Sample records for visual cortical processing

  1. Mapping the “What” and “Where” Visual Cortices and Their Atrophy in Alzheimer's Disease: Combined Activation Likelihood Estimation with Voxel-Based Morphometry

    PubMed Central

    Deng, Yanjia; Shi, Lin; Lei, Yi; Liang, Peipeng; Li, Kuncheng; Chu, Winnie C. W.; Wang, Defeng

    2016-01-01

    The human cortical regions for processing high-level visual (HLV) functions of different categories remain ambiguous, especially in terms of their conjunctions and specifications. Moreover, the neurobiology of declined HLV functions in patients with Alzheimer's disease (AD) has not been fully investigated. This study provides a functionally sorted overview of HLV cortices for processing “what” and “where” visual perceptions and it investigates their atrophy in AD and MCI patients. Based upon activation likelihood estimation (ALE), brain regions responsible for processing five categories of visual perceptions included in “what” and “where” visions (i.e., object, face, word, motion, and spatial visions) were analyzed, and subsequent contrast analyses were performed to show regions with conjunctive and specific activations for processing these visual functions. Next, based on the resulting ALE maps, the atrophy of HLV cortices in AD and MCI patients was evaluated using voxel-based morphometry. Our ALE results showed brain regions for processing visual perception across the five categories, as well as areas of conjunction and specification. Our comparisons of gray matter (GM) volume demonstrated atrophy of three “where” visual cortices in late MCI group and extensive atrophy of HLV cortices (25 regions in both “what” and “where” visual cortices) in AD group. In addition, the GM volume of atrophied visual cortices in AD and MCI subjects was found to be correlated to the deterioration of overall cognitive status and to the cognitive performances related to memory, execution, and object recognition functions. In summary, these findings may add to our understanding of HLV network organization and of the evolution of visual perceptual dysfunction in AD as the disease progresses. PMID:27445770

  2. Top-down modulation of visual and auditory cortical processing in aging.

    PubMed

    Guerreiro, Maria J S; Eck, Judith; Moerel, Michelle; Evers, Elisabeth A T; Van Gerven, Pascal W M

    2015-02-01

    Age-related cognitive decline has been accounted for by an age-related deficit in top-down attentional modulation of sensory cortical processing. In light of recent behavioral findings showing that age-related differences in selective attention are modality dependent, our goal was to investigate the role of sensory modality in age-related differences in top-down modulation of sensory cortical processing. This question was addressed by testing younger and older individuals in several memory tasks while undergoing fMRI. Throughout these tasks, perceptual features were kept constant while attentional instructions were varied, allowing us to devise all combinations of relevant and irrelevant, visual and auditory information. We found no top-down modulation of auditory sensory cortical processing in either age group. In contrast, we found top-down modulation of visual cortical processing in both age groups, and this effect did not differ between age groups. That is, older adults enhanced cortical processing of relevant visual information and suppressed cortical processing of visual distractors during auditory attention to the same extent as younger adults. The present results indicate that older adults are capable of suppressing irrelevant visual information in the context of cross-modal auditory attention, and thereby challenge the view that age-related attentional and cognitive decline is due to a general deficits in the ability to suppress irrelevant information. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    PubMed

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  4. ERP Evidence of Visualization at Early Stages of Visual Processing

    ERIC Educational Resources Information Center

    Page, Jonathan W.; Duhamel, Paul; Crognale, Michael A.

    2011-01-01

    Recent neuroimaging research suggests that early visual processing circuits are activated similarly during visualization and perception but have not demonstrated that the cortical activity is similar in character. We found functional equivalency in cortical activity by recording evoked potentials while color and luminance patterns were viewed and…

  5. The effect of early visual deprivation on the neural bases of multisensory processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2015-06-01

    Developmental vision is deemed to be necessary for the maturation of multisensory cortical circuits. Thus far, this has only been investigated in animal studies, which have shown that congenital visual deprivation markedly reduces the capability of neurons to integrate cross-modal inputs. The present study investigated the effect of transient congenital visual deprivation on the neural mechanisms of multisensory processing in humans. We used functional magnetic resonance imaging to compare responses of visual and auditory cortical areas to visual, auditory and audio-visual stimulation in cataract-reversal patients and normally sighted controls. The results showed that cataract-reversal patients, unlike normally sighted controls, did not exhibit multisensory integration in auditory areas. Furthermore, cataract-reversal patients, but not normally sighted controls, exhibited lower visual cortical processing within visual cortex during audio-visual stimulation than during visual stimulation. These results indicate that congenital visual deprivation affects the capability of cortical areas to integrate cross-modal inputs in humans, possibly because visual processing is suppressed during cross-modal stimulation. Arguably, the lack of vision in the first months after birth may result in a reorganization of visual cortex, including the suppression of noisy visual input from the deprived retina in order to reduce interference during auditory processing. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A new neural framework for visuospatial processing.

    PubMed

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Mishkin, Mortimer

    2011-04-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.

  7. A new neural framework for visuospatial processing

    PubMed Central

    Kravitz, Dwight J.; Saleem, Kadharbatcha S.; Baker, Chris I.; Mishkin, Mortimer

    2012-01-01

    The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a ‘What’ pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception (‘Where’), more recent accounts suggest it primarily serves non-conscious visually guided action (‘How’). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively. PMID:21415848

  8. Mismatch Negativity with Visual-only and Audiovisual Speech

    PubMed Central

    Ponton, Curtis W.; Bernstein, Lynne E.; Auer, Edward T.

    2009-01-01

    The functional organization of cortical speech processing is thought to be hierarchical, increasing in complexity and proceeding from primary sensory areas centrifugally. The current study used the mismatch negativity (MMN) obtained with electrophysiology (EEG) to investigate the early latency period of visual speech processing under both visual-only (VO) and audiovisual (AV) conditions. Current density reconstruction (CDR) methods were used to model the cortical MMN generator locations. MMNs were obtained with VO and AV speech stimuli at early latencies (approximately 82-87 ms peak in time waveforms relative to the acoustic onset) and in regions of the right lateral temporal and parietal cortices. Latencies were consistent with bottom-up processing of the visible stimuli. We suggest that a visual pathway extracts phonetic cues from visible speech, and that previously reported effects of AV speech in classical early auditory areas, given later reported latencies, could be attributable to modulatory feedback from visual phonetic processing. PMID:19404730

  9. Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.

    PubMed

    Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel

    2015-08-15

    When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. When seeing outweighs feeling: a role for prefrontal cortex in passive control of negative affect in blindsight.

    PubMed

    Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk

    2009-11-01

    Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity.

  11. When seeing outweighs feeling: a role for prefrontal cortex in passive control of negative affect in blindsight

    PubMed Central

    Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk

    2009-01-01

    Affective neuroscience has been strongly influenced by the view that a ‘feeling’ is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients’ response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients’ phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity. PMID:19767414

  12. Visual Field Map Clusters in High-Order Visual Processing: Organization of V3A/V3B and a New Cloverleaf Cluster in the Posterior Superior Temporal Sulcus

    PubMed Central

    Barton, Brian; Brewer, Alyssa A.

    2017-01-01

    The cortical hierarchy of the human visual system has been shown to be organized around retinal spatial coordinates throughout much of low- and mid-level visual processing. These regions contain visual field maps (VFMs) that each follows the organization of the retina, with neighboring aspects of the visual field processed in neighboring cortical locations. On a larger, macrostructural scale, groups of such sensory cortical field maps (CFMs) in both the visual and auditory systems are organized into roughly circular cloverleaf clusters. CFMs within clusters tend to share properties such as receptive field distribution, cortical magnification, and processing specialization. Here we use fMRI and population receptive field (pRF) modeling to investigate the extent of VFM and cluster organization with an examination of higher-level visual processing in temporal cortex and compare these measurements to mid-level visual processing in dorsal occipital cortex. In human temporal cortex, the posterior superior temporal sulcus (pSTS) has been implicated in various neuroimaging studies as subserving higher-order vision, including face processing, biological motion perception, and multimodal audiovisual integration. In human dorsal occipital cortex, the transverse occipital sulcus (TOS) contains the V3A/B cluster, which comprises two VFMs subserving mid-level motion perception and visuospatial attention. For the first time, we present the organization of VFMs in pSTS in a cloverleaf cluster. This pSTS cluster contains four VFMs bilaterally: pSTS-1:4. We characterize these pSTS VFMs as relatively small at ∼125 mm2 with relatively large pRF sizes of ∼2–8° of visual angle across the central 10° of the visual field. V3A and V3B are ∼230 mm2 in surface area, with pRF sizes here similarly ∼1–8° of visual angle across the same region. In addition, cortical magnification measurements show that a larger extent of the pSTS VFM surface areas are devoted to the peripheral visual field than those in the V3A/B cluster. Reliability measurements of VFMs in pSTS and V3A/B reveal that these cloverleaf clusters are remarkably consistent and functionally differentiable. Our findings add to the growing number of measurements of widespread sensory CFMs organized into cloverleaf clusters, indicating that CFMs and cloverleaf clusters may both be fundamental organizing principles in cortical sensory processing. PMID:28293182

  13. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    PubMed

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  14. A Survey of Parents of Children with Cortical or Cerebral Visual Impairment

    ERIC Educational Resources Information Center

    Jackel, Bernadette; Wilson, Michelle; Hartmann, Elizabeth

    2010-01-01

    Cortical or cerebral visual impairment (CVI) can result when the visual pathways and visual processing areas of the brain have been damaged. Children with CVI may have difficulty finding an object among other objects, viewing in the distance, orienting themselves in space, going from grass to pavement or other changes in surface, and copying…

  15. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques.

    PubMed

    Gias, Carlos; Jones, Myles; Keegan, David; Adamson, Peter; Greenwood, John; Lund, Ray; Martindale, John; Johnston, David; Berwick, Jason; Mayhew, John; Coffey, Peter

    2007-04-01

    The aim of this study was to determine the extent of cortical functional preservation following retinal pigment epithelium (RPE) transplantation in the Royal College of Surgeons (RCS) rat using single-wavelength optical imaging and spectroscopy. The cortical responses to visual stimulation in transplanted rats at 6 months post-transplantation were compared with those from age-matched untreated dystrophic and non-dystrophic rats. Our results show that cortical responses were evoked in non-dystrophic rats to both luminance changes and pattern stimulation, whereas no response was found in untreated dystrophic animals to any of the visual stimuli tested. In contrast, a cortical response was elicited in most of the transplanted rats to luminance changes and in many of those a response was also evoked to pattern stimulation. Although the transplanted rats did not respond to high spatial frequency information we found evidence of preservation in the cortical processing of luminance changes and low spatial frequency stimulation. Anatomical sections of transplanted rat retinas confirmed the capacity of RPE transplantation to rescue photoreceptors. Good correlation was found between photoreceptor survival and the extent of cortical function preservation determined with optical imaging techniques. This study determined the efficacy of RPE transplantation to preserve visual cortical processing and established optical imaging as a powerful technique for its assessment.

  16. Visual Processing Recruits the Auditory Cortices in Prelingually Deaf Children and Influences Cochlear Implant Outcomes.

    PubMed

    Liang, Maojin; Chen, Yuebo; Zhao, Fei; Zhang, Junpeng; Liu, Jiahao; Zhang, Xueyuan; Cai, Yuexin; Chen, Suijun; Li, Xianghui; Chen, Ling; Zheng, Yiqing

    2017-09-01

    Although visual processing recruitment of the auditory cortices has been reported previously in prelingually deaf children who have a rapidly developing brain and no auditory processing, the visual processing recruitment of auditory cortices might be different in processing different visual stimuli and may affect cochlear implant (CI) outcomes. Ten prelingually deaf children, 4 to 6 years old, were recruited for the study. Twenty prelingually deaf subjects, 4 to 6 years old with CIs for 1 year, were also recruited; 10 with well-performing CIs, 10 with poorly performing CIs. Ten age and sex-matched normal-hearing children were recruited as controls. Visual ("sound" photo [photograph with imaginative sound] and "nonsound" photo [photograph without imaginative sound]) evoked potentials were measured in all subjects. P1 at Oz and N1 at the bilateral temporal-frontal areas (FC3 and FC4) were compared. N1 amplitudes were strongest in the deaf children, followed by those with poorly performing CIs, controls and those with well-performing CIs. There was no significant difference between controls and those with well-performing CIs. "Sound" photo stimuli evoked a stronger N1 than "nonsound" photo stimuli. Further analysis showed that only at FC4 in deaf subjects and those with poorly performing CIs were the N1 responses to "sound" photo stimuli stronger than those to "nonsound" photo stimuli. No significant difference was found for the FC3 and FC4 areas. No significant difference was found in N1 latencies and P1 amplitudes or latencies. The results indicate enhanced visual recruitment of the auditory cortices in prelingually deaf children. Additionally, the decrement in visual recruitment of auditory cortices was related to good CI outcomes.

  17. Enhanced Visual Cortical Activation for Emotional Stimuli is Preserved in Patients with Unilateral Amygdala Resection

    PubMed Central

    Edmiston, E. Kale; McHugo, Maureen; Dukic, Mildred S.; Smith, Stephen D.; Abou-Khalil, Bassel; Eggers, Erica

    2013-01-01

    Emotionally arousing pictures induce increased activation of visual pathways relative to emotionally neutral images. A predominant model for the preferential processing and attention to emotional stimuli posits that the amygdala modulates sensory pathways through its projections to visual cortices. However, recent behavioral studies have found intact perceptual facilitation of emotional stimuli in individuals with amygdala damage. To determine the importance of the amygdala to modulations in visual processing, we used functional magnetic resonance imaging to examine visual cortical blood oxygenation level-dependent (BOLD) signal in response to emotionally salient and neutral images in a sample of human patients with unilateral medial temporal lobe resection that included the amygdala. Adults with right (n = 13) or left (n = 5) medial temporal lobe resections were compared with demographically matched healthy control participants (n = 16). In the control participants, both aversive and erotic images produced robust BOLD signal increases in bilateral primary and secondary visual cortices relative to neutral images. Similarly, all patients with amygdala resections showed enhanced visual cortical activations to erotic images both ipsilateral and contralateral to the lesion site. All but one of the amygdala resection patients showed similar enhancements to aversive stimuli and there were no significant group differences in visual cortex BOLD responses in patients compared with controls for either aversive or erotic images. Our results indicate that neither the right nor left amygdala is necessary for the heightened visual cortex BOLD responses observed during emotional stimulus presentation. These data challenge an amygdalo-centric model of emotional modulation and suggest that non-amygdalar processes contribute to the emotional modulation of sensory pathways. PMID:23825407

  18. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas

    2012-01-01

    Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489

  19. Spatial integration and cortical dynamics.

    PubMed

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  20. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.

    PubMed

    Ester, Edward F; Sutterer, David W; Serences, John T; Awh, Edward

    2016-08-03

    Control over visual selection has long been framed in terms of a dichotomy between "source" and "site," where top-down feedback signals originating in frontoparietal cortical areas modulate or bias sensory processing in posterior visual areas. This distinction is motivated in part by observations that frontoparietal cortical areas encode task-level variables (e.g., what stimulus is currently relevant or what motor outputs are appropriate), while posterior sensory areas encode continuous or analog feature representations. Here, we present evidence that challenges this distinction. We used fMRI, a roving searchlight analysis, and an inverted encoding model to examine representations of an elementary feature property (orientation) across the entire human cortical sheet while participants attended either the orientation or luminance of a peripheral grating. Orientation-selective representations were present in a multitude of visual, parietal, and prefrontal cortical areas, including portions of the medial occipital cortex, the lateral parietal cortex, and the superior precentral sulcus (thought to contain the human homolog of the macaque frontal eye fields). Additionally, representations in many-but not all-of these regions were stronger when participants were instructed to attend orientation relative to luminance. Collectively, these findings challenge models that posit a strict segregation between sources and sites of attentional control on the basis of representational properties by demonstrating that simple feature values are encoded by cortical regions throughout the visual processing hierarchy, and that representations in many of these areas are modulated by attention. Influential models of visual attention posit a distinction between top-down control and bottom-up sensory processing networks. These models are motivated in part by demonstrations showing that frontoparietal cortical areas associated with top-down control represent abstract or categorical stimulus information, while visual areas encode parametric feature information. Here, we show that multivariate activity in human visual, parietal, and frontal cortical areas encode representations of a simple feature property (orientation). Moreover, representations in several (though not all) of these areas were modulated by feature-based attention in a similar fashion. These results provide an important challenge to models that posit dissociable top-down control and sensory processing networks on the basis of representational properties. Copyright © 2016 the authors 0270-6474/16/368188-12$15.00/0.

  1. High-resolution eye tracking using V1 neuron activity

    PubMed Central

    McFarland, James M.; Bondy, Adrian G.; Cumming, Bruce G.; Butts, Daniel A.

    2014-01-01

    Studies of high-acuity visual cortical processing have been limited by the inability to track eye position with sufficient accuracy to precisely reconstruct the visual stimulus on the retina. As a result, studies on primary visual cortex (V1) have been performed almost entirely on neurons outside the high-resolution central portion of the visual field (the fovea). Here we describe a procedure for inferring eye position using multi-electrode array recordings from V1 coupled with nonlinear stimulus processing models. We show that this method can be used to infer eye position with one arc-minute accuracy – significantly better than conventional techniques. This allows for analysis of foveal stimulus processing, and provides a means to correct for eye-movement induced biases present even outside the fovea. This method could thus reveal critical insights into the role of eye movements in cortical coding, as well as their contribution to measures of cortical variability. PMID:25197783

  2. Disentangling How the Brain is “Wired” in Cortical/Cerebral Visual Impairment (CVI)

    PubMed Central

    Merabet, Lotfi B.; Mayer, D. Luisa; Bauer, Corinna M.; Wright, Darick; Kran, Barry S.

    2017-01-01

    Cortical/cerebral visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment/blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher order visual processing and attention. Together, these visual impairments can dramatically impact upon a child’s development and well-being. Given the complex neurological underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. PMID:28941531

  3. Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment.

    PubMed

    Merabet, Lotfi B; Mayer, D Luisa; Bauer, Corinna M; Wright, Darick; Kran, Barry S

    2017-05-01

    Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A magnetoencephalography study of visual processing of pain anticipation.

    PubMed

    Machado, Andre G; Gopalakrishnan, Raghavan; Plow, Ela B; Burgess, Richard C; Mosher, John C

    2014-07-15

    Anticipating pain is important for avoiding injury; however, in chronic pain patients, anticipatory behavior can become maladaptive, leading to sensitization and limiting function. Knowledge of networks involved in pain anticipation and conditioning over time could help devise novel, better-targeted therapies. With the use of magnetoencephalography, we evaluated in 10 healthy subjects the neural processing of pain anticipation. Anticipatory cortical activity elicited by consecutive visual cues that signified imminent painful stimulus was compared with cues signifying nonpainful and no stimulus. We found that the neural processing of visually evoked pain anticipation involves the primary visual cortex along with cingulate and frontal regions. Visual cortex could quickly and independently encode and discriminate between visual cues associated with pain anticipation and no pain during preconscious phases following object presentation. When evaluating the effect of task repetition on participating cortical areas, we found that activity of prefrontal and cingulate regions was mostly prominent early on when subjects were still naive to a cue's contextual meaning. Visual cortical activity was significant throughout later phases. Although visual cortex may precisely and time efficiently decode cues anticipating pain or no pain, prefrontal areas establish the context associated with each cue. These findings have important implications toward processes involved in pain anticipation and maladaptive pain conditioning. Copyright © 2014 the American Physiological Society.

  5. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children.

    PubMed

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5-7, 8-10, and 11-15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance.

  6. Distinct Visual Evoked Potential Morphological Patterns for Apparent Motion Processing in School-Aged Children

    PubMed Central

    Campbell, Julia; Sharma, Anu

    2016-01-01

    Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5–7, 8–10, and 11–15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance. PMID:27445738

  7. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task.

    PubMed

    Chang, Yu-Cherng C; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N; Hämäläinen, Matti S; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150-350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition.

  8. Left-Lateralized Contributions of Saccades to Cortical Activity During a One-Back Word Recognition Task

    PubMed Central

    Chang, Yu-Cherng C.; Khan, Sheraz; Taulu, Samu; Kuperberg, Gina; Brown, Emery N.; Hämäläinen, Matti S.; Temereanca, Simona

    2018-01-01

    Saccadic eye movements are an inherent component of natural reading, yet their contribution to information processing at subsequent fixation remains elusive. Here we use anatomically-constrained magnetoencephalography (MEG) to examine cortical activity following saccades as healthy human subjects engaged in a one-back word recognition task. This activity was compared with activity following external visual stimulation that mimicked saccades. A combination of procedures was employed to eliminate saccadic ocular artifacts from the MEG signal. Both saccades and saccade-like external visual stimulation produced early-latency responses beginning ~70 ms after onset in occipital cortex and spreading through the ventral and dorsal visual streams to temporal, parietal and frontal cortices. Robust differential activity following the onset of saccades vs. similar external visual stimulation emerged during 150–350 ms in a left-lateralized cortical network. This network included: (i) left lateral occipitotemporal (LOT) and nearby inferotemporal (IT) cortex; (ii) left posterior Sylvian fissure (PSF) and nearby multimodal cortex; and (iii) medial parietooccipital (PO), posterior cingulate and retrosplenial cortices. Moreover, this left-lateralized network colocalized with word repetition priming effects. Together, results suggest that central saccadic mechanisms influence a left-lateralized language network in occipitotemporal and temporal cortex above and beyond saccadic influences at preceding stages of information processing during visual word recognition. PMID:29867372

  9. Differential effect of visual motion adaption upon visual cortical excitability.

    PubMed

    Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer

    2017-03-01

    The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.

  10. Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas

    PubMed Central

    Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.

    2015-01-01

    During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839

  11. Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons.

    PubMed

    Panzeri, S; Rolls, E T; Battaglia, F; Lavis, R

    2001-11-01

    The speed of processing in the visual cortical areas can be fast, with for example the latency of neuronal responses increasing by only approximately 10 ms per area in the ventral visual system sequence V1 to V2 to V4 to inferior temporal visual cortex. This has led to the suggestion that rapid visual processing can only be based on the feedforward connections between cortical areas. To test this idea, we investigated the dynamics of information retrieval in multiple layer networks using a four-stage feedforward network modelled with continuous dynamics with integrate-and-fire neurons, and associative synaptic connections between stages with a synaptic time constant of 10 ms. Through the implementation of continuous dynamics, we found latency differences in information retrieval of only 5 ms per layer when local excitation was absent and processing was purely feedforward. However, information latency differences increased significantly when non-associative local excitation was included. We also found that local recurrent excitation through associatively modified synapses can contribute significantly to processing in as little as 15 ms per layer, including the feedforward and local feedback processing. Moreover, and in contrast to purely feed-forward processing, the contribution of local recurrent feedback was useful and approximately this rapid even when retrieval was made difficult by noise. These findings suggest that cortical information processing can benefit from recurrent circuits when the allowed processing time per cortical area is at least 15 ms long.

  12. Tagging cortical networks in emotion: a topographical analysis

    PubMed Central

    Keil, Andreas; Costa, Vincent; Smith, J. Carson; Sabatinelli, Dean; McGinnis, E. Menton; Bradley, Margaret M.; Lang, Peter J.

    2013-01-01

    Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re-entrant connectivity originating in higher-order cortical and/or limbic structures. The present study used dense-array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady-state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower-tier visual cortex, a network of occipito-temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. PMID:21954087

  13. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.

    PubMed

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2017-06-01

    Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.

  14. Functional neural substrates of posterior cortical atrophy patients.

    PubMed

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  15. Evidence for a basal temporal visual language center: cortical stimulation producing pure alexia.

    PubMed

    Mani, J; Diehl, B; Piao, Z; Schuele, S S; Lapresto, E; Liu, P; Nair, D R; Dinner, D S; Lüders, H O

    2008-11-11

    Dejerine and Benson and Geschwind postulated disconnection of the dominant angular gyrus from both visual association cortices as the basis for pure alexia, emphasizing disruption of white matter tracts in the dominant temporooccipital region. Recently functional imaging studies provide evidence for direct participation of basal temporal and occipital cortices in the cognitive process of reading. The exact location and function of these areas remain a matter of debate. To confirm the participation of the basal temporal region in reading. Extraoperative electrical stimulation of the dominant hemisphere was performed in three subjects using subdural electrodes, as part of presurgical evaluation for refractory epilepsy. Pure alexia was reproduced during cortical stimulation of the dominant posterior fusiform and inferior temporal gyri in all three patients. Stimulation resulted in selective reading difficulty with intact auditory comprehension and writing. Reading difficulty involved sentences and words with intact letter by letter reading. Picture naming difficulties were also noted at some electrodes. This region is located posterior to and contiguous with the basal temporal language area (BTLA) where stimulation resulted in global language dysfunction in visual and auditory realms. The location corresponded with the visual word form area described on functional MRI. These observations support the existence of a visual language area in the dominant fusiform and occipitotemporal gyri, contiguous with basal temporal language area. A portion of visual language area was exclusively involved in lexical processing while the other part of this region processed both lexical and nonlexical symbols.

  16. Cortical depth dependent population receptive field attraction by spatial attention in human V1.

    PubMed

    Klein, Barrie P; Fracasso, Alessio; van Dijk, Jelle A; Paffen, Chris L E; Te Pas, Susan F; Dumoulin, Serge O

    2018-04-27

    Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could underlie pRF attraction in a given cortical area. Here, we use sub-millimeter ultra-high field functional MRI to measure pRF attraction across cortical depth and assess the contribution of feed forward and feedback signals to pRF attraction. In line with previous findings, we find consistent attraction of pRFs with voluntary spatial attention in V1. When assessed as a function of cortical depth, we find pRF attraction in every cortical portion (deep, center and superficial), although the attraction is strongest in deep cortical portions (near the gray-white matter boundary). Following the organization of feed forward and feedback processing across V1, we speculate that a mixture of feed forward and feedback processing underlies pRF attraction in V1. Specifically, we propose that feedback processing contributes to the pRF attraction in deep cortical portions. Copyright © 2018. Published by Elsevier Inc.

  17. Relationship between cortical state and spiking activity in the lateral geniculate nucleus of marmosets

    PubMed Central

    Pietersen, Alexander N.J.; Cheong, Soon Keen; Munn, Brandon; Gong, Pulin; Solomon, Samuel G.

    2017-01-01

    Key points How parallel are the primate visual pathways? In the present study, we demonstrate that parallel visual pathways in the dorsal lateral geniculate nucleus (LGN) show distinct patterns of interaction with rhythmic activity in the primary visual cortex (V1).In the V1 of anaesthetized marmosets, the EEG frequency spectrum undergoes transient changes that are characterized by fluctuations in delta‐band EEG power.We show that, on multisecond timescales, spiking activity in an evolutionary primitive (koniocellular) LGN pathway is specifically linked to these slow EEG spectrum changes. By contrast, on subsecond (delta frequency) timescales, cortical oscillations can entrain spiking activity throughout the entire LGN.Our results are consistent with the hypothesis that, in waking animals, the koniocellular pathway selectively participates in brain circuits controlling vigilance and attention. Abstract The major afferent cortical pathway in the visual system passes through the dorsal lateral geniculate nucleus (LGN), where nerve signals originating in the eye can first interact with brain circuits regulating visual processing, vigilance and attention. In the present study, we investigated how ongoing and visually driven activity in magnocellular (M), parvocellular (P) and koniocellular (K) layers of the LGN are related to cortical state. We recorded extracellular spiking activity in the LGN simultaneously with local field potentials (LFP) in primary visual cortex, in sufentanil‐anaesthetized marmoset monkeys. We found that asynchronous cortical states (marked by low power in delta‐band LFPs) are linked to high spike rates in K cells (but not P cells or M cells), on multisecond timescales. Cortical asynchrony precedes the increases in K cell spike rates by 1–3 s, implying causality. At subsecond timescales, the spiking activity in many cells of all (M, P and K) classes is phase‐locked to delta waves in the cortical LFP, and more cells are phase‐locked during synchronous cortical states than during asynchronous cortical states. The switch from low‐to‐high spike rates in K cells does not degrade their visual signalling capacity. By contrast, during asynchronous cortical states, the fidelity of visual signals transmitted by K cells is improved, probably because K cell responses become less rectified. Overall, the data show that slow fluctuations in cortical state are selectively linked to K pathway spiking activity, whereas delta‐frequency cortical oscillations entrain spiking activity throughout the entire LGN, in anaesthetized marmosets. PMID:28116750

  18. Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment

    PubMed Central

    Bauer, Corinna M.; Heidary, Gena; Koo, Bang-Bon; Killiany, Ronald J.; Bex, Peter; Merabet, Lotfi B.

    2014-01-01

    Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients. PMID:25087644

  19. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    PubMed Central

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  20. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    PubMed

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  1. Gain control by layer six in cortical circuits of vision.

    PubMed

    Olsen, Shawn R; Bortone, Dante S; Adesnik, Hillel; Scanziani, Massimo

    2012-02-22

    After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.

  2. Visual and proprioceptive interaction in patients with bilateral vestibular loss☆

    PubMed Central

    Cutfield, Nicholas J.; Scott, Gregory; Waldman, Adam D.; Sharp, David J.; Bronstein, Adolfo M.

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. PMID:25061564

  3. Visual and proprioceptive interaction in patients with bilateral vestibular loss.

    PubMed

    Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients.

  4. Visual Processing: Hungry Like the Mouse.

    PubMed

    Piscopo, Denise M; Niell, Cristopher M

    2016-09-07

    In this issue of Neuron, Burgess et al. (2016) explore how motivational state interacts with visual processing, by examining hunger modulation of food-associated visual responses in postrhinal cortical neurons and their inputs from amygdala. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Progressive posterior cortical dysfunction

    PubMed Central

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  6. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat.

    PubMed

    Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire

    2014-07-01

    The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.

  7. A Neural Theory of Visual Attention: Bridging Cognition and Neurophysiology

    ERIC Educational Resources Information Center

    Bundesen, Claus; Habekost, Thomas; Kyllingsbaek, Soren

    2005-01-01

    A neural theory of visual attention (NTVA) is presented. NTVA is a neural interpretation of C. Bundesen's (1990) theory of visual attention (TVA). In NTVA, visual processing capacity is distributed across stimuli by dynamic remapping of receptive fields of cortical cells such that more processing resources (cells) are devoted to behaviorally…

  8. M-Stream Deficits and Reading-Related Visual Processes in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Boden, Catherine; Giaschi, Deborah

    2007-01-01

    Some visual processing deficits in developmental dyslexia have been attributed to abnormalities in the subcortical M stream and/or the cortical dorsal stream of the visual pathways. The nature of the relationship between these visual deficits and reading is unknown. The purpose of the present article was to characterize reading-related perceptual…

  9. Color in the Cortex—single- and double-opponent cells

    PubMed Central

    Shapley, Robert; Hawken, Michael

    2011-01-01

    This is a review of the research during the past 25 years on cortical processing of color signals. At the beginning of the period the modular view of cortical processing predominated. However, at present an alternative view, that color and form are linked inextricably in visual cortical processing, is more persuasive than it seemed in 1985. Also, the role of the primary visual cortex, V1, in color processing now seems much larger than it did in 1985. The re-evaluation of the important role of V1 in color vision was caused in part by investigations of human V1 responses to color, measured with functional magnetic resonance imaging, fMRI, and in part by the results of numerous studies of single-unit neurophysiology in non-human primates. The neurophysiological results have highlighted the importance of double-opponent cells in V1. Another new concept is population coding of hue, saturation, and brightness in cortical neuronal population activity. PMID:21333672

  10. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  11. Patterns of cytochrome oxidase activity in the visual cortex of a South American opossum (Didelphis marsupialis aurita).

    PubMed

    Martinich, S; Rosa, M G; Rocha-Miranda, C E

    1990-01-01

    The normal pattern of cytochrome oxidase (CO) activity in the posterior cortical areas of the South American opossum (Didelphis marsupialis aurita) was assessed both in horizontal sections of flattened cortices and in transversal cortical sections. The tangential distribution of CO activity was uniformly high in the striate cortex. In the peristriate region alternating bands of dense and weak staining occupied all the cortical layers with the exception of layer I. This observation suggests the existence of a functional segregation of visual processing in the peristriate cortex of the opossum similar to that present in phylogenetically more recent groups.

  12. The role of pulvinar in the transmission of information in the visual hierarchy.

    PubMed

    Cortes, Nelson; van Vreeswijk, Carl

    2012-01-01

    VISUAL RECEPTIVE FIELD (RF) ATTRIBUTES IN VISUAL CORTEX OF PRIMATES HAVE BEEN EXPLAINED MAINLY FROM CORTICAL CONNECTIONS: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output presents much more sensitivity to contrast and has a similar level of contrast invariance of the tuning.

  13. The Role of Pulvinar in the Transmission of Information in the Visual Hierarchy

    PubMed Central

    Cortes, Nelson; van Vreeswijk, Carl

    2012-01-01

    Visual receptive field (RF) attributes in visual cortex of primates have been explained mainly from cortical connections: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure of nine areas is coupled to the system. Compared to the pure feedforward model, cortico-pulvino-cortical output presents much more sensitivity to contrast and has a similar level of contrast invariance of the tuning. PMID:22654750

  14. Visual Cortical Representation of Whole Words and Hemifield-split Word Parts.

    PubMed

    Strother, Lars; Coros, Alexandra M; Vilis, Tutis

    2016-02-01

    Reading requires the neural integration of visual word form information that is split between our retinal hemifields. We examined multiple visual cortical areas involved in this process by measuring fMRI responses while observers viewed words that changed or repeated in one or both hemifields. We were specifically interested in identifying brain areas that exhibit decreased fMRI responses as a result of repeated versus changing visual word form information in each visual hemifield. Our method yielded highly significant effects of word repetition in a previously reported visual word form area (VWFA) in occipitotemporal cortex, which represents hemifield-split words as whole units. We also identified a more posterior occipital word form area (OWFA), which represents word form information in the right and left hemifields independently and is thus both functionally and anatomically distinct from the VWFA. Both the VWFA and the OWFA were left-lateralized in our study and strikingly symmetric in anatomical location relative to known face-selective visual cortical areas in the right hemisphere. Our findings are consistent with the observation that category-selective visual areas come in pairs and support the view that neural mechanisms in left visual cortex--especially those that evolved to support the visual processing of faces--are developmentally malleable and become incorporated into a left-lateralized visual word form network that supports rapid word recognition and reading.

  15. Combining MRI and VEP imaging to isolate the temporal response of visual cortical areas

    NASA Astrophysics Data System (ADS)

    Carney, Thom; Ales, Justin; Klein, Stanley A.

    2008-02-01

    The human brain has well over 30 cortical areas devoted to visual processing. Classical neuro-anatomical as well as fMRI studies have demonstrated that early visual areas have a retinotopic organization whereby adjacent locations in visual space are represented in adjacent areas of cortex within a visual area. At the 2006 Electronic Imaging meeting we presented a method using sprite graphics to obtain high resolution retinotopic visual evoked potential responses using multi-focal m-sequence technology (mfVEP). We have used this method to record mfVEPs from up to 192 non overlapping checkerboard stimulus patches scaled such that each patch activates about 12 mm2 of cortex in area V1 and even less in V2. This dense coverage enables us to incorporate cortical folding constraints, given by anatomical MRI and fMRI results from the same subject, to isolate the V1 and V2 temporal responses. Moreover, the method offers a simple means of validating the accuracy of the extracted V1 and V2 time functions by comparing the results between left and right hemispheres that have unique folding patterns and are processed independently. Previous VEP studies have been contradictory as to which area responds first to visual stimuli. This new method accurately separates the signals from the two areas and demonstrates that both respond with essentially the same latency. A new method is introduced which describes better ways to isolate cortical areas using an empirically determined forward model. The method includes a novel steady state mfVEP and complex SVD techniques. In addition, this evolving technology is put to use examining how stimulus attributes differentially impact the response in different cortical areas, in particular how fast nonlinear contrast processing occurs. This question is examined using both state triggered kernel estimation (STKE) and m-sequence "conditioned kernels". The analysis indicates different contrast gain control processes in areas V1 and V2. Finally we show that our m-sequence multi-focal stimuli have advantages for integrating EEG and MEG for improved dipole localization.

  16. Comparison of spatiotemporal cortical activation pattern during visual perception of Korean, English, Chinese words: an event-related potential study.

    PubMed

    Kim, Kyung Hwan; Kim, Ja Hyun

    2006-02-20

    The aim of this study was to compare spatiotemporal cortical activation patterns during the visual perception of Korean, English, and Chinese words. The comparison of these three languages offers an opportunity to study the effect of written forms on cortical processing of visually presented words, because of partial similarity/difference among words of these languages, and the familiarity of native Koreans with these three languages at the word level. Single-character words and pictograms were excluded from the stimuli in order to activate neuronal circuitries that are involved only in word perception. Since a variety of cerebral processes are sequentially evoked during visual word perception, a high-temporal resolution is required and thus we utilized event-related potential (ERP) obtained from high-density electroencephalograms. The differences and similarities observed from statistical analyses of ERP amplitudes, the correlation between ERP amplitudes and response times, and the patterns of current source density, appear to be in line with demands of visual and semantic analysis resulting from the characteristics of each language, and the expected task difficulties for native Korean subjects.

  17. Altered long-range alpha-band synchronization during visual short-term memory retention in children born very preterm.

    PubMed

    Doesburg, Sam M; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Poskitt, Kenneth J; Moiseev, Alexander; Whitfield, Michael F; Synnes, Anne; Grunau, Ruth E

    2011-02-01

    Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Object-based attentional selection modulates anticipatory alpha oscillations

    PubMed Central

    Knakker, Balázs; Weiss, Béla; Vidnyánszky, Zoltán

    2015-01-01

    Visual cortical alpha oscillations are involved in attentional gating of incoming visual information. It has been shown that spatial and feature-based attentional selection result in increased alpha oscillations over the cortical regions representing sensory input originating from the unattended visual field and task-irrelevant visual features, respectively. However, whether attentional gating in the case of object based selection is also associated with alpha oscillations has not been investigated before. Here we measured anticipatory electroencephalography (EEG) alpha oscillations while participants were cued to attend to foveal face or word stimuli, the processing of which is known to have right and left hemispheric lateralization, respectively. The results revealed that in the case of simultaneously displayed, overlapping face and word stimuli, attending to the words led to increased power of parieto-occipital alpha oscillations over the right hemisphere as compared to when faces were attended. This object category-specific modulation of the hemispheric lateralization of anticipatory alpha oscillations was maintained during sustained attentional selection of sequentially presented face and word stimuli. These results imply that in the case of object-based attentional selection—similarly to spatial and feature-based attention—gating of visual information processing might involve visual cortical alpha oscillations. PMID:25628554

  19. Predicting Cortical Dark/Bright Asymmetries from Natural Image Statistics and Early Visual Transforms

    PubMed Central

    Cooper, Emily A.; Norcia, Anthony M.

    2015-01-01

    The nervous system has evolved in an environment with structure and predictability. One of the ubiquitous principles of sensory systems is the creation of circuits that capitalize on this predictability. Previous work has identified predictable non-uniformities in the distributions of basic visual features in natural images that are relevant to the encoding tasks of the visual system. Here, we report that the well-established statistical distributions of visual features -- such as visual contrast, spatial scale, and depth -- differ between bright and dark image components. Following this analysis, we go on to trace how these differences in natural images translate into different patterns of cortical input that arise from the separate bright (ON) and dark (OFF) pathways originating in the retina. We use models of these early visual pathways to transform natural images into statistical patterns of cortical input. The models include the receptive fields and non-linear response properties of the magnocellular (M) and parvocellular (P) pathways, with their ON and OFF pathway divisions. The results indicate that there are regularities in visual cortical input beyond those that have previously been appreciated from the direct analysis of natural images. In particular, several dark/bright asymmetries provide a potential account for recently discovered asymmetries in how the brain processes visual features, such as violations of classic energy-type models. On the basis of our analysis, we expect that the dark/bright dichotomy in natural images plays a key role in the generation of both cortical and perceptual asymmetries. PMID:26020624

  20. Early visual cortical structural changes in diabetic patients without diabetic retinopathy.

    PubMed

    Ferreira, Fábio S; Pereira, João M S; Reis, Aldina; Sanches, Mafalda; Duarte, João V; Gomes, Leonor; Moreno, Carolina; Castelo-Branco, Miguel

    2017-11-01

    It is known that diabetic patients have changes in cortical morphometry as compared to controls, but it remains to be clarified whether the visual cortex is a disease target, even when diabetes complications such as retinopathy are absent. Therefore, we compared type 2 diabetes patients without diabetic retinopathy with control subjects using magnetic resonance imaging to assess visual cortical changes when retinal damage is not yet present. We performed T1-weighted imaging in 24 type 2 diabetes patients without diabetic retinopathy and 27 age- and gender-matched controls to compare gray matter changes in the occipital cortex between groups using voxel based morphometry. Patients without diabetic retinopathy showed reduced gray matter volume in the occipital lobe when compared with controls. Reduced gray matter volume in the occipital cortex was found in diabetic patients without retinal damage. We conclude that cortical early visual processing regions may be affected in diabetic patients even before retinal damage occurs.

  1. Feature-Based Visual Short-Term Memory Is Widely Distributed and Hierarchically Organized.

    PubMed

    Dotson, Nicholas M; Hoffman, Steven J; Goodell, Baldwin; Gray, Charles M

    2018-06-15

    Feature-based visual short-term memory is known to engage both sensory and association cortices. However, the extent of the participating circuit and the neural mechanisms underlying memory maintenance is still a matter of vigorous debate. To address these questions, we recorded neuronal activity from 42 cortical areas in monkeys performing a feature-based visual short-term memory task and an interleaved fixation task. We find that task-dependent differences in firing rates are widely distributed throughout the cortex, while stimulus-specific changes in firing rates are more restricted and hierarchically organized. We also show that microsaccades during the memory delay encode the stimuli held in memory and that units modulated by microsaccades are more likely to exhibit stimulus specificity, suggesting that eye movements contribute to visual short-term memory processes. These results support a framework in which most cortical areas, within a modality, contribute to mnemonic representations at timescales that increase along the cortical hierarchy. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    PubMed

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  3. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields

    PubMed Central

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-01-01

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931

  4. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    PubMed

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  5. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals.

    PubMed

    Bonino, D; Ricciardi, E; Sani, L; Gentili, C; Vanello, N; Guazzelli, M; Vecchi, T; Pietrini, P

    2008-09-01

    In sighted individuals, both the visual and tactile version of the same spatial working memory task elicited neural responses in the dorsal "where" cortical pathway (Ricciardi et al., 2006). Whether the neural response during the tactile working memory task is due to visually-based spatial imagery or rather reflects a more abstract, supramodal organization of the dorsal cortical pathway remains to be determined. To understand the role of visual experience on the functional organization of the dorsal cortical stream, using functional magnetic resonance imaging (fMRI) here we examined brain response in four individuals with congenital or early blindness and no visual recollection, while they performed the same tactile spatial working memory task, a one-back recognition of 2D and 3D matrices. The blind subjects showed a significant activation in bilateral posterior parietal cortex, dorsolateral and inferior prefrontal areas, precuneus, lateral occipital cortex, and cerebellum. Thus, dorsal occipito-parietal areas are involved in mental imagery dealing with spatial components in subjects without prior visual experience and in response to a non-visual task. These data indicate that recruitment of the dorsal cortical pathway in response to the tactile spatial working memory task is not mediated by visually-based imagery and that visual experience is not a prerequisite for the development of a more abstract functional organization of the dorsal stream. These findings, along with previous data indicating a similar supramodal functional organization within the ventral cortical pathway and the motion processing brain regions, may contribute to explain how individuals who are born deprived of sight are able to interact effectively with the surrounding world.

  6. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex

    PubMed Central

    Bressler, David W.; Silver, Michael A.

    2010-01-01

    Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1 and IPS2) cortical areas. Additionally, one 5-minute run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy. PMID:20600961

  7. Cortical oscillations related to processing congruent and incongruent grapheme-phoneme pairs.

    PubMed

    Herdman, Anthony T; Fujioka, Takako; Chau, Wilkin; Ross, Bernhard; Pantev, Christo; Picton, Terence W

    2006-05-15

    In this study, we investigated changes in cortical oscillations following congruent and incongruent grapheme-phoneme stimuli. Hiragana graphemes and phonemes were simultaneously presented as congruent or incongruent audiovisual stimuli to native Japanese-speaking participants. The discriminative reaction time was 57 ms shorter for congruent than incongruent stimuli. Analysis of MEG responses using synthetic aperture magnetometry (SAM) revealed that congruent stimuli evoked larger 2-10 Hz activity in the left auditory cortex within the first 250 ms after stimulus onset, and smaller 2-16 Hz activity in bilateral visual cortices between 250 and 500 ms. These results indicate that congruent visual input can modify cortical activity in the left auditory cortex.

  8. "Visual" Cortex of Congenitally Blind Adults Responds to Syntactic Movement.

    PubMed

    Lane, Connor; Kanjlia, Shipra; Omaki, Akira; Bedny, Marina

    2015-09-16

    Human cortex is comprised of specialized networks that support functions, such as visual motion perception and language processing. How do genes and experience contribute to this specialization? Studies of plasticity offer unique insights into this question. In congenitally blind individuals, "visual" cortex responds to auditory and tactile stimuli. Remarkably, recent evidence suggests that occipital areas participate in language processing. We asked whether in blindness, occipital cortices: (1) develop domain-specific responses to language and (2) respond to a highly specialized aspect of language-syntactic movement. Nineteen congenitally blind and 18 sighted participants took part in two fMRI experiments. We report that in congenitally blind individuals, but not in sighted controls, "visual" cortex is more active during sentence comprehension than during a sequence memory task with nonwords, or a symbolic math task. This suggests that areas of occipital cortex become selective for language, relative to other similar higher-cognitive tasks. Crucially, we find that these occipital areas respond more to sentences with syntactic movement but do not respond to the difficulty of math equations. We conclude that regions within the visual cortex of blind adults are involved in syntactic processing. Our findings suggest that the cognitive function of human cortical areas is largely determined by input during development. Human cortex is made up of specialized regions that perform different functions, such as visual motion perception and language processing. How do genes and experience contribute to this specialization? Studies of plasticity show that cortical areas can change function from one sensory modality to another. Here we demonstrate that input during development can alter cortical function even more dramatically. In blindness a subset of "visual" areas becomes specialized for language processing. Crucially, we find that the same "visual" areas respond to a highly specialized and uniquely human aspect of language-syntactic movement. These data suggest that human cortex has broad functional capacity during development, and input plays a major role in determining functional specialization. Copyright © 2015 the authors 0270-6474/15/3512859-10$15.00/0.

  9. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    ERIC Educational Resources Information Center

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  10. Parallel processing of general and specific threat during early stages of perception

    PubMed Central

    2016-01-01

    Differential processing of threat can consummate as early as 100 ms post-stimulus. Moreover, early perception not only differentiates threat from non-threat stimuli but also distinguishes among discrete threat subtypes (e.g. fear, disgust and anger). Combining spatial-frequency-filtered images of fear, disgust and neutral scenes with high-density event-related potentials and intracranial source estimation, we investigated the neural underpinnings of general and specific threat processing in early stages of perception. Conveyed in low spatial frequencies, fear and disgust images evoked convergent visual responses with similarly enhanced N1 potentials and dorsal visual (middle temporal gyrus) cortical activity (relative to neutral cues; peaking at 156 ms). Nevertheless, conveyed in high spatial frequencies, fear and disgust elicited divergent visual responses, with fear enhancing and disgust suppressing P1 potentials and ventral visual (occipital fusiform) cortical activity (peaking at 121 ms). Therefore, general and specific threat processing operates in parallel in early perception, with the ventral visual pathway engaged in specific processing of discrete threats and the dorsal visual pathway in general threat processing. Furthermore, selectively tuned to distinctive spatial-frequency channels and visual pathways, these parallel processes underpin dimensional and categorical threat characterization, promoting efficient threat response. These findings thus lend support to hybrid models of emotion. PMID:26412811

  11. Compression and reflection of visually evoked cortical waves

    PubMed Central

    Xu, Weifeng; Huang, Xiaoying; Takagaki, Kentaroh; Wu, Jian-young

    2007-01-01

    Summary Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found novel visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was “compressed” when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked but not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing. PMID:17610821

  12. Visualization of migration of human cortical neurons generated from induced pluripotent stem cells.

    PubMed

    Bamba, Yohei; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami

    2017-09-01

    Neuronal migration is considered a key process in human brain development. However, direct observation of migrating human cortical neurons in the fetal brain is accompanied by ethical concerns and is a major obstacle in investigating human cortical neuronal migration. We established a novel system that enables direct visualization of migrating cortical neurons generated from human induced pluripotent stem cells (hiPSCs). We observed the migration of cortical neurons generated from hiPSCs derived from a control and from a patient with lissencephaly. Our system needs no viable brain tissue, which is usually used in slice culture. Migratory behavior of human cortical neuron can be observed more easily and more vividly by its fluorescence and glial scaffold than that by earlier methods. Our in vitro experimental system provides a new platform for investigating development of the human central nervous system and brain malformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Visual form-processing deficits: a global clinical classification.

