Pomplun, M; Reingold, E M; Shen, J
2001-09-01
In three experiments, participants' visual span was measured in a comparative visual search task in which they had to detect a local match or mismatch between two displays presented side by side. Experiment 1 manipulated the difficulty of the comparative visual search task by contrasting a mismatch detection task with a substantially more difficult match detection task. In Experiment 2, participants were tested in a single-task condition involving only the visual task and a dual-task condition in which they concurrently performed an auditory task. Finally, in Experiment 3, participants performed two dual-task conditions, which differed in the difficulty of the concurrent auditory task. Both the comparative search task difficulty (Experiment 1) and the divided attention manipulation (Experiments 2 and 3) produced strong effects on visual span size.
Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location
Zachariou, Valentinos; Klatzky, Roberta; Behrmann, Marlene
2017-01-01
Growing evidence suggests that the functional specialization of the two cortical visual pathways may not be as distinct as originally proposed. Here, we explore possible contributions of the dorsal “where/how” visual stream to shape perception and, conversely, contributions of the ventral “what” visual stream to location perception in human adults. Participants performed a shape detection task and a location detection task while undergoing fMRI. For shape detection, comparable BOLD activation in the ventral and dorsal visual streams was observed, and the magnitude of this activation was correlated with behavioral performance. For location detection, cortical activation was significantly stronger in the dorsal than ventral visual pathway and did not correlate with the behavioral outcome. This asymmetry in cortical profile across tasks is particularly noteworthy given that the visual input was identical and that the tasks were matched for difficulty in performance. We confirmed the asymmetry in a subsequent psychophysical experiment in which participants detected changes in either object location or shape, while ignoring the other, task-irrelevant dimension. Detection of a location change was slowed by an irrelevant shape change matched for difficulty, but the reverse did not hold. We conclude that both ventral and dorsal visual streams contribute to shape perception, but that location processing appears to be essentially a function of the dorsal visual pathway. PMID:24001005
Mental workload while driving: effects on visual search, discrimination, and decision making.
Recarte, Miguel A; Nunes, Luis M
2003-06-01
The effects of mental workload on visual search and decision making were studied in real traffic conditions with 12 participants who drove an instrumented car. Mental workload was manipulated by having participants perform several mental tasks while driving. A simultaneous visual-detection and discrimination test was used as performance criteria. Mental tasks produced spatial gaze concentration and visual-detection impairment, although no tunnel vision occurred. According to ocular behavior analysis, this impairment was due to late detection and poor identification more than to response selection. Verbal acquisition tasks were innocuous compared with production tasks, and complex conversations, whether by phone or with a passenger, are dangerous for road safety.
Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.
2012-01-01
Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933
Effects of visual attention on chromatic and achromatic detection sensitivities.
Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko
2014-05-01
Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.
The Comparison of Visual Working Memory Representations with Perceptual Inputs
Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew
2008-01-01
The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. This study tests the hypothesis that differences between the memory of a stimulus array and the perception of a new array are detected in a manner that is analogous to the detection of simple features in visual search tasks. That is, just as the presence of a task-relevant feature in visual search can be detected in parallel, triggering a rapid shift of attention to the object containing the feature, the presence of a memory-percept difference along a task-relevant dimension can be detected in parallel, triggering a rapid shift of attention to the changed object. Supporting evidence was obtained in a series of experiments that examined manual reaction times, saccadic reaction times, and event-related potential latencies. However, these experiments also demonstrated that a slow, limited-capacity process must occur before the observer can make a manual change-detection response. PMID:19653755
Visual short-term memory load reduces retinotopic cortex response to contrast.
Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli
2012-11-01
Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.
Beyond the real world: attention debates in auditory mismatch negativity.
Chung, Kyungmi; Park, Jin Young
2018-04-11
The aim of this study was to address the potential for the auditory mismatch negativity (aMMN) to be used in applied event-related potential (ERP) studies by determining whether the aMMN would be an attention-dependent ERP component and could be differently modulated across visual tasks or virtual reality (VR) stimuli with different visual properties and visual complexity levels. A total of 80 participants, aged 19-36 years, were assigned to either a reading-task (21 men and 19 women) or a VR-task (22 men and 18 women) group. Two visual-task groups of healthy young adults were matched in age, sex, and handedness. All participants were instructed to focus only on the given visual tasks and ignore auditory change detection. While participants in the reading-task group read text slides, those in the VR-task group viewed three 360° VR videos in a random order and rated how visually complex the given virtual environment was immediately after each VR video ended. Inconsistent with the finding of a partial significant difference in perceived visual complexity in terms of brightness of virtual environments, both visual properties of distance and brightness showed no significant differences in the modulation of aMMN amplitudes. A further analysis was carried out to compare elicited aMMN amplitudes of a typical MMN task and an applied VR task. No significant difference in the aMMN amplitudes was found across the two groups who completed visual tasks with different visual-task demands. In conclusion, the aMMN is a reliable ERP marker of preattentive cognitive processing for auditory deviance detection.
Scene and human face recognition in the central vision of patients with glaucoma
Aptel, Florent; Attye, Arnaud; Guyader, Nathalie; Boucart, Muriel; Chiquet, Christophe; Peyrin, Carole
2018-01-01
Primary open-angle glaucoma (POAG) firstly mainly affects peripheral vision. Current behavioral studies support the idea that visual defects of patients with POAG extend into parts of the central visual field classified as normal by static automated perimetry analysis. This is particularly true for visual tasks involving processes of a higher level than mere detection. The purpose of this study was to assess visual abilities of POAG patients in central vision. Patients were assigned to two groups following a visual field examination (Humphrey 24–2 SITA-Standard test). Patients with both peripheral and central defects and patients with peripheral but no central defect, as well as age-matched controls, participated in the experiment. All participants had to perform two visual tasks where low-contrast stimuli were presented in the central 6° of the visual field. A categorization task of scene images and human face images assessed high-level visual recognition abilities. In contrast, a detection task using the same stimuli assessed low-level visual function. The difference in performance between detection and categorization revealed the cost of high-level visual processing. Compared to controls, patients with a central visual defect showed a deficit in both detection and categorization of all low-contrast images. This is consistent with the abnormal retinal sensitivity as assessed by perimetry. However, the deficit was greater for categorization than detection. Patients without a central defect showed similar performances to the controls concerning the detection and categorization of faces. However, while the detection of scene images was well-maintained, these patients showed a deficit in their categorization. This suggests that the simple loss of peripheral vision could be detrimental to scene recognition, even when the information is displayed in central vision. This study revealed subtle defects in the central visual field of POAG patients that cannot be predicted by static automated perimetry assessment using Humphrey 24–2 SITA-Standard test. PMID:29481572
Dissociable Roles of Different Types of Working Memory Load in Visual Detection
Konstantinou, Nikos; Lavie, Nilli
2013-01-01
We contrasted the effects of different types of working memory (WM) load on detection. Considering the sensory-recruitment hypothesis of visual short-term memory (VSTM) within load theory (e.g., Lavie, 2010) led us to predict that VSTM load would reduce visual-representation capacity, thus leading to reduced detection sensitivity during maintenance, whereas load on WM cognitive control processes would reduce priority-based control, thus leading to enhanced detection sensitivity for a low-priority stimulus. During the retention interval of a WM task, participants performed a visual-search task while also asked to detect a masked stimulus in the periphery. Loading WM cognitive control processes (with the demand to maintain a random digit order [vs. fixed in conditions of low load]) led to enhanced detection sensitivity. In contrast, loading VSTM (with the demand to maintain the color and positions of six squares [vs. one in conditions of low load]) reduced detection sensitivity, an effect comparable with that found for manipulating perceptual load in the search task. The results confirmed our predictions and established a new functional dissociation between the roles of different types of WM load in the fundamental visual perception process of detection. PMID:23713796
The aliphatic hydrocarbon perchloroethyelene (PCE) has been associated with neurobehavioral dysfunction including reduced attention in humans. The current study sought to assess the effects of inhaled PCE on sustained attention in rats performing a visual signal detection task (S...
Visual Distractors Disrupt Audiovisual Integration Regardless of Stimulus Complexity
Gibney, Kyla D.; Aligbe, Enimielen; Eggleston, Brady A.; Nunes, Sarah R.; Kerkhoff, Willa G.; Dean, Cassandra L.; Kwakye, Leslie D.
2017-01-01
The intricate relationship between multisensory integration and attention has been extensively researched in the multisensory field; however, the necessity of attention for the binding of multisensory stimuli remains contested. In the current study, we investigated whether diverting attention from well-known multisensory tasks would disrupt integration and whether the complexity of the stimulus and task modulated this interaction. A secondary objective of this study was to investigate individual differences in the interaction of attention and multisensory integration. Participants completed a simple audiovisual speeded detection task and McGurk task under various perceptual load conditions: no load (multisensory task while visual distractors present), low load (multisensory task while detecting the presence of a yellow letter in the visual distractors), and high load (multisensory task while detecting the presence of a number in the visual distractors). Consistent with prior studies, we found that increased perceptual load led to decreased reports of the McGurk illusion, thus confirming the necessity of attention for the integration of speech stimuli. Although increased perceptual load led to longer response times for all stimuli in the speeded detection task, participants responded faster on multisensory trials than unisensory trials. However, the increase in multisensory response times violated the race model for no and low perceptual load conditions only. Additionally, a geometric measure of Miller’s inequality showed a decrease in multisensory integration for the speeded detection task with increasing perceptual load. Surprisingly, we found diverging changes in multisensory integration with increasing load for participants who did not show integration for the no load condition: no changes in integration for the McGurk task with increasing load but increases in integration for the detection task. The results of this study indicate that attention plays a crucial role in multisensory integration for both highly complex and simple multisensory tasks and that attention may interact differently with multisensory processing in individuals who do not strongly integrate multisensory information. PMID:28163675
Visual Distractors Disrupt Audiovisual Integration Regardless of Stimulus Complexity.
Gibney, Kyla D; Aligbe, Enimielen; Eggleston, Brady A; Nunes, Sarah R; Kerkhoff, Willa G; Dean, Cassandra L; Kwakye, Leslie D
2017-01-01
The intricate relationship between multisensory integration and attention has been extensively researched in the multisensory field; however, the necessity of attention for the binding of multisensory stimuli remains contested. In the current study, we investigated whether diverting attention from well-known multisensory tasks would disrupt integration and whether the complexity of the stimulus and task modulated this interaction. A secondary objective of this study was to investigate individual differences in the interaction of attention and multisensory integration. Participants completed a simple audiovisual speeded detection task and McGurk task under various perceptual load conditions: no load (multisensory task while visual distractors present), low load (multisensory task while detecting the presence of a yellow letter in the visual distractors), and high load (multisensory task while detecting the presence of a number in the visual distractors). Consistent with prior studies, we found that increased perceptual load led to decreased reports of the McGurk illusion, thus confirming the necessity of attention for the integration of speech stimuli. Although increased perceptual load led to longer response times for all stimuli in the speeded detection task, participants responded faster on multisensory trials than unisensory trials. However, the increase in multisensory response times violated the race model for no and low perceptual load conditions only. Additionally, a geometric measure of Miller's inequality showed a decrease in multisensory integration for the speeded detection task with increasing perceptual load. Surprisingly, we found diverging changes in multisensory integration with increasing load for participants who did not show integration for the no load condition: no changes in integration for the McGurk task with increasing load but increases in integration for the detection task. The results of this study indicate that attention plays a crucial role in multisensory integration for both highly complex and simple multisensory tasks and that attention may interact differently with multisensory processing in individuals who do not strongly integrate multisensory information.
Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.
Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe
2018-06-02
This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.
Lin, Po-Han; Luck, Steven J.
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556
Lin, Po-Han; Luck, Steven J
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.
The role of extra-foveal processing in 3D imaging
NASA Astrophysics Data System (ADS)
Eckstein, Miguel P.; Lago, Miguel A.; Abbey, Craig K.
2017-03-01
The field of medical image quality has relied on the assumption that metrics of image quality for simple visual detection tasks are a reliable proxy for the more clinically realistic visual search tasks. Rank order of signal detectability across conditions often generalizes from detection to search tasks. Here, we argue that search in 3D images represents a paradigm shift in medical imaging: radiologists typically cannot exhaustively scrutinize all regions of interest with the high acuity fovea requiring detection of signals with extra-foveal areas (visual periphery) of the human retina. We hypothesize that extra-foveal processing can alter the detectability of certain types of signals in medical images with important implications for search in 3D medical images. We compare visual search of two different types of signals in 2D vs. 3D images. We show that a small microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D search, but its detectability largely decreases (relative to the larger signal) in the 3D search task. Utilizing measurements of observer detectability as a function retinal eccentricity and observer eye fixations we can predict the pattern of results in the 2D and 3D search studies. Our findings: 1) suggest that observer performance findings with 2D search might not always generalize to 3D search; 2) motivate the development of a new family of model observers that take into account the inhomogeneous visual processing across the retina (foveated model observers).
Different effects of executive and visuospatial working memory on visual consciousness.
De Loof, Esther; Poppe, Louise; Cleeremans, Axel; Gevers, Wim; Van Opstal, Filip
2015-11-01
Consciousness and working memory are two widely studied cognitive phenomena. Although they have been closely tied on a theoretical and neural level, empirical work that investigates their relation is largely lacking. In this study, the relationship between visual consciousness and different working memory components is investigated by using a dual-task paradigm. More specifically, while participants were performing a visual detection task to measure their visual awareness threshold, they had to concurrently perform either an executive or visuospatial working memory task. We hypothesized that visual consciousness would be hindered depending on the type and the size of the load in working memory. Results showed that maintaining visuospatial content in working memory hinders visual awareness, irrespective of the amount of information maintained. By contrast, the detection threshold was progressively affected under increasing executive load. Interestingly, increasing executive load had a generic effect on detection speed, calling into question whether its obstructing effect is specific to the visual awareness threshold. Together, these results indicate that visual consciousness depends differently on executive and visuospatial working memory.
A method to determine the impact of reduced visual function on nodule detection performance.
Thompson, J D; Lança, C; Lança, L; Hogg, P
2017-02-01
In this study we aim to validate a method to assess the impact of reduced visual function and observer performance concurrently with a nodule detection task. Three consultant radiologists completed a nodule detection task under three conditions: without visual defocus (0.00 Dioptres; D), and with two different magnitudes of visual defocus (-1.00 D and -2.00 D). Defocus was applied with lenses and visual function was assessed prior to each image evaluation. Observers evaluated the same cases on each occasion; this comprised of 50 abnormal cases containing 1-4 simulated nodules (5, 8, 10 and 12 mm spherical diameter, 100 HU) placed within a phantom, and 25 normal cases (images containing no nodules). Data was collected under the free-response paradigm and analysed using Rjafroc. A difference in nodule detection performance would be considered significant at p < 0.05. All observers had acceptable visual function prior to beginning the nodule detection task. Visual acuity was reduced to an unacceptable level for two observers when defocussed to -1.00 D and for one observer when defocussed to -2.00 D. Stereoacuity was unacceptable for one observer when defocussed to -2.00 D. Despite unsatisfactory visual function in the presence of defocus we were unable to find a statistically significant difference in nodule detection performance (F(2,4) = 3.55, p = 0.130). A method to assess visual function and observer performance is proposed. In this pilot evaluation we were unable to detect any difference in nodule detection performance when using lenses to reduce visual function. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.
Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara
2017-01-01
Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.
Huang, Liqiang
2015-05-01
Basic visual features (e.g., color, orientation) are assumed to be processed in the same general way across different visual tasks. Here, a significant deviation from this assumption was predicted on the basis of the analysis of stimulus spatial structure, as characterized by the Boolean-map notion. If a task requires memorizing the orientations of a set of bars, then the map consisting of those bars can be readily used to hold the overall structure in memory and will thus be especially useful. If the task requires visual search for a target, then the map, which contains only an overall structure, will be of little use. Supporting these predictions, the present study demonstrated that in comparison to stimulus colors, bar orientations were processed more efficiently in change-detection tasks but less efficiently in visual search tasks (Cohen's d = 4.24). In addition to offering support for the role of the Boolean map in conscious access, the present work also throws doubts on the generality of processing visual features. © The Author(s) 2015.
Impaired visual recognition of biological motion in schizophrenia.
Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee
2005-09-15
Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.
Raised visual detection thresholds depend on the level of complexity of cognitive foveal loading.
Plainis, S; Murray, I J; Chauhan, K
2001-01-01
The objective of the study was to measure the interactions between visual thresholds for a simple light (the secondary task) presented peripherally and a simultaneously performed cognitive task (the primary task) presented foveally The primary task was highly visible but varied according to its cognitive complexity. Interactions between the tasks were determined by measuring detection thresholds for the peripheral task and accuracy of performance of the foveal task. Effects were measured for 5, 10, 20, and 30 deg eccentricity of the peripherally presented light and for three levels of cognitive complexity. Mesopic conditions (0.5 lx) were used. As expected, the concurrent presentation of the foveal cognitive task reduced peripheral sensitivity. Moreover, performance of the foveal task was adversely affected when conducting the peripheral task. Performance on both tasks was reduced as the level of complexity of the cognitive task increased. There were qualitative differences in task interactions between the central 10 deg and at greater eccentricities. Within 10 deg there was a disproportionate effect of eccentricity, previously interpreted as the 'tunnel-vision' model of visual field narrowing. Interactions outside 10 deg were less affected by eccentricity. These results are discussed in terms of the known neurophysiological characteristics of the primary visual pathway.
Visual Scanning: Comparisons Between Student and Instructor Pilots. Final Report.
ERIC Educational Resources Information Center
DeMaio, Joseph; And Others
The performance of instructor pilots and student pilots was compared in two visual scanning tasks. In the first task both groups were shown slides of T-37 instrument displays in which errors were to be detected. Instructor pilots detected errors faster and with greater accuracy than student pilots, thus providing evidence for the validity of the…
Dissociation between recognition and detection advantage for facial expressions: a meta-analysis.
