEC. LEC lesioned animals were impaired in their ability to learn a local spatial framework task. LEC lesioned animals were also impaired on an object recognition (OR) task involving multiple local features but unimpaired at recognizing a single familiar object. Together, this suggests that LEC is involved in associating features of the local environment. However, neither LEC nor MEC lesions impaired performance on the global spatial framework task. PMID:28567006
Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro
2014-05-01
Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.
"Visual" Cortex of Congenitally Blind Adults Responds to Syntactic Movement.
Lane, Connor; Kanjlia, Shipra; Omaki, Akira; Bedny, Marina
2015-09-16
Human cortex is comprised of specialized networks that support functions, such as visual motion perception and language processing. How do genes and experience contribute to this specialization? Studies of plasticity offer unique insights into this question. In congenitally blind individuals, "visual" cortex responds to auditory and tactile stimuli. Remarkably, recent evidence suggests that occipital areas participate in language processing. We asked whether in blindness, occipital cortices: (1) develop domain-specific responses to language and (2) respond to a highly specialized aspect of language-syntactic movement. Nineteen congenitally blind and 18 sighted participants took part in two fMRI experiments. We report that in congenitally blind individuals, but not in sighted controls, "visual" cortex is more active during sentence comprehension than during a sequence memory task with nonwords, or a symbolic math task. This suggests that areas of occipital cortex become selective for language, relative to other similar higher-cognitive tasks. Crucially, we find that these occipital areas respond more to sentences with syntactic movement but do not respond to the difficulty of math equations. We conclude that regions within the visual cortex of blind adults are involved in syntactic processing. Our findings suggest that the cognitive function of human cortical areas is largely determined by input during development. Human cortex is made up of specialized regions that perform different functions, such as visual motion perception and language processing. How do genes and experience contribute to this specialization? Studies of plasticity show that cortical areas can change function from one sensory modality to another. Here we demonstrate that input during development can alter cortical function even more dramatically. In blindness a subset of "visual" areas becomes specialized for language processing. Crucially, we find that the same "visual" areas respond to a highly specialized and uniquely human aspect of language-syntactic movement. These data suggest that human cortex has broad functional capacity during development, and input plays a major role in determining functional specialization. Copyright © 2015 the authors 0270-6474/15/3512859-10$15.00/0.
2011-01-01
Background In cat visual cortex, critical period neuronal plasticity is minimal until approximately 3 postnatal weeks, peaks at 5 weeks, gradually declines to low levels at 20 weeks, and disappears by 1 year of age. Dark rearing slows the entire time course of this critical period, such that at 5 weeks of age, normal cats are more plastic than dark reared cats, whereas at 20 weeks, dark reared cats are more plastic. Thus, a stringent criterion for identifying genes that are important for plasticity in visual cortex is that they show differences in expression between normal and dark reared that are of opposite direction in young versus older animals. Results The present study reports the identification by differential display PCR of a novel gene, α-chimaerin, as a candidate visual cortex critical period plasticity gene that showed bidirectional regulation of expression due to age and dark rearing. Northern blotting confirmed the bidirectional expression and 5'RACE sequencing identified the gene. There are two alternatively-spliced α-chimaerin isoforms: α1 and α2. Western blotting extended the evidence for bidirectional regulation of visual cortex α-chimaerin isoform expression to protein in cats and mice. α1- and α2-Chimaerin were elevated in dark reared compared to normal visual cortex at the peak of the normal critical period and in normal compared to dark reared visual cortex at the nadir of the normal critical period. Analysis of variance showed a significant interaction in both cats and mice for both α-chimaerin isoforms, indicating that the effect of dark rearing depended on age. This differential expression was not found in frontal cortex. Conclusions Chimaerins are RhoGTPase-activating proteins that are EphA4 effectors and have been implicated in a number of processes including growth cone collapse, axon guidance, dendritic spine development and the formation of corticospinal motor circuits. The present results identify α-chimaerin as a candidate molecule for a role in the postnatal critical period of visual cortical plasticity. PMID:21767388
Heredia, Margarita; Fuente, A; Criado, J; Yajeya, J; Devesa, J; Riolobos, A S
2013-06-15
A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. Under anesthesia, the motor cortex contralateral to the preferred forelimb was aspirated or sham-operated. Animals were then treated with GH (0.15 mg/kg/day, s.c) or vehicle during 5 days, commencing immediately or 6 days post-lesion. Rehabilitation was applied at short- and long-term after GH treatment. Behavioral data were analized by ANOVA following Bonferroni post hoc test. After sacrifice, immunohistochemical detection of glial fibrillary acid protein (GFAP) and nestin were undertaken in the brain of all groups. Animal group treated with GH immediately after the lesion, but not any other group, showed a significant improvement of the motor impairment induced by the motor lesion, and their performances in the motor test were no different from sham-operated controls. GFAP immunolabeling and nestin immunoreactivity were observed in the perilesional area in all injured animals; nestin immunoreactivity was higher in GH-treated injured rats (mainly in animals GH-treated 6 days post-lesion). GFAP immunoreactivity was similar among injured rats. Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area). Copyright © 2013 Elsevier B.V. All rights reserved.
A proposed intracortical visual prosthesis image processing system.
Srivastava, N R; Troyk, P
2005-01-01
It has been a goal of neuroprosthesis researchers to develop a system, which could provide artifical vision to a large population of individuals with blindness. It has been demonstrated by earlier researches that stimulating the visual cortex area electrically can evoke spatial visual percepts, i.e. phosphenes. The goal of visual cortex prosthesis is to stimulate the visual cortex area and generate a visual perception in real time to restore vision. Even though the normal working of the visual system is not been completely understood, the existing knowledge has inspired research groups to develop strategies to develop visual cortex prosthesis which can help blind patients in their daily activities. A major limitation in this work is the development of an image proceessing system for converting an electronic image, as captured by a camera, into a real-time data stream for stimulation of the implanted electrodes. This paper proposes a system, which will capture the image using a camera and use a dedicated hardware real time image processor to deliver electrical pulses to intracortical electrodes. This system has to be flexible enough to adapt to individual patients and to various strategies of image reconstruction. Here we consider a preliminary architecture for this system.
Regions of mid-level human visual cortex sensitive to the global coherence of local image patches.
Mannion, Damien J; Kersten, Daniel J; Olman, Cheryl A
2014-08-01
The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.
Bressler, David W.; Silver, Michael A.
2010-01-01
Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1 and IPS2) cortical areas. Additionally, one 5-minute run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy. PMID:20600961
Qin, Pengmin; Duncan, Niall W; Wiebking, Christine; Gravel, Paul; Lyttelton, Oliver; Hayes, Dave J; Verhaeghe, Jeroen; Kostikov, Alexey; Schirrmacher, Ralf; Reader, Andrew J; Northoff, Georg
2012-01-01
Recent imaging studies have demonstrated that levels of resting γ-aminobutyric acid (GABA) in the visual cortex predict the degree of stimulus-induced activity in the same region. These studies have used the presentation of discrete visual stimulus; the change from closed eyes to open also represents a simple visual stimulus, however, and has been shown to induce changes in local brain activity and in functional connectivity between regions. We thus aimed to investigate the role of the GABA system, specifically GABA(A) receptors, in the changes in brain activity between the eyes closed (EC) and eyes open (EO) state in order to provide detail at the receptor level to complement previous studies of GABA concentrations. We conducted an fMRI study involving two different modes of the change from EC to EO: an EO and EC block design, allowing the modeling of the haemodynamic response, followed by longer periods of EC and EO to allow the measuring of functional connectivity. The same subjects also underwent [(18)F]Flumazenil PET to measure GABA(A) receptor binding potentials. It was demonstrated that the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex predicted the degree of changes in neural activity from EC to EO. This same relationship was also shown in the auditory cortex. Furthermore, the local-to-global ratio of GABA(A) receptor binding potential in the visual cortex also predicted the change in functional connectivity between the visual and auditory cortex from EC to EO. These findings contribute to our understanding of the role of GABA(A) receptors in stimulus-induced neural activity in local regions and in inter-regional functional connectivity.
Spatial Working Memory Effects in Early Visual Cortex
ERIC Educational Resources Information Center
Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan
2010-01-01
The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…
Attentional Modulation in Visual Cortex Is Modified during Perceptual Learning
ERIC Educational Resources Information Center
Bartolucci, Marco; Smith, Andrew T.
2011-01-01
Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity…
Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex
Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik
2012-01-01
Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444
Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko
2010-03-10
The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.
Lesion network localization of criminal behavior
Darby, R. Ryan; Horn, Andreas; Fox, Michael D.
2018-01-01
Following brain lesions, previously normal patients sometimes exhibit criminal behavior. Although rare, these cases can lend unique insight into the neurobiological substrate of criminality. Here we present a systematic mapping of lesions with known temporal association to criminal behavior, identifying 17 lesion cases. The lesion sites were spatially heterogeneous, including the medial prefrontal cortex, orbitofrontal cortex, and different locations within the bilateral temporal lobes. No single brain region was damaged in all cases. Because lesion-induced symptoms can come from sites connected to the lesion location and not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has recently identified regions involved in symptom generation across a variety of lesion-induced disorders. All lesions were functionally connected to the same network of brain regions. This criminality-associated connectivity pattern was unique compared with lesions causing four other neuropsychiatric syndromes. This network includes regions involved in morality, value-based decision making, and theory of mind, but not regions involved in cognitive control or empathy. Finally, we replicated our results in a separate cohort of 23 cases in which a temporal relationship between brain lesions and criminal behavior was implied but not definitive. Our results suggest that lesions in criminals occur in different brain locations but localize to a unique resting state network, providing insight into the neurobiology of criminal behavior. PMID:29255017
Ji, Jinzhao; Maren, Stephen
2008-12-12
Recent studies have shown that the hippocampus is critical for the context-dependent expression of extinguished fear memories. Here we used Pavlovian fear conditioning in rats to explore whether the entorhinal cortex and fornix, which are the major cortical and subcortical interfaces of the hippocampus, are also involved in the context-dependence of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock (unconditional stimulus or US) in one context, rats received an extinction session in which the CS was presented without the US in another context. Conditional fear to the CS was then tested in either the extinction context or a third familiar context; freezing behavior served as the index of fear. Sham-operated rats exhibited little conditional freezing to the CS in the extinction context, but showed a robust renewal of fear when tested outside of the extinction context. In contrast, rats with neurotoxic lesions in the entorhinal cortex or electrolytic lesions in the fornix did not exhibit a renewal of fear when tested outside the extinction context. Impairments in freezing behavior to the auditory CS were not able to account for the observed results, insofar as rats with either entorhinal cortex or fornix lesions exhibited normal freezing behavior during the conditioning session. Thus, contextual memory retrieval requires not only the hippocampus proper, but also its cortical and subcortical interfaces.
Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review
Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa
2018-01-01
Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087
Villena-Gonzalez, Mario; Wang, Hao-Ting; Sormaz, Mladen; Mollo, Giovanna; Margulies, Daniel S; Jefferies, Elizabeth A; Smallwood, Jonathan
2018-02-01
It is well recognized that the default mode network (DMN) is involved in states of imagination, although the cognitive processes that this association reflects are not well understood. The DMN includes many regions that function as cortical "hubs", including the posterior cingulate/retrosplenial cortex, anterior temporal lobe and the hippocampus. This suggests that the role of the DMN in cognition may reflect a process of cortical integration. In the current study we tested whether functional connectivity from uni-modal regions of cortex into the DMN is linked to features of imaginative thought. We found that strong intrinsic communication between visual and retrosplenial cortex was correlated with the degree of social thoughts about the future. Using an independent dataset, we show that the same region of retrosplenial cortex is functionally coupled to regions of primary visual cortex as well as core regions that make up the DMN. Finally, we compared the functional connectivity of the retrosplenial cortex, with a region of medial prefrontal cortex implicated in the integration of information from regions of the temporal lobe associated with future thought in a prior study. This analysis shows that the retrosplenial cortex is preferentially coupled to medial occipital, temporal lobe regions and the angular gyrus, areas linked to episodic memory, scene construction and navigation. In contrast, the medial prefrontal cortex shows preferential connectivity with motor cortex and lateral temporal and prefrontal regions implicated in language, motor processes and working memory. Together these findings suggest that integrating neural information from visual cortex into retrosplenial cortex may be important for imagining the future and may do so by creating a mental scene in which prospective simulations play out. We speculate that the role of the DMN in imagination may emerge from its capacity to bind together distributed representations from across the cortex in a coherent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Visual Cortical Network for Deriving Phonological Information from Intelligible Lip Movements.