    PubMed

    Unzueta-Arce, J; García-García, R; Ladera-Fernández, V; Perea-Bartolomé, M V; Mora-Simón, S; Cacho-Gutiérrez, J

    2014-10-01

    Patients who have difficulties recognising visual form stimuli are usually labelled as having visual agnosia. However, recent studies let us identify different clinical manifestations corresponding to discrete diagnostic entities which reflect a variety of deficits along the continuum of cortical visual processing. We reviewed different clinical cases published in medical literature as well as proposals for classifying deficits in order to provide a global perspective of the subject. Here, we present the main findings on the neuroanatomical basis of visual form processing and discuss the criteria for evaluating processing which may be abnormal. We also include an inclusive diagram of visual form processing deficits which represents the different clinical cases described in the literature. Lastly, we propose a boosted decision tree to serve as a guide in the process of diagnosing such cases. Although the medical community largely agrees on which cortical areas and neuronal circuits are involved in visual processing, future studies making use of new functional neuroimaging techniques will provide more in-depth information. A well-structured and exhaustive assessment of the different stages of visual processing, designed with a global view of the deficit in mind, will give a better idea of the prognosis and serve as a basis for planning personalised psychostimulation and rehabilitation strategies. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  14. Cortical reorganization in postlingually deaf cochlear implant users: Intra-modal and cross-modal considerations.

    PubMed

    Stropahl, Maren; Chen, Ling-Chia; Debener, Stefan

    2017-01-01

    With the advances of cochlear implant (CI) technology, many deaf individuals can partially regain their hearing ability. However, there is a large variation in the level of recovery. Cortical changes induced by hearing deprivation and restoration with CIs have been thought to contribute to this variation. The current review aims to identify these cortical changes in postlingually deaf CI users and discusses their maladaptive or adaptive relationship to the CI outcome. Overall, intra-modal and cross-modal reorganization patterns have been identified in postlingually deaf CI users in visual and in auditory cortex. Even though cross-modal activation in auditory cortex is considered as maladaptive for speech recovery in CI users, a similar activation relates positively to lip reading skills. Furthermore, cross-modal activation of the visual cortex seems to be adaptive for speech recognition. Currently available evidence points to an involvement of further brain areas and suggests that a focus on the reversal of visual take-over of the auditory cortex may be too limited. Future investigations should consider expanded cortical as well as multi-sensory processing and capture different hierarchical processing steps. Furthermore, prospective longitudinal designs are needed to track the dynamics of cortical plasticity that takes place before and after implantation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Cortical basis of communication: local computation, coordination, attention.

    PubMed

    Alexandre, Frederic

    2009-03-01

    Human communication emerges from cortical processing, known to be implemented on a regular repetitive neuronal substratum. The supposed genericity of cortical processing has elicited a series of modeling works in computational neuroscience that underline the information flows driven by the cortical circuitry. In the minimalist framework underlying the current theories for the embodiment of cognition, such a generic cortical processing is exploited for the coordination of poles of representation, as is reported in this paper for the case of visual attention. Interestingly, this case emphasizes how abstract internal referents are built to conform to memory requirements. This paper proposes that these referents are the basis for communication in humans, which is firstly a coordination and an attentional procedure with regard to their congeners.

  16. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology

    PubMed Central

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-01-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject’s body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a number of occipital lobe gyri even after accounting for these cofactors, but was again found to be more highly correlated with the frontal cortex than with the occipital cortex. These results indicate that eye volume explains only a small amount of variation in orbital and visual cortical volume, and that the eye and orbit are generally more structurally associated with the frontal lobes than they are functionally associated with the visual cortex of the occipital lobes. Results also demonstrate that these components of the visual system are highly complex and influenced by a multitude of factors in humans. PMID:26250048

  17. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  18. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

  19. A Patient with Posterior Cortical Atrophy Possesses a Novel Mutation in the Presenilin 1 Gene

    PubMed Central

    Sitek, Emilia J.; Narożańska, Ewa; Pepłońska, Beata; Filipek, Sławomir; Barczak, Anna; Styczyńska, Maria; Mlynarczyk, Krzysztof; Brockhuis, Bogna; Portelius, Erik; Religa, Dorota; Barcikowska, Maria

    2013-01-01

    Posterior cortical atrophy is a dementia syndrome with symptoms of cortical visual dysfunction, associated with amyloid plaques and neurofibrillary tangles predominantly affecting visual association cortex. Most patients diagnosed with posterior cortical atrophy will finally develop a typical Alzheimer's disease. However, there are a variety of neuropathological processes, which could lead towards a clinical presentation of posterior cortical atrophy. Mutations in the presenilin 1 gene, affecting the function of γ-secretase, are the most common genetic cause of familial, early-onset Alzheimer's disease. Here we present a patient with a clinical diagnosis of posterior cortical atrophy who harbors a novel Presenilin 1 mutation (I211M). In silico analysis predicts that the mutation could influence the interaction between presenilin 1 and presenilin1 enhancer-2 protein, a protein partner within the γ-secretase complex. These findings along with published literature support the inclusion of posterior cortical atrophy on the Alzheimer's disease spectrum. PMID:23593396

  20. Distinct and overlapping fMRI activation networks for processing of novel identities and locations of objects.

    PubMed

    Pihlajamäki, Maija; Tanila, Heikki; Könönen, Mervi; Hänninen, Tuomo; Aronen, Hannu J; Soininen, Hilkka

    2005-10-01

    The ventral visual stream processes information about the identity of objects ('what'), whereas the dorsal stream processes the spatial locations of objects ('where'). There is a corresponding, although disputed, distinction for the ventrolateral and dorsolateral prefrontal areas. Furthermore, there seems to be a distinction between the anterior and posterior medial temporal lobe (MTL) structures in the processing of novel items and new spatial arrangements, respectively. Functional differentiation of the intermediary mid-line cortical and temporal neocortical structures that communicate with the occipitotemporal, occipitoparietal, prefrontal, and MTL structures, however, is unclear. Therefore, in the present functional magnetic resonance imaging (fMRI) study, we examined whether the distinction among the MTL structures extends to these closely connected cortical areas. The most striking difference in the fMRI responses during visual presentation of changes in either items or their locations was the bilateral activation of the temporal lobe and ventrolateral prefrontal cortical areas for novel object identification in contrast to wide parietal and dorsolateral prefrontal activation for the novel locations of objects. An anterior-posterior distinction of fMRI responses similar to the MTL was observed in the cingulate/retrosplenial, and superior and middle temporal cortices. In addition to the distinct areas of activation, certain frontal, parietal, and temporo-occipital areas responded to both object and spatial novelty, suggesting a common attentional network for both types of changes in the visual environment. These findings offer new insights to the functional roles and intrinsic specialization of the cingulate/retrosplenial, and lateral temporal cortical areas in visuospatial cognition.

  1. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner

    PubMed Central

    Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.

    2013-01-01

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388

  2. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.

    PubMed

    Morrill, Ryan J; Hasenstaub, Andrea R

    2018-03-14

    The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.

  3. Plasticity of orientation preference maps in the visual cortex of adult cats.

    PubMed

    Godde, Ben; Leonhardt, Ralph; Cords, Sven M; Dinse, Hubert R

    2002-04-30

    In contrast to the high degree of experience-dependent plasticity usually exhibited by cortical representational maps, a number of experiments performed in visual cortex suggest that the basic layout of orientation preference maps is only barely susceptible to activity-dependent modifications. In fact, most of what we know about activity-dependent plasticity in adults comes from experiments in somatosensory, auditory, or motor cortex. Applying a stimulation protocol that has been proven highly effective in other cortical areas, we demonstrate here that enforced synchronous cortical activity induces major changes of orientation preference maps (OPMs) in adult cats. Combining optical imaging of intrinsic signals and electrophysiological single-cell recordings, we show that a few hours of intracortical microstimulation (ICMS) lead to an enlargement of the cortical representational zone at the ICMS site and an extensive restructuring of the entire OPM layout up to several millimeters away, paralleled by dramatic changes of pinwheel numbers and locations. At the single-cell level, we found that the preferred orientation was shifted toward the orientation of the ICMS site over a region of up to 4 mm. Our results show that manipulating the synchronicity of cortical activity locally without invoking training, attention, or reinforcement, OPMs undergo large-scale reorganization reminiscent of plastic changes observed for nonvisual cortical maps. However, changes were much more widespread and enduring. Such large-scale restructuring of the visual cortical networks indicates a substantial capability for activity-dependent plasticity of adult visual cortex and may provide the basis for cognitive learning processes.

  4. Functional MRI of a child with Alice in Wonderland syndrome during an episode of micropsia

    PubMed Central

    Brumm, Kathleen; Walenski, Matthew; Haist, Frank; Robbins, Shira L.; Granet, David B.; Love, Tracy

    2010-01-01

    Background Alice in Wonderland syndrome is a perceptual disorder involving brief, transient episodes of visual distortions (metamorphopsia) and can occur in conjunction with certain viral infections. We used functional magnetic resonance imaging to examine visual processing in a 12-year-old boy with viral-onset Alice in Wonderland syndrome during an episode of micropsia (reduction in the perceived size of a form). Methods Functional magnetic resonance imaging was conducted in response to a passive viewing task (reversing checkerboard) and an active viewing task (line-length decisions in the context of the Ponzo illusion). Results In both tasks, the child with Alice in Wonderland syndrome showed reduced activation in primary and extrastriate visual cortical regions but increased activation in parietal lobe cortical regions as compared to a matched control participant. Conclusions The active experience of micropsia in viral-onset Alice in Wonderland syndrome reflects aberrant activity in primary and extrastriate visual cortical regions as well as parietal cortices. The disparate patterns of activity in these regions are discussed in detail. PMID:20598927

  5. fMRI-based Multivariate Pattern Analyses Reveal Imagery Modality and Imagery Content Specific Representations in Primary Somatosensory, Motor and Auditory Cortices.

    PubMed

    de Borst, Aline W; de Gelder, Beatrice

    2017-08-01

    Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  7. Parallel, exhaustive processing underlies logarithmic search functions: Visual search with cortical magnification.

    PubMed

    Wang, Zhiyuan; Lleras, Alejandro; Buetti, Simona

    2018-04-17

    Our lab recently found evidence that efficient visual search (with a fixed target) is characterized by logarithmic Reaction Time (RT) × Set Size functions whose steepness is modulated by the similarity between target and distractors. To determine whether this pattern of results was based on low-level visual factors uncontrolled by previous experiments, we minimized the possibility of crowding effects in the display, compensated for the cortical magnification factor by magnifying search items based on their eccentricity, and compared search performance on such displays to performance on displays without magnification compensation. In both cases, the RT × Set Size functions were found to be logarithmic, and the modulation of the log slopes by target-distractor similarity was replicated. Consistent with previous results in the literature, cortical magnification compensation eliminated most target eccentricity effects. We conclude that the log functions and their modulation by target-distractor similarity relations reflect a parallel exhaustive processing architecture for early vision.

  8. Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli.

    PubMed

    Keil, Andreas; Stolarova, Margarita; Moratti, Stephan; Ray, William J

    2007-06-01

    The ability to react rapidly and efficiently to adverse stimuli is crucial for survival. Neuroscience and behavioral studies have converged to show that visual information associated with aversive content is processed quickly and accurately and is associated with rapid amplification of the neural responses. In particular, unpleasant visual information has repeatedly been shown to evoke increased cortical activity during early visual processing between 60 and 120 ms following the onset of a stimulus. However, the nature of these early responses is not well understood. Using neutral versus unpleasant colored pictures, the current report examines the time course of short-term changes in the human visual cortex when a subject is repeatedly exposed to simple grating stimuli in a classical conditioning paradigm. We analyzed changes in amplitude and synchrony of large-scale oscillatory activity across 2 days of testing, which included baseline measurements, 2 conditioning sessions, and a final extinction session. We found a gradual increase in amplitude and synchrony of very early cortical oscillations in the 20-35 Hz range across conditioning sessions, specifically for conditioned stimuli predicting aversive visual events. This increase for conditioned stimuli affected stimulus-locked cortical oscillations at a latency of around 60-90 ms and disappeared during extinction. Our findings suggest that reorganization of neural connectivity on the level of the visual cortex acts to optimize early perception of specific features indicative of emotional relevance.

  9. Supramodal processing optimizes visual perceptual learning and plasticity.

    PubMed

    Zilber, Nicolas; Ciuciu, Philippe; Gramfort, Alexandre; Azizi, Leila; van Wassenhove, Virginie

    2014-06-01

    Multisensory interactions are ubiquitous in cortex and it has been suggested that sensory cortices may be supramodal i.e. capable of functional selectivity irrespective of the sensory modality of inputs (Pascual-Leone and Hamilton, 2001; Renier et al., 2013; Ricciardi and Pietrini, 2011; Voss and Zatorre, 2012). Here, we asked whether learning to discriminate visual coherence could benefit from supramodal processing. To this end, three groups of participants were briefly trained to discriminate which of a red or green intermixed population of random-dot-kinematograms (RDKs) was most coherent in a visual display while being recorded with magnetoencephalography (MEG). During training, participants heard no sound (V), congruent acoustic textures (AV) or auditory noise (AVn); importantly, congruent acoustic textures shared the temporal statistics - i.e. coherence - of visual RDKs. After training, the AV group significantly outperformed participants trained in V and AVn although they were not aware of their progress. In pre- and post-training blocks, all participants were tested without sound and with the same set of RDKs. When contrasting MEG data collected in these experimental blocks, selective differences were observed in the dynamic pattern and the cortical loci responsive to visual RDKs. First and common to all three groups, vlPFC showed selectivity to the learned coherence levels whereas selectivity in visual motion area hMT+ was only seen for the AV group. Second and solely for the AV group, activity in multisensory cortices (mSTS, pSTS) correlated with post-training performances; additionally, the latencies of these effects suggested feedback from vlPFC to hMT+ possibly mediated by temporal cortices in AV and AVn groups. Altogether, we interpret our results in the context of the Reverse Hierarchy Theory of learning (Ahissar and Hochstein, 2004) in which supramodal processing optimizes visual perceptual learning by capitalizing on sensory-invariant representations - here, global coherence levels across sensory modalities. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Modeling a space-variant cortical representation for apparent motion.

    PubMed

    Wurbs, Jeremy; Mingolla, Ennio; Yazdanbakhsh, Arash

    2013-08-06

    Receptive field sizes of neurons in early primate visual areas increase with eccentricity, as does temporal processing speed. The fovea is evidently specialized for slow, fine movements while the periphery is suited for fast, coarse movements. In either the fovea or periphery discrete flashes can produce motion percepts. Grossberg and Rudd (1989) used traveling Gaussian activity profiles to model long-range apparent motion percepts. We propose a neural model constrained by physiological data to explain how signals from retinal ganglion cells to V1 affect the perception of motion as a function of eccentricity. Our model incorporates cortical magnification, receptive field overlap and scatter, and spatial and temporal response characteristics of retinal ganglion cells for cortical processing of motion. Consistent with the finding of Baker and Braddick (1985), in our model the maximum flash distance that is perceived as an apparent motion (Dmax) increases linearly as a function of eccentricity. Baker and Braddick (1985) made qualitative predictions about the functional significance of both stimulus and visual system parameters that constrain motion perception, such as an increase in the range of detectable motions as a function of eccentricity and the likely role of higher visual processes in determining Dmax. We generate corresponding quantitative predictions for those functional dependencies for individual aspects of motion processing. Simulation results indicate that the early visual pathway can explain the qualitative linear increase of Dmax data without reliance on extrastriate areas, but that those higher visual areas may serve as a modulatory influence on the exact Dmax increase.

  11. Neonatal Restriction of Tactile Inputs Leads to Long-Lasting Impairments of Cross-Modal Processing

    PubMed Central

    Röder, Brigitte; Hanganu-Opatz, Ileana L.

    2015-01-01

    Optimal behavior relies on the combination of inputs from multiple senses through complex interactions within neocortical networks. The ontogeny of this multisensory interplay is still unknown. Here, we identify critical factors that control the development of visual-tactile processing by combining in vivo electrophysiology with anatomical/functional assessment of cortico-cortical communication and behavioral investigation of pigmented rats. We demonstrate that the transient reduction of unimodal (tactile) inputs during a short period of neonatal development prior to the first cross-modal experience affects feed-forward subcortico-cortical interactions by attenuating the cross-modal enhancement of evoked responses in the adult primary somatosensory cortex. Moreover, the neonatal manipulation alters cortico-cortical interactions by decreasing the cross-modal synchrony and directionality in line with the sparsification of direct projections between primary somatosensory and visual cortices. At the behavioral level, these functional and structural deficits resulted in lower cross-modal matching abilities. Thus, neonatal unimodal experience during defined developmental stages is necessary for setting up the neuronal networks of multisensory processing. PMID:26600123

  12. Early visual processing is enhanced in the midluteal phase of the menstrual cycle.

    PubMed

    Lusk, Bethany R; Carr, Andrea R; Ranson, Valerie A; Bryant, Richard A; Felmingham, Kim L

    2015-12-01

    Event-related potential (ERP) studies have revealed an early attentional bias in processing unpleasant emotional images in women. Recent neuroimaging data suggests there are significant differences in cortical emotional processing according to menstrual phase. This study examined the impact of menstrual phase on visual emotional processing in women compared to men. ERPs were recorded from 28 early follicular women, 29 midluteal women, and 27 men while they completed a passive viewing task of neutral and low- and high- arousing pleasant and unpleasant images. There was a significant effect of menstrual phase in early visual processing, as midluteal women displayed significantly greater P1 amplitude at occipital regions to all visual images compared to men. Both midluteal and early follicular women displayed larger N1 amplitudes than men (although this only reached significance for the midluteal group) to the visual images. No sex or menstrual phase differences were apparent in later N2, P3, or LPP. A condition effect demonstrated greater P3 and LPP amplitude to highly-arousing unpleasant images relative to all other stimuli conditions. These results indicate that women have greater early automatic visual processing compared to men, and suggests that this effect is particularly strong in women in the midluteal phase at the earliest stage of visual attention processing. Our findings highlight the importance of considering menstrual phase when examining sex differences in the cortical processing of visual stimuli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hierarchical organization of macaque and cat cortical sensory systems explored with a novel network processor.

    PubMed

    Hilgetag, C C; O'Neill, M A; Young, M P

    2000-01-29

    Neuroanatomists have described a large number of connections between the various structures of monkey and cat cortical sensory systems. Because of the complexity of the connection data, analysis is required to unravel what principles of organization they imply. To date, analysis of laminar origin and termination connection data to reveal hierarchical relationships between the cortical areas has been the most widely acknowledged approach. We programmed a network processor that searches for optimal hierarchical orderings of cortical areas given known hierarchical constraints and rules for their interpretation. For all cortical systems and all cost functions, the processor found a multitude of equally low-cost hierarchies. Laminar hierarchical constraints that are presently available in the anatomical literature were therefore insufficient to constrain a unique ordering for any of the sensory systems we analysed. Hierarchical orderings of the monkey visual system that have been widely reported, but which were derived by hand, were not among the optimal orderings. All the cortical systems we studied displayed a significant degree of hierarchical organization, and the anatomical constraints from the monkey visual and somato-motor systems were satisfied with very few constraint violations in the optimal hierarchies. The visual and somato-motor systems in that animal were therefore surprisingly strictly hierarchical. Most inconsistencies between the constraints and the hierarchical relationships in the optimal structures for the visual system were related to connections of area FST (fundus of superior temporal sulcus). We found that the hierarchical solutions could be further improved by assuming that FST consists of two areas, which differ in the nature of their projections. Indeed, we found that perfect hierarchical arrangements of the primate visual system, without any violation of anatomical constraints, could be obtained under two reasonable conditions, namely the subdivision of FST into two distinct areas, whose connectivity we predict, and the abolition of at least one of the less reliable rule constraints. Our analyses showed that the future collection of the same type of laminar constraints, or the inclusion of new hierarchical constraints from thalamocortical connections, will not resolve the problem of multiple optimal hierarchical representations for the primate visual system. Further data, however, may help to specify the relative ordering of some more areas. This indeterminacy of the visual hierarchy is in part due to the reported absence of some connections between cortical areas. These absences are consistent with limited cross-talk between differentiated processing streams in the system. Hence, hierarchical representation of the visual system is affected by, and must take into account, other organizational features, such as processing streams.

  14. Deficient cortical face-sensitive N170 responses and basic visual processing in schizophrenia.

    PubMed

    Maher, S; Mashhoon, Y; Ekstrom, T; Lukas, S; Chen, Y

    2016-01-01

    Face detection, an ability to identify a visual stimulus as a face, is impaired in patients with schizophrenia. It is unclear whether impaired face processing in this psychiatric disorder results from face-specific domains or stems from more basic visual domains. In this study, we examined cortical face-sensitive N170 response in schizophrenia, taking into account deficient basic visual contrast processing. We equalized visual contrast signals among patients (n=20) and controls (n=20) and between face and tree images, based on their individual perceptual capacities (determined using psychophysical methods). We measured N170, a putative temporal marker of face processing, during face detection and tree detection. In controls, N170 amplitudes were significantly greater for faces than trees across all three visual contrast levels tested (perceptual threshold, two times perceptual threshold and 100%). In patients, however, N170 amplitudes did not differ between faces and trees, indicating diminished face selectivity (indexed by the differential responses to face vs. tree). These results indicate a lack of face-selectivity in temporal responses of brain machinery putatively responsible for face processing in schizophrenia. This neuroimaging finding suggests that face-specific processing is compromised in this psychiatric disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Stereoscopic processing of crossed and uncrossed disparities in the human visual cortex.

    PubMed

    Li, Yuan; Zhang, Chuncheng; Hou, Chunping; Yao, Li; Zhang, Jiacai; Long, Zhiying

    2017-12-21

    Binocular disparity provides a powerful cue for depth perception in a stereoscopic environment. Despite increasing knowledge of the cortical areas that process disparity from neuroimaging studies, the neural mechanism underlying disparity sign processing [crossed disparity (CD)/uncrossed disparity (UD)] is still poorly understood. In the present study, functional magnetic resonance imaging (fMRI) was used to explore different neural features that are relevant to disparity-sign processing. We performed an fMRI experiment on 27 right-handed healthy human volunteers by using both general linear model (GLM) and multi-voxel pattern analysis (MVPA) methods. First, GLM was used to determine the cortical areas that displayed different responses to different disparity signs. Second, MVPA was used to determine how the cortical areas discriminate different disparity signs. The GLM analysis results indicated that shapes with UD induced significantly stronger activity in the sub-region (LO) of the lateral occipital cortex (LOC) than those with CD. The results of MVPA based on region of interest indicated that areas V3d and V3A displayed higher accuracy in the discrimination of crossed and uncrossed disparities than LOC. The results of searchlight-based MVPA indicated that the dorsal visual cortex showed significantly higher prediction accuracy than the ventral visual cortex and the sub-region LO of LOC showed high accuracy in the discrimination of crossed and uncrossed disparities. The results may suggest the dorsal visual areas are more discriminative to the disparity signs than the ventral visual areas although they are not sensitive to the disparity sign processing. Moreover, the LO in the ventral visual cortex is relevant to the recognition of shapes with different disparity signs and discriminative to the disparity sign.

  16. Network activity influences the subthreshold and spiking visual responses of pyramidal neurons in the three-layer turtle cortex.

    PubMed

    Wright, Nathaniel C; Wessel, Ralf

    2017-10-01

    A primary goal of systems neuroscience is to understand cortical function, typically by studying spontaneous and stimulus-modulated cortical activity. Mounting evidence suggests a strong and complex relationship exists between the ongoing and stimulus-modulated cortical state. To date, most work in this area has been based on spiking in populations of neurons. While advantageous in many respects, this approach is limited in scope: it records the activity of a minority of neurons and gives no direct indication of the underlying subthreshold dynamics. Membrane potential recordings can fill these gaps in our understanding, but stable recordings are difficult to obtain in vivo. Here, we recorded subthreshold cortical visual responses in the ex vivo turtle eye-attached whole brain preparation, which is ideally suited for such a study. We found that, in the absence of visual stimulation, the network was "synchronous"; neurons displayed network-mediated transitions between hyperpolarized (Down) and depolarized (Up) membrane potential states. The prevalence of these slow-wave transitions varied across turtles and recording sessions. Visual stimulation evoked similar Up states, which were on average larger and less reliable when the ongoing state was more synchronous. Responses were muted when immediately preceded by large, spontaneous Up states. Evoked spiking was sparse, highly variable across trials, and mediated by concerted synaptic inputs that were, in general, only very weakly correlated with inputs to nearby neurons. Together, these results highlight the multiplexed influence of the cortical network on the spontaneous and sensory-evoked activity of individual cortical neurons. NEW & NOTEWORTHY Most studies of cortical activity focus on spikes. Subthreshold membrane potential recordings can provide complementary insight, but stable recordings are difficult to obtain in vivo. Here, we recorded the membrane potentials of cortical neurons during ongoing and visually evoked activity. We observed a strong relationship between network and single-neuron evoked activity spanning multiple temporal scales. The membrane potential perspective of cortical dynamics thus highlights the influence of intrinsic network properties on visual processing. Copyright © 2017 the American Physiological Society.

  17. Reduction in spontaneous firing of mouse excitatory layer 4 cortical neurons following visual classical conditioning

    NASA Astrophysics Data System (ADS)

    Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.

    2017-08-01

    The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.

  18. Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception

    PubMed Central

    Gintautas, Vadas; Ham, Michael I.; Kunsberg, Benjamin; Barr, Shawn; Brumby, Steven P.; Rasmussen, Craig; George, John S.; Nemenman, Ilya; Bettencourt, Luís M. A.; Kenyon, Garret T.

    2011-01-01

    Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas. PMID:21998562

  19. Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala.

    PubMed

    Burgess, Christian R; Ramesh, Rohan N; Sugden, Arthur U; Levandowski, Kirsten M; Minnig, Margaret A; Fenselau, Henning; Lowell, Bradford B; Andermann, Mark L

    2016-09-07

    The needs of the body can direct behavioral and neural processing toward motivationally relevant sensory cues. For example, human imaging studies have consistently found specific cortical areas with biased responses to food-associated visual cues in hungry subjects, but not in sated subjects. To obtain a cellular-level understanding of these hunger-dependent cortical response biases, we performed chronic two-photon calcium imaging in postrhinal association cortex (POR) and primary visual cortex (V1) of behaving mice. As in humans, neurons in mouse POR, but not V1, exhibited biases toward food-associated cues that were abolished by satiety. This emergent bias was mirrored by the innervation pattern of amygdalo-cortical feedback axons. Strikingly, these axons exhibited even stronger food cue biases and sensitivity to hunger state and trial history. These findings highlight a direct pathway by which the lateral amygdala may contribute to state-dependent cortical processing of motivationally relevant sensory cues. Published by Elsevier Inc.

  20. Visual hallucinations in dementia with Lewy bodies: transcranial magnetic stimulation study

    PubMed Central

    Taylor, John-Paul; Firbank, Michael; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Mosimann, Urs; Eyre, Janet; McKeith, Ian G.; O’Brien, John T.

    2011-01-01

    Background The aetiology of visual hallucinations is poorly understood in dementia with Lewy bodies. Pathological alterations in visual cortical excitability may be one contributory mechanism. Aims To determine visual cortical excitability in people with dementia with Lewy bodies compared with aged-matched controls and also the relationship between visual cortical excitability and visual hallucinations in dementia with Lewy bodies. Method Visual cortical excitability was determined by using transcranial magnetic stimulation (TMS) applied to the occiput to elicit phosphenes (transient subjective visual responses) in 21 patients with dementia with Lewy bodies and 19 age-matched controls. Results Phosphene parameters were similar between both groups. However, in the patients with dementia with Lewy bodies, TMS measures of visual cortical excitability correlated strongly with the severity of visual hallucinations (P = 0.005). Six patients with dementia with Lewy bodies experienced visual hallucination-like phosphenes (for example, seeing people or figures on stimulation) compared with none of the controls (P = 0.02). Conclusions Increased visual cortical excitability in dementia with Lewy bodies does not appear to explain visual hallucinations but it may be a marker for their severity. PMID:22016436

  1. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  2. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  3. Defective motion processing in children with cerebral visual impairment due to periventricular white matter damage.

    PubMed

    Weinstein, Joel M; Gilmore, Rick O; Shaikh, Sumera M; Kunselman, Allen R; Trescher, William V; Tashima, Lauren M; Boltz, Marianne E; McAuliffe, Matthew B; Cheung, Albert; Fesi, Jeremy D

    2012-07-01

    We sought to characterize visual motion processing in children with cerebral visual impairment (CVI) due to periventricular white matter damage caused by either hydrocephalus (eight individuals) or periventricular leukomalacia (PVL) associated with prematurity (11 individuals). Using steady-state visually evoked potentials (ssVEP), we measured cortical activity related to motion processing for two distinct types of visual stimuli: 'local' motion patterns thought to activate mainly primary visual cortex (V1), and 'global' or coherent patterns thought to activate higher cortical visual association areas (V3, V5, etc.). We studied three groups of children: (1) 19 children with CVI (mean age 9y 6mo [SD 3y 8mo]; 9 male; 10 female); (2) 40 neurologically and visually normal comparison children (mean age 9y 6mo [SD 3y 1mo]; 18 male; 22 female); and (3) because strabismus and amblyopia are common in children with CVI, a group of 41 children without neurological problems who had visual deficits due to amblyopia and/or strabismus (mean age 7y 8mo [SD 2y 8mo]; 28 male; 13 female). We found that the processing of global as opposed to local motion was preferentially impaired in individuals with CVI, especially for slower target velocities (p=0.028). Motion processing is impaired in children with CVI. ssVEP may provide useful and objective information about the development of higher visual function in children at risk for CVI. © The Authors. Journal compilation © Mac Keith Press 2011.

  4. Neural substrate of the late positive potential in emotional processing

    PubMed Central

    Liu, Yuelu; Huang, Haiqing; McGinnis, Menton; Keil, Andreas; Ding, Mingzhou

    2012-01-01

    The late positive potential (LPP) is a reliable electrophysiological index of emotional perception in humans. Despite years of research the brain structures that contribute to the generation and modulation of LPP are not well understood. Recording EEG and fMRI simultaneously, and applying a recently proposed single-trial ERP analysis method, we addressed the problem by correlating the single-trial LPP amplitude evoked by affective pictures with the blood-oxygen-level-dependent (BOLD) activity. Three results were found. First, relative to neutral pictures, pleasant and unpleasant pictures elicited enhanced LPP, as well as heightened BOLD activity in both visual cortices and emotion-processing structures such as amygdala and prefrontal cortex, consistent with previous findings. Second, the LPP amplitude across three picture categories was significantly correlated with BOLD activity in visual cortices, temporal cortices, amygdala, orbitofrontal cortex, and insula. Third, within each picture category, LPP-BOLD coupling revealed category-specific differences. For pleasant pictures, the LPP amplitude was coupled with BOLD in occipitotemporal junction, medial prefrontal cortex, amygdala, and precuneus, whereas for unpleasant pictures, significant LPP-BOLD correlation was observed in ventrolateral prefrontal cortex, insula, and posterior cingulate cortex. These results suggest that LPP is generated and modulated by an extensive brain network comprised of both cortical and subcortical structures associated with visual and emotional processing and the degree of contribution by each of these structures to the LPP modulation is valence-specific. PMID:23077042

  5. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner.

    PubMed

    Bressler, David W; Fortenbaugh, Francesca C; Robertson, Lynn C; Silver, Michael A

    2013-06-07

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The dissociations of visual processing of "hole" and "no-hole" stimuli: An functional magnetic resonance imaging study.

    PubMed

    Meng, Qianli; Huang, Yan; Cui, Ding; He, Lixia; Chen, Lin; Ma, Yuanye; Zhao, Xudong

    2018-05-01

    "Where to begin" is a fundamental question of vision. A "Global-first" topological approach proposed that the first step in object representation was to extract topological properties, especially whether the object had a hole or not. Numerous psychophysical studies found that the hole (closure) could be rapidly recognized by visual system as a primitive property. However, neuroimaging studies showed that the temporal lobe (IT), which lied at a late stage of ventral pathway, was involved as a dedicated region. It appeared paradoxical that IT served as a key region for processing the early component of visual information. Did there exist a distinct fast route to transit hole information to IT? We hypothesized that a fast noncortical pathway might participate in processing holes. To address this issue, a backward masking paradigm combined with functional magnetic resonance imaging (fMRI) was applied to measure neural responses to hole and no-hole stimuli in anatomically defined cortical and subcortical regions of interest (ROIs) under different visual awareness levels by modulating masking delays. For no-hole stimuli, the neural activation of cortical sites was greatly attenuated when the no-hole perception was impaired by strong masking, whereas an enhanced neural response to hole stimuli in non-cortical sites was obtained when the stimulus was rendered more invisible. The results suggested that whereas the cortical route was required to drive a perceptual response for no-hole stimuli, a subcortical route might be involved in coding the hole feature, resulting in a rapid hole perception in primitive vision.

  7. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.

    PubMed

    Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K

    2016-11-01

    Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    PubMed

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Serial grouping of 2D-image regions with object-based attention in humans.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-06-13

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas.

  10. In Search of a Visual-cortical Describing Function: a Summary of Work in Progress

    NASA Technical Reports Server (NTRS)

    Junker, A. M.; Peio, K. J.

    1984-01-01

    The thrust of the present work is to explore the utility of using a sum of sinusoids (seven or more) to obtain an evoked response and, furthermore, to see if the response is sensitive to changes in cognitive processing. Within the field of automatic control system technology, a mathematical input/output relationship for a sinusoidally stimulated nonlinear system is defined as describing function. Applying this technology, sum of sines inputs to yield describing functions for the visual-cortical response have been designed. What follows is a description of the method used to obtain visual-cortical describing functions. A number of measurement system redesigns were necessary to achieve the desired frequency resolution. Results that guided and came out of the redesigns are presented. Preliminary results of stimulus parameter effects (average intensity and depth of modulation) are also shown.

  11. The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition

    PubMed Central

    Monzalvo, Karla; Dehaene, Stanislas

    2018-01-01

    How does education affect cortical organization? All literate adults possess a region specialized for letter strings, the visual word form area (VWFA), within the mosaic of ventral regions involved in processing other visual categories such as objects, places, faces, or body parts. Therefore, the acquisition of literacy may induce a reorientation of cortical maps towards letters at the expense of other categories such as faces. To test this cortical recycling hypothesis, we studied how the visual cortex of individual children changes during the first months of reading acquisition. Ten 6-year-old children were scanned longitudinally 6 or 7 times with functional magnetic resonance imaging (fMRI) before and throughout the first year of school. Subjects were exposed to a variety of pictures (words, numbers, tools, houses, faces, and bodies) while performing an unrelated target-detection task. Behavioral assessment indicated a sharp rise in grapheme–phoneme knowledge and reading speed in the first trimester of school. Concurrently, voxels specific to written words and digits emerged at the VWFA location. The responses to other categories remained largely stable, although right-hemispheric face-related activity increased in proportion to reading scores. Retrospective examination of the VWFA voxels prior to reading acquisition showed that reading encroaches on voxels that are initially weakly specialized for tools and close to but distinct from those responsive to faces. Remarkably, those voxels appear to keep their initial category selectivity while acquiring an additional and stronger responsivity to words. We propose a revised model of the neuronal recycling process in which new visual categories invade weakly specified cortex while leaving previously stabilized cortical responses unchanged. PMID:29509766

  12. The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition.

    PubMed

    Dehaene-Lambertz, Ghislaine; Monzalvo, Karla; Dehaene, Stanislas

    2018-03-01

    How does education affect cortical organization? All literate adults possess a region specialized for letter strings, the visual word form area (VWFA), within the mosaic of ventral regions involved in processing other visual categories such as objects, places, faces, or body parts. Therefore, the acquisition of literacy may induce a reorientation of cortical maps towards letters at the expense of other categories such as faces. To test this cortical recycling hypothesis, we studied how the visual cortex of individual children changes during the first months of reading acquisition. Ten 6-year-old children were scanned longitudinally 6 or 7 times with functional magnetic resonance imaging (fMRI) before and throughout the first year of school. Subjects were exposed to a variety of pictures (words, numbers, tools, houses, faces, and bodies) while performing an unrelated target-detection task. Behavioral assessment indicated a sharp rise in grapheme-phoneme knowledge and reading speed in the first trimester of school. Concurrently, voxels specific to written words and digits emerged at the VWFA location. The responses to other categories remained largely stable, although right-hemispheric face-related activity increased in proportion to reading scores. Retrospective examination of the VWFA voxels prior to reading acquisition showed that reading encroaches on voxels that are initially weakly specialized for tools and close to but distinct from those responsive to faces. Remarkably, those voxels appear to keep their initial category selectivity while acquiring an additional and stronger responsivity to words. We propose a revised model of the neuronal recycling process in which new visual categories invade weakly specified cortex while leaving previously stabilized cortical responses unchanged.

  13. The Effect of Early Visual Deprivation on the Neural Bases of Auditory Processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2016-02-03

    Transient congenital visual deprivation affects visual and multisensory processing. In contrast, the extent to which it affects auditory processing has not been investigated systematically. Research in permanently blind individuals has revealed brain reorganization during auditory processing, involving both intramodal and crossmodal plasticity. The present study investigated the effect of transient congenital visual deprivation on the neural bases of auditory processing in humans. Cataract-reversal individuals and normally sighted controls performed a speech-in-noise task while undergoing functional magnetic resonance imaging. Although there were no behavioral group differences, groups differed in auditory cortical responses: in the normally sighted group, auditory cortex activation increased with increasing noise level, whereas in the cataract-reversal group, no activation difference was observed across noise levels. An auditory activation of visual cortex was not observed at the group level in cataract-reversal individuals. The present data suggest prevailing auditory processing advantages after transient congenital visual deprivation, even many years after sight restoration. The present study demonstrates that people whose sight was restored after a transient period of congenital blindness show more efficient cortical processing of auditory stimuli (here speech), similarly to what has been observed in congenitally permanently blind individuals. These results underscore the importance of early sensory experience in permanently shaping brain function. Copyright © 2016 the authors 0270-6474/16/361620-11$15.00/0.

  14. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    PubMed

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electrocortical amplification for emotionally arousing natural scenes: The contribution of luminance and chromatic visual channels

    PubMed Central

    Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias M.; Petro, Nathan M.; Bradley, Margaret M.; Keil, Andreas

    2015-01-01

    Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene’s physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. PMID:25640949

  16. Electrocortical amplification for emotionally arousing natural scenes: the contribution of luminance and chromatic visual channels.

    PubMed

    Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias J; Petro, Nathan M; Bradley, Margaret M; Keil, Andreas

    2015-03-01

    Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene's physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dynamic functional brain networks involved in simple visual discrimination learning.

    PubMed

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization

    PubMed Central

    Rosa, Marcello G.P; Tweedale, Rowan

    2005-01-01

    In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for ‘core’ fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey ‘third tier’ visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas. PMID:15937007

  19. Analysis of retinal and cortical components of Retinex algorithms

    NASA Astrophysics Data System (ADS)

    Yeonan-Kim, Jihyun; Bertalmío, Marcelo

    2017-05-01

    Following Land and McCann's first proposal of the Retinex theory, numerous Retinex algorithms that differ considerably both algorithmically and functionally have been developed. We clarify the relationships among various Retinex families by associating their spatial processing structures to the neural organizations in the retina and the primary visual cortex in the brain. Some of the Retinex algorithms have a retina-like processing structure (Land's designator idea and NASA Retinex), and some show a close connection with the cortical structures in the primary visual area of the brain (two-dimensional L&M Retinex). A third group of Retinexes (the variational Retinex) manifests an explicit algorithmic relation to Wilson-Cowan's physiological model. We intend to overview these three groups of Retinexes with the frame of reference in the biological visual mechanisms.

  20. Structural reorganization of the early visual cortex following Braille training in sighted adults.

    PubMed

    Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin

    2017-12-12

    Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.

  1. Auditory perception in the aging brain: the role of inhibition and facilitation in early processing.

    PubMed

    Stothart, George; Kazanina, Nina

    2016-11-01

    Aging affects the interplay between peripheral and cortical auditory processing. Previous studies have demonstrated that older adults are less able to regulate afferent sensory information and are more sensitive to distracting information. Using auditory event-related potentials we investigated the role of cortical inhibition on auditory and audiovisual processing in younger and older adults. Across puretone, auditory and audiovisual speech paradigms older adults showed a consistent pattern of inhibitory deficits, manifested as increased P50 and/or N1 amplitudes and an absent or significantly reduced N2. Older adults were still able to use congruent visual articulatory information to aid auditory processing but appeared to require greater neural effort to resolve conflicts generated by incongruent visual information. In combination, the results provide support for the Inhibitory Deficit Hypothesis of aging. They extend previous findings into the audiovisual domain and highlight older adults' ability to benefit from congruent visual information during speech processing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. 3-D vision and figure-ground separation by visual cortex.

    PubMed

    Grossberg, S

    1994-01-01

    A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Visual cortex entrains to sign language.

    PubMed

    Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel

    2017-06-13

    Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language <5 Hz, peaking at [Formula: see text]1 Hz. Coherence to sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.

  4. Auditory and visual cortex of primates: a comparison of two sensory systems

    PubMed Central

    Rauschecker, Josef P.

    2014-01-01

    A comparative view of the brain, comparing related functions across species and sensory systems, offers a number of advantages. In particular, it allows separating the formal purpose of a model structure from its implementation in specific brains. Models of auditory cortical processing can be conceived by analogy to the visual cortex, incorporating neural mechanisms that are found in both the visual and auditory systems. Examples of such canonical features on the columnar level are direction selectivity, size/bandwidth selectivity, as well as receptive fields with segregated versus overlapping on- and off-sub-regions. On a larger scale, parallel processing pathways have been envisioned that represent the two main facets of sensory perception: 1) identification of objects and 2) processing of space. Expanding this model in terms of sensorimotor integration and control offers an overarching view of cortical function independent of sensory modality. PMID:25728177

  5. Distinct roles of the cortical layers of area V1 in figure-ground segregation.

    PubMed

    Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R

    2013-11-04

    What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The relationship of global form and motion detection to reading fluency.

    PubMed

    Englund, Julia A; Palomares, Melanie

    2012-08-15

    Visual motion processing in typical and atypical readers has suggested aspects of reading and motion processing share a common cortical network rooted in dorsal visual areas. Few studies have examined the relationship between reading performance and visual form processing, which is mediated by ventral cortical areas. We investigated whether reading fluency correlates with coherent motion detection thresholds in typically developing children using random dot kinematograms. As a comparison, we also evaluated the correlation between reading fluency and static form detection thresholds. Results show that both dorsal and ventral visual functions correlated with components of reading fluency, but that they have different developmental characteristics. Motion coherence thresholds correlated with reading rate and accuracy, which both improved with chronological age. Interestingly, when controlling for non-verbal abilities and age, reading accuracy significantly correlated with thresholds for coherent form detection but not coherent motion detection in typically developing children. Dorsal visual functions that mediate motion coherence seem to be related maturation of broad cognitive functions including non-verbal abilities and reading fluency. However, ventral visual functions that mediate form coherence seem to be specifically related to accurate reading in typically developing children. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Engagement of the left extrastriate body area during body-part metaphor comprehension.

    PubMed

    Lacey, Simon; Stilla, Randall; Deshpande, Gopikrishna; Zhao, Sinan; Stephens, Careese; McCormick, Kelly; Kemmerer, David; Sathian, K

    2017-03-01

    Grounded cognition explanations of metaphor comprehension predict activation of sensorimotor cortices relevant to the metaphor's source domain. We tested this prediction for body-part metaphors using functional magnetic resonance imaging while participants heard sentences containing metaphorical or literal references to body parts, and comparable control sentences. Localizer scans identified body-part-specific motor, somatosensory and visual cortical regions. Both subject- and item-wise analyses showed that, relative to control sentences, metaphorical but not literal sentences evoked limb metaphor-specific activity in the left extrastriate body area (EBA), paralleling the EBA's known visual limb-selectivity. The EBA focus exhibited resting-state functional connectivity with ipsilateral semantic processing regions. In some of these regions, the strength of resting-state connectivity correlated with individual preference for verbal processing. Effective connectivity analyses showed that, during metaphor comprehension, activity in some semantic regions drove that in the EBA. These results provide converging evidence for grounding of metaphor processing in domain-specific sensorimotor cortical activity. Published by Elsevier Inc.

  8. Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model

    PubMed Central

    Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki

    2013-01-01

    Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628

  9. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  10. Transmodal comparison of auditory, motor, and visual post-processing with and without intentional short-term memory maintenance.

    PubMed

    Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias

    2010-12-01

    To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization

    PubMed Central

    Parraga, C. Alejandro; Akbarinia, Arash

    2016-01-01

    The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms. PMID:26954691

  12. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex.

    PubMed

    Yang, Jinfang; Wang, Qian; He, Fenfen; Ding, Yanxia; Sun, Qingyan; Hua, Tianmiao; Xi, Minmin

    2016-01-01

    Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.

  13. Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex

    PubMed Central

    Sun, Qingyan; Hua, Tianmiao; Xi, Minmin

    2016-01-01

    Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability. PMID:26863207

  14. NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization.

    PubMed

    Parraga, C Alejandro; Akbarinia, Arash

    2016-01-01

    The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms.

  15. Unraveling the principles of auditory cortical processing: can we learn from the visual system?

    PubMed Central

    King, Andrew J; Nelken, Israel

    2013-01-01

    Studies of auditory cortex are often driven by the assumption, derived from our better understanding of visual cortex, that basic physical properties of sounds are represented there before being used by higher-level areas for determining sound-source identity and location. However, we only have a limited appreciation of what the cortex adds to the extensive subcortical processing of auditory information, which can account for many perceptual abilities. This is partly because of the approaches that have dominated the study of auditory cortical processing to date, and future progress will unquestionably profit from the adoption of methods that have provided valuable insights into the neural basis of visual perception. At the same time, we propose that there are unique operating principles employed by the auditory cortex that relate largely to the simultaneous and sequential processing of previously derived features and that therefore need to be studied and understood in their own right. PMID:19471268

  16. Dissociation of neural mechanisms underlying orientation processing in humans

    PubMed Central

    Ling, Sam; Pearson, Joel; Blake, Randolph

    2009-01-01

    Summary Orientation selectivity is a fundamental, emergent property of neurons in early visual cortex, and discovery of that property [1, 2] dramatically shaped how we conceptualize visual processing [3–6]. However, much remains unknown about the neural substrates of these basic building blocks of perception, and what is known primarily stems from animal physiology studies. To probe the neural concomitants of orientation processing in humans, we employed repetitive transcranial magnetic stimulation (rTMS) to attenuate neural responses evoked by stimuli presented within a local region of the visual field. Previous physiological studies have shown that rTMS can significantly suppress the neuronal spiking activity, hemodynamic responses, and local field potentials within a focused cortical region [7, 8]. By suppressing neural activity with rTMS, we were able to dissociate components of the neural circuitry underlying two distinct aspects of orientation processing: selectivity and contextual effects. Orientation selectivity gauged by masking was unchanged by rTMS, whereas an otherwise robust orientation repulsion illusion was weakened following rTMS. This dissociation implies that orientation processing relies on distinct mechanisms, only one of which was impacted by rTMS. These results are consistent with models positing that orientation selectivity is largely governed by the patterns of convergence of thalamic afferents onto cortical neurons, with intracortical activity then shaping population responses contained within those orientation-selective cortical neurons. PMID:19682905

  17. Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex.