Nummenmaa, Lauri; Calvo, Manuel G
2015-04-01
Happy facial expressions are recognized faster and more accurately than other expressions in categorization tasks, whereas detection in visual search tasks is widely believed to be faster for angry than happy faces. We used meta-analytic techniques for resolving this categorization versus detection advantage discrepancy for positive versus negative facial expressions. Effect sizes were computed on the basis of the r statistic for a total of 34 recognition studies with 3,561 participants and 37 visual search studies with 2,455 participants, yielding a total of 41 effect sizes for recognition accuracy, 25 for recognition speed, and 125 for visual search speed. Random effects meta-analysis was conducted to estimate effect sizes at population level. For recognition tasks, an advantage in recognition accuracy and speed for happy expressions was found for all stimulus types. In contrast, for visual search tasks, moderator analysis revealed that a happy face detection advantage was restricted to photographic faces, whereas a clear angry face advantage was found for schematic and "smiley" faces. Robust detection advantage for nonhappy faces was observed even when stimulus emotionality was distorted by inversion or rearrangement of the facial features, suggesting that visual features primarily drive the search. We conclude that the recognition advantage for happy faces is a genuine phenomenon related to processing of facial expression category and affective valence. In contrast, detection advantages toward either happy (photographic stimuli) or nonhappy (schematic) faces is contingent on visual stimulus features rather than facial expression, and may not involve categorical or affective processing. (c) 2015 APA, all rights reserved).
Boosting pitch encoding with audiovisual interactions in congenital amusia.
Albouy, Philippe; Lévêque, Yohana; Hyde, Krista L; Bouchet, Patrick; Tillmann, Barbara; Caclin, Anne
2015-01-01
The combination of information across senses can enhance perception, as revealed for example by decreased reaction times or improved stimulus detection. Interestingly, these facilitatory effects have been shown to be maximal when responses to unisensory modalities are weak. The present study investigated whether audiovisual facilitation can be observed in congenital amusia, a music-specific disorder primarily ascribed to impairments of pitch processing. Amusic individuals and their matched controls performed two tasks. In Task 1, they were required to detect auditory, visual, or audiovisual stimuli as rapidly as possible. In Task 2, they were required to detect as accurately and as rapidly as possible a pitch change within an otherwise monotonic 5-tone sequence that was presented either only auditorily (A condition), or simultaneously with a temporally congruent, but otherwise uninformative visual stimulus (AV condition). Results of Task 1 showed that amusics exhibit typical auditory and visual detection, and typical audiovisual integration capacities: both amusics and controls exhibited shorter response times for audiovisual stimuli than for either auditory stimuli or visual stimuli. Results of Task 2 revealed that both groups benefited from simultaneous uninformative visual stimuli to detect pitch changes: accuracy was higher and response times shorter in the AV condition than in the A condition. The audiovisual improvements of response times were observed for different pitch interval sizes depending on the group. These results suggest that both typical listeners and amusic individuals can benefit from multisensory integration to improve their pitch processing abilities and that this benefit varies as a function of task difficulty. These findings constitute the first step towards the perspective to exploit multisensory paradigms to reduce pitch-related deficits in congenital amusia, notably by suggesting that audiovisual paradigms are effective in an appropriate range of unimodal performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xie, Weizhen; Zhang, Weiwei
2017-11-01
The present study dissociated the number (i.e., quantity) and precision (i.e., quality) of visual short-term memory (STM) representations in change detection using receiver operating characteristic (ROC) and experimental manipulations. Across three experiments, participants performed both recognition and recall tests of visual STM using the change-detection task and the continuous color-wheel recall task, respectively. Experiment 1 demonstrated that the estimates of the number and precision of visual STM representations based on the ROC model of change-detection performance were robustly correlated with the corresponding estimates based on the mixture model of continuous-recall performance. Experiments 2 and 3 showed that the experimental manipulation of mnemonic precision using white-noise masking and the experimental manipulation of the number of encoded STM representations using consolidation masking produced selective effects on the corresponding measures of mnemonic precision and the number of encoded STM representations, respectively, in both change-detection and continuous-recall tasks. Altogether, using the individual-differences (Experiment 1) and experimental dissociation (Experiment 2 and 3) approaches, the present study demonstrated the some-or-none nature of visual STM representations across recall and recognition.
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time
Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
2017-01-01
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection© (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21–66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants’ performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. PMID:28218598
Selective maintenance in visual working memory does not require sustained visual attention.
Hollingworth, Andrew; Maxcey-Richard, Ashleigh M
2013-08-01
In four experiments, we tested whether sustained visual attention is required for the selective maintenance of objects in visual working memory (VWM). Participants performed a color change-detection task. During the retention interval, a valid cue indicated the item that would be tested. Change-detection performance was higher in the valid-cue condition than in a neutral-cue control condition. To probe the role of visual attention in the cuing effect, on half of the trials, a difficult search task was inserted after the cue, precluding sustained attention on the cued item. The addition of the search task produced no observable decrement in the magnitude of the cuing effect. In a complementary test, search efficiency was not impaired by simultaneously prioritizing an object for retention in VWM. The results demonstrate that selective maintenance in VWM can be dissociated from the locus of visual attention. 2013 APA, all rights reserved
Evidence for unlimited capacity processing of simple features in visual cortex
White, Alex L.; Runeson, Erik; Palmer, John; Ernst, Zachary R.; Boynton, Geoffrey M.
2017-01-01
Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level–dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. PMID:28654964
The aftermath of memory retrieval for recycling visual working memory representations.
Park, Hyung-Bum; Zhang, Weiwei; Hyun, Joo-Seok
2017-07-01
We examined the aftermath of accessing and retrieving a subset of information stored in visual working memory (VWM)-namely, whether detection of a mismatch between memory and perception can impair the original memory of an item while triggering recognition-induced forgetting for the remaining, untested items. For this purpose, we devised a consecutive-change detection task wherein two successive testing probes were displayed after a single set of memory items. Across two experiments utilizing different memory-testing methods (whole vs. single probe), we observed a reliable pattern of poor performance in change detection for the second test when the first test had exhibited a color change. The impairment after a color change was evident even when the same memory item was repeatedly probed; this suggests that an attention-driven, salient visual change made it difficult to reinstate the previously remembered item. The second change detection, for memory items untested during the first change detection, was also found to be inaccurate, indicating that recognition-induced forgetting had occurred for the unprobed items in VWM. In a third experiment, we conducted a task that involved change detection plus continuous recall, wherein a memory recall task was presented after the change detection task. The analyses of the distributions of recall errors with a probabilistic mixture model revealed that the memory impairments from both visual changes and recognition-induced forgetting are explained better by the stochastic loss of memory items than by their degraded resolution. These results indicate that attention-driven visual change and recognition-induced forgetting jointly influence the "recycling" of VWM representations.
Searching for emotion or race: task-irrelevant facial cues have asymmetrical effects.
Lipp, Ottmar V; Craig, Belinda M; Frost, Mareka J; Terry, Deborah J; Smith, Joanne R
2014-01-01
Facial cues of threat such as anger and other race membership are detected preferentially in visual search tasks. However, it remains unclear whether these facial cues interact in visual search. If both cues equally facilitate search, a symmetrical interaction would be predicted; anger cues should facilitate detection of other race faces and cues of other race membership should facilitate detection of anger. Past research investigating this race by emotional expression interaction in categorisation tasks revealed an asymmetrical interaction. This suggests that cues of other race membership may facilitate the detection of angry faces but not vice versa. Utilising the same stimuli and procedures across two search tasks, participants were asked to search for targets defined by either race or emotional expression. Contrary to the results revealed in the categorisation paradigm, cues of anger facilitated detection of other race faces whereas differences in race did not differentially influence detection of emotion targets.
Experimental system for measurement of radiologists' performance by visual search task.
Maeda, Eriko; Yoshikawa, Takeharu; Nakashima, Ryoichi; Kobayashi, Kazufumi; Yokosawa, Kazuhiko; Hayashi, Naoto; Masutani, Yoshitaka; Yoshioka, Naoki; Akahane, Masaaki; Ohtomo, Kuni
2013-01-01
Detective performance of radiologists for "obvious" targets should be evaluated by visual search task instead of ROC analysis, but visual task have not been applied to radiology studies. The aim of this study was to set up an environment that allows visual search task in radiology, to evaluate its feasibility, and to preliminarily investigate the effect of career on the performance. In a darkroom, ten radiologists were asked to answer the type of lesion by pressing buttons, when images without lesions, with bulla, ground-glass nodule, and solid nodule were randomly presented on a display. Differences in accuracy and reaction times depending on board certification were investigated. The visual search task was successfully and feasibly performed. Radiologists were found to have high sensitivity, specificity, positive predictive values and negative predictive values in non-board and board groups. Reaction time was under 1 second for all target types in both groups. Board radiologists were significantly faster in answering for bulla, but there were no significant differences for other targets and values. We developed an experimental system that allows visual search experiment in radiology. Reaction time for detection of bulla was shortened with experience.
Attentional Capture of Objects Referred to by Spoken Language
ERIC Educational Resources Information Center
Salverda, Anne Pier; Altmann, Gerry T. M.
2011-01-01
Participants saw a small number of objects in a visual display and performed a visual detection or visual-discrimination task in the context of task-irrelevant spoken distractors. In each experiment, a visual cue was presented 400 ms after the onset of a spoken word. In experiments 1 and 2, the cue was an isoluminant color change and participants…
Swallow, Khena M; Jiang, Yuhong V
2010-04-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). Copyright 2009 Elsevier B.V. All rights reserved.
Swallow, Khena M.; Jiang, Yuhong V.
2009-01-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). PMID:20080232
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images. PMID:26869966
Ohyama, Junji; Watanabe, Katsumi
2016-01-01
We examined how the temporal and spatial predictability of a task-irrelevant visual event affects the detection and memory of a visual item embedded in a continuously changing sequence. Participants observed 11 sequentially presented letters, during which a task-irrelevant visual event was either present or absent. Predictabilities of spatial location and temporal position of the event were controlled in 2 × 2 conditions. In the spatially predictable conditions, the event occurred at the same location within the stimulus sequence or at another location, while, in the spatially unpredictable conditions, it occurred at random locations. In the temporally predictable conditions, the event timing was fixed relative to the order of the letters, while in the temporally unpredictable condition; it could not be predicted from the letter order. Participants performed a working memory task and a target detection reaction time (RT) task. Memory accuracy was higher for a letter simultaneously presented at the same location as the event in the temporally unpredictable conditions, irrespective of the spatial predictability of the event. On the other hand, the detection RTs were only faster for a letter simultaneously presented at the same location as the event when the event was both temporally and spatially predictable. Thus, to facilitate ongoing detection processes, an event must be predictable both in space and time, while memory processes are enhanced by temporally unpredictable (i.e., surprising) events. Evidently, temporal predictability has differential effects on detection and memory of a visual item embedded in a sequence of images.
Detection of Emotional Faces: Salient Physical Features Guide Effective Visual Search
ERIC Educational Resources Information Center
Calvo, Manuel G.; Nummenmaa, Lauri
2008-01-01
In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent,…
Choice of Grating Orientation for Evaluation of Peripheral Vision
Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda
2016-01-01
ABSTRACT Purpose Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Methods Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. Results For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Conclusions Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation. PMID:26889822
Choice of Grating Orientation for Evaluation of Peripheral Vision.
Venkataraman, Abinaya Priya; Winter, Simon; Rosén, Robert; Lundström, Linda
2016-06-01
Peripheral resolution acuity depends on the orientation of the stimuli. However, it is uncertain if such a meridional effect also exists for peripheral detection tasks because they are affected by optical errors. Knowledge of the quantitative differences in acuity for different grating orientations is crucial for choosing the appropriate stimuli for evaluations of peripheral resolution and detection tasks. We assessed resolution and detection thresholds for different grating orientations in the peripheral visual field. Resolution and detection thresholds were evaluated for gratings of four different orientations in eight different visual field meridians in the 20-deg visual field in white light. Detection measurements in monochromatic light (543 nm; bandwidth, 10 nm) were also performed to evaluate the effects of chromatic aberration on the meridional effect. A combination of trial lenses and adaptive optics system was used to correct the monochromatic lower- and higher-order aberrations. For both resolution and detection tasks, gratings parallel to the visual field meridian had better threshold compared with the perpendicular gratings, whereas the two oblique gratings had similar thresholds. The parallel and perpendicular grating acuity differences for resolution and detection tasks were 0.16 logMAR and 0.11 logMAD, respectively. Elimination of chromatic errors did not affect the meridional preference in detection acuity. Similar to peripheral resolution, detection also shows a meridional effect that appears to have a neural origin. The threshold difference seen for parallel and perpendicular gratings suggests the use of two oblique gratings as stimuli in alternative forced-choice procedures for peripheral vision evaluation to reduce measurement variation.
Selective Maintenance in Visual Working Memory Does Not Require Sustained Visual Attention
Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.
2012-01-01
In four experiments, we tested whether sustained visual attention is required for the selective maintenance of objects in VWM. Participants performed a color change-detection task. During the retention interval, a valid cue indicated the item that would be tested. Change detection performance was higher in the valid-cue condition than in a neutral-cue control condition. To probe the role of visual attention in the cuing effect, on half of the trials, a difficult search task was inserted after the cue, precluding sustained attention on the cued item. The addition of the search task produced no observable decrement in the magnitude of the cuing effect. In a complementary test, search efficiency was not impaired by simultaneously prioritizing an object for retention in VWM. The results demonstrate that selective maintenance in VWM can be dissociated from the locus of visual attention. PMID:23067118
Visual performance on detection tasks with double-targets of the same and different difficulty.
Chan, Alan H S; Courtney, Alan J; Ma, C W
2002-10-20
This paper reports a study of measurement of horizontal visual sensitivity limits for 16 subjects in single-target and double-targets detection tasks. Two phases of tests were conducted in the double-targets task; targets of the same difficulty were tested in phase one while targets of different difficulty were tested in phase two. The range of sensitivity for the double-targets test was found to be smaller than that for single-target in both the same and different target difficulty cases. The presence of another target was found to affect performance to a marked degree. Interference effect of the difficult target on detection of the easy one was greater than that of the easy one on the detection of the difficult one. Performance decrement was noted when correct percentage detection was plotted against eccentricity of target in both the single-target and double-targets tests. Nevertheless, the non-significant correlation found between the performance for the two tasks demonstrated that it was impossible to predict quantitatively ability for detection of double targets from the data for single targets. This indicated probable problems in generalizing data for single target visual lobes to those for multiple targets. Also lobe area values obtained from measurements using a single-target task cannot be applied in a mathematical model for situations with multiple occurrences of targets.
Logie, Robert H; Brockmole, James R; Jaswal, Snehlata
2011-01-01
Three experiments used a change detection paradigm across a range of study-test intervals to address the respective contributions of location, shape, and color to the formation of bindings of features in sensory memory and visual short-term memory (VSTM). In Experiment 1, location was designated task irrelevant and was randomized between study and test displays. The task was to detect changes in the bindings between shape and color. In Experiments 2 and 3, shape and color, respectively, were task irrelevant and randomized, with bindings tested between location and color (Experiment 2) and location and shape (Experiment 3). At shorter study-test intervals, randomizing location was most disruptive, followed by shape and then color. At longer intervals, randomizing any task-irrelevant feature had no impact on change detection for bindings between features, and location had no special role. Results suggest that location is crucial for initial perceptual binding but loses that special status once representations are formed in VSTM, which operates according to different principles, than do visual attention and perception.
Effects of VDT workstation lighting conditions on operator visual workload.
Lin, Chiuhsiang Joe; Feng, Wen-Yang; Chao, Chin-Jung; Tseng, Feng-Yi
2008-04-01
Industrial lighting covers a wide range of different characteristics of working interiors and work tasks. This study investigated the effects of illumination on visual workload in visual display terminal (VDT) workstation. Ten college students (5 males and 5 females) were recruited as participants to perform VDT signal detection tasks. A randomized block design was utilized with four light colors (red, blue, green and white), two ambient illumination levels (20 lux and 340 lux), with the subject as the block. The dependent variables were the change of critical fusion frequency (CFF), visual acuity, reaction time of targets detection, error rates, and rating scores in a subjective questionnaire. The study results showed that both visual acuity and the subjective visual fatigue were significantly affected by the color of light. The illumination had significant effect on CFF threshold change and reaction time. Subjects prefer to perform VDT task under blue and white lights than green and red. Based on these findings, the study discusses and suggests ways of color lighting and ambient illumination to promote operators' visual performance and prevent visual fatigue effectively.
The wisdom of crowds for visual search
Juni, Mordechai Z.; Eckstein, Miguel P.
2017-01-01
Decision-making accuracy typically increases through collective integration of people’s judgments into group decisions, a phenomenon known as the wisdom of crowds. For simple perceptual laboratory tasks, classic signal detection theory specifies the upper limit for collective integration benefits obtained by weighted averaging of people’s confidences, and simple majority voting can often approximate that limit. Life-critical perceptual decisions often involve searching large image data (e.g., medical, security, and aerial imagery), but the expected benefits and merits of using different pooling algorithms are unknown for such tasks. Here, we show that expected pooling benefits are significantly greater for visual search than for single-location perceptual tasks and the prediction given by classic signal detection theory. In addition, we show that simple majority voting obtains inferior accuracy benefits for visual search relative to averaging and weighted averaging of observers’ confidences. Analysis of gaze behavior across observers suggests that the greater collective integration benefits for visual search arise from an interaction between the foveated properties of the human visual system (high foveal acuity and low peripheral acuity) and observers’ nonexhaustive search patterns, and can be predicted by an extended signal detection theory framework with trial to trial sampling from a varying mixture of high and low target detectabilities across observers (SDT-MIX). These findings advance our theoretical understanding of how to predict and enhance the wisdom of crowds for real world search tasks and could apply more generally to any decision-making task for which the minority of group members with high expertise varies from decision to decision. PMID:28490500
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time.
Brooks, Johnell; Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection © (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21-66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants' performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. Copyright © 2017 by the American Occupational Therapy Association, Inc.