Hauswald, Anne; Lithari, Chrysa; Collignon, Olivier; Leonardelli, Elisa; Weisz, Nathan
2018-05-07
Successful lip-reading requires a mapping from visual to phonological information [1]. Recently, visual and motor cortices have been implicated in tracking lip movements (e.g., [2]). It remains unclear, however, whether visuo-phonological mapping occurs already at the level of the visual cortex-that is, whether this structure tracks the acoustic signal in a functionally relevant manner. To elucidate this, we investigated how the cortex tracks (i.e., entrains to) absent acoustic speech signals carried by silent lip movements. Crucially, we contrasted the entrainment to unheard forward (intelligible) and backward (unintelligible) acoustic speech. We observed that the visual cortex exhibited stronger entrainment to the unheard forward acoustic speech envelope compared to the unheard backward acoustic speech envelope. Supporting the notion of a visuo-phonological mapping process, this forward-backward difference of occipital entrainment was not present for actually observed lip movements. Importantly, the respective occipital region received more top-down input, especially from left premotor, primary motor, and somatosensory regions and, to a lesser extent, also from posterior temporal cortex. Strikingly, across participants, the extent of top-down modulation of the visual cortex stemming from these regions partially correlated with the strength of entrainment to absent acoustic forward speech envelope, but not to present forward lip movements. Our findings demonstrate that a distributed cortical network, including key dorsal stream auditory regions [3-5], influences how the visual cortex shows sensitivity to the intelligibility of speech while tracking silent lip movements. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Leon-Carrion, Jose; Martín-Rodríguez, Juan Francisco; Damas-López, Jesús; Pourrezai, Kambiz; Izzetoglu, Kurtulus; Barroso Y Martin, Juan Manuel; Dominguez-Morales, M Rosario
2007-04-06
A fundamental question in human sexuality regards the neural substrate underlying sexually-arousing representations. Lesion and neuroimaging studies suggest that dorsolateral pre-frontal cortex (DLPFC) plays an important role in regulating the processing of visual sexual stimulation. The aim of this Functional Near-Infrared Spectroscopy (fNIRS) study was to explore DLPFC structures involved in the processing of erotic and non-sexual films. fNIRS was used to image the evoked-cerebral blood oxygenation (CBO) response in 15 male and 15 female subjects. Our hypothesis is that a sexual stimulus would produce DLPFC activation during the period of direct stimulus perception ("on" period), and that this activation would continue after stimulus cessation ("off" period). A new paradigm was used to measure the relative oxygenated hemoglobin (oxyHb) concentrations in DLPFC while subjects viewed the two selected stimuli (Roman orgy and a non-sexual film clip), and also immediately following stimulus cessation. Viewing of the non-sexual stimulus produced no overshoot in DLPFC, whereas exposure to the erotic stimulus produced rapidly ascendant overshoot, which became even more pronounced following stimulus cessation. We also report on gender differences in the timing and intensity of DLPFC activation in response to a sexually explicit visual stimulus. We found evidence indicating that men experience greater and more rapid sexual arousal when exposed to erotic stimuli than do women. Our results point out that self-regulation of DLPFC activation is modulated by subjective arousal and that cognitive appraisal of the sexual stimulus (valence) plays a secondary role in this regulation.
Supèr, Hans; Spekreijse, Henk; Lamme, Victor A F
2003-06-26
To look at an object its position in the visual scene has to be localized and subsequently appropriate oculo-motor behavior needs to be initiated. This kind of behavior is largely controlled by the cortical executive system, such as the frontal eye field. In this report, we analyzed neural activity in the visual cortex in relation to oculo-motor behavior. We show that in a figure-ground detection task, the strength of late modulated activity in the primary visual cortex correlates with the saccade latency. We propose that this may indicate that the variability of reaction times in the detection of a visual stimulus is reflected in low-level visual areas as well as in high-level areas.
Visual short-term memory load reduces retinotopic cortex response to contrast.
Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli
2012-11-01
Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.
Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin
2017-10-15
Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.
Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R
2016-03-01
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.
The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex
Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.
2016-01-01
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604
Task alters category representations in prefrontal but not high-level visual cortex.
Bugatus, Lior; Weiner, Kevin S; Grill-Spector, Kalanit
2017-07-15
A central question in neuroscience is how cognitive tasks affect category representations across the human brain. Regions in lateral occipito-temporal cortex (LOTC), ventral temporal cortex (VTC), and ventro-lateral prefrontal cortex (VLFPC) constitute the extended "what" pathway, which is considered instrumental for visual category processing. However, it is unknown (1) whether distributed responses across LOTC, VTC, and VLPFC explicitly represent category, task, or some combination of both, and (2) in what way representations across these subdivisions of the extended 'what' pathway may differ. To fill these gaps in knowledge, we scanned 12 participants using fMRI to test the effect of category and task on distributed responses across LOTC, VTC, and VLPFC. Results reveal that task and category modulate responses in both high-level visual regions, as well as prefrontal cortex. However, we found fundamentally different types of representations across the brain. Distributed responses in high-level visual regions are more strongly driven by category than task, and exhibit task-independent category representations. In contrast, distributed responses in prefrontal cortex are more strongly driven by task than category, and contain task-dependent category representations. Together, these findings of differential representations across the brain support a new idea that LOTC and VTC maintain stable category representations allowing efficient processing of visual information, while prefrontal cortex contains flexible representations in which category information may emerge only when relevant to the task. Copyright © 2017 Elsevier Inc. All rights reserved.
Cristofori, Irene; Viola, Vanda; Chau, Aileen; Zhong, Wanting; Krueger, Frank; Zamboni, Giovanna; Grafman, Jordan
2015-08-01
Given the determinant role of ventromedial prefrontal cortex (vmPFC) in valuation, we examined whether vmPFC lesions also modulate how people scale political beliefs. Patients with penetrating traumatic brain injury (pTBI; N = 102) and healthy controls (HCs; N = 31) were tested on the political belief task, where they rated 75 statements expressing political opinions concerned with welfare, economy, political involvement, civil rights, war and security. Each statement was rated for level of agreement and scaled along three dimensions: radicalism, individualism and conservatism. Voxel-based lesion-symptom mapping (VLSM) analysis showed that diminished scores for the radicalism dimension (i.e. statements were rated as less radical than the norms) were associated with lesions in bilateral vmPFC. After dividing the pTBI patients into three groups, according to lesion location (i.e. vmPFC, dorsolateral prefrontal cortex [dlPFC] and parietal cortex), we found that the vmPFC, but not the dlPFC, group had reduced radicalism scores compared with parietal and HC groups. These findings highlight the crucial role of the vmPFC in appropriately valuing political behaviors and may explain certain inappropriate social judgments observed in patients with vmPFC lesions. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Lencer, Rebekka; Keedy, Sarah K.; Reilly, James L.; McDonough, Bruce E.; Harris, Margret S. H.; Sprenger, Andreas; Sweeney, John A.
2011-01-01
Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher -level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders. PMID:21873035
Terhune, Devin B; Murray, Elizabeth; Near, Jamie; Stagg, Charlotte J; Cowey, Alan; Cohen Kadosh, Roi
2015-11-01
Phosphenes are illusory visual percepts produced by the application of transcranial magnetic stimulation to occipital cortex. Phosphene thresholds, the minimum stimulation intensity required to reliably produce phosphenes, are widely used as an index of cortical excitability. However, the neural basis of phosphene thresholds and their relationship to individual differences in visual cognition are poorly understood. Here, we investigated the neurochemical basis of phosphene perception by measuring basal GABA and glutamate levels in primary visual cortex using magnetic resonance spectroscopy. We further examined whether phosphene thresholds would relate to the visuospatial phenomenology of grapheme-color synesthesia, a condition characterized by atypical binding and involuntary color photisms. Phosphene thresholds negatively correlated with glutamate concentrations in visual cortex, with lower thresholds associated with elevated glutamate. This relationship was robust, present in both controls and synesthetes, and exhibited neurochemical, topographic, and threshold specificity. Projector synesthetes, who experience color photisms as spatially colocalized with inducing graphemes, displayed lower phosphene thresholds than associator synesthetes, who experience photisms as internal images, with both exhibiting lower thresholds than controls. These results suggest that phosphene perception is driven by interindividual variation in glutamatergic activity in primary visual cortex and relates to cortical processes underlying individual differences in visuospatial awareness. © The Author 2015. Published by Oxford University Press.
Retinotopically specific reorganization of visual cortex for tactile pattern recognition
Cheung, Sing-Hang; Fang, Fang; He, Sheng; Legge, Gordon E.
2009-01-01
Although previous studies have shown that Braille reading and other tactile-discrimination tasks activate the visual cortex of blind and sighted people [1–5], it is not known whether this kind of cross-modal reorganization is influenced by retinotopic organization. We have addressed this question by studying S, a visually impaired adult with the rare ability to read print visually and Braille by touch. S had normal visual development until age six years, and thereafter severe acuity reduction due to corneal opacification, but no evidence of visual-field loss. Functional magnetic resonance imaging (fMRI) revealed that, in S’s early visual areas, tactile information processing activated what would be the foveal representation for normally-sighted individuals, and visual information processing activated what would be the peripheral representation. Control experiments showed that this activation pattern was not due to visual imagery. S’s high-level visual areas which correspond to shape- and object-selective areas in normally-sighted individuals were activated by both visual and tactile stimuli. The retinotopically specific reorganization in early visual areas suggests an efficient redistribution of neural resources in the visual cortex. PMID:19361999
The role of temporo-parietal junction (TPJ) in global Gestalt perception.
Huberle, Elisabeth; Karnath, Hans-Otto
2012-07-01
Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.
Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin.
Kar, Kohitij; Krekelberg, Bart
2012-10-01
Transcranial electrical stimulation (tES) is a promising therapeutic tool for a range of neurological diseases. Understanding how the small currents used in tES spread across the scalp and penetrate the brain will be important for the rational design of tES therapies. Alternating currents applied transcranially above visual cortex induce the perception of flashes of light (phosphenes). This makes the visual system a useful model to study tES. One hypothesis is that tES generates phosphenes by direct stimulation of the cortex underneath the transcranial electrode. Here, we provide evidence for the alternative hypothesis that phosphenes are generated in the retina by current spread from the occipital electrode. Building on the existing literature, we first confirm that phosphenes are induced at lower currents when electrodes are placed farther away from visual cortex and closer to the eye. Second, we explain the temporal frequency tuning of phosphenes based on the well-known response properties of primate retinal ganglion cells. Third, we show that there is no difference in the time it takes to evoke phosphenes in the retina or by stimulation above visual cortex. Together, these findings suggest that phosphenes induced by tES over visual cortex originate in the retina. From this, we infer that tES currents spread well beyond the area of stimulation and are unlikely to lead to focal neural activation. Novel stimulation protocols that optimize current distributions are needed to overcome these limitations of tES.
Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.
Shrager, Yael; Kirwan, C Brock; Squire, Larry R
2008-08-19
The hippocampus and entorhinal cortex have been linked to both memory functions and to spatial cognition, but it has been unclear how these ideas relate to each other. An important part of spatial cognition is the ability to keep track of a reference location using self-motion cues (sometimes referred to as path integration), and it has been suggested that the hippocampus or entorhinal cortex is essential for this ability. Patients with hippocampal lesions or larger lesions that also included entorhinal cortex were led on paths while blindfolded (up to 15 m in length) and were asked to actively maintain the path in mind. Patients pointed to and estimated their distance from the start location as accurately as controls. A rotation condition confirmed that performance was based on self-motion cues. When demands on long-term memory were increased, patients were impaired. Thus, in humans, the hippocampus and entorhinal cortex are not essential for path integration.
Murphy, Matthew C; Conner, Ian P; Teng, Cindy Y; Lawrence, Jesse D; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C
2016-08-11
Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.
Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma
Murphy, Matthew C.; Conner, Ian P.; Teng, Cindy Y.; Lawrence, Jesse D.; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A.; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.
2016-01-01
Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease. PMID:27510406
Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal
2011-01-01
In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883
van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T
2012-01-04
The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.