    PubMed

    Watkins, Kate E; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M; Smith, Stephen M; Ragge, Nicola; Bridge, Holly

    2012-05-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an auditory covert naming task in five bilaterally anophthalmic subjects, who have never received visual input. When listening to auditory definitions and covertly retrieving words, these subjects activated lateral occipital cortex bilaterally in addition to the language areas activated in sighted controls. This activity was significantly greater than that present in a control condition of listening to reversed speech. The lateral occipital cortex was also recruited into a left-lateralized resting-state network that usually comprises anterior and posterior language areas. Levels of activation to the auditory naming and reversed speech conditions did not differ in the calcarine (striate) cortex. This primary 'visual' cortex was not recruited to the left-lateralized resting-state network and showed high interhemispheric correlation of activity at rest, as is typically seen in unimodal cortical areas. In contrast, the interhemispheric correlation of resting activity in extrastriate areas was reduced in anophthalmia to the level of cortical areas that are heteromodal, such as the inferior frontal gyrus. Previous imaging studies in the congenitally blind show that primary visual cortex is activated in higher-order tasks, such as language and memory to a greater extent than during more basic sensory processing, resulting in a reversal of the normal hierarchy of functional organization across 'visual' areas. Our data do not support such a pattern of organization in anophthalmia. Instead, the patterns of activity during task and the functional connectivity at rest are consistent with the known hierarchy of processing in these areas normally seen for vision. The differences in cortical organization between bilateral anophthalmia and other forms of congenital blindness are considered to be due to the total absence of stimulation in 'visual' cortex by light or retinal activity in the former condition, and suggests development of subcortical auditory input to the geniculo-striate pathway.

  18. Reorganization of Visual Callosal Connections Following Alterations of Retinal Input and Brain Damage

    PubMed Central

    Restani, Laura; Caleo, Matteo

    2016-01-01

    Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital epilepsy. A particular focus will be on reviewing noninvasive brain stimulation techniques and optogenetic approaches that allow to selectively manipulate callosal function and to probe its involvement in cortical processing and plasticity. Overall, the data indicate that experience can potently impact on transcallosal connectivity, and that the callosum itself is crucial for plasticity and recovery in various disorders of the visual pathway. PMID:27895559

  19. Asymmetrical Cortical Processing of Radial Expansioncontraction in Infants and Adults

    ERIC Educational Resources Information Center

    Shirai, Nobu; Birtles, Deirdre; Wattam-Bell, John; Yamaguchi, Masami K.; Kanazawa, So; Atkinson, Janette; Braddick, Oliver

    2009-01-01

    We report asymmetrical cortical responses (steady-state visual evoked potentials) to radial expansion and contraction in human infants and adults. Forty-four infants (22 3-month-olds and 22 4-month-olds) and nine adults viewed dynamic dot patterns which cyclically (2.1 Hz) alternate between radial expansion (or contraction) and random directional…

  20. Processing Stages Underlying Word Recognition in the Anteroventral Temporal Lobe

    PubMed Central

    Halgren, Eric; Wang, Chunmao; Schomer, Donald L.; Knake, Susanne; Marinkovic, Ksenija; Wu, Julian; Ulbert, Istvan

    2006-01-01

    The anteroventral temporal lobe integrates visual, lexical, semantic and mnestic aspects of word-processing, through its reciprocal connections with the ventral visual stream, language areas, and the hippocampal formation. We used linear microelectrode arrays to probe population synaptic currents and neuronal firing in different cortical layers of the anteroventral temporal lobe, during semantic judgments with implicit priming, and overt word recognition. Since different extrinsic and associative inputs preferentially target different cortical layers, this method can help reveal the sequence and nature of local processing stages at a higher resolution than was previously possible. The initial response in inferotemporal and perirhinal cortices is a brief current sink beginning at ~120ms, and peaking at ~170ms. Localization of this initial sink to middle layers suggests that it represents feedforward input from lower visual areas, and simultaneously increased firing implies that it represents excitatory synaptic currents. Until ~800ms, the main focus of transmembrane current sinks alternates between middle and superficial layers, with the superficial focus becoming increasingly dominant after ~550ms. Since superficial layers are the target of local and feedback associative inputs, this suggests an alternation in predominant synaptic input between feedforward and feedback modes. Word repetition does not affect the initial perirhinal and inferotemporal middle layer sink, but does decrease later activity. Entorhinal activity begins later (~200ms), with greater apparent excitatory postsynaptic currents and multiunit activity in neocortically-projecting than hippocampal-projecting layers. In contrast to perirhinal and entorhinal responses, entorhinal responses are larger to repeated words during memory retrieval. These results identify a sequence of physiological activation, beginning with a sharp activation from lower level visual areas carrying specific information to middle layers. This is followed by feedback and associative interactions involving upper cortical layers, which are abbreviated to repeated words. Following bottom-up and associative stages, top-down recollective processes may be driven by entorhinal cortex. Word processing involves a systematic sequence of fast feedforward information transfer from visual areas to anteroventral temporal cortex, followed by prolonged interactions of this feedforward information with local associations, and feedback mnestic information from the medial temporal lobe. PMID:16488158

  1. Visual cortical activity reflects faster accumulation of information from cortically blind fields

    PubMed Central

    Martin, Tim; Das, Anasuya; Huxlin, Krystel R.

    2012-01-01

    Brain responses (from functional magnetic resonance imaging) and components of information processing were investigated in nine cortically blind observers performing a global direction discrimination task. Three of these subjects had responses in perilesional cortex in response to blind field stimulation, whereas the others did not. We used the EZ-diffusion model of decision making to understand how cortically blind subjects make a perceptual decision on stimuli presented within their blind field. We found that these subjects had slower accumulation of information in their blind fields as compared with their good fields and to intact controls. Within cortically blind subjects, activity in perilesional tissue, V3A and hMT+ was associated with a faster accumulation of information for deciding direction of motion of stimuli presented in the blind field. This result suggests that the rate of information accumulation is a critical factor in the degree of impairment in cortical blindness and varies greatly among affected individuals. Retraining paradigms that seek to restore visual functions might benefit from focusing on increasing the rate of information accumulation. PMID:23169923

  2. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    PubMed Central

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  4. Electrophysiological evidence for biased competition in V1 for fear expressions.

    PubMed

    West, Greg L; Anderson, Adam A K; Ferber, Susanne; Pratt, Jay

    2011-11-01

    When multiple stimuli are concurrently displayed in the visual field, they must compete for neural representation at the processing expense of their contemporaries. This biased competition is thought to begin as early as primary visual cortex, and can be driven by salient low-level stimulus features. Stimuli important for an organism's survival, such as facial expressions signaling environmental threat, might be similarly prioritized at this early stage of visual processing. In the present study, we used ERP recordings from striate cortex to examine whether fear expressions can bias the competition for neural representation at the earliest stage of retinotopic visuo-cortical processing when in direct competition with concurrently presented visual information of neutral valence. We found that within 50 msec after stimulus onset, information processing in primary visual cortex is biased in favor of perceptual representations of fear at the expense of competing visual information (Experiment 1). Additional experiments confirmed that the facial display's emotional content rather than low-level features is responsible for this prioritization in V1 (Experiment 2), and that this competition is reliant on a face's upright canonical orientation (Experiment 3). These results suggest that complex stimuli important for an organism's survival can indeed be prioritized at the earliest stage of cortical processing at the expense of competing information, with competition possibly beginning before encoding in V1.

  5. [Research advances on cortical functional and structural deficits of amblyopia].

    PubMed

    Wu, Y; Liu, L Q

    2017-05-11

    Previous studies have observed functional deficits in primary visual cortex. With the development of functional magnetic resonance imaging and electrophysiological technique, the research of the striate, extra-striate cortex and higher-order cortical deficit underlying amblyopia reaches a new stage. The neural mechanisms of amblyopia show that anomalous responses exist throughout the visual processing hierarchy, including the functional and structural abnormalities. This review aims to summarize the current knowledge about structural and functional deficits of brain regions associated with amblyopia. (Chin J Ophthalmol, 2017, 53: 392 - 395) .

  6. Spatio-temporal distribution of brain activity associated with audio-visually congruent and incongruent speech and the McGurk Effect.

    PubMed

    Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi

    2015-11-01

    Spatio-temporal distributions of cortical activity to audio-visual presentations of meaningless vowel-consonant-vowels and the effects of audio-visual congruence/incongruence, with emphasis on the McGurk effect, were studied. The McGurk effect occurs when a clearly audible syllable with one consonant, is presented simultaneously with a visual presentation of a face articulating a syllable with a different consonant and the resulting percept is a syllable with a consonant other than the auditorily presented one. Twenty subjects listened to pairs of audio-visually congruent or incongruent utterances and indicated whether pair members were the same or not. Source current densities of event-related potentials to the first utterance in the pair were estimated and effects of stimulus-response combinations, brain area, hemisphere, and clarity of visual articulation were assessed. Auditory cortex, superior parietal cortex, and middle temporal cortex were the most consistently involved areas across experimental conditions. Early (<200 msec) processing of the consonant was overall prominent in the left hemisphere, except right hemisphere prominence in superior parietal cortex and secondary visual cortex. Clarity of visual articulation impacted activity in secondary visual cortex and Wernicke's area. McGurk perception was associated with decreased activity in primary and secondary auditory cortices and Wernicke's area before 100 msec, increased activity around 100 msec which decreased again around 180 msec. Activity in Broca's area was unaffected by McGurk perception and was only increased to congruent audio-visual stimuli 30-70 msec following consonant onset. The results suggest left hemisphere prominence in the effects of stimulus and response conditions on eight brain areas involved in dynamically distributed parallel processing of audio-visual integration. Initially (30-70 msec) subcortical contributions to auditory cortex, superior parietal cortex, and middle temporal cortex occur. During 100-140 msec, peristriate visual influences and Wernicke's area join in the processing. Resolution of incongruent audio-visual inputs is then attempted, and if successful, McGurk perception occurs and cortical activity in left hemisphere further increases between 170 and 260 msec.

  7. Causal evidence for retina dependent and independent visual motion computations in mouse cortex

    PubMed Central

    Hillier, Daniel; Fiscella, Michele; Drinnenberg, Antonia; Trenholm, Stuart; Rompani, Santiago B.; Raics, Zoltan; Katona, Gergely; Juettner, Josephine; Hierlemann, Andreas; Rozsa, Balazs; Roska, Botond

    2017-01-01

    How neuronal computations in the sensory periphery contribute to computations in the cortex is not well understood. We examined this question in the context of visual-motion processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal direction selectivity – either exclusively along the horizontal axis using FRMD7 mutants or along all directions by ablating starburst amacrine cells – and monitored neuronal activity in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found an overrepresentation of cortical cells preferring posterior visual motion, the dominant motion direction an animal experiences when it moves forward. In mice with disrupted retinal direction selectivity, the overrepresentation of posterior-motion-preferring cortical cells disappeared, and their response at higher stimulus speeds was reduced. This work reveals the existence of two functionally distinct, sensory-periphery-dependent and -independent computations of visual motion in the cortex. PMID:28530661

  8. Effects of congruent and incongruent visual cues on speech perception and brain activity in cochlear implant users.

    PubMed

    Song, Jae-Jin; Lee, Hyo-Jeong; Kang, Hyejin; Lee, Dong Soo; Chang, Sun O; Oh, Seung Ha

    2015-03-01

    While deafness-induced plasticity has been investigated in the visual and auditory domains, not much is known about language processing in audiovisual multimodal environments for patients with restored hearing via cochlear implant (CI) devices. Here, we examined the effect of agreeing or conflicting visual inputs on auditory processing in deaf patients equipped with degraded artificial hearing. Ten post-lingually deafened CI users with good performance, along with matched control subjects, underwent H 2 (15) O-positron emission tomography scans while carrying out a behavioral task requiring the extraction of speech information from unimodal auditory stimuli, bimodal audiovisual congruent stimuli, and incongruent stimuli. Regardless of congruency, the control subjects demonstrated activation of the auditory and visual sensory cortices, as well as the superior temporal sulcus, the classical multisensory integration area, indicating a bottom-up multisensory processing strategy. Compared to CI users, the control subjects exhibited activation of the right ventral premotor-supramarginal pathway. In contrast, CI users activated primarily the visual cortices more in the congruent audiovisual condition than in the null condition. In addition, compared to controls, CI users displayed an activation focus in the right amygdala for congruent audiovisual stimuli. The most notable difference between the two groups was an activation focus in the left inferior frontal gyrus in CI users confronted with incongruent audiovisual stimuli, suggesting top-down cognitive modulation for audiovisual conflict. Correlation analysis revealed that good speech performance was positively correlated with right amygdala activity for the congruent condition, but negatively correlated with bilateral visual cortices regardless of congruency. Taken together these results suggest that for multimodal inputs, cochlear implant users are more vision-reliant when processing congruent stimuli and are disturbed more by visual distractors when confronted with incongruent audiovisual stimuli. To cope with this multimodal conflict, CI users activate the left inferior frontal gyrus to adopt a top-down cognitive modulation pathway, whereas normal hearing individuals primarily adopt a bottom-up strategy.

  9. Postnatal Development of Intrinsic Horizontal Axons in Macaque Inferior Temporal and Primary Visual Cortices.

    PubMed

    Wang, Quanxin; Tanigawa, Hisashi; Fujita, Ichiro

    2017-04-01

    Two distinct areas along the ventral visual stream of monkeys, the primary visual (V1) and inferior temporal (TE) cortices, exhibit different projection patterns of intrinsic horizontal axons with patchy terminal fields in adult animals. The differences between the patches in these 2 areas may reflect differences in cortical representation and processing of visual information. We studied the postnatal development of patches by injecting an anterograde tracer into TE and V1 in monkeys of various ages. At 1 week of age, labeled patches with distribution patterns reminiscent of those in adults were already present in both areas. The labeling intensity of patches decayed exponentially with projection distance in monkeys of all ages in both areas, but this trend was far less evident in TE. The number and extent of patches gradually decreased with age in V1, but not in TE. In V1, axonal and bouton densities increased postnatally only in patches with short projection distances, whereas in TE this density change occurred in patches with various projection distances. Thus, patches with area-specific distribution patterns are formed early in life, and area-specific postnatal developmental processes shape the connectivity of patches into adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The path to memory is guided by strategy: distinct networks are engaged in associative encoding under visual and verbal strategy and influence memory performance in healthy and impaired individuals

    PubMed Central

    Hales, J. B.; Brewer, J. B.

    2018-01-01

    Given the diversity of stimuli encountered in daily life, a variety of strategies must be used for learning new information. Relating and encoding visual and verbal stimuli into memory has been probed using various tasks and stimulus-types. Engagement of specific subsequent memory and cortical processing regions depends on the stimulus modality of studied material; however, it remains unclear whether different encoding strategies similarly influence regional activity when stimulus-type is held constant. In this study, subjects encoded object pairs using a visual or verbal associative strategy during functional magnetic resonance imaging (fMRI), and subsequent memory was assessed for pairs encoded under each strategy. Each strategy elicited distinct regional processing and subsequent memory effects: middle / superior frontal, lateral parietal, and lateral occipital for visually-associated pairs and inferior frontal, medial frontal, and medial occipital for verbally-associated pairs. This regional selectivity mimics the effects of stimulus modality, suggesting that cortical involvement in associative encoding is driven by strategy, and not simply by stimulus-type. The clinical relevance of these findings, probed in two patients with recent aphasic strokes, suggest that training with strategies utilizing unaffected cortical regions might improve memory ability in patients with brain damage. PMID:22390467

  11. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

    PubMed

    Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin

    2014-05-28

    Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.

  12. Attention Increases Spike Count Correlations between Visual Cortical Areas.

    PubMed

    Ruff, Douglas A; Cohen, Marlene R

    2016-07-13

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. Copyright © 2016 the authors 0270-6474/16/367523-12$15.00/0.

  13. Attention Increases Spike Count Correlations between Visual Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. SIGNIFICANCE STATEMENT Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. PMID:27413161

  14. Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.

    PubMed

    Kok, Peter; Bains, Lauren J; van Mourik, Tim; Norris, David G; de Lange, Floris P

    2016-02-08

    In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Experience-enabled enhancement of adult visual cortex function.

    PubMed

    Tschetter, Wayne W; Alam, Nazia M; Yee, Christopher W; Gorz, Mario; Douglas, Robert M; Sagdullaev, Botir; Prusky, Glen T

    2013-03-20

    We previously reported in adult mice that visuomotor experience during monocular deprivation (MD) augmented enhancement of visual-cortex-dependent behavior through the non-deprived eye (NDE) during deprivation, and enabled enhanced function to persist after MD. We investigated the physiological substrates of this experience-enabled form of adult cortical plasticity by measuring visual behavior and visually evoked potentials (VEPs) in binocular visual cortex of the same mice before, during, and after MD. MD on its own potentiated VEPs contralateral to the NDE during MD and shifted ocular dominance (OD) in favor of the NDE in both hemispheres. Whereas we expected visuomotor experience during MD to augment these effects, instead enhanced responses contralateral to the NDE, and the OD shift ipsilateral to the NDE were attenuated. However, in the same animals, we measured NMDA receptor-dependent VEP potentiation ipsilateral to the NDE during MD, which persisted after MD. The results indicate that visuomotor experience during adult MD leads to enduring enhancement of behavioral function, not simply by amplifying MD-induced changes in cortical OD, but through an independent process of increasing NDE drive in ipsilateral visual cortex. Because the plasticity is resident in the mature visual cortex and selectively effects gain of visual behavior through experiential means, it may have the therapeutic potential to target and non-invasively treat eye- or visual-field-specific cortical impairment.

  16. Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location

    PubMed Central

    Zachariou, Valentinos; Klatzky, Roberta; Behrmann, Marlene

    2017-01-01

    Growing evidence suggests that the functional specialization of the two cortical visual pathways may not be as distinct as originally proposed. Here, we explore possible contributions of the dorsal “where/how” visual stream to shape perception and, conversely, contributions of the ventral “what” visual stream to location perception in human adults. Participants performed a shape detection task and a location detection task while undergoing fMRI. For shape detection, comparable BOLD activation in the ventral and dorsal visual streams was observed, and the magnitude of this activation was correlated with behavioral performance. For location detection, cortical activation was significantly stronger in the dorsal than ventral visual pathway and did not correlate with the behavioral outcome. This asymmetry in cortical profile across tasks is particularly noteworthy given that the visual input was identical and that the tasks were matched for difficulty in performance. We confirmed the asymmetry in a subsequent psychophysical experiment in which participants detected changes in either object location or shape, while ignoring the other, task-irrelevant dimension. Detection of a location change was slowed by an irrelevant shape change matched for difficulty, but the reverse did not hold. We conclude that both ventral and dorsal visual streams contribute to shape perception, but that location processing appears to be essentially a function of the dorsal visual pathway. PMID:24001005

  17. Approaches to a cortical vision prosthesis: implications of electrode size and placement

    NASA Astrophysics Data System (ADS)

    Christie, Breanne P.; Ashmont, Kari R.; House, Paul A.; Greger, Bradley

    2016-04-01

    Objective. In order to move forward with the development of a cortical vision prosthesis, the critical issues in the field must be identified. Approach. To begin this process, we performed a brief review of several different cortical and retinal stimulation techniques that can be used to restore vision. Main results. Intracortical microelectrodes and epicortical macroelectrodes have been evaluated as the basis of a vision prosthesis. We concluded that an important knowledge gap necessitates an experimental in vivo performance evaluation of microelectrodes placed on the surface of the visual cortex. A comparison of the level of vision restored by intracortical versus epicortical microstimulation is necessary. Because foveal representation in the primary visual cortex involves more cortical columns per degree of visual field than does peripheral vision, restoration of foveal vision may require a large number of closely spaced microelectrodes. Based on previous studies of epicortical macrostimulation, it is possible that stimulation via surface microelectrodes could produce a lower spatial resolution, making them better suited for restoring peripheral vision. Significance. The validation of epicortical microstimulation in addition to the comparison of epicortical and intracortical approaches for vision restoration will fill an important knowledge gap and may have important implications for surgical strategies and device longevity. It is possible that the best approach to vision restoration will utilize both epicortical and intracortical microstimulation approaches, applying them appropriately to different visual representations in the primary visual cortex.

  18. Neurological evidence linguistic processes precede perceptual simulation in conceptual processing.

    PubMed

    Louwerse, Max; Hutchinson, Sterling

    2012-01-01

    There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky - ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes.

  19. Neurological Evidence Linguistic Processes Precede Perceptual Simulation in Conceptual Processing

    PubMed Central

    Louwerse, Max; Hutchinson, Sterling

    2012-01-01

    There is increasing evidence from response time experiments that language statistics and perceptual simulations both play a role in conceptual processing. In an EEG experiment we compared neural activity in cortical regions commonly associated with linguistic processing and visual perceptual processing to determine to what extent symbolic and embodied accounts of cognition applied. Participants were asked to determine the semantic relationship of word pairs (e.g., sky – ground) or to determine their iconic relationship (i.e., if the presentation of the pair matched their expected physical relationship). A linguistic bias was found toward the semantic judgment task and a perceptual bias was found toward the iconicity judgment task. More importantly, conceptual processing involved activation in brain regions associated with both linguistic and perceptual processes. When comparing the relative activation of linguistic cortical regions with perceptual cortical regions, the effect sizes for linguistic cortical regions were larger than those for the perceptual cortical regions early in a trial with the reverse being true later in a trial. These results map upon findings from other experimental literature and provide further evidence that processing of concept words relies both on language statistics and on perceptual simulations, whereby linguistic processes precede perceptual simulation processes. PMID:23133427

  20. How visual illusions illuminate complementary brain processes: illusory depth from brightness and apparent motion of illusory contours

    PubMed Central

    Grossberg, Stephen

    2014-01-01

    Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time. PMID:25389399

  1. Cortical-Cortical Interactions And Sensory Information Processing in Autism

    DTIC Science & Technology

    2008-04-30

    Frith U: Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 2002, 125:1839-1849. 15...Methods The subjects were ten males clinically diagnosed with autism (i.e., Autistic Disorder or Asperger Disorder; DSM-IV-TR; [22]), all naïve both...Disordered visual processing and oscillatory brain activity in autism and Williams syndrome . Neuroreport 2001, 12:2697-2700. 18. Wilson TW, Rojas DC

  2. Serial grouping of 2D-image regions with object-based attention in humans

    PubMed Central

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2016-01-01

    After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188

  3. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf

    PubMed Central

    Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao

    2016-01-01

    Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461

  4. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  5. Wide field-of-view, multi-region two-photon imaging of neuronal activity in the mammalian brain

    PubMed Central

    Stirman, Jeffrey N.; Smith, Ikuko T.; Kudenov, Michael W.; Smith, Spencer L.

    2016-01-01

    Two-photon calcium imaging provides an optical readout of neuronal activity in populations of neurons with subcellular resolution. However, conventional two-photon imaging systems are limited in their field of view to ~1 mm2, precluding the visualization of multiple cortical areas simultaneously. Here, we demonstrate a two-photon microscope with an expanded field of view (>9.5 mm2) for rapidly reconfigurable simultaneous scanning of widely separated populations of neurons. We custom designed and assembled an optimized scan engine, objective, and two independently positionable, temporally multiplexed excitation pathways. We used this new microscope to measure activity correlations between two cortical visual areas in mice during visual processing. PMID:27347754

  6. Top-down beta oscillatory signaling conveys behavioral context in early visual cortex.

    PubMed

    Richter, Craig G; Coppola, Richard; Bressler, Steven L

    2018-05-03

    Top-down modulation of sensory processing is a critical neural mechanism subserving numerous important cognitive roles, one of which may be to inform lower-order sensory systems of the current 'task at hand' by conveying behavioral context to these systems. Accumulating evidence indicates that top-down cortical influences are carried by directed interareal synchronization of oscillatory neuronal populations, with recent results pointing to beta-frequency oscillations as particularly important for top-down processing. However, it remains to be determined if top-down beta-frequency oscillations indeed convey behavioral context. We measured spectral Granger Causality (sGC) using local field potentials recorded from microelectrodes chronically implanted in visual areas V1/V2, V4, and TEO of two rhesus macaque monkeys, and applied multivariate pattern analysis to the spatial patterns of top-down sGC. We decoded behavioral context by discriminating patterns of top-down (V4/TEO-to-V1/V2) beta-peak sGC for two different task rules governing correct responses to identical visual stimuli. The results indicate that top-down directed influences are carried to visual cortex by beta oscillations, and differentiate task demands even before visual stimulus processing. They suggest that top-down beta-frequency oscillatory processes coordinate processing of sensory information by conveying global knowledge states to early levels of the sensory cortical hierarchy independently of bottom-up stimulus-driven processing.

  7. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.

    PubMed

    Adesnik, Hillel

    2018-05-01

    Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  8. Spatially generalizable representations of facial expressions: Decoding across partial face samples.

    PubMed

    Greening, Steven G; Mitchell, Derek G V; Smith, Fraser W

    2018-04-01

    A network of cortical and sub-cortical regions is known to be important in the processing of facial expression. However, to date no study has investigated whether representations of facial expressions present in this network permit generalization across independent samples of face information (e.g., eye region vs mouth region). We presented participants with partial face samples of five expression categories in a rapid event-related fMRI experiment. We reveal a network of face-sensitive regions that contain information about facial expression categories regardless of which part of the face is presented. We further reveal that the neural information present in a subset of these regions: dorsal prefrontal cortex (dPFC), superior temporal sulcus (STS), lateral occipital and ventral temporal cortex, and even early visual cortex, enables reliable generalization across independent visual inputs (faces depicting the 'eyes only' vs 'eyes removed'). Furthermore, classification performance was correlated to behavioral performance in STS and dPFC. Our results demonstrate that both higher (e.g., STS, dPFC) and lower level cortical regions contain information useful for facial expression decoding that go beyond the visual information presented, and implicate a key role for contextual mechanisms such as cortical feedback in facial expression perception under challenging conditions of visual occlusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Perceptual learning and adult cortical plasticity.

    PubMed

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  10. Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.

    PubMed

    Harrison, William J; Bays, Paul M

    2018-03-21

    The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural architecture in sensory cortex that encodes stimuli. We investigated this claim by manipulating the spacing in visual cortex between sequentially presented memoranda such that some items shared cortical representations more than others while preventing perceptual interference between stimuli. We found clear evidence that short-term memory is independent of the intracortical spacing of memoranda, revealing a dissociation between perceptual and memory representations. Our data indicate that working memory relies on different neural mechanisms from sensory perception. Copyright © 2018 Harrison and Bays.

  11. Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization.

    PubMed

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-02-28

    The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.

  12. Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Kaminsky, Olivia; Tung, Kelly L.; Wiley, Joshua F.; McGough, James J.; Loo, Sandra K.; Kaplan, Jonas T.

    2014-01-01

    Background: A growing body of research has identified abnormal visual information processing in attention-deficit hyperactivity disorder (ADHD). In particular, slow processing speed and increased reliance on visuo-perceptual strategies have become evident. Objective: The current study used recently developed fMRI methods to replicate and further examine abnormal rightward biased visual information processing in ADHD and to further characterize the nature of this effect; we tested its association with several large-scale distributed network systems. Method: We examined fMRI BOLD response during letter and location judgment tasks, and directly assessed visual network asymmetry and its association with large-scale networks using both a voxelwise and an averaged signal approach. Results: Initial within-group analyses revealed a pattern of left-lateralized visual cortical activity in controls but right-lateralized visual cortical activity in ADHD children. Direct analyses of visual network asymmetry confirmed atypical rightward bias in ADHD children compared to controls. This ADHD characteristic was atypically associated with reduced activation across several extra-visual networks, including the default mode network (DMN). We also found atypical associations between DMN activation and ADHD subjects’ inattentive symptoms and task performance. Conclusion: The current study demonstrated rightward VNA in ADHD during a simple letter discrimination task. This result adds an important novel consideration to the growing literature identifying abnormal visual processing in ADHD. We postulate that this characteristic reflects greater perceptual engagement of task-extraneous content, and that it may be a basic feature of less efficient top-down task-directed control over visual processing. We additionally argue that abnormal DMN function may contribute to this characteristic. PMID:25076915

  13. Interactions between attention, context and learning in primary visual cortex.

    PubMed

    Gilbert, C; Ito, M; Kapadia, M; Westheimer, G

    2000-01-01

    Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.

  14. Multiple Transient Signals in Human Visual Cortex Associated with an Elementary Decision

    PubMed Central

    Nolte, Guido

    2017-01-01

    The cerebral cortex continuously undergoes changes in its state, which are manifested in transient modulations of the cortical power spectrum. Cortical state changes also occur at full wakefulness and during rapid cognitive acts, such as perceptual decisions. Previous studies found a global modulation of beta-band (12–30 Hz) activity in human and monkey visual cortex during an elementary visual decision: reporting the appearance or disappearance of salient visual targets surrounded by a distractor. The previous studies disentangled neither the motor action associated with behavioral report nor other secondary processes, such as arousal, from perceptual decision processing per se. Here, we used magnetoencephalography in humans to pinpoint the factors underlying the beta-band modulation. We found that disappearances of a salient target were associated with beta-band suppression, and target reappearances with beta-band enhancement. This was true for both overt behavioral reports (immediate button presses) and silent counting of the perceptual events. This finding indicates that the beta-band modulation was unrelated to the execution of the motor act associated with a behavioral report of the perceptual decision. Further, changes in pupil-linked arousal, fixational eye movements, or gamma-band responses were not necessary for the beta-band modulation. Together, our results suggest that the beta-band modulation was a top-down signal associated with the process of converting graded perceptual signals into a categorical format underlying flexible behavior. This signal may have been fed back from brain regions involved in decision processing to visual cortex, thus enforcing a “decision-consistent” cortical state. SIGNIFICANCE STATEMENT Elementary visual decisions are associated with a rapid state change in visual cortex, indexed by a modulation of neural activity in the beta-frequency range. Such decisions are also followed by other events that might affect the state of visual cortex, including the motor command associated with the report of the decision, an increase in pupil-linked arousal, fixational eye movements, and fluctuations in bottom-up sensory processing. Here, we ruled out the necessity of these events for the beta-band modulation of visual cortex. We propose that the modulation reflects a decision-related state change, which is induced by the conversion of graded perceptual signals into a categorical format underlying behavior. The resulting decision signal may be fed back to visual cortex. PMID:28495972

  15. A magnetoencephalography study of multi-modal processing of pain anticipation in primary sensory cortices.

    PubMed

    Gopalakrishnan, R; Burgess, R C; Plow, E B; Floden, D P; Machado, A G

    2015-09-24

    Pain anticipation plays a critical role in pain chronification and results in disability due to pain avoidance. It is important to understand how different sensory modalities (auditory, visual or tactile) may influence pain anticipation as different strategies could be applied to mitigate anticipatory phenomena and chronification. In this study, using a countdown paradigm, we evaluated with magnetoencephalography the neural networks associated with pain anticipation elicited by different sensory modalities in normal volunteers. When encountered with well-established cues that signaled pain, visual and somatosensory cortices engaged the pain neuromatrix areas early during the countdown process, whereas the auditory cortex displayed delayed processing. In addition, during pain anticipation, the visual cortex displayed independent processing capabilities after learning the contextual meaning of cues from associative and limbic areas. Interestingly, cross-modal activation was also evident and strong when visual and tactile cues signaled upcoming pain. Dorsolateral prefrontal cortex and mid-cingulate cortex showed significant activity during pain anticipation regardless of modality. Our results show pain anticipation is processed with great time efficiency by a highly specialized and hierarchical network. The highest degree of higher-order processing is modulated by context (pain) rather than content (modality) and rests within the associative limbic regions, corroborating their intrinsic role in chronification. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Cross-modality Sharpening of Visual Cortical Processing through Layer 1-Mediated Inhibition and Disinhibition

    PubMed Central

    Ibrahim, Leena A.; Mesik, Lukas; Ji, Xu-ying; Fang, Qi; Li, Hai-fu; Li, Ya-tang; Zingg, Brian; Zhang, Li I.; Tao, Huizhong Whit

    2016-01-01

    Summary Cross-modality interaction in sensory perception is advantageous for animals’ survival. How cortical sensory processing is cross-modally modulated and what are the underlying neural circuits remain poorly understood. In mouse primary visual cortex (V1), we discovered that orientation selectivity of layer (L)2/3 but not L4 excitatory neurons was sharpened in the presence of sound or optogenetic activation of projections from primary auditory cortex (A1) to V1. The effect was manifested by decreased average visual responses yet increased responses at the preferred orientation. It was more pronounced at lower visual contrast, and was diminished by suppressing L1 activity. L1 neurons were strongly innervated by A1-V1 axons and excited by sound, while visual responses of L2/3 vasoactive intestinal peptide (VIP) neurons were suppressed by sound, both preferentially at the cell's preferred orientation. These results suggest that the cross-modality modulation is achieved primarily through L1 neuron and L2/3 VIP-cell mediated inhibitory and disinhibitory circuits. PMID:26898778

  17. Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone.

    PubMed

    Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde

    2011-12-01

    In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms.

  18. Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies

    NASA Astrophysics Data System (ADS)

    Beyeler, Michael; Rokem, Ariel; Boynton, Geoffrey M.; Fine, Ione

    2017-10-01

    The ‘bionic eye’—so long a dream of the future—is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the visual information provided by these devices differs substantially from normal sight. Consequently, the ability of patients to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients.

  19. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys.

    PubMed

    Poremba, Amy; Mishkin, Mortimer

    2007-07-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys.

  20. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys

    PubMed Central

    Mishkin, Mortimer

    2009-01-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left hemisphere “dominance” during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole “dominance” appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys. PMID:17321703

  1. Brain activation and deactivation during location and color working memory tasks in 11-13-year-old children.

    PubMed

    Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T; Korvenoja, Antti; Aronen, Hannu J; Carlson, Synnöve

    2009-02-01

    Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state, results in regional deactivation. The location 0-back task, compared to the color 0-back task, activated segregated areas in the frontal, parietal and occipital cortices whereas no differentially activated voxels were obtained when location and color 2-back tasks were directly contrasted. Several midline cortical areas were less active during 0- and 2-back task performance than resting state. The task-induced deactivation increased with task difficulty as demonstrated by larger deactivation during 2-back than 0-back tasks. The results suggest that, in 11-13-year-old children, the visual attentional network is differently recruited by spatial and nonspatial information processing, but the functional organization of cortical activation in WM in this age group is not based on the type of information processed. Furthermore, 11-13-year-old children exhibited a similar pattern of cortical deactivation that has been reported in adults during cognitive task performance compared to a resting state.

  2. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.

    PubMed

    Lewis, Philip M; Ackland, Helen M; Lowery, Arthur J; Rosenfeld, Jeffrey V

    2015-01-21

    The field of neurobionics offers hope to patients with sensory and motor impairment. Blindness is a common cause of major sensory loss, with an estimated 39 million people worldwide suffering from total blindness in 2010. Potential treatment options include bionic devices employing electrical stimulation of the visual pathways. Retinal stimulation can restore limited visual perception to patients with retinitis pigmentosa, however loss of retinal ganglion cells precludes this approach. The optic nerve, lateral geniculate nucleus and visual cortex provide alternative stimulation targets, with several research groups actively pursuing a cortically-based device capable of driving several hundred stimulating electrodes. While great progress has been made since the earliest works of Brindley and Dobelle in the 1960s and 1970s, significant clinical, surgical, psychophysical, neurophysiological, and engineering challenges remain to be overcome before a commercially-available cortical implant will be realized. Selection of candidate implant recipients will require assessment of their general, psychological and mental health, and likely responses to visual cortex stimulation. Implant functionality, longevity and safety may be enhanced by careful electrode insertion, optimization of electrical stimulation parameters and modification of immune responses to minimize or prevent the host response to the implanted electrodes. Psychophysical assessment will include mapping the positions of potentially several hundred phosphenes, which may require repetition if electrode performance deteriorates over time. Therefore, techniques for rapid psychophysical assessment are required, as are methods for objectively assessing the quality of life improvements obtained from the implant. These measures must take into account individual differences in image processing, phosphene distribution and rehabilitation programs that may be required to optimize implant functionality. In this review, we detail these and other challenges facing developers of cortical visual prostheses in addition to briefly outlining the epidemiology of blindness, and the history of cortical electrical stimulation in the context of visual prosthetics. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Synaptic physiology of the flow of information in the cat's visual cortex in vivo

    PubMed Central

    Hirsch, Judith A; Martinez, Luis M; Alonso, José-Manuel; Desai, Komal; Pillai, Cinthi; Pierre, Carhine

    2002-01-01

    Each stage of the striate cortical circuit extracts novel information about the visual environment. We asked if this analytic process reflected laminar variations in synaptic physiology by making whole-cell recording with dye-filled electrodes from the cat's visual cortex and thalamus; the stimuli were flashed spots. Thalamic afferents terminate in layer 4, which contains two types of cell, simple and complex, distinguished by the spatial structure of the receptive field. Previously, we had found that the postsynaptic and spike responses of simple cells reliably followed the time course of flash-evoked thalamic activity. Here we report that complex cells in layer 4 (or cells intermediate between simple and complex) similarly reprised thalamic activity (response/trial, 99 ± 1.9 %; response duration 159 ± 57 ms; latency 25 ± 4 ms; average ± standard deviation; n = 7). Thus, all cells in layer 4 share a common synaptic physiology that allows secure integration of thalamic input. By contrast, at the second cortical stage (layer 2+3), where layer 4 directs its output, postsynaptic responses did not track simple patterns of antecedent activity. Typical responses to the static stimulus were intermittent and brief (response/trial, 31 ± 40 %; response duration 72 ± 60 ms, latency 39 ± 7 ms; n = 11). Only richer stimuli like those including motion evoked reliable responses. All told, the second level of cortical processing differs markedly from the first. At that later stage, ascending information seems strongly gated by connections between cortical neurons. Inputs must be combined in newly specified patterns to influence intracortical stages of processing. PMID:11927691

  4. Anatomy and physiology of the afferent visual system.

    PubMed

    Prasad, Sashank; Galetta, Steven L

    2011-01-01

    The efficient organization of the human afferent visual system meets enormous computational challenges. Once visual information is received by the eye, the signal is relayed by the retina, optic nerve, chiasm, tracts, lateral geniculate nucleus, and optic radiations to the striate cortex and extrastriate association cortices for final visual processing. At each stage, the functional organization of these circuits is derived from their anatomical and structural relationships. In the retina, photoreceptors convert photons of light to an electrochemical signal that is relayed to retinal ganglion cells. Ganglion cell axons course through the optic nerve, and their partial decussation in the chiasm brings together corresponding inputs from each eye. Some inputs follow pathways to mediate pupil light reflexes and circadian rhythms. However, the majority of inputs arrive at the lateral geniculate nucleus, which relays visual information via second-order neurons that course through the optic radiations to arrive in striate cortex. Feedback mechanisms from higher cortical areas shape the neuronal responses in early visual areas, supporting coherent visual perception. Detailed knowledge of the anatomy of the afferent visual system, in combination with skilled examination, allows precise localization of neuropathological processes and guides effective diagnosis and management of neuro-ophthalmic disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Neural representation of form-contingent color filling-in in the early visual cortex.

    PubMed

    Hong, Sang Wook; Tong, Frank

    2017-11-01

    Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.

  6. MRI Post-processing in Pre-surgical Evaluation

    PubMed Central

    Wang, Z. Irene; Alexopoulos, Andreas V.

    2016-01-01

    Purpose of Review Advanced MRI post-processing techniques are increasingly used to complement visual analysis and elucidate structural epileptogenic lesions. This review summarizes recent developments in MRI post-processing in the context of epilepsy pre-surgical evaluation, with the focus on patients with unremarkable MRI by visual analysis (i.e., “nonlesional” MRI). Recent Findings Various methods of MRI post-processing have been reported to show additional clinical values in the following areas: (1) lesion detection on an individual level; (2) lesion confirmation for reducing the risk of over reading the MRI; (3) detection of sulcal/gyral morphologic changes that are particularly difficult for visual analysis; and (4) delineation of cortical abnormalities extending beyond the visible lesion. Future directions to improve performance of MRI post-processing include using higher magnetic field strength for better signal and contrast to noise ratio, adopting a multi-contrast frame work, and integration with other noninvasive modalities. Summary MRI post-processing can provide essential value to increase the yield of structural MRI and should be included as part of the presurgical evaluation of nonlesional epilepsies. MRI post-processing allows for more accurate identification/delineation of cortical abnormalities, which should then be more confidently targeted and mapped. PMID:26900745

  7. Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3

    PubMed Central

    Polimeni, Jonathan R.; Tootell, Roger B.H.

    2016-01-01

    In nonhuman primates (NHPs), secondary visual cortex (V2) is composed of repeating columnar stripes, which are evident in histological variations of cytochrome oxidase (CO) levels. Distinctive “thin” and “thick” stripes of dark CO staining reportedly respond selectively to stimulus variations in color and binocular disparity, respectively. Here, we first tested whether similar color-selective or disparity-selective stripes exist in human V2. If so, available evidence predicts that such stripes should (1) radiate “outward” from the V1–V2 border, (2) interdigitate, (3) differ from each other in both thickness and length, (4) be spaced ∼3.5–4 mm apart (center-to-center), and, perhaps, (5) have segregated functional connections. Second, we tested whether analogous segregated columns exist in a “next-higher” tier area, V3. To answer these questions, we used high-resolution fMRI (1 × 1 × 1 mm3) at high field (7 T), presenting color-selective or disparity-selective stimuli, plus extensive signal averaging across multiple scan sessions and cortical surface-based analysis. All hypotheses were confirmed. V2 stripes and V3 columns were reliably localized in all subjects. The two stripe/column types were largely interdigitated (e.g., nonoverlapping) in both V2 and V3. Color-selective stripes differed from disparity-selective stripes in both width (thickness) and length. Analysis of resting-state functional connections (eyes closed) showed a stronger correlation between functionally alike (compared with functionally unlike) stripes/columns in V2 and V3. These results revealed a fine-scale segregation of color-selective or disparity-selective streams within human areas V2 and V3. Together with prior evidence from NHPs, this suggests that two parallel processing streams extend from visual subcortical regions through V1, V2, and V3. SIGNIFICANCE STATEMENT In current textbooks and reviews, diagrams of cortical visual processing highlight two distinct neural-processing streams within the first and second cortical areas in monkeys. Two major streams consist of segregated cortical columns that are selectively activated by either color or ocular interactions. Because such cortical columns are so small, they were not revealed previously by conventional imaging techniques in humans. Here we demonstrate that such segregated columnar systems exist in humans. We find that, in humans, color versus binocular disparity columns extend one full area further, into the third visual area. Our approach can be extended to reveal and study additional types of columns in human cortex, perhaps including columns underlying more cognitive functions. PMID:26865609

  8. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps

    PubMed Central

    2016-01-01

    Abstract Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor‐preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface‐based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory‐motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory‐motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M‐I. Hum Brain Mapp 37:2784–2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061771

  10. The Anatomy of Non-conscious Recognition Memory.

    PubMed

    Rosenthal, Clive R; Soto, David

    2016-11-01

    Cortical regions as early as primary visual cortex have been implicated in recognition memory. Here, we outline the challenges that this presents for neurobiological accounts of recognition memory. We conclude that understanding the role of early visual cortex (EVC) in this process will require the use of protocols that mask stimuli from visual awareness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Statistics of natural scenes and cortical color processing.

    PubMed

    Cecchi, Guillermo A; Rao, A Ravishankar; Xiao, Youping; Kaplan, Ehud

    2010-09-01

    We investigate the spatial correlations of orientation and color information in natural images. We find that the correlation of orientation information falls off rapidly with increasing distance, while color information is more highly correlated over longer distances. We show that orientation and color information are statistically independent in natural images and that the spatial correlation of jointly encoded orientation and color information decays faster than that of color alone. Our findings suggest that: (a) orientation and color information should be processed in separate channels and (b) the organization of cortical color and orientation selectivity at low spatial frequencies is a reflection of the cortical adaptation to the statistical structure of the visual world. These findings are in agreement with biological observations, as form and color are thought to be represented by different classes of neurons in the primary visual cortex, and the receptive fields of color-selective neurons are larger than those of orientation-selective neurons. The agreement between our findings and biological observations supports the ecological theory of perception.

  12. Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice.

    PubMed

    Wallace, Michael L; van Woerden, Geeske M; Elgersma, Ype; Smith, Spencer L; Philpot, Benjamin D

    2017-07-01

    Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3A Ube3a STOP/p+ mice recapitulate major features of AS in humans and allow conditional reinstatement of maternal Ube3a with the expression of Cre recombinase. We have recently shown that AS model mice exhibit reduced inhibitory drive onto layer (L)2/3 pyramidal neurons of visual cortex, which contributes to a synaptic excitatory/inhibitory imbalance. However, it remains unclear how this loss of inhibitory drive affects neural circuits in vivo. Here we examined visual cortical response properties in individual neurons to explore the consequences of Ube3a loss on intact cortical circuits and processing. Using in vivo patch-clamp electrophysiology, we measured the visually evoked responses to square-wave drifting gratings in L2/3 regular-spiking (RS) neurons in control mice, Ube3a -deficient mice, and mice in which Ube3a was conditionally reinstated in GABAergic neurons. We found that Ube3a -deficient mice exhibited enhanced pyramidal neuron excitability in vivo as well as weaker orientation tuning. These observations are the first to show alterations in cortical computation in an AS model, and they suggest a basis for cortical dysfunction in AS. NEW & NOTEWORTHY Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of the gene UBE3A Using electrophysiological recording in vivo, we describe visual cortical dysfunctions in a mouse model of AS. Aberrant cellular properties in AS model mice could be improved by reinstating Ube3a in inhibitory neurons. These findings suggest that inhibitory neurons play a substantial role in the pathogenesis of AS. Copyright © 2017 the American Physiological Society.

  13. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex

    PubMed Central

    Khalil, Reem; Levitt, Jonathan B.

    2014-01-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from four to ten weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1, and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at four weeks postnatal, the retinotopic arrangement of feedback appears essentially adultlike; however, Suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also find significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18 which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. PMID:24665018

  14. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2014-10-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. © 2014 Wiley Periodicals, Inc.

  15. Evaluation of MR scanning, image registration, and image processing methods to visualize cortical veins for neurosurgery

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke J.; Rutten, G. J. M.; Willems, Peter W. A.; Viergever, Max A.

    2000-04-01

    The visualization of brain vessels on the cortex helps the neurosurgeon in two ways: to avoid blood vessels when specifying the trepanation entry, and to overcome errors in the surgical navigation system due to brain shift. We compared 3D T1, MR, 3D T1 MR with gadolinium contrast, MR venography as scanning techniques, mutual information as registration technique, and thresholding and multi-vessel enhancement as image processing techniques. We evaluated the volume rendered results based on their quality and correspondence with photos took during surgery. It appears that with 3D T1 MR scans, gadolinium is required to show cortical veins. The visibility of small cortical veins is strongly enhanced by subtracting a 3D T1 MR baseline scan, which should be registered to the scan with gadolinium contrast, even when the scans are made during the same session. Multi-vessel enhancement helps to clarify the view on small vessels by reducing noise level, but strikingly does not reveal more. MR venography does show intracerebral veins with high detail, but is, as is, unsuited to show cortical veins due to the low contrast with CSF.

  16. The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation

    PubMed Central

    Olson, David J.; Oh, Denise

    2015-01-01

    The self-organization of dorsally-directed microtubules during cortical rotation in the Xenopus egg is essential for dorsal axis formation. The mechanisms controlling this process have been problematic to analyze, owing to difficulties in visualizing microtubules in living egg. Also, the order of events occurring at the onset of cortical rotation have not been satisfactorily visualized in vivo and have been inferred from staged fixed samples. To address these issues, we have characterized the dynamics of total microtubule and plus end behavior continuously throughout cortical rotation, as well as in oocytes and unfertilized eggs. Here, we show that the nascent microtubule network forms in the cortex but associates with the deep cytoplasm at the start of rotation. Importantly, plus ends remain cortical and become increasingly more numerous and active prior to rotation, with dorsal polarization occurring rapidly after the onset of rotation. Additionally, we show that vegetally localized Trim36 is required to attenuate dynamic plus end growth, suggesting that vegetal factors are needed to locally coordinate growth in the cortex. PMID:25753733

  17. Possible Quantum Absorber Effects in Cortical Synchronization

    NASA Astrophysics Data System (ADS)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  18. Abnormal brain activation in neurofibromatosis type 1: a link between visual processing and the default mode network.

    PubMed

    Violante, Inês R; Ribeiro, Maria J; Cunha, Gil; Bernardino, Inês; Duarte, João V; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel

    2012-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.

  19. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution

    PubMed Central

    Homman-Ludiye, Jihane; Bourne, James A.