“Global” visual training and extent of transfer in amblyopic macaque monkeys
Kiorpes, Lynne; Mangal, Paul
2015-01-01
Perceptual learning is gaining acceptance as a potential treatment for amblyopia in adults and children beyond the critical period. Many perceptual learning paradigms result in very specific improvement that does not generalize beyond the training stimulus, closely related stimuli, or visual field location. To be of use in amblyopia, a less specific effect is needed. To address this problem, we designed a more general training paradigm intended to effect improvement in visual sensitivity across tasks and domains. We used a “global” visual stimulus, random dot motion direction discrimination with 6 training conditions, and tested for posttraining improvement on a motion detection task and 3 spatial domain tasks (contrast sensitivity, Vernier acuity, Glass pattern detection). Four amblyopic macaques practiced the motion discrimination with their amblyopic eye for at least 20,000 trials. All showed improvement, defined as a change of at least a factor of 2, on the trained task. In addition, all animals showed improvements in sensitivity on at least some of the transfer test conditions, mainly the motion detection task; transfer to the spatial domain was inconsistent but best at fine spatial scales. However, the improvement on the transfer tasks was largely not retained at long-term follow-up. Our generalized training approach is promising for amblyopia treatment, but sustaining improved performance may require additional intervention. PMID:26505868
ERIC Educational Resources Information Center
Almeida, Renita A.; Dickinson, J. Edwin; Maybery, Murray T.; Badcock, Johanna C.; Badcock, David R.
2010-01-01
The Embedded Figures Test (EFT) requires detecting a shape within a complex background and individuals with autism or high Autism-spectrum Quotient (AQ) scores are faster and more accurate on this task than controls. This research aimed to uncover the visual processes producing this difference. Previously we developed a search task using radial…
ERIC Educational Resources Information Center
Becker, D. Vaughn; Anderson, Uriah S.; Mortensen, Chad R.; Neufeld, Samantha L.; Neel, Rebecca
2011-01-01
Is it easier to detect angry or happy facial expressions in crowds of faces? The present studies used several variations of the visual search task to assess whether people selectively attend to expressive faces. Contrary to widely cited studies (e.g., Ohman, Lundqvist, & Esteves, 2001) that suggest angry faces "pop out" of crowds, our review of…
Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya
2013-09-01
Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can implicitly strengthen automatic change detection from an early stage in a cross-sensory manner, at least in the vision to audition direction.
Effects of age and auditory and visual dual tasks on closed-road driving performance.
Chaparro, Alex; Wood, Joanne M; Carberry, Trent
2005-08-01
This study investigated how driving performance of young and old participants is affected by visual and auditory secondary tasks on a closed driving course. Twenty-eight participants comprising two age groups (younger, mean age = 27.3 years; older, mean age = 69.2 years) drove around a 5.1-km closed-road circuit under both single and dual task conditions. Measures of driving performance included detection and identification of road signs, detection and avoidance of large low-contrast road hazards, gap judgment, lane keeping, and time to complete the course. The dual task required participants to verbally report the sums of pairs of single-digit numbers presented through either a computer speaker (auditorily) or a dashboard-mounted monitor (visually) while driving. Participants also completed a vision and cognitive screening battery, including LogMAR visual acuity, Pelli-Robson letter contrast sensitivity, the Trails test, and the Digit Symbol Substitution (DSS) test. Drivers reported significantly fewer signs, hit more road hazards, misjudged more gaps, and increased their time to complete the course under the dual task (visual and auditory) conditions compared with the single task condition. The older participants also reported significantly fewer road signs and drove significantly more slowly than the younger participants, and this was exacerbated for the visual dual task condition. The results of the regression analysis revealed that cognitive aging (measured by the DSS and Trails test) rather than chronologic age was a better predictor of the declines seen in driving performance under dual task conditions. An overall z score was calculated, which took into account both driving and the secondary task (summing) performance under the two dual task conditions. Performance was significantly worse for the auditory dual task compared with the visual dual task, and the older participants performed significantly worse than the young subjects. These findings demonstrate that multitasking had a significant detrimental impact on driving performance and that cognitive aging was the best predictor of the declines seen in driving performance under dual task conditions. These results have implications for use of mobile phones or in-vehicle navigational devices while driving, especially for older adults.
ERIC Educational Resources Information Center
Berger, Carole; Valdois, Sylviane; Lallier, Marie; Donnadieu, Sophie
2015-01-01
The present study explored the temporal allocation of attention in groups of 8-year-old children, 10-year-old children, and adults performing a rapid serial visual presentation task. In a dual-condition task, participants had to detect a briefly presented target (T2) after identifying an initial target (T1) embedded in a random series of…
Leising, Kenneth J; Elmore, L Caitlin; Rivera, Jacquelyne J; Magnotti, John F; Katz, Jeffrey S; Wright, Anthony A
2013-09-01
Change detection is commonly used to assess capacity (number of objects) of human visual short-term memory (VSTM). Comparisons with the performance of non-human animals completing similar tasks have shown similarities and differences in object-based VSTM, which is only one aspect ("what") of memory. Another important aspect of memory, which has received less attention, is spatial short-term memory for "where" an object is in space. In this article, we show for the first time that a monkey and pigeons can be accurately trained to identify location changes, much as humans do, in change detection tasks similar to those used to test object capacity of VSTM. The subject's task was to identify (touch/peck) an item that changed location across a brief delay. Both the monkey and pigeons showed transfer to delays longer than the training delay, to greater and smaller distance changes than in training, and to novel colors. These results are the first to demonstrate location-change detection in any non-human species and encourage comparative investigations into the nature of spatial and visual short-term memory.
Eramudugolla, Ranmalee; Mattingley, Jason B
2008-01-01
Patients with unilateral spatial neglect following right hemisphere damage are impaired in detecting contralesional targets in both visual and haptic search tasks, and often show a graded improvement in detection performance for more ipsilesional spatial locations. In audition, multiple simultaneous sounds are most effectively perceived if they are distributed along the frequency dimension. Thus, attention to spectro-temporal features alone can allow detection of a target sound amongst multiple simultaneous distracter sounds, regardless of whether these sounds are spatially separated. Spatial bias in attention associated with neglect should not affect auditory search based on spectro-temporal features of a sound target. We report that a right brain damaged patient with neglect demonstrated a significant gradient favouring the ipsilesional side on a visual search task as well as an auditory search task in which the target was a frequency modulated tone amongst steady distractor tones. No such asymmetry was apparent in the auditory search performance of a control patient with a right hemisphere lesion but no neglect. The results suggest that the spatial bias in attention exhibited by neglect patients affects stimulus processing even when spatial information is irrelevant to the task.
Koslucher, Frank; Wade, Michael G; Nelson, Brent; Lim, Kelvin; Chen, Fu-Chen; Stoffregen, Thomas A
2012-07-01
Research has shown that the Nintendo Wii Balance Board (WBB) can reliably detect the quantitative kinematics of the center of pressure in stance. Previous studies used relatively coarse manipulations (1- vs. 2-leg stance, and eyes open vs. closed). We sought to determine whether the WBB could reliably detect postural changes associated with subtle variations in visual tasks. Healthy elderly adults stood on a WBB while performing one of two visual tasks. In the Inspection task, they maintained their gaze within the boundaries of a featureless target. In the Search task, they counted the occurrence of designated target letters within a block of text. Consistent with previous studies using traditional force plates, the positional variability of the center of pressure was reduced during performance of the Search task, relative to movement during performance of the Inspection task. Using detrended fluctuation analysis, a measure of movement dynamics, we found that COP trajectories were more predictable during performance of the Search task than during performance of the Inspection task. The results indicate that the WBB is sensitive to subtle variations in both the magnitude and dynamics of body sway that are related to variations in visual tasks engaged in during stance. The WBB is an inexpensive, reliable technology that can be used to evaluate subtle characteristics of body sway in large or widely dispersed samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Hindi Attar, Catherine; Müller, Matthias M
2012-01-01
A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.
Orienting Attention in Visual Working Memory Reduces Interference from Memory Probes
ERIC Educational Resources Information Center
Makovski, Tal; Sussman, Rachel; Jiang, Yuhong V.
2008-01-01
Given a changing visual environment, and the limited capacity of visual working memory (VWM), the contents of VWM must be in constant flux. Using a change detection task, the authors show that VWM is subject to obligatory updating in the face of new information. Change detection performance is enhanced when the item that may change is…
The Right Hemisphere Advantage in Visual Change Detection Depends on Temporal Factors
ERIC Educational Resources Information Center
Spotorno, Sara; Faure, Sylvane
2011-01-01
What accounts for the Right Hemisphere (RH) functional superiority in visual change detection? An original task which combines one-shot and divided visual field paradigms allowed us to direct change information initially to the RH or the Left Hemisphere (LH) by deleting, respectively, an object included in the left or right half of a scene…
Wang, Hao; Crewther, Sheila G.; Liang, Minglong; Laycock, Robin; Yu, Tao; Alexander, Bonnie; Crewther, David P.; Wang, Jian; Yin, Zhengqin
2017-01-01
Strabismic amblyopia is now acknowledged to be more than a simple loss of acuity and to involve alterations in visually driven attention, though whether this applies to both stimulus-driven and goal-directed attention has not been explored. Hence we investigated monocular threshold performance during a motion salience-driven attention task involving detection of a coherent dot motion target in one of four quadrants in adult controls and those with strabismic amblyopia. Psychophysical motion thresholds were impaired for the strabismic amblyopic eye, requiring longer inspection time and consequently slower target speed for detection compared to the fellow eye or control eyes. We compared fMRI activation and functional connectivity between four ROIs of the occipital-parieto-frontal visual attention network [primary visual cortex (V1), motion sensitive area V5, intraparietal sulcus (IPS) and frontal eye fields (FEF)], during a suprathreshold version of the motion-driven attention task, and also a simple goal-directed task, requiring voluntary saccades to targets randomly appearing along a horizontal line. Activation was compared when viewed monocularly by controls and the amblyopic and its fellow eye in strabismics. BOLD activation was weaker in IPS, FEF and V5 for both tasks when viewing through the amblyopic eye compared to viewing through the fellow eye or control participants' non-dominant eye. No difference in V1 activation was seen between the amblyopic and fellow eye, nor between the two eyes of control participants during the motion salience task, though V1 activation was significantly less through the amblyopic eye than through the fellow eye and control group non-dominant eye viewing during the voluntary saccade task. Functional correlations of ROIs within the attention network were impaired through the amblyopic eye during the motion salience task, whereas this was not the case during the voluntary saccade task. Specifically, FEF showed reduced functional connectivity with visual cortical nodes during the motion salience task through the amblyopic eye, despite suprathreshold detection performance. This suggests that the reduced ability of the amblyopic eye to activate the frontal components of the attention networks may help explain the aberrant control of visual attention and eye movements in amblyopes. PMID:28484381
Detection of visual signals by rats: A computational model
We applied a neural network model of classical conditioning proposed by Schmajuk, Lam, and Gray (1996) to visual signal detection and discrimination tasks designed to assess sustained attention in rats (Bushnell, 1999). The model describes the animals’ expectation of receiving fo...
Reimer, Christina B; Schubert, Torsten
2017-09-15
Both response selection and visual attention are limited in capacity. According to the central bottleneck model, the response selection processes of two tasks in a dual-task situation are performed sequentially. In conjunction search, visual attention is required to select the items and to bind their features (e.g., color and form), which results in a serial search process. Search time increases as items are added to the search display (i.e., set size effect). When the search display is masked, visual attention deployment is restricted to a brief period of time and target detection decreases as a function of set size. Here, we investigated whether response selection and visual attention (i.e., feature binding) rely on a common or on distinct capacity limitations. In four dual-task experiments, participants completed an auditory Task 1 and a conjunction search Task 2 that were presented with an experimentally modulated temporal interval between them (Stimulus Onset Asynchrony, SOA). In Experiment 1, Task 1 was a two-choice discrimination task and the conjunction search display was not masked. In Experiment 2, the response selection difficulty in Task 1 was increased to a four-choice discrimination and the search task was the same as in Experiment 1. We applied the locus-of-slack method in both experiments to analyze conjunction search time, that is, we compared the set size effects across SOAs. Similar set size effects across SOAs (i.e., additive effects of SOA and set size) would indicate sequential processing of response selection and visual attention. However, a significantly smaller set size effect at short SOA compared to long SOA (i.e., underadditive interaction of SOA and set size) would indicate parallel processing of response selection and visual attention. In both experiments, we found underadditive interactions of SOA and set size. In Experiments 3 and 4, the conjunction search display in Task 2 was masked. Task 1 was the same as in Experiments 1 and 2, respectively. In both experiments, the d' analysis revealed that response selection did not affect target detection. Overall, Experiments 1-4 indicated that neither the response selection difficulty in the auditory Task 1 (i.e., two-choice vs. four-choice) nor the type of presentation of the search display in Task 2 (i.e., not masked vs. masked) impaired parallel processing of response selection and conjunction search. We concluded that in general, response selection and visual attention (i.e., feature binding) rely on distinct capacity limitations.
The Development of Visual Working Memory Capacity during Early Childhood
ERIC Educational Resources Information Center
Simmering, Vanessa R.
2012-01-01
The change detection task has been used in dozens of studies with adults to measure visual working memory capacity. Two studies have recently tested children in this task, suggesting a gradual increase in capacity from 5 years to adulthood. These results contrast with findings from an infant looking paradigm suggesting that capacity reaches…
Cameron, E Leslie; Tai, Joanna C; Eckstein, Miguel P; Carrasco, Marisa
2004-01-01
Adding distracters to a display impairs performance on visual tasks (i.e. the set-size effect). While keeping the display characteristics constant, we investigated this effect in three tasks: 2 target identification, yes-no detection with 2 targets, and 8-alternative localization. A Signal Detection Theory (SDT) model, tailored for each task, accounts for the set-size effects observed in identification and localization tasks, and slightly under-predicts the set-size effect in a detection task. Given that sensitivity varies as a function of spatial frequency (SF), we measured performance in each of these three tasks in neutral and peripheral precue conditions for each of six spatial frequencies (0.5-12 cpd). For all spatial frequencies tested, performance on the three tasks decreased as set size increased in the neutral precue condition, and the peripheral precue reduced the effect. Larger set-size effects were observed at low SFs in the identification and localization tasks. This effect can be described using the SDT model, but was not predicted by it. For each of these tasks we also established the extent to which covert attention modulates performance across a range of set sizes. A peripheral precue substantially diminished the set-size effect and improved performance, even at set size 1. These results provide support for distracter exclusion, and suggest that signal enhancement may also be a mechanism by which covert attention can impose its effect.
Attending to unrelated targets boosts short-term memory for color arrays.
Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V
2011-05-01
Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.
Systematic distortions of perceptual stability investigated using immersive virtual reality
Tcheang, Lili; Gilson, Stuart J.; Glennerster, Andrew
2010-01-01
Using an immersive virtual reality system, we measured the ability of observers to detect the rotation of an object when its movement was yoked to the observer's own translation. Most subjects had a large bias such that a static object appeared to rotate away from them as they moved. Thresholds for detecting target rotation were similar to those for an equivalent speed discrimination task carried out by static observers, suggesting that visual discrimination is the predominant limiting factor in detecting target rotation. Adding a stable visual reference frame almost eliminated the bias. Varying the viewing distance of the target had little effect, consistent with observers under-estimating distance walked. However, accuracy of walking to a briefly presented visual target was high and not consistent with an under-estimation of distance walked. We discuss implications for theories of a task-independent representation of visual space. PMID:15845248
Assistive obstacle detection and navigation devices for vision-impaired users.
Ong, S K; Zhang, J; Nee, A Y C
2013-09-01
Quality of life for the visually impaired is an urgent worldwide issue that needs to be addressed. Obstacle detection is one of the most important navigation tasks for the visually impaired. In this research, a novel range sensor placement scheme is proposed in this paper for the development of obstacle detection devices. Based on this scheme, two prototypes have been developed targeting at different user groups. This paper discusses the design issues, functional modules and the evaluation tests carried out for both prototypes. Implications for Rehabilitation Visual impairment problem is becoming more severe due to the worldwide ageing population. Individuals with visual impairment require assistance from assistive devices in daily navigation tasks. Traditional assistive devices that assist navigation may have certain drawbacks, such as the limited sensing range of a white cane. Obstacle detection devices applying the range sensor technology can identify road conditions with a higher sensing range to notify the users of potential dangers in advance.
Supporting dynamic change detection: using the right tool for the task.
Vallières, Benoît R; Hodgetts, Helen M; Vachon, François; Tremblay, Sébastien
2016-01-01
Detecting task-relevant changes in a visual scene is necessary for successfully monitoring and managing dynamic command and control situations. Change blindness-the failure to notice visual changes-is an important source of human error. Change History EXplicit (CHEX) is a tool developed to aid change detection and maintain situation awareness; and in the current study we test the generality of its ability to facilitate the detection of changes when this subtask is embedded within a broader dynamic decision-making task. A multitasking air-warfare simulation required participants to perform radar-based subtasks, for which change detection was a necessary aspect of the higher-order goal of protecting one's own ship. In this task, however, CHEX rendered the operator even more vulnerable to attentional failures in change detection and increased perceived workload. Such support was only effective when participants performed a change detection task without concurrent subtasks. Results are interpreted in terms of the NSEEV model of attention behavior (Steelman, McCarley, & Wickens, Hum. Factors 53:142-153, 2011; J. Exp. Psychol. Appl. 19:403-419, 2013), and suggest that decision aids for use in multitasking contexts must be designed to fit within the available workload capacity of the user so that they may truly augment cognition.
Chan, Louis K H; Hayward, William G
2009-02-01
In feature integration theory (FIT; A. Treisman & S. Sato, 1990), feature detection is driven by independent dimensional modules, and other searches are driven by a master map of locations that integrates dimensional information into salience signals. Although recent theoretical models have largely abandoned this distinction, some observed results are difficult to explain in its absence. The present study measured dimension-specific performance during detection and localization, tasks that require operation of dimensional modules and the master map, respectively. Results showed a dissociation between tasks in terms of both dimension-switching costs and cross-dimension attentional capture, reflecting a dimension-specific nature for detection tasks and a dimension-general nature for localization tasks. In a feature-discrimination task, results precluded an explanation based on response mode. These results are interpreted to support FIT's postulation that different mechanisms are involved in parallel and focal attention searches. This indicates that the FIT architecture should be adopted to explain the current results and that a variety of visual attention findings can be addressed within this framework. Copyright 2009 APA, all rights reserved.