Granberg, Tobias; Fan, Qiuyun; Treaba, Constantina Andrada; Ouellette, Russell; Herranz, Elena; Mangeat, Gabriel; Louapre, Céline; Cohen-Adad, Julien; Klawiter, Eric C; Sloane, Jacob A; Mainero, Caterina
2017-11-01
Neuroaxonal pathology is a main determinant of disease progression in multiple sclerosis; however, its underlying pathophysiological mechanisms, including its link to inflammatory demyelination and temporal occurrence in the disease course are still unknown. We used ultra-high field (7 T), ultra-high gradient strength diffusion and T1/T2-weighted myelin-sensitive magnetic resonance imaging to characterize microstructural changes in myelin and neuroaxonal integrity in the cortex and white matter in early stage multiple sclerosis, their distribution in lesional and normal-appearing tissue, and their correlations with neurological disability. Twenty-six early stage multiple sclerosis subjects (disease duration ≤5 years) and 24 age-matched healthy controls underwent 7 T T2*-weighted imaging for cortical lesion segmentation and 3 T T1/T2-weighted myelin-sensitive imaging and neurite orientation dispersion and density imaging for assessing microstructural myelin, axonal and dendrite integrity in lesional and normal-appearing tissue of the cortex and the white matter. Conventional mean diffusivity and fractional anisotropy metrics were also assessed for comparison. Cortical lesions were identified in 92% of early multiple sclerosis subjects and they were characterized by lower intracellular volume fraction (P = 0.015 by paired t-test), lower myelin-sensitive contrast (P = 0.030 by related-samples Wilcoxon signed-rank test) and higher mean diffusivity (P = 0.022 by related-samples Wilcoxon signed-rank test) relative to the contralateral normal-appearing cortex. Similar findings were observed in white matter lesions relative to normal-appearing white matter (all P < 0.001), accompanied by an increased orientation dispersion (P < 0.001 by paired t-test) and lower fractional anisotropy (P < 0.001 by related-samples Wilcoxon signed-rank test) suggestive of less coherent underlying fibre orientation. Additionally, the normal-appearing white matter in multiple sclerosis subjects had diffusely lower intracellular volume fractions than the white matter in controls (P = 0.029 by unpaired t-test). Cortical thickness did not differ significantly between multiple sclerosis subjects and controls. Higher orientation dispersion in the left primary motor-somatosensory cortex was associated with increased Expanded Disability Status Scale scores in surface-based general linear modelling (P < 0.05). Microstructural pathology was frequent in early multiple sclerosis, and present mainly focally in cortical lesions, whereas more diffusely in white matter. These results suggest early demyelination with loss of cells and/or cell volumes in cortical and white matter lesions, with additional axonal dispersion in white matter lesions. In the cortex, focal lesion changes might precede diffuse atrophy with cortical thinning. Findings in the normal-appearing white matter reveal early axonal pathology outside inflammatory demyelinating lesions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Garey, L J; Takács, J; Revishchin, A V; Hámori, J
1989-04-24
Sections of the anterior portion of the visual cortex in the lateral gyrus of the Black Sea porpoise were studied to determine the neuronal architecture and numerical density, and the distribution of neurons immunoreactive to gamma-aminobutyric acid (GABA). Cytoarchitecture and neuronal density are similar to those described in another cetacean, the bottlenose dolphin. GABA-positive neurons are distributed through all layers of the visual cortex but are especially dense in layers II and III, and comprise some 20% of the total neuronal population in this part of the cortex. The distribution of GABA-positive neurons is similar to that found in land mammals.
Iacono, Diego; Resnick, Susan M; O'Brien, Richard; Zonderman, Alan B; An, Yang; Pletnikova, Olga; Rudow, Gay; Crain, Barbara; Troncoso, Juan C
2014-04-01
Older adults with intact cognition before death and substantial Alzheimer disease (AD) lesions at autopsy have been termed "asymptomatic AD subjects" (ASYMAD). We previously reported hypertrophy of neuronal cell bodies, nuclei, and nucleoli in the CA1 of the hippocampus (CA1), anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex of ASYMAD versus age-matched Control and mild cognitive impairment (MCI) subjects. However, it was unclear whether the neuronal hypertrophy could be attributed to differences in the severity of AD pathology. Here, we performed quantitative analyses of the severity of β-amyloid (Aβ) and phosphorylated tau (tau) loads in the brains of ASYMAD, Control, MCI, and AD subjects (n = 15 per group) from the Baltimore Longitudinal Study of Aging. Tissue sections from CA1, anterior cingulate gyrus, posterior cingulate gyrus, and primary visual cortex were immunostained for Aβ and tau; the respective loads were assessed using unbiased stereology by measuring the fractional areas of immunoreactivity for each protein in each region. The ASYMAD and MCI groups did not differ in Aβ and tau loads. These data confirm that ASYMAD and MCI subjects have comparable loads of insoluble Aβ and tau in regions vulnerable to AD pathology despite divergent cognitive outcomes. These findings imply that cognitive impairment in AD may be caused or modulated by factors other than insoluble forms of Aβ and tau.
Burton, Harold; McLaren, Donald G
2006-01-09
Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example.
Burton, Harold; McLaren, Donald G.
2013-01-01
Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example. PMID:16198053
Adaptive Changes in Early and Late Blind: A fMRI Study of Verb Generation to Heard Nouns
BURTON, H.; SNYDER, A. Z.; DIAMOND, J. B.; RAICHLE, M. E.
2013-01-01
Literacy for blind people requires learning Braille. Along with others, we have shown that reading Braille activates visual cortex. This includes striate cortex (V1), i.e., banks of calcarine sulcus, and several higher visual areas in lingual, fusiform, cuneus, lateral occipital, inferior temporal, and middle temporal gyri. The spatial extent and magnitude of magnetic resonance (MR) signals in visual cortex is greatest for those who became blind early in life. Individuals who lost sight as adults, and subsequently learned Braille, still exhibited activity in some of the same visual cortex regions, especially V1. These findings suggest these visual cortex regions become adapted to processing tactile information and that this cross-modal neural change might support Braille literacy. Here we tested the alternative hypothesis that these regions directly respond to linguistic aspects of a task. Accordingly, language task performance by blind persons should activate the same visual cortex regions regardless of input modality. Specifically, visual cortex activity in blind people ought to arise during a language task involving heard words. Eight early blind, six late blind, and eight sighted subjects were studied using functional magnetic resonance imaging (fMRI) during covert generation of verbs to heard nouns. The control task was passive listening to indecipherable sounds (reverse words) matched to the nouns in sound intensity, duration, and spectral content. Functional responses were analyzed at the level of individual subjects using methods based on the general linear model and at the group level, using voxel based ANOVA and t-test analyses. Blind and sighted subjects showed comparable activation of language areas in left inferior frontal, dorsolateral prefrontal, and left posterior superior temporal gyri. The main distinction was bilateral, left dominant activation of the same visual cortex regions previously noted with Braille reading in all blind subjects. The spatial extent and magnitude of responses was greatest on the left in early blind individuals. Responses in the late blind group mostly were confined to V1 and nearby portions of the lingual and fusiform gyri. These results confirm the presence of adaptations in visual cortex of blind people but argue against the notion that this activity during Braille reading represents somatosensory (haptic) processing. Rather, we suggest that these responses can be most parsimoniously explained in terms of linguistic operations. It remains possible that these responses represent adaptations which initially are for processing either sound or touch, but which are later generalized to the other modality during acquisition of Braille reading skills. PMID:12466452
Top-down influence on the visual cortex of the blind during sensory substitution.
Murphy, Matthew C; Nau, Amy C; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S; Chan, Kevin C
2016-01-15
Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine. Copyright © 2015 Elsevier Inc. All rights reserved.
Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.
2014-01-01
The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694
rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects.
Kupers, R; Pappens, M; de Noordhout, A Maertens; Schoenen, J; Ptito, M; Fumal, A
2007-02-27
To study the functional involvement of the visual cortex in Braille reading, we applied repetitive transcranial magnetic stimulation (rTMS) over midoccipital (MOC) and primary somatosensory (SI) cortex in blind subjects. After rTMS of MOC, but not SI, subjects made significantly more errors and showed an abolishment of the improvement in reading speed following repetitive presentation of the same word list, suggesting a role of the visual cortex in repetition priming in the blind.
Spectral Signatures of Feedforward and Recurrent Circuitry in Monkey Area MT.
Solomon, Selina S; Morley, John W; Solomon, Samuel G
2017-05-01
Recordings of local field potential (LFP) in the visual cortex can show rhythmic activity at gamma frequencies (30-100 Hz). While the gamma rhythms in the primary visual cortex have been well studied, the structural and functional characteristics of gamma rhythms in extrastriate visual cortex are less clear. Here, we studied the spatial distribution and functional specificity of gamma rhythms in extrastriate middle temporal (MT) area of visual cortex in marmoset monkeys. We found that moving gratings induced narrowband gamma rhythms across cortical layers that were coherent across much of area MT. Moving dot fields instead induced a broadband increase in LFP in middle and upper layers, with weaker narrowband gamma rhythms in deeper layers. The stimulus dependence of LFP response in middle and upper layers of area MT appears to reflect the presence (gratings) or absence (dot fields and other textures) of strongly oriented contours. Our results suggest that gamma rhythms in these layers are propagated from earlier visual cortex, while those in the deeper layers may emerge in area MT. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno
2011-01-01
Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect. PMID:22275889
Heinen, Klaartje; Feredoes, Eva; Weiskopf, Nikolaus; Ruff, Christian C; Driver, Jon
2014-11-01
Voluntary selective attention can prioritize different features in a visual scene. The frontal eye-fields (FEF) are one potential source of such feature-specific top-down signals, but causal evidence for influences on visual cortex (as was shown for "spatial" attention) has remained elusive. Here, we show that transcranial magnetic stimulation (TMS) applied to right FEF increased the blood oxygen level-dependent (BOLD) signals in visual areas processing "target feature" but not in "distracter feature"-processing regions. TMS-induced BOLD signals increase in motion-responsive visual cortex (MT+) when motion was attended in a display with moving dots superimposed on face stimuli, but in face-responsive fusiform area (FFA) when faces were attended to. These TMS effects on BOLD signal in both regions were negatively related to performance (on the motion task), supporting the behavioral relevance of this pathway. Our findings provide new causal evidence for the human FEF in the control of nonspatial "feature"-based attention, mediated by dynamic influences on feature-specific visual cortex that vary with the currently attended property. © The Author 2013. Published by Oxford University Press.
The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave
Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain
2014-01-01
Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions. PMID:24770473
Magnetic resonance in studies of glaucoma
Fiedorowicz, Michał; Dyda, Wojciech; Rejdak, Robert; Grieb, Paweł
2011-01-01
Summary Glaucoma is the second leading cause of blindness. It affects retinal ganglion cells and the optic nerve. However, there is emerging evidence that glaucoma also affects other components of the visual pathway and visual cortex. There is a need to employ new methods of in vivo brain evaluation to characterize these changes. Magnetic resonance (MR) techniques are well suited for this purpose. We review data on the MR evaluation of the visual pathway and the use of MR techniques in the study of glaucoma, both in humans and in animal models. These studies demonstrated decreases in optic nerve diameter, localized white matter loss and decrease in visual cortex density. Studies on rats employing manganese-enhanced MRI showed that axonal transport in the optic nerve is affected. Diffusion tensor MRI revealed signs of degeneration of the optic pathway. Functional MRI showed decreased response of the visual cortex after stimulation of the glaucomatous eye. Magnetic resonance spectroscopy demonstrated changes in metabolite levels in the visual cortex in a rat model of glaucoma, although not in glaucoma patients. Further applications of MR techniques in studies of glaucomatous brains are indicated. PMID:21959626
Link between orientation and retinotopic maps in primary visual cortex
Paik, Se-Bum; Ringach, Dario L.
2012-01-01
Maps representing the preference of neurons for the location and orientation of a stimulus on the visual field are a hallmark of primary visual cortex. It is not yet known how these maps develop and what function they play in visual processing. One hypothesis postulates that orientation maps are initially seeded by the spatial interference of ON- and OFF-center retinal receptive field mosaics. Here we show that such a mechanism predicts a link between the layout of orientation preferences around singularities of different signs and the cardinal axes of the retinotopic map. Moreover, we confirm the predicted relationship holds in tree shrew primary visual cortex. These findings provide additional support for the notion that spatially structured input from the retina may provide a blueprint for the early development of cortical maps and receptive fields. More broadly, it raises the possibility that spatially structured input from the periphery may shape the organization of primary sensory cortex of other modalities as well. PMID:22509015
The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.
van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R
2018-05-04
Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min
2011-03-17
Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.
Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R
2001-07-01
Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.
Jackson, Stacey A W; Horst, Nicole K; Pears, Andrew; Robbins, Trevor W; Roberts, Angela C
2016-07-01
Two learning mechanisms contribute to decision-making: goal-directed actions and the "habit" system, by which action-outcome and stimulus-response associations are formed, respectively. Rodent lesion studies and human neuroimaging have implicated both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) in the neural basis of contingency learning, a critical component of goal-directed actions, though some published findings are conflicting. We sought to reconcile the existing literature by comparing the effects of excitotoxic lesions of the perigenual anterior cingulate cortex (pgACC), a region of the mPFC, and OFC on contingency learning in the marmoset monkey using a touchscreen-based paradigm, in which the contingent relationship between one of a pair of actions and its outcome was degraded selectively. Both the pgACC and OFC lesion groups were insensitive to the contingency degradation, whereas the control group demonstrated selectively higher performance of the nondegraded action when compared with the degraded action. These findings suggest the pgACC and OFC are both necessary for normal contingency learning and therefore goal-directed behavior. © The Author 2016. Published by Oxford University Press.
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-01-01
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-09-06
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.
2004-01-01
We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334
Arthroscopically assisted knee contracture release secondary to melorheostosis: a case report.
Claramunt, Raúl Torres; López, Xavier Pelfort; Palou, Enric Cáceres; García, Joan C Monllau; Verdie, Lluís Puig
2011-02-01
Melorheostosis is a rare non-hereditary bone disease characterized by a radiographic pattern of flowing hyperostosis along the cortex with sclerotomal distribution. We report a case of a patient with severe knee contracture and a restricted range of motion caused by intraarticular bone fragment and hyperostotic bone lesions secondary to melorheostosis. An arthroscopically assisted approach was used successfully in order to remove free bone fragments and to release the hyperostotic lesions in the bone cortex of the distal femur.