    2014-01-01

    The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species. PMID:25071460

  20. Static and dynamic views of visual cortical organization.

    PubMed

    Casagrande, Vivien A; Xu, Xiangmin; Sáry, Gyula

    2002-01-01

    Without the aid of modern techniques Cajal speculated that cells in the visual cortex were connected in circuits. From Cajal's time until fairly recently, the flow of information within the cells and circuits of visual cortex has been described as progressing from input to output, from sensation to action. In this chapter we argue that a paradigm shift in our concept of the visual cortical neuron is under way. The most important change in our view concerns the neuron's functional role. Visual cortical neurons do not have static functional signatures but instead function dynamically depending on the ongoing activity of the networks to which they belong. These networks are not merely top-down or bottom-up unidirectional transmission lines, but rather represent machinery that uses recurrent information and is dynamic and highly adaptable. With the advancement of technology for analyzing the conversations of multiple neurons at many levels in the visual system and higher resolution imaging, we predict that the paradigm shift will progress to the point where neurons are no longer viewed as independent processing units but as members of subsets of networks where their role is mapped in space-time coordinates in relationship to the other neuronal members. This view moves us far from Cajal's original views of the neuron. Nevertheless, we believe that understanding the basic morphology and wiring of networks will continue to contribute to our overall understanding of the visual cortex.

  1. How the blind "see" Braille: lessons from functional magnetic resonance imaging.

    PubMed

    Sadato, Norihiro

    2005-12-01

    What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.

  2. Independent Deficits of Visual Word and Motion Processing in Aging and Early Alzheimer's Disease

    PubMed Central

    Velarde, Carla; Perelstein, Elizabeth; Ressmann, Wendy; Duffy, Charles J.

    2013-01-01

    We tested whether visual processing impairments in aging and Alzheimer's disease (AD) reflect uniform posterior cortical decline, or independent disorders of visual processing for reading and navigation. Young and older normal controls were compared to early AD patients using psychophysical measures of visual word and motion processing. We find elevated perceptual thresholds for letters and word discrimination from young normal controls, to older normal controls, to early AD patients. Across subject groups, visual motion processing showed a similar pattern of increasing thresholds, with the greatest impact on radial pattern motion perception. Combined analyses show that letter, word, and motion processing impairments are independent of each other. Aging and AD may be accompanied by independent impairments of visual processing for reading and navigation. This suggests separate underlying disorders and highlights the need for comprehensive evaluations to detect early deficits. PMID:22647256

  3. Sustained Splits of Attention within versus across Visual Hemifields Produce Distinct Spatial Gain Profiles.

    PubMed

    Walter, Sabrina; Keitel, Christian; Müller, Matthias M

    2016-01-01

    Visual attention can be focused concurrently on two stimuli at noncontiguous locations while intermediate stimuli remain ignored. Nevertheless, behavioral performance in multifocal attention tasks falters when attended stimuli fall within one visual hemifield as opposed to when they are distributed across left and right hemifields. This "different-hemifield advantage" has been ascribed to largely independent processing capacities of each cerebral hemisphere in early visual cortices. Here, we investigated how this advantage influences the sustained division of spatial attention. We presented six isoeccentric light-emitting diodes (LEDs) in the lower visual field, each flickering at a different frequency. Participants attended to two LEDs that were spatially separated by an intermediate LED and responded to synchronous events at to-be-attended LEDs. Task-relevant pairs of LEDs were either located in the same hemifield ("within-hemifield" conditions) or separated by the vertical meridian ("across-hemifield" conditions). Flicker-driven brain oscillations, steady-state visual evoked potentials (SSVEPs), indexed the allocation of attention to individual LEDs. Both behavioral performance and SSVEPs indicated enhanced processing of attended LED pairs during "across-hemifield" relative to "within-hemifield" conditions. Moreover, SSVEPs demonstrated effective filtering of intermediate stimuli in "across-hemifield" condition only. Thus, despite identical physical distances between LEDs of attended pairs, the spatial profiles of gain effects differed profoundly between "across-hemifield" and "within-hemifield" conditions. These findings corroborate that early cortical visual processing stages rely on hemisphere-specific processing capacities and highlight their limiting role in the concurrent allocation of visual attention to multiple locations.

  4. Cortical activation during Braille reading is influenced by early visual experience in subjects with severe visual disability: a correlational fMRI study.

    PubMed

    Melzer, P; Morgan, V L; Pickens, D R; Price, R R; Wall, R S; Ebner, F F

    2001-11-01

    Functional magnetic resonance imaging was performed on blind adults resting and reading Braille. The strongest activation was found in primary somatic sensory/motor cortex on both cortical hemispheres. Additional foci of activation were situated in the parietal, temporal, and occipital lobes where visual information is processed in sighted persons. The regions were differentiated most in the correlation of their time courses of activation with resting and reading. Differences in magnitude and expanse of activation were substantially less significant. Among the traditionally visual areas, the strength of correlation was greatest in posterior parietal cortex and moderate in occipitotemporal, lateral occipital, and primary visual cortex. It was low in secondary visual cortex as well as in dorsal and ventral inferior temporal cortex and posterior middle temporal cortex. Visual experience increased the strength of correlation in all regions except dorsal inferior temporal and posterior parietal cortex. The greatest statistically significant increase, i.e., approximately 30%, was in ventral inferior temporal and posterior middle temporal cortex. In these regions, words are analyzed semantically, which may be facilitated by visual experience. In contrast, visual experience resulted in a slight, insignificant diminution of the strength of correlation in dorsal inferior temporal cortex where language is analyzed phonetically. These findings affirm that posterior temporal regions are engaged in the processing of written language. Moreover, they suggest that this function is modified by early visual experience. Furthermore, visual experience significantly strengthened the correlation of activation and Braille reading in occipital regions traditionally involved in the processing of visual features and object recognition suggesting a role for visual imagery. Copyright 2001 Wiley-Liss, Inc.

  5. Visual and Motor Recovery After "Cognitive Therapeutic Exercises" in Cortical Blindness: A Case Study.

    PubMed

    De Patre, Daniele; Van de Winckel, Ann; Panté, Franca; Rizzello, Carla; Zernitz, Marina; Mansour, Mariam; Zordan, Lara; Zeffiro, Thomas A; OʼConnor, Erin E; Bisson, Teresa; Lupi, Andrea; Perfetti, Carlo

    2017-07-01

    Spontaneous visual recovery is rare after cortical blindness. While visual rehabilitation may improve performance, no visual therapy has been widely adopted, as clinical outcomes are variable and rarely translate into improvements in activities of daily living (ADLs). We explored the potential value of a novel rehabilitation approach "cognitive therapeutic exercises" for cortical blindness. The subject of this case study was 48-year-old woman with cortical blindness and tetraplegia after cardiac arrest. Prior to the intervention, she was dependent in ADLs and poorly distinguished shapes and colors after 19 months of standard visual and motor rehabilitation. Computed tomographic images soon after symptom onset demonstrated acute infarcts in both occipital cortices. The subject underwent 8 months of intensive rehabilitation with "cognitive therapeutic exercises" consisting of discrimination exercises correlating sensory and visual information. Visual fields increased; object recognition improved; it became possible to watch television; voluntary arm movements improved in accuracy and smoothness; walking improved; and ADL independence and self-reliance increased. Subtraction of neuroimaging acquired before and after rehabilitation showed that focal glucose metabolism increases bilaterally in the occipital poles. This study demonstrates feasibility of "cognitive therapeutic exercises" in an individual with cortical blindness, who experienced impressive visual and sensorimotor recovery, with marked ADL improvement, more than 2 years after ischemic cortical damage.Video Abstract available for additional insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A173).

  6. Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions.

    PubMed

    Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly

    2017-01-01

    The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Distorted images of one's own body activates the prefrontal cortex and limbic/paralimbic system in young women: a functional magnetic resonance imaging study.

    PubMed

    Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-02-15

    Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.

  8. The role of temporo-parietal junction (TPJ) in global Gestalt perception.

    PubMed

    Huberle, Elisabeth; Karnath, Hans-Otto

    2012-07-01

    Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.

  9. Cognitive processing in the primary visual cortex: from perception to memory.

    PubMed

    Supèr, Hans

    2002-01-01

    The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.

  10. How cortical neurons help us see: visual recognition in the human brain

    PubMed Central

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161

  11. The Two Modes of Visual Processing: Implications for Spatial Orientation

    NASA Technical Reports Server (NTRS)

    Leibowitz, H. W.; Shupert, C. L.; Post, R. B.

    1984-01-01

    The roles of the focal and ambient visual systems in spatial orientation are discussed. The two modes are defined and compared. The contribution of each system is illustrated through examples such as spatial disorientation/motion sickness, vehicle guidance/night driving, visual narrowing under stress/cortical brain damage, and aircraft instrumentation. Emphasis is placed on the need for testing procedures for the ambient system.

  12. Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation

    PubMed Central

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228

  13. Hierarchical representation of shapes in visual cortex-from localized features to figural shape segregation.

    PubMed

    Tschechne, Stephan; Neumann, Heiko

    2014-01-01

    Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.

  14. Encoding model of temporal processing in human visual cortex.

    PubMed

    Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit

    2017-12-19

    How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.

  15. Cumulative latency advance underlies fast visual processing in desynchronized brain state

    PubMed Central

    Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan

    2014-01-01

    Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals. PMID:24347634

  16. Cumulative latency advance underlies fast visual processing in desynchronized brain state.

    PubMed

    Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan

    2014-01-07

    Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.

  17. Audiovisual integration in hemianopia: A neurocomputational account based on cortico-collicular interaction.

    PubMed

    Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro

    2016-10-01

    Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Human Pluripotent Stem-Cell-Derived Cortical Neurons Integrate Functionally into the Lesioned Adult Murine Visual Cortex in an Area-Specific Way.

    PubMed

    Espuny-Camacho, Ira; Michelsen, Kimmo A; Linaro, Daniele; Bilheu, Angéline; Acosta-Verdugo, Sandra; Herpoel, Adèle; Giugliano, Michele; Gaillard, Afsaneh; Vanderhaeghen, Pierre

    2018-05-29

    The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Unreliable evoked responses in autism

    PubMed Central

    Dinstein, Ilan; Heeger, David J.; Lorenzi, Lauren; Minshew, Nancy J.; Malach, Rafael; Behrmann, Marlene

    2012-01-01

    Summary Autism has been described as a disorder of general neural processing, but the particular processing characteristics that might be abnormal in autism have mostly remained obscure. Here, we present evidence of one such characteristic: poor evoked response reliability. We compared cortical response amplitude and reliability (consistency across trials) in visual, auditory, and somatosensory cortices of high-functioning individuals with autism and controls. Mean response amplitudes were statistically indistinguishable across groups, yet trial-by-trial response reliability was significantly weaker in autism, yielding smaller signal-to-noise ratios in all sensory systems. Response reliability differences were evident only in evoked cortical responses and not in ongoing resting-state activity. These findings reveal that abnormally unreliable cortical responses, even to elementary non-social sensory stimuli, may represent a fundamental physiological alteration of neural processing in autism. The results motivate a critical expansion of autism research to determine whether (and how) basic neural processing properties such as reliability, plasticity, and adaptation/habituation are altered in autism. PMID:22998867

  20. Visual recovery in cortical blindness is limited by high internal noise

    PubMed Central

    Cavanaugh, Matthew R.; Zhang, Ruyuan; Melnick, Michael D.; Das, Anasuya; Roberts, Mariel; Tadin, Duje; Carrasco, Marisa; Huxlin, Krystel R.

    2015-01-01

    Damage to the primary visual cortex typically causes cortical blindness (CB) in the hemifield contralateral to the damaged hemisphere. Recent evidence indicates that visual training can partially reverse CB at trained locations. Whereas training induces near-complete recovery of coarse direction and orientation discriminations, deficits in fine motion processing remain. Here, we systematically disentangle components of the perceptual inefficiencies present in CB fields before and after coarse direction discrimination training. In seven human CB subjects, we measured threshold versus noise functions before and after coarse direction discrimination training in the blind field and at corresponding intact field locations. Threshold versus noise functions were analyzed within the framework of the linear amplifier model and the perceptual template model. Linear amplifier model analysis identified internal noise as a key factor differentiating motion processing across the tested areas, with visual training reducing internal noise in the blind field. Differences in internal noise also explained residual perceptual deficits at retrained locations. These findings were confirmed with perceptual template model analysis, which further revealed that the major residual deficits between retrained and intact field locations could be explained by differences in internal additive noise. There were no significant differences in multiplicative noise or the ability to process external noise. Together, these results highlight the critical role of altered internal noise processing in mediating training-induced visual recovery in CB fields, and may explain residual perceptual deficits relative to intact regions of the visual field. PMID:26389544

  1. The Effects of Training on a Young Child with Cortical Visual Impairment: An Exploratory Study.

    ERIC Educational Resources Information Center

    Lueck, Amanda Hall; Dornbusch, Helen; Hart, Jeri

    1999-01-01

    This exploratory study investigated the effects of the components of visual environmental management, visual skills training, and visually dependent task training on the performance of visual behaviors of a toddler with multiple disabilities including cortical visual impairment. Training components were implemented by the mother during daily…

  2. Micro-calibration of space and motion by photoreceptors synchronized in parallel with cortical oscillations: A unified theory of visual perception.

    PubMed

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike

    2018-01-01

    A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical faculties to the retina, while the thalamus is the link that couples the retina to the rest of the brain through activity by gamma oscillations. This novel theory lays groundwork for further research by providing a theoretical understanding that expands upon the functions of the retina, photoreceptors, and retinal plexus to include parallel processing needed to form the internal visual space that we perceive as the external world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A feedback model of visual attention.

    PubMed

    Spratling, M W; Johnson, M H

    2004-03-01

    Feedback connections are a prominent feature of cortical anatomy and are likely to have a significant functional role in neural information processing. We present a neural network model of cortical feedback that successfully simulates neurophysiological data associated with attention. In this domain, our model can be considered a more detailed, and biologically plausible, implementation of the biased competition model of attention. However, our model is more general as it can also explain a variety of other top-down processes in vision, such as figure/ground segmentation and contextual cueing. This model thus suggests that a common mechanism, involving cortical feedback pathways, is responsible for a range of phenomena and provides a unified account of currently disparate areas of research.

  4. High-Level Vision: Top-Down Processing in Neurally Inspired Architectures

    DTIC Science & Technology

    2008-02-01

    shunting subsystem). Visual input from the lateral geniculate enters the visual buffer via the black arrow at the bottom. Processing subsystems used... lateral geniculate nucleus of the thalamus (LGNd), the superior colliculus of the midbrain, and cortical regions V1 through V4. Beyond early vision...resonance imaging FOA: focus of attention IMPER: IMagery and PERception model IS: information shunting system LGNd: dorsal lateral geniculate nucleus

  5. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST.

    PubMed

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B Suresh; Treue, Stefan

    2017-01-01

    Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. © The Author 2016. Published by Oxford University Press.

  6. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST

    PubMed Central

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B. Suresh; Treue, Stefan

    2017-01-01

    Abstract Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. PMID:28365773

  7. Convergent paradigms for visual neuroscience and dissociative identity disorder.

    PubMed

    Manning, Mark L; Manning, Rana L

    2009-01-01

    Although dissociative identity disorder, a condition in which multiple individuals appear to inhabit a single body, is a recognized psychiatric disorder, patients may yet encounter health professionals who declare that they simply "do not believe in multiple personalities." This article explores the proposal that resistance to the disorder represents a failure to apply an appropriate paradigm from which the disorder should be interpreted. Trauma and sociocognitive explanations of dissociative identity disorder are contrasted. The trauma hypothesis is further differentiated into paradigms in which trauma affects a defense mechanism, and one in which trauma serves to inhibit the normal integration sequence of parallel processes of the self in childhood. This latter paradigm is shown to be broadly consistent with current models of cortical processing in another system, the cortical visual system.

  8. Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex

    PubMed Central

    Zilles, Karl; Palomero-Gallagher, Nicola

    2017-01-01

    We measured the densities (fmol/mg protein) of 15 different receptors of various transmitter systems in the supragranular, granular and infragranular strata of 44 areas of visual, somatosensory, auditory and multimodal association systems of the human cerebral cortex. Receptor densities were obtained after labeling of the receptors using quantitative in vitro receptor autoradiography in human postmortem brains. The mean density of each receptor type over all cortical layers and of each of the three major strata varies between cortical regions. In a single cortical area, the multi-receptor fingerprints of its strata (i.e., polar plots, each visualizing the densities of multiple different receptor types in supragranular, granular or infragranular layers of the same cortical area) differ in shape and size indicating regional and laminar specific balances between the receptors. Furthermore, the three strata are clearly segregated into well definable clusters by their receptor fingerprints. Fingerprints of different cortical areas systematically vary between functional networks, and with the hierarchical levels within sensory systems. Primary sensory areas are clearly separated from all other cortical areas particularly by their very high muscarinic M2 and nicotinic α4β2 receptor densities, and to a lesser degree also by noradrenergic α2 and serotonergic 5-HT2 receptors. Early visual areas of the dorsal and ventral streams are segregated by their multi-receptor fingerprints. The results are discussed on the background of functional segregation, cortical hierarchies, microstructural types, and the horizontal (layers) and vertical (columns) organization in the cerebral cortex. We conclude that a cortical column is composed of segments, which can be assigned to the cortical strata. The segments differ by their patterns of multi-receptor balances, indicating different layer-specific signal processing mechanisms. Additionally, the differences between the strata-and area-specific fingerprints of the 44 areas reflect the segregation of the cerebral cortex into functionally and topographically definable groups of cortical areas (visual, auditory, somatosensory, limbic, motor), and reveals their hierarchical position (primary and unimodal (early) sensory to higher sensory and finally to multimodal association areas). Highlights Densities of transmitter receptors vary between areas of human cerebral cortex.Multi-receptor fingerprints segregate cortical layers.The densities of all examined receptor types together reach highest values in the supragranular stratum of all areas.The lowest values are found in the infragranular stratum.Multi-receptor fingerprints of entire areas and their layers segregate functional systemsCortical types (primary sensory, motor, multimodal association) differ in their receptor fingerprints. PMID:28970785

  9. Learning to see again: Biological constraints on cortical plasticity and the implications for sight restoration technologies

    PubMed Central

    Beyeler, Michael; Rokem, Ariel; Boynton, Geoffrey M.; Fine, Ione

    2018-01-01

    The “bionic eye” – so long a dream of the future – is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the vision provided by these devices differs substantially from normal sight. Consequently, the ability to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients. PMID:28612755

  10. Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients.

    PubMed

    Rouger, Julien; Lagleyre, Sébastien; Démonet, Jean-François; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal

    2012-08-01

    Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow-up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post-implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice-sensitive areas-TVA). These abnormal activity levels diminish with post-implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech-related visual processing through cross-modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo-audio-motor speech processing loop, including Broca's area. Copyright © 2011 Wiley Periodicals, Inc.

  11. Cortical Networks for Visual Self-Recognition

    NASA Astrophysics Data System (ADS)

    Sugiura, Motoaki

    This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed.

  12. Parietal blood oxygenation level-dependent response evoked by covert visual search reflects set-size effect in monkeys.

    PubMed

    Atabaki, A; Marciniak, K; Dicke, P W; Karnath, H-O; Thier, P

    2014-03-01

    Distinguishing a target from distractors during visual search is crucial for goal-directed behaviour. The more distractors that are presented with the target, the larger is the subject's error rate. This observation defines the set-size effect in visual search. Neurons in areas related to attention and eye movements, like the lateral intraparietal area (LIP) and frontal eye field (FEF), diminish their firing rates when the number of distractors increases, in line with the behavioural set-size effect. Furthermore, human imaging studies that have tried to delineate cortical areas modulating their blood oxygenation level-dependent (BOLD) response with set size have yielded contradictory results. In order to test whether BOLD imaging of the rhesus monkey cortex yields results consistent with the electrophysiological findings and, moreover, to clarify if additional other cortical regions beyond the two hitherto implicated are involved in this process, we studied monkeys while performing a covert visual search task. When varying the number of distractors in the search task, we observed a monotonic increase in error rates when search time was kept constant as was expected if monkeys resorted to a serial search strategy. Visual search consistently evoked robust BOLD activity in the monkey FEF and a region in the intraparietal sulcus in its lateral and middle part, probably involving area LIP. Whereas the BOLD response in the FEF did not depend on set size, the LIP signal increased in parallel with set size. These results demonstrate the virtue of BOLD imaging in monkeys when trying to delineate cortical areas underlying a cognitive process like visual search. However, they also demonstrate the caution needed when inferring neural activity from BOLD activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Surfing a spike wave down the ventral stream.

    PubMed

    VanRullen, Rufin; Thorpe, Simon J

    2002-10-01

    Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.

  14. Latencies in BOLD response during visual attention processes.

    PubMed

    Kellermann, Thilo; Reske, Martina; Jansen, Andreas; Satrapi, Peyman; Shah, N Jon; Schneider, Frank; Habel, Ute

    2011-04-22

    One well-investigated division of attentional processes focuses on alerting, orienting and executive control, which can be assessed applying the attentional network test (ANT). The goal of the present study was to add further knowledge about the temporal dynamics of relevant neural correlates. As a right hemispheric dominance for alerting and orienting has previously been reported for intrinsic but not for phasic alertness, we additionally addressed a potential impact of this lateralization of attention by employing a lateralized version of the ANT, capturing phasic alertness processes. Sixteen healthy subjects underwent event-related functional magnetic resonance imaging (fMRI) while performing the ANT. Analyses of BOLD magnitude replicated the engagement of a fronto-parietal network in the attentional subsystems. The amplitudes of the attentional contrasts interacted with visual field presentation in the sense that the thalamus revealed a greater involvement for spatially cued items presented in the left visual field. Comparisons of BOLD latencies in visual cortices, first, verified faster BOLD responses following contra-lateral stimulus presentation. Second and more importantly, we identified attention-modulated activation in secondary visual and anterior cingulate cortices. Results are discussed in terms of bottom-up and lateralization processes. Although intrinsic and phasic alertness are distinct cognitive processes, we propose that neural substrates of intrinsic alertness may be accessed by phasic alertness provided that the attention-dominant (i.e., the right) hemisphere is activated directly by a warning stimulus. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Emotion Separation Is Completed Early and It Depends on Visual Field Presentation

    PubMed Central

    Liu, Lichan; Ioannides, Andreas A.

    2010-01-01

    It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well within 100 ms after image onset, and that this separation is processed differently depending on where in the visual field the stimulus is presented. Seven right-handed males participated in a face affect recognition experiment in which they viewed happy, fearful and neutral faces. Blocks of images were shown either at the center or in one of the four quadrants of the visual field. For centrally presented faces, the emotions were separated fast, first in the right superior temporal sulcus (STS; 35–48 ms), followed by the right amygdala (57–64 ms) and medial pre-frontal cortex (83–96 ms). For faces presented in the periphery, the emotions were separated first in the ipsilateral amygdala and contralateral STS. We conclude that amygdala and STS likely play a different role in early visual processing, recruiting distinct neural networks for action: the amygdala alerts sub-cortical centers for appropriate autonomic system response for fight or flight decisions, while the STS facilitates more cognitive appraisal of situations and links appropriate cortical sites together. It is then likely that different problems may arise when either network fails to initiate or function properly. PMID:20339549

  16. Auditory and visual connectivity gradients in frontoparietal cortex

    PubMed Central

    Hellyer, Peter J.; Wise, Richard J. S.; Leech, Robert

    2016-01-01

    Abstract A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc. PMID:27571304

  17. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    PubMed

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  18. Disrupted neural processing of emotional faces in psychopathy.

    PubMed

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Bosque, Javier; Ibern-Regàs, Immaculada; Hernández-Ribas, Rosa; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2014-04-01

    Psychopaths show a reduced ability to recognize emotion facial expressions, which may disturb the interpersonal relationship development and successful social adaptation. Behavioral hypotheses point toward an association between emotion recognition deficits in psychopathy and amygdala dysfunction. Our prediction was that amygdala dysfunction would combine deficient activation with disturbances in functional connectivity with cortical regions of the face-processing network. Twenty-two psychopaths and 22 control subjects were assessed and functional magnetic resonance maps were generated to identify both brain activation and task-induced functional connectivity using psychophysiological interaction analysis during an emotional face-matching task. Results showed significant amygdala activation in control subjects only, but differences between study groups did not reach statistical significance. In contrast, psychopaths showed significantly increased activation in visual and prefrontal areas, with this latest activation being associated with psychopaths' affective-interpersonal disturbances. Psychophysiological interaction analyses revealed a reciprocal reduction in functional connectivity between the left amygdala and visual and prefrontal cortices. Our results suggest that emotional stimulation may evoke a relevant cortical response in psychopaths, but a disruption in the processing of emotional faces exists involving the reciprocal functional interaction between the amygdala and neocortex, consistent with the notion of a failure to integrate emotion into cognition in psychopathic individuals.

  19. Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.

    PubMed

    Kraus, Nina; Nicol, Trent

    2005-04-01

    We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function.

  20. Cortical Neuroprosthesis Merges Visible and Invisible Light Without Impairing Native Sensory Function

    PubMed Central

    Thomson, Eric E.; Zea, Ivan; França, Wendy

    2017-01-01

    Abstract Adult rats equipped with a sensory prosthesis, which transduced infrared (IR) signals into electrical signals delivered to somatosensory cortex (S1), took approximately 4 d to learn a four-choice IR discrimination task. Here, we show that when such IR signals are projected to the primary visual cortex (V1), rats that are pretrained in a visual-discrimination task typically learn the same IR discrimination task on their first day of training. However, without prior training on a visual discrimination task, the learning rates for S1- and V1-implanted animals converged, suggesting there is no intrinsic difference in learning rate between the two areas. We also discovered that animals were able to integrate IR information into the ongoing visual processing stream in V1, performing a visual-IR integration task in which they had to combine IR and visual information. Furthermore, when the IR prosthesis was implanted in S1, rats showed no impairment in their ability to use their whiskers to perform a tactile discrimination task. Instead, in some rats, this ability was actually enhanced. Cumulatively, these findings suggest that cortical sensory neuroprostheses can rapidly augment the representational scope of primary sensory areas, integrating novel sources of information into ongoing processing while incurring minimal loss of native function. PMID:29279860

  1. A neural model of motion processing and visual navigation by cortical area MST.

    PubMed

    Grossberg, S; Mingolla, E; Pack, C

    1999-12-01

    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.

  2. Experimental and Computational Studies of Cortical Neural Network Properties Through Signal Processing

    NASA Astrophysics Data System (ADS)

    Clawson, Wesley Patrick

    Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized using mutual information between sensory input, visual stimulus, and neural response,. The primary finding of our experiments in the visual cortex in turtles and neuronal network modeling confirms this theoretical prediction. We show that sensory discrimination is maximized when visual cortex operates near criticality. In addition to presenting this primary finding in detail, this thesis will also address our preliminary results on change-point-detection in experimentally measured cortical dynamics.

  3. Multiplexing in the primate motion pathway.

    PubMed

    Huk, Alexander C

    2012-06-01

    This article begins by reviewing recent work on 3D motion processing in the primate visual system. Some of these results suggest that 3D motion signals may be processed in the same circuitry already known to compute 2D motion signals. Such "multiplexing" has implications for the study of visual cortical circuits and neural signals. A more explicit appreciation of multiplexing--and the computations required for demultiplexing--may enrich the study of the visual system by emphasizing the importance of a structured and balanced "encoding/decoding" framework. In addition to providing a fresh perspective on how successive stages of visual processing might be approached, multiplexing also raises caveats about the value of "neural correlates" for understanding neural computation.

  4. Zinc histochemistry reveals circuit refinement and distinguishes visual areas in the developing ferret cerebral cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2013-09-01

    A critical question in brain development is whether different brain circuits mature concurrently or with different timescales. To characterize the anatomical and functional development of different visual cortical areas, one must be able to distinguish these areas. Here, we show that zinc histochemistry, which reveals a subset of glutamatergic processes, can be used to reliably distinguish visual areas in juvenile and adult ferret cerebral cortex, and that the postnatal decline in levels of synaptic zinc follows a broadly similar developmental trajectory in multiple areas of ferret visual cortex. Zinc staining in all areas examined (17, 18, 19, 21, and Suprasylvian) is greater in the 5-week-old than in the adult. Furthermore, there is less laminar variation in zinc staining in the 5-week-old visual cortex than in the adult. Despite differences in staining intensity, areal boundaries can be discerned in the juvenile as in the adult. By 6 weeks of age, we observe a significant decline in visual cortical synaptic zinc; this decline was most pronounced in layer IV of areas 17 and 18, with much less change in higher-order extrastriate areas during the important period in visual cortical development following eye opening. By 10 weeks of age, the laminar pattern of zinc staining in all visual areas is essentially adultlike. The decline in synaptic zinc in the supra- and infragranular layers in all areas proceeds at the same rate, though the decline in layer IV does not. These results suggest that the timecourse of synaptic zinc decline is lamina specific, and further confirm and extend the notion that at least some aspects of cortical maturation follow a similar developmental timecourse in multiple areas. The postnatal decline in synaptic zinc we observe during the second postnatal month begins after eye opening, consistent with evidence that synaptic zinc is regulated by sensory experience.

  5. Persistent recruitment of somatosensory cortex during active maintenance of hand images in working memory.

    PubMed

    Galvez-Pol, A; Calvo-Merino, B; Capilla, A; Forster, B

    2018-07-01

    Working memory (WM) supports temporary maintenance of task-relevant information. This process is associated with persistent activity in the sensory cortex processing the information (e.g., visual stimuli activate visual cortex). However, we argue here that more multifaceted stimuli moderate this sensory-locked activity and recruit distinctive cortices. Specifically, perception of bodies recruits somatosensory cortex (SCx) beyond early visual areas (suggesting embodiment processes). Here we explore persistent activation in processing areas beyond the sensory cortex initially relevant to the modality of the stimuli. Using visual and somatosensory evoked-potentials in a visual WM task, we isolated different levels of visual and somatosensory involvement during encoding of body and non-body-related images. Persistent activity increased in SCx only when maintaining body images in WM, whereas visual/posterior regions' activity increased significantly when maintaining non-body images. Our results bridge WM and embodiment frameworks, supporting a dynamic WM process where the nature of the information summons specific processing resources. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention

    PubMed Central

    Bekisz, Marek; Bogdan, Wojciech; Ghazaryan, Anaida; Waleszczyk, Wioletta J.; Kublik, Ewa; Wróbel, Andrzej

    2016-01-01

    Selective attention can be focused either volitionally, by top-down signals derived from task demands, or automatically, by bottom-up signals from salient stimuli. Because the brain mechanisms that underlie these two attention processes are poorly understood, we recorded local field potentials (LFPs) from primary visual cortical areas of cats as they performed stimulus-driven and anticipatory discrimination tasks. Consistent with our previous observations, in both tasks, we found enhanced beta activity, which we have postulated may serve as an attention carrier. We characterized the functional organization of task-related beta activity by (i) cortical responses (EPs) evoked by electrical stimulation of the optic chiasm and (ii) intracortical LFP correlations. During the anticipatory task, peripheral stimulation that was preceded by high-amplitude beta oscillations evoked large-amplitude EPs compared with EPs that followed low-amplitude beta. In contrast, during the stimulus-driven task, cortical EPs preceded by high-amplitude beta oscillations were, on average, smaller than those preceded by low-amplitude beta. Analysis of the correlations between the different recording sites revealed that beta activation maps were heterogeneous during the bottom-up task and homogeneous for the top-down task. We conclude that bottom-up attention activates cortical visual areas in a mosaic-like pattern, whereas top-down attentional modulation results in spatially homogeneous excitation. PMID:26730705

  7. Brain metabolism of children with profound deafness: a visual language activation study by 18F-fluorodeoxyglucose positron emission tomography.

    PubMed

    Fujiwara, Keizo; Naito, Yasushi; Senda, Michio; Mori, Toshiko; Manabe, Tomoko; Shinohara, Shogo; Kikuchi, Masahiro; Hori, Shin-Ya; Tona, Yosuke; Yamazaki, Hiroshi

    2008-04-01

    The use of fluorodeoxyglucose positron emission tomography (FDG-PET) with a visual language task provided objective information on the development and plasticity of cortical language networks. This approach could help individuals involved in the habilitation and education of prelingually deafened children to decide upon the appropriate mode of communication. To investigate the cortical processing of the visual component of language and the effect of deafness upon this activity. Six prelingually deafened children participated in this study. The subjects were numbered 1-6 in the order of their spoken communication skills. In the time period between an intravenous injection of 370 MBq 18F-FDG and PET scanning of the brain, each subject was instructed to watch a video of the face of a speaking person. The cortical radioactivity of each deaf child was compared with that of a group of normal- hearing adults using a t test in a basic SPM2 model. The widest bilaterally activated cortical area was detected in subject 1, who was the worst user of spoken language. By contrast, there was no significant difference between subject 6, who was the best user of spoken language with a hearing aid, and the normal hearing group.

  8. The Physiology of Vision and the Process of Writing.

    ERIC Educational Resources Information Center

    Roberts, David Harrill

    Acknowledging the importance of sight to the writing process, the paper elucidates the processes of vision related to the composing process. In the opening section the physics of light and vision, optic neuroanatomy, and cortical responses to visual stimuli are explained. Next, theories of vision and data mapping are examined and their…

  9. Nonlinear dynamics of cortical responses to color in the human cVEP.

    PubMed

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2017-09-01

    The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.

  10. Abnormal global processing along the dorsal visual pathway in autism: a possible mechanism for weak visuospatial coherence?

    PubMed

    Pellicano, Elizabeth; Gibson, Lisa; Maybery, Murray; Durkin, Kevin; Badcock, David R

    2005-01-01

    Frith and Happe (Frith, U., & Happe, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115-132) argue that individuals with autism exhibit 'weak central coherence': an inability to integrate elements of information into coherent wholes. Some authors have speculated that a high-level impairment might be present in the dorsal visual pathway in autism, and furthermore, that this might account for weak central coherence, at least at the visuospatial level. We assessed the integrity of the dorsal visual pathway in children diagnosed with an autism spectrum disorder (ASD), and in typically developing children, using two visual tasks, one examining functioning at higher levels of the dorsal cortical stream (Global Dot Motion (GDM)), and the other assessing lower-level dorsal stream functioning (Flicker Contrast Sensitivity (FCS)). Central coherence was tested using the Children's Embedded Figures Test (CEFT). Relative to the typically developing children, the children with ASD had shorter CEFT latencies and higher GDM thresholds but equivalent FCS thresholds. Additionally, CEFT latencies were inversely related to GDM thresholds in the ASD group. These outcomes indicate that the elevated global motion thresholds in autism are the result of high-level impairments in dorsal cortical regions. Weak visuospatial coherence in autism may be in the form of abnormal cooperative mechanisms in extra-striate cortical areas, which might contribute to differential performance when processing stimuli as Gestalts, including both dynamic (i.e., global motion perception) and static (i.e., disembedding performance) stimuli.

  11. What’s the Gist? The influence of schemas on the neural correlates underlying true and false memories

    PubMed Central

    Webb, Christina E.; Turney, Indira C.; Dennis, Nancy A.

    2017-01-01

    The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an interesting dissociation, showing greater activity for true compared to false recollection, as well as for false compared to true familiarity. These results provided an indication as to how different types of items are retrieved when studied within a highly schematic context. Results both replicate and extend previous true and false memory findings, supporting the Fuzzy Trace Theory. PMID:27697593

  12. What's the gist? The influence of schemas on the neural correlates underlying true and false memories.

    PubMed

    Webb, Christina E; Turney, Indira C; Dennis, Nancy A

    2016-12-01

    The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an interesting dissociation, showing greater activity for true compared to false recollection, as well as for false compared to true familiarity. These results provided an indication as to how different types of items are retrieved when studied within a highly schematic context. Results both replicate and extend previous true and false memory findings, supporting the Fuzzy Trace Theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. In Vivo Voltage-Sensitive Dye Study of Lateral Spreading of Cortical Activity in Mouse Primary Visual Cortex Induced by a Current Impulse

    PubMed Central

    Fehérvári, Tamás Dávid; Sawai, Hajime; Yagi, Tetsuya

    2015-01-01

    In the mammalian primary visual cortex (V1), lateral spreading of excitatory potentials is believed to be involved in spatial integrative functions, but the underlying cortical mechanism is not well understood. Visually-evoked population-level responses have been shown to propagate beyond the V1 initial activation site in mouse, similar to higher mammals. Visually-evoked responses are, however, affected by neuronal circuits prior to V1 (retina, LGN), making the separate analysis of V1 difficult. Intracortical stimulation eliminates these initial processing steps. We used in vivo RH1691 voltage-sensitive dye (VSD) imaging and intracortical microstimulation in adult C57BL/6 mice to elucidate the spatiotemporal properties of population-level signal spreading in V1 cortical circuits. The evoked response was qualitatively similar to that measured in single-cell electrophysiological experiments in rodents: a fast transient fluorescence peak followed by a fast and a slow decrease or hyperpolarization, similar to EPSP and fast and slow IPSPs in single cells. The early cortical response expanded at speeds commensurate with long horizontal projections (at 5% of the peak maximum, 0.08–0.15 m/s) however, the bulk of the VSD signal propagated slowly (at half-peak maximum, 0.05–0.08 m/s) suggesting an important role of regenerative multisynaptic transmission through short horizontal connections in V1 spatial integrative functions. We also found a tendency for a widespread and fast cortical response suppression in V1, which was eliminated by GABAA-antagonists gabazine and bicuculline methiodide. Our results help understand the neuronal circuitry involved in lateral spreading in V1. PMID:26230520

  14. Selective loss of orientation column maps in visual cortex during brief elevation of intraocular pressure.

    PubMed

    Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande

    2003-01-01

    To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.

  15. Extensive video-game experience alters cortical networks for complex visuomotor transformations.

    PubMed

    Granek, Joshua A; Gorbet, Diana J; Sergio, Lauren E

    2010-10-01

    Using event-related functional magnetic resonance imaging (fMRI), we examined the effect of video-game experience on the neural control of increasingly complex visuomotor tasks. Previously, skilled individuals have demonstrated the use of a more efficient movement control brain network, including the prefrontal, premotor, primary sensorimotor and parietal cortices. Our results extend and generalize this finding by documenting additional prefrontal cortex activity in experienced video gamers planning for complex eye-hand coordination tasks that are distinct from actual video-game play. These changes in activation between non-gamers and extensive gamers are putatively related to the increased online control and spatial attention required for complex visually guided reaching. These data suggest that the basic cortical network for processing complex visually guided reaching is altered by extensive video-game play. Crown Copyright © 2009. Published by Elsevier Srl. All rights reserved.

  16. Effects of cortical damage on binocular depth perception.

    PubMed

    Bridge, Holly

    2016-06-19

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Authors.

  17. Effects of cortical damage on binocular depth perception

    PubMed Central

    2016-01-01

    Stereoscopic depth perception requires considerable neural computation, including the initial correspondence of the two retinal images, comparison across the local regions of the visual field and integration with other cues to depth. The most common cause for loss of stereoscopic vision is amblyopia, in which one eye has failed to form an adequate input to the visual cortex, usually due to strabismus (deviating eye) or anisometropia. However, the significant cortical processing required to produce the percept of depth means that, even when the retinal input is intact from both eyes, brain damage or dysfunction can interfere with stereoscopic vision. In this review, I examine the evidence for impairment of binocular vision and depth perception that can result from insults to the brain, including both discrete damage, temporal lobectomy and more systemic diseases such as posterior cortical atrophy. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269597

  18. Language Networks in Anophthalmia: Maintained Hierarchy of Processing in "Visual" Cortex

    ERIC Educational Resources Information Center

    Watkins, Kate E.; Cowey, Alan; Alexander, Iona; Filippini, Nicola; Kennedy, James M.; Smith, Stephen M.; Ragge, Nicola; Bridge, Holly

    2012-01-01

    Imaging studies in blind subjects have consistently shown that sensory and cognitive tasks evoke activity in the occipital cortex, which is normally visual. The precise areas involved and degree of activation are dependent upon the cause and age of onset of blindness. Here, we investigated the cortical language network at rest and during an…

  19. Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

    PubMed Central

    Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.

    2015-01-01

    We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341

  20. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.

    PubMed

    Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S

    2013-05-01

    Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older compared to younger people. This may negatively impact on the fidelity of information available to higher cognitive processing. Such evidence may inform future studies focused on cognitive decline in aging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Using a Large-scale Neural Model of Cortical Object Processing to Investigate the Neural Substrate for Managing Multiple Items in Short-term Memory.

    PubMed

    Liu, Qin; Ulloa, Antonio; Horwitz, Barry

    2017-11-01

    Many cognitive and computational models have been proposed to help understand working memory. In this article, we present a simulation study of cortical processing of visual objects during several working memory tasks using an extended version of a previously constructed large-scale neural model [Tagamets, M. A., & Horwitz, B. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cerebral Cortex, 8, 310-320, 1998]. The original model consisted of arrays of Wilson-Cowan type of neuronal populations representing primary and secondary visual cortices, inferotemporal (IT) cortex, and pFC. We added a module representing entorhinal cortex, which functions as a gating module. We successfully implemented multiple working memory tasks using the same model and produced neuronal patterns in visual cortex, IT cortex, and pFC that match experimental findings. These working memory tasks can include distractor stimuli or can require that multiple items be retained in mind during a delay period (Sternberg's task). Besides electrophysiology data and behavioral data, we also generated fMRI BOLD time series from our simulation. Our results support the involvement of IT cortex in working memory maintenance and suggest the cortical architecture underlying the neural mechanisms mediating particular working memory tasks. Furthermore, we noticed that, during simulations of memorizing a list of objects, the first and last items in the sequence were recalled best, which may implicate the neural mechanism behind this important psychological effect (i.e., the primacy and recency effect).

  2. Multiple brain networks for visual self-recognition with different sensitivity for motion and body part.

    PubMed

    Sugiura, Motoaki; Sassa, Yuko; Jeong, Hyeonjeong; Miura, Naoki; Akitsuki, Yuko; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta

    2006-10-01

    Multiple brain networks may support visual self-recognition. It has been hypothesized that the left ventral occipito-temporal cortex processes one's own face as a symbol, and the right parieto-frontal network processes self-image in association with motion-action contingency. Using functional magnetic resonance imaging, we first tested these hypotheses based on the prediction that these networks preferentially respond to a static self-face and to moving one's whole body, respectively. Brain activation specifically related to self-image during familiarity judgment was compared across four stimulus conditions comprising a two factorial design: factor Motion contrasted picture (Picture) and movie (Movie), and factor Body part a face (Face) and whole body (Body). Second, we attempted to segregate self-specific networks using a principal component analysis (PCA), assuming an independent pattern of inter-subject variability in activation over the four stimulus conditions in each network. The bilateral ventral occipito-temporal and the right parietal and frontal cortices exhibited self-specific activation. The left ventral occipito-temporal cortex exhibited greater self-specific activation for Face than for Body, in Picture, consistent with the prediction for this region. The activation profiles of the right parietal and frontal cortices did not show preference for Movie Body predicted by the assumed roles of these regions. The PCA extracted two cortical networks, one with its peaks in the right posterior, and another in frontal cortices; their possible roles in visuo-spatial and conceptual self-representations, respectively, were suggested by previous findings. The results thus supported and provided evidence of multiple brain networks for visual self-recognition.

  3. What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives

    PubMed Central

    de Sousa, Alexandra A.; Proulx, Michael J.

    2014-01-01

    An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function. PMID:25009469

  4. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications.

    PubMed

    Glick, Hannah; Sharma, Anu

    2017-01-01

    This review explores cross-modal cortical plasticity as a result of auditory deprivation in populations with hearing loss across the age spectrum, from development to adulthood. Cross-modal plasticity refers to the phenomenon when deprivation in one sensory modality (e.g. the auditory modality as in deafness or hearing loss) results in the recruitment of cortical resources of the deprived modality by intact sensory modalities (e.g. visual or somatosensory systems). We discuss recruitment of auditory cortical resources for visual and somatosensory processing in deafness and in lesser degrees of hearing loss. We describe developmental cross-modal re-organization in the context of congenital or pre-lingual deafness in childhood and in the context of adult-onset, age-related hearing loss, with a focus on how cross-modal plasticity relates to clinical outcomes. We provide both single-subject and group-level evidence of cross-modal re-organization by the visual and somatosensory systems in bilateral, congenital deafness, single-sided deafness, adults with early-stage, mild-moderate hearing loss, and individual adult and pediatric patients exhibit excellent and average speech perception with hearing aids and cochlear implants. We discuss a framework in which changes in cortical resource allocation secondary to hearing loss results in decreased intra-modal plasticity in auditory cortex, accompanied by increased cross-modal recruitment of auditory cortices by the other sensory systems, and simultaneous compensatory activation of frontal cortices. The frontal cortices, as we will discuss, play an important role in mediating cognitive compensation in hearing loss. Given the wide range of variability in behavioral performance following audiological intervention, changes in cortical plasticity may play a valuable role in the prediction of clinical outcomes following intervention. Further, the development of new technologies and rehabilitation strategies that incorporate brain-based biomarkers may help better serve hearing impaired populations across the lifespan. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Visual Attention to Movement and Color in Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Cohen-Maitre, Stacey Ann; Haerich, Paul

    2005-01-01

    This study investigated the ability of color and motion to elicit and maintain visual attention in a sample of children with cortical visual impairment (CVI). It found that colorful and moving objects may be used to engage children with CVI, increase their motivation to use their residual vision, and promote visual learning.

  6. Double dissociation of 'what' and 'where' processing in auditory cortex.

    PubMed

    Lomber, Stephen G; Malhotra, Shveta

    2008-05-01

    Studies of cortical connections or neuronal function in different cerebral areas support the hypothesis that parallel cortical processing streams, similar to those identified in visual cortex, may exist in the auditory system. However, this model has not yet been behaviorally tested. We used reversible cooling deactivation to investigate whether the individual regions in cat nonprimary auditory cortex that are responsible for processing the pattern of an acoustic stimulus or localizing a sound in space could be doubly dissociated in the same animal. We found that bilateral deactivation of the posterior auditory field resulted in deficits in a sound-localization task, whereas bilateral deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination task, but not vice versa. These findings support a model of cortical organization that proposes that identifying an acoustic stimulus ('what') and its spatial location ('where') are processed in separate streams in auditory cortex.

  7. The cortical basis of true memory and false memory for motion.

    PubMed

    Karanian, Jessica M; Slotnick, Scott D

    2014-02-01

    Behavioral evidence indicates that false memory, like true memory, can be rich in sensory detail. By contrast, there is fMRI evidence that true memory for visual information produces greater activity in earlier visual regions than false memory, which suggests true memory is associated with greater sensory detail. However, false memory in previous fMRI paradigms may have lacked sufficient sensory detail to recruit earlier visual processing regions. To investigate this possibility in the present fMRI study, we employed a paradigm that produced feature-specific false memory with a high degree of visual detail. During the encoding phase, moving or stationary abstract shapes were presented to the left or right of fixation. During the retrieval phase, shapes from encoding were presented at fixation and participants classified each item as previously "moving" or "stationary" within each visual field. Consistent with previous fMRI findings, true memory but not false memory for motion activated motion processing region MT+, while both true memory and false memory activated later cortical processing regions. In addition, false memory but not true memory for motion activated language processing regions. The present findings indicate that true memory activates earlier visual regions to a greater degree than false memory, even under conditions of detailed retrieval. Thus, the dissociation between previous behavioral findings and fMRI findings do not appear to be task dependent. Future work will be needed to assess whether the same pattern of true memory and false memory activity is observed for different sensory modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems

    PubMed Central

    Coppola, Jennifer J.; Disney, Anita A.

    2018-01-01

    Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function—a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health. PMID:29440996

  9. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems.

    PubMed

    Coppola, Jennifer J; Disney, Anita A

    2018-01-01

    Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  10. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex

    PubMed Central

    Coppola, David; White, Leonard E.; Wolf, Fred

    2015-01-01

    The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1’s intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models. PMID:26575467

  11. Lightness computation by the human visual system

    NASA Astrophysics Data System (ADS)

    Rudd, Michael E.

    2017-05-01

    A model of achromatic color computation by the human visual system is presented, which is shown to account in an exact quantitative way for a large body of appearance matching data collected with simple visual displays. The model equations are closely related to those of the original Retinex model of Land and McCann. However, the present model differs in important ways from Land and McCann's theory in that it invokes additional biological and perceptual mechanisms, including contrast gain control, different inherent neural gains for incremental, and decremental luminance steps, and two types of top-down influence on the perceptual weights applied to local luminance steps in the display: edge classification and spatial integration attentional windowing. Arguments are presented to support the claim that these various visual processes must be instantiated by a particular underlying neural architecture. By pointing to correspondences between the architecture of the model and findings from visual neurophysiology, this paper suggests that edge classification involves a top-down gating of neural edge responses in early visual cortex (cortical areas V1 and/or V2) while spatial integration windowing occurs in cortical area V4 or beyond.