Individual differences in working memory capacity and workload capacity.
Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta
2014-01-01
We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.
States of Awareness I: Subliminal Perception Relationship to Situational Awareness
1993-05-01
one experiment, the visual detection threshold was raised by simultaneous auditory stimulation involving subliminal emotional words. Similar results...an assessment was made of the effects of both subliminal and supraliminal auditory accessory stimulation (white noise) on a visual detection task... stimulation investigation. Both subliminal and supraliminal auditory stimulation were employed to evaluate possible differential effects in visual illusions
ERIC Educational Resources Information Center
Chaikin, Rosalind B.; And Others
Intended for classroom teachers, the manual provides an approach to observation, assessment, record keeping, and remediation of students' visual performance. A list of clues for detecting visual performance difficulties and nine laws applicable to visual performance development tasks are given. Described in two sections are the materials, steps,…
Foveated model observers to predict human performance in 3D images
NASA Astrophysics Data System (ADS)
Lago, Miguel A.; Abbey, Craig K.; Eckstein, Miguel P.
2017-03-01
We evaluate 3D search requires model observers that take into account the peripheral human visual processing (foveated models) to predict human observer performance. We show that two different 3D tasks, free search and location-known detection, influence the relative human visual detectability of two signals of different sizes in synthetic backgrounds mimicking the noise found in 3D digital breast tomosynthesis. One of the signals resembled a microcalcification (a small and bright sphere), while the other one was designed to look like a mass (a larger Gaussian blob). We evaluated current standard models observers (Hotelling; Channelized Hotelling; non-prewhitening matched filter with eye filter, NPWE; and non-prewhitening matched filter model, NPW) and showed that they incorrectly predict the relative detectability of the two signals in 3D search. We propose a new model observer (3D Foveated Channelized Hotelling Observer) that incorporates the properties of the visual system over a large visual field (fovea and periphery). We show that the foveated model observer can accurately predict the rank order of detectability of the signals in 3D images for each task. Together, these results motivate the use of a new generation of foveated model observers for predicting image quality for search tasks in 3D imaging modalities such as digital breast tomosynthesis or computed tomography.
Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory
Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.
2013-01-01
Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773
Making the invisible visible: verbal but not visual cues enhance visual detection.
Lupyan, Gary; Spivey, Michael J
2010-07-07
Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d'). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception.
The Role of Temporal Disparity on Audiovisual Integration in Low-Vision Individuals.
Targher, Stefano; Micciolo, Rocco; Occelli, Valeria; Zampini, Massimiliano
2017-12-01
Recent findings have shown that sounds improve visual detection in low vision individuals when the audiovisual stimuli pairs of stimuli are presented simultaneously and from the same spatial position. The present study purports to investigate the temporal aspects of the audiovisual enhancement effect previously reported. Low vision participants were asked to detect the presence of a visual stimulus (yes/no task) presented either alone or together with an auditory stimulus at different stimulus onset asynchronies (SOAs). In the first experiment, the sound was presented either simultaneously or before the visual stimulus (i.e., SOAs 0, 100, 250, 400 ms). The results show that the presence of a task-irrelevant auditory stimulus produced a significant visual detection enhancement in all the conditions. In the second experiment, the sound was either synchronized with, or randomly preceded/lagged behind the visual stimulus (i.e., SOAs 0, ± 250, ± 400 ms). The visual detection enhancement was reduced in magnitude and limited only to the synchronous condition and to the condition in which the sound stimulus was presented 250 ms before the visual stimulus. Taken together, the evidence of the present study seems to suggest that audiovisual interaction in low vision individuals is highly modulated by top-down mechanisms.
An integrated theory of attention and decision making in visual signal detection.
Smith, Philip L; Ratcliff, Roger
2009-04-01
The simplest attentional task, detecting a cued stimulus in an otherwise empty visual field, produces complex patterns of performance. Attentional cues interact with backward masks and with spatial uncertainty, and there is a dissociation in the effects of these variables on accuracy and on response time. A computational theory of performance in this task is described. The theory links visual encoding, masking, spatial attention, visual short-term memory (VSTM), and perceptual decision making in an integrated dynamic framework. The theory assumes that decisions are made by a diffusion process driven by a neurally plausible, shunting VSTM. The VSTM trace encodes the transient outputs of early visual filters in a durable form that is preserved for the time needed to make a decision. Attention increases the efficiency of VSTM encoding, either by increasing the rate of trace formation or by reducing the delay before trace formation begins. The theory provides a detailed, quantitative account of attentional effects in spatial cuing tasks at the level of response accuracy and the response time distributions. (c) 2009 APA, all rights reserved
Burnat, K; Zernicki, B
1997-01-01
We used 5 binocularly deprived cats (BD cats), 4 control cats reared also in the laboratory (C cats) and 4 cats reared in a normal environment (N cats). The cats were trained to discriminate an upward or downward-moving light spot versus a stationary spot (detection task) and then an upward versus a downward spot (direction task). The N and C cats learned slowly. The learning was slower than in previously studied discriminations of stationary stimuli. However, all N and C cats mastered the detection task and except one C cat the direction task. In contrast, 4 BD cats failed in the detection task and all in the direction task. This result is consistent with single-cell recording data showing impairment of direction analysis in the visual system in BD cats. After completing the training the upper part of the middle suprasylvian sulcus was removed unilaterally in 7 cats and bilaterally in 6 cats. Surprisingly, the unilateral lesions were more effective: the clear-cut retention deficits were found in 5 cats lesioned unilaterally, whereas only in one cat lesioned bilaterally.
Crowding with detection and coarse discrimination of simple visual features.
Põder, Endel
2008-04-24
Some recent studies have suggested that there are actually no crowding effects with detection and coarse discrimination of simple visual features. The present study tests the generality of this idea. A target Gabor patch, surrounded by either 2 or 6 flanker Gabors, was presented briefly at 4 deg eccentricity of the visual field. Each Gabor patch was oriented either vertically or horizontally (selected randomly). Observers' task was either to detect the presence of the target (presented with probability 0.5) or to identify the orientation of the target. The target-flanker distance was varied. Results were similar for the two tasks but different for 2 and 6 flankers. The idea that feature detection and coarse discrimination are immune to crowding may be valid for the two-flanker condition only. With six flankers, a normal crowding effect was observed. It is suggested that the complexity of the full pattern (target plus flankers) could explain the difference.
Nakashima, Ryoichi; Yokosawa, Kazuhiko
2013-02-01
A common search paradigm requires observers to search for a target among undivided spatial arrays of many items. Yet our visual environment is populated with items that are typically arranged within smaller (subdivided) spatial areas outlined by dividers (e.g., frames). It remains unclear how dividers impact visual search performance. In this study, we manipulated the presence and absence of frames and the number of frames subdividing search displays. Observers searched for a target O among Cs, a typically inefficient search task, and for a target C among Os, a typically efficient search. The results indicated that the presence of divider frames in a search display initially interferes with visual search tasks when targets are quickly detected (i.e., efficient search), leading to early interference; conversely, frames later facilitate visual search in tasks in which targets take longer to detect (i.e., inefficient search), leading to late facilitation. Such interference and facilitation appear only for conditions with a specific number of frames. Relative to previous studies of grouping (due to item proximity or similarity), these findings suggest that frame enclosures of multiple items may induce a grouping effect that influences search performance.
Shared filtering processes link attentional and visual short-term memory capacity limits.
Bettencourt, Katherine C; Michalka, Samantha W; Somers, David C
2011-09-30
Both visual attention and visual short-term memory (VSTM) have been shown to have capacity limits of 4 ± 1 objects, driving the hypothesis that they share a visual processing buffer. However, these capacity limitations also show strong individual differences, making the degree to which these capacities are related unclear. Moreover, other research has suggested a distinction between attention and VSTM buffers. To explore the degree to which capacity limitations reflect the use of a shared visual processing buffer, we compared individual subject's capacities on attentional and VSTM tasks completed in the same testing session. We used a multiple object tracking (MOT) and a VSTM change detection task, with varying levels of distractors, to measure capacity. Significant correlations in capacity were not observed between the MOT and VSTM tasks when distractor filtering demands differed between the tasks. Instead, significant correlations were seen when the tasks shared spatial filtering demands. Moreover, these filtering demands impacted capacity similarly in both attention and VSTM tasks. These observations fail to support the view that visual attention and VSTM capacity limits result from a shared buffer but instead highlight the role of the resource demands of underlying processes in limiting capacity.
Crossmodal semantic priming by naturalistic sounds and spoken words enhances visual sensitivity.
Chen, Yi-Chuan; Spence, Charles
2011-10-01
We propose a multisensory framework based on Glaser and Glaser's (1989) general reading-naming interference model to account for the semantic priming effect by naturalistic sounds and spoken words on visual picture sensitivity. Four experiments were designed to investigate two key issues: First, can auditory stimuli enhance visual sensitivity when the sound leads the picture as well as when they are presented simultaneously? And, second, do naturalistic sounds (e.g., a dog's "woofing") and spoken words (e.g., /dɔg/) elicit similar semantic priming effects? Here, we estimated participants' sensitivity and response criterion using signal detection theory in a picture detection task. The results demonstrate that naturalistic sounds enhanced visual sensitivity when the onset of the sounds led that of the picture by 346 ms (but not when the sounds led the pictures by 173 ms, nor when they were presented simultaneously, Experiments 1-3A). At the same SOA, however, spoken words did not induce semantic priming effects on visual detection sensitivity (Experiments 3B and 4A). When using a dual picture detection/identification task, both kinds of auditory stimulus induced a similar semantic priming effect (Experiment 4B). Therefore, we suggest that there needs to be sufficient processing time for the auditory stimulus to access its associated meaning to modulate visual perception. Besides, the interactions between pictures and the two types of sounds depend not only on their processing route to access semantic representations, but also on the response to be made to fulfill the requirements of the task.
Koda, Hiroki; Sato, Anna; Kato, Akemi
2013-09-01
Humans innately perceive infantile features as cute. The ethologist Konrad Lorenz proposed that the infantile features of mammals and birds, known as the baby schema (kindchenschema), motivate caretaking behaviour. As biologically relevant stimuli, newborns are likely to be processed specially in terms of visual attention, perception, and cognition. Recent demonstrations on human participants have shown visual attentional prioritisation to newborn faces (i.e., newborn faces capture visual attention). Although characteristics equivalent to those found in the faces of human infants are found in nonhuman primates, attentional capture by newborn faces has not been tested in nonhuman primates. We examined whether conspecific newborn faces captured the visual attention of two Japanese monkeys using a target-detection task based on dot-probe tasks commonly used in human visual attention studies. Although visual cues enhanced target detection in subject monkeys, our results, unlike those for humans, showed no evidence of an attentional prioritisation for newborn faces by monkeys. Our demonstrations showed the validity of dot-probe task for visual attention studies in monkeys and propose a novel approach to bridge the gap between human and nonhuman primate social cognition research. This suggests that attentional capture by newborn faces is not common to macaques, but it is unclear if nursing experiences influence their perception and recognition of infantile appraisal stimuli. We need additional comparative studies to reveal the evolutionary origins of baby-schema perception and recognition. Copyright © 2013 Elsevier B.V. All rights reserved.
Kamke, Marc R; Van Luyn, Jeanette; Constantinescu, Gabriella; Harris, Jill
2014-01-01
Evidence suggests that deafness-induced changes in visual perception, cognition and attention may compensate for a hearing loss. Such alterations, however, may also negatively influence adaptation to a cochlear implant. This study investigated whether involuntary attentional capture by salient visual stimuli is altered in children who use a cochlear implant. Thirteen experienced implant users (aged 8-16 years) and age-matched normally hearing children were presented with a rapid sequence of simultaneous visual and auditory events. Participants were tasked with detecting numbers presented in a specified color and identifying a change in the tonal frequency whilst ignoring irrelevant visual distractors. Compared to visual distractors that did not possess the target-defining characteristic, target-colored distractors were associated with a decrement in visual performance (response time and accuracy), demonstrating a contingent capture of involuntary attention. Visual distractors did not, however, impair auditory task performance. Importantly, detection performance for the visual and auditory targets did not differ between the groups. These results suggest that proficient cochlear implant users demonstrate normal capture of visuospatial attention by stimuli that match top-down control settings.
Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L.
2012-01-01
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory. PMID:22761923
Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L
2012-01-01
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.
Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis
Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.
2016-01-01
Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815
Incidental Auditory Category Learning
Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.
2015-01-01
Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588
Attention effects on the processing of task-relevant and task-irrelevant speech sounds and letters
Mittag, Maria; Inauri, Karina; Huovilainen, Tatu; Leminen, Miika; Salo, Emma; Rinne, Teemu; Kujala, Teija; Alho, Kimmo
2013-01-01
We used event-related brain potentials (ERPs) to study effects of selective attention on the processing of attended and unattended spoken syllables and letters. Participants were presented with syllables randomly occurring in the left or right ear and spoken by different voices and with a concurrent foveal stream of consonant letters written in darker or lighter fonts. During auditory phonological (AP) and non-phonological tasks, they responded to syllables in a designated ear starting with a vowel and spoken by female voices, respectively. These syllables occurred infrequently among standard syllables starting with a consonant and spoken by male voices. During visual phonological and non-phonological tasks, they responded to consonant letters with names starting with a vowel and to letters written in dark fonts, respectively. These letters occurred infrequently among standard letters with names starting with a consonant and written in light fonts. To examine genuine effects of attention and task on ERPs not overlapped by ERPs associated with target processing or deviance detection, these effects were studied only in ERPs to auditory and visual standards. During selective listening to syllables in a designated ear, ERPs to the attended syllables were negatively displaced during both phonological and non-phonological auditory tasks. Selective attention to letters elicited an early negative displacement and a subsequent positive displacement (Pd) of ERPs to attended letters being larger during the visual phonological than non-phonological task suggesting a higher demand for attention during the visual phonological task. Active suppression of unattended speech during the AP and non-phonological tasks and during the visual phonological tasks was suggested by a rejection positivity (RP) to unattended syllables. We also found evidence for suppression of the processing of task-irrelevant visual stimuli in visual ERPs during auditory tasks involving left-ear syllables. PMID:24348324
Simmering, Vanessa R; Wood, Chelsey M
2017-08-01
Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Visual search in Alzheimer's disease: a deficiency in processing conjunctions of features.
Tales, A; Butler, S R; Fossey, J; Gilchrist, I D; Jones, R W; Troscianko, T
2002-01-01
Human vision often needs to encode multiple characteristics of many elements of the visual field, for example their lightness and orientation. The paradigm of visual search allows a quantitative assessment of the function of the underlying mechanisms. It measures the ability to detect a target element among a set of distractor elements. We asked whether Alzheimer's disease (AD) patients are particularly affected in one type of search, where the target is defined by a conjunction of features (orientation and lightness) and where performance depends on some shifting of attention. Two non-conjunction control conditions were employed. The first was a pre-attentive, single-feature, "pop-out" task, detecting a vertical target among horizontal distractors. The second was a single-feature, partly attentive task in which the target element was slightly larger than the distractors-a "size" task. This was chosen to have a similar level of attentional load as the conjunction task (for the control group), but lacked the conjunction of two features. In an experiment, 15 AD patients were compared to age-matched controls. The results suggested that AD patients have a particular impairment in the conjunction task but not in the single-feature size or pre-attentive tasks. This may imply that AD particularly affects those mechanisms which compare across more than one feature type, and spares the other systems and is not therefore simply an 'attention-related' impairment. Additionally, these findings show a double dissociation with previous data on visual search in Parkinson's disease (PD), suggesting a different effect of these diseases on the visual pathway.
High-level, but not low-level, motion perception is impaired in patients with schizophrenia.
Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia
2013-01-01
Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.
Visual Search Elicits the Electrophysiological Marker of Visual Working Memory
Emrich, Stephen M.; Al-Aidroos, Naseem; Pratt, Jay; Ferber, Susanne
2009-01-01
Background Although limited in capacity, visual working memory (VWM) plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA), which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements. Methodology/Principal Findings The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency. Conclusions/Significance We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors. PMID:19956663
Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G
2017-03-01
We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.
Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning.
Shibata, Kazuhisa; Sasaki, Yuka; Kawato, Mitsuo; Watanabe, Takeo
2016-09-01
Visual perceptual learning (VPL) is long-term performance improvement as a result of perceptual experience. It is unclear whether VPL is associated with refinement in representations of the trained feature (feature-based plasticity), improvement in processing of the trained task (task-based plasticity), or both. Here, we provide empirical evidence that VPL of motion detection is associated with both types of plasticity which occur predominantly in different brain areas. Before and after training on a motion detection task, subjects' neural responses to the trained motion stimuli were measured using functional magnetic resonance imaging. In V3A, significant response changes after training were observed specifically to the trained motion stimulus but independently of whether subjects performed the trained task. This suggests that the response changes in V3A represent feature-based plasticity in VPL of motion detection. In V1 and the intraparietal sulcus, significant response changes were found only when subjects performed the trained task on the trained motion stimulus. This suggests that the response changes in these areas reflect task-based plasticity. These results collectively suggest that VPL of motion detection is associated with the 2 types of plasticity, which occur in different areas and therefore have separate mechanisms at least to some degree. © The Author 2016. Published by Oxford University Press.
Previous work showed that trichloroethylene (TCE) impairs sustained attention as evidenced by a reduction in accuracy and elevation of response latencies in rats trained to perform a visual signal detection task (SDT). This work also showed that these effects abate during repeat...
Making the Invisible Visible: Verbal but Not Visual Cues Enhance Visual Detection
Lupyan, Gary; Spivey, Michael J.