Ge, Shunnan; Yang, Chen; Li, Min; Li, Jiang; Chang, Xiaozan; Fu, Jian; Chen, Lei; Chang, Chongwang; Wang, Xuelian; Zhu, Junling; Gao, Guodong
2012-07-17
Studies on patients with Parkinson's disease and in animal models have observed enhanced synchronization of oscillations in several frequency bands within and between the cortical-basal ganglia (BG) structures. Recent research has also shown that synchronization of high-voltage spindles (HVSs) in the cortex, striatum and substantia nigra pars reticulate is increased by dopamine depletion. However, more evidence is needed to determine whether HVS activity in the whole cortex-BG network represents homologous alteration following dopamine depletion. As the globus pallidus (GP) is in a central position to propagate and synchronize oscillations in the cortical-BG circuits, we employed local-field potentials and electrocorticogram to simultaneously record oscillations in the GP and primary (M1) and secondary (M2) motor cortices on freely moving 6-hydroxydopamine (6-OHDA) lesioned and control rats. Results showed that HVS episodes recorded from GP, and M2 and M1 cortex areas were more numerous and longer in 6-OHDA lesioned rats compared to controls. Relative power associated with HVS activity in the GP, and M2 and M1 cortices of 6-OHDA lesioned rats was significantly greater than that for control rats. Coherence values for HVS activity between the GP, and M2 and M1 cortex areas were significantly increased by dopamine depletion. Time lag between the M1 cortex HVS and GP HVS was significantly shorter for dopamine depleted than normal rats. Findings indicate a crucial rule for dopamine in the regulation of HVS activity in the whole cortical-BG circuit, and suggest a close relationship between abnormally synchronized HVS oscillations in the cortex-BG network and Parkinson's disease. Copyright © 2012 Elsevier B.V. All rights reserved.
Improving visual perception through neurofeedback
Scharnowski, Frank; Hutton, Chloe; Josephs, Oliver; Weiskopf, Nikolaus; Rees, Geraint
2012-01-01
Perception depends on the interplay of ongoing spontaneous activity and stimulus-evoked activity in sensory cortices. This raises the possibility that training ongoing spontaneous activity alone might be sufficient for enhancing perceptual sensitivity. To test this, we trained human participants to control ongoing spontaneous activity in circumscribed regions of retinotopic visual cortex using real-time functional MRI based neurofeedback. After training, we tested participants using a new and previously untrained visual detection task that was presented at the visual field location corresponding to the trained region of visual cortex. Perceptual sensitivity was significantly enhanced only when participants who had previously learned control over ongoing activity were now exercising control, and only for that region of visual cortex. Our new approach allows us to non-invasively and non-pharmacologically manipulate regionally specific brain activity, and thus provide ‘brain training’ to deliver particular perceptual enhancements. PMID:23223302
Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits
Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert
2015-01-01
The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565
Comorbid rat model of ischemia and β-amyloid toxicity: striatal and cortical degeneration.
Amtul, Zareen; Whitehead, Shawn N; Keeley, Robin J; Bechberger, John; Fisher, Alicia L; McDonald, Robert J; Naus, Christian C; Munoz, David G; Cechetto, David F
2015-01-01
Levels of cerebral amyloid, presumably β-amyloid (Abeta), toxicity and the incidence of cortical and subcortical ischemia increases with age. However, little is known about the severe pathological condition and dementia that occur as a result of the comorbid occurrence of this vascular risk factor and Abeta toxicity. Clinical studies have indicated that small ischemic lesions in the striatum are particularly important in generating dementia in combination with minor amyloid lesions. These cognitive deficits are highly likely to be caused by changes in the cortex. In this study, we examined the viability and morphological changes in microglial and neuronal cells, gap junction proteins (connexin43) and neuritic/axonal retraction (Fer Kinase) in the striatum and cerebral cortex using a comorbid rat model of striatal injections of endothelin-1 (ET1) and Abeta toxicity. The results demonstrated ventricular enlargement, striatal atrophy, substantial increases in β-amyloid, ramified microglia and increases in neuritic retraction in the combined models of stroke and Abeta toxicity. Changes in connexin43 occurred equally in both groups of Abeta-treated rats, with and without focal ischemia. Although previous behavioral tests demonstrated impairment in memory and learning, the visual discrimination radial maze task did not show significant difference, suggesting the cognitive impairment in these models is not related to damage to the dorsolateral striatum. These results suggest an insight into the relationship between cortical/striatal atrophy, pathology and functional impairment. © 2014 International Society of Neuropathology.
Monfort, Vincent; Pfeuty, Micha; Klein, Madelyne; Collé, Steffie; Brissart, Hélène; Jonas, Jacques; Maillard, Louis
2014-11-01
This case report on an epileptic patient suffering from a focal lesion at the junction of the right anterior insular cortex (AIC) and the adjacent inferior frontal cortex (IFC) provides the first evidence that damage to this brain region impairs temporal performance in a visual time reproduction task in which participants had to reproduce the presentation duration (3, 5 and 7s) of emotionally-neutral and -negative pictures. Strikingly, as compared to a group of healthy subjects, the AIC/IFC case considerably overestimated reproduction times despite normal variability. The effect was obtained in all duration and emotion conditions. Such a distortion in time reproduction was not observed in four other epileptic patients without insular or inferior frontal damage. Importantly, the absolute extent of temporal over-reproduction increased in proportion to the magnitude of the target durations, which concurs with the scalar property of interval timing, and points to an impairment of time-specific rather than of non temporal (such as motor) mechanisms. Our data suggest that the disability in temporal reproduction of the AIC/IFC case would result from a distorted memory representation of the encoded duration, occurring during the process of storage and/or of recovery from memory and leading to a deviation of the temporal judgment during the reproduction task. These findings support the recent proposal that the anterior insular/inferior frontal cortices would be involved in time interval representation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.
Harrison, William J; Bays, Paul M
2018-03-21
The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural architecture in sensory cortex that encodes stimuli. We investigated this claim by manipulating the spacing in visual cortex between sequentially presented memoranda such that some items shared cortical representations more than others while preventing perceptual interference between stimuli. We found clear evidence that short-term memory is independent of the intracortical spacing of memoranda, revealing a dissociation between perceptual and memory representations. Our data indicate that working memory relies on different neural mechanisms from sensory perception. Copyright © 2018 Harrison and Bays.
Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex.
Watkins, Kate E; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M; Smith, Stephen M; Ragge, Nicola; Bridge, Holly
2012-05-01
Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an auditory covert naming task in five bilaterally anophthalmic subjects, who have never received visual input. When listening to auditory definitions and covertly retrieving words, these subjects activated lateral occipital cortex bilaterally in addition to the language areas activated in sighted controls. This activity was significantly greater than that present in a control condition of listening to reversed speech. The lateral occipital cortex was also recruited into a left-lateralized resting-state network that usually comprises anterior and posterior language areas. Levels of activation to the auditory naming and reversed speech conditions did not differ in the calcarine (striate) cortex. This primary 'visual' cortex was not recruited to the left-lateralized resting-state network and showed high interhemispheric correlation of activity at rest, as is typically seen in unimodal cortical areas. In contrast, the interhemispheric correlation of resting activity in extrastriate areas was reduced in anophthalmia to the level of cortical areas that are heteromodal, such as the inferior frontal gyrus. Previous imaging studies in the congenitally blind show that primary visual cortex is activated in higher-order tasks, such as language and memory to a greater extent than during more basic sensory processing, resulting in a reversal of the normal hierarchy of functional organization across 'visual' areas. Our data do not support such a pattern of organization in anophthalmia. Instead, the patterns of activity during task and the functional connectivity at rest are consistent with the known hierarchy of processing in these areas normally seen for vision. The differences in cortical organization between bilateral anophthalmia and other forms of congenital blindness are considered to be due to the total absence of stimulation in 'visual' cortex by light or retinal activity in the former condition, and suggests development of subcortical auditory input to the geniculo-striate pathway.
Cingulate neglect in humans: disruption of contralesional reward learning in right brain damage.
Lecce, Francesca; Rotondaro, Francesca; Bonnì, Sonia; Carlesimo, Augusto; Thiebaut de Schotten, Michel; Tomaiuolo, Francesco; Doricchi, Fabrizio
2015-01-01
Motivational valence plays a key role in orienting spatial attention. Nonetheless, clinical documentation and understanding of motivationally based deficits of spatial orienting in the human is limited. Here in a series of one group-study and two single-case studies, we have examined right brain damaged patients (RBD) with and without left spatial neglect in a spatial reward-learning task, in which the motivational valence of the left contralesional and the right ipsilesional space was contrasted. In each trial two visual boxes were presented, one to the left and one to the right of central fixation. In one session monetary rewards were released more frequently in the box on the left side (75% of trials) whereas in another session they were released more frequently on the right side. In each trial patients were required to: 1) point to each one of the two boxes; 2) choose one of the boxes for obtaining monetary reward; 3) report explicitly the position of reward and whether this position matched or not the original choice. Despite defective spontaneous allocation of attention toward the contralesional space, RBD patients with left spatial neglect showed preserved contralesional reward learning, i.e., comparable to ipsilesional learning and to reward learning displayed by patients without neglect. A notable exception in the group of neglect patients was L.R., who showed no sign of contralesional reward learning in a series of 120 consecutive trials despite being able of reaching learning criterion in only 20 trials in the ipsilesional space. L.R. suffered a cortical-subcortical brain damage affecting the anterior components of the parietal-frontal attentional network and, compared with all other neglect and non-neglect patients, had additional lesion involvement of the medial anterior cingulate cortex (ACC) and of the adjacent sectors of the corpus callosum. In contrast to his lateralized motivational learning deficit, L.R. had no lateral bias in the early phases of attentional processing as he suffered no contralesional visual or auditory extinction on double simultaneous tachistoscopic and dichotic stimulation and detected, with no exception, single contralesional visual and auditory stimuli. In a separate study, we were able to compare L.R. with another RBD patient, G.P., who had a selective lesion in the right ACC, in the adjacent callosal connections and the medial-basal prefrontal cortex. G.P. had no contralesional neglect and displayed normal reward learning both in the left and right side of space. These findings show that contralesional reward learning is generally preserved in RBD patients with left spatial neglect and that this can be exploited in rehabilitation protocols. Contralesional reward learning is severely disrupted in neglect patients when an additional lesion of the ACC is present: however, as demonstrated by the comparison between L.R. and G.P. cases, selective unilateral lesion of the right ACC does not produce motivational neglect for the contralesional space. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sergeeva, Elena G; Espinosa-Garcia, Claudia; Atif, Fahim; Pardue, Machelle T; Stein, Donald G
2018-05-02
In adult mice with unilateral optic nerve crush injury (ONC), we studied visual response plasticity in the visual cortex following stimulation with sinusoidal grating. We examined visually evoked potentials (VEP) in the primary visual cortex ipsilateral and contralateral to the crushed nerve. We found that unilateral ONC induces enhancement of visual response on the side ipsilateral to the injury that is evoked by visual stimulation to the intact eye. This enhancement was associated with supranormal spatial frequency thresholds in the intact eye when tested using optomotor response. To probe whether injury-induced disinhibition caused the potentiation, we treated animals with the neurosteroid allopregnanolone, a potent agonist of the GABA A receptor, one hour after crush and on post-injury days 3, 8, 13, and 18. Allopregnanolone diminished enhancement of the VEP and this effect was associated with the upregulated synthesis of the δ-subunit of the GABA A receptor. Our study shows a new aspect of experience-dependent plasticity following unilateral ONC. This hyper-activity in the ipsilateral visual cortex is prevented by upregulation of GABA inhibition with allopregnanolone. Our findings suggest the therapeutic potential of allopregnanolone for modulation of plasticity in certain eye and brain disorders and a possible role for disinhibition in ipsilateral hyper-activity following unilateral ONC. Copyright © 2018. Published by Elsevier Inc.
Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming
2015-01-01
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860
Improved detection following Neuro-Eye Therapy in patients with post-geniculate brain damage.
Sahraie, Arash; Macleod, Mary-Joan; Trevethan, Ceri T; Robson, Siân E; Olson, John A; Callaghan, Paula; Yip, Brigitte
2010-09-01
Damage to the optic radiation or the occipital cortex results in loss of vision in the contralateral visual field, termed partial cortical blindness or hemianopia. Previously, we have demonstrated that stimulation in the field defect using visual stimuli with optimal properties for blindsight detection can lead to increases in visual sensitivity within the blind field of a group of patients. The present study was aimed to extend the previous work by investigating the effect of positive feedback on recovery of visual sensitivity. Patients' abilities for detection of a range of spatial frequencies within their field defect were determined using a temporal two-alternative forced-choice technique, before and after a period of visual training (n = 4). Patients underwent Neuro-Eye Therapy which involved detection of temporally modulated spatial grating patches at specific retinal locations within their field defect. Three patients showed improved detection ability following visual training. Based on our previous studies, we had hypothesised that should the occipital brain lesion extend anteriorly to the thalamus, little recovery would be expected. Here, we describe one such case who showed no improvements after extensive training. The present study provides further evidence that recovery (a) can be gradual and may require a large number of training sessions (b) can be accelerated using positive feedback and (c) may be less likely to take place if the occipital damage extends anteriorly to the thalamus.