  12. The neuropsychological and neuroradiological correlates of slowly progressive visual agnosia.

    PubMed

    Giovagnoli, Anna Rita; Aresi, Anna; Reati, Fabiola; Riva, Alice; Gobbo, Clara; Bizzi, Alberto

    2009-04-01

    The case of a 64-year-old woman affected by slowly progressive visual agnosia is reported aiming to describe specific cognitive-brain relationships. Longitudinal clinical and neuropsychological assessment, combined with magnetic resonance imaging (MRI), spectroscopy, and positron emission tomography (PET) were used. Sequential neuropsychological evaluations performed during a period of 9 years since disease onset showed the appearance of apperceptive and associative visual agnosia, alexia without agraphia, agraphia, finger agnosia, and prosopoagnosia, but excluded dementia. MRI showed moderate diffuse cortical atrophy, with predominant atrophy in the left posterior cortical areas (temporal, parietal, and lateral occipital cortical gyri). 18FDG-PET showed marked bilateral posterior cortical hypometabolism; proton magnetic resonance spectroscopic imaging disclosed severe focal N-acetyl-aspartate depletion in the left temporoparietal and lateral occipital cortical areas. In conclusion, selective metabolic alterations and neuronal loss in the left temporoparietooccipital cortex may determine progressive visual agnosia in the absence of dementia.

  13. Aversive learning shapes neuronal orientation tuning in human visual cortex.

    PubMed

    McTeague, Lisa M; Gruss, L Forest; Keil, Andreas

    2015-07-28

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.

  14. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing.

    PubMed

    Vélez-Fort, Mateo; Rousseau, Charly V; Niedworok, Christian J; Wickersham, Ian R; Rancz, Ede A; Brown, Alexander P Y; Strom, Molly; Margrie, Troy W

    2014-09-17

    Sensory computations performed in the neocortex involve layer six (L6) cortico-cortical (CC) and cortico-thalamic (CT) signaling pathways. Developing an understanding of the physiological role of these circuits requires dissection of the functional specificity and connectivity of the underlying individual projection neurons. By combining whole-cell recording from identified L6 principal cells in the mouse primary visual cortex (V1) with modified rabies virus-based input mapping, we have determined the sensory response properties and upstream monosynaptic connectivity of cells mediating the CC or CT pathway. We show that CC-projecting cells encompass a broad spectrum of selectivity to stimulus orientation and are predominantly innervated by deep layer V1 neurons. In contrast, CT-projecting cells are ultrasparse firing, exquisitely tuned to orientation and direction information, and receive long-range input from higher cortical areas. This segregation in function and connectivity indicates that L6 microcircuits route specific contextual and stimulus-related information within and outside the cortical network. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    PubMed

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  16. Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis.

    PubMed

    Marshall, Randolph S; Asllani, Iris; Pavol, Marykay A; Cheung, Ying-Kuen; Lazar, Ronald M

    2017-01-01

    Cortical thinning is a potentially important biomarker, but the pathophysiology in cerebrovascular disease is unknown. We investigated the association between regional cortical blood flow and regional cortical thickness in patients with asymptomatic unilateral high-grade internal carotid artery disease without stroke. Twenty-nine patients underwent high resolution anatomical and single-delay, pseudocontinuous arterial spin labeling magnetic resonance imaging with partial volume correction to assess gray matter baseline flow. Cortical thickness was estimated using Freesurfer software, followed by co-registration onto each patient's cerebral blood flow image space. Paired t-tests assessed regional cerebral blood flow in motor cortex (supplied by the carotid artery) and visual cortex (indirectly supplied by the carotid) on the occluded and unoccluded side. Pearson correlations were calculated between cortical thickness and regional cerebral blood flow, along with age, hypertension, diabetes and white matter hyperintensity volume. Multiple regression and generalized estimating equation were used to predict cortical thickness bilaterally and in each hemisphere separately. Cortical blood flow correlated with thickness in motor cortex bilaterally (p = 0.0002), and in the occluded and unoccluded sides individually; age (p = 0.002) was also a predictor of cortical thickness in the motor cortex. None of the variables predicted cortical thickness in visual cortex. Blood flow was significantly lower on the occluded versus unoccluded side in the motor cortex (p<0.0001) and in the visual cortex (p = 0.018). On average, cortex was thinner on the side of occlusion in motor but not in visual cortex. The association between cortical blood flow and cortical thickness in carotid arterial territory with greater thinning on the side of the carotid occlusion suggests that altered cerebral hemodynamics is a factor in cortical thinning.

  17. Sensori-Motor Experience Leads to Changes in Visual Processing in the Developing Brain

    ERIC Educational Resources Information Center

    James, Karin Harman

    2010-01-01

    Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural…

  18. Transient shifts in frontal and parietal circuits scale with enhanced visual feedback and changes in force variability and error

    PubMed Central

    Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.

    2013-01-01

    When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186

  19. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.

    PubMed

    Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G

    2017-08-16

    Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone. SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space produces spatially specific changes in visual cortex activity in anticipation of a stimulus. The mechanisms controlling these attention-related modulations of sensory cortex, however, are poorly understood. Here, we recorded these two complementary measures of brain activity simultaneously and examined their trial-to-trial covariations to gain insight into these attentional control mechanisms. This multi-methodological approach revealed the attention-related coordination of visual cortex modulation by the subcortical pulvinar nucleus of the thalamus while also disentangling the mechanisms underlying the attentional enhancement of relevant stimulus input and those underlying the concurrent suppression of irrelevant input. Copyright © 2017 the authors 0270-6474/17/377803-08$15.00/0.

  20. Perceptual learning modifies the functional specializations of visual cortical areas.

    PubMed

    Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang

    2016-05-17

    Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.

  1. Visual dysfunction in Parkinson’s disease

    PubMed Central

    Weil, Rimona S.; Schrag, Anette E.; Warren, Jason D.; Crutch, Sebastian J.; Lees, Andrew J.; Morris, Huw R.

    2016-01-01

    Patients with Parkinson’s disease have a number of specific visual disturbances. These include changes in colour vision and contrast sensitivity and difficulties with complex visual tasks such as mental rotation and emotion recognition. We review changes in visual function at each stage of visual processing from retinal deficits, including contrast sensitivity and colour vision deficits to higher cortical processing impairments such as object and motion processing and neglect. We consider changes in visual function in patients with common Parkinson’s disease-associated genetic mutations including GBA and LRRK2. We discuss the association between visual deficits and clinical features of Parkinson’s disease such as rapid eye movement sleep behavioural disorder and the postural instability and gait disorder phenotype. We review the link between abnormal visual function and visual hallucinations, considering current models for mechanisms of visual hallucinations. Finally, we discuss the role of visuo-perceptual testing as a biomarker of disease and predictor of dementia in Parkinson’s disease. PMID:27412389

  2. Visual Receptive Field Heterogeneity and Functional Connectivity of Adjacent Neurons in Primate Frontoparietal Association Cortices.

    PubMed

    Viswanathan, Pooja; Nieder, Andreas

    2017-09-13

    The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1. SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.

  3. Cortical Integration of Audio-Visual Information

    PubMed Central

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  4. Visual Cortical Function in Very Low Birth Weight Infants without Retinal or Cerebral Pathology

    PubMed Central

    Hou, Chuan; Norcia, Anthony M.; Madan, Ashima; Tith, Solina; Agarwal, Rashi

    2011-01-01

    Purpose. Preterm infants are at high risk of visual and neural developmental deficits. However, the development of visual cortical function in preterm infants with no retinal or neurologic morbidity has not been well defined. To determine whether premature birth itself alters visual cortical function, swept parameter visual evoked potential (sVEP) responses of healthy preterm infants were compared with those of term infants. Methods. Fifty-two term infants and 58 very low birth weight (VLBW) infants without significant retinopathy of prematurity or neurologic morbidities were enrolled. Recruited VLBW infants were between 26 and 33 weeks of gestational age, with birth weights of less than 1500 g. Spatial frequency, contrast, and vernier offset sweep VEP tuning functions were measured at 5 to 7 months' corrected age. Acuity and contrast thresholds were derived by extrapolating the tuning functions to 0 amplitude. These thresholds and suprathreshold response amplitudes were compared between groups. Results. Preterm infants showed increased thresholds (indicating decreased sensitivity to visual stimuli) and reductions in amplitudes for all three measures. These changes in cortical responsiveness were larger in the <30 weeks ' gestational age subgroup than in the ≥30 weeks' gestational age subgroup. Conclusions. Preterm infants with VLBW had measurable and significant changes in cortical responsiveness that were correlated with gestational age. These results suggest that premature birth in the absence of identifiable retinal or neurologic abnormalities has a significant effect on visual cortical sensitivity at 5 to 7 months' of corrected age and that gestational age is an important factor in visual development. PMID:22025567

  5. Fundamental Visual Representations of Social Cognition in ASD

    DTIC Science & Technology

    2015-10-01

    autism spectrum disorder as assessed by high density electrical mapping...C., Russo, N. N., & Foxe, J. J. (2013). Atypical cortical representation of peripheral visual space in children with an autism spectrum disorder . European Journal of Neuroscience, 38(1), 2125-2138. ...Sensory processing issues are prevalent in the autism spectrum (ASD) population, and sensory adaptation can be a potential biomarker - a

  6. Near-instant automatic access to visually presented words in the human neocortex: neuromagnetic evidence.

    PubMed

    Shtyrov, Yury; MacGregor, Lucy J

    2016-05-24

    Rapid and efficient processing of external information by the brain is vital to survival in a highly dynamic environment. The key channel humans use to exchange information is language, but the neural underpinnings of its processing are still not fully understood. We investigated the spatio-temporal dynamics of neural access to word representations in the brain by scrutinising the brain's activity elicited in response to psycholinguistically, visually and phonologically matched groups of familiar words and meaningless pseudowords. Stimuli were briefly presented on the visual-field periphery to experimental participants whose attention was occupied with a non-linguistic visual feature-detection task. The neural activation elicited by these unattended orthographic stimuli was recorded using multi-channel whole-head magnetoencephalography, and the timecourse of lexically-specific neuromagnetic responses was assessed in sensor space as well as at the level of cortical sources, estimated using individual MR-based distributed source reconstruction. Our results demonstrate a neocortical signature of automatic near-instant access to word representations in the brain: activity in the perisylvian language network characterised by specific activation enhancement for familiar words, starting as early as ~70 ms after the onset of unattended word stimuli and underpinned by temporal and inferior-frontal cortices.

  7. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    PubMed

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.

    PubMed

    Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T

    2016-01-01

    Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.

  9. Frequency-following and connectivity of different visual areas in response to contrast-reversal stimulation.

    PubMed

    Stephen, Julia M; Ranken, Doug F; Aine, Cheryl J

    2006-01-01

    The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220-770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.

  10. A Visual Cortical Network for Deriving Phonological Information from Intelligible Lip Movements.

    PubMed

    Hauswald, Anne; Lithari, Chrysa; Collignon, Olivier; Leonardelli, Elisa; Weisz, Nathan

    2018-05-07

    Successful lip-reading requires a mapping from visual to phonological information [1]. Recently, visual and motor cortices have been implicated in tracking lip movements (e.g., [2]). It remains unclear, however, whether visuo-phonological mapping occurs already at the level of the visual cortex-that is, whether this structure tracks the acoustic signal in a functionally relevant manner. To elucidate this, we investigated how the cortex tracks (i.e., entrains to) absent acoustic speech signals carried by silent lip movements. Crucially, we contrasted the entrainment to unheard forward (intelligible) and backward (unintelligible) acoustic speech. We observed that the visual cortex exhibited stronger entrainment to the unheard forward acoustic speech envelope compared to the unheard backward acoustic speech envelope. Supporting the notion of a visuo-phonological mapping process, this forward-backward difference of occipital entrainment was not present for actually observed lip movements. Importantly, the respective occipital region received more top-down input, especially from left premotor, primary motor, and somatosensory regions and, to a lesser extent, also from posterior temporal cortex. Strikingly, across participants, the extent of top-down modulation of the visual cortex stemming from these regions partially correlated with the strength of entrainment to absent acoustic forward speech envelope, but not to present forward lip movements. Our findings demonstrate that a distributed cortical network, including key dorsal stream auditory regions [3-5], influences how the visual cortex shows sensitivity to the intelligibility of speech while tracking silent lip movements. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Curvature-processing network in macaque visual cortex

    PubMed Central

    Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.

    2014-01-01

    Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328

  12. The development of cortical sensitivity to visual word forms.

    PubMed

    Ben-Shachar, Michal; Dougherty, Robert F; Deutsch, Gayle K; Wandell, Brian A

    2011-09-01

    The ability to extract visual word forms quickly and efficiently is essential for using reading as a tool for learning. We describe the first longitudinal fMRI study to chart individual changes in cortical sensitivity to written words as reading develops. We conducted four annual measurements of brain function and reading skills in a heterogeneous group of children, initially 7-12 years old. The results show age-related increase in children's cortical sensitivity to word visibility in posterior left occipito-temporal sulcus (LOTS), nearby the anatomical location of the visual word form area. Moreover, the rate of increase in LOTS word sensitivity specifically correlates with the rate of improvement in sight word efficiency, a measure of speeded overt word reading. Other cortical regions, including V1, posterior parietal cortex, and the right homologue of LOTS, did not demonstrate such developmental changes. These results provide developmental support for the hypothesis that LOTS is part of the cortical circuitry that extracts visual word forms quickly and efficiently and highlight the importance of developing cortical sensitivity to word visibility in reading acquisition.

  13. The Development of Cortical Sensitivity to Visual Word Forms

    PubMed Central

    Ben-Shachar, Michal; Dougherty, Robert F.; Deutsch, Gayle K.; Wandell, Brian A.

    2011-01-01

    The ability to extract visual word forms quickly and efficiently is essential for using reading as a tool for learning. We describe the first longitudinal fMRI study to chart individual changes in cortical sensitivity to written words as reading develops. We conducted four annual measurements of brain function and reading skills in a heterogeneous group of children, initially 7–12 years old. The results show age-related increase in children's cortical sensitivity to word visibility in posterior left occipito-temporal sulcus (LOTS), nearby the anatomical location of the visual word form area. Moreover, the rate of increase in LOTS word sensitivity specifically correlates with the rate of improvement in sight word efficiency, a measure of speeded overt word reading. Other cortical regions, including V1, posterior parietal cortex, and the right homologue of LOTS, did not demonstrate such developmental changes. These results provide developmental support for the hypothesis that LOTS is part of the cortical circuitry that extracts visual word forms quickly and efficiently and highlight the importance of developing cortical sensitivity to word visibility in reading acquisition. PMID:21261451

  14. Postural and Cortical Responses Following Visual Occlusion in Adults with and without ASD

    ERIC Educational Resources Information Center

    Goh, Kwang Leng; Morris, Susan; Parsons, Richard; Ring, Alexander; Tan, Tele

    2018-01-01

    Autism is associated with differences in sensory processing and motor coordination. Evidence from electroencephalography suggests individual perturbation evoked response (PER) components represent specific aspects of postural disturbance processing; P1 reflects the detection and N1 reflects the evaluation of postural instability. Despite the…

  15. Information-Processing Modules and Their Relative Modality Specificity

    ERIC Educational Resources Information Center

    Anderson, John R.; Qin, Yulin; Jung, Kwan-Jin; Carter, Cameron S.

    2007-01-01

    This research uses fMRI to understand the role of eight cortical regions in a relatively complex information-processing task. Modality of input (visual versus auditory) and modality of output (manual versus vocal) are manipulated. Two perceptual regions (auditory cortex and fusiform gyrus) only reflected perceptual encoding. Two motor regions were…

  16. Defining the cortical visual systems: "what", "where", and "how"

    NASA Technical Reports Server (NTRS)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    The visual system historically has been defined as consisting of at least two broad subsystems subserving object and spatial vision. These visual processing streams have been organized both structurally as two distinct pathways in the brain, and functionally for the types of tasks that they mediate. The classic definition by Ungerleider and Mishkin labeled a ventral "what" stream to process object information and a dorsal "where" stream to process spatial information. More recently, Goodale and Milner redefined the two visual systems with a focus on the different ways in which visual information is transformed for different goals. They relabeled the dorsal stream as a "how" system for transforming visual information using an egocentric frame of reference in preparation for direct action. This paper reviews recent research from psychophysics, neurophysiology, neuropsychology and neuroimaging to define the roles of the ventral and dorsal visual processing streams. We discuss a possible solution that allows for both "where" and "how" systems that are functionally and structurally organized within the posterior parietal lobe.

  17. Spontaneous cortical activity alternates between motifs defined by regional axonal projections

    PubMed Central

    Mohajerani, Majid H.; Chan, Allen W.; Mohsenvand, Mostafa; LeDue, Jeffrey; Liu, Rui; McVea, David A.; Boyd, Jamie D.; Wang, Yu Tian; Reimers, Mark; Murphy, Timothy H.

    2014-01-01

    In lightly anaesthetized or awake adult mice using millisecond timescale voltage sensitive dye imaging, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing including vision, audition, and touch. Similar cortical networks were found with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality specific sources such as primary sensory areas, and a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area, and a secondary anterior medial sink within the cingulate/secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range mono-synaptic connections between cortical regions. Maps of intracortical mono-synaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity. PMID:23974708

  18. The Reliability of the CVI Range: A Functional Vision Assessment for Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Newcomb, Sandra

    2010-01-01

    Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…

  19. Intrinsically organized network for word processing during the resting state.

    PubMed

    Zhao, Jizheng; Liu, Jiangang; Li, Jun; Liang, Jimin; Feng, Lu; Ai, Lin; Lee, Kang; Tian, Jie

    2011-01-03

    Neural mechanisms underlying word processing have been extensively studied. It has been revealed that when individuals are engaged in active word processing, a complex network of cortical regions is activated. However, it is entirely unknown whether the word-processing regions are intrinsically organized without any explicit processing tasks during the resting state. The present study investigated the intrinsic functional connectivity between word-processing regions during the resting state with the use of fMRI methodology. The low-frequency fluctuations were observed between the left middle fusiform gyrus and a number of cortical regions. They included the left angular gyrus, left supramarginal gyrus, bilateral pars opercularis, and left pars triangularis of the inferior frontal gyrus, which have been implicated in phonological and semantic processing. Additionally, the activations were also observed in the bilateral superior parietal lobule and dorsal lateral prefrontal cortex, which have been suggested to provide top-down monitoring on the visual-spatial processing of words. The findings of our study indicate an intrinsically organized network during the resting state that likely prepares the visual system to anticipate the highly probable word input for ready and effective processing. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Global facilitation of attended features is obligatory and restricts divided attention.

    PubMed

    Andersen, Søren K; Hillyard, Steven A; Müller, Matthias M

    2013-11-13

    In many common situations such as driving an automobile it is advantageous to attend concurrently to events at different locations (e.g., the car in front, the pedestrian to the side). While spatial attention can be divided effectively between separate locations, studies investigating attention to nonspatial features have often reported a "global effect", whereby items having the attended feature may be preferentially processed throughout the entire visual field. These findings suggest that spatial and feature-based attention may at times act in direct opposition: spatially divided foci of attention cannot be truly independent if feature attention is spatially global and thereby affects all foci equally. In two experiments, human observers attended concurrently to one of two overlapping fields of dots of different colors presented in both the left and right visual fields. When the same color or two different colors were attended on the two sides, deviant targets were detected accurately, and visual-cortical potentials elicited by attended dots were enhanced. However, when the attended color on one side matched the ignored color on the opposite side, attentional modulation of cortical potentials was abolished. This loss of feature selectivity could be attributed to enhanced processing of unattended items that shared the color of the attended items in the opposite field. Thus, while it is possible to attend to two different colors at the same time, this ability is fundamentally constrained by spatially global feature enhancement in early visual-cortical areas, which is obligatory and persists even when it explicitly conflicts with task demands.

  1. The neural basis of visual word form processing: a multivariate investigation.

    PubMed

    Nestor, Adrian; Behrmann, Marlene; Plaut, David C

    2013-07-01

    Current research on the neurobiological bases of reading points to the privileged role of a ventral cortical network in visual word processing. However, the properties of this network and, in particular, its selectivity for orthographic stimuli such as words and pseudowords remain topics of significant debate. Here, we approached this issue from a novel perspective by applying pattern-based analyses to functional magnetic resonance imaging data. Specifically, we examined whether, where and how, orthographic stimuli elicit distinct patterns of activation in the human cortex. First, at the category level, multivariate mapping found extensive sensitivity throughout the ventral cortex for words relative to false-font strings. Secondly, at the identity level, the multi-voxel pattern classification provided direct evidence that different pseudowords are encoded by distinct neural patterns. Thirdly, a comparison of pseudoword and face identification revealed that both stimulus types exploit common neural resources within the ventral cortical network. These results provide novel evidence regarding the involvement of the left ventral cortex in orthographic stimulus processing and shed light on its selectivity and discriminability profile. In particular, our findings support the existence of sublexical orthographic representations within the left ventral cortex while arguing for the continuity of reading with other visual recognition skills.

  2. Attention distributed across sensory modalities enhances perceptual performance

    PubMed Central

    Mishra, Jyoti; Gazzaley, Adam

    2012-01-01

    This study investigated the interaction between top-down attentional control and multisensory processing in humans. Using semantically congruent and incongruent audiovisual stimulus streams, we found target detection to be consistently improved in the setting of distributed audiovisual attention versus focused visual attention. This performance benefit was manifested as faster reaction times for congruent audiovisual stimuli, and as accuracy improvements for incongruent stimuli, resulting in a resolution of stimulus interference. Electrophysiological recordings revealed that these behavioral enhancements were associated with reduced neural processing of both auditory and visual components of the audiovisual stimuli under distributed vs. focused visual attention. These neural changes were observed at early processing latencies, within 100–300 ms post-stimulus onset, and localized to auditory, visual, and polysensory temporal cortices. These results highlight a novel neural mechanism for top-down driven performance benefits via enhanced efficacy of sensory neural processing during distributed audiovisual attention relative to focused visual attention. PMID:22933811

  3. Saccade-synchronized rapid attention shifts in macaque visual cortical area MT.

    PubMed

    Yao, Tao; Treue, Stefan; Krishna, B Suresh

    2018-03-06

    While making saccadic eye-movements to scan a visual scene, humans and monkeys are able to keep track of relevant visual stimuli by maintaining spatial attention on them. This ability requires a shift of attentional modulation from the neuronal population representing the relevant stimulus pre-saccadically to the one representing it post-saccadically. For optimal performance, this trans-saccadic attention shift should be rapid and saccade-synchronized. Whether this is so is not known. We trained two rhesus monkeys to make saccades while maintaining covert attention at a fixed spatial location. We show that the trans-saccadic attention shift in cortical visual medial temporal (MT) area is well synchronized to saccades. Attentional modulation crosses over from the pre-saccadic to the post-saccadic neuronal representation by about 50 ms after a saccade. Taking response latency into account, the trans-saccadic attention shift is well timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.

  4. The role of early visual cortex in visual short-term memory and visual attention.

    PubMed

    Offen, Shani; Schluppeck, Denis; Heeger, David J

    2009-06-01

    We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.

  5. Investigation of MR scanning, image registration, and image processing techniques to visualize cortical veins for neurosurgery

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke J.; Rutten, G. J. M.; Willems, Peter W. A.; Hoogduin, J.; Viergever, Max A.

    2001-01-01

    The visualization of brain vessels on the cortex helps the neurosurgeon in two ways: To avoid blood vessels when specifying the trepanation entry, and to overcome errors in the surgical navigation system due to brain shift. We compared 3D T1 MR, 3D T1 MR with gadolinium contrast, MR venography and MR phase contrast angiography as scanning techniques, mutual information as registration technique, and thresholding and multi-vessel enhancement as image processing techniques. We evaluated the volume rendered results based on their quality and correspondence with photos took during surgery. It appears that with 3D T1 MR scans, gadolinium is required to show cortical veins. The visibility of small cortical veins is strongly enhanced by subtracting a 3D T1 MR baseline scan, which should be registered to the scan with gadolinium contrast, even when the scans are made during the same session. Multi-vessel enhancement helps to clarify the view on small vessels by reducing the noise level, but strikingly does not reveal more. MR venography does show intracerebral veins with high detail, but is, as is, unsuited to show cortical veins due to the low contrast with CSF. MR phase contrast angiography can perform equally well as the subtraction technique, but its quality seems to show more inter-patient variability.

  6. Global processing in amblyopia: a review

    PubMed Central

    Hamm, Lisa M.; Black, Joanna; Dai, Shuan; Thompson, Benjamin

    2014-01-01

    Amblyopia is a neurodevelopmental disorder of the visual system that is associated with disrupted binocular vision during early childhood. There is evidence that the effects of amblyopia extend beyond the primary visual cortex to regions of the dorsal and ventral extra-striate visual cortex involved in visual integration. Here, we review the current literature on global processing deficits in observers with either strabismic, anisometropic, or deprivation amblyopia. A range of global processing tasks have been used to investigate the extent of the cortical deficit in amblyopia including: global motion perception, global form perception, face perception, and biological motion. These tasks appear to be differentially affected by amblyopia. In general, observers with unilateral amblyopia appear to show deficits for local spatial processing and global tasks that require the segregation of signal from noise. In bilateral cases, the global processing deficits are exaggerated, and appear to extend to specialized perceptual systems such as those involved in face processing. PMID:24987383

  7. Mouse auditory cortex differs from visual and somatosensory cortices in the laminar distribution of cytochrome oxidase and acetylcholinesterase.

    PubMed

    Anderson, L A; Christianson, G B; Linden, J F

    2009-02-03

    Cytochrome oxidase (CYO) and acetylcholinesterase (AChE) staining density varies across the cortical layers in many sensory areas. The laminar variations likely reflect differences between the layers in levels of metabolic activity and cholinergic modulation. The question of whether these laminar variations differ between primary sensory cortices has never been systematically addressed in the same set of animals, since most studies of sensory cortex focus on a single sensory modality. Here, we compared the laminar distribution of CYO and AChE activity in the primary auditory, visual, and somatosensory cortices of the mouse, using Nissl-stained sections to define laminar boundaries. Interestingly, for both CYO and AChE, laminar patterns of enzyme activity were similar in the visual and somatosensory cortices, but differed in the auditory cortex. In the visual and somatosensory areas, staining densities for both enzymes were highest in layers III/IV or IV and in lower layer V. In the auditory cortex, CYO activity showed a reliable peak only at the layer III/IV border, while AChE distribution was relatively homogeneous across layers. These results suggest that laminar patterns of metabolic activity and cholinergic influence are similar in the mouse visual and somatosensory cortices, but differ in the auditory cortex.

  8. Embedding of Cortical Representations by the Superficial Patch System

    PubMed Central

    Da Costa, Nuno M. A.; Girardin, Cyrille C.; Naaman, Shmuel; Omer, David B.; Ruesch, Elisha; Grinvald, Amiram; Douglas, Rodney J.

    2011-01-01

    Pyramidal cells in layers 2 and 3 of the neocortex of many species collectively form a clustered system of lateral axonal projections (the superficial patch system—Lund JS, Angelucci A, Bressloff PC. 2003. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex. 13:15–24. or daisy architecture—Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci. 27:419–451.), but the function performed by this general feature of the cortical architecture remains obscure. By comparing the spatial configuration of labeled patches with the configuration of responses to drifting grating stimuli, we found the spatial organizations both of the patch system and of the cortical response to be highly conserved between cat and monkey primary visual cortex. More importantly, the configuration of the superficial patch system is directly reflected in the arrangement of function across monkey primary visual cortex. Our results indicate a close relationship between the structure of the superficial patch system and cortical responses encoding a single value across the surface of visual cortex (self-consistent states). This relationship is consistent with the spontaneous emergence of orientation response–like activity patterns during ongoing cortical activity (Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature. 425:954–956.). We conclude that the superficial patch system is the physical encoding of self-consistent cortical states, and that a set of concurrently labeled patches participate in a network of mutually consistent representations of cortical input. PMID:21383233

  9. Phonological Processing in Human Auditory Cortical Fields

    PubMed Central

    Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.

    2011-01-01

    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252

  10. Toward a Unified Theory of Visual Area V4

    PubMed Central

    Roe, Anna W.; Chelazzi, Leonardo; Connor, Charles E.; Conway, Bevil R.; Fujita, Ichiro; Gallant, Jack L.; Lu, Haidong; Vanduffel, Wim

    2016-01-01

    Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition and has been a focus of many studies on visual attention. However, there is no unifying view of V4’s role in visual processing. Neither is there an understanding of how its role in feature processing interfaces with its role in visual attention. This review captures our current knowledge of V4, largely derived from electrophysiological and imaging studies in the macaque monkey. Based on recent discovery of functionally specific domains in V4, we propose that the unifying function of V4 circuitry is to enable selective extraction of specific functional domain-based networks, whether it be by bottom-up specification of object features or by top-down attentionally driven selection. PMID:22500626

  11. Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function

    PubMed Central

    Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.

    2015-01-01

    SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462

  12. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    PubMed

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M

    2015-12-16

    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Comparison of Multidetector Computed Tomography and Flat-Panel Computed Tomography Regarding Visualization of Cortical Fractures, Cortical Defects, and Orthopedic Screws: A Phantom Study.

    PubMed

    Neubauer, Jakob; Benndorf, Matthias; Lang, Hannah; Lampert, Florian; Kemna, Lars; Konstantinidis, Lukas; Neubauer, Claudia; Reising, Kilian; Zajonc, Horst; Kotter, Elmar; Langer, Mathias; Goerke, Sebastian M

    2015-08-01

    To compare the visualization of cortical fractures, cortical defects, and orthopedic screws in a dedicated extremity flat-panel computed tomography (FPCT) scanner and a multidetector computed tomography (MDCT) scanner.We used feet of European roe deer as phantoms for cortical fractures, cortical defects, and implanted orthopedic screws. FPCT and MDCT scans were performed with equivalent dose settings. Six observers rated the scans according to number of fragments, size of defects, size of defects opposite orthopedic screws, and the length of different screws. The image quality regarding depiction of the cortical bone was assessed. The gold standard (real number of fragments) was evaluated by autopsy.The correlation of reader assessment of fragments, cortical defects, and screws with the gold standard was similar for FPCT and MDCT. Three readers rated the subjective image quality of the MDCT to be higher, whereas the others showed no preferences.Although the image quality was rated higher in the MDCT than in the FPCT by 3 out of 6 observers, both modalities proved to be comparable regarding the visualization of cortical fractures, cortical defects, and orthopedic screws and of use to musculoskeletal radiology regarding fracture detection and postsurgical evaluation in our experimental setting.

  14. Sequential roles of primary somatosensory cortex and posterior parietal cortex in tactile-visual cross-modal working memory: a single-pulse transcranial magnetic stimulation (spTMS) study.

    PubMed

    Ku, Yixuan; Zhao, Di; Hao, Ning; Hu, Yi; Bodner, Mark; Zhou, Yong-Di

    2015-01-01

    Both monkey neurophysiological and human EEG studies have shown that association cortices, as well as primary sensory cortical areas, play an essential role in sequential neural processes underlying cross-modal working memory. The present study aims to further examine causal and sequential roles of the primary sensory cortex and association cortex in cross-modal working memory. Individual MRI-based single-pulse transcranial magnetic stimulation (spTMS) was applied to bilateral primary somatosensory cortices (SI) and the contralateral posterior parietal cortex (PPC), while participants were performing a tactile-visual cross-modal delayed matching-to-sample task. Time points of spTMS were 300 ms, 600 ms, 900 ms after the onset of the tactile sample stimulus in the task. The accuracy of task performance and reaction time were significantly impaired when spTMS was applied to the contralateral SI at 300 ms. Significant impairment on performance accuracy was also observed when the contralateral PPC was stimulated at 600 ms. SI and PPC play sequential and distinct roles in neural processes of cross-modal associations and working memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

    PubMed

    Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde

    2015-08-14

    Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

  16. Ventral and dorsal streams processing visual motion perception (FDG-PET study)

    PubMed Central

    2012-01-01

    Background Earlier functional imaging studies on visually induced self-motion perception (vection) disclosed a bilateral network of activations within primary and secondary visual cortex areas which was combined with signal decreases, i.e., deactivations, in multisensory vestibular cortex areas. This finding led to the concept of a reciprocal inhibitory interaction between the visual and vestibular systems. In order to define areas involved in special aspects of self-motion perception such as intensity and duration of the perceived circular vection (CV) or the amount of head tilt, correlation analyses of the regional cerebral glucose metabolism, rCGM (measured by fluorodeoxyglucose positron-emission tomography, FDG-PET) and these perceptual covariates were performed in 14 healthy volunteers. For analyses of the visual-vestibular interaction, the CV data were compared to a random dot motion stimulation condition (not inducing vection) and a control group at rest (no stimulation at all). Results Group subtraction analyses showed that the visual-vestibular interaction was modified during CV, i.e., the activations within the cerebellar vermis and parieto-occipital areas were enhanced. The correlation analysis between the rCGM and the intensity of visually induced vection, experienced as body tilt, showed a relationship for areas of the multisensory vestibular cortical network (inferior parietal lobule bilaterally, anterior cingulate gyrus), the medial parieto-occipital cortex, the frontal eye fields and the cerebellar vermis. The “earlier” multisensory vestibular areas like the parieto-insular vestibular cortex and the superior temporal gyrus did not appear in the latter analysis. The duration of perceived vection after stimulus stop was positively correlated with rCGM in medial temporal lobe areas bilaterally, which included the (para-)hippocampus, known to be involved in various aspects of memory processing. The amount of head tilt was found to be positively correlated with the rCGM of bilateral basal ganglia regions responsible for the control of motor function of the head. Conclusions Our data gave further insights into subfunctions within the complex cortical network involved in the processing of visual-vestibular interaction during CV. Specific areas of this cortical network could be attributed to the ventral stream (“what” pathway) responsible for the duration after stimulus stop and to the dorsal stream (“where/how” pathway) responsible for intensity aspects. PMID:22800430

  17. Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.

    ERIC Educational Resources Information Center

    Jan, J. E.; Groenveld, M.

    1993-01-01

    This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)

  18. Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia.

    PubMed

    Bi, H; Zhang, B; Tao, X; Harwerth, R S; Smith, E L; Chino, Y M

    2011-09-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.

  19. Neuronal Responses in Visual Area V2 (V2) of Macaque Monkeys with Strabismic Amblyopia

    PubMed Central

    Bi, H.; Zhang, B.; Tao, X.; Harwerth, R. S.; Smith, E. L.

    2011-01-01

    Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia. PMID:21263036

  20. Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task.

    PubMed

    McDermott, Timothy J; Wiesman, Alex I; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2017-08-01

    The flanker task is a test of visual selective attention that has been widely used to probe error monitoring, response conflict, and related constructs. However, to date, few studies have focused on the selective attention component of this task and imaged the underlying oscillatory dynamics serving task performance. In this study, 21 healthy adults successfully completed an arrow-based version of the Eriksen flanker task during magnetoencephalography (MEG). All MEG data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and voxel time series were extracted from the peak responses to identify the temporal dynamics. Across both congruent and incongruent flanker conditions, our results indicated robust decreases in alpha (9-12Hz) activity in medial and lateral occipital regions, bilateral parietal cortices, and cerebellar areas during task performance. In parallel, increases in theta (3-7Hz) oscillatory activity were detected in dorsal and ventral frontal regions, and the anterior cingulate. As per conditional effects, stronger alpha responses (i.e., greater desynchronization) were observed in parietal, occipital, and cerebellar cortices during incongruent relative to congruent trials, whereas the opposite pattern emerged for theta responses (i.e., synchronization) in the anterior cingulate, left dorsolateral prefrontal, and ventral prefrontal cortices. Interestingly, the peak latency of theta responses in these latter brain regions was significantly correlated with reaction time, and may partially explain the amplitude difference observed between congruent and incongruent trials. Lastly, whole-brain exploratory analyses implicated the frontal eye fields, right temporoparietal junction, and premotor cortices. These findings suggest that regions of both the dorsal and ventral attention networks contribute to visual selective attention processes during incongruent trials, and that such differential processes are transient and fully completed shortly after the behavioral response in most trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Beyond perceptual expertise: revisiting the neural substrates of expert object recognition

    PubMed Central

    Harel, Assaf; Kravitz, Dwight; Baker, Chris I.

    2013-01-01

    Real-world expertise provides a valuable opportunity to understand how experience shapes human behavior and neural function. In the visual domain, the study of expert object recognition, such as in car enthusiasts or bird watchers, has produced a large, growing, and often-controversial literature. Here, we synthesize this literature, focusing primarily on results from functional brain imaging, and propose an interactive framework that incorporates the impact of high-level factors, such as attention and conceptual knowledge, in supporting expertise. This framework contrasts with the perceptual view of object expertise that has concentrated largely on stimulus-driven processing in visual cortex. One prominent version of this perceptual account has almost exclusively focused on the relation of expertise to face processing and, in terms of the neural substrates, has centered on face-selective cortical regions such as the Fusiform Face Area (FFA). We discuss the limitations of this face-centric approach as well as the more general perceptual view, and highlight that expert related activity is: (i) found throughout visual cortex, not just FFA, with a strong relationship between neural response and behavioral expertise even in the earliest stages of visual processing, (ii) found outside visual cortex in areas such as parietal and prefrontal cortices, and (iii) modulated by the attentional engagement of the observer suggesting that it is neither automatic nor driven solely by stimulus properties. These findings strongly support a framework in which object expertise emerges from extensive interactions within and between the visual system and other cognitive systems, resulting in widespread, distributed patterns of expertise-related activity across the entire cortex. PMID:24409134

  2. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    PubMed Central

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks underpinning the single visual features would constitute a sort of multi-dimensional palette of colors, shapes, regions of the visual field, movements, emotional face expressions, and words. The synchronization of one or more of these cortical neural networks, each with its peculiar timing, would produce the primary consciousness of one or more of the visual features of the scene. PMID:27445750

  3. Premotor cortex is sensitive to auditory-visual congruence for biological motion.

    PubMed

    Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F

    2012-03-01

    The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.

  4. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli

    PubMed Central

    Störmer, Viola S.; McDonald, John J.; Hillyard, Steven A.

    2009-01-01

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex. PMID:20007778

  5. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli.

    PubMed

    Störmer, Viola S; McDonald, John J; Hillyard, Steven A

    2009-12-29

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex.

  6. Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance.

    PubMed

    Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K

    2013-03-20

    Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.

  7. Sharpened cortical tuning and enhanced cortico-cortical communication contribute to the long-term neural mechanisms of visual motion perceptual learning.

    PubMed

    Chen, Nihong; Bi, Taiyong; Zhou, Tiangang; Li, Sheng; Liu, Zili; Fang, Fang

    2015-07-15

    Much has been debated about whether the neural plasticity mediating perceptual learning takes place at the sensory or decision-making stage in the brain. To investigate this, we trained human subjects in a visual motion direction discrimination task. Behavioral performance and BOLD signals were measured before, immediately after, and two weeks after training. Parallel to subjects' long-lasting behavioral improvement, the neural selectivity in V3A and the effective connectivity from V3A to IPS (intraparietal sulcus, a motion decision-making area) exhibited a persistent increase for the trained direction. Moreover, the improvement was well explained by a linear combination of the selectivity and connectivity increases. These findings suggest that the long-term neural mechanisms of motion perceptual learning are implemented by sharpening cortical tuning to trained stimuli at the sensory processing stage, as well as by optimizing the connections between sensory and decision-making areas in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective

    PubMed Central

    Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD. PMID:26377458

  9. Visual brain plasticity induced by central and peripheral visual field loss.

    PubMed

    Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel

    2018-06-23

    Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.

  10. The sequence of cortical activity inferred by response latency variability in the human ventral pathway of face processing.

    PubMed

    Lin, Jo-Fu Lotus; Silva-Pereyra, Juan; Chou, Chih-Che; Lin, Fa-Hsuan

    2018-04-11

    Variability in neuronal response latency has been typically considered caused by random noise. Previous studies of single cells and large neuronal populations have shown that the temporal variability tends to increase along the visual pathway. Inspired by these previous studies, we hypothesized that functional areas at later stages in the visual pathway of face processing would have larger variability in the response latency. To test this hypothesis, we used magnetoencephalographic data collected when subjects were presented with images of human faces. Faces are known to elicit a sequence of activity from the primary visual cortex to the fusiform gyrus. Our results revealed that the fusiform gyrus showed larger variability in the response latency compared to the calcarine fissure. Dynamic and spectral analyses of the latency variability indicated that the response latency in the fusiform gyrus was more variable than in the calcarine fissure between 70 ms and 200 ms after the stimulus onset and between 4 Hz and 40 Hz, respectively. The sequential processing of face information from the calcarine sulcus to the fusiform sulcus was more reliably detected based on sizes of the response variability than instants of the maximal response peaks. With two areas in the ventral visual pathway, we show that the variability in response latency across brain areas can be used to infer the sequence of cortical activity.

  11. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions

    PubMed Central

    Paneri, Sofia; Gregoriou, Georgia G.

    2017-01-01

    The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices. PMID:29033784

  12. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions.

    PubMed

    Paneri, Sofia; Gregoriou, Georgia G

    2017-01-01

    The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices.

  13. Dissociable meta-analytic brain networks contribute to coordinated emotional processing.

    PubMed

    Riedel, Michael C; Yanes, Julio A; Ray, Kimberly L; Eickhoff, Simon B; Fox, Peter T; Sutherland, Matthew T; Laird, Angela R

    2018-06-01

    Meta-analytic techniques for mining the neuroimaging literature continue to exert an impact on our conceptualization of functional brain networks contributing to human emotion and cognition. Traditional theories regarding the neurobiological substrates contributing to affective processing are shifting from regional- towards more network-based heuristic frameworks. To elucidate differential brain network involvement linked to distinct aspects of emotion processing, we applied an emergent meta-analytic clustering approach to the extensive body of affective neuroimaging results archived in the BrainMap database. Specifically, we performed hierarchical clustering on the modeled activation maps from 1,747 experiments in the affective processing domain, resulting in five meta-analytic groupings of experiments demonstrating whole-brain recruitment. Behavioral inference analyses conducted for each of these groupings suggested dissociable networks supporting: (1) visual perception within primary and associative visual cortices, (2) auditory perception within primary auditory cortices, (3) attention to emotionally salient information within insular, anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within amygdala and fusiform gyri. These meta-analytic outcomes are consistent with a contemporary psychological model of affective processing in which emotionally salient information from perceived stimuli are integrated with previous experiences to engender a subjective affective response. This study highlights the utility of using emergent meta-analytic methods to inform and extend psychological theories and suggests that emotions are manifest as the eventual consequence of interactions between large-scale brain networks. © 2018 Wiley Periodicals, Inc.

  14. Neural circuits in Auditory and Audiovisual Memory

    PubMed Central

    Plakke, B.; Romanski, L.M.

    2016-01-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. PMID:26656069

  15. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    PubMed

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-09

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic and typically change at faster rates. Using a novel fMRI paradigm, we measured temporal processing capacities of functional regions in human high-level visual cortex. Contrary to prevailing theories, we find that different regions have different processing capacities, which have behavioral implications. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. These results suggest that temporal processing capacity is a characteristic of domain-specific networks in high-level visual cortex and contributes to the segregation of cortical regions. Copyright © 2015 the authors 0270-6474/15/3512412-13$15.00/0.

  16. The cortical underpinnings of context-based memory distortion.

    PubMed

    Aminoff, Elissa; Schacter, Daniel L; Bar, Moshe

    2008-12-01

    Everyday contextual settings create associations that later afford generating predictions about what objects to expect in our environment. The cortical network that takes advantage of such contextual information is proposed to connect the representation of associated objects such that seeing one object (bed) will activate the visual representations of other objects sharing the same context (pillow). Given this proposal, we hypothesized that the cortical activity elicited by seeing a strong contextual object would predict the occurrence of false memories whereby one erroneously "remembers" having seen a new object that is related to a previously presented object. To test this hypothesis, we used functional magnetic resonance imaging during encoding of contextually related objects, and later tested recognition memory. New objects that were contextually related to previously presented objects were more often falsely judged as "old" compared with new objects that were contextually unrelated to old objects. This phenomenon was reflected by activity in the cortical network mediating contextual processing, which provides a better understanding of how the brain represents and processes context.

  17. Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors.

    PubMed

    Nakamura, Hisashi; Hioki, Hiroyuki; Furuta, Takahiro; Kaneko, Takeshi

    2015-05-01

    The lateral posterior thalamic nucleus (LP) is one of the components of the extrageniculate pathway in the rat visual system, and is cytoarchitecturally divided into three subdivisions--lateral (LPl), rostromedial (LPrm), and caudomedial (LPcm) portions. To clarify the differences in the dendritic fields and axonal arborisations among the three subdivisions, we applied a single-neuron labeling technique with viral vectors to LP neurons. The proximal dendrites of LPl neurons were more numerous than those of LPrm and LPcm neurons, and LPrm neurons tended to have wider dendritic fields than LPl neurons. We then analysed the axonal arborisations of LP neurons by reconstructing the axon fibers in the cortex. The LPl, LPrm and LPcm were different from one another in terms of the projection targets--the main target cortical regions of LPl and LPrm neurons were the secondary and primary visual areas, whereas those of LPcm neurons were the postrhinal and temporal association areas. Furthermore, the principal target cortical layers of LPl neurons in the visual areas were middle layers, but that of LPrm neurons was layer 1. This indicates that LPl and LPrm neurons can be categorised into the core and matrix types of thalamic neurons, respectively, in the visual areas. In addition, LPl neurons formed multiple axonal clusters within the visual areas, whereas the fibers of LPrm neurons were widely and diffusely distributed. It is therefore presumed that these two types of neurons play different roles in visual information processing by dual thalamocortical innervation of the visual areas. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Cortical Visual Impairment in Children: Presentation Intervention, and Prognosis in Educational Settings

    ERIC Educational Resources Information Center

    Swift, Suzanne H.; Davidson, Roseanna C.; Weems, Linda J.

    2008-01-01

    Children with cortical visual impairment (CVI) exhibit distinct visual behaviors which are often misinterpreted. As the incidence of CVI is on the rise, this has subsequently caused an increased need for identification and intervention with these children from teaching and therapy service providers. Distinguishing children with CVI from children…

  19. Structural Alteration of the Dorsal Visual Network in DLB Patients with Visual Hallucinations: A Cortical Thickness MRI Study

    PubMed Central

    Delli Pizzi, Stefano; Franciotti, Raffaella; Tartaro, Armando; Caulo, Massimo; Thomas, Astrid; Onofrj, Marco; Bonanni, Laura

    2014-01-01

    Visual hallucinations (VH) represent one of the core features in discriminating dementia with Lewy bodies (DLB) from Alzheimer’s Disease (AD). Previous studies reported that in DLB patients functional alterations of the parieto-occipital regions were correlated with the presence of VH. The aim of our study was to assess whether morphological changes in specific cortical regions of DLB could be related to the presence and severity of VH. We performed a cortical thickness analysis on magnetic resonance imaging data in a cohort including 18 DLB patients, 15 AD patients and 14 healthy control subjects. Relatively to DLB group, correlation analysis between the cortical thickness and the Neuropsychiatric Inventory (NPI) hallucination item scores was also performed. Cortical thickness was reduced bilaterally in DLB compared to controls in the pericalcarine and lingual gyri, cuneus, precuneus, superior parietal gyrus. Cortical thinning was found bilaterally in AD compared to controls in temporal cortex including the superior and middle temporal gyrus, part of inferior temporal cortex, temporal pole and insula. Inferior parietal and supramarginal gyri were also affected bilaterally in AD as compared to controls. The comparison between DLB and AD evidenced cortical thinning in DLB group in the right posterior regions including superior parietal gyrus, precuneus, cuneus, pericalcarine and lingual gyri. Furthermore, the correlation analysis between cortical thickness and NPI hallucination item scores showed that the structural alteration in the dorsal visual regions including superior parietal gyrus and precuneus closely correlated with the occurrence and severity of VH. We suggest that structural changes in key regions of the dorsal visual network may play a crucial role in the physiopathology of VH in DLB patients. PMID:24466177

  20. Pycortex: an interactive surface visualizer for fMRI

    PubMed Central

    Gao, James S.; Huth, Alexander G.; Lescroart, Mark D.; Gallant, Jack L.