2010-01-01
Background Can hearing a word change what one sees? Although visual sensitivity is known to be enhanced by attending to the location of the target, perceptual enhancements of following cues to the identity of an object have been difficult to find. Here, we show that perceptual sensitivity is enhanced by verbal, but not visual cues. Methodology/Principal Findings Participants completed an object detection task in which they made an object-presence or -absence decision to briefly-presented letters. Hearing the letter name prior to the detection task increased perceptual sensitivity (d′). A visual cue in the form of a preview of the to-be-detected letter did not. Follow-up experiments found that the auditory cuing effect was specific to validly cued stimuli. The magnitude of the cuing effect positively correlated with an individual measure of vividness of mental imagery; introducing uncertainty into the position of the stimulus did not reduce the magnitude of the cuing effect, but eliminated the correlation with mental imagery. Conclusions/Significance Hearing a word made otherwise invisible objects visible. Interestingly, seeing a preview of the target stimulus did not similarly enhance detection of the target. These results are compatible with an account in which auditory verbal labels modulate lower-level visual processing. The findings show that a verbal cue in the form of hearing a word can influence even the most elementary visual processing and inform our understanding of how language affects perception. PMID:20628646
Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.
Saiki, Jun; Miyatsuji, Hirofumi
2009-03-23
Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.
MacKay, Donald G; James, Lori E
2009-10-01
Two experiments compared the visual cognition performance of amnesic H.M. and memory-normal controls matched for age, background, intelligence, and education. In Experiment 1 H.M. exhibited deficits relative to the controls in detecting "erroneous objects" in complex visual scenes--for example, a bird flying inside a fishbowl. In Experiment 2 H.M. exhibited deficits relative to the controls in standard Hidden-Figure tasks when detecting unfamiliar targets but not when detecting familiar targets--for example, circles, squares, and right-angle triangles. H.M.'s visual cognition deficits were not due to his well-known problems in explicit learning and recall, inability to comprehend or remember the instructions, general slowness, motoric difficulties, low motivation, low IQ relative to the controls, or working-memory limitations. Parallels between H.M.'s selective deficits in visual cognition, language, and memory are discussed. These parallels contradict the standard "systems theory" account of H.M.'s condition but comport with the hypothesis that H.M. has difficulty representing unfamiliar but not familiar information in visual cognition, language, and memory. Implications of our results are discussed for binding theory and the ongoing debate over what counts as "memory" versus "not-memory."
Nishiyama, Megumi; Kawaguchi, Jun
2014-11-01
To clarify the relationship between visual long-term memory (VLTM) and online visual processing, we investigated whether and how VLTM involuntarily affects the performance of a one-shot change detection task using images consisting of six meaningless geometric objects. In the study phase, participants observed pre-change (Experiment 1), post-change (Experiment 2), or both pre- and post-change (Experiment 3) images appearing in the subsequent change detection phase. In the change detection phase, one object always changed between pre- and post-change images and participants reported which object was changed. Results showed that VLTM of pre-change images enhanced the performance of change detection, while that of post-change images decreased accuracy. Prior exposure to both pre- and post-change images did not influence performance. These results indicate that pre-change information plays an important role in change detection, and that information in VLTM related to the current task does not always have a positive effect on performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Human visual system-based smoking event detection
NASA Astrophysics Data System (ADS)
Odetallah, Amjad D.; Agaian, Sos S.
2012-06-01
Human action (e.g. smoking, eating, and phoning) analysis is an important task in various application domains like video surveillance, video retrieval, human-computer interaction systems, and so on. Smoke detection is a crucial task in many video surveillance applications and could have a great impact to raise the level of safety of urban areas, public parks, airplanes, hospitals, schools and others. The detection task is challenging since there is no prior knowledge about the object's shape, texture and color. In addition, its visual features will change under different lighting and weather conditions. This paper presents a new scheme of a system for detecting human smoking events, or small smoke, in a sequence of images. In developed system, motion detection and background subtraction are combined with motion-region-saving, skin-based image segmentation, and smoke-based image segmentation to capture potential smoke regions which are further analyzed to decide on the occurrence of smoking events. Experimental results show the effectiveness of the proposed approach. As well, the developed method is capable of detecting the small smoking events of uncertain actions with various cigarette sizes, colors, and shapes.
No psychological effect of color context in a low level vision task
Pedley, Adam; Wade, Alex R
2013-01-01
Background: A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Methods: Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task. Results: A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η 2 = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. Discussion: We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas. PMID:25075280
No psychological effect of color context in a low level vision task.
Pedley, Adam; Wade, Alex R
2013-01-01
A remarkable series of recent papers have shown that colour can influence performance in cognitive tasks. In particular, they suggest that viewing a participant number printed in red ink or other red ancillary stimulus elements improves performance in tasks requiring local processing and impedes performance in tasks requiring global processing whilst the reverse is true for the colour blue. The tasks in these experiments require high level cognitive processing such as analogy solving or remote association tests and the chromatic effect on local vs. global processing is presumed to involve widespread activation of the autonomic nervous system. If this is the case, we might expect to see similar effects on all local vs. global task comparisons. To test this hypothesis, we asked whether chromatic cues also influence performance in tasks involving low level visual feature integration. Subjects performed either local (contrast detection) or global (form detection) tasks on achromatic dynamic Glass pattern stimuli. Coloured instructions, target frames and fixation points were used to attempt to bias performance to different task types. Based on previous literature, we hypothesised that red cues would improve performance in the (local) contrast detection task but would impede performance in the (global) form detection task. A two-way, repeated measures, analysis of covariance (2×2 ANCOVA) with gender as a covariate, revealed no influence of colour on either task, F(1,29) = 0.289, p = 0.595, partial η (2) = 0.002. Additional analysis revealed no significant differences in only the first attempts of the tasks or in the improvement in performance between trials. We conclude that motivational processes elicited by colour perception do not influence neuronal signal processing in the early visual system, in stark contrast to their putative effects on processing in higher areas.
Change blindness and visual memory: visual representations get rich and act poor.
Varakin, D Alexander; Levin, Daniel T
2006-02-01
Change blindness is often taken as evidence that visual representations are impoverished, while successful recognition of specific objects is taken as evidence that they are richly detailed. In the current experiments, participants performed cover tasks that required each object in a display to be attended. Change detection trials were unexpectedly introduced and surprise recognition tests were given for nonchanging displays. For both change detection and recognition, participants had to distinguish objects from the same basic-level category, making it likely that specific visual information had to be used for successful performance. Although recognition was above chance, incidental change detection usually remained at floor. These results help reconcile demonstrations of poor change detection with demonstrations of good memory because they suggest that the capability to store visual information in memory is not reflected by the visual system's tendency to utilize these representations for purposes of detecting unexpected changes.
An eye tracking investigation of color-location binding in infants' visual short-term memory.
Oakes, Lisa M; Baumgartner, Heidi A; Kanjlia, Shipra; Luck, Steven J
2017-01-01
Two experiments examined 8- and 10-month-old infants' ( N = 71) binding of object identity (color) and location information in visual short-term memory (VSTM) using a one-shot change detection task . Building on previous work using the simultaneous streams change detection task, we confirmed that 8- and 10-month-old infants are sensitive to changes in binding between identity and location in VSTM. Further, we demonstrated that infants recognize specifically what changed in these events. Thus, infants' VSTM for binding is robust and can be observed in different procedures and with different stimuli.
Short-term memory stores organized by information domain.
Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C
2016-04-01
Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.
Improving Visual Threat Detection: Research to Validate the Threat Detection Skills Trainer
2013-08-01
potential threats present in this scene and explain the meaning and implications of these threats. You have two minutes to write a response...could be due to the nature of the tasks or to fatigue. Requiring Soldiers to write answers on multiple trials, and across similar tasks, might have...tasks will likely be significantly different from those experienced in the trainer. This would remove the writing requirement over multiple trials
Neural Dynamics Underlying Target Detection in the Human Brain
Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.
2014-01-01
Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944
Image patch-based method for automated classification and detection of focal liver lesions on CT
NASA Astrophysics Data System (ADS)
Safdari, Mustafa; Pasari, Raghav; Rubin, Daniel; Greenspan, Hayit
2013-03-01
We developed a method for automated classification and detection of liver lesions in CT images based on image patch representation and bag-of-visual-words (BoVW). BoVW analysis has been extensively used in the computer vision domain to analyze scenery images. In the current work we discuss how it can be used for liver lesion classification and detection. The methodology includes building a dictionary for a training set using local descriptors and representing a region in the image using a visual word histogram. Two tasks are described: a classification task, for lesion characterization, and a detection task in which a scan window moves across the image and is determined to be normal liver tissue or a lesion. Data: In the classification task 73 CT images of liver lesions were used, 25 images having cysts, 24 having metastasis and 24 having hemangiomas. A radiologist circumscribed the lesions, creating a region of interest (ROI), in each of the images. He then provided the diagnosis, which was established either by biopsy or clinical follow-up. Thus our data set comprises 73 images and 73 ROIs. In the detection task, a radiologist drew ROIs around each liver lesion and two regions of normal liver, for a total of 159 liver lesion ROIs and 146 normal liver ROIs. The radiologist also demarcated the liver boundary. Results: Classification results of more than 95% were obtained. In the detection task, F1 results obtained is 0.76. Recall is 84%, with precision of 73%. Results show the ability to detect lesions, regardless of shape.
Ragan, Eric D.; Bowman, Doug A.; Kopper, Regis; ...
2015-02-13
Virtual reality training systems are commonly used in a variety of domains, and it is important to understand how the realism of a training simulation influences training effectiveness. The paper presents a framework for evaluating the effects of virtual reality fidelity based on an analysis of a simulation’s display, interaction, and scenario components. Following this framework, we conducted a controlled experiment to test the effects of fidelity on training effectiveness for a visual scanning task. The experiment varied the levels of field of view and visual realism during a training phase and then evaluated scanning performance with the simulator’s highestmore » level of fidelity. To assess scanning performance, we measured target detection and adherence to a prescribed strategy. The results show that both field of view and visual realism significantly affected target detection during training; higher field of view led to better performance and higher visual realism worsened performance. Additionally, the level of visual realism during training significantly affected learning of the prescribed visual scanning strategy, providing evidence that high visual realism was important for learning the technique. The results also demonstrate that task performance during training was not always a sufficient measure of mastery of an instructed technique. That is, if learning a prescribed strategy or skill is the goal of a training exercise, performance in a simulation may not be an appropriate indicator of effectiveness outside of training—evaluation in a more realistic setting may be necessary.« less
An Integrated Theory of Attention and Decision Making in Visual Signal Detection
ERIC Educational Resources Information Center
Smith, Philip L.; Ratcliff, Roger
2009-01-01
The simplest attentional task, detecting a cued stimulus in an otherwise empty visual field, produces complex patterns of performance. Attentional cues interact with backward masks and with spatial uncertainty, and there is a dissociation in the effects of these variables on accuracy and on response time. A computational theory of performance in…
Menzel, Claudia; Kovács, Gyula; Amado, Catarina; Hayn-Leichsenring, Gregor U; Redies, Christoph
2018-05-06
In complex abstract art, image composition (i.e., the artist's deliberate arrangement of pictorial elements) is an important aesthetic feature. We investigated whether the human brain detects image composition in abstract artworks automatically (i.e., independently of the experimental task). To this aim, we studied whether a group of 20 original artworks elicited a visual mismatch negativity when contrasted with a group of 20 images that were composed of the same pictorial elements as the originals, but in shuffled arrangements, which destroy artistic composition. We used a passive oddball paradigm with parallel electroencephalogram recordings to investigate the detection of image type-specific properties. We observed significant deviant-standard differences for the shuffled and original images, respectively. Furthermore, for both types of images, differences in amplitudes correlated with the behavioral ratings of the images. In conclusion, we show that the human brain can detect composition-related image properties in visual artworks in an automatic fashion. Copyright © 2018 Elsevier B.V. All rights reserved.
Vos, Leia; Whitman, Douglas
2014-01-01
A considerable literature suggests that the right hemisphere is dominant in vigilance for novel and survival-related stimuli, such as predators, across a wide range of species. In contrast to vigilance for change, change blindness is a failure to detect obvious changes in a visual scene when they are obscured by a disruption in scene presentation. We studied lateralised change detection using a series of scenes with salient changes in either the left or right visual fields. In Study 1 left visual field changes were detected more rapidly than right visual field changes, confirming a right hemisphere advantage for change detection. Increasing stimulus difficulty resulted in greater right visual field detections and left hemisphere detection was more likely when change occurred in the right visual field on a prior trial. In Study 2 an intervening distractor task disrupted the influence of prior trials. Again, faster detection speeds were observed for the left visual field changes with a shift to a right visual field advantage with increasing time-to-detection. This suggests that a right hemisphere role for vigilance, or catching attention, and a left hemisphere role for target evaluation, or maintaining attention, is present at the earliest stage of change detection.
Gaze movements and spatial working memory in collision avoidance: a traffic intersection task
Hardiess, Gregor; Hansmann-Roth, Sabrina; Mallot, Hanspeter A.
2013-01-01
Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements) the overall task for the subjects was to predict the potential-of-collision (POC) of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing). In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (1) which sensory variables can be identified supporting adequate collision detection? (2) How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (3) how do they correlate with task performance? (4) How do patients with homonymous visual field defects (HVFDs) use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined operation of external (bottom-up) and internal (top-down) cues in a traffic intersection task. PMID:23760667
Zhao, Nan; Chen, Wenfeng; Xuan, Yuming; Mehler, Bruce; Reimer, Bryan; Fu, Xiaolan
2014-01-01
The 'looked-but-failed-to-see' phenomenon is crucial to driving safety. Previous research utilising change detection tasks related to driving has reported inconsistent effects of driver experience on the ability to detect changes in static driving scenes. Reviewing these conflicting results, we suggest that drivers' increased ability to detect changes will only appear when the task requires a pattern of visual attention distribution typical of actual driving. By adding a distant fixation point on the road image, we developed a modified change blindness paradigm and measured detection performance of drivers and non-drivers. Drivers performed better than non-drivers only in scenes with a fixation point. Furthermore, experience effect interacted with the location of the change and the relevance of the change to driving. These results suggest that learning associated with driving experience reflects increased skill in the efficient distribution of visual attention across both the central focus area and peripheral objects. This article provides an explanation for the previously conflicting reports of driving experience effects in change detection tasks. We observed a measurable benefit of experience in static driving scenes, using a modified change blindness paradigm. These results have translational opportunities for picture-based training and testing tools to improve driver skill.
Detecting gradual visual changes in colour and brightness agnosia: a double dissociation.
Nijboer, Tanja C W; te Pas, Susan F; van der Smagt, Maarten J
2011-03-09
Two patients, one with colour agnosia and one with brightness agnosia, performed a task that required the detection of gradual temporal changes in colour and brightness. The results for these patients, who showed anaverage or an above-average performance on several tasks designed to test low-level colour and luminance (contrast) perception in the spatial domain, yielded a double dissociation; the brightness agnosic patient was within the normal range for the coloured stimuli, but much slower to detect brightness differences, whereas the colour agnosic patient was within the normal range for the achromatic stimuli, but much slower for the coloured stimuli. These results suggest that a modality-specific impairment in the detection of gradual temporal changes might be related to, if not underlie, the phenomenon of visual agnosia.
FMRI of visual working memory in high school football players.
Shenk, Trey E; Robinson, Meghan E; Svaldi, Diana O; Abbas, Kausar; Breedlove, Katherine M; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M
2015-01-01
Visual working memory deficits have been observed in at-risk athletes. This study uses a visual N-back working memory functional magnetic resonance imaging task to longitudinally assess asymptomatic football athletes for abnormal activity. Athletes were increasingly "flagged" as the season progressed. Flagging may provide early detection of injury.
Classification of change detection and change blindness from near-infrared spectroscopy signals
NASA Astrophysics Data System (ADS)
Tanaka, Hirokazu; Katura, Takusige
2011-08-01
Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.
Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.
Andrews, T J; Coppola, D M
1999-08-01
Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.
Supèr, Hans; Lamme, Victor A F
2007-06-01
When and where are decisions made? In the visual system a saccade, which is a fast shift of gaze toward a target in the visual scene, is the behavioral outcome of a decision. Current neurophysiological data and reaction time models show that saccadic reaction times are determined by a build-up of activity in motor-related structures, such as the frontal eye fields. These structures depend on the sensory evidence of the stimulus. Here we use a delayed figure-ground detection task to show that late modulated activity in the visual cortex (V1) predicts saccadic reaction time. This predictive activity is part of the process of figure-ground segregation and is specific for the saccade target location. These observations indicate that sensory signals are directly involved in the decision of when and where to look.
The Effects of Load Carriage and Physical Fatigue on Cognitive Performance
Eddy, Marianna D.; Hasselquist, Leif; Giles, Grace; Hayes, Jacqueline F.; Howe, Jessica; Rourke, Jennifer; Coyne, Megan; O’Donovan, Meghan; Batty, Jessica; Brunyé, Tad T.; Mahoney, Caroline R.
2015-01-01
In the current study, ten participants walked for two hours while carrying no load or a 40 kg load. During the second hour, treadmill grade was manipulated between a constant downhill or changing between flat, uphill, and downhill grades. Throughout the prolonged walk, participants performed two cognitive tasks, an auditory go no/go task and a visual target detection task. The main findings were that the number of false alarms increased over time in the loaded condition relative to the unloaded condition on the go no/go auditory task. There were also shifts in response criterion towards responding yes and decreased sensitivity in responding in the loaded condition compared to the unloaded condition. In the visual target detection there were no reliable effects of load carriage in the overall analysis however, there were slower reaction times in the loaded compared to unloaded condition during the second hour. PMID:26154515
Driver landmark and traffic sign identification in early Alzheimer's disease.
Uc, E Y; Rizzo, M; Anderson, S W; Shi, Q; Dawson, J D
2005-06-01
To assess visual search and recognition of roadside targets and safety errors during a landmark and traffic sign identification task in drivers with Alzheimer's disease. 33 drivers with probable Alzheimer's disease of mild severity and 137 neurologically normal older adults underwent a battery of visual and cognitive tests and were asked to report detection of specific landmarks and traffic signs along a segment of an experimental drive. The drivers with mild Alzheimer's disease identified significantly fewer landmarks and traffic signs and made more at-fault safety errors during the task than control subjects. Roadside target identification performance and safety errors were predicted by scores on standardised tests of visual and cognitive function. Drivers with Alzheimer's disease are impaired in a task of visual search and recognition of roadside targets; the demands of these targets on visual perception, attention, executive functions, and memory probably increase the cognitive load, worsening driving safety.