Chaillan, F A; Marchetti, E; Delfosse, F; Roman, F S; Soumireu-Mourat, B
1997-01-01
In this study, the functional properties of the dorsomedial prefrontal cortex (dmPFC) of the rat were examined in two olfactory tasks. In a successive cue olfactory discrimination task, dmPFC lesioned animals improved performance across sessions more rapidly than operated control animals. In an olfactory task using fixed interval training, animals with similar lesions were impaired. Both effects, although opposite, can be explained by a temporal processing deficit. The present results seem to indicate that the dmPFC is required for timing, classified as part of non-declarative memory. As reference memory improved in the lesioned animals, the finding is that the dmPFC supports non-declarative memory and thus interacts with declarative memory in the long-term formation of the associations between a particular stimulus (olfactory cue) and particular responses.
Khodaparast, Navid; Hays, Seth A.; Sloan, Andrew M.; Fayyaz, Tabbassum; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.
2014-01-01
Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into three groups: vagus nerve stimulation during rehab, vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), pre-lesion training, post-lesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed one week of recovery before post-lesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All seventeen trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to pre-lesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to pre-lesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared to rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102
Higo, Noriyuki; Hayashi, Takuya; Nishimura, Yukio; Sugiyama, Yoko; Oishi, Takao; Tsukada, Hideo; Isa, Tadashi; Onoe, Hirotaka
2015-01-01
The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H215O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period. PMID:25568105
Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E
2017-01-01
Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors. Copyright © 2016 Elsevier Inc. All rights reserved.
Auditory and visual connectivity gradients in frontoparietal cortex
Hellyer, Peter J.; Wise, Richard J. S.; Leech, Robert
2016-01-01
Abstract A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc. PMID:27571304
Spiegel, Daniel P; Byblow, Winston D; Hess, Robert F; Thompson, Benjamin
2013-10-01
Amblyopia is a neurodevelopmental disorder of vision that is associated with abnormal patterns of neural inhibition within the visual cortex. This disorder is often considered to be untreatable in adulthood because of insufficient visual cortex plasticity. There is increasing evidence that interventions that target inhibitory interactions within the visual cortex, including certain types of noninvasive brain stimulation, can improve visual function in adults with amblyopia. We tested the hypothesis that anodal transcranial direct current stimulation (a-tDCS) would improve visual function in adults with amblyopia by enhancing the neural response to inputs from the amblyopic eye. Thirteen adults with amblyopia participated and contrast sensitivity in the amblyopic and fellow fixing eye was assessed before, during and after a-tDCS or cathodal tDCS (c-tDCS). Five participants also completed a functional magnetic resonance imaging (fMRI) study designed to investigate the effect of a-tDCS on the blood oxygen level-dependent response within the visual cortex to inputs from the amblyopic versus the fellow fixing eye. A subgroup of 8/13 participants showed a transient improvement in amblyopic eye contrast sensitivity for at least 30 minutes after a-tDCS. fMRI measurements indicated that the characteristic cortical response asymmetry in amblyopes, which favors the fellow eye, was reduced by a-tDCS. These preliminary results suggest that a-tDCS deserves further investigation as a potential tool to enhance amblyopia treatment outcomes in adults.
Coullon, Gaelle S. L.; Emir, Uzay E.; Fine, Ione; Watkins, Kate E.
2015-01-01
Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, 1H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. PMID:26180125
Peyrin, C; Démonet, J F; N'Guyen-Morel, M A; Le Bas, J F; Valdois, S
2011-09-01
A visual attention (VA) span disorder has been reported in dyslexic children as potentially responsible for their poor reading outcome. The purpose of the current paper was to identify the cerebral correlates of this VA span disorder. For this purpose, 12 French dyslexic children with severe reading and VA span disorders and 12 age-matched control children were engaged in a categorisation task under fMRI. Two flanked and isolated conditions were designed which both involved multiple-element simultaneous visual processing but taxed visual attention differently. For skilled readers, flanked stimuli processing activated a large bilateral cortical network comprising the superior and inferior parietal cortex, the inferior temporal cortex, the striate and extrastriate visual cortex, the middle frontal cortex and the anterior cingulate cortex while the less attention-demanding task of isolated stimuli only activated the inferior occipito-temporal cortex bilaterally. With respect to controls, the dyslexic children showed significantly reduced activation within bilateral parietal and temporal areas during flanked processing, but no difference during the isolated condition. The neural correlates of the processes involved in attention-demanding multi-element processing tasks were more specifically addressed by contrasting the flanked and the isolated conditions. This contrast elicited activation of the left precuneus/superior parietal lobule in the controls, but not in the dyslexic children. These findings provide new insights on the role of parietal regions, in particular the left superior parietal lobule, in the visual attention span and in developmental dyslexia. Copyright © 2010 Elsevier Inc. All rights reserved.
2008-01-01
Christian Baumann (Justus-Liebig-University, Giessen, Germany): Wilbrand's ideas of the visual cortex. Hermann Wilbrand (1851-1935) is considered one of the founders of neuro-opthalmology. He is best known for the monumental handbook, Die Neurologie des Auges (Wilbrand &Saenger, 1898-1922). Prior to this encyclopedic work, Wilbrand published three clinical monographs on the diagnosis of brain diseases with the help of ophthalmological examinations(Wilbrand 1881, 1884, 1890). But Wilbrand not only treated clinical aspects but also supplied evidence for the localization of the optical center in the calcarine fissure of the occipital cortex. Moreover, he worked out theories of the organization of the visual cortex that, as he postulated, must contain subdivisions corresponding to the qualities of visual sensation such as light, form, and color. Wilbrand also considered the binocular input of the visual cortex and put forward a detailed scheme of the projection of the two retinae to the occipital cortex that anticipated modern concepts of ocular dominance columns. His ideas are critically reviewed in the light of current opinions about his topics.
Tafazoli, Sina; Safaai, Houman; De Franceschi, Gioia; Rosselli, Federica Bianca; Vanzella, Walter; Riggi, Margherita; Buffolo, Federica; Panzeri, Stefano; Zoccolan, Davide
2017-01-01
Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects. DOI: http://dx.doi.org/10.7554/eLife.22794.001 PMID:28395730
Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin CF.; Cassaday, Helen J.
2017-01-01
Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and retrieval tests may also be a critical determinant of the role of the ACgx. The current series of experiments used micro-infusion of the GABAA receptor agonist, muscimol, into ACgx to reversibly inactivate the area and distinguish its role in encoding and retrieval. ACgx infusions of muscimol, before encoding did not alter NOR assessed after a delay of 20 min or 24 h. However, when infused into the ACgx before retrieval muscimol impaired NOR assessed after a delay of 24 h, but not after a 20-min retention test. Together these findings suggest that the ACgx plays a time-dependent role in the retrieval, but not the encoding, of NOR memory, neuronal activation being required for the retrieval of remote (24 h old), but not recent (20 min old) visual memory. PMID:28620078
[Micro-computed tomography of the vasculature in parenchymal organs and lung alveoli].
Langheinrich, A C; Bohle, R M; Breithecker, A; Lommel, D; Rau, W S
2004-09-01
Micro-CT has become a powerful technique in non-destructive 3D imaging and morphometric analysis. First results were limited to the investigation of osteoporosis in cancellous bone. But the availability of systems with almost microscopic resolution and sufficient soft tissue contrast has opened up entirely new applications for laboratory investigation of blood vessels and soft tissues. This article gives an overview of micro-CT technology and the potential of three-dimensional imaging of the vessel wall and soft-tissue architecture imaging in different organs using different contrast perfusion and staining techniques. Micro-CT provides quantitative information on human plaque morphology equivalent to histomorphometric analysis. Based on differences in grey-scale attenuations, micro-CT also correctly identifies atherosclerotic lesions that are histologically classified as fibrous plaques, calcified lesions, fibroatheroma, and lipid rich lesions. Micro-CT is a promising method to visualize the architecture of the renal vasculature and, importantly, to separate cortex and medulla for the visualization of glomeruli and their afferent and efferent arterioles. Micro-CT can determine the vascular surface in a defined placental volume. Combining of micro-CT data and total placental volume enables an estimation of the approximate surface of the placental vasculature. The diameter of opacified vessels in the investigated samples ranged from 2 mm (chorion plate artery) to 14 micro m (smallest vessel diameter, terminal loop). Recognizing that lung parenchyma can only be visualized if the alveoli are completely expanded and the contrast of the thin alveolar walls is enhanced, we tested two preparation methods: (1) fixation of lung tissue with formalin vapour and staining with silver nitrate, and (2) intravenous injection of a barium sulfate-gelatine-thymol mixture in vivo in the anesthetized animal. We evaluated the ability of this mixture to enter the pulmonary microcirculation and the technical feasibility of micro-CT to assess lung micro-architecture.
van Lamsweerde, Amanda E; Johnson, Jeffrey S
2017-07-01
Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.
Electrical activity of the cingulate cortex. II. Cholinergic modulation.
Borst, J G; Leung, L W; MacFabe, D F
1987-03-24
The role of the cholinergic innervation in the modulation of cingulate electrical activity was studied by means of pharmacological manipulations and brain lesions. In the normal rat, an irregular slow activity (ISA) accompanied with EEG-spikes was recorded in the cingulate cortex during immobility as compared to walking. Atropine sulfate, but not atropine methyl nitrate, increased ISA and the frequency of cingulate EEG-spikes. Pilocarpine suppressed ISA and EEG-spikes during immobility, and induced a slow (4-7 Hz) theta rhythm. Unilateral or bilateral lesions of the substantia innominata and ventral globus pallidus area using kainic acid did not significantly change the cingulate EEG or its relation to behavior. Large electrolytic lesions of the medial septal nuclei and vertical limbs of the diagonal band generally decreased or abolished all theta activity in the cingulate cortex and the hippocampus. However, in 5 rats the cingulate theta rhythm increased while the hippocampal theta disappeared after a medial septal lesion. The large, postlesion cingulate theta, accompanied by sharp EEG-spikes during its negative phase, is an unequivocal demonstration of the existence of a theta rhythm in the cingulate cortex, independent of the hippocampal rhythm. Cholinergic afferents from the medial septum and diagonal band nuclei are inferred to be responsible for the behavioral suppression of cingulate EEG-spikes and ISA, and partially for the generation of a local cingulate theta rhythm. However, an atropine-resistant pathway and a theta-suppressing pathway, possibly coming from the medial septum or the hippocampus, may also be important in cingulate theta generation.
Vergara, Gaston R; Vijayakumar, Sathya; Kholmovski, Eugene G; Blauer, Joshua J E; Guttman, Mike A; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W; Daccarett, Marcos; McGann, Christopher J; Macleod, Rob S; Marrouche, Nassir F
2011-02-01
Magnetic resonance imaging (MRI) allows visualization of location and extent of radiofrequency (RF) ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT -RI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. The purpose of this study was to develop a 3-Tesla RT MRI-based catheter ablation and lesion visualization system. RF energy was delivered to six pigs under RT MRI guidance. A novel MRI-compatible mapping and ablation catheter was used. Under RT MRI, this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bipolar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2W) half Fourier acquisition with single-shot turbo spin echo (HASTE) sequence during ablation. RT visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or the lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement MRI and macroscopic tissue examination. MRI-compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT MRI guidance. Recording electrograms during RT imaging also is feasible. RT visualization of lesion as it forms during RF energy delivery is possible and was demonstrated using T2W HASTE imaging. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
REAL TIME MRI GUIDED RADIOFREQUENCY ATRIAL ABLATION AND VISUALIZATION OF LESION FORMATION AT 3-TESLA
Vergara, Gaston R.; Vijayakumar, Sathya; Kholmovski, Eugene G.; Blauer, Joshua J.E.; Guttman, Mike A.; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W.; Daccarett, Marcos; McGann, Christopher J.; MacLeod, Rob S.; Marrouche, Nassir F.
2011-01-01
Background MRI allows visualization of location and extent of RF ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT-MRI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. Objective To develop of a 3-Tesla RT-MRI based catheter ablation and lesion visualization system. Methods RF energy was delivered to six pigs under RT-MRI guidance. A novel MRI compatible mapping and ablation catheter was used. Under RT-MRI this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bi-polar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2w) HASTE sequence during ablation. Results Real-time visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement (LGE) MRI and macroscopic tissue examination. Conclusion MRI compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT-MRI guidance. It is also feasible to record electrograms during RT imaging. Real-time visualization of lesion as it forms during delivery of RF energy is possible and was demonstrated using T2w HASTE imaging. PMID:21034854
Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; van der Zwaag, Wietske
2018-06-01
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI. © 2018 Wiley Periodicals, Inc.