    2015-01-01

    Surface visualizations of fMRI provide a comprehensive view of cortical activity. However, surface visualizations are difficult to generate and most common visualization techniques rely on unnecessary interpolation which limits the fidelity of the resulting maps. Furthermore, it is difficult to understand the relationship between flattened cortical surfaces and the underlying 3D anatomy using tools available currently. To address these problems we have developed pycortex, a Python toolbox for interactive surface mapping and visualization. Pycortex exploits the power of modern graphics cards to sample volumetric data on a per-pixel basis, allowing dense and accurate mapping of the voxel grid across the surface. Anatomical and functional information can be projected onto the cortical surface. The surface can be inflated and flattened interactively, aiding interpretation of the correspondence between the anatomical surface and the flattened cortical sheet. The output of pycortex can be viewed using WebGL, a technology compatible with modern web browsers. This allows complex fMRI surface maps to be distributed broadly online without requiring installation of complex software. PMID:26483666

  1. Adult Visual Cortical Plasticity

    PubMed Central

    Gilbert, Charles D.; Li, Wu

    2012-01-01

    The visual cortex has the capacity for experience dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate level vision - contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex. PMID:22841310

  2. Visual search and the aging brain: discerning the effects of age-related brain volume shrinkage on alertness, feature binding, and attentional control.

    PubMed

    Müller-Oehring, Eva M; Schulte, Tilman; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2013-01-01

    Decline in visuospatial abilities with advancing age has been attributed to a demise of bottom-up and top-down functions involving sensory processing, selective attention, and executive control. These functions may be differentially affected by age-related volume shrinkage of subcortical and cortical nodes subserving the dorsal and ventral processing streams and the corpus callosum mediating interhemispheric information exchange. Fifty-five healthy adults (25-84 years) underwent structural MRI and performed a visual search task to test perceptual and attentional demands by combining feature-conjunction searches with "gestalt" grouping and attentional cueing paradigms. Poorer conjunction, but not feature, search performance was related to older age and volume shrinkage of nodes in the dorsolateral processing stream. When displays allowed perceptual grouping through distractor homogeneity, poorer conjunction-search performance correlated with smaller ventrolateral prefrontal cortical and callosal volumes. An alerting cue attenuated age effects on conjunction search, and the alertness benefit was associated with thalamic, callosal, and temporal cortex volumes. Our results indicate that older adults can capitalize on early parallel stages of visual information processing, whereas age-related limitations arise at later serial processing stages requiring self-guided selective attention and executive control. These limitations are explained in part by age-related brain volume shrinkage and can be mitigated by external cues.

  3. Temporal characteristics of audiovisual information processing.

    PubMed

    Fuhrmann Alpert, Galit; Hein, Grit; Tsai, Nancy; Naumer, Marcus J; Knight, Robert T

    2008-05-14

    In complex natural environments, auditory and visual information often have to be processed simultaneously. Previous functional magnetic resonance imaging (fMRI) studies focused on the spatial localization of brain areas involved in audiovisual (AV) information processing, but the temporal characteristics of AV information flow in these regions remained unclear. In this study, we used fMRI and a novel information-theoretic approach to study the flow of AV sensory information. Subjects passively perceived sounds and images of objects presented either alone or simultaneously. Applying the measure of mutual information, we computed for each voxel the latency in which the blood oxygenation level-dependent signal had the highest information content about the preceding stimulus. The results indicate that, after AV stimulation, the earliest informative activity occurs in right Heschl's gyrus, left primary visual cortex, and the posterior portion of the superior temporal gyrus, which is known as a region involved in object-related AV integration. Informative activity in the anterior portion of superior temporal gyrus, middle temporal gyrus, right occipital cortex, and inferior frontal cortex was found at a later latency. Moreover, AV presentation resulted in shorter latencies in multiple cortical areas compared with isolated auditory or visual presentation. The results provide evidence for bottom-up processing from primary sensory areas into higher association areas during AV integration in humans and suggest that AV presentation shortens processing time in early sensory cortices.

  4. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex

    PubMed Central

    Zeitoun, Jack H.; Kim, Hyungtae

    2017-01-01

    Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011

  5. Relational Associative Learning Induces Cross-Modal Plasticity in Early Visual Cortex

    PubMed Central

    Headley, Drew B.; Weinberger, Norman M.

    2015-01-01

    Neurobiological theories of memory posit that the neocortex is a storage site of declarative memories, a hallmark of which is the association of two arbitrary neutral stimuli. Early sensory cortices, once assumed uninvolved in memory storage, recently have been implicated in associations between neutral stimuli and reward or punishment. We asked whether links between neutral stimuli also could be formed in early visual or auditory cortices. Rats were presented with a tone paired with a light using a sensory preconditioning paradigm that enabled later evaluation of successful association. Subjects that acquired this association developed enhanced sound evoked potentials in their primary and secondary visual cortices. Laminar recordings localized this potential to cortical Layers 5 and 6. A similar pattern of activation was elicited by microstimulation of primary auditory cortex in the same subjects, consistent with a cortico-cortical substrate of association. Thus, early sensory cortex has the capability to form neutral stimulus associations. This plasticity may constitute a declarative memory trace between sensory cortices. PMID:24275832

  6. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat.

    PubMed

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-09-01

    The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a substantial projection. Conversely, only one area of the auditory orienting system, the auditory field of the anterior ectosylvian sulcus (fAES), and no area involved in somatosensory orienting, shows significant corticotectal inputs. Although small relative to visual inputs, the projection from the fAES is of particular interest, as it represents the only bilateral cortical input to the SC. This detailed, quantitative study allows for comparison across modalities in an animal that serves as a useful model for both auditory and visual perception. Moreover, the differences in patterns of corticotectal projections between modalities inform the ways in which orienting systems are modulated by cortical feedback. J. Comp. Neurol. 524:2623-2642, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Visually Evoked 3-5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice.

    PubMed

    Einstein, Michael C; Polack, Pierre-Olivier; Tran, Duy T; Golshani, Peyman

    2017-05-17

    Low-frequency membrane potential ( V m ) oscillations were once thought to only occur in sleeping and anesthetized states. Recently, low-frequency V m oscillations have been described in inactive awake animals, but it is unclear whether they shape sensory processing in neurons and whether they occur during active awake behavioral states. To answer these questions, we performed two-photon guided whole-cell V m recordings from primary visual cortex layer 2/3 excitatory and inhibitory neurons in awake mice during passive visual stimulation and performance of visual and auditory discrimination tasks. We recorded stereotyped 3-5 Hz V m oscillations where the V m baseline hyperpolarized as the V m underwent high amplitude rhythmic fluctuations lasting 1-2 s in duration. When 3-5 Hz V m oscillations coincided with visual cues, excitatory neuron responses to preferred cues were significantly reduced. Despite this disruption to sensory processing, visual cues were critical for evoking 3-5 Hz V m oscillations when animals performed discrimination tasks and passively viewed drifting grating stimuli. Using pupillometry and animal locomotive speed as indicators of arousal, we found that 3-5 Hz oscillations were not restricted to unaroused states and that they occurred equally in aroused and unaroused states. Therefore, low-frequency V m oscillations play a role in shaping sensory processing in visual cortical neurons, even during active wakefulness and decision making. SIGNIFICANCE STATEMENT A neuron's membrane potential ( V m ) strongly shapes how information is processed in sensory cortices of awake animals. Yet, very little is known about how low-frequency V m oscillations influence sensory processing and whether they occur in aroused awake animals. By performing two-photon guided whole-cell recordings from layer 2/3 excitatory and inhibitory neurons in the visual cortex of awake behaving animals, we found visually evoked stereotyped 3-5 Hz V m oscillations that disrupt excitatory responsiveness to visual stimuli. Moreover, these oscillations occurred when animals were in high and low arousal states as measured by animal speed and pupillometry. These findings show, for the first time, that low-frequency V m oscillations can significantly modulate sensory signal processing, even in awake active animals. Copyright © 2017 the authors 0270-6474/17/375084-15$15.00/0.

  8. Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.

    PubMed

    Wen, Haiguang; Shi, Junxing; Zhang, Yizhen; Lu, Kun-Han; Cao, Jiayue; Liu, Zhongming

    2017-10-20

    Convolutional neural network (CNN) driven by image recognition has been shown to be able to explain cortical responses to static pictures at ventral-stream areas. Here, we further showed that such CNN could reliably predict and decode functional magnetic resonance imaging data from humans watching natural movies, despite its lack of any mechanism to account for temporal dynamics or feedback processing. Using separate data, encoding and decoding models were developed and evaluated for describing the bi-directional relationships between the CNN and the brain. Through the encoding models, the CNN-predicted areas covered not only the ventral stream, but also the dorsal stream, albeit to a lesser degree; single-voxel response was visualized as the specific pixel pattern that drove the response, revealing the distinct representation of individual cortical location; cortical activation was synthesized from natural images with high-throughput to map category representation, contrast, and selectivity. Through the decoding models, fMRI signals were directly decoded to estimate the feature representations in both visual and semantic spaces, for direct visual reconstruction and semantic categorization, respectively. These results corroborate, generalize, and extend previous findings, and highlight the value of using deep learning, as an all-in-one model of the visual cortex, to understand and decode natural vision. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Auditory Processing in Infancy: Do Early Abnormalities Predict Disorders of Language and Cognitive Development?

    ERIC Educational Resources Information Center

    Guzzetta, Francesco; Conti, Guido; Mercuri, Eugenio

    2011-01-01

    Increasing attention has been devoted to the maturation of sensory processing in the first year of life. While the development of cortical visual function has been thoroughly studied, much less information is available on auditory processing and its early disorders. The aim of this paper is to provide an overview of the assessment techniques for…

  10. Cortical visual dysfunction in children: a clinical study.

    PubMed

    Dutton, G; Ballantyne, J; Boyd, G; Bradnam, M; Day, R; McCulloch, D; Mackie, R; Phillips, S; Saunders, K

    1996-01-01

    Damage to the cerebral cortex was responsible for impairment in vision in 90 of 130 consecutive children referred to the Vision Assessment Clinic in Glasgow. Cortical blindness was seen in 16 children. Only 2 were mobile, but both showed evidence of navigational blind-sight. Cortical visual impairment, in which it was possible to estimate visual acuity but generalised severe brain damage precluded estimation of cognitive visual function, was observed in 9 children. Complex disorders of cognitive vision were seen in 20 children. These could be divided into five categories and involved impairment of: (1) recognition, (2) orientation, (3) depth perception, (4) perception of movement and (5) simultaneous perception. These disorders were observed in a variety of combinations. The remaining children showed evidence of reduced visual acuity and/ or visual field loss, but without detectable disorders of congnitive visual function. Early recognition of disorders of cognitive vision is required if active training and remediation are to be implemented.

  11. Development of cortical orientation selectivity in the absence of visual experience with contour

    PubMed Central

    Hussain, Shaista; Weliky, Michael

    2011-01-01

    Visual cortical neurons are selective for the orientation of lines, and the full development of this selectivity requires natural visual experience after eye opening. Here we examined whether this selectivity develops without seeing lines and contours. Juvenile ferrets were reared in a dark room and visually trained by being shown a movie of flickering, sparse spots. We found that despite the lack of contour visual experience, the cortical neurons of these ferrets developed strong orientation selectivity and exhibited simple-cell receptive fields. This finding suggests that overt contour visual experience is unnecessary for the maturation of orientation selectivity and is inconsistent with the computational models that crucially require the visual inputs of lines and contours for the development of orientation selectivity. We propose that a correlation-based model supplemented with a constraint on synaptic strength dynamics is able to account for our experimental result. PMID:21753023

  12. Pulsed Out of Awareness: EEG Alpha Oscillations Represent a Pulsed-Inhibition of Ongoing Cortical Processing

    PubMed Central

    Mathewson, Kyle E.; Lleras, Alejandro; Beck, Diane M.; Fabiani, Monica; Ro, Tony; Gratton, Gabriele

    2011-01-01

    Alpha oscillations are ubiquitous in the brain, but their role in cortical processing remains a matter of debate. Recently, evidence has begun to accumulate in support of a role for alpha oscillations in attention selection and control. Here we first review evidence that 8–12 Hz oscillations in the brain have a general inhibitory role in cognitive processing, with an emphasis on their role in visual processing. Then, we summarize the evidence in support of our recent proposal that alpha represents a pulsed-inhibition of ongoing neural activity. The phase of the ongoing electroencephalography can influence evoked activity and subsequent processing, and we propose that alpha exerts its inhibitory role through alternating microstates of inhibition and excitation. Finally, we discuss evidence that this pulsed-inhibition can be entrained to rhythmic stimuli in the environment, such that preferential processing occurs for stimuli at predictable moments. The entrainment of preferential phase may provide a mechanism for temporal attention in the brain. This pulsed inhibitory account of alpha has important implications for many common cognitive phenomena, such as the attentional blink, and seems to indicate that our visual experience may at least some times be coming through in waves. PMID:21779257

  13. A multi-pathway hypothesis for human visual fear signaling

    PubMed Central

    Silverstein, David N.; Ingvar, Martin

    2015-01-01

    A hypothesis is proposed for five visual fear signaling pathways in humans, based on an analysis of anatomical connectivity from primate studies and human functional connectvity and tractography from brain imaging studies. Earlier work has identified possible subcortical and cortical fear pathways known as the “low road” and “high road,” which arrive at the amygdala independently. In addition to a subcortical pathway, we propose four cortical signaling pathways in humans along the visual ventral stream. All four of these traverse through the LGN to the visual cortex (VC) and branching off at the inferior temporal area, with one projection directly to the amygdala; another traversing the orbitofrontal cortex; and two others passing through the parietal and then prefrontal cortex, one excitatory pathway via the ventral-medial area and one regulatory pathway via the ventral-lateral area. These pathways have progressively longer propagation latencies and may have progressively evolved with brain development to take advantage of higher-level processing. Using the anatomical path lengths and latency estimates for each of these five pathways, predictions are made for the relative processing times at selective ROIs and arrival at the amygdala, based on the presentation of a fear-relevant visual stimulus. Partial verification of the temporal dynamics of this hypothesis might be accomplished using experimental MEG analysis. Possible experimental protocols are suggested. PMID:26379513

  14. Rapid Presentation of Emotional Expressions Reveals New Emotional Impairments in Tourette’s Syndrome

    PubMed Central

    Mermillod, Martial; Devaux, Damien; Derost, Philippe; Rieu, Isabelle; Chambres, Patrick; Auxiette, Catherine; Legrand, Guillaume; Galland, Fabienne; Dalens, Hélène; Coulangeon, Louise Marie; Broussolle, Emmanuel; Durif, Franck; Jalenques, Isabelle

    2013-01-01

    Objective: Based on a variety of empirical evidence obtained within the theoretical framework of embodiment theory, we considered it likely that motor disorders in Tourette’s syndrome (TS) would have emotional consequences for TS patients. However, previous research using emotional facial categorization tasks suggests that these consequences are limited to TS patients with obsessive-compulsive behaviors (OCB). Method: These studies used long stimulus presentations which allowed the participants to categorize the different emotional facial expressions (EFEs) on the basis of a perceptual analysis that might potentially hide a lack of emotional feeling for certain emotions. In order to reduce this perceptual bias, we used a rapid visual presentation procedure. Results: Using this new experimental method, we revealed different and surprising impairments on several EFEs in TS patients compared to matched healthy control participants. Moreover, a spatial frequency analysis of the visual signal processed by the patients suggests that these impairments may be located at a cortical level. Conclusion: The current study indicates that the rapid visual presentation paradigm makes it possible to identify various potential emotional disorders that were not revealed by the standard visual presentation procedures previously reported in the literature. Moreover, the spatial frequency analysis performed in our study suggests that emotional deficit in TS might lie at the level of temporal cortical areas dedicated to the processing of HSF visual information. PMID:23630481

  15. Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.

    PubMed

    Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A F

    2003-04-15

    When stimulus information enters the visual cortex, it is rapidly processed for identification. However, sometimes the processing of the stimulus is inadequate and the subject fails to notice the stimulus. Human psychophysical studies show that this occurs during states of inattention or absent-mindedness. At a neurophysiological level, it remains unclear what these states are. To study the role of cortical state in perception, we analyzed neural activity in the monkey primary visual cortex before the appearance of a stimulus. We show that, before the appearance of a reported stimulus, neural activity was stronger and more correlated than for a not-reported stimulus. This indicates that the strength of neural activity and the functional connectivity between neurons in the primary visual cortex participate in the perceptual processing of stimulus information. Thus, to detect a stimulus, the visual cortex needs to be in an appropriate state.

  16. Attention to the Color of a Moving Stimulus Modulates Motion-Signal Processing in Macaque Area MT: Evidence for a Unified Attentional System.

    PubMed

    Katzner, Steffen; Busse, Laura; Treue, Stefan

    2009-01-01

    Directing visual attention to spatial locations or to non-spatial stimulus features can strongly modulate responses of individual cortical sensory neurons. Effects of attention typically vary in magnitude, not only between visual cortical areas but also between individual neurons from the same area. Here, we investigate whether the size of attentional effects depends on the match between the tuning properties of the recorded neuron and the perceptual task at hand. We recorded extracellular responses from individual direction-selective neurons in the middle temporal area (MT) of rhesus monkeys trained to attend either to the color or the motion signal of a moving stimulus. We found that effects of spatial and feature-based attention in MT, which are typically observed in tasks allocating attention to motion, were very similar even when attention was directed to the color of the stimulus. We conclude that attentional modulation can occur in extrastriate cortex, even under conditions without a match between the tuning properties of the recorded neuron and the perceptual task at hand. Our data are consistent with theories of object-based attention describing a transfer of attention from relevant to irrelevant features, within the attended object and across the visual field. These results argue for a unified attentional system that modulates responses to a stimulus across cortical areas, even if a given area is specialized for processing task-irrelevant aspects of that stimulus.

  17. Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex

    PubMed Central

    Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe

    2015-01-01

    If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199

  18. Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study

    PubMed Central

    Taylor, John-Paul; Firbank, Michael J.; He, Jiabao; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Vuong, Quoc; McKeith, Ian G.; O’Brien, John T.

    2012-01-01

    Background Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. Aims To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. Method In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). Results Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. Conclusions Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3). PMID:22500014

  19. The influence of visual training on predicting complex action sequences.

    PubMed

    Cross, Emily S; Stadler, Waltraud; Parkinson, Jim; Schütz-Bosbach, Simone; Prinz, Wolfgang

    2013-02-01

    Linking observed and executable actions appears to be achieved by an action observation network (AON), comprising parietal, premotor, and occipitotemporal cortical regions of the human brain. AON engagement during action observation is thought to aid in effortless, efficient prediction of ongoing movements to support action understanding. Here, we investigate how the AON responds when observing and predicting actions we cannot readily reproduce before and after visual training. During pre- and posttraining neuroimaging sessions, participants watched gymnasts and wind-up toys moving behind an occluder and pressed a button when they expected each agent to reappear. Between scanning sessions, participants visually trained to predict when a subset of stimuli would reappear. Posttraining scanning revealed activation of inferior parietal, superior temporal, and cerebellar cortices when predicting occluded actions compared to perceiving them. Greater activity emerged when predicting untrained compared to trained sequences in occipitotemporal cortices and to a lesser degree, premotor cortices. The occipitotemporal responses when predicting untrained agents showed further specialization, with greater responses within body-processing regions when predicting gymnasts' movements and in object-selective cortex when predicting toys' movements. The results suggest that (1) select portions of the AON are recruited to predict the complex movements not easily mapped onto the observer's body and (2) greater recruitment of these AON regions supports prediction of less familiar sequences. We suggest that the findings inform both the premotor model of action prediction and the predictive coding account of AON function. Copyright © 2011 Wiley Periodicals, Inc.

  20. Fine-grained temporal coding of visually-similar categories in the ventral visual pathway and prefrontal cortex

    PubMed Central

    Xu, Yang; D'Lauro, Christopher; Pyles, John A.; Kass, Robert E.; Tarr, Michael J.

    2013-01-01

    Humans are remarkably proficient at categorizing visually-similar objects. To better understand the cortical basis of this categorization process, we used magnetoencephalography (MEG) to record neural activity while participants learned–with feedback–to discriminate two highly-similar, novel visual categories. We hypothesized that although prefrontal regions would mediate early category learning, this role would diminish with increasing category familiarity and that regions within the ventral visual pathway would come to play a more prominent role in encoding category-relevant information as learning progressed. Early in learning we observed some degree of categorical discriminability and predictability in both prefrontal cortex and the ventral visual pathway. Predictability improved significantly above chance in the ventral visual pathway over the course of learning with the left inferior temporal and fusiform gyri showing the greatest improvement in predictability between 150 and 250 ms (M200) during category learning. In contrast, there was no comparable increase in discriminability in prefrontal cortex with the only significant post-learning effect being a decrease in predictability in the inferior frontal gyrus between 250 and 350 ms (M300). Thus, the ventral visual pathway appears to encode learned visual categories over the long term. At the same time these results add to our understanding of the cortical origins of previously reported signature temporal components associated with perceptual learning. PMID:24146656

  1. Cortical Activation Patterns during Long-Term Memory Retrieval of Visually or Haptically Encoded Objects and Locations

    ERIC Educational Resources Information Center

    Stock, Oliver; Roder, Brigitte; Burke, Michael; Bien, Siegfried; Rosler, Frank

    2009-01-01

    The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n = 10) or haptically (haptic encoding group, n = 10) had to be retrieved from long-term memory. Participants learned associations between auditorily…

  2. Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex

    PubMed Central

    2017-01-01

    Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex. SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system. PMID:28724749

  3. Single-unit analysis of somatosensory processing in the core auditory cortex of hearing ferrets.

    PubMed

    Meredith, M Alex; Allman, Brian L

    2015-03-01

    The recent findings in several species that the primary auditory cortex processes non-auditory information have largely overlooked the possibility of somatosensory effects. Therefore, the present investigation examined the core auditory cortices (anterior auditory field and primary auditory cortex) for tactile responsivity. Multiple single-unit recordings from anesthetised ferret cortex yielded histologically verified neurons (n = 311) tested with electronically controlled auditory, visual and tactile stimuli, and their combinations. Of the auditory neurons tested, a small proportion (17%) was influenced by visual cues, but a somewhat larger number (23%) was affected by tactile stimulation. Tactile effects rarely occurred alone and spiking responses were observed in bimodal auditory-tactile neurons. However, the broadest tactile effect that was observed, which occurred in all neuron types, was that of suppression of the response to a concurrent auditory cue. The presence of tactile effects in the core auditory cortices was supported by a substantial anatomical projection from the rostral suprasylvian sulcal somatosensory area. Collectively, these results demonstrate that crossmodal effects in the auditory cortex are not exclusively visual and that somatosensation plays a significant role in modulation of acoustic processing, and indicate that crossmodal plasticity following deafness may unmask these existing non-auditory functions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals

    PubMed Central

    Tyler, Mitchell E.; Danilov, Yuri P.; Kaczmarek, Kurt A.; Meyerand, Mary E.

    2013-01-01

    Abstract Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network. PMID:23216162

  5. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    PubMed

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the question of whether interindividual variability in GABA reflects an overall variability in visual inhibition and has a general influence on visual perception or whether the GABA levels of different cortical regions have selective influence on perception of different visual features. Here we report a region- and feature-dependent influence of GABA level on human visual perception. Our findings suggest that GABA level of a cortical region selectively influences perception of visual features that are topographically mapped in this region through intraregional lateral connections. Copyright © 2017 Song, Sandberg et al.

  6. A shared cortical bottleneck underlying Attentional Blink and Psychological Refractory Period.

    PubMed

    Marti, Sébastien; Sigman, Mariano; Dehaene, Stanislas

    2012-02-01

    Doing two things at once is difficult. When two tasks have to be performed within a short interval, the second is sharply delayed, an effect called the Psychological Refractory Period (PRP). Similarly, when two successive visual targets are briefly flashed, people may fail to detect the second target (Attentional Blink or AB). Although AB and PRP are typically studied in very different paradigms, a recent detailed neuromimetic model suggests that both might arise from the same serial stage during which stimuli gain access to consciousness and, as a result, can be arbitrarily routed to any other appropriate processor. Here, in agreement with this model, we demonstrate that AB and PRP can be obtained on alternate trials of the same cross-modal paradigm and result from limitations in the same brain mechanisms. We asked participants to respond as fast as possible to an auditory target T1 and then to a visual target T2 embedded in a series of distractors, while brain activity was recorded with magneto-encephalography (MEG). For identical stimuli, we observed a mixture of blinked trials, where T2 was entirely missed, and PRP trials, where T2 processing was delayed. MEG recordings showed that PRP and blinked trials underwent identical sensory processing in visual occipito-temporal cortices, even including the non-conscious separation of targets from distractors. However, late activations in frontal cortex (>350 ms), strongly influenced by the speed of task-1 execution, were delayed in PRP trials and absent in blinked trials. Our findings suggest that PRP and AB arise from similar cortical stages, can occur with the same exact stimuli, and are merely distinguished by trial-by-trial fluctuations in task processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  8. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed Central

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766

  9. Inter-area correlations in the ventral visual pathway reflect feature integration

    PubMed Central

    Freeman, Jeremy; Donner, Tobias H.; Heeger, David J.

    2011-01-01

    During object perception, the brain integrates simple features into representations of complex objects. A perceptual phenomenon known as visual crowding selectively interferes with this process. Here, we use crowding to characterize a neural correlate of feature integration. Cortical activity was measured with functional magnetic resonance imaging, simultaneously in multiple areas of the ventral visual pathway (V1–V4 and the visual word form area, VWFA, which responds preferentially to familiar letters), while human subjects viewed crowded and uncrowded letters. Temporal correlations between cortical areas were lower for crowded letters than for uncrowded letters, especially between V1 and VWFA. These differences in correlation were retinotopically specific, and persisted when attention was diverted from the letters. But correlation differences were not evident when we substituted the letters with grating patches that were not crowded under our stimulus conditions. We conclude that inter-area correlations reflect feature integration and are disrupted by crowding. We propose that crowding may perturb the transformations between neural representations along the ventral pathway that underlie the integration of features into objects. PMID:21521832

  10. Visual feature-tolerance in the reading network.

    PubMed

    Rauschecker, Andreas M; Bowen, Reno F; Perry, Lee M; Kevan, Alison M; Dougherty, Robert F; Wandell, Brian A

    2011-09-08

    A century of neurology and neuroscience shows that seeing words depends on ventral occipital-temporal (VOT) circuitry. Typically, reading is learned using high-contrast line-contour words. We explored whether a specific VOT region, the visual word form area (VWFA), learns to see only these words or recognizes words independent of the specific shape-defining visual features. Word forms were created using atypical features (motion-dots, luminance-dots) whose statistical properties control word-visibility. We measured fMRI responses as word form visibility varied, and we used TMS to interfere with neural processing in specific cortical circuits, while subjects performed a lexical decision task. For all features, VWFA responses increased with word-visibility and correlated with performance. TMS applied to motion-specialized area hMT+ disrupted reading performance for motion-dots, but not line-contours or luminance-dots. A quantitative model describes feature-convergence in the VWFA and relates VWFA responses to behavioral performance. These findings suggest how visual feature-tolerance in the reading network arises through signal convergence from feature-specialized cortical areas. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  12. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    PubMed

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  13. A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment

    PubMed Central

    Dash, Suryadeep; Lomber, Stephen G.

    2016-01-01

    Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades. PMID:27509130

  14. A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment.

    PubMed

    Peel, Tyler R; Hafed, Ziad M; Dash, Suryadeep; Lomber, Stephen G; Corneil, Brian D

    2016-08-01

    Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades.

  15. A cortical integrate-and-fire neural network model for blind decoding of visual prosthetic stimulation.

    PubMed

    Eiber, Calvin D; Morley, John W; Lovell, Nigel H; Suaning, Gregg J

    2014-01-01

    We present a computational model of the optic pathway which has been adapted to simulate cortical responses to visual-prosthetic stimulation. This model reproduces the statistically observed distributions of spikes for cortical recordings of sham and maximum-intensity stimuli, while simultaneously generating cellular receptive fields consistent with those observed using traditional visual neuroscience methods. By inverting this model to generate candidate phosphenes which could generate the responses observed to novel stimulation strategies, we hope to aid the development of said strategies in-vivo before being deployed in clinical settings.

  16. Reading in the dark: neural correlates and cross-modal plasticity for learning to read entire words without visual experience.

    PubMed

    Sigalov, Nadine; Maidenbaum, Shachar; Amedi, Amir

    2016-03-01

    Cognitive neuroscience has long attempted to determine the ways in which cortical selectivity develops, and the impact of nature vs. nurture on it. Congenital blindness (CB) offers a unique opportunity to test this question as the brains of blind individuals develop without visual experience. Here we approach this question through the reading network. Several areas in the visual cortex have been implicated as part of the reading network, and one of the main ones among them is the VWFA, which is selective to the form of letters and words. But what happens in the CB brain? On the one hand, it has been shown that cross-modal plasticity leads to the recruitment of occipital areas, including the VWFA, for linguistic tasks. On the other hand, we have recently demonstrated VWFA activity for letters in contrast to other visual categories when the information is provided via other senses such as touch or audition. Which of these tasks is more dominant? By which mechanism does the CB brain process reading? Using fMRI and visual-to-auditory sensory substitution which transfers the topographical features of the letters we compare reading with semantic and scrambled conditions in a group of CB. We found activation in early auditory and visual cortices during the early processing phase (letter), while the later phase (word) showed VWFA and bilateral dorsal-intraparietal activations for words. This further supports the notion that many visual regions in general, even early visual areas, also maintain a predilection for task processing even when the modality is variable and in spite of putative lifelong linguistic cross-modal plasticity. Furthermore, we find that the VWFA is recruited preferentially for letter and word form, while it was not recruited, and even exhibited deactivation, for an immediately subsequent semantic task suggesting that despite only short sensory substitution experience orthographic task processing can dominate semantic processing in the VWFA. On a wider scope, this implies that at least in some cases cross-modal plasticity which enables the recruitment of areas for new tasks may be dominated by sensory independent task specific activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Catecholamines alter the intrinsic variability of cortical population activity and perception

    PubMed Central

    Avramiea, Arthur-Ervin; Nolte, Guido; Engel, Andreas K.; Linkenkaer-Hansen, Klaus; Donner, Tobias H.

    2018-01-01

    The ascending modulatory systems of the brain stem are powerful regulators of global brain state. Disturbances of these systems are implicated in several major neuropsychiatric disorders. Yet, how these systems interact with specific neural computations in the cerebral cortex to shape perception, cognition, and behavior remains poorly understood. Here, we probed into the effect of two such systems, the catecholaminergic (dopaminergic and noradrenergic) and cholinergic systems, on an important aspect of cortical computation: its intrinsic variability. To this end, we combined placebo-controlled pharmacological intervention in humans, recordings of cortical population activity using magnetoencephalography (MEG), and psychophysical measurements of the perception of ambiguous visual input. A low-dose catecholaminergic, but not cholinergic, manipulation altered the rate of spontaneous perceptual fluctuations as well as the temporal structure of “scale-free” population activity of large swaths of the visual and parietal cortices. Computational analyses indicate that both effects were consistent with an increase in excitatory relative to inhibitory activity in the cortical areas underlying visual perceptual inference. We propose that catecholamines regulate the variability of perception and cognition through dynamically changing the cortical excitation–inhibition ratio. The combined readout of fluctuations in perception and cortical activity we established here may prove useful as an efficient and easily accessible marker of altered cortical computation in neuropsychiatric disorders. PMID:29420565

  18. How lateral inhibition and fast retinogeniculo-cortical oscillations create vision: A new hypothesis.

    PubMed

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Nixon-Shapiro, Elizabeth

    2016-11-01

    The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4cm and works together with membrane potential, correspondingly representing the retinal layers, photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors' individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex, and the retina work in unison to create an infrastructure of visual space that functionally "places" the objects within this "neural" space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina, but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision. This is a theoretical article presenting a novel hypothesis about the physiological processes in vision, and expounds upon the visual aspect of two of our previously published articles, "A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience", and "Functional representation of vision within the mind: A visual consciousness model based in 3D default space." Currently, neuroscience teaches that visual images are initially inverted on the retina, processed in the brain, and then conscious perception of vision happens in the visual cortex. Here, we propose that inversion of visual images never takes place because images enter the retina as coiled and compressed graded potentials that are intensified and amplified in OFF-center photoreceptors. Once they reach the brain, they are decompressed and expanded to the original size of the image, which is perceived by the brain as the external image. We adduce that pre-existing oscillations (alpha, beta, and gamma) among the various cortices in the brain (including the striate and parietal cortex) and the retina, work together in unison to create an infrastructure of visual space thatfunctionally "places" the objects within a "neural" space. These fast oscillations "bring" the faculties of the cortical activity to the retina, creating the infrastructure of the space within the eye where visual information can be immediately recognized by the brain. By this we mean that the visual (striate) cortex synchronizes the information with the photoreceptors in the retina, and the brain instantaneously receives the already processed visual image, thereby relinquishing the eye from being required to send the information to the brain to be interpreted before it can rise to consciousness. The visual system is a heavily studied area of neuroscience yet very little is known about how vision occurs. We believe that our novel hypothesis provides new insights into how vision becomes part of consciousness, helps to reconcile various previously proposed models, and further elucidates current questions in vision based on our unified 3D default space model. Illustrations are provided to aid in explaining our theory. Copyright © 2016. Published by Elsevier Ltd.

  19. Negative BOLD in sensory cortices during verbal memory: a component in generating internal representations?

    PubMed

    Azulay, Haim; Striem, Ella; Amedi, Amir

    2009-05-01

    People tend to close their eyes when trying to retrieve an event or a visual image from memory. However the brain mechanisms behind this phenomenon remain poorly understood. Recently, we showed that during visual mental imagery, auditory areas show a much more robust deactivation than during visual perception. Here we ask whether this is a special case of a more general phenomenon involving retrieval of intrinsic, internally stored information, which would result in crossmodal deactivations in other sensory cortices which are irrelevant to the task at hand. To test this hypothesis, a group of 9 sighted individuals were scanned while performing a memory retrieval task for highly abstract words (i.e., with low imaginability scores). We also scanned a group of 10 congenitally blind, which by definition do not have any visual imagery per se. In sighted subjects, both auditory and visual areas were robustly deactivated during memory retrieval, whereas in the blind the auditory cortex was deactivated while visual areas, shown previously to be relevant for this task, presented a positive BOLD signal. These results suggest that deactivation may be most prominent in task-irrelevant sensory cortices whenever there is a need for retrieval or manipulation of internally stored representations. Thus, there is a task-dependent balance of activation and deactivation that might allow maximization of resources and filtering out of non relevant information to enable allocation of attention to the required task. Furthermore, these results suggest that the balance between positive and negative BOLD might be crucial to our understanding of a large variety of intrinsic and extrinsic tasks including high-level cognitive functions, sensory processing and multisensory integration.

  20. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.

    PubMed

    Tettamanti, Marco; Conca, Francesca; Falini, Andrea; Perani, Daniela

    2017-11-01

    The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness. SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor programming of actions that could be accomplished congruently with the objects' functions? In this fMRI study, we instantiated unaware visual perception conditions, by dynamically suppressing the visibility of manipulable object pictures with mondrian masks. Despite escaping conscious perception, manipulable objects activated an object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices. This demonstrates that visuomotor encoding occurs independently of conscious object perception. Copyright © 2017 the authors 0270-6474/17/3710712-13$15.00/0.

  1. Transcranial Random Noise Stimulation of Visual Cortex: Stochastic Resonance Enhances Central Mechanisms of Perception.

    PubMed

    van der Groen, Onno; Wenderoth, Nicole

    2016-05-11

    Random noise enhances the detectability of weak signals in nonlinear systems, a phenomenon known as stochastic resonance (SR). Though counterintuitive at first, SR has been demonstrated in a variety of naturally occurring processes, including human perception, where it has been shown that adding noise directly to weak visual, tactile, or auditory stimuli enhances detection performance. These results indicate that random noise can push subthreshold receptor potentials across the transfer threshold, causing action potentials in an otherwise silent afference. Despite the wealth of evidence demonstrating SR for noise added to a stimulus, relatively few studies have explored whether or not noise added directly to cortical networks enhances sensory detection. Here we administered transcranial random noise stimulation (tRNS; 100-640 Hz zero-mean Gaussian white noise) to the occipital region of human participants. For increasing tRNS intensities (ranging from 0 to 1.5 mA), the detection accuracy of a visual stimuli changed according to an inverted-U-shaped function, typical of the SR phenomenon. When the optimal level of noise was added to visual cortex, detection performance improved significantly relative to a zero noise condition (9.7 ± 4.6%) and to a similar extent as optimal noise added to the visual stimuli (11.2 ± 4.7%). Our results demonstrate that adding noise to cortical networks can improve human behavior and that tRNS is an appropriate tool to exploit this mechanism. Our findings suggest that neural processing at the network level exhibits nonlinear system properties that are sensitive to the stochastic resonance phenomenon and highlight the usefulness of tRNS as a tool to modulate human behavior. Since tRNS can be applied to all cortical areas, exploiting the SR phenomenon is not restricted to the perceptual domain, but can be used for other functions that depend on nonlinear neural dynamics (e.g., decision making, task switching, response inhibition, and many other processes). This will open new avenues for using tRNS to investigate brain function and enhance the behavior of healthy individuals or patients. Copyright © 2016 the authors 0270-6474/16/365289-10$15.00/0.

  2. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    PubMed

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Why people see things that are not there: a novel Perception and Attention Deficit model for recurrent complex visual hallucinations.

    PubMed

    Collerton, Daniel; Perry, Elaine; McKeith, Ian

    2005-12-01

    As many as two million people in the United Kingdom repeatedly see people, animals, and objects that have no objective reality. Hallucinations on the border of sleep, dementing illnesses, delirium, eye disease, and schizophrenia account for 90% of these. The remainder have rarer disorders. We review existing models of recurrent complex visual hallucinations (RCVH) in the awake person, including cortical irritation, cortical hyperexcitability and cortical release, top-down activation, misperception, dream intrusion, and interactive models. We provide evidence that these can neither fully account for the phenomenology of RCVH, nor for variations in the frequency of RCVH in different disorders. We propose a novel Perception and Attention Deficit (PAD) model for RCVH. A combination of impaired attentional binding and poor sensory activation of a correct proto-object, in conjunction with a relatively intact scene representation, bias perception to allow the intrusion of a hallucinatory proto-object into a scene perception. Incorporation of this image into a context-specific hallucinatory scene representation accounts for repetitive hallucinations. We suggest that these impairments are underpinned by disturbances in a lateral frontal cortex-ventral visual stream system. We show how the frequency of RCVH in different diseases is related to the coexistence of attentional and visual perceptual impairments; how attentional and perceptual processes can account for their phenomenology; and that diseases and other states with high rates of RCVH have cholinergic dysfunction in both frontal cortex and the ventral visual stream. Several tests of the model are indicated, together with a number of treatment options that it generates.

  4. A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    PubMed Central

    Carmeli, Cristian; Lopez-Aguado, Laura; Schmidt, Kerstin E.; De Feo, Oscar; Innocenti, Giorgio M.

    2007-01-01

    Background The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization. PMID:18074012

  5. SPECT in patients with cortical visual loss.

    PubMed

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.

  6. Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences.

    PubMed

    Beetz, M Jerome; Hechavarría, Julio C; Kössl, Manfred

    2016-06-30

    Precise temporal coding is necessary for proper acoustic analysis. However, at cortical level, forward suppression appears to limit the ability of neurons to extract temporal information from natural sound sequences. Here we studied how temporal processing can be maintained in the bats' cortex in the presence of suppression evoked by natural echolocation streams that are relevant to the bats' behavior. We show that cortical neurons tuned to target-distance actually profit from forward suppression induced by natural echolocation sequences. These neurons can more precisely extract target distance information when they are stimulated with natural echolocation sequences than during stimulation with isolated call-echo pairs. We conclude that forward suppression does for time domain tuning what lateral inhibition does for selectivity forms such as auditory frequency tuning and visual orientation tuning. When talking about cortical processing, suppression should be seen as a mechanistic tool rather than a limiting element.

  7. Altered topology of neural circuits in congenital prosopagnosia.

    PubMed

    Rosenthal, Gideon; Tanzer, Michal; Simony, Erez; Hasson, Uri; Behrmann, Marlene; Avidan, Galia

    2017-08-21

    Using a novel, fMRI-based inter-subject functional correlation (ISFC) approach, which isolates stimulus-locked inter-regional correlation patterns, we compared the cortical topology of the neural circuit for face processing in participants with an impairment in face recognition, congenital prosopagnosia (CP), and matched controls. Whereas the anterior temporal lobe served as the major network hub for face processing in controls, this was not the case for the CPs. Instead, this group evinced hyper-connectivity in posterior regions of the visual cortex, mostly associated with the lateral occipital and the inferior temporal cortices. Moreover, the extent of this hyper-connectivity was correlated with the face recognition deficit. These results offer new insights into the perturbed cortical topology in CP, which may serve as the underlying neural basis of the behavioral deficits typical of this disorder. The approach adopted here has the potential to uncover altered topologies in other neurodevelopmental disorders, as well.

  8. Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness.

    PubMed

    Giacino, Joseph T; Hirsch, Joy; Schiff, Nicholas; Laureys, Steven

    2006-12-01

    To describe the theoretic framework, design, and potential clinical applications of functional neuroimaging protocols in patients with disorders of consciousness. Recent published literature and authors' own work. Studies using functional neuroimaging techniques to investigate cognitive processing in patients diagnosed with vegetative and minimally conscious state. Not applicable. Positron-emission tomography activation studies suggest that the vegetative state represents a global disconnection syndrome in which higher order association cortices are functionally disconnected from primary cortical areas. In contrast, patterns of activation in functional magnetic resonance imaging studies of patients in the minimally conscious state show preservation of large-scale cortical networks associated with language and visual processing. Novel applications of functional neuroimaging in patients with disorders of consciousness may aid in differential diagnosis, prognostic assessment and identification of pathophysiologic mechanisms. Improvements in patient characterization may, in turn, provide new opportunities for restoration of function through interventional neuromodulation.

  9. Touch to see: neuropsychological evidence of a sensory mirror system for touch.

    PubMed

    Bolognini, Nadia; Olgiati, Elena; Xaiz, Annalisa; Posteraro, Lucio; Ferraro, Francesco; Maravita, Angelo

    2012-09-01

    The observation of touch can be grounded in the activation of brain areas underpinning direct tactile experience, namely the somatosensory cortices. What is the behavioral impact of such a mirror sensory activity on visual perception? To address this issue, we investigated the causal interplay between observed and felt touch in right brain-damaged patients, as a function of their underlying damaged visual and/or tactile modalities. Patients and healthy controls underwent a detection task, comprising visual stimuli depicting touches or without a tactile component. Touch and No-touch stimuli were presented in egocentric or allocentric perspectives. Seeing touches, regardless of the viewing perspective, differently affects visual perception depending on which sensory modality is damaged: In patients with a selective visual deficit, but without any tactile defect, the sight of touch improves the visual impairment; this effect is associated with a lesion to the supramarginal gyrus. In patients with a tactile deficit, but intact visual perception, the sight of touch disrupts visual processing, inducing a visual extinction-like phenomenon. This disruptive effect is associated with the damage of the postcentral gyrus. Hence, a damage to the somatosensory system can lead to a dysfunctional visual processing, and an intact somatosensory processing can aid visual perception.

  10. The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices

    PubMed Central

    An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei

    2014-01-01

    All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033

  11. Cortical oscillations modulated by congruent and incongruent audiovisual stimuli.

    PubMed

    Herdman, A T; Fujioka, T; Chau, W; Ross, B; Pantev, C; Picton, T W

    2004-11-30

    Congruent or incongruent grapheme-phoneme stimuli are easily perceived as one or two linguistic objects. The main objective of this study was to investigate the changes in cortical oscillations that reflect the processing of congruent and incongruent audiovisual stimuli. Graphemes were Japanese Hiragana characters for four different vowels (/a/, /o/, /u/, and /i/). They were presented simultaneously with their corresponding phonemes (congruent) or non-corresponding phonemes (incongruent) to native-speaking Japanese participants. Participants' reaction times to the congruent audiovisual stimuli were significantly faster by 57 ms as compared to reaction times to incongruent stimuli. We recorded the brain responses for each condition using a whole-head magnetoencephalograph (MEG). A novel approach to analysing MEG data, called synthetic aperture magnetometry (SAM), was used to identify event-related changes in cortical oscillations involved in audiovisual processing. The SAM contrast between congruent and incongruent responses revealed greater event-related desynchonization (8-16 Hz) bilaterally in the occipital lobes and greater event-related synchronization (4-8 Hz) in the left transverse temporal gyrus. Results from this study further support the concept of interactions between the auditory and visual sensory cortices in multi-sensory processing of audiovisual objects.

  12. Evoking visual neglect-like deficits in healthy volunteers - an investigation by repetitive navigated transcranial magnetic stimulation.

    PubMed

    Giglhuber, Katrin; Maurer, Stefanie; Zimmer, Claus; Meyer, Bernhard; Krieg, Sandro M

    2017-02-01

    In clinical practice, repetitive navigated transcranial magnetic stimulation (rTMS) is of particular interest for non-invasive mapping of cortical language areas. Yet, rTMS studies try to detect further cortical functions. Damage to the underlying network of visuospatial attention function can result in visual neglect-a severe neurological deficit and influencing factor for a significantly reduced functional outcome. This investigation aims to evaluate the use of rTMS for evoking visual neglect in healthy volunteers and the potential of specifically locating cortical areas that can be assigned for the function of visuospatial attention. Ten healthy, right-handed subjects underwent rTMS visual neglect mapping. Repetitive trains of 5 Hz and 10 pulses were applied to 52 pre-defined cortical spots on each hemisphere; each cortical spot was stimulated 10 times. Visuospatial attention was tested time-locked to rTMS pulses by a landmark task. Task pictures were displayed tachistoscopically for 50 ms. The subjects' performance was analyzed by video, and errors were referenced to cortical spots. We observed visual neglect-like deficits during the stimulation of both hemispheres. Errors were categorized into leftward, rightward, and no response errors. Rightward errors occurred significantly more often during stimulation of the right hemisphere than during stimulation of the left hemisphere (mean rightward error rate (ER) 1.6 ± 1.3 % vs. 1.0 ± 1.0 %, p = 0.0141). Within the left hemisphere, we observed predominantly leftward errors rather than rightward errors (mean leftward ER 2.0 ± 1.3 % vs. rightward ER 1.0 ± 1.0 %; p = 0.0005). Visual neglect can be elicited non-invasively by rTMS, and cortical areas eloquent for visuospatial attention can be detected. Yet, the correlation of this approach with clinical findings has to be shown in upcoming steps.

  13. Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions

    PubMed Central

    Lim, Seung-Lark; Padmala, Srikanth; Pessoa, Luiz

    2009-01-01

    If the amygdala is involved in shaping perceptual experience when affectively significant visual items are encountered, responses in this structure should be correlated with both visual cortex responses and behavioral reports. Here, we investigated how affective significance shapes visual perception during an attentional blink paradigm combined with aversive conditioning. Behaviorally, following aversive learning, affectively significant scenes (CS+) were better detected than neutral (CS−) ones. In terms of mean brain responses, both amygdala and visual cortical responses were stronger during CS+ relative to CS− trials. Increased brain responses in these regions were associated with improved behavioral performance across participants and followed a mediation-like pattern. Importantly, the mediation pattern was observed in a trial-by-trial analysis, revealing that the specific pattern of trial-by-trial variability in brain responses was closely related to single-trial behavioral performance. Furthermore, the influence of the amygdala on visual cortical responses was consistent with a mediation, although partial, via frontal brain regions. Our results thus suggest that affective significance potentially determines the fate of a visual item during competitive interactions by enhancing sensory processing through both direct and indirect paths. In so doing, the amygdala helps separate the significant from the mundane. PMID:19805383

  14. The relation of object naming and other visual speech production tasks: a large scale voxel-based morphometric study.

    PubMed

    Lau, Johnny King L; Humphreys, Glyn W; Douis, Hassan; Balani, Alex; Bickerton, Wai-Ling; Rotshtein, Pia

    2015-01-01

    We report a lesion-symptom mapping analysis of visual speech production deficits in a large group (280) of stroke patients at the sub-acute stage (<120 days post-stroke). Performance on object naming was evaluated alongside three other tests of visual speech production, namely sentence production to a picture, sentence reading and nonword reading. A principal component analysis was performed on all these tests' scores and revealed a 'shared' component that loaded across all the visual speech production tasks and a 'unique' component that isolated object naming from the other three tasks. Regions for the shared component were observed in the left fronto-temporal cortices, fusiform gyrus and bilateral visual cortices. Lesions in these regions linked to both poor object naming and impairment in general visual-speech production. On the other hand, the unique naming component was potentially associated with the bilateral anterior temporal poles, hippocampus and cerebellar areas. This is in line with the models proposing that object naming relies on a left-lateralised language dominant system that interacts with a bilateral anterior temporal network. Neuropsychological deficits in object naming can reflect both the increased demands specific to the task and the more general difficulties in language processing.