Saito, Atsuko; Hamada, Hiroki; Kikusui, Takefumi; Mogi, Kazutaka; Nagasawa, Miho; Mitsui, Shohei; Higuchi, Takashi; Hasegawa, Toshikazu; Hiraki, Kazuo
2014-01-01
The neuropeptide oxytocin plays a central role in prosocial and parental behavior in non-human mammals as well as humans. It has been suggested that oxytocin may affect visual processing of infant faces and emotional reaction to infants. Healthy male volunteers (N = 13) were tested for their ability to detect infant or adult faces among adult or infant faces (facial visual search task). Urine samples were collected from all participants before the study to measure the concentration of oxytocin. Urinary oxytocin positively correlated with performance in the facial visual search task. However, task performance and its correlation with oxytocin concentration did not differ between infant faces and adult faces. Our data suggests that endogenous oxytocin is related to facial visual cognition, but does not promote infant-specific responses in unmarried men who are not fathers.
Pailian, Hrag; Halberda, Justin
2015-04-01
We investigated the psychometric properties of the one-shot change detection task for estimating visual working memory (VWM) storage capacity-and also introduced and tested an alternative flicker change detection task for estimating these limits. In three experiments, we found that the one-shot whole-display task returns estimates of VWM storage capacity (K) that are unreliable across set sizes-suggesting that the whole-display task is measuring different things at different set sizes. In two additional experiments, we found that the one-shot single-probe variant shows improvements in the reliability and consistency of K estimates. In another additional experiment, we found that a one-shot whole-display-with-click task (requiring target localization) also showed improvements in reliability and consistency. The latter results suggest that the one-shot task can return reliable and consistent estimates of VWM storage capacity (K), and they highlight the possibility that the requirement to localize the changed target is what engenders this enhancement. Through a final series of four experiments, we introduced and tested an alternative flicker change detection method that also requires the observer to localize the changing target and that generates, from response times, an estimate of VWM storage capacity (K). We found that estimates of K from the flicker task correlated with estimates from the traditional one-shot task and also had high reliability and consistency. We highlight the flicker method's ability to estimate executive functions as well as VWM storage capacity, and discuss the potential for measuring multiple abilities with the one-shot and flicker tasks.
Contingent capture of involuntary visual attention interferes with detection of auditory stimuli
Kamke, Marc R.; Harris, Jill
2014-01-01
The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality. PMID:24920945
Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.
Kamke, Marc R; Harris, Jill
2014-01-01
The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.
Does scene context always facilitate retrieval of visual object representations?
Nakashima, Ryoichi; Yokosawa, Kazuhiko
2011-04-01
An object-to-scene binding hypothesis maintains that visual object representations are stored as part of a larger scene representation or scene context, and that scene context facilitates retrieval of object representations (see, e.g., Hollingworth, Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 58-69, 2006). Support for this hypothesis comes from data using an intentional memory task. In the present study, we examined whether scene context always facilitates retrieval of visual object representations. In two experiments, we investigated whether the scene context facilitates retrieval of object representations, using a new paradigm in which a memory task is appended to a repeated-flicker change detection task. Results indicated that in normal scene viewing, in which many simultaneous objects appear, scene context facilitation of the retrieval of object representations-henceforth termed object-to-scene binding-occurred only when the observer was required to retain much information for a task (i.e., an intentional memory task).
Color categories affect pre-attentive color perception.
Clifford, Alexandra; Holmes, Amanda; Davies, Ian R L; Franklin, Anna
2010-10-01
Categorical perception (CP) of color is the faster and/or more accurate discrimination of colors from different categories than equivalently spaced colors from the same category. Here, we investigate whether color CP at early stages of chromatic processing is independent of top-down modulation from attention. A visual oddball task was employed where frequent and infrequent colored stimuli were either same- or different-category, with chromatic differences equated across conditions. Stimuli were presented peripheral to a central distractor task to elicit an event-related potential (ERP) known as the visual mismatch negativity (vMMN). The vMMN is an index of automatic and pre-attentive visual change detection arising from generating loci in visual cortices. The results revealed a greater vMMN for different-category than same-category change detection when stimuli appeared in the lower visual field, and an absence of attention-related ERP components. The findings provide the first clear evidence for an automatic and pre-attentive categorical code for color. Copyright © 2010 Elsevier B.V. All rights reserved.
Applying the metro map to software development management
NASA Astrophysics Data System (ADS)
Aguirregoitia, Amaia; Dolado, J. Javier; Presedo, Concepción
2010-01-01
This paper presents MetroMap, a new graphical representation model for controlling and managing the software development process. Metromap uses metaphors and visual representation techniques to explore several key indicators in order to support problem detection and resolution. The resulting visualization addresses diverse management tasks, such as tracking of deviations from the plan, analysis of patterns of failure detection and correction, overall assessment of change management policies, and estimation of product quality. The proposed visualization uses a metaphor with a metro map along with various interactive techniques to represent information concerning the software development process and to deal efficiently with multivariate visual queries. Finally, the paper shows the implementation of the tool in JavaFX with data of a real project and the results of testing the tool with the aforementioned data and users attempting several information retrieval tasks. The conclusion shows the results of analyzing user response time and efficiency using the MetroMap visualization system. The utility of the tool was positively evaluated.
Understanding the visual skills and strategies of train drivers in the urban rail environment.
Naweed, Anjum; Balakrishnan, Ganesh
2014-01-01
Due to the growth of information in the urban rail environment, there is a need to better understand the ergonomics profile underpinning the visual behaviours in train drivers. The aim of this study was to examine the tasks and activities of urban/metropolitan passenger train drivers in order to better understand the nature of the visual demands in their task activities. Data were collected from 34 passenger train drivers in four different Australian states. The research approach used a novel participative ergonomics methodology that fused interviews and observations with generative tools. Data analysis was conducted thematically. Results suggested participants did not so much drive their trains, as manage the intensity of visually demanding work held in their environment. The density of this information and the opacity of the task, invoked an ergonomics profile more closely aligned with diagnostic and error detection than actual train regulation. The paper discusses the relative proportion of strategies corresponding with specific tasks, the visual-perceptual load in substantive activities, and the requisite visual skills behoving navigation in the urban rail environment. These findings provide the basis for developing measures of complexity to further specify the visual demands in passenger train driving.
Acquisition of a visual discrimination and reversal learning task by Labrador retrievers.
Lazarowski, Lucia; Foster, Melanie L; Gruen, Margaret E; Sherman, Barbara L; Case, Beth C; Fish, Richard E; Milgram, Norton W; Dorman, David C
2014-05-01
Optimal cognitive ability is likely important for military working dogs (MWD) trained to detect explosives. An assessment of a dog's ability to rapidly learn discriminations might be useful in the MWD selection process. In this study, visual discrimination and reversal tasks were used to assess cognitive performance in Labrador retrievers selected for an explosives detection program using a modified version of the Toronto General Testing Apparatus (TGTA), a system developed for assessing performance in a battery of neuropsychological tests in canines. The results of the current study revealed that, as previously found with beagles tested using the TGTA, Labrador retrievers (N = 16) readily acquired both tasks and learned the discrimination task significantly faster than the reversal task. The present study confirmed that the modified TGTA system is suitable for cognitive evaluations in Labrador retriever MWDs and can be used to further explore effects of sex, phenotype, age, and other factors in relation to canine cognition and learning, and may provide an additional screening tool for MWD selection.
The role of visual attention in predicting driving impairment in older adults.
Hoffman, Lesa; McDowd, Joan M; Atchley, Paul; Dubinsky, Richard
2005-12-01
This study evaluated the role of visual attention (as measured by the DriverScan change detection task and the Useful Field of View Test [UFOV]) in the prediction of driving impairment in 155 adults between the ages of 63 and 87. In contrast to previous research, participants were not oversampled for visual impairment or history of automobile accidents. Although a history of automobile accidents within the past 3 years could not be predicted using any variable, driving performance in a low-fidelity simulator could be significantly predicted by performance in the change detection task and by the divided and selection attention subtests of the UFOV in structural equation models. The sensitivity and specificity of each measure in identifying at-risk drivers were also evaluated with receiver operating characteristic curves.
Target detection in insects: optical, neural and behavioral optimizations.
Gonzalez-Bellido, Paloma T; Fabian, Samuel T; Nordström, Karin
2016-12-01
Motion vision provides important cues for many tasks. Flying insects, for example, may pursue small, fast moving targets for mating or feeding purposes, even when these are detected against self-generated optic flow. Since insects are small, with size-constrained eyes and brains, they have evolved to optimize their optical, neural and behavioral target visualization solutions. Indeed, even if evolutionarily distant insects display different pursuit strategies, target neuron physiology is strikingly similar. Furthermore, the coarse spatial resolution of the insect compound eye might actually be beneficial when it comes to detection of moving targets. In conclusion, tiny insects show higher than expected performance in target visualization tasks. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research. PMID:29618999
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments.
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research.
Sensitivity of the lane change test as a measure of in-vehicle system demand.
Young, Kristie L; Lenné, Michael G; Williamson, Amy R
2011-05-01
The Lane Change Test (LCT) is one of the growing number of methods developed to quantify driving performance degradation brought about by the use of in-vehicle devices. Beyond its validity and reliability, for such a test to be of practical use, it must also be sensitive to the varied demands of individual tasks. The current study evaluated the ability of several recent LCT lateral control and event detection parameters to discriminate between visual-manual and cognitive surrogate In-Vehicle Information System tasks with different levels of demand. Twenty-seven participants (mean age 24.4 years) completed a PC version of the LCT while performing visual search and math problem solving tasks. A number of the lateral control metrics were found to be sensitive to task differences, but the event detection metrics were less able to discriminate between tasks. The mean deviation and lane excursion measures were able to distinguish between the visual and cognitive tasks, but were less sensitive to the different levels of task demand. The other LCT metrics examined were less sensitive to task differences. A major factor influencing the sensitivity of at least some of the LCT metrics could be the type of lane change instructions given to participants. The provision of clear and explicit lane change instructions and further refinement of its metrics will be essential for increasing the utility of the LCT as an evaluation tool. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Enhanced visual performance in obsessive compulsive personality disorder.
Ansari, Zohreh; Fadardi, Javad Salehi
2016-12-01
Visual performance is considered as commanding modality in human perception. We tested whether Obsessive-compulsive personality disorder (OCPD) people do differently in visual performance tasks than people without OCPD. One hundred ten students of Ferdowsi University of Mashhad and non-student participants were tested by Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II), among whom 18 (mean age = 29.55; SD = 5.26; 84% female) met the criteria for OCPD classification; controls were 20 persons (mean age = 27.85; SD = 5.26; female = 84%), who did not met the OCPD criteria. Both groups were tested on a modified Flicker task for two dimensions of visual performance (i.e., visual acuity: detecting the location of change, complexity, and size; and visual contrast sensitivity). The OCPD group had responded more accurately on pairs related to size, complexity, and contrast, but spent more time to detect a change on pairs related to complexity and contrast. The OCPD individuals seem to have more accurate visual performance than non-OCPD controls. The findings support the relationship between personality characteristics and visual performance within the framework of top-down processing model. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Exogenous Attention Influences Visual Short-Term Memory in Infants
ERIC Educational Resources Information Center
Ross-Sheehy, Shannon; Oakes, Lisa M.; Luck, Steven J.
2011-01-01
Two experiments examined the hypothesis that developing visual attentional mechanisms influence infants' Visual Short-Term Memory (VSTM) in the context of multiple items. Five- and 10-month-old infants (N = 76) received a change detection task in which arrays of three differently colored squares appeared and disappeared. On each trial one square…
Infant Face Preferences after Binocular Visual Deprivation
ERIC Educational Resources Information Center
Mondloch, Catherine J.; Lewis, Terri L.; Levin, Alex V.; Maurer, Daphne
2013-01-01
Early visual deprivation impairs some, but not all, aspects of face perception. We investigated the possible developmental roots of later abnormalities by using a face detection task to test infants treated for bilateral congenital cataract within 1 hour of their first focused visual input. The seven patients were between 5 and 12 weeks old…
The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex.
Poort, Jasper; Raudies, Florian; Wannig, Aurel; Lamme, Victor A F; Neumann, Heiko; Roelfsema, Pieter R
2012-07-12
Our visual system segments images into objects and background. Figure-ground segregation relies on the detection of feature discontinuities that signal boundaries between the figures and the background and on a complementary region-filling process that groups together image regions with similar features. The neuronal mechanisms for these processes are not well understood and it is unknown how they depend on visual attention. We measured neuronal activity in V1 and V4 in a task where monkeys either made an eye movement to texture-defined figures or ignored them. V1 activity predicted the timing and the direction of the saccade if the figures were task relevant. We found that boundary detection is an early process that depends little on attention, whereas region filling occurs later and is facilitated by visual attention, which acts in an object-based manner. Our findings are explained by a model with local, bottom-up computations for boundary detection and feedback processing for region filling. Copyright © 2012 Elsevier Inc. All rights reserved.
[Eccentricity-dependent influence of amodal completion on visual search].
Shirama, Aya; Ishiguchi, Akira
2009-06-01
Does amodal completion occur homogeneously across the visual field? Rensink and Enns (1998) found that visual search for efficiently-detected fragments became inefficient when observers perceived the fragments as a partially-occluded version of a distractor due to a rapid completion process. We examined the effect of target eccentricity in Rensink and Enns's tasks and a few additional tasks by magnifying the stimuli in the peripheral visual field to compensate for the loss of spatial resolution (M-scaling; Rovamo & Virsu, 1979). We found that amodal completion disrupted the efficient search for the salient fragments (i.e., target) even when the target was presented at high eccentricity (within 17 deg). In addition, the configuration effect of the fragments, which produced amodal completion, increased with eccentricity while the same target was detected efficiently at the lowest eccentricity. This eccentricity effect is different from a previously-reported eccentricity effect where M-scaling was effective (Carrasco & Frieder, 1997). These findings indicate that the visual system has a basis for rapid completion across the visual field, but the stimulus representations constructed through amodal completion have eccentricity-dependent properties.
Encoding of Target Detection during Visual Search by Single Neurons in the Human Brain.
Wang, Shuo; Mamelak, Adam N; Adolphs, Ralph; Rutishauser, Ueli
2018-06-08
Neurons in the primate medial temporal lobe (MTL) respond selectively to visual categories such as faces, contributing to how the brain represents stimulus meaning. However, it remains unknown whether MTL neurons continue to encode stimulus meaning when it changes flexibly as a function of variable task demands imposed by goal-directed behavior. While classically associated with long-term memory, recent lesion and neuroimaging studies show that the MTL also contributes critically to the online guidance of goal-directed behaviors such as visual search. Do such tasks modulate responses of neurons in the MTL, and if so, do their responses mirror bottom-up input from visual cortices or do they reflect more abstract goal-directed properties? To answer these questions, we performed concurrent recordings of eye movements and single neurons in the MTL and medial frontal cortex (MFC) in human neurosurgical patients performing a memory-guided visual search task. We identified a distinct population of target-selective neurons in both the MTL and MFC whose response signaled whether the currently fixated stimulus was a target or distractor. This target-selective response was invariant to visual category and predicted whether a target was detected or missed behaviorally during a given fixation. The response latencies, relative to fixation onset, of MFC target-selective neurons preceded those in the MTL by ∼200 ms, suggesting a frontal origin for the target signal. The human MTL thus represents not only fixed stimulus identity, but also task-specified stimulus relevance due to top-down goal relevance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tillmann, Julian; Swettenham, John
2017-02-01
Previous studies examining selective attention in individuals with autism spectrum disorder (ASD) have yielded conflicting results, some suggesting superior focused attention (e.g., on visual search tasks), others demonstrating greater distractibility. This pattern could be accounted for by the proposal (derived by applying the Load theory of attention, e.g., Lavie, 2005) that ASD is characterized by an increased perceptual capacity (Remington, Swettenham, Campbell, & Coleman, 2009). Recent studies in the visual domain support this proposal. Here we hypothesize that ASD involves an enhanced perceptual capacity that also operates across sensory modalities, and test this prediction, for the first time using a signal detection paradigm. Seventeen neurotypical (NT) and 15 ASD adolescents performed a visual search task under varying levels of visual perceptual load while simultaneously detecting presence/absence of an auditory tone embedded in noise. Detection sensitivity (d') for the auditory stimulus was similarly high for both groups in the low visual perceptual load condition (e.g., 2 items: p = .391, d = 0.31, 95% confidence interval [CI] [-0.39, 1.00]). However, at a higher level of visual load, auditory d' reduced for the NT group but not the ASD group, leading to a group difference (p = .002, d = 1.2, 95% CI [0.44, 1.96]). As predicted, when visual perceptual load was highest, both groups then showed a similarly low auditory d' (p = .9, d = 0.05, 95% CI [-0.65, 0.74]). These findings demonstrate that increased perceptual capacity in ASD operates across modalities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Koefoed, Vilhelm F; Assmuss, Jörg; Høvding, Gunnar
2018-03-25
To examine the relevance of visual acuity (VA) and index of contrast sensitivity (ICS) as predictors for visual observation task performance in a maritime environment. Sixty naval cadets were recruited to a study on observation tasks in a simulated maritime environment under three different light settings. Their ICS were computed based on contrast sensitivity (CS) data recorded by Optec 6500 and CSV-1000E CS tests. The correlation between object identification distance and VA/ICS was examined by stepwise linear regression. The object detection distance was significantly correlated to the level of environmental light (p < 0.001), but not to the VA or ICS recorded in the test subjects. Female cadets had a significantly shorter target identification range than the male cadets. Neither CS nor VA were found to be significantly correlated to observation task performance. This apparent absence of proven predictive value of visual parameters for observation tasks in a maritime environment may presumably be ascribed to the normal and uniform visual capacity in all our study subjects. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Liao, Pin-Chao; Sun, Xinlu; Liu, Mei; Shih, Yu-Nien
2018-01-11
Navigated safety inspection based on task-specific checklists can increase the hazard detection rate, theoretically with interference from scene complexity. Visual clutter, a proxy of scene complexity, can theoretically impair visual search performance, but its impact on the effect of safety inspection performance remains to be explored for the optimization of navigated inspection. This research aims to explore whether the relationship between working memory and hazard detection rate is moderated by visual clutter. Based on a perceptive model of hazard detection, we: (a) developed a mathematical influence model for construction hazard detection; (b) designed an experiment to observe the performance of hazard detection rate with adjusted working memory under different levels of visual clutter, while using an eye-tracking device to observe participants' visual search processes; (c) utilized logistic regression to analyze the developed model under various visual clutter. The effect of a strengthened working memory on the detection rate through increased search efficiency is more apparent in high visual clutter. This study confirms the role of visual clutter in construction-navigated inspections, thus serving as a foundation for the optimization of inspection planning.