Sneve, Markus H; Magnussen, Svein; Alnæs, Dag; Endestad, Tor; D'Esposito, Mark
2013-11-01
Visual STM of simple features is achieved through interactions between retinotopic visual cortex and a set of frontal and parietal regions. In the present fMRI study, we investigated effective connectivity between central nodes in this network during the different task epochs of a modified delayed orientation discrimination task. Our univariate analyses demonstrate that the inferior frontal junction (IFJ) is preferentially involved in memory encoding, whereas activity in the putative FEFs and anterior intraparietal sulcus (aIPS) remains elevated throughout periods of memory maintenance. We have earlier reported, using the same task, that areas in visual cortex sustain information about task-relevant stimulus properties during delay intervals [Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. Neuroimage, 63, 166-178, 2012]. To elucidate the temporal dynamics of the IFJ-FEF-aIPS-visual cortex network during memory operations, we estimated Granger causality effects between these regions with fMRI data representing memory encoding/maintenance as well as during memory retrieval. We also investigated a set of control conditions involving active processing of stimuli not associated with a memory task and passive viewing. In line with the developing understanding of IFJ as a region critical for control processes with a possible initiating role in visual STM operations, we observed influence from IFJ to FEF and aIPS during memory encoding. Furthermore, FEF predicted activity in a set of higher-order visual areas during memory retrieval, a finding consistent with its suggested role in top-down biasing of sensory cortex.
Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P.; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2016-01-01
Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia. PMID:26763954
Frontal–Occipital Connectivity During Visual Search
Pantazatos, Spiro P.; Yanagihara, Ted K.; Zhang, Xian; Meitzler, Thomas
2012-01-01
Abstract Although expectation- and attention-related interactions between ventral and medial prefrontal cortex and stimulus category-selective visual regions have been identified during visual detection and discrimination, it is not known if similar neural mechanisms apply to other tasks such as visual search. The current work tested the hypothesis that high-level frontal regions, previously implicated in expectation and visual imagery of object categories, interact with visual regions associated with object recognition during visual search. Using functional magnetic resonance imaging, subjects searched for a specific object that varied in size and location within a complex natural scene. A model-free, spatial-independent component analysis isolated multiple task-related components, one of which included visual cortex, as well as a cluster within ventromedial prefrontal cortex (vmPFC), consistent with the engagement of both top-down and bottom-up processes. Analyses of psychophysiological interactions showed increased functional connectivity between vmPFC and object-sensitive lateral occipital cortex (LOC), and results from dynamic causal modeling and Bayesian Model Selection suggested bidirectional connections between vmPFC and LOC that were positively modulated by the task. Using image-guided diffusion-tensor imaging, functionally seeded, probabilistic white-matter tracts between vmPFC and LOC, which presumably underlie this effective interconnectivity, were also observed. These connectivity findings extend previous models of visual search processes to include specific frontal–occipital neuronal interactions during a natural and complex search task. PMID:22708993
Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2016-01-14
Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia.
Pathways for smiling, disgust and fear recognition in blindsight patients.
Gerbella, Marzio; Caruana, Fausto; Rizzolatti, Giacomo
2017-08-31
The aim of the present review is to discuss the localization of circuits that allow recognition of emotional facial expressions in blindsight patients. Because recognition of facial expressions is function of different centers, and their localization is not always clear, we decided to discuss here three emotional facial expression - smiling, disgust, and fear - whose anatomical localization in the pregenual sector of the anterior cingulate cortex (pACC), anterior insula (AI), and amygdala, respectively, is well established. We examined, then, the possible pathways that may convey affective visual information to these centers following lesions of V1. We concluded that the pathway leading to pACC, AI, and amygdala involves the deep layers of the superior colliculus, the medial pulvinar, and the superior temporal sulcus region. We suggest that this visual pathway provides an image of the observed affective faces, which, although deteriorated, is sufficient to determine some overt behavior, but not to provide conscious experience of the presented stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.
Figure-ground segregation in a recurrent network architecture.
Roelfsema, Pieter R; Lamme, Victor A F; Spekreijse, Henk; Bosch, Holger
2002-05-15
Here we propose a model of how the visual brain segregates textured scenes into figures and background. During texture segregation, locations where the properties of texture elements change abruptly are assigned to boundaries, whereas image regions that are relatively homogeneous are grouped together. Boundary detection and grouping of image regions require different connection schemes, which are accommodated in a single network architecture by implementing them in different layers. As a result, all units carry signals related to boundary detection as well as grouping of image regions, in accordance with cortical physiology. Boundaries yield an early enhancement of network responses, but at a later point, an entire figural region is grouped together, because units that respond to it are labeled with enhanced activity. The model predicts which image regions are preferentially perceived as figure or as background and reproduces the spatio-temporal profile of neuronal activity in the visual cortex during texture segregation in intact animals, as well as in animals with cortical lesions.
Sensory experience modifies feature map relationships in visual cortex
Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S
2016-01-01
The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531
Cortical visual prostheses: from microstimulation to functional percept
NASA Astrophysics Data System (ADS)
Najarpour Foroushani, Armin; Pack, Christopher C.; Sawan, Mohamad
2018-04-01
Cortical visual prostheses are intended to restore vision by targeted electrical stimulation of the visual cortex. The perception of spots of light, called phosphenes, resulting from microstimulation of the visual pathway, suggests the possibility of creating meaningful percept made of phosphenes. However, to date electrical stimulation of V1 has still not resulted in perception of phosphenated images that goes beyond punctate spots of light. In this review, we summarize the clinical and experimental progress that has been made in generating phosphenes and modulating their associated perceptual characteristics in human and macaque primary visual cortex (V1). We focus specifically on the effects of different microstimulation parameters on perception and we analyse key challenges facing the generation of meaningful artificial percepts. Finally, we propose solutions to these challenges based on the application of supervised learning of population codes for spatial stimulation of visual cortex.
Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P
1996-09-01
The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.
Chao, Owen Y; Huston, Joseph P; Li, Jay-Shake; Wang, An-Li; de Souza Silva, Maria A
2016-05-01
The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory. © 2015 Wiley Periodicals, Inc.
Poore, Joshua C.; Barbey, Aron K.; Krueger, Frank; Solomon, Jeffrey; Lipsky, Robert H.; Hodgkinson, Colin A.; Goldman, David; Grafman, Jordan
2012-01-01
This study examined the role of orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC) plasticity in controlling implicit and explicit social biases. Normal controls and patients with varied OFC and DLPFC lesion size and single nucleotide polymorphisms (SNPs) in the brain-derived neurotrophic factor (BDNF) gene, which promotes (methionine–valine [Met/Val] SNP) or stifles (valine–valine [Val/Val] SNP) plasticity in damaged PFC regions, completed measures of implicit and explicit social bias. Patients and controls demonstrated comparable levels of implicit bias, but patients with Met/Val SNPs exhibited less implicit bias when they had smaller OFC lesions compared with Val/Val patients with similar size lesions and those with large OFC lesions. Both patients and controls demonstrated patterns of explicit bias consistent with hypotheses. Patients with Met/Val SNPs exhibited less explicit bias when they had smaller DLPFC lesions sizes compared with Val/Val patients with similar size lesions and those with large DLPFC lesions. OFC lesion size and BDNF SNP type did not moderate explicit bias; DLPFC lesion size and BDNF SNP type did not moderate implicit bias (nor did other medial or lateral regions). Findings suggest that plasticity within specific PFC regions modulates the type and degree of social bias that individuals’ exhibit. PMID:22123938
From genes to brain oscillations: is the visual pathway the epigenetic clue to schizophrenia?
González-Hernández, J A; Pita-Alcorta, C; Cedeño, I R
2006-01-01
Molecular data and gene expression data and recently mitochondrial genes and possible epigenetic regulation by non-coding genes is revolutionizing our views on schizophrenia. Genes and epigenetic mechanisms are triggered by cell-cell interaction and by external stimuli. A number of recent clinical and molecular observations indicate that epigenetic factors may be operational in the origin of the illness. Based on the molecular insights, gene expression profiles and epigenetic regulation of gene, we went back to the neurophysiology (brain oscillations) and found a putative role of the visual experiences (i.e. visual stimuli) as epigenetic factor. The functional evidences provided here, establish a direct link between the striate and extrastriate unimodal visual cortex and the neurobiology of the schizophrenia. This result support the hypothesis that 'visual experience' has a potential role as epigenetic factor and contribute to trigger and/or to maintain the progression of the schizophrenia. In this case, candidate genes sensible for the visual 'insult' may be located within the visual cortex including associative areas, while the integrity of the visual pathway before reaching the primary visual cortex is preserved. The same effect can be perceived if target genes are localised within the visual pathway, which actually, is more sensitive for 'insult' during the early life than the cortex per se. If this process affects gene expression at these sites a stably sensory specific 'insult', i.e. distorted visual information, is entering the visual system and expanded to fronto-temporo-parietal multimodal areas even from early maturation periods. The difference in the timing of postnatal neuroanatomical events between such areas and the primary visual cortex in humans (with the formers reaching the same development landmarks later in life than the latter) is 'optimal' to establish an abnormal 'cell- communication' mediated by the visual system that may further interfere with the local physiology. In this context the strategy to search target genes need to be rearrangement and redirected to visual-related genes. Otherwise, psychophysics studies combining functional neuroimage, and electrophysiology are strongly recommended, for the search of epigenetic clues that will allow to carrier gene association studies in schizophrenia.
Zeitoun, Jack H.; Kim, Hyungtae
2017-01-01
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011
Wang, Min; Yang, Ping; Wan, Chaoyang; Jin, Zhenlan; Zhang, Junjun; Li, Ling
2018-01-01
The contents of working memory (WM) can affect the subsequent visual search performance, resulting in either beneficial or cost effects, when the visual search target is included in or spatially dissociated from the memorized contents, respectively. The right dorsolateral prefrontal cortex (rDLPFC) and the right posterior parietal cortex (rPPC) have been suggested to be associated with the congruence/incongruence effects of the WM content and the visual search target. Thus, in the present study, we investigated the role of the dorsolateral prefrontal cortex and the PPC in controlling the interaction between WM and attention during a visual search, using repetitive transcranial magnetic stimulation (rTMS). Subjects maintained a color in WM while performing a search task. The color cue contained the target (valid), the distractor (invalid) or did not reappear in the search display (neutral). Concurrent stimulation with the search onset showed that relative to rTMS over the vertex, rTMS over rPPC and rDLPFC further decreased the search reaction time, when the memory cue contained the search target. The results suggest that the rDLPFC and the rPPC are critical for controlling WM biases in human visual attention.
Anderson, L A; Christianson, G B; Linden, J F
2009-02-03
Cytochrome oxidase (CYO) and acetylcholinesterase (AChE) staining density varies across the cortical layers in many sensory areas. The laminar variations likely reflect differences between the layers in levels of metabolic activity and cholinergic modulation. The question of whether these laminar variations differ between primary sensory cortices has never been systematically addressed in the same set of animals, since most studies of sensory cortex focus on a single sensory modality. Here, we compared the laminar distribution of CYO and AChE activity in the primary auditory, visual, and somatosensory cortices of the mouse, using Nissl-stained sections to define laminar boundaries. Interestingly, for both CYO and AChE, laminar patterns of enzyme activity were similar in the visual and somatosensory cortices, but differed in the auditory cortex. In the visual and somatosensory areas, staining densities for both enzymes were highest in layers III/IV or IV and in lower layer V. In the auditory cortex, CYO activity showed a reliable peak only at the layer III/IV border, while AChE distribution was relatively homogeneous across layers. These results suggest that laminar patterns of metabolic activity and cholinergic influence are similar in the mouse visual and somatosensory cortices, but differ in the auditory cortex.
Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas
2012-01-01
Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489
Development of orientation tuning in simple cells of primary visual cortex
Moore, Bartlett D.
2012-01-01
Orientation selectivity and its development are basic features of visual cortex. The original model of orientation selectivity proposes that elongated simple cell receptive fields are constructed from convergent input of an array of lateral geniculate nucleus neurons. However, orientation selectivity of simple cells in the visual cortex is generally greater than the linear contributions based on projections from spatial receptive field profiles. This implies that additional selectivity may arise from intracortical mechanisms. The hierarchical processing idea implies mainly linear connections, whereas cortical contributions are generally considered to be nonlinear. We have explored development of orientation selectivity in visual cortex with a focus on linear and nonlinear factors in a population of anesthetized 4-wk postnatal kittens and adult cats. Linear contributions are estimated from receptive field maps by which orientation tuning curves are generated and bandwidth is quantified. Nonlinear components are estimated as the magnitude of the power function relationship between responses measured from drifting sinusoidal gratings and those predicted from the spatial receptive field. Measured bandwidths for kittens are slightly larger than those in adults, whereas predicted bandwidths are substantially broader. These results suggest that relatively strong nonlinearities in early postnatal stages are substantially involved in the development of orientation tuning in visual cortex. PMID:22323631
Structural and functional changes across the visual cortex of a patient with visual form agnosia.