  15. Phosphene Perception Relates to Visual Cortex Glutamate Levels and Covaries with Atypical Visuospatial Awareness.

    PubMed

    Terhune, Devin B; Murray, Elizabeth; Near, Jamie; Stagg, Charlotte J; Cowey, Alan; Cohen Kadosh, Roi

    2015-11-01

    Phosphenes are illusory visual percepts produced by the application of transcranial magnetic stimulation to occipital cortex. Phosphene thresholds, the minimum stimulation intensity required to reliably produce phosphenes, are widely used as an index of cortical excitability. However, the neural basis of phosphene thresholds and their relationship to individual differences in visual cognition are poorly understood. Here, we investigated the neurochemical basis of phosphene perception by measuring basal GABA and glutamate levels in primary visual cortex using magnetic resonance spectroscopy. We further examined whether phosphene thresholds would relate to the visuospatial phenomenology of grapheme-color synesthesia, a condition characterized by atypical binding and involuntary color photisms. Phosphene thresholds negatively correlated with glutamate concentrations in visual cortex, with lower thresholds associated with elevated glutamate. This relationship was robust, present in both controls and synesthetes, and exhibited neurochemical, topographic, and threshold specificity. Projector synesthetes, who experience color photisms as spatially colocalized with inducing graphemes, displayed lower phosphene thresholds than associator synesthetes, who experience photisms as internal images, with both exhibiting lower thresholds than controls. These results suggest that phosphene perception is driven by interindividual variation in glutamatergic activity in primary visual cortex and relates to cortical processes underlying individual differences in visuospatial awareness. © The Author 2015. Published by Oxford University Press.

  16. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    PubMed Central

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  17. Cortical connective field estimates from resting state fMRI activity.

    PubMed

    Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.

  18. Voltage-sensitive-dye imaging of microstimulation-evoked neural activity through intracortical horizontal and callosal connections in cat visual cortex.

    PubMed

    Suzurikawa, Jun; Tani, Toshiki; Nakao, Masayuki; Tanaka, Shigeru; Takahashi, Hirokazu

    2009-12-01

    Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a novel experimental setup for investigating the propagation of neural activities combining the intracortical microstimulation (ICMS) technique with voltage sensitive dye (VSD) imaging, and demonstrated the feasibility of this setup applying to the measurement of time-dependent intra- and inter-hemispheric spread of ICMS-evoked excitation in the cat visual cortices, areas 17 and 18. A microelectrode array for the ICMS was inserted with a specially designed easy-to-detach electrode holder around the 17/18 transition zones (TZs), where the left and right hemispheres were interconnected via the corpus callosum. The microelectrode array was stably anchored in agarose without any holder, which enabled us to visualize evoked activities even in the vicinity of penetration sites as well as in a wide recording region that covered a part of both hemispheres. The VSD imaging could successfully visualize ICMS-evoked excitation and subsequent propagation in the visual cortices contralateral as well as ipsilateral to the ICMS. Using the orientation maps as positional references, we showed that the activity propagation patterns were consistent with previously reported anatomical patterns of intracortical and interhemispheric connections. This finding indicates that our experimental system can serve for the investigation of cortical functional connectivity.

  19. Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons

    PubMed Central

    Figueroa Velez, Dario X.; Ellefsen, Kyle L.; Hathaway, Ethan R.; Carathedathu, Mathew C.

    2017-01-01

    The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed. PMID:28123018

  20. Top-Down Control of Visual Alpha Oscillations: Sources of Control Signals and Their Mechanisms of Action

    PubMed Central

    Wang, Chao; Rajagovindan, Rajasimhan; Han, Sahng-Min; Ding, Mingzhou

    2016-01-01

    Alpha oscillations (8–12 Hz) are thought to inversely correlate with cortical excitability. Goal-oriented modulation of alpha has been studied extensively. In visual spatial attention, alpha over the region of visual cortex corresponding to the attended location decreases, signifying increased excitability to facilitate the processing of impending stimuli. In contrast, in retention of verbal working memory, alpha over visual cortex increases, signifying decreased excitability to gate out stimulus input to protect the information held online from sensory interference. According to the prevailing model, this goal-oriented biasing of sensory cortex is effected by top-down control signals from frontal and parietal cortices. The present study tests and substantiates this hypothesis by (a) identifying the signals that mediate the top-down biasing influence, (b) examining whether the cortical areas issuing these signals are task-specific or task-independent, and (c) establishing the possible mechanism of the biasing action. High-density human EEG data were recorded in two experimental paradigms: a trial-by-trial cued visual spatial attention task and a modified Sternberg working memory task. Applying Granger causality to both sensor-level and source-level data we report the following findings. In covert visual spatial attention, the regions exerting top-down control over visual activity are lateralized to the right hemisphere, with the dipoles located at the right frontal eye field (FEF) and the right inferior frontal gyrus (IFG) being the main sources of top-down influences. During retention of verbal working memory, the regions exerting top-down control over visual activity are lateralized to the left hemisphere, with the dipoles located at the left middle frontal gyrus (MFG) being the main source of top-down influences. In both experiments, top-down influences are mediated by alpha oscillations, and the biasing effect is likely achieved via an inhibition-disinhibition mechanism. PMID:26834601

  1. Linear transformation of the encoding mechanism for light intensity underlies the paradoxical enhancement of cortical visual responses by sevoflurane.

    PubMed

    Arena, Alessandro; Lamanna, Jacopo; Gemma, Marco; Ripamonti, Maddalena; Ravasio, Giuliano; Zimarino, Vincenzo; De Vitis, Assunta; Beretta, Luigi; Malgaroli, Antonio

    2017-01-01

    The mechanisms of action of anaesthetics on the living brain are still poorly understood. In this respect, the analysis of the differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity might provide important and novel cues. Here we show that the anaesthetic sevoflurane strongly silences the brain but potentiates in a dose- and frequency-dependent manner the cortical visual response. Such enhancement arises from a linear scaling by sevoflurane of the power-law relation between light intensity and the cortical response. The fingerprint of sevoflurane action suggests that circuit silencing can boost linearly synaptic responsiveness presumably by scaling the number of responding units and/or their correlation following a sensory stimulation. General anaesthetics, which are expected to silence brain activity, often spare sensory responses. To evaluate differential effects of anaesthetics on spontaneous and sensory-evoked cortical activity, we characterized their modulation by sevoflurane and propofol. Power spectra and the bust-suppression ratio from EEG data were used to evaluate anaesthesia depth. ON and OFF cortical responses were elicited by light pulses of variable intensity, duration and frequency, during light and deep states of anaesthesia. Both anaesthetics reduced spontaneous cortical activity but sevoflurane greatly enhanced while propofol diminished the ON visual response. Interestingly, the large potentiation of the ON visual response by sevoflurane was found to represent a linear scaling of the encoding mechanism for light intensity. To the contrary, the OFF cortical visual response was depressed by both anaesthetics. The selective depression of the OFF component by sevoflurane could be converted into a robust potentiation by the pharmacological blockade of the ON pathway, suggesting that the temporal order of ON and OFF responses leads to a depression of the latter. This hypothesis agrees with the finding that the enhancement of the ON response was converted into a depression by increasing the frequency of light-pulse stimulation from 0.1 to 1 Hz. Overall, our results support the view that inactivity-dependent modulation of cortical circuits produces an increase in their responsiveness. Among the implications of our findings, the silencing of cortical circuits can boost linearly the cortical responsiveness but with negative impact on their frequency transfer and with a loss of the information content of the sensory signal. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  2. Cortical oscillations and entrainment in speech processing during working memory load.

    PubMed

    Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten

    2018-02-02

    Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (< 13 Hz). We found that increases in both types of WM load (background noise and n-back level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    PubMed

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A neural circuit for gamma-band coherence across the retinotopic map in mouse visual cortex

    PubMed Central

    Hakim, Richard; Shamardani, Kiarash

    2018-01-01

    Cortical gamma oscillations have been implicated in a variety of cognitive, behavioral, and circuit-level phenomena. However, the circuit mechanisms of gamma-band generation and synchronization across cortical space remain uncertain. Using optogenetic patterned illumination in acute brain slices of mouse visual cortex, we define a circuit composed of layer 2/3 (L2/3) pyramidal cells and somatostatin (SOM) interneurons that phase-locks ensembles across the retinotopic map. The network oscillations generated here emerge from non-periodic stimuli, and are stimulus size-dependent, coherent across cortical space, narrow band (30 Hz), and depend on SOM neuron but not parvalbumin (PV) neuron activity; similar to visually induced gamma oscillations observed in vivo. Gamma oscillations generated in separate cortical locations exhibited high coherence as far apart as 850 μm, and lateral gamma entrainment depended on SOM neuron activity. These data identify a circuit that is sufficient to mediate long-range gamma-band coherence in the primary visual cortex. PMID:29480803

  5. Memory reactivation during rapid eye movement sleep promotes its generalization and integration in cortical stores.

    PubMed

    Sterpenich, Virginie; Schmidt, Christina; Albouy, Geneviève; Matarazzo, Luca; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Degueldre, Christian; Leclercq, Yves; Balteau, Evelyne; Collette, Fabienne; Luxen, André; Phillips, Christophe; Maquet, Pierre

    2014-06-01

    Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information.

  6. Optical imaging of architecture and function in the living brain sheds new light on cortical mechanisms underlying visual perception.

    PubMed

    Grinvald, A

    1992-01-01

    Long standing questions related to brain mechanisms underlying perception can finally be resolved by direct visualization of the architecture and function of mammalian cortex. This advance has been accomplished with the aid of two optical imaging techniques with which one can literally see how the brain functions. The upbringing of this technology required a multi-disciplinary approach integrating brain research with organic chemistry, spectroscopy, biophysics, computer sciences, optics and image processing. Beyond the technological ramifications, recent research shed new light on cortical mechanisms underlying sensory perception. Clinical applications of this technology for precise mapping of the cortical surface of patients during neurosurgery have begun. Below is a brief summary of our own research and a description of the technical specifications of the two optical imaging techniques. Like every technique, optical imaging also suffers from severe limitations. Here we mostly emphasize some of its advantages relative to all alternative imaging techniques currently in use. The limitations are critically discussed in our recent reviews. For a series of other reviews, see Cohen (1989).

  7. Drawing in the blind and the sighted as a probe of cortical reorganization

    NASA Astrophysics Data System (ADS)

    Likova, Lora T.

    2010-02-01

    In contrast to other arts, such as music, there is a very little neuroimaging research on visual art and in particular - on drawing. Drawing - from artistic to technical - involves diverse aspects of spatial cognition, precise sensorimotor planning and control as well as a rich set of higher cognitive functions. A new method for learning the drawing skill in the blind that we have developed, and the technological advances of a multisensory MR-compatible drawing system, allowed us to run for the first time a comparative fMRI study on drawing in the blind and the sighted. In each population, we identified widely distributed cortical networks, extending from the occipital and temporal cortices, through the parietal to the frontal lobe. This is the first neuroimaging study of drawing in blind novices, as well as the first study on the learning to draw in either population. We sought to determine the cortical reorganization taking place as a result of learning to draw, despite the lack of visual input to the brains of the blind. Remarkably, we found massive recruitment of the visual cortex on learning to draw, although our subjects had no previous experience, but only a short training with our new drawing method. This finding implies a rapid, learning-based plasticity mechanism. We further proposed that the functional level of the brain reorganization in the blind may still differ from that in the sighted even in areas that overlap between the two populations, such as in the visual cortex. We tested this idea in the framework of saccadic suppression. A methodological innovation allowed us to estimate the retinotopic regions locations in the blind brain. Although the visual cortex of both groups was greatly recruited, only the sighted experienced dramatic suppression in hMT+ and V1, while there was no sign of an analogous process in the blind. This finding has important implications and suggests that the recruitment of the visual cortex in the blind does not assure a full functional parallel.

  8. Neural circuits in auditory and audiovisual memory.

    PubMed

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Locating the cortical bottleneck for slow reading in peripheral vision

    PubMed Central

    Yu, Deyue; Jiang, Yi; Legge, Gordon E.; He, Sheng

    2015-01-01

    Yu, Legge, Park, Gage, and Chung (2010) suggested that the neural bottleneck for slow peripheral reading is located in nonretinotopic areas. We investigated the potential rate-limiting neural site for peripheral reading using fMRI, and contrasted peripheral reading with recognition of peripherally presented line drawings of common objects. We measured the BOLD responses to both text (three-letter words/nonwords) and line-drawing objects presented either in foveal or peripheral vision (10° lower right visual field) at three presentation rates (2, 4, and 8/second). The statistically significant interaction effect of visual field × presentation rate on the BOLD response for text but not for line drawings provides evidence for distinctive processing of peripheral text. This pattern of results was obtained in all five regions of interest (ROIs). At the early retinotopic cortical areas, the BOLD signal slightly increased with increasing presentation rate for foveal text, and remained fairly constant for peripheral text. In the Occipital Word-Responsive Area (OWRA), Visual Word Form Area (VWFA), and object sensitive areas (LO and PHA), the BOLD responses to text decreased with increasing presentation rate for peripheral but not foveal presentation. In contrast, there was no rate-dependent reduction in BOLD response for line-drawing objects in all the ROIs for either foveal or peripheral presentation. Only peripherally presented text showed a distinctive rate-dependence pattern. Although it is possible that the differentiation starts to emerge at the early retinotopic cortical representation, the neural bottleneck for slower reading of peripherally presented text may be a special property of peripheral text processing in object category selective cortex. PMID:26237299

  10. Integrating Information from Different Senses in the Auditory Cortex

    PubMed Central

    King, Andrew J.; Walker, Kerry M.M.

    2015-01-01

    Multisensory integration was once thought to be the domain of brain areas high in the cortical hierarchy, with early sensory cortical fields devoted to unisensory processing of inputs from their given set of sensory receptors. More recently, a wealth of evidence documenting visual and somatosensory responses in auditory cortex, even as early as the primary fields, has changed this view of cortical processing. These multisensory inputs may serve to enhance responses to sounds that are accompanied by other sensory cues, effectively making them easier to hear, but may also act more selectively to shape the receptive field properties of auditory cortical neurons to the location or identity of these events. We discuss the new, converging evidence that multiplexing of neural signals may play a key role in informatively encoding and integrating signals in auditory cortex across multiple sensory modalities. We highlight some of the many open research questions that exist about the neural mechanisms that give rise to multisensory integration in auditory cortex, which should be addressed in future experimental and theoretical studies. PMID:22798035

  11. Sensori-motor experience leads to changes in visual processing in the developing brain.

    PubMed

    James, Karin Harman

    2010-03-01

    Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural specialization for letters, we used functional magnetic resonance imaging (fMRI) to compare brain activation patterns in pre-school children before and after different letter-learning conditions: a sensori-motor group practised printing letters during the learning phase, while the control group practised visual recognition. Results demonstrated an overall left-hemisphere bias for processing letters in these pre-literate participants, but, more interestingly, showed enhanced blood oxygen-level-dependent activation in the visual association cortex during letter perception only after sensori-motor (printing) learning. It is concluded that sensori-motor experience augments processing in the visual system of pre-school children. The change of activation in these neural circuits provides important evidence that 'learning-by-doing' can lay the foundation for, and potentially strengthen, the neural systems used for visual letter recognition.

  12. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective.

    PubMed

    Gillebert, Céline R; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T; Orban, Guy A; Vandenberghe, Rik

    2015-09-16

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD. Copyright © 2015 Gillebert, Schaeverbeke et al.

  13. Long-range synchronization and local desynchronization of alpha oscillations during visual short-term memory retention in children.

    PubMed

    Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Cheung, Teresa; Moiseev, Alexander; Weinberg, Hal; Liotti, Mario; Weeks, Daniel; Grunau, Ruth E

    2010-04-01

    Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.

  14. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones

    PubMed Central

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697

  15. Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization.

    PubMed

    Werner, Sebastian; Noppeney, Uta

    2010-02-17

    Multisensory interactions have been demonstrated in a distributed neural system encompassing primary sensory and higher-order association areas. However, their distinct functional roles in multisensory integration remain unclear. This functional magnetic resonance imaging study dissociated the functional contributions of three cortical levels to multisensory integration in object categorization. Subjects actively categorized or passively perceived noisy auditory and visual signals emanating from everyday actions with objects. The experiment included two 2 x 2 factorial designs that manipulated either (1) the presence/absence or (2) the informativeness of the sensory inputs. These experimental manipulations revealed three patterns of audiovisual interactions. (1) In primary auditory cortices (PACs), a concurrent visual input increased the stimulus salience by amplifying the auditory response regardless of task-context. Effective connectivity analyses demonstrated that this automatic response amplification is mediated via both direct and indirect [via superior temporal sulcus (STS)] connectivity to visual cortices. (2) In STS and intraparietal sulcus (IPS), audiovisual interactions sustained the integration of higher-order object features and predicted subjects' audiovisual benefits in object categorization. (3) In the left ventrolateral prefrontal cortex (vlPFC), explicit semantic categorization resulted in suppressive audiovisual interactions as an index for multisensory facilitation of semantic retrieval and response selection. In conclusion, multisensory integration emerges at multiple processing stages within the cortical hierarchy. The distinct profiles of audiovisual interactions dissociate audiovisual salience effects in PACs, formation of object representations in STS/IPS and audiovisual facilitation of semantic categorization in vlPFC. Furthermore, in STS/IPS, the profiles of audiovisual interactions were behaviorally relevant and predicted subjects' multisensory benefits in performance accuracy.

  16. Voltage-sensitive dye imaging of transcranial magnetic stimulation-induced intracortical dynamics

    PubMed Central

    Kozyrev, Vladislav; Eysel, Ulf T.; Jancke, Dirk

    2014-01-01

    Transcranial magnetic stimulation (TMS) is widely used in clinical interventions and basic neuroscience. Additionally, it has become a powerful tool to drive plastic changes in neuronal networks. However, highly resolved recordings of the immediate TMS effects have remained scarce, because existing recording techniques are limited in spatial or temporal resolution or are interfered with by the strong TMS-induced electric field. To circumvent these constraints, we performed optical imaging with voltage-sensitive dye (VSD) in an animal experimental setting using anaesthetized cats. The dye signals reflect gradual changes in the cells' membrane potential across several square millimeters of cortical tissue, thus enabling direct visualization of TMS-induced neuronal population dynamics. After application of a single TMS pulse across visual cortex, brief focal activation was immediately followed by synchronous suppression of a large pool of neurons. With consecutive magnetic pulses (10 Hz), widespread activity within this “basin of suppression” increased stepwise to suprathreshold levels and spontaneous activity was enhanced. Visual stimulation after repetitive TMS revealed long-term potentiation of evoked activity. Furthermore, loss of the “deceleration–acceleration” notch during the rising phase of the response, as a signature of fast intracortical inhibition detectable with VSD imaging, indicated weakened inhibition as an important driving force of increasing cortical excitability. In summary, our data show that high-frequency TMS changes the balance between excitation and inhibition in favor of an excitatory cortical state. VSD imaging may thus be a promising technique to trace TMS-induced changes in excitability and resulting plastic processes across cortical maps with high spatial and temporal resolutions. PMID:25187557

  17. Cholinesterase inhibitors affect brain potentials in amnestic mild cognitive impairment

    PubMed Central

    Irimajiri, Rie; Michalewski, Henry J; Golob, Edward J; Starr, Arnold

    2007-01-01

    Amnestic mild cognitive impairment (MCI) is an isolated episodic memory disorder that has a high likelihood of progressing to Alzheimer’s disease. Auditory sensory cortical responses (P50, N100) have been shown to be increased in amplitude in MCI compared to older controls. We tested whether (1) cortical potentials to other sensory modalities (somatosensory and visual) were also affected in MCI and (2) cholinesterase inhibitors (ChEIs), one of the therapies used in this disorder, modulated sensory cortical potentials in MCI. Somatosensory cortical potentials to median nerve stimulation and visual cortical potentials to reversing checkerboard stimulation were recorded from 15 older controls and 15 amnestic MCI subjects (single domain). Results were analyzed as a function of diagnosis (Control, MCI) and ChEIs treatment (Treated MCI, Untreated MCI). Somatosensory and visual potentials did not differ significantly in amplitude in MCI subjects compared to controls. When ChEIs use was considered, somatosensory potentials (N20, P50) but not visual potentials (N70, P100, N150) were of larger amplitude in untreated MCI subjects compared to treated MCI subjects. Three individual MCI subjects showed increased N20 amplitude while off ChEIs compared to while on ChEIs. An enhancement of N20 somatosensory cortical activity occurs in amnestic single domain MCI and is sensitive to modulation by ChEIs. PMID:17320833

  18. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech.

    PubMed

    Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath

    2018-05-24

    Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state.

    PubMed

    Wang, Tianyue; Li, Qian; Guo, Mingxia; Peng, Yanmin; Li, Qingji; Qin, Wen; Yu, Chunshui

    2014-05-14

    Amblyopia is a developmental disorder resulting from anomalous binocular visual input in early life. Task-based neuroimaging studies have widely investigated cortical functional impairments in amblyopia, but changes in spontaneous neuronal functional activities in amblyopia remain largely unknown. In the present study, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on fMRI, was applied for the first time to investigate changes in cortical functional connectivities in amblyopia during the resting-state. We quantified and compared both short- and long-range FCD in both the brains of children with anisometropic amblyopia (AAC) and normal sighted children (NSC). In contrast to the NSC, the AAC showed significantly decreased short-range FCD in the inferior temporal/fusiform gyri, parieto-occipital and rostrolateral prefrontal cortices, as well as decreased long-range FCD in the premotor cortex, dorsal inferior parietal lobule, frontal-insular and dorsal prefrontal cortices. Furthermore, most regions with reduced long-range FCD in the AAC showed decreased functional connectivity with occipital and posterior parietal cortices in the AAC. The results suggest that chronically poor visual input in amblyopia not only impairs the brain's short-range functional connections in visual pathways and in the frontal cortex, which is important for cognitive control, but also affects long-range functional connections among the visual areas, posterior parietal and frontal cortices that subserve visuomotor and visual-guided actions, visuospatial attention modulation and the integration of salient information. This study provides evidence for abnormal spontaneous brain activities in amblyopia. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Computational models of cortical visual processing.

    PubMed Central

    Heeger, D J; Simoncelli, E P; Movshon, J A

    1996-01-01

    The visual responses of neurons in the cerebral cortex were first adequately characterized in the 1960s by D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160, 106-154; (1968) J. Physiol. (London) 195, 215-243] using qualitative analyses based on simple geometric visual targets. Over the past 30 years, it has become common to consider the properties of these neurons by attempting to make formal descriptions of these transformations they execute on the visual image. Most such models have their roots in linear-systems approaches pioneered in the retina by C. Enroth-Cugell and J. R. Robson [(1966) J. Physiol. (London) 187, 517-552], but it is clear that purely linear models of cortical neurons are inadequate. We present two related models: one designed to account for the responses of simple cells in primary visual cortex (V1) and one designed to account for the responses of pattern direction selective cells in MT (or V5), an extrastriate visual area thought to be involved in the analysis of visual motion. These models share a common structure that operates in the same way on different kinds of input, and instantiate the widely held view that computational strategies are similar throughout the cerebral cortex. Implementations of these models for Macintosh microcomputers are available and can be used to explore the models' properties. PMID:8570605

  1. [Comparison study between biological vision and computer vision].

    PubMed

    Liu, W; Yuan, X G; Yang, C X; Liu, Z Q; Wang, R

    2001-08-01

    The development and bearing of biology vision in structure and mechanism were discussed, especially on the aspects including anatomical structure of biological vision, tentative classification of reception field, parallel processing of visual information, feedback and conformity effect of visual cortical, and so on. The new advance in the field was introduced through the study of the morphology of biological vision. Besides, comparison between biological vision and computer vision was made, and their similarities and differences were pointed out.

  2. Cortical Feedback Regulates Feedforward Retinogeniculate Refinement

    PubMed Central

    Thompson, Andrew D; Picard, Nathalie; Min, Lia; Fagiolini, Michela; Chen, Chinfei

    2016-01-01

    SUMMARY According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent plasticity. In contrast, we now show that feedback from cortex to thalamus critically regulates refinement of the retinogeniculate projection during a discrete window in development, beginning at postnatal day 20 in mice. Disrupting cortical activity during this window, pharmacologically or chemogenetically, increases the number of retinal ganglion cells innervating each thalamic relay neuron. These results suggest that primary sensory structures develop through the concurrent and interdependent remodeling of subcortical and cortical circuits in response to sensory experience, rather than through a simple feedforward process. Our findings also highlight an unexpected function for the corticothalamic projection. PMID:27545712

  3. Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.

    PubMed

    Revina, Yulia; Petro, Lucy S; Muckli, Lars

    2017-09-22

    Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Visual Dysfunction in Posterior Cortical Atrophy

    PubMed Central

    Maia da Silva, Mari N.; Millington, Rebecca S.; Bridge, Holly; James-Galton, Merle; Plant, Gordon T.

    2017-01-01

    Posterior cortical atrophy (PCA) is a syndromic diagnosis. It is characterized by progressive impairment of higher (cortical) visual function with imaging evidence of degeneration affecting the occipital, parietal, and posterior temporal lobes bilaterally. Most cases will prove to have Alzheimer pathology. The aim of this review is to summarize the development of the concept of this disorder since it was first introduced. A critical discussion of the evolving diagnostic criteria is presented and the differential diagnosis with regard to the underlying pathology is reviewed. Emphasis is given to the visual dysfunction that defines the disorder, and the classical deficits, such as simultanagnosia and visual agnosia, as well as the more recently recognized visual field defects, are reviewed, along with the evidence on their neural correlates. The latest developments on the imaging of PCA are summarized, with special attention to its role on the differential diagnosis with related conditions. PMID:28861031

  5. Massive cortical reorganization in sighted Braille readers.

    PubMed

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  6. Rapid Long-Range Disynaptic Inhibition Explains the Formation of Cortical Orientation Maps

    PubMed Central

    Antolík, Ján

    2017-01-01

    Competitive interactions are believed to underlie many types of cortical processing, ranging from memory formation, attention and development of cortical functional organization (e.g., development of orientation maps in primary visual cortex). In the latter case, the competitive interactions happen along the cortical surface, with local populations of neurons reinforcing each other, while competing with those displaced more distally. This specific configuration of lateral interactions is however in stark contrast with the known properties of the anatomical substrate, i.e., excitatory connections (mediating reinforcement) having longer reach than inhibitory ones (mediating competition). No satisfactory biologically plausible resolution of this conflict between anatomical measures, and assumed cortical function has been proposed. Recently a specific pattern of delays between different types of neurons in cat cortex has been discovered, where direct mono-synaptic excitation has approximately the same delay, as the combined delays of the disynaptic inhibitory interactions between excitatory neurons (i.e., the sum of delays from excitatory to inhibitory and from inhibitory to excitatory neurons). Here we show that this specific pattern of delays represents a biologically plausible explanation for how short-range inhibition can support competitive interactions that underlie the development of orientation maps in primary visual cortex. We demonstrate this statement analytically under simplifying conditions, and subsequently show using network simulations that development of orientation maps is preserved when long-range excitation, direct inhibitory to inhibitory interactions, and moderate inequality in the delays between excitatory and inhibitory pathways is added. PMID:28408869

  7. Role of feedforward geniculate inputs in the generation of orientation selectivity in the cat's primary visual cortex

    PubMed Central

    Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R

    2011-01-01

    Abstract Neurones of the mammalian primary visual cortex have the remarkable property of being selective for the orientation of visual contours. It has been controversial whether the selectivity arises from intracortical mechanisms, from the pattern of afferent connectivity from lateral geniculate nucleus (LGN) to cortical cells or from the sharpening of a bias that is already present in the responses of many geniculate cells. To investigate this, we employed a variation of an electrical stimulation protocol in the LGN that has been claimed to suppress intracortical inputs and isolate the raw geniculocortical input to a striate cortical cell. Such stimulation led to a sharpening of the orientation sensitivity of geniculate cells themselves and some broadening of cortical orientation selectivity. These findings are consistent with the idea that non-specific inhibition of the signals from LGN cells which exhibit an orientation bias can generate the sharp orientation selectivity of primary visual cortical cells. This obviates the need for an excitatory convergence from geniculate cells whose receptive fields are arranged along a row in visual space as in the classical model and provides a framework for orientation sensitivity originating in the retina and getting sharpened through inhibition at higher levels of the visual pathway. PMID:21486788

  8. Crossmodal interactions during non-linguistic auditory processing in cochlear-implanted deaf patients.

    PubMed

    Barone, Pascal; Chambaudie, Laure; Strelnikov, Kuzma; Fraysse, Bernard; Marx, Mathieu; Belin, Pascal; Deguine, Olivier

    2016-10-01

    Due to signal distortion, speech comprehension in cochlear-implanted (CI) patients relies strongly on visual information, a compensatory strategy supported by important cortical crossmodal reorganisations. Though crossmodal interactions are evident for speech processing, it is unclear whether a visual influence is observed in CI patients during non-linguistic visual-auditory processing, such as face-voice interactions, which are important in social communication. We analyse and compare visual-auditory interactions in CI patients and normal-hearing subjects (NHS) at equivalent auditory performance levels. Proficient CI patients and NHS performed a voice-gender categorisation in the visual-auditory modality from a morphing-generated voice continuum between male and female speakers, while ignoring the presentation of a male or female visual face. Our data show that during the face-voice interaction, CI deaf patients are strongly influenced by visual information when performing an auditory gender categorisation task, in spite of maximum recovery of auditory speech. No such effect is observed in NHS, even in situations of CI simulation. Our hypothesis is that the functional crossmodal reorganisation that occurs in deafness could influence nonverbal processing, such as face-voice interaction; this is important for patient internal supramodal representation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Functional neuroimaging and behavioral correlates of capacity decline in visual short-term memory after sleep deprivation.

    PubMed

    Chee, Michael W L; Chuah, Y M Lisa

    2007-05-29

    Sleep deprivation (SD) impairs short-term memory, but it is unclear whether this is because of reduced storage capacity or processes contributing to appropriate information encoding. We evaluated 30 individuals twice, once after a night of normal sleep and again after 24 h of SD. In each session, we evaluated visual memory capacity by presenting arrays of one to eight colored squares. Additionally, we measured cortical responses to varying visual array sizes without engaging memory. The magnitude of intraparietal sulcus activation and memory capacity after normal sleep were highly correlated. SD elicited a pattern of activation in both tasks, indicating that deficits in visual processing and visual attention accompany and could account for loss of short-term memory capacity. Additionally, a comparison between better and poorer performers showed that preservation of precuneus and temporoparietal junction deactivation with increasing memory load corresponds to less performance decline when one is sleep-deprived.

  10. Implementation of a microprocessor-based visual-evoked cortical potential recording and analysis system.

    PubMed

    Wilson, A; Fram, D; Sistar, J

    1981-06-01

    An Imsai 8080 microcomputer is being used to simultaneously generate a color graphics stimulus display and to record visual-evoked cortical potentials. A brief description of the hardware and software developed for this system is presented. Data storage and analysis techniques are also discussed.

  11. Neuronal Effects of Auditory Distraction on Visual Attention

    ERIC Educational Resources Information Center

    Smucny, Jason; Rojas, Donald C.; Eichman, Lindsay C.; Tregellas, Jason R.

    2013-01-01

    Selective attention in the presence of distraction is a key aspect of healthy cognition. The underlying neurobiological processes, have not, however, been functionally well characterized. In the present study, we used functional magnetic resonance imaging to determine how ecologically relevant distracting noise affects cortical activity in 27…

  12. Modulation of Target Recollection and Recollection Rejection Networks Due to Retrieval Facilitation and Interference

    ERIC Educational Resources Information Center

    Bowman, Caitlin R.; Sine, Shalome L.; Dennis, Nancy A.

    2017-01-01

    To better understand neural recollection processing, we induced interference in target recollection by presenting related lures before their respective targets and facilitated recollection rejection of lures by presenting targets before their related lures. Target recollection following interference recruited visual and prefrontal cortices,…

  13. Emergence of Orientation Selectivity in the Mammalian Visual Pathway

    PubMed Central

    Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph

    2013-01-01

    Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085

  14. Image understanding systems based on the unifying representation of perceptual and conceptual information and the solution of mid-level and high-level vision problems

    NASA Astrophysics Data System (ADS)

    Kuvychko, Igor

    2001-10-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.

  15. Detection, eye–hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device

    PubMed Central

    Srivastava, Nishant R; Troyk, Philip R; Dagnelie, Gislin

    2014-01-01

    In order to assess visual performance using a future cortical prosthesis device, the ability of normally sighted and low vision subjects to adapt to a dotted ‘phosphene’ image was studied. Similar studies have been conduced in the past and adaptation to phosphene maps has been shown but the phosphene maps used have been square or hexagonal in pattern. The phosphene map implemented for this testing is what is expected from a cortical implantation of the arrays of intracortical electrodes, generating multiple phosphenes. The dotted image created depends upon the surgical location of electrodes decided for implantation and the expected cortical response. The subjects under tests were required to perform tasks requiring visual inspection, eye–hand coordination and way finding. The subjects did not have any tactile feedback and the visual information provided was live dotted images captured by a camera on a head-mounted low vision enhancing system and processed through a filter generating images similar to the images we expect the blind persons to perceive. The images were locked to the subject’s gaze by means of video-based pupil tracking. In the detection and visual inspection task, the subject scanned a modified checkerboard and counted the number of square white fields on a square checkerboard, in the eye–hand coordination task, the subject placed black checkers on the white fields of the checkerboard, and in the way-finding task, the subjects maneuvered themselves through a virtual maze using a game controller. The accuracy and the time to complete the task were used as the measured outcome. As per the surgical studies by this research group, it might be possible to implant up to 650 electrodes; hence, 650 dots were used to create images and performance studied under 0% dropout (650 dots), 25% dropout (488 dots) and 50% dropout (325 dots) conditions. It was observed that all the subjects under test were able to learn the given tasks and showed improvement in performance with practice even with a dropout condition of 50% (325 dots). Hence, if a cortical prosthesis is implanted in human subjects, they might be able to perform similar tasks and with practice should be able to adapt to dotted images even with a low resolution of 325 dots of phosphene. PMID:19458397

  16. Inhibition of return in the visual field: the eccentricity effect is independent of cortical magnification.

    PubMed

    Bao, Yan; Lei, Quan; Fang, Yuan; Tong, Yu; Schill, Kerstin; Pöppel, Ernst; Strasburger, Hans

    2013-01-01

    Inhibition of return (IOR) as an indicator of attentional control is characterized by an eccentricity effect, that is, the more peripheral visual field shows a stronger IOR magnitude relative to the perifoveal visual field. However, it could be argued that this eccentricity effect may not be an attention effect, but due to cortical magnification. To test this possibility, we examined this eccentricity effect in two conditions: the same-size condition in which identical stimuli were used at different eccentricities, and the size-scaling condition in which stimuli were scaled according to the cortical magnification factor (M-scaling), thus stimuli being larger at the more peripheral locations. The results showed that the magnitude of IOR was significantly stronger in the peripheral relative to the perifoveal visual field, and this eccentricity effect was independent of the manipulation of stimulus size (same-size or size-scaling). These results suggest a robust eccentricity effect of IOR which cannot be eliminated by M-scaling. Underlying neural mechanisms of the eccentricity effect of IOR are discussed with respect to both cortical and subcortical structures mediating attentional control in the perifoveal and peripheral visual field.

  17. White matter changes linked to visual recovery after nerve decompression

    PubMed Central

    Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.

    2015-01-01

    The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884

  18. Crossmodal Connections of Primary Sensory Cortices Largely Vanish During Normal Aging

    PubMed Central

    Henschke, Julia U.; Ohl, Frank W.; Budinger, Eike

    2018-01-01

    During aging, human response times (RTs) to unisensory and crossmodal stimuli decrease. However, the elderly benefit more from crossmodal stimulus representations than younger people. The underlying short-latency multisensory integration process is mediated by direct crossmodal connections at the level of primary sensory cortices. We investigate the age-related changes of these connections using a rodent model (Mongolian gerbil), retrograde tracer injections into the primary auditory (A1), somatosensory (S1), and visual cortex (V1), and immunohistochemistry for markers of apoptosis (Caspase-3), axonal plasticity (Growth associated protein 43, GAP 43), and a calcium-binding protein (Parvalbumin, PV). In adult animals, primary sensory cortices receive a substantial number of direct thalamic inputs from nuclei of their matched, but also from nuclei of non-matched sensory modalities. There are also direct intracortical connections among primary sensory cortices and connections with secondary sensory cortices of other modalities. In very old animals, the crossmodal connections strongly decrease in number or vanish entirely. This is likely due to a retraction of the projection neuron axonal branches rather than ongoing programmed cell death. The loss of crossmodal connections is also accompanied by changes in anatomical correlates of inhibition and excitation in the sensory thalamus and cortex. Together, the loss and restructuring of crossmodal connections during aging suggest a shift of multisensory processing from primary cortices towards other sensory brain areas in elderly individuals. PMID:29551970

  19. Crossmodal Connections of Primary Sensory Cortices Largely Vanish During Normal Aging.

    PubMed

    Henschke, Julia U; Ohl, Frank W; Budinger, Eike

    2018-01-01

    During aging, human response times (RTs) to unisensory and crossmodal stimuli decrease. However, the elderly benefit more from crossmodal stimulus representations than younger people. The underlying short-latency multisensory integration process is mediated by direct crossmodal connections at the level of primary sensory cortices. We investigate the age-related changes of these connections using a rodent model (Mongolian gerbil), retrograde tracer injections into the primary auditory (A1), somatosensory (S1), and visual cortex (V1), and immunohistochemistry for markers of apoptosis (Caspase-3), axonal plasticity (Growth associated protein 43, GAP 43), and a calcium-binding protein (Parvalbumin, PV). In adult animals, primary sensory cortices receive a substantial number of direct thalamic inputs from nuclei of their matched, but also from nuclei of non-matched sensory modalities. There are also direct intracortical connections among primary sensory cortices and connections with secondary sensory cortices of other modalities. In very old animals, the crossmodal connections strongly decrease in number or vanish entirely. This is likely due to a retraction of the projection neuron axonal branches rather than ongoing programmed cell death. The loss of crossmodal connections is also accompanied by changes in anatomical correlates of inhibition and excitation in the sensory thalamus and cortex. Together, the loss and restructuring of crossmodal connections during aging suggest a shift of multisensory processing from primary cortices towards other sensory brain areas in elderly individuals.

  20. Frontotemporal oxyhemoglobin dynamics predict performance accuracy of dance simulation gameplay: temporal characteristics of top-down and bottom-up cortical activities.

    PubMed

    Ono, Yumie; Nomoto, Yasunori; Tanaka, Shohei; Sato, Keisuke; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Noah, J Adam

    2014-01-15

    We utilized the high temporal resolution of functional near-infrared spectroscopy to explore how sensory input (visual and rhythmic auditory cues) are processed in the cortical areas of multimodal integration to achieve coordinated motor output during unrestricted dance simulation gameplay. Using an open source clone of the dance simulation video game, Dance Dance Revolution, two cortical regions of interest were selected for study, the middle temporal gyrus (MTG) and the frontopolar cortex (FPC). We hypothesized that activity in the FPC would indicate top-down regulatory mechanisms of motor behavior; while that in the MTG would be sustained due to bottom-up integration of visual and auditory cues throughout the task. We also hypothesized that a correlation would exist between behavioral performance and the temporal patterns of the hemodynamic responses in these regions of interest. Results indicated that greater temporal accuracy of dance steps positively correlated with persistent activation of the MTG and with cumulative suppression of the FPC. When auditory cues were eliminated from the simulation, modifications in cortical responses were found depending on the gameplay performance. In the MTG, high-performance players showed an increase but low-performance players displayed a decrease in cumulative amount of the oxygenated hemoglobin response in the no music condition compared to that in the music condition. In the FPC, high-performance players showed relatively small variance in the activity regardless of the presence of auditory cues, while low-performance players showed larger differences in the activity between the no music and music conditions. These results suggest that the MTG plays an important role in the successful integration of visual and rhythmic cues and the FPC may work as top-down control to compensate for insufficient integrative ability of visual and rhythmic cues in the MTG. The relative relationships between these cortical areas indicated high- to low-performance levels when performing cued motor tasks. We propose that changes in these relationships can be monitored to gauge performance increases in motor learning and rehabilitation programs. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study.

    PubMed

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p < 0.003). We found reduced PTs and increased ps-VEP ratios indicating increased cortical excitability after anodal tDCS (PT: p = 0.002, ps-VEP: p = 0.003). Correlation analysis within the anodal tDCS group revealed no significant correlation between PTs and learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.

  2. The time course of auditory-visual processing of speech and body actions: evidence for the simultaneous activation of an extended neural network for semantic processing.

    PubMed

    Meyer, Georg F; Harrison, Neil R; Wuerger, Sophie M

    2013-08-01

    An extensive network of cortical areas is involved in multisensory object and action recognition. This network draws on inferior frontal, posterior temporal, and parietal areas; activity is modulated by familiarity and the semantic congruency of auditory and visual component signals even if semantic incongruences are created by combining visual and auditory signals representing very different signal categories, such as speech and whole body actions. Here we present results from a high-density ERP study designed to examine the time-course and source location of responses to semantically congruent and incongruent audiovisual speech and body actions to explore whether the network involved in action recognition consists of a hierarchy of sequentially activated processing modules or a network of simultaneously active processing sites. We report two main results:1) There are no significant early differences in the processing of congruent and incongruent audiovisual action sequences. The earliest difference between congruent and incongruent audiovisual stimuli occurs between 240 and 280 ms after stimulus onset in the left temporal region. Between 340 and 420 ms, semantic congruence modulates responses in central and right frontal areas. Late differences (after 460 ms) occur bilaterally in frontal areas.2) Source localisation (dipole modelling and LORETA) reveals that an extended network encompassing inferior frontal, temporal, parasaggital, and superior parietal sites are simultaneously active between 180 and 420 ms to process auditory–visual action sequences. Early activation (before 120 ms) can be explained by activity in mainly sensory cortices. . The simultaneous activation of an extended network between 180 and 420 ms is consistent with models that posit parallel processing of complex action sequences in frontal, temporal and parietal areas rather than models that postulate hierarchical processing in a sequence of brain regions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study.

    PubMed

    Kauffmann, Louise; Chauvin, Alan; Pichat, Cédric; Peyrin, Carole

    2015-10-01

    According to current models of visual perception scenes are processed in terms of spatial frequencies following a predominantly coarse-to-fine processing sequence. Low spatial frequencies (LSF) reach high-order areas rapidly in order to activate plausible interpretations of the visual input. This triggers top-down facilitation that guides subsequent processing of high spatial frequencies (HSF) in lower-level areas such as the inferotemporal and occipital cortices. However, dynamic interactions underlying top-down influences on the occipital cortex have never been systematically investigated. The present fMRI study aimed to further explore the neural bases and effective connectivity underlying coarse-to-fine processing of scenes, particularly the role of the occipital cortex. We used sequences of six filtered scenes as stimuli depicting coarse-to-fine or fine-to-coarse processing of scenes. Participants performed a categorization task on these stimuli (indoor vs. outdoor). Firstly, we showed that coarse-to-fine (compared to fine-to-coarse) sequences elicited stronger activation in the inferior frontal gyrus (in the orbitofrontal cortex), the inferotemporal cortex (in the fusiform and parahippocampal gyri), and the occipital cortex (in the cuneus). Dynamic causal modeling (DCM) was then used to infer effective connectivity between these regions. DCM results revealed that coarse-to-fine processing resulted in increased connectivity from the occipital cortex to the inferior frontal gyrus and from the inferior frontal gyrus to the inferotemporal cortex. Critically, we also observed an increase in connectivity strength from the inferior frontal gyrus to the occipital cortex, suggesting that top-down influences from frontal areas may guide processing of incoming signals. The present results support current models of visual perception and refine them by emphasizing the role of the occipital cortex as a cortical site for feedback projections in the neural network underlying coarse-to-fine processing of scenes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Attention Modulates TMS-Locked Alpha Oscillations in the Visual Cortex

    PubMed Central

    Herring, Jim D.; Thut, Gregor; Jensen, Ole

    2015-01-01

    Cortical oscillations, such as 8–12 Hz alpha-band activity, are thought to subserve gating of information processing in the human brain. While most of the supporting evidence is correlational, causal evidence comes from attempts to externally drive (“entrain”) these oscillations by transcranial magnetic stimulation (TMS). Indeed, the frequency profile of TMS-evoked potentials (TEPs) closely resembles that of oscillations spontaneously emerging in the same brain region. However, it is unclear whether TMS-locked and spontaneous oscillations are produced by the same neuronal mechanisms. If so, they should react in a similar manner to top-down modulation by endogenous attention. To test this prediction, we assessed the alpha-like EEG response to TMS of the visual cortex during periods of high and low visual attention while participants attended to either the visual or auditory modality in a cross-modal attention task. We observed a TMS-locked local oscillatory alpha response lasting several cycles after TMS (but not after sham stimulation). Importantly, TMS-locked alpha power was suppressed during deployment of visual relative to auditory attention, mirroring spontaneous alpha amplitudes. In addition, the early N40 TEP component, located at the stimulation site, was amplified by visual attention. The extent of attentional modulation for both TMS-locked alpha power and N40 amplitude did depend, with opposite sign, on the individual ability to modulate spontaneous alpha power at the stimulation site. We therefore argue that TMS-locked and spontaneous oscillations are of common neurophysiological origin, whereas the N40 TEP component may serve as an index of current cortical excitability at the time of stimulation. SIGNIFICANCE STATEMENT Rhythmic transcranial magnetic stimulation (TMS) is a promising tool to experimentally “entrain” cortical activity. If TMS-locked oscillatory responses actually recruit the same neuronal mechanisms as spontaneous cortical oscillations, they qualify as a valid tool to study the causal role of neuronal oscillations in cognition but also to enable new treatments targeting aberrant oscillatory activity in, for example, neurological conditions. Here, we provide first-time evidence that TMS-locked and spontaneous oscillations are indeed tightly related and are likely to rely on the same neuronal generators. In addition, we demonstrate that an early local component of the TMS-evoked potential (the N40) may serve as a new objective and noninvasive probe of visual cortex excitability, which so far was only accessible via subjective phosphene reports. PMID:26511236

  5. Unitary vs multiple semantics: PET studies of word and picture processing.

    PubMed

    Bright, P; Moss, H; Tyler, L K

    2004-06-01

    In this paper we examine a central issue in cognitive neuroscience: are there separate conceptual representations associated with different input modalities (e.g., Paivio, 1971, 1986; Warrington & Shallice, 1984) or do inputs from different modalities converge on to the same set of representations (e.g., Caramazza, Hillis, Rapp, & Romani, 1990; Lambon Ralph, Graham, Patterson, & Hodges, 1999; Rapp, Hillis, & Caramazza, 1993)? We present an analysis of four PET studies (three semantic categorisation tasks and one lexical decision task), two of which employ words as stimuli and two of which employ pictures. Using conjunction analyses, we found robust semantic activation, common to both input modalities in anterior and medial aspects of the left fusiform gyrus, left parahippocampal and perirhinal cortices, and left inferior frontal gyrus (BA 47). There were modality-specific activations in both temporal poles (words) and occipitotemporal cortices (pictures). We propose that the temporal poles are involved in processing both words and pictures, but their engagement might be primarily determined by the level of specificity at which an object is processed. Activation in posterior temporal regions associated with picture processing most likely reflects intermediate, pre-semantic stages of visual processing. Our data are most consistent with a hierarchically structured, unitary system of semantic representations for both verbal and visual modalities, subserved by anterior regions of the inferior temporal cortex.

  6. Absence of visual experience modifies the neural basis of numerical thinking.

    PubMed

    Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina

    2016-10-04

    In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 - 12 = x vs. 7 - 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these "visual" regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness.

  7. Atypical form of Alzheimer's disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Vogt, B. A.; Bouras, C.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    In recent years, the existence of visual variants of Alzheimer's disease characterized by atypical clinical presentation at onset has been increasingly recognized. In many of these cases post-mortem neuropathological assessment revealed that correlations could be established between clinical symptoms and the distribution of neurodegenerative lesions. We have analyzed a series of Alzheimer's disease patients presenting with prominent visual symptomatology as a cardinal sign of the disease. In these cases, a shift in the distribution of pathological lesions was observed such that the primary visual areas and certain visual association areas within the occipito-parieto-temporal junction and posterior cingulate cortex had very high densities of lesions, whereas the prefrontal cortex had fewer lesions than usually observed in Alzheimer's disease. Previous quantitative analyses have demonstrated that in Alzheimer's disease, primary sensory and motor cortical areas are less damaged than the multimodal association areas of the frontal and temporal lobes, as indicated by the laminar and regional distribution patterns of neurofibrillary tangles and senile plaques. The distribution of pathological lesions in the cerebral cortex of Alzheimer's disease cases with visual symptomatology revealed that specific visual association pathways were disrupted, whereas these particular connections are likely to be affected to a less severe degree in the more common form of Alzheimer's disease. These data suggest that in some cases with visual variants of Alzheimer's disease, the neurological symptomatology may be related to the loss of certain components of the cortical visual pathways, as reflected by the particular distribution of the neuropathological markers of the disease.