Hino, Yasushi; Kusunose, Yuu; Miyamura, Shinobu; Lupker, Stephen J
2017-01-01
In most models of word processing, the degrees of consistency in the mappings between orthographic, phonological, and semantic representations are hypothesized to affect reading time. Following Hino, Miyamura, and Lupker's (2011) examination of the orthographic-phonological (O-P) and orthographic-semantic (O-S) consistency for 1,114 Japanese words (339 katakana and 775 kanji words), in the present research, we initially attempted to measure the phonological-orthographic (P-O) consistency for those same words. In contrast to the O-P and O-S consistencies, which were equivalent for kanji and katakana words, the P-O relationships were much more inconsistent for the kanji words than for the katakana words. The impact of kanji words' P-O consistency was then examined in both visual and auditory word recognition tasks. Although there was no effect of P-O consistency in the standard visual lexical-decision task, significant effects were detected in a lexical-decision task with auditory stimuli, in a perceptual identification task using masked visual stimuli, and in a lexical-decision task with degraded visual stimuli. The implications of these results are discussed in terms of the impact of P-O consistency in auditory and visual word recognition. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Do People Take Stimulus Correlations into Account in Visual Search (Open Source)
2016-03-10
RESEARCH ARTICLE Do People Take Stimulus Correlations into Account in Visual Search ? Manisha Bhardwaj1, Ronald van den Berg2,3, Wei Ji Ma2,4...visual search experiments, distractors are often statistically independent of each other. However, stimuli in more naturalistic settings are often...contribute to bridging the gap between artificial and natural visual search tasks. Introduction Visual target detection in displays consisting of multiple
Computational Modeling of Age-Differences In a Visually Demanding Driving Task: Vehicle Detection
1997-10-07
overall estimate of d’ for each scene was calculated from the two levels using the method described in MacMillan and Creelman [13]. MODELING VEHICLE...Scialfa, "Visual and auditory aging," In J. Birren & K. W. Schaie (Eds.) Handbook of the Psychology of Aging (4th edition), 1996, New York: Academic...Computational models of Visual Processing, 1991, Boston MA: MIT Press. [13] N. A. MacMillan & C. D. Creelman , Detection Theory: A User’s Guide, 1991
Nieuwenstein, Mark; Wyble, Brad
2014-06-01
While studies on visual memory commonly assume that the consolidation of a visual stimulus into working memory is interrupted by a trailing mask, studies on dual-task interference suggest that the consolidation of a stimulus can continue for several hundred milliseconds after a mask. As a result, estimates of the time course of working memory consolidation differ more than an order of magnitude. Here, we contrasted these opposing views by examining if and for how long the processing of a masked display of visual stimuli can be disturbed by a trailing 2-alternative forced choice task (2-AFC; a color discrimination task or a visual or auditory parity judgment task). The results showed that the presence of the 2-AFC task produced a pronounced retroactive interference effect that dissipated across stimulus onset asynchronies of 250-1,000 ms, indicating that the processing elicited by the 2-AFC task interfered with the gradual consolidation of the earlier shown stimuli. Furthermore, this interference effect occurred regardless of whether the to-be-remembered stimuli comprised a string of letters or an unfamiliar complex visual shape, and it occurred regardless of whether these stimuli were masked. Conversely, the interference effect was reduced when the memory load for the 1st task was reduced, or when the 2nd task was a color detection task that did not require decision making. Taken together, these findings show that the formation of a durable and consciously accessible working memory trace for a briefly shown visual stimulus can be disturbed by a trailing 2-AFC task for up to several hundred milliseconds after the stimulus has been masked. By implication, the current findings challenge the common view that working memory consolidation involves an immutable central processing bottleneck, and they also make clear that consolidation does not stop when a stimulus is masked. PsycINFO Database Record (c) 2014 APA, all rights reserved.
McAnally, Ken I.; Morris, Adam P.; Best, Christopher
2017-01-01
Metacognitive monitoring and control of situation awareness (SA) are important for a range of safety-critical roles (e.g., air traffic control, military command and control). We examined the factors affecting these processes using a visual change detection task that included representative tactical displays. SA was assessed by asking novice observers to detect changes to a tactical display. Metacognitive monitoring was assessed by asking observers to estimate the probability that they would correctly detect a change, either after study of the display and before the change (judgement of learning; JOL) or after the change and detection response (judgement of performance; JOP). In Experiment 1, observers failed to detect some changes to the display, indicating imperfect SA, but JOPs were reasonably well calibrated to objective performance. Experiment 2 examined JOLs and JOPs in two task contexts: with study-time limits imposed by the task or with self-pacing to meet specified performance targets. JOPs were well calibrated in both conditions as were JOLs for high performance targets. In summary, observers had limited SA, but good insight about their performance and learning for high performance targets and allocated study time appropriately. PMID:28915244
Grubert, Anna; Eimer, Martin
2015-11-11
During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.
Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2008-09-16
Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.
Allon, Ayala S.; Balaban, Halely; Luria, Roy
2014-01-01
In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM) by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across three experiments we presented the same novel complex items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item’s resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms. PMID:24734026
Insect Detection of Small Targets Moving in Visual Clutter
Barnett, Paul D; O'Carroll, David C
2006-01-01
Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249
Late maturation of visual spatial integration in humans
Kovács, Ilona; Kozma, Petra; Fehér, Ákos; Benedek, György
1999-01-01
Visual development is thought to be completed at an early age. We suggest that the maturation of the visual brain is not homogeneous: functions with greater need for early availability, such as visuomotor control, mature earlier, and the development of other visual functions may extend well into childhood. We found significant improvement in children between 5 and 14 years in visual spatial integration by using a contour-detection task. The data show that long-range spatial interactions—subserving the integration of orientational information across the visual field—span a shorter spatial range in children than in adults. Performance in the task improves in a cue-specific manner with practice, which indicates the participation of fairly low-level perceptual mechanisms. We interpret our findings in terms of a protracted development of ventral visual-stream function in humans. PMID:10518600
Detecting and Remembering Simultaneous Pictures in a Rapid Serial Visual Presentation
ERIC Educational Resources Information Center
Potter, Mary C.; Fox, Laura F.
2009-01-01
Viewers can easily spot a target picture in a rapid serial visual presentation (RSVP), but can they do so if more than 1 picture is presented simultaneously? Up to 4 pictures were presented on each RSVP frame, for 240 to 720 ms/frame. In a detection task, the target was verbally specified before each trial (e.g., "man with violin"); in a…
Stojmenova, Kristina; Sodnik, Jaka
2018-07-04
There are 3 standardized versions of the Detection Response Task (DRT), 2 using visual stimuli (remote DRT and head-mounted DRT) and one using tactile stimuli. In this article, we present a study that proposes and validates a type of auditory signal to be used as DRT stimulus and evaluate the proposed auditory version of this method by comparing it with the standardized visual and tactile version. This was a within-subject design study performed in a driving simulator with 24 participants. Each participant performed 8 2-min-long driving sessions in which they had to perform 3 different tasks: driving, answering to DRT stimuli, and performing a cognitive task (n-back task). Presence of additional cognitive load and type of DRT stimuli were defined as independent variables. DRT response times and hit rates, n-back task performance, and pupil size were observed as dependent variables. Significant changes in pupil size for trials with a cognitive task compared to trials without showed that cognitive load was induced properly. Each DRT version showed a significant increase in response times and a decrease in hit rates for trials with a secondary cognitive task compared to trials without. Similar and significantly better results in differences in response times and hit rates were obtained for the auditory and tactile version compared to the visual version. There were no significant differences in performance rate between the trials without DRT stimuli compared to trials with and among the trials with different DRT stimuli modalities. The results from this study show that the auditory DRT version, using the signal implementation suggested in this article, is sensitive to the effects of cognitive load on driver's attention and is significantly better than the remote visual and tactile version for auditory-vocal cognitive (n-back) secondary tasks.
A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.
Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent
2007-07-20
Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.
Frontal–Occipital Connectivity During Visual Search
Pantazatos, Spiro P.; Yanagihara, Ted K.; Zhang, Xian; Meitzler, Thomas
2012-01-01
Abstract Although expectation- and attention-related interactions between ventral and medial prefrontal cortex and stimulus category-selective visual regions have been identified during visual detection and discrimination, it is not known if similar neural mechanisms apply to other tasks such as visual search. The current work tested the hypothesis that high-level frontal regions, previously implicated in expectation and visual imagery of object categories, interact with visual regions associated with object recognition during visual search. Using functional magnetic resonance imaging, subjects searched for a specific object that varied in size and location within a complex natural scene. A model-free, spatial-independent component analysis isolated multiple task-related components, one of which included visual cortex, as well as a cluster within ventromedial prefrontal cortex (vmPFC), consistent with the engagement of both top-down and bottom-up processes. Analyses of psychophysiological interactions showed increased functional connectivity between vmPFC and object-sensitive lateral occipital cortex (LOC), and results from dynamic causal modeling and Bayesian Model Selection suggested bidirectional connections between vmPFC and LOC that were positively modulated by the task. Using image-guided diffusion-tensor imaging, functionally seeded, probabilistic white-matter tracts between vmPFC and LOC, which presumably underlie this effective interconnectivity, were also observed. These connectivity findings extend previous models of visual search processes to include specific frontal–occipital neuronal interactions during a natural and complex search task. PMID:22708993
Effects of age and eccentricity on visual target detection.
Gruber, Nicole; Müri, René M; Mosimann, Urs P; Bieri, Rahel; Aeschimann, Andrea; Zito, Giuseppe A; Urwyler, Prabitha; Nyffeler, Thomas; Nef, Tobias
2013-01-01
The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20-78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance.
Goddard, Erin; Clifford, Colin W G
2013-04-22
Attending selectively to changes in our visual environment may help filter less important, unchanging information within a scene. Here, we demonstrate that color changes can go unnoticed even when they occur throughout an otherwise static image. The novelty of this demonstration is that it does not rely upon masking by a visual disruption or stimulus motion, nor does it require the change to be very gradual and restricted to a small section of the image. Using a two-interval, forced-choice change-detection task and an odd-one-out localization task, we showed that subjects were slowest to respond and least accurate (implying that change was hardest to detect) when the color changes were isoluminant, smoothly varying, and asynchronous with one another. This profound change blindness offers new constraints for theories of visual change detection, implying that, in the absence of transient signals, changes in color are typically monitored at a coarse spatial scale.
ERIC Educational Resources Information Center
Vlacholia, Maria; Vosniadou, Stella; Roussos, Petros; Salta, Katerina; Kazi, Smaragda; Sigalas, Michael; Tzougraki, Chryssa
2017-01-01
We present two studies that investigated the adoption of visual/spatial and analytic strategies by individuals at different levels of expertise in the area of organic chemistry, using the Visual Analytic Chemistry Task (VACT). The VACT allows the direct detection of analytic strategy use without drawing inferences about underlying mental…
How do visual and postural cues combine for self-tilt perception during slow pitch rotations?
Scotto Di Cesare, C; Buloup, F; Mestre, D R; Bringoux, L
2014-11-01
Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to repeatedly rate a confidence level for self-tilt perception during slow (0.05°·s(-1)) body and/or visual scene pitch tilts up to 19° relative to vertical. Concurrently, subjects also had to perform arm reaching movements toward a body-fixed target at certain specific angles of tilt. While performance of a concurrent motor task did not influence the main perceptual task, self-tilt detection did vary according to the visuo-postural stimuli. Slow forward or backward tilts of the visual scene alone did not induce a marked sensation of self-tilt contrary to actual body tilt. However, combined body and visual scene tilt influenced self-tilt perception more strongly, although this effect was dependent on the direction of visual scene tilt: only a forward visual scene tilt combined with a forward body tilt facilitated self-tilt detection. In such a case, visual scene tilt did not seem to induce vection but rather may have produced a deviation of the perceived orientation of the longitudinal body axis in the forward direction, which may have lowered the self-tilt detection threshold during actual forward body tilt. Copyright © 2014 Elsevier B.V. All rights reserved.
Jannati, Ali; McDonald, John J; Di Lollo, Vincent
2015-06-01
The capacity of visual short-term memory (VSTM) is commonly estimated by K scores obtained with a change-detection task. Contrary to common belief, K may be influenced not only by capacity but also by the rate at which stimuli are encoded into VSTM. Experiment 1 showed that, contrary to earlier conclusions, estimates of VSTM capacity obtained with a change-detection task are constrained by temporal limitations. In Experiment 2, we used change-detection and backward-masking tasks to obtain separate within-subject estimates of K and of rate of encoding, respectively. A median split based on rate of encoding revealed significantly higher K estimates for fast encoders. Moreover, a significant correlation was found between K and the estimated rate of encoding. The present findings raise the prospect that the reported relationships between K and such cognitive concepts as fluid intelligence may be mediated not only by VSTM capacity but also by rate of encoding. (c) 2015 APA, all rights reserved).
Visual encoding and fixation target selection in free viewing: presaccadic brain potentials
Nikolaev, Andrey R.; Jurica, Peter; Nakatani, Chie; Plomp, Gijs; van Leeuwen, Cees
2013-01-01
In scrutinizing a scene, the eyes alternate between fixations and saccades. During a fixation, two component processes can be distinguished: visual encoding and selection of the next fixation target. We aimed to distinguish the neural correlates of these processes in the electrical brain activity prior to a saccade onset. Participants viewed color photographs of natural scenes, in preparation for a change detection task. Then, for each participant and each scene we computed an image heat map, with temperature representing the duration and density of fixations. The temperature difference between the start and end points of saccades was taken as a measure of the expected task-relevance of the information concentrated in specific regions of a scene. Visual encoding was evaluated according to whether subsequent change was correctly detected. Saccades with larger temperature difference were more likely to be followed by correct detection than ones with smaller temperature differences. The amplitude of presaccadic activity over anterior brain areas was larger for correct detection than for detection failure. This difference was observed for short “scrutinizing” but not for long “explorative” saccades, suggesting that presaccadic activity reflects top-down saccade guidance. Thus, successful encoding requires local scanning of scene regions which are expected to be task-relevant. Next, we evaluated fixation target selection. Saccades “moving up” in temperature were preceded by presaccadic activity of higher amplitude than those “moving down”. This finding suggests that presaccadic activity reflects attention deployed to the following fixation location. Our findings illustrate how presaccadic activity can elucidate concurrent brain processes related to the immediate goal of planning the next saccade and the larger-scale goal of constructing a robust representation of the visual scene. PMID:23818877
Visual short-term memory load strengthens selective attention.
Roper, Zachary J J; Vecera, Shaun P
2014-04-01
Perceptual load theory accounts for many attentional phenomena; however, its mechanism remains elusive because it invokes underspecified attentional resources. Recent dual-task evidence has revealed that a concurrent visual short-term memory (VSTM) load slows visual search and reduces contrast sensitivity, but it is unknown whether a VSTM load also constricts attention in a canonical perceptual load task. If attentional selection draws upon VSTM resources, then distraction effects-which measure attentional "spill-over"-will be reduced as competition for resources increases. Observers performed a low perceptual load flanker task during the delay period of a VSTM change detection task. We observed a reduction of the flanker effect in the perceptual load task as a function of increasing concurrent VSTM load. These findings were not due to perceptual-level interactions between the physical displays of the two tasks. Our findings suggest that perceptual representations of distractor stimuli compete with the maintenance of visual representations held in memory. We conclude that access to VSTM determines the degree of attentional selectivity; when VSTM is not completely taxed, it is more likely for task-irrelevant items to be consolidated and, consequently, affect responses. The "resources" hypothesized by load theory are at least partly mnemonic in nature, due to the strong correspondence they share with VSTM capacity.
Chromatic Perceptual Learning but No Category Effects without Linguistic Input.
Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.
Mathias, Samuel R; Knowles, Emma E M; Barrett, Jennifer; Beetham, Tamara; Leach, Olivia; Buccheri, Sebastiano; Aberizk, Katrina; Blangero, John; Poldrack, Russell A; Glahn, David C
2018-03-01
On average, patients with psychosis perform worse than controls on visual change-detection tasks, implying that psychosis is associated with reduced capacity of visual working memory (WM). In the present study, 79 patients diagnosed with various psychotic disorders and 166 controls, all African Americans, completed a change-detection task and several other neurocognitive measures. The aims of the study were to (1) determine whether we could observe a between-group difference in performance on the change-detection task in this sample; (2) establish whether such a difference could be specifically attributed to reduced WM capacity (k); and (3) estimate k in the context of the general cognitive deficit in psychosis. Consistent with previous studies, patients performed worse than controls on the change-detection task, on average. Bayesian hierarchical cognitive modeling of the data suggested that this between-group difference was driven by reduced k in patients, rather than differences in other psychologically meaningful model parameters (guessing behavior and lapse rate). Using the same modeling framework, we estimated the effect of psychosis on k while controlling for general intellectual ability (g, obtained from the other neurocognitive measures). The results suggested that reduced k in patients was stronger than predicted by the between-group difference in g. Moreover, a mediation analysis suggested that the relationship between psychosis and g (i.e., the general cognitive deficit) was mediated by k. The results were consistent with the idea that reduced k is a specific deficit in psychosis, which contributes to the general cognitive deficit. Copyright © 2017 Elsevier B.V. All rights reserved.