Bridge, Holly; Thomas, Owen M; Minini, Loredana; Cavina-Pratesi, Cristiana; Milner, A David; Parker, Andrew J
2013-07-31
Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements. We present the first accurate quantification of the changes in thickness across DF's occipital cortex, finding the most substantial loss in the lateral occipital cortex (LOC). There are reduced white matter connections between LOC and other areas. Functional measures show pockets of activity that survive within structurally damaged areas. The topographic mapping of visual areas showed that ordered retinotopic maps were evident for DF in the ventral portions of visual cortical areas V1, V2, V3, and hV4. Although V1 shows evidence of topographic order in its dorsal portion, such maps could not be found in the dorsal parts of V2 and V3. We conclude that it is not possible to understand fully the deficits in object perception in visual-form agnosia without the exploitation of both structural and functional measurements. Our results also highlight for DF the cortical routes through which visual information is able to pass to support her well-documented abilities to use visual information to guide actions.
The Anatomy of Non-conscious Recognition Memory.
Rosenthal, Clive R; Soto, David
2016-11-01
Cortical regions as early as primary visual cortex have been implicated in recognition memory. Here, we outline the challenges that this presents for neurobiological accounts of recognition memory. We conclude that understanding the role of early visual cortex (EVC) in this process will require the use of protocols that mask stimuli from visual awareness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Serial functional imaging poststroke reveals visual cortex reorganization.
Brodtmann, Amy; Puce, Aina; Darby, David; Donnan, Geoffrey
2009-02-01
Visual cortical reorganization following injury remains poorly understood. The authors performed serial functional magnetic resonance imaging (fMRI) on patients with visual cortex infarction to evaluate early and late striate, ventral, and dorsal extrastriate cortical activation. Patients were studied with fMRI within 10 days and at 6 months. The authors used a high-level visual activation task designed to activate the ventral extrastriate cortex. These data were compared to those of age-appropriate healthy control participants. The results from 24 healthy control individuals (mean age 65.7 +/- SE 3.6 years, range 32-89) were compared to those from 5 stroke patients (mean age 73.8 +/- SE 7 years, range 49-86). Patients had infarcts involving the striate and ventral extrastriate cortex. Patient activation patterns were markedly different to controls. Bilateral striate and ventral extrastriate activation was reduced at both sessions, but dorsal extrastriate activated voxel counts remained comparable to controls. Conversely, mean percent magnetic resonance signal change increased in dorsal sites. These data provide strong evidence of bilateral poststroke functional depression of striate and ventral extrastriate cortices. Possible utilization or surrogacy of the dorsal visual system was demonstrated following stroke. This activity could provide a target for novel visual rehabilitation therapies.
Alekseichuk, Ivan; Diers, Kersten; Paulus, Walter; Antal, Andrea
2016-10-15
The aim of this study was to investigate if the blood oxygenation level-dependent (BOLD) changes in the visual cortex can be used as biomarkers reflecting the online and offline effects of transcranial electrical stimulation (tES). Anodal transcranial direct current stimulation (tDCS) and 10Hz transcranial alternating current stimulation (tACS) were applied for 10min duration over the occipital cortex of healthy adults during the presentation of different visual stimuli, using a crossover, double-blinded design. Control experiments were also performed, in which sham stimulation as well as another electrode montage were used. Anodal tDCS over the visual cortex induced a small but significant further increase in BOLD response evoked by a visual stimulus; however, no aftereffect was observed. Ten hertz of tACS did not result in an online effect, but in a widespread offline BOLD decrease over the occipital, temporal, and frontal areas. These findings demonstrate that tES during visual perception affects the neuronal metabolism, which can be detected with functional magnetic resonance imaging (fMRI). Copyright © 2016 Elsevier Inc. All rights reserved.
Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk
2017-02-01
Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.
Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J
2016-01-01
Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.
Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis
van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.
2016-01-01
Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964
Stropahl, Maren; Plotz, Karsten; Schönfeld, Rüdiger; Lenarz, Thomas; Sandmann, Pascale; Yovel, Galit; De Vos, Maarten; Debener, Stefan
2015-11-01
There is converging evidence that the auditory cortex takes over visual functions during a period of auditory deprivation. A residual pattern of cross-modal take-over may prevent the auditory cortex to adapt to restored sensory input as delivered by a cochlear implant (CI) and limit speech intelligibility with a CI. The aim of the present study was to investigate whether visual face processing in CI users activates auditory cortex and whether this has adaptive or maladaptive consequences. High-density electroencephalogram data were recorded from CI users (n=21) and age-matched normal hearing controls (n=21) performing a face versus house discrimination task. Lip reading and face recognition abilities were measured as well as speech intelligibility. Evaluation of event-related potential (ERP) topographies revealed significant group differences over occipito-temporal scalp regions. Distributed source analysis identified significantly higher activation in the right auditory cortex for CI users compared to NH controls, confirming visual take-over. Lip reading skills were significantly enhanced in the CI group and appeared to be particularly better after a longer duration of deafness, while face recognition was not significantly different between groups. However, auditory cortex activation in CI users was positively related to face recognition abilities. Our results confirm a cross-modal reorganization for ecologically valid visual stimuli in CI users. Furthermore, they suggest that residual takeover, which can persist even after adaptation to a CI is not necessarily maladaptive. Copyright © 2015 Elsevier Inc. All rights reserved.
Callan, Daniel E.; Jones, Jeffery A.; Callan, Akiko
2014-01-01
Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex (PMC) has been shown to be active during both observation and execution of action (“Mirror System” properties), and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI) study, participants identified vowels produced by a speaker in audio-visual (saw the speaker's articulating face and heard her voice), visual only (only saw the speaker's articulating face), and audio only (only heard the speaker's voice) conditions with varying audio signal-to-noise ratios in order to determine the regions of the PMC involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the functional magnetic resonance imaging (fMRI) analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and PMC. The left ventral inferior premotor cortex (PMvi) showed properties of multimodal (audio-visual) enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex (PMvs/PMd) did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the PMC are involved with mapping unimodal (in this case visual) sensory features of the speech signal with articulatory speech gestures. PMID:24860526
Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis.
Marshall, Randolph S; Asllani, Iris; Pavol, Marykay A; Cheung, Ying-Kuen; Lazar, Ronald M
2017-01-01
Cortical thinning is a potentially important biomarker, but the pathophysiology in cerebrovascular disease is unknown. We investigated the association between regional cortical blood flow and regional cortical thickness in patients with asymptomatic unilateral high-grade internal carotid artery disease without stroke. Twenty-nine patients underwent high resolution anatomical and single-delay, pseudocontinuous arterial spin labeling magnetic resonance imaging with partial volume correction to assess gray matter baseline flow. Cortical thickness was estimated using Freesurfer software, followed by co-registration onto each patient's cerebral blood flow image space. Paired t-tests assessed regional cerebral blood flow in motor cortex (supplied by the carotid artery) and visual cortex (indirectly supplied by the carotid) on the occluded and unoccluded side. Pearson correlations were calculated between cortical thickness and regional cerebral blood flow, along with age, hypertension, diabetes and white matter hyperintensity volume. Multiple regression and generalized estimating equation were used to predict cortical thickness bilaterally and in each hemisphere separately. Cortical blood flow correlated with thickness in motor cortex bilaterally (p = 0.0002), and in the occluded and unoccluded sides individually; age (p = 0.002) was also a predictor of cortical thickness in the motor cortex. None of the variables predicted cortical thickness in visual cortex. Blood flow was significantly lower on the occluded versus unoccluded side in the motor cortex (p<0.0001) and in the visual cortex (p = 0.018). On average, cortex was thinner on the side of occlusion in motor but not in visual cortex. The association between cortical blood flow and cortical thickness in carotid arterial territory with greater thinning on the side of the carotid occlusion suggests that altered cerebral hemodynamics is a factor in cortical thinning.
Markers of Alzheimer's Disease in Primary Visual Cortex in Normal Aging in Mice
Perez-Hernández, Montserrat; Torres-Romero, Abigail; Gorostieta-Salas, Elisa; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo
2017-01-01
Aging is the principal risk factor for the development of Alzheimer's disease (AD). The hallmarks of AD are accumulation of the amyloid-β peptide 1–42 (Aβ42) and abnormal hyperphosphorylation of Tau (p-Tau) protein in different areas of the brain and, more recently reported, in the visual cortex. Recently, Aβ42 peptide overproduction has been involved in visual loss. Similar to AD, in normal aging, there is a significant amyloid deposition related to the overactivation of the aforementioned mechanisms. However, the mechanisms associated with visual loss secondary to age-induced visual cortex affectation are not completely understood. Young and aged mice were used as model to analyze the presence of Aβ42, p-Tau, glial-acidic fibrillary protein (GFAP), and presenilin-2, one of the main enzymes involved in Aβ42 production. Our results show a significant increase of Aβ42 deposition in aged mice in the following cells and/or tissues: endothelial cells and blood vessels and neurons of the visual cortex; they also show an increase of the expression of GFAP and presenilin-2 in this region. These results provide a comprehensive framework for the role of Aβ42 in visual loss due to inflammation present with aging and offer some clues for fruitful avenues for the study of healthy aging. PMID:29138750
Anodal tDCS to V1 blocks visual perceptual learning consolidation.
Peters, Megan A K; Thompson, Benjamin; Merabet, Lotfi B; Wu, Allan D; Shams, Ladan
2013-06-01
This study examined the effects of visual cortex transcranial direct current stimulation (tDCS) on visual processing and learning. Participants performed a contrast detection task on two consecutive days. Each session consisted of a baseline measurement followed by measurements made during active or sham stimulation. On the first day, one group received anodal stimulation to primary visual cortex (V1), while another received cathodal stimulation. Stimulation polarity was reversed for these groups on the second day. The third (control) group of subjects received sham stimulation on both days. No improvements or decrements in contrast sensitivity relative to the same-day baseline were observed during real tDCS, nor was any within-session learning trend observed. However, task performance improved significantly from Day 1 to Day 2 for the participants who received cathodal tDCS on Day 1 and for the sham group. No such improvement was found for the participants who received anodal stimulation on Day 1, indicating that anodal tDCS blocked overnight consolidation of visual learning, perhaps through engagement of inhibitory homeostatic plasticity mechanisms or alteration of the signal-to-noise ratio within stimulated cortex. These results show that applying tDCS to the visual cortex can modify consolidation of visual learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Global Image Dissimilarity in Macaque Inferotemporal Cortex Predicts Human Visual Search Efficiency
Sripati, Arun P.; Olson, Carl R.
2010-01-01
Finding a target in a visual scene can be easy or difficult depending on the nature of the distractors. Research in humans has suggested that search is more difficult the more similar the target and distractors are to each other. However, it has not yielded an objective definition of similarity. We hypothesized that visual search performance depends on similarity as determined by the degree to which two images elicit overlapping patterns of neuronal activity in visual cortex. To test this idea, we recorded from neurons in monkey inferotemporal cortex (IT) and assessed visual search performance in humans using pairs of images formed from the same local features in different global arrangements. The ability of IT neurons to discriminate between two images was strongly predictive of the ability of humans to discriminate between them during visual search, accounting overall for 90% of the variance in human performance. A simple physical measure of global similarity – the degree of overlap between the coarse footprints of a pair of images – largely explains both the neuronal and the behavioral results. To explain the relation between population activity and search behavior, we propose a model in which the efficiency of global oddball search depends on contrast-enhancing lateral interactions in high-order visual cortex. PMID:20107054
Dormal, Giulia; Lepore, Franco; Harissi-Dagher, Mona; Albouy, Geneviève; Bertone, Armando; Rossion, Bruno
2014-01-01
Visual deprivation leads to massive reorganization in both the structure and function of the occipital cortex, raising crucial challenges for sight restoration. We tracked the behavioral, structural, and neurofunctional changes occurring in an early and severely visually impaired patient before and 1.5 and 7 mo after sight restoration with magnetic resonance imaging. Robust presurgical auditory responses were found in occipital cortex despite residual preoperative vision. In primary visual cortex, crossmodal auditory responses overlapped with visual responses and remained elevated even 7 mo after surgery. However, these crossmodal responses decreased in extrastriate occipital regions after surgery, together with improved behavioral vision and with increases in both gray matter density and neural activation in low-level visual regions. Selective responses in high-level visual regions involved in motion and face processing were observable even before surgery and did not evolve after surgery. Taken together, these findings demonstrate that structural and functional reorganization of occipital regions are present in an individual with a long-standing history of severe visual impairment and that such reorganizations can be partially reversed by visual restoration in adulthood. PMID:25520432
Mental Symptoms in Huntington's Disease and a Possible Primary Aminergic Neuron Lesion
NASA Astrophysics Data System (ADS)
Mann, J. John; Stanley, Michael; Gershon, Samuel; Rossor, M.