  8. Visual discrimination training improves Humphrey perimetry in chronic cortically induced blindness.

    PubMed

    Cavanaugh, Matthew R; Huxlin, Krystel R

    2017-05-09

    To assess if visual discrimination training improves performance on visual perimetry tests in chronic stroke patients with visual cortex involvement. 24-2 and 10-2 Humphrey visual fields were analyzed for 17 chronic cortically blind stroke patients prior to and following visual discrimination training, as well as in 5 untrained, cortically blind controls. Trained patients practiced direction discrimination, orientation discrimination, or both, at nonoverlapping, blind field locations. All pretraining and posttraining discrimination performance and Humphrey fields were collected with online eye tracking, ensuring gaze-contingent stimulus presentation. Trained patients recovered ∼108 degrees 2 of vision on average, while untrained patients spontaneously improved over an area of ∼16 degrees 2 . Improvement was not affected by patient age, time since lesion, size of initial deficit, or training type, but was proportional to the amount of training performed. Untrained patients counterbalanced their improvements with worsening of sensitivity over ∼9 degrees 2 of their visual field. Worsening was minimal in trained patients. Finally, although discrimination performance improved at all trained locations, changes in Humphrey sensitivity occurred both within trained regions and beyond, extending over a larger area along the blind field border. In adults with chronic cortical visual impairment, the blind field border appears to have enhanced plastic potential, which can be recruited by gaze-controlled visual discrimination training to expand the visible field. Our findings underscore a critical need for future studies to measure the effects of vision restoration approaches on perimetry in larger cohorts of patients. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  9. Experience-Dependent Hemispheric Specialization of Letters and Numbers is Revealed in Early Visual Processing

    PubMed Central

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M.; Woldorff, Marty G.

    2014-01-01

    Recent functional magnetic resonance imaging research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared to numbers, while the right visual cortex preferentially processes numbers compared to letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of event-related potentials (ERPs) to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140–170 ms) than did numbers over left occipital channels, while numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves, (starting around 250 ms) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 ms). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics. PMID:24669789

  10. Experience-dependent hemispheric specialization of letters and numbers is revealed in early visual processing.

    PubMed

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M; Woldorff, Marty G

    2014-10-01

    Recent fMRI research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared with numbers, whereas the right visual cortex preferentially processes numbers compared with letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of ERPs to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140-170 msec) than did numbers over left occipital channels, whereas numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves (starting around 250 msec) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 msec). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics.

  11. Improved contour detection model with spatial summation properties based on nonclassical receptive field

    NASA Astrophysics Data System (ADS)

    Lin, Chuan; Xu, Guili; Cao, Yijun; Liang, Chenghua; Li, Ya

    2016-07-01

    The responses of cortical neurons to a stimulus in a classical receptive field (CRF) can be modulated by stimulating the non-CRF (nCRF) of neurons in the primary visual cortex (V1). In the very early stages (at around 40 ms), a neuron in V1 exhibits strong responses to a small set of stimuli. Later, however (after 100 ms), the neurons in V1 become sensitive to the scene's global organization. As per these visual cortical mechanisms, a contour detection model based on the spatial summation properties is proposed. Unlike in previous studies, the responses of the nCRF to the higher visual cortex that results in the inhibition of the neuronal responses in the primary visual cortex by the feedback pathway are considered. In this model, the individual neurons in V1 receive global information from the higher visual cortex to participate in the inhibition process. Computationally, global Gabor energy features are involved, leading to the more coherent physiological characteristics of the nCRF. We conducted an experiment where we compared our model with those proposed by other researchers. Our model explains the role of the mutual inhibition of neurons in V1, together with an approach for object recognition in machine vision.

  12. Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations.

    PubMed

    Shuster, Anastasia; Levy, Dino J

    2018-01-01

    Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing.

  13. Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations

    PubMed Central

    2018-01-01

    Abstract Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing. PMID:29619408

  14. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres

    PubMed Central

    Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.

    2015-01-01

    Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450

  15. Contextual modulation of primary visual cortex by auditory signals.

    PubMed

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  16. Contextual modulation of primary visual cortex by auditory signals

    PubMed Central

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  17. Whither the hypercolumn?

    PubMed Central

    Ts'o, Daniel Y; Zarella, Mark; Burkitt, Guy

    2009-01-01

    Among the crowning achievements of Hubel and Wiesel's highly influential studies on primary visual cortex is the description of the cortical hypercolumn, a set of cortical columns with functional properties spanning a particular parameter space. This fundamental concept laid the groundwork for the notion of a modular sensory cortex, canonical cortical circuits and an understanding of visual field coverage beyond simple retinotopy. Surprisingly, the search for and description of analogous hypercolumnar organizations in other cortical areas to date has been limited. In the present work, we have applied the hypercolumn concept to the functional organization of the second visual area, V2. We found it important to separate out the original definition of the hypercolumn from other associated observations and concepts, not all of which are applicable to V2. We present results indicating that, as in V1, the V2 hypercolumns for orientation and binocular interaction (disparity) run roughly orthogonal to each other. We quantified the ‘nearest neighbour’ periodicities for the hypercolumns for ocular dominance, orientation, colour and disparity, and found a marked similarity in the periodicities of all of these hypercolumns, both across hypercolumn type and across visual areas V1 and V2. The results support an underlying common mechanism that constrains the anatomical extent of hypercolumn systems, and highlight the original definition of the cortical hypercolumn. PMID:19525564

  18. The dark side of the alpha rhythm: fMRI evidence for induced alpha modulation during complete darkness.

    PubMed

    Ben-Simon, Eti; Podlipsky, Ilana; Okon-Singer, Hadas; Gruberger, Michal; Cvetkovic, Dean; Intrator, Nathan; Hendler, Talma

    2013-03-01

    The unique role of the EEG alpha rhythm in different states of cortical activity is still debated. The main theories regarding alpha function posit either sensory processing or attention allocation as the main processes governing its modulation. Closing and opening eyes, a well-known manipulation of the alpha rhythm, could be regarded as attention allocation from inward to outward focus though during light is also accompanied by visual change. To disentangle the effects of attention allocation and sensory visual input on alpha modulation, 14 healthy subjects were asked to open and close their eyes during conditions of light and of complete darkness while simultaneous recordings of EEG and fMRI were acquired. Thus, during complete darkness the eyes-open condition is not related to visual input but only to attention allocation, allowing direct examination of its role in alpha modulation. A data-driven ridge regression classifier was applied to the EEG data in order to ascertain the contribution of the alpha rhythm to eyes-open/eyes-closed inference in both lighting conditions. Classifier results revealed significant alpha contribution during both light and dark conditions, suggesting that alpha rhythm modulation is closely linked to the change in the direction of attention regardless of the presence of visual sensory input. Furthermore, fMRI activation maps derived from an alpha modulation time-course during the complete darkness condition exhibited a right frontal cortical network associated with attention allocation. These findings support the importance of top-down processes such as attention allocation to alpha rhythm modulation, possibly as a prerequisite to its known bottom-up processing of sensory input. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Transferring and generalizing deep-learning-based neural encoding models across subjects.

    PubMed

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-08-01

    Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Memory and decision making in the frontal cortex during visual motion processing for smooth pursuit eye movements.

    PubMed

    Shichinohe, Natsuko; Akao, Teppei; Kurkin, Sergei; Fukushima, Junko; Kaneko, Chris R S; Fukushima, Kikuro

    2009-06-11

    Cortical motor areas are thought to contribute "higher-order processing," but what that processing might include is unknown. Previous studies of the smooth pursuit-related discharge of supplementary eye field (SEF) neurons have not distinguished activity associated with the preparation for pursuit from discharge related to processing or memory of the target motion signals. Using a memory-based task designed to separate these components, we show that the SEF contains signals coding retinal image-slip-velocity, memory, and assessment of visual motion direction, the decision of whether to pursue, and the preparation for pursuit eye movements. Bilateral muscimol injection into SEF resulted in directional errors in smooth pursuit, errors of whether to pursue, and impairment of initial correct eye movements. These results suggest an important role for the SEF in memory and assessment of visual motion direction and the programming of appropriate pursuit eye movements.

  1. Threat as a feature in visual semantic object memory.

    PubMed

    Calley, Clifford S; Motes, Michael A; Chiang, H-Sheng; Buhl, Virginia; Spence, Jeffrey S; Abdi, Hervé; Anand, Raksha; Maguire, Mandy; Estevez, Leonardo; Briggs, Richard; Freeman, Thomas; Kraut, Michael A; Hart, John

    2013-08-01

    Threatening stimuli have been found to modulate visual processes related to perception and attention. The present functional magnetic resonance imaging (fMRI) study investigated whether threat modulates visual object recognition of man-made and naturally occurring categories of stimuli. Compared with nonthreatening pictures, threatening pictures of real items elicited larger fMRI BOLD signal changes in medial visual cortices extending inferiorly into the temporo-occipital (TO) "what" pathways. This region elicited greater signal changes for threatening items compared to nonthreatening from both the natural-occurring and man-made stimulus supraordinate categories, demonstrating a featural component to these visual processing areas. Two additional loci of signal changes within more lateral inferior TO areas (bilateral BA18 and 19 as well as the right ventral temporal lobe) were detected for a category-feature interaction, with stronger responses to man-made (category) threatening (feature) stimuli than to natural threats. The findings are discussed in terms of visual recognition of processing efficiently or rapidly groups of items that confer an advantage for survival. Copyright © 2012 Wiley Periodicals, Inc.

  2. Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.

    PubMed

    Badgaiyan, Rajendra D

    2012-12-01

    Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.

  3. The Rise and Fall of Priming: How Visual Exposure Shapes Cortical Representations of Objects

    PubMed Central

    Zago, Laure; Fenske, Mark J.; Aminoff, Elissa; Bar, Moshe

    2006-01-01

    How does the amount of time for which we see an object influence the nature and content of its cortical representation? To address this question, we varied the duration of initial exposure to visual objects and then measured functional magnetic resonance imaging (fMRI) signal and behavioral performance during a subsequent repeated presentation of these objects. We report a novel ‘rise-and-fall’ pattern relating exposure duration and the corresponding magnitude of fMRI cortical signal. Compared with novel objects, repeated objects elicited maximal cortical response reduction when initially presented for 250 ms. Counter-intuitively, initially seeing an object for a longer duration significantly reduced the magnitude of this effect. This ‘rise-and-fall’ pattern was also evident for the corresponding behavioral priming. To account for these findings, we propose that the earlier interval of an exposure to a visual stimulus results in a fine-tuning of the cortical response, while additional exposure promotes selection of a subset of key features for continued representation. These two independent mechanisms complement each other in shaping object representations with experience. PMID:15716471

  4. Perceptual deficits of object identification: apperceptive agnosia.

    PubMed

    Milner, A David; Cavina-Pratesi, Cristiana

    2018-01-01

    It is argued here that apperceptive object agnosia (generally now known as visual form agnosia) is in reality not a kind of agnosia, but rather a form of "imperception" (to use the term coined by Hughlings Jackson). We further argue that its proximate cause is a bilateral loss (or functional loss) of the visual form processing systems embodied in the human lateral occipital cortex (area LO). According to the dual-system model of cortical visual processing elaborated by Milner and Goodale (2006), area LO constitutes a crucial component of the ventral stream, and indeed is essential for providing the figural qualities inherent in our normal visual perception of the world. According to this account, the functional loss of area LO would leave only spared visual areas within the occipito-parietal dorsal stream - dedicated to the control of visually-guided actions - potentially able to provide some aspects of visual shape processing in patients with apperceptive agnosia. We review the relevant evidence from such individuals, concentrating particularly on the well-researched patient D.F. We conclude that studies of this kind can provide useful pointers to an understanding of the processing characteristics of parietal-lobe visual mechanisms and their interactions with occipitotemporal perceptual systems in the guidance of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment.

    PubMed

    Berkes, Pietro; Orbán, Gergo; Lengyel, Máté; Fiser, József

    2011-01-07

    The brain maintains internal models of its environment to interpret sensory inputs and to prepare actions. Although behavioral studies have demonstrated that these internal models are optimally adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown. Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous neural activities to inferences and prior expectations in an internal model and predicted that they should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical activity of awake ferrets during development. Similarity between spontaneous and evoked activities increased with age and was specific to responses evoked by natural scenes. This demonstrates the progressive adaptation of internal models to the statistics of natural stimuli at the neural level.

  6. Shining a light on posterior cortical atrophy.

    PubMed

    Crutch, Sebastian J; Schott, Jonathan M; Rabinovici, Gil D; Boeve, Bradley F; Cappa, Stefano F; Dickerson, Bradford C; Dubois, Bruno; Graff-Radford, Neill R; Krolak-Salmon, Pierre; Lehmann, Manja; Mendez, Mario F; Pijnenburg, Yolande; Ryan, Natalie S; Scheltens, Philip; Shakespeare, Tim; Tang-Wai, David F; van der Flier, Wiesje M; Bain, Lisa; Carrillo, Maria C; Fox, Nick C

    2013-07-01

    Posterior cortical atrophy (PCA) is a clinicoradiologic syndrome characterized by progressive decline in visual processing skills, relatively intact memory and language in the early stages, and atrophy of posterior brain regions. Misdiagnosis of PCA is common, owing not only to its relative rarity and unusual and variable presentation, but also because patients frequently first seek the opinion of an ophthalmologist, who may note normal eye examinations by their usual tests but may not appreciate cortical brain dysfunction. Seeking to raise awareness of the disease, stimulate research, and promote collaboration, a multidisciplinary group of PCA research clinicians formed an international working party, which had its first face-to-face meeting on July 13, 2012 in Vancouver, Canada, prior to the Alzheimer's Association International Conference. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  7. Masking disrupts reentrant processing in human visual cortex.

    PubMed

    Fahrenfort, J J; Scholte, H S; Lamme, V A F

    2007-09-01

    In masking, a stimulus is rendered invisible through the presentation of a second stimulus shortly after the first. Over the years, authors have typically explained masking by postulating some early disruption process. In these feedforward-type explanations, the mask somehow "catches up" with the target stimulus, disrupting its processing either through lateral or interchannel inhibition. However, studies from recent years indicate that visual perception--and most notably visual awareness itself--may depend strongly on cortico-cortical feedback connections from higher to lower visual areas. This has led some researchers to propose that masking derives its effectiveness from selectively interrupting these reentrant processes. In this experiment, we used electroencephalogram measurements to determine what happens in the human visual cortex during detection of a texture-defined square under nonmasked (seen) and masked (unseen) conditions. Electro-encephalogram derivatives that are typically associated with reentrant processing turn out to be absent in the masked condition. Moreover, extrastriate visual areas are still activated early on by both seen and unseen stimuli, as shown by scalp surface Laplacian current source-density maps. This conclusively shows that feedforward processing is preserved, even when subject performance is at chance as determined by objective measures. From these results, we conclude that masking derives its effectiveness, at least partly, from disrupting reentrant processing, thereby interfering with the neural mechanisms of figure-ground segmentation and visual awareness itself.

  8. The role of neuroimaging in the discovery of processing stages. A review.

    PubMed

    Mulder, G; Wijers, A A; Lange, J J; Buijink, B M; Mulder, L J; Willemsen, A T; Paans, A M

    1995-11-01

    In this contribution we show how neuroimaging methods can augment behavioural methods to discover processing stages. Event Related Brain Potentials (ERPs), Brain Electrical Source Analysis (BESA) and regional changes in cerebral blood flow (rCBF) do not necessarily require behavioural responses. With the aid of rCBF we are able to discover several cortical and subcortical brain systems (processors) active in selective attention and memory search tasks. BESA describes cortical activity with high temporal resolution in terms of a limited number of neural generators within these brain systems. The combination of behavioural methods and neuroimaging provides a picture of the functional architecture of the brain. The review is organized around three processors: the Visual, Cognitive and Manual Motor Processors.

  9. Functional Magnetic Resonance Imaging to Assess the Neurobehavioral Impact of Dysphotopsia with Multifocal Intraocular Lenses.

    PubMed

    Rosa, Andreia M; Miranda, Ângela C; Patrício, Miguel; McAlinden, Colm; Silva, Fátima L; Murta, Joaquim N; Castelo-Branco, Miguel

    2017-09-01

    To investigate the association between dysphotopsia and neural responses in visual and higher-level cortical regions in patients who recently received multifocal intraocular lens (IOL) implants. Cross-sectional study. Thirty patients 3 to 4 weeks after bilateral cataract surgery with diffractive IOL implantation and 15 age- and gender-matched control subjects. Functional magnetic resonance imaging (fMRI) was performed when participants viewed low-contrast grating stimuli. A light source surrounded the stimuli in half of the runs to induce disability glare. Visual acuity, wavefront analysis, Quality of Vision (QoV) questionnaire, and psychophysical assessment were performed. Cortical activity (blood oxygen level dependent [BOLD] signal) in the primary visual cortex and in higher-level brain areas, including the attention network. When viewing low-contrast stimuli under glare, patients showed significant activation of the effort-related attention network in the early postoperative period, involving the frontal, middle frontal, parietal frontal, and postcentral gyrus (multisubject random-effects general linear model (GLM), P < 0.03). In contrast, controls showed only relative deactivation (due to lower visibility) of visual areas (occipital lobe and middle occipital gyrus, P < 0.03). Patients also had relatively stronger recruitment of cortical areas involved in learning (anterior cingulate gyrus), task planning, and solving (caudate body). Patients reporting greater symptoms induced by dysphotic symptoms showed significantly increased activity in several regions in frontoparietal circuits, as well as cingulate gyrus and caudate nucleus (q < 0.05). We found no correlation between QoV questionnaire scores and optical properties (total and higher order aberration, modulation transfer function, and Strehl ratio). This study shows the association between patient-reported subjective difficulties and fMRI outcomes, independent of optical parameters and psychophysical performance. The increased activity of cortical areas dedicated to attention (frontoparietal circuits), to learning and cognitive control (cingulate), and to task goals (caudate) likely represents the beginning of the neuroadaptation process to multifocal IOLs. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  10. Neural Mechanisms of Cortical Motion Computation Based on a Neuromorphic Sensory System

    PubMed Central

    Abdul-Kreem, Luma Issa; Neumann, Heiko

    2015-01-01

    The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina) that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields). In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells. PMID:26554589

  11. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades: Evidence from Studies of Humans

    PubMed Central

    McDowell, Jennifer E.; Dyckman, Kara A.; Austin, Benjamin; Clementz, Brett A.

    2008-01-01

    This review provides a summary of the contributions made by human functional neuroimaging studies to the understanding of neural correlates of saccadic control. The generation of simple visually-guided saccades (redirections of gaze to a visual stimulus or prosaccades) and more complex volitional saccades require similar basic neural circuitry with additional neural regions supporting requisite higher level processes. The saccadic system has been studied extensively in non-human primates (e.g. single unit recordings) and humans (e.g. lesions and neuroimaging). Considerable knowledge of this system’s functional neuroanatomy makes it useful for investigating models of cognitive control. The network involved in prosaccade generation (by definition exogenously-driven) includes subcortical (striatum, thalamus, superior colliculus, and cerebellar vermis) and cortical structures (primary visual, extrastriate, and parietal cortices, and frontal and supplementary eye fields). Activation in these regions is also observed during endogenously-driven voluntary saccades (e.g. antisaccades, ocular motor delayed response or memory saccades, predictive tracking tasks and anticipatory saccades, and saccade sequencing), all of which require complex cognitive processes like inhibition and working memory. These additional requirements are supported by changes in neural activity in basic saccade circuitry and by recruitment of additional neural regions (such as prefrontal and anterior cingulate cortices). Activity in visual cortex is modulated as a function of task demands and may predict the type of saccade to be generated, perhaps via top-down control mechanisms. Neuroimaging studies suggest two foci of activation within FEF - medial and lateral - which may correspond to volitional and reflexive demands, respectively. Future research on saccade control could usefully (i) delineate important anatomical subdivisions that underlie functional differences, (ii) evaluate functional connectivity of anatomical regions supporting saccade generation using methods such as ICA and structural equation modeling, (iii) investigate how context affects behavior and brain activity, and (iv) use multi-modal neuroimaging to maximize spatial and temporal resolution. PMID:18835656

  12. Escape from harm: linking affective vision and motor responses during active avoidance

    PubMed Central

    Keil, Andreas

    2014-01-01

    When organisms confront unpleasant objects in their natural environments, they engage in behaviors that allow them to avoid aversive outcomes. Here, we linked visual processing of threat to its behavioral consequences by including a motor response that terminated exposure to an aversive event. Dense-array steady-state visual evoked potentials were recorded in response to conditioned threat and safety signals viewed in active or passive behavioral contexts. The amplitude of neuronal responses in visual cortex increased additively, as a function of emotional value and action relevance. The gain in local cortical population activity for threat relative to safety cues persisted when aversive reinforcement was behaviorally terminated, suggesting a lingering emotionally based response amplification within the visual system. Distinct patterns of long-range neural synchrony emerged between the visual cortex and extravisual regions. Increased coupling between visual and higher-order structures was observed specifically during active perception of threat, consistent with a reorganization of neuronal populations involved in linking sensory processing to action preparation. PMID:24493849

  13. A proto-architecture for innate directionally selective visual maps.

    PubMed

    Adams, Samantha V; Harris, Chris M

    2014-01-01

    Self-organizing artificial neural networks are a popular tool for studying visual system development, in particular the cortical feature maps present in real systems that represent properties such as ocular dominance (OD), orientation-selectivity (OR) and direction selectivity (DS). They are also potentially useful in artificial systems, for example robotics, where the ability to extract and learn features from the environment in an unsupervised way is important. In this computational study we explore a DS map that is already latent in a simple artificial network. This latent selectivity arises purely from the cortical architecture without any explicit coding for DS and prior to any self-organising process facilitated by spontaneous activity or training. We find DS maps with local patchy regions that exhibit features similar to maps derived experimentally and from previous modeling studies. We explore the consequences of changes to the afferent and lateral connectivity to establish the key features of this proto-architecture that support DS.

  14. Cortical activity and children's rituals, habits and other repetitive behavior: a visual P300 study.

    PubMed

    Evans, David W; Maliken, Ashley

    2011-10-10

    This study examines the link between children's repetitive, ritualistic, behavior and cortical brain activity. Twelve typically developing children between the ages of 6 and 12 years were administered two visual P300, oddball tasks with a 32-electrode electroencephalogram (EEG) system. One of the oddball tasks was specifically designed to reflect sensitivity to asymmetry, a phenomenon common in children and in a variety of disorders involving compulsive behavior. Parents completed the Childhood Routines Inventory. Children's repetitive, compulsive-like behaviors were strongly associated with faster processing of an asymmetrical target stimulus, even when accounting for their P300 latencies on a control task. The research punctuates the continuity between observed brain-behavior links in clinical disorders such as OCD and autism spectrum disorders, and normative variants of repetitive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy

    PubMed Central

    Kaski, Diego; Yong, Keir X. X.; Paterson, Ross W.; Slattery, Catherine F.; Ryan, Natalie S.; Schott, Jonathan M.; Crutch, Sebastian J.

    2015-01-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal ‘visual dementia’ and most common atypical Alzheimer’s disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients’ (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer’s disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer’s disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer’s disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with ‘sticky fixation’. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer’s disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions whose frequency correlated significantly with generalized reductions in cortical thickness. Patients with both posterior cortical atrophy and typical Alzheimer’s disease showed lower gain in smooth pursuit compared to controls. The current study establishes that eye movement abnormalities are near-ubiquitous in posterior cortical atrophy, and highlights multiple aspects of saccadic performance which distinguish posterior cortical atrophy from typical Alzheimer’s disease. We suggest the posterior cortical atrophy oculomotor profile (e.g. exacerbation of the saccadic gap/overlap effect, preserved saccadic velocity) reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. This may indicate greater impairment of identification of oculomotor targets rather than generation of oculomotor movements. The results highlight the critical role of spatial attention and object identification but also precise stimulus localization in explaining the complex real world perception deficits observed in posterior cortical atrophy and many other patients with dementia-related visual impairment. PMID:25895507

  16. Stimulus Dependence of Correlated Variability across Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. The observed pattern of cross-area correlations was predicted by a simple normalization model. Our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. PMID:27413163

  17. Functional Connectivity in Frequency-Tagged Cortical Networks During Active Harm Avoidance

    PubMed Central

    Miskovic, Vladimir; Príncipe, José C.; Keil, Andreas

    2015-01-01

    Abstract Many behavioral and cognitive processes are grounded in widespread and dynamic communication between brain regions. Thus, the quantification of functional connectivity with high temporal resolution is highly desirable for capturing in vivo brain function. However, many of the commonly used measures of functional connectivity capture only linear signal dependence and are based entirely on relatively simple quantitative measures such as mean and variance. In this study, the authors used a recently developed algorithm, the generalized measure of association (GMA), to quantify dynamic changes in cortical connectivity using steady-state visual evoked potentials (ssVEPs) measured in the context of a conditioned behavioral avoidance task. GMA uses a nonparametric estimator of statistical dependence based on ranks that are efficient and capable of providing temporal precision roughly corresponding to the timing of cognitive acts (∼100–200 msec). Participants viewed simple gratings predicting the presence/absence of an aversive loud noise, co-occurring with peripheral cues indicating whether the loud noise could be avoided by means of a key press (active) or not (passive). For active compared with passive trials, heightened connectivity between visual and central areas was observed in time segments preceding and surrounding the avoidance cue. Viewing of the threat stimuli also led to greater initial connectivity between occipital and central regions, followed by heightened local coupling among visual regions surrounding the motor response. Local neural coupling within extended visual regions was sustained throughout major parts of the viewing epoch. These findings are discussed in a framework of flexible synchronization between cortical networks as a function of experience and active sensorimotor coupling. PMID:25557925

  18. Prefrontal contributions to visual selective attention.

    PubMed

    Squire, Ryan F; Noudoost, Behrad; Schafer, Robert J; Moore, Tirin

    2013-07-08

    The faculty of attention endows us with the capacity to process important sensory information selectively while disregarding information that is potentially distracting. Much of our understanding of the neural circuitry underlying this fundamental cognitive function comes from neurophysiological studies within the visual modality. Past evidence suggests that a principal function of the prefrontal cortex (PFC) is selective attention and that this function involves the modulation of sensory signals within posterior cortices. In this review, we discuss recent progress in identifying the specific prefrontal circuits controlling visual attention and its neural correlates within the primate visual system. In addition, we examine the persisting challenge of precisely defining how behavior should be affected when attentional function is lost.

  19. Information fusion via isocortex-based Area 37 modeling

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    A simplified model of information processing in the brain can be constructed using primary sensory input from two modalities (auditory and visual) and recurrent connections to the limbic subsystem. Information fusion would then occur in Area 37 of the temporal cortex. The creation of meta concepts from the low order primary inputs is managed by models of isocortex processing. Isocortex algorithms are used to model parietal (auditory), occipital (visual), temporal (polymodal fusion) cortex and the limbic system. Each of these four modules is constructed out of five cortical stacks in which each stack consists of three vertically oriented six layer isocortex models. The input to output training of each cortical model uses the OCOS (on center - off surround) and FFP (folded feedback pathway) circuitry of (Grossberg, 1) which is inherently a recurrent network type of learning characterized by the identification of perceptual groups. Models of this sort are thus closely related to cognitive models as it is difficult to divorce the sensory processing subsystems from the higher level processing in the associative cortex. The overall software architecture presented is biologically based and is presented as a potential architectural prototype for the development of novel sensory fusion strategies. The algorithms are motivated to some degree by specific data from projects on musical composition and autonomous fine art painting programs, but only in the sense that these projects use two specific types of auditory and visual cortex data. Hence, the architectures are presented for an artificial information processing system which utilizes two disparate sensory sources. The exact nature of the two primary sensory input streams is irrelevant.

  20. Strain differences of the effect of enucleation and anophthalmia on the size and growth of sensory cortices in mice.

    PubMed

    Massé, Ian O; Guillemette, Sonia; Laramée, Marie-Eve; Bronchti, Gilles; Boire, Denis

    2014-11-07

    Anophthalmia is a condition in which the eye does not develop from the early embryonic period. Early blindness induces cross-modal plastic modifications in the brain such as auditory and haptic activations of the visual cortex and also leads to a greater solicitation of the somatosensory and auditory cortices. The visual cortex is activated by auditory stimuli in anophthalmic mice and activity is known to alter the growth pattern of the cerebral cortex. The size of the primary visual, auditory and somatosensory cortices and of the corresponding specific sensory thalamic nuclei were measured in intact and enucleated C57Bl/6J mice and in ZRDCT anophthalmic mice (ZRDCT/An) to evaluate the contribution of cross-modal activity on the growth of the cerebral cortex. In addition, the size of these structures were compared in intact, enucleated and anophthalmic fourth generation backcrossed hybrid C57Bl/6J×ZRDCT/An mice to parse out the effects of mouse strains and of the different visual deprivations. The visual cortex was smaller in the anophthalmic ZRDCT/An than in the intact and enucleated C57Bl/6J mice. Also the auditory cortex was larger and the somatosensory cortex smaller in the ZRDCT/An than in the intact and enucleated C57Bl/6J mice. The size differences of sensory cortices between the enucleated and anophthalmic mice were no longer present in the hybrid mice, showing specific genetic differences between C57Bl/6J and ZRDCT mice. The post natal size increase of the visual cortex was less in the enucleated than in the anophthalmic and intact hybrid mice. This suggests differences in the activity of the visual cortex between enucleated and anophthalmic mice and that early in-utero spontaneous neural activity in the visual system contributes to the shaping of functional properties of cortical networks. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Heightened eating drive and visual food stimuli attenuate central nociceptive processing

    PubMed Central

    Li, Xiaoyun; Fallon, Nicholas B.; Giesbrecht, Timo; Thomas, Anna; Harrold, Joanne A.; Halford, Jason C. G.; Stancak, Andrej

    2014-01-01

    Hunger and pain are basic drives that compete for a behavioral response when experienced together. To investigate the cortical processes underlying hunger-pain interactions, we manipulated participants' hunger and presented photographs of appetizing food or inedible objects in combination with painful laser stimuli. Fourteen healthy participants completed two EEG sessions: one after an overnight fast, the other following a large breakfast. Spatio-temporal patterns of cortical activation underlying the hunger-pain competition were explored with 128-channel EEG recordings and source dipole analysis of laser-evoked potentials (LEPs). We found that initial pain ratings were temporarily reduced when participants were hungry compared with fed. Source activity in parahippocampal gyrus was weaker when participants were hungry, and activations of operculo-insular cortex, anterior cingulate cortex, parahippocampal gyrus, and cerebellum were smaller in the context of appetitive food photographs than in that of inedible object photographs. Cortical processing of noxious stimuli in pain-related brain structures is reduced and pain temporarily attenuated when people are hungry or passively viewing food photographs, suggesting a possible interaction between the opposing motivational forces of the eating drive and pain. PMID:25475348

  2. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review

    PubMed Central

    Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa

    2018-01-01

    Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087

  3. Characterizing the roles of alpha and theta oscillations in multisensory attention.

    PubMed

    Keller, Arielle S; Payne, Lisa; Sekuler, Robert

    2017-05-01

    Cortical alpha oscillations (8-13Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4-7Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta's association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characterizing the roles of alpha and theta oscillations in multisensory attention

    PubMed Central

    Keller, Arielle S.; Payne, Lisa; Sekuler, Robert

    2017-01-01

    Cortical alpha oscillations (8–13 Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4–7 Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta’s association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. PMID:28259771

  5. Cortical dipole imaging using truncated total least squares considering transfer matrix error.

    PubMed

    Hori, Junichi; Takeuchi, Kosuke

    2013-01-01

    Cortical dipole imaging has been proposed as a method to visualize electroencephalogram in high spatial resolution. We investigated the inverse technique of cortical dipole imaging using a truncated total least squares (TTLS). The TTLS is a regularization technique to reduce the influence from both the measurement noise and the transfer matrix error caused by the head model distortion. The estimation of the regularization parameter was also investigated based on L-curve. The computer simulation suggested that the estimation accuracy was improved by the TTLS compared with Tikhonov regularization. The proposed method was applied to human experimental data of visual evoked potentials. We confirmed the TTLS provided the high spatial resolution of cortical dipole imaging.

  6. Altered white matter in early visual pathways of humans with amblyopia.

    PubMed

    Allen, Brian; Spiegel, Daniel P; Thompson, Benjamin; Pestilli, Franco; Rokers, Bas

    2015-09-01

    Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is known about the impact of amblyopia on the white matter within the visual system. We studied the properties of six major visual white-matter pathways in a group of adults with amblyopia (n=10) and matched controls (n=10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings suggest that amblyopia may systematically alter the white matter properties of early visual pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Neural activation patterns and connectivity in visual attention during Number and Non-number processing: An ERP study using the Ishihara pseudoisochromatic plates.

    PubMed

    Al-Marri, Faraj; Reza, Faruque; Begum, Tahamina; Hitam, Wan Hazabbah Wan; Jin, Goh Khean; Xiang, Jing

    2017-10-25

    Visual cognitive function is important to build up executive function in daily life. Perception of visual Number form (e.g., Arabic digit) and numerosity (magnitude of the Number) is of interest to cognitive neuroscientists. Neural correlates and the functional measurement of Number representations are complex occurrences when their semantic categories are assimilated with other concepts of shape and colour. Colour perception can be processed further to modulate visual cognition. The Ishihara pseudoisochromatic plates are one of the best and most common screening tools for basic red-green colour vision testing. However, there is a lack of study of visual cognitive function assessment using these pseudoisochromatic plates. We recruited 25 healthy normal trichromat volunteers and extended these studies using a 128-sensor net to record event-related EEG. Subjects were asked to respond by pressing Numbered buttons when they saw the Number and Non-number plates of the Ishihara colour vision test. Amplitudes and latencies of N100 and P300 event related potential (ERP) components were analysed from 19 electrode sites in the international 10-20 system. A brain topographic map, cortical activation patterns and Granger causation (effective connectivity) were analysed from 128 electrode sites. No major significant differences between N100 ERP components in either stimulus indicate early selective attention processing was similar for Number and Non-number plate stimuli, but Non-number plate stimuli evoked significantly higher amplitudes, longer latencies of the P300 ERP component with a slower reaction time compared to Number plate stimuli imply the allocation of attentional load was more in Non-number plate processing. A different pattern of asymmetric scalp voltage map was noticed for P300 components with a higher intensity in the left hemisphere for Number plate tasks and higher intensity in the right hemisphere for Non-number plate tasks. Asymmetric cortical activation and connectivity patterns revealed that Number recognition occurred in the occipital and left frontal areas where as the consequence was limited to the occipital area during the Non-number plate processing. Finally, the results displayed that the visual recognition of Numbers dissociates from the recognition of Non-numbers at the level of defined neural networks. Number recognition was not only a process of visual perception and attention, but it was also related to a higher level of cognitive function, that of language.

  8. Ganglion Cell Loss and Age-Related Visual Loss: A Cortical Pooling Analysis

    PubMed Central

    SCHMIDT, LAURA A.; LY-SCHROEDER, EMILY; SWANSON, WILLIAM H.

    2006-01-01

    Purpose To evaluate the ability of the cortical pooling model to predict the effects of random, mild ganglion cell loss, we compared the predictions of the model with the age-related loss and variability in achromatic and chromatic contrast sensitivity. Methods The relative sensitivity to small (0.5°) and large (3.0°) stimuli was compared in older (mean = 67 years, n = 27) and younger (mean = 23 years, n = 32) adults. Contrast sensitivity for modulations along the luminance, equiluminant L-cone, and equiluminant S-cone axes was assessed at the fovea and at four peripheral locations (12°). Results When the stimuli were large, threshold measurements obtained from all participants were reliable and well within the range of modulations along the chromatic axes that could be produced by the phosphors of the CRT. For the large stimuli, neither long- nor short-term variability increased as a function of age. Increasing the size of the stimulus did not decrease the magnitude of the age-related losses when the stimulus was chromatic, and visual losses observed with large chromatic stimuli were not different from those obtained with small achromatic stimuli. Moreover, chromatic contrast sensitivity assessments identified significant visual losses in four individuals who were not identified by achromatic contrast sensitivity assessments and only missed identifying one individual with significant losses in achromatic contrast sensitivity. Conclusions The declines in achromatic and chromatic sensitivity as a function of age (0.4 – 0.7 dB per decade) were similar to those obtained in previous studies of achromatic and chromatic perimetry and are consistent with the loss of retinal ganglion cells reported in histologic studies. The results of this study are consistent with the predictions the cortical pooling model makes for both variability and contrast sensitivity. These findings emphasize that selective visual impairments do not necessarily reflect preferential damage to a single ganglion cell class and that it is important to include the influence of higher cortical processing when quantifying the relation between ganglion cells and visual function. PMID:16840870

  9. Musical expertise is related to altered functional connectivity during audiovisual integration

    PubMed Central

    Paraskevopoulos, Evangelos; Kraneburg, Anja; Herholz, Sibylle Cornelia; Bamidis, Panagiotis D.; Pantev, Christo

    2015-01-01

    The present study investigated the cortical large-scale functional network underpinning audiovisual integration via magnetoencephalographic recordings. The reorganization of this network related to long-term musical training was investigated by comparing musicians to nonmusicians. Connectivity was calculated on the basis of the estimated mutual information of the sources’ activity, and the corresponding networks were statistically compared. Nonmusicians’ results indicated that the cortical network associated with audiovisual integration supports visuospatial processing and attentional shifting, whereas a sparser network, related to spatial awareness supports the identification of audiovisual incongruences. In contrast, musicians’ results showed enhanced connectivity in regions related to the identification of auditory pattern violations. Hence, nonmusicians rely on the processing of visual clues for the integration of audiovisual information, whereas musicians rely mostly on the corresponding auditory information. The large-scale cortical network underpinning multisensory integration is reorganized due to expertise in a cognitive domain that largely involves audiovisual integration, indicating long-term training-related neuroplasticity. PMID:26371305

  10. Why do parallel cortical systems exist for the perception of static form and moving form?

    PubMed

    Grossberg, S

    1991-02-01

    This article analyzes computational properties that clarify why the parallel cortical systems V1----V2, V1----MT, and V1----V2----MT exist for the perceptual processing of static visual forms and moving visual forms. The article describes a symmetry principle, called FM symmetry, that is predicted to govern the development of these parallel cortical systems by computing all possible ways of symmetrically gating sustained cells with transient cells and organizing these sustained-transient cells into opponent pairs of on-cells and off-cells whose output signals are insensitive to direction of contrast. This symmetric organization explains how the static form system (static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast and insensitive to direction of motion, whereas the motion form system (motion BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast but sensitive to direction of motion. FM symmetry clarifies why the geometries of static and motion form perception differ--for example, why the opposite orientation of vertical is horizontal (90 degrees), but the opposite direction of up is down (180 degrees). Opposite orientations and directions are embedded in gated dipole opponent processes that are capable of antagonistic rebound. Negative afterimages, such as the MacKay and waterfall illusions, are hereby explained as are aftereffects of long-range apparent motion. These antagonistic rebounds help to control a dynamic balance between complementary perceptual states of resonance and reset. Resonance cooperatively links features into emergent boundary segmentations via positive feedback in a CC loop, and reset terminates a resonance when the image changes, thereby preventing massive smearing of percepts. These complementary preattentive states of resonance and reset are related to analogous states that govern attentive feature integration, learning, and memory search in adaptive resonance theory. The mechanism used in the V1----MT system to generate a wave of apparent motion between discrete flashes may also be used in other cortical systems to generate spatial shifts of attention. The theory suggests how the V1----V2----MT cortical stream helps to compute moving form in depth and how long-range apparent motion of illusory contours occurs. These results collectively argue against vision theories that espouse independent processing modules. Instead, specialized subsystems interact to overcome computational uncertainties and complementary deficiencies, to cooperatively bind features into context-sensitive resonances, and to realize symmetry principles that are predicted to govern the development of the visual cortex.

  11. Functional significance of the emotion-related late positive potential

    PubMed Central

    Brown, Stephen B. R. E.; van Steenbergen, Henk; Band, Guido P. H.; de Rover, Mischa; Nieuwenhuis, Sander

    2012-01-01

    The late positive potential (LPP) is an event-related potential (ERP) component over visual cortical areas that is modulated by the emotional intensity of a stimulus. However, the functional significance of this neural modulation remains elusive. We conducted two experiments in which we studied the relation between LPP amplitude, subsequent perceptual sensitivity to a non-emotional stimulus (Experiment 1) and visual cortical excitability, as reflected by P1/N1 components evoked by this stimulus (Experiment 2). During the LPP modulation elicited by unpleasant stimuli, perceptual sensitivity was not affected. In contrast, we found some evidence for a decreased N1 amplitude during the LPP modulation, a decreased P1 amplitude on trials with a relatively large LPP, and consistent negative (but non-significant) across-subject correlations between the magnitudes of the LPP modulation and corresponding changes in d-prime or P1/N1 amplitude. The results provide preliminary evidence that the LPP reflects a global inhibition of activity in visual cortex, resulting in the selective survival of activity associated with the processing of the emotional stimulus. PMID:22375117

  12. GABAergic Inhibition in Visual Cortical Plasticity

    PubMed Central

    Sale, Alessandro; Berardi, Nicoletta; Spolidoro, Maria; Baroncelli, Laura; Maffei, Lamberto

    2010-01-01

    Experience is required for the shaping and refinement of developing neural circuits during well defined periods of early postnatal development called critical periods. Many studies in the visual cortex have shown that intracortical GABAergic circuitry plays a crucial role in defining the time course of the critical period for ocular dominance plasticity. With the end of the critical period, neural plasticity wanes and recovery from the effects of visual defects on visual acuity (amblyopia) or binocularity is much reduced or absent. Recent results pointed out that intracortical inhibition is a fundamental limiting factor for adult cortical plasticity and that its reduction by means of different pharmacological and environmental strategies makes it possible to greatly enhance plasticity in the adult visual cortex, promoting ocular dominance plasticity and recovery from amblyopia. Here we focus on the role of intracortical GABAergic circuitry in controlling both developmental and adult cortical plasticity. We shall also discuss the potential clinical application of these findings to neurological disorders in which synaptic plasticity is compromised because of excessive intracortical inhibition. PMID:20407586

  13. Massive cortical reorganization in sighted Braille readers

    PubMed Central

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-01-01

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills. DOI: http://dx.doi.org/10.7554/eLife.10762.001 PMID:26976813

  14. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights.

    PubMed

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-02-25

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.

  15. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence.

    PubMed Central

    Hillyard, S A; Vogel, E K; Luck, S J

    1998-01-01

    Both physiological and behavioral studies have suggested that stimulus-driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event-related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual-spatial attention. Combined event-related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs). PMID:9770220

  16. The Development of Cortical Sensitivity to Visual Word Forms

    ERIC Educational Resources Information Center

    Ben-Shachar, Michal; Dougherty, Robert F.; Deutsch, Gayle K.; Wandell, Brian A.

    2011-01-01

    The ability to extract visual word forms quickly and efficiently is essential for using reading as a tool for learning. We describe the first longitudinal fMRI study to chart individual changes in cortical sensitivity to written words as reading develops. We conducted four annual measurements of brain function and reading skills in a heterogeneous…

  17. Outcomes and Opportunities: A Study of Children with Cortical Visual Impairment

    ERIC Educational Resources Information Center

    Roman Lantzy, Christine A.; Lantzy, Alan

    2010-01-01

    Pediatric View is an evaluation project that began in 1999 and is located at Western Pennsylvania Hospital in Pittsburgh. The purpose of Pediatric View is to provide developmental and functional vision evaluations to children who have ocular or cortical visual impairments. The evaluations are generally two hours in length, and a detailed report…

  18. Audio-visual synchrony and spatial attention enhance processing of dynamic visual stimulation independently and in parallel: A frequency-tagging study.

    PubMed

    Covic, Amra; Keitel, Christian; Porcu, Emanuele; Schröger, Erich; Müller, Matthias M

    2017-11-01

    The neural processing of a visual stimulus can be facilitated by attending to its position or by a co-occurring auditory tone. Using frequency-tagging, we investigated whether facilitation by spatial attention and audio-visual synchrony rely on similar neural processes. Participants attended to one of two flickering Gabor patches (14.17 and 17 Hz) located in opposite lower visual fields. Gabor patches further "pulsed" (i.e. showed smooth spatial frequency variations) at distinct rates (3.14 and 3.63 Hz). Frequency-modulating an auditory stimulus at the pulse-rate of one of the visual stimuli established audio-visual synchrony. Flicker and pulsed stimulation elicited stimulus-locked rhythmic electrophysiological brain responses that allowed tracking the neural processing of simultaneously presented Gabor patches. These steady-state responses (SSRs) were quantified in the spectral domain to examine visual stimulus processing under conditions of synchronous vs. asynchronous tone presentation and when respective stimulus positions were attended vs. unattended. Strikingly, unique patterns of effects on pulse- and flicker driven SSRs indicated that spatial attention and audiovisual synchrony facilitated early visual processing in parallel and via different cortical processes. We found attention effects to resemble the classical top-down gain effect facilitating both, flicker and pulse-driven SSRs. Audio-visual synchrony, in turn, only amplified synchrony-producing stimulus aspects (i.e. pulse-driven SSRs) possibly highlighting the role of temporally co-occurring sights and sounds in bottom-up multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Changes in brain morphology in albinism reflect reduced visual acuity.

    PubMed

    Bridge, Holly; von dem Hagen, Elisabeth A H; Davies, George; Chambers, Claire; Gouws, Andre; Hoffmann, Michael; Morland, Antony B

    2014-07-01

    Albinism, in humans and many animal species, has a major impact on the visual system, leading to reduced acuity, lack of binocular function and nystagmus. In addition to the lack of a foveal pit, there is a disruption to the routing of the nerve fibers crossing at the optic chiasm, resulting in excessive crossing of fibers to the contralateral hemisphere. However, very little is known about the effect of this misrouting on the structure of the post-chiasmatic visual pathway, and the occipital lobes in particular. Whole-brain analyses of cortical thickness in a large cohort of subjects with albinism showed an increase in cortical thickness, relative to control subjects, particularly in posterior V1, corresponding to the foveal representation. Furthermore, mean cortical thickness across entire V1 was significantly greater in these subjects compared to controls and negatively correlated with visual acuity in albinism. Additionally, the group with albinism showed decreased gyrification in the left ventral occipital lobe. While the increase in cortical thickness in V1, also found in congenitally blind subjects, has been interpreted to reflect a lack of pruning, the decreased gyrification in the ventral extrastriate cortex may reflect the reduced input to the foveal regions of the ventral visual stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Cortical maturation and myelination in healthy toddlers and young children.

    PubMed

    Deoni, Sean C L; Dean, Douglas C; Remer, Justin; Dirks, Holly; O'Muircheartaigh, Jonathan

    2015-07-15

    The maturation of cortical structures, and the establishment of their connectivity, are critical neurodevelopmental processes that support and enable cognitive and behavioral functioning. Measures of cortical development, including thickness, curvature, and gyrification have been extensively studied in older children, adolescents, and adults, revealing regional associations with cognitive performance, and alterations with disease or pathology. In addition to these gross morphometric measures, increased attention has recently focused on quantifying more specific indices of cortical structure, in particular intracortical myelination, and their relationship to cognitive skills, including IQ, executive functioning, and language performance. Here we analyze the progression of cortical myelination across early childhood, from 1 to 6 years of age, in vivo for the first time. Using two quantitative imaging techniques, namely T1 relaxation time and myelin water fraction (MWF) imaging, we characterize myelination throughout the cortex, examine developmental trends, and investigate hemispheric and gender-based differences. We present a pattern of cortical myelination that broadly mirrors established histological timelines, with somatosensory, motor and visual cortices myelinating by 1 year of age; and frontal and temporal cortices exhibiting more protracted myelination. Developmental trajectories, defined by logarithmic functions (increasing for MWF, decreasing for T1), were characterized for each of 68 cortical regions. Comparisons of trajectories between hemispheres and gender revealed no significant differences. Results illustrate the ability to quantitatively map cortical myelination throughout early neurodevelopment, and may provide an important new tool for investigating typical and atypical development. Copyright © 2015. Published by Elsevier Inc.

Top