1980-12-01
Monoamine oxidase activity was higher in the cerebral cortex and basal ganglia of patients dying from Huntington's disease than in controls. Enzyme kinetics and multiple substrate studies indicated that the increased activity was due to elevated concentrations of monoamine oxidase type B. Concentrations of homovanillic acid were increased in the cerebral cortex but not in the basal ganglia of brains of patients with Huntington's disease. These changes may represent a primary aminergic lesion that could underlie some of the mental symptoms of this disease.
Sadato, Norihiro; Okada, Tomohisa; Kubota, Kiyokazu; Yonekura, Yoshiharu
2004-04-08
The occipital cortex of blind subjects is known to be activated during tactile discrimination tasks such as Braille reading. To investigate whether this is due to long-term learning of Braille or to sensory deafferentation, we used fMRI to study tactile discrimination tasks in subjects who had recently lost their sight and never learned Braille. The occipital cortex of the blind subjects without Braille training was activated during the tactile discrimination task, whereas that of control sighted subjects was not. This finding suggests that the activation of the visual cortex of the blind during performance of a tactile discrimination task may be due to sensory deafferentation, wherein a competitive imbalance favors the tactile over the visual modality.
Campbell, Paul T; Kruse, Kevin R; Kroll, Christopher R; Patterson, Janet Y; Esposito, Michele J
2015-09-01
Coronary stent deployment outcomes can be negatively impacted by inaccurate lesion measurement and inappropriate stent length selection (SLS). We compared visual estimate of these parameters to those provided by the CorPath 200® Robotic PCI System. Sixty consecutive patients who underwent coronary stent placement utilizing the CorPath System were evaluated. The treating physician assessed orthogonal images and provided visual estimates of lesion length and SLS. The robotic system was then used for the same measures. SLS was considered to be accurate when visual estimate and robotic measures were in agreement. Visual estimate SLSs were considered to be "short" or "long" if they were below or above the robotic-selected stents, respectively. Only 35% (21/60) of visually estimated lesions resulted in accurate SLS, whereas 33% (20/60) and 32% (19/60) of the visually estimated SLSs were long and short, respectively. In 5 cases (8.3%), 1 less stent was placed based on the robotic lesion measurement being shorter than the visual estimate. Visual estimate assessment of lesion length and SLS is highly variable with 65% of the cases being inaccurately measured when compared to objective measures obtained from the robotic system. The 32% of the cases where lesions were visually estimated to be short represents cases that often require the use of extra stents after the full lesion is not covered by 1 stent [longitudinal geographic miss (LGM)]. Further, these data showed that the use of the robotic system prevented the use of extra stents in 8.3% of the cases. Measurement of lesions with robotic PCI may reduce measurement errors, need for extra stents, and LGM. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel
2010-01-01
Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272
Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory.
Bergmann, Johanna; Genç, Erhan; Kohler, Axel; Singer, Wolf; Pearson, Joel
2016-01-01
Despite the immense processing power of the human brain, working memory storage is severely limited, and the neuroanatomical basis of these limitations has remained elusive. Here, we show that the stable storage limits of visual working memory for over 9 s are bound by the precise gray matter volume of primary visual cortex (V1), defined by fMRI retinotopic mapping. Individuals with a bigger V1 tended to have greater visual working memory storage. This relationship was present independently for both surface size and thickness of V1 but absent in V2, V3 and for non-visual working memory measures. Additional whole-brain analyses confirmed the specificity of the relationship to V1. Our findings indicate that the size of primary visual cortex plays a critical role in limiting what we can hold in mind, acting like a gatekeeper in constraining the richness of working mental function. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Visual enhancing of tactile perception in the posterior parietal cortex.
Ro, Tony; Wallace, Ruth; Hagedorn, Judith; Farnè, Alessandro; Pienkos, Elizabeth
2004-01-01
The visual modality typically dominates over our other senses. Here we show that after inducing an extreme conflict in the left hand between vision of touch (present) and the feeling of touch (absent), sensitivity to touch increases for several minutes after the conflict. Transcranial magnetic stimulation of the posterior parietal cortex after this conflict not only eliminated the enduring visual enhancement of touch, but also impaired normal tactile perception. This latter finding demonstrates a direct role of the parietal lobe in modulating tactile perception as a result of the conflict between these senses. These results provide evidence for visual-to-tactile perceptual modulation and demonstrate effects of illusory vision of touch on touch perception through a long-lasting modulatory process in the posterior parietal cortex.
Association Between Traumatic Brain Injury-Related Brain Lesions and Long-term Caregiver Burden.
Guevara, Andrea Brioschi; Demonet, Jean-Francois; Polejaeva, Elena; Knutson, Kristine M; Wassermann, Eric M; Grafman, Jordan; Krueger, Frank
2016-01-01
To investigate the association between traumatic brain injury (TBI)-related brain lesions and long-term caregiver burden in relation to dysexecutive syndrome. National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland. A total of 256 participants: 105 combat veterans with TBI, 23 healthy control combat veterans (HCv), and 128 caregivers. Caregiver burden assessed by the Zarit Burden Interview at 40 years postinjury. Participants with penetrating TBI were compared with HCv on perceived caregiver burden and neuropsychological assessment measures. Data of computed tomographic scans (overlay lesion maps of participants with a penetrating TBI whose caregivers have a significantly high burden) and behavioral statistical analyses were combined to identify brain lesions associated with caregiver burden. Burden was greater in caregivers of veterans with TBI than in caregivers of HCv. Caregivers of participants with lesions affecting cognitive and behavioral indicators of dysexecutive syndrome (ie, left dorsolateral prefrontal cortex and dorsal anterior cingulate cortex) showed greater long-term burden than caregivers of participants with lesions elsewhere in the brain. The TBI-related brain lesions have a lasting effect on long-term caregiver burden due to cognitive and behavioral factors associated with dysexecutive syndrome.
Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada
2013-01-01
Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031
Activation of color-selective areas of the visual cortex in a blind synesthete.
Steven, Megan S; Hansen, Peter C; Blakemore, Colin
2006-02-01
Many areas of the visual cortex are activated when blind people are stimulated naturally through other sensory modalities (e.g., haptically; Sadato et al., 1996). While this extraneous activation of visual areas via other senses in normal blind people might have functional value (Kauffman et al., 2002; Lessard et al., 1998), it does not lead to conscious visual experiences. On the other hand, electrical stimulation of the primary visual cortex in the blind does produce illusory visual phosphenes (Brindley and Lewin, 1968). Here we provide the first evidence that high-level visual areas not only retain their specificity for particular visual characteristics in people who have been blind for long periods, but that activation of these areas can lead to visual sensations. We used fMRI to demonstrate activity in visual cortical areas specifically related to illusory colored and spatially located visual percepts in a synesthetic man who has been completely blind for 10 years. No such differential activations were seen in late-blind or sighted non-synesthetic controls; neither were these areas activated during color-imagery in the late-blind synesthete, implying that this subject's synesthesia is truly a perceptual experience.
Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.
Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P
2016-01-01
Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Sasaki, Kazumasu; Mutoh, Tatsushi; Nakamura, Kazuhiro; Kojima, Ikuho; Taki, Yasuyuki; Suarez, Jose Ignacio; Ishikawa, Tatsuya
2017-07-13
Experimental subarachnoid hemorrhage (SAH) by endovascular filament perforation method is used widely in mice, but it sometimes present acute cerebral infarctions with varied magnitude and anatomical location. This study aimed to determine the prevalence and location of the acute ischemic injury in this experimental model. Male C57BL/6 mice were subjected to SAH by endovascular perforation. Distribution of SAH was defined by T2*-weighted images within 1h after SAH. Prevalence and location of acute infarction were assessed by diffusion-weighted MR images on day 1 after the induction. Among 72 mice successfully acquired post-SAH MR images, 29 (40%) developed acute infarction. Location of the infarcts was classified into either single infarct (ipsilateral cortex, n=12; caudate putamen, n=3; hippocampus, n=1) or multiple lesions (cortex and caudate putamen, n=6; cortex and hippocampus, n=2; cortex, hippocampus and thalamus/hypothalamus, n=3; bilateral cortex, n=2). The mortality rate within 24h was significantly higher in mice with multiple infarcts than those with single lesion (30% versus 0%; P=0.03). Distribution of the ischemic lesion positively correlated with MRI-evidenced SAH grading (r 2 =0.31, P=0.0002). Experimental SAH immediately after the vessel perforation can induce acute cerebral infarction in varying vascular territories, resulting in increased mortality. The present model may in part, help researchers to interpret the mechanism of clinically-evidenced early multiple combined infarction. Copyright © 2017 Elsevier B.V. All rights reserved.
Visual discrimination training improves Humphrey perimetry in chronic cortically induced blindness.
Cavanaugh, Matthew R; Huxlin, Krystel R
2017-05-09
To assess if visual discrimination training improves performance on visual perimetry tests in chronic stroke patients with visual cortex involvement. 24-2 and 10-2 Humphrey visual fields were analyzed for 17 chronic cortically blind stroke patients prior to and following visual discrimination training, as well as in 5 untrained, cortically blind controls. Trained patients practiced direction discrimination, orientation discrimination, or both, at nonoverlapping, blind field locations. All pretraining and posttraining discrimination performance and Humphrey fields were collected with online eye tracking, ensuring gaze-contingent stimulus presentation. Trained patients recovered ∼108 degrees 2 of vision on average, while untrained patients spontaneously improved over an area of ∼16 degrees 2 . Improvement was not affected by patient age, time since lesion, size of initial deficit, or training type, but was proportional to the amount of training performed. Untrained patients counterbalanced their improvements with worsening of sensitivity over ∼9 degrees 2 of their visual field. Worsening was minimal in trained patients. Finally, although discrimination performance improved at all trained locations, changes in Humphrey sensitivity occurred both within trained regions and beyond, extending over a larger area along the blind field border. In adults with chronic cortical visual impairment, the blind field border appears to have enhanced plastic potential, which can be recruited by gaze-controlled visual discrimination training to expand the visible field. Our findings underscore a critical need for future studies to measure the effects of vision restoration approaches on perimetry in larger cohorts of patients. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Anterior prefrontal cortex contributes to action selection through tracking of recent reward trends
Kovach, Christopher K.; Daw, Nathaniel; Rudrauf, David; Tranel, Daniel; O’Doherty, John P.; Adolphs, Ralph
2012-01-01
The functions of prefrontal cortex remain enigmatic, especially so for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task-switching and memory. A predominant current theory regarding the most anterior sector, frontopolar cortex (FPC), is that it is involved in exploring alternate courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a 4-armed bandit task known from neuroimaging studies to activate FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments. PMID:22723683
Ford, Judith M; Palzes, Vanessa A; Roach, Brian J; Potkin, Steven G; van Erp, Theo G M; Turner, Jessica A; Mueller, Bryon A; Calhoun, Vincent D; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G; Preda, Adrian; McEwen, Sarah C; Mathalon, Daniel H
2015-01-01
While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ford, Judith M.; Palzes, Vanessa A.; Roach, Brian J.; Potkin, Steven G.; van Erp, Theo G. M.; Turner, Jessica A.; Mueller, Bryon A.; Calhoun, Vincent D.; Voyvodic, Jim; Belger, Aysenil; Bustillo, Juan; Vaidya, Jatin G.; Preda, Adrian; McEwen, Sarah C.; Mathalon, Daniel H.
2015-01-01
Introduction: While auditory verbal hallucinations (AH) are a cardinal symptom of schizophrenia, people with a diagnosis of schizophrenia (SZ) may also experience visual hallucinations (VH). In a retrospective analysis of a large sample of SZ and healthy controls (HC) studied as part of the functional magnetic resonance imaging (fMRI) Biomedical Informatics Research Network (FBIRN), we asked if SZ who endorsed experiencing VH during clinical interviews had greater connectivity between visual cortex and limbic structures than SZ who did not endorse experiencing VH. Methods: We analyzed resting state fMRI data from 162 SZ and 178 age- and gender-matched HC. SZ were sorted into groups according to clinical ratings on AH and VH: SZ with VH (VH-SZ; n = 45), SZ with AH but no VH (AH-SZ; n = 50), and SZ with neither AH nor VH (NoH-SZ; n = 67). Our primary analysis was seed based, extracting connectivity between visual cortex and the amygdala (because of its role in fear and negative emotion) and visual cortex and the hippocampus (because of its role in memory). Results: Compared with the other groups, VH-SZ showed hyperconnectivity between the amygdala and visual cortex, specifically BA18, with no differences in connectivity among the other groups. In a voxel-wise, whole brain analysis comparing VH-SZ with AH-SZ, the amygdala was hyperconnected to left temporal pole and inferior frontal gyrus in VH-SZ, likely due to their more severe thought broadcasting. Conclusions: VH-SZ have hyperconnectivity between subcortical areas subserving emotion and cortical areas subserving higher order visual processing, providing biological support for distressing VH in schizophrenia. PMID:24619536