Making perceptual learning practical to improve visual functions.
Polat, Uri
2009-10-01
Task-specific improvement in performance after training is well established. The finding that learning is stimulus-specific and does not transfer well between different stimuli, between stimulus locations in the visual field, or between the two eyes has been used to support the notion that neurons or assemblies of neurons are modified at the earliest stage of cortical processing. However, a debate regarding the proposed mechanism underlying perceptual learning is an ongoing issue. Nevertheless, generalization of a trained task to other functions is an important key, for both understanding the neural mechanisms and the practical value of the training. This manuscript describes a structured perceptual learning method that previously used (amblyopia, myopia) and a novel technique and results that were applied for presbyopia. In general, subjects were trained for contrast detection of Gabor targets under lateral masking conditions. Training improved contrast sensitivity and diminished the lateral suppression when it existed (amblyopia). The improvement was transferred to unrelated functions such as visual acuity. The new results of presbyopia show substantial improvement of the spatial and temporal contrast sensitivity, leading to improved processing speed of target detection as well as reaction time. Consequently, the subjects, who were able to eliminate the need for reading glasses, benefited. Thus, here we show that the transfer of functions indicates that the specificity of improvement in the trained task can be generalized by repetitive practice of target detection, covering a sufficient range of spatial frequencies and orientations, leading to an improvement in unrelated visual functions. Thus, perceptual learning can be a practical method to improve visual functions in people with impaired or blurred vision.
NASA Technical Reports Server (NTRS)
Kessel, C.; Wickens, C. D.
1978-01-01
The development of the internal model as it pertains to the detection of step changes in the order of control dynamics is investigated for two modes of participation: whether the subjects are actively controlling those dynamics or are monitoring an autopilot controlling them. A transfer of training design was used to evaluate the relative contribution of proprioception and visual information to the overall accuracy of the internal model. Sixteen subjects either tracked or monitored the system dynamics as a 2-dimensional pursuit display under single task conditions and concurrently with a sub-critical tracking task at two difficulty levels. Detection performance was faster and more accurate in the manual as opposed to the autopilot mode. The concurrent tracking task produced a decrement in detection performance for all conditions though this was more marked for the manual mode. The development of an internal model in the manual mode transferred positively to the automatic mode producing enhanced detection performance. There was no transfer from the internal model developed in the automatic mode to the manual mode.
Task modulates functional connectivity networks in free viewing behavior.
Seidkhani, Hossein; Nikolaev, Andrey R; Meghanathan, Radha Nila; Pezeshk, Hamid; Masoudi-Nejad, Ali; van Leeuwen, Cees
2017-10-01
In free visual exploration, eye-movement is immediately followed by dynamic reconfiguration of brain functional connectivity. We studied the task-dependency of this process in a combined visual search-change detection experiment. Participants viewed two (nearly) same displays in succession. First time they had to find and remember multiple targets among distractors, so the ongoing task involved memory encoding. Second time they had to determine if a target had changed in orientation, so the ongoing task involved memory retrieval. From multichannel EEG recorded during 200 ms intervals time-locked to fixation onsets, we estimated the functional connectivity using a weighted phase lag index at the frequencies of theta, alpha, and beta bands, and derived global and local measures of the functional connectivity graphs. We found differences between both memory task conditions for several network measures, such as mean path length, radius, diameter, closeness and eccentricity, mainly in the alpha band. Both the local and the global measures indicated that encoding involved a more segregated mode of operation than retrieval. These differences arose immediately after fixation onset and persisted for the entire duration of the lambda complex, an evoked potential commonly associated with early visual perception. We concluded that encoding and retrieval differentially shape network configurations involved in early visual perception, affecting the way the visual input is processed at each fixation. These findings demonstrate that task requirements dynamically control the functional connectivity networks involved in early visual perception. Copyright © 2017 Elsevier Inc. All rights reserved.
Statistical Regularities Attract Attention when Task-Relevant.
Alamia, Andrea; Zénon, Alexandre
2016-01-01
Visual attention seems essential for learning the statistical regularities in our environment, a process known as statistical learning. However, how attention is allocated when exploring a novel visual scene whose statistical structure is unknown remains unclear. In order to address this question, we investigated visual attention allocation during a task in which we manipulated the conditional probability of occurrence of colored stimuli, unbeknown to the subjects. Participants were instructed to detect a target colored dot among two dots moving along separate circular paths. We evaluated implicit statistical learning, i.e., the effect of color predictability on reaction times (RTs), and recorded eye position concurrently. Attention allocation was indexed by comparing the Mahalanobis distance between the position, velocity and acceleration of the eyes and the two colored dots. We found that learning the conditional probabilities occurred very early during the course of the experiment as shown by the fact that, starting already from the first block, predictable stimuli were detected with shorter RT than unpredictable ones. In terms of attentional allocation, we found that the predictive stimulus attracted gaze only when it was informative about the occurrence of the target but not when it predicted the occurrence of a task-irrelevant stimulus. This suggests that attention allocation was influenced by regularities only when they were instrumental in performing the task. Moreover, we found that the attentional bias towards task-relevant predictive stimuli occurred at a very early stage of learning, concomitantly with the first effects of learning on RT. In conclusion, these results show that statistical regularities capture visual attention only after a few occurrences, provided these regularities are instrumental to perform the task.
Diversification of visual media retrieval results using saliency detection
NASA Astrophysics Data System (ADS)
Muratov, Oleg; Boato, Giulia; De Natale, Franesco G. B.
2013-03-01
Diversification of retrieval results allows for better and faster search. Recently there has been proposed different methods for diversification of image retrieval results mainly utilizing text information and techniques imported from natural language processing domain. However, images contain visual information that is impossible to describe in text and the use of visual features is inevitable. Visual saliency is information about the main object of an image implicitly included by humans while creating visual content. For this reason it is naturally to exploit this information for the task of diversification of the content. In this work we study whether visual saliency can be used for the task of diversification and propose a method for re-ranking image retrieval results using saliency. The evaluation has shown that the use of saliency information results in higher diversity of retrieval results.
Task effects on BOLD signal correlates of implicit syntactic processing
Caplan, David
2010-01-01
BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983
Task effects on BOLD signal correlates of implicit syntactic processing.
Caplan, David
2010-07-01
BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed.
Delhey, Kaspar; Hall, Michelle; Kingma, Sjouke A; Peters, Anne
2013-01-07
Colour signals are expected to match visual sensitivities of intended receivers. In birds, evolutionary shifts from violet-sensitive (V-type) to ultraviolet-sensitive (U-type) vision have been linked to increased prevalence of colours rich in shortwave reflectance (ultraviolet/blue), presumably due to better perception of such colours by U-type vision. Here we provide the first test of this widespread idea using fairy-wrens and allies (Family Maluridae) as a model, a family where shifts in visual sensitivities from V- to U-type eyes are associated with male nuptial plumage rich in ultraviolet/blue colours. Using psychophysical visual models, we compared the performance of both types of visual systems at two tasks: (i) detecting contrast between male plumage colours and natural backgrounds, and (ii) perceiving intraspecific chromatic variation in male plumage. While U-type outperforms V-type vision at both tasks, the crucial test here is whether U-type vision performs better at detecting and discriminating ultraviolet/blue colours when compared with other colours. This was true for detecting contrast between plumage colours and natural backgrounds (i), but not for discriminating intraspecific variability (ii). Our data indicate that selection to maximize conspicuousness to conspecifics may have led to the correlation between ultraviolet/blue colours and U-type vision in this clade of birds.
Stimulus-dependent modulation of visual neglect in a touch-screen cancellation task.
Keller, Ingo; Volkening, Katharina; Garbacenkaite, Ruta
2015-05-01
Patients with left-sided neglect frequently show omissions and repetitive behavior on cancellation tests. Using a touch-screen-based cancellation task, we tested how visual feedback and distracters influence the number of omissions and perseverations. Eighteen patients with left-sided visual neglect and 18 healthy controls performed four different cancellation tasks on an iPad touch screen: no feedback (the display did not change during the task), visual feedback (touched targets changed their color from black to green), visual feedback with distracters (20 distracters were evenly embedded in the display; detected targets changed their color from black to green), vanishing targets (touched targets disappeared from the screen). Except for the condition with vanishing targets, neglect patients had significantly more omissions and perseverations than healthy controls in the remaining three subtests. Both conditions providing feedback by changing the target color showed the highest number of omissions. Erasure of targets nearly diminished omissions completely. The highest rate of perseverations was observed in the no-feedback condition. The implementation of distracters led to a moderate number of perseverations. Visual feedback without distracters and vanishing targets abolished perseverations nearly completely. Visual feedback and the presence of distracters aggravated hemispatial neglect. This finding is compatible with impaired disengagement from the ipsilesional side as an important factor of visual neglect. Improvement of cancellation behavior with vanishing targets could have therapeutic implications. (c) 2015 APA, all rights reserved).
Brailsford, Richard; Catherwood, Di; Tyson, Philip J; Edgar, Graham
2014-01-01
Attentional biases in anxiety disorders have been assessed primarily using three types of experiment: the emotional Stroop task, the probe-detection task, and variations of the visual search task. It is proposed that the inattentional blindness procedure has the ability to overcome limitations of these paradigms in regard to identifying the components of attentional bias. Three experiments examined attentional responding to spider images in individuals with low and moderate to high spider fear. The results demonstrate that spider fear causes a bias in the engage component of visual attention and this is specific to stimuli presented in the left visual field (i.e., to the right hemisphere). The implications of the results are discussed and recommendations for future research are made.
The impact of task demand on visual word recognition.
Yang, J; Zevin, J
2014-07-11
The left occipitotemporal cortex has been found sensitive to the hierarchy of increasingly complex features in visually presented words, from individual letters to bigrams and morphemes. However, whether this sensitivity is a stable property of the brain regions engaged by word recognition is still unclear. To address the issue, the current study investigated whether different task demands modify this sensitivity. Participants viewed real English words and stimuli with hierarchical word-likeness while performing a lexical decision task (i.e., to decide whether each presented stimulus is a real word) and a symbol detection task. General linear model and independent component analysis indicated strong activation in the fronto-parietal and temporal regions during the two tasks. Furthermore, the bilateral inferior frontal gyrus and insula showed significant interaction effects between task demand and stimulus type in the pseudoword condition. The occipitotemporal cortex showed strong main effects for task demand and stimulus type, but no sensitivity to the hierarchical word-likeness was found. These results suggest that different task demands on semantic, phonological and orthographic processes can influence the involvement of the relevant regions during visual word recognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands
Mateo, Carlos M.; Gil, Pablo; Torres, Fernando
2016-01-01
Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments. PMID:27164102
3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
Mateo, Carlos M; Gil, Pablo; Torres, Fernando
2016-05-05
Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object's surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand's fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.
Biomechanical patterns of text-message distraction.
Le, Peter; Hwang, Jaejin; Grawe, Sarah; Li, Jing; Snyder, Alison; Lee, Christina; Marras, William S
2015-01-01
The objective of this study was to identify biomechanical measures that can distinguish texting distraction in a laboratory-simulated driving environment. The goal would be to use this information to provide an intervention for risky driving behaviour. Sixteen subjects participated in this study. Three independent variables were tested: task (texting, visual targeting, weighted and non-weighted movements), task direction (front and side) and task distance (close and far). Dependent variables consisted of biomechanical moments, head displacement and the length of time to complete each task. Results revealed that the time to complete each task was higher for texting compared to other tasks. Peak moments during texting were only distinguishable from visual targeting. Peak head displacement and cumulative biomechanical exposure measures indicated that texting can be distinguished from other tasks. Therefore, it may be useful to take into account both temporal and biomechanical measures when considering warning systems to detect texting distraction.
Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection
Denison, Rachel N.; Driver, Jon; Ruff, Christian C.
2013-01-01
Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067
The Relationship Between Online Visual Representation of a Scene and Long-Term Scene Memory
ERIC Educational Resources Information Center
Hollingworth, Andrew
2005-01-01
In 3 experiments the author investigated the relationship between the online visual representation of natural scenes and long-term visual memory. In a change detection task, a target object either changed or remained the same from an initial image of a natural scene to a test image. Two types of changes were possible: rotation in depth, or…
Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation.
Mirdamadi, J L; Suzuki, L Y; Meehan, S K
2017-09-17
Skilled performance and acquisition is dependent upon afferent input to motor cortex. The present study used short-latency afferent inhibition (SAI) to probe how manipulation of sensory afference by attention affects different circuits projecting to pyramidal tract neurons in motor cortex. SAI was assessed in the first dorsal interosseous muscle while participants performed a low or high attention-demanding visual detection task. SAI was evoked by preceding a suprathreshold transcranial magnetic stimulus with electrical stimulation of the median nerve at the wrist. To isolate different afferent intracortical circuits in motor cortex SAI was evoked using either posterior-anterior (PA) or anterior-posterior (PA) monophasic current. In an independent sample, somatosensory processing during the same attention-demanding visual detection tasks was assessed using somatosensory-evoked potentials (SEP) elicited by median nerve stimulation. SAI elicited by AP TMS was reduced under high compared to low visual attention demands. SAI elicited by PA TMS was not affected by visual attention demands. SEPs revealed that the high visual attention load reduced the fronto-central P20-N30 but not the contralateral parietal N20-P25 SEP component. P20-N30 reduction confirmed that the visual attention task altered sensory afference. The current results offer further support that PA and AP TMS recruit different neuronal circuits. AP circuits may be one substrate by which cognitive strategies shape sensorimotor processing during skilled movement by altering sensory processing in premotor areas. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Yokoi, Isao; Komatsu, Hidehiko
2010-09-01
Visual grouping of discrete elements is an important function for object recognition. We recently conducted an experiment to study neural correlates of visual grouping. We recorded neuronal activities while monkeys performed a grouping detection task in which they discriminated visual patterns composed of discrete dots arranged in a cross and detected targets in which dots with the same contrast were aligned horizontally or vertically. We found that some neurons in the lateral bank of the intraparietal sulcus exhibit activity related to visual grouping. In the present study, we analyzed how different types of neurons contribute to visual grouping. We classified the recorded neurons as putative pyramidal neurons or putative interneurons, depending on the duration of their action potentials. We found that putative pyramidal neurons exhibited selectivity for the orientation of the target, and this selectivity was enhanced by attention to a particular target orientation. By contrast, putative interneurons responded more strongly to the target stimuli than to the nontargets, regardless of the orientation of the target. These results suggest that different classes of parietal neurons contribute differently to the grouping of discrete elements.
Interrupted Visual Searches Reveal Volatile Search Memory
ERIC Educational Resources Information Center
Shen, Y. Jeremy; Jiang, Yuhong V.
2006-01-01
This study investigated memory from interrupted visual searches. Participants conducted a change detection search task on polygons overlaid on scenes. Search was interrupted by various disruptions, including unfilled delay, passive viewing of other scenes, and additional search on new displays. Results showed that performance was unaffected by…
A comparison of the vigilance performance of men and women using a simulated radar task.
DOT National Transportation Integrated Search
1978-03-01
The present study examined the question of possible sex differences in the ability to sustain attention to a complex monitoring task requiring only a detection response to critical stimulus changes. The visual display was designed to approximate a fu...
Recognition intent and visual word recognition.
Wang, Man-Ying; Ching, Chi-Le
2009-03-01
This study adopted a change detection task to investigate whether and how recognition intent affects the construction of orthographic representation in visual word recognition. Chinese readers (Experiment 1-1) and nonreaders (Experiment 1-2) detected color changes in radical components of Chinese characters. Explicit recognition demand was imposed in Experiment 2 by an additional recognition task. When the recognition was implicit, a bias favoring the radical location informative of character identity was found in Chinese readers (Experiment 1-1), but not nonreaders (Experiment 1-2). With explicit recognition demands, the effect of radical location interacted with radical function and word frequency (Experiment 2). An estimate of identification performance under implicit recognition was derived in Experiment 3. These findings reflect the joint influence of recognition intent and orthographic regularity in shaping readers' orthographic representation. The implication for the role of visual attention in word recognition was also discussed.
Learning to Link Visual Contours
Li, Wu; Piëch, Valentin; Gilbert, Charles D.
2008-01-01
SUMMARY In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys the information about contours embedded in complex backgrounds is absent in V1 neuronal responses, and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task, but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning, and reflect top-down mediated changes in cortical states. PMID:18255036
Selective attention in anxiety: distraction and enhancement in visual search.
Rinck, Mike; Becker, Eni S; Kellermann, Jana; Roth, Walton T
2003-01-01
According to cognitive models of anxiety, anxiety patients exhibit an attentional bias towards threat, manifested as greater distractibility by threat stimuli and enhanced detection of them. Both phenomena were studied in two experiments, using a modified visual search task, in which participants were asked to find single target words (GAD-related, speech-related, neutral, or positive) hidden in matrices made up of distractor words (also GAD-related, speech-related, neutral, or positive). Generalized anxiety disorder (GAD) patients, social phobia (SP) patients afraid of giving speeches, and healthy controls participated in the visual search task. GAD patients were slowed by GAD-related distractor words but did not show statistically reliable evidence of enhanced detection of GAD-related target words. SP patients showed neither distraction nor enhancement effects. These results extend previous findings of attentional biases observed with other experimental paradigms. Copyright 2003 Wiley-Liss, Inc.
Rosemann, Stephanie; Thiel, Christiane M
2018-07-15
Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing accompanied by changes in brain activation particularly involving frontal areas. These changes are modulated by the extent of hearing loss. Copyright © 2018 Elsevier Inc. All rights reserved.
Dimension-based attention in visual short-term memory.
Pilling, Michael; Barrett, Doug J K
2016-07-01
We investigated how dimension-based attention influences visual short-term memory (VSTM). This was done through examining the effects of cueing a feature dimension in two perceptual comparison tasks (change detection and sameness detection). In both tasks, a memory array and a test array consisting of a number of colored shapes were presented successively, interleaved by a blank interstimulus interval (ISI). In Experiment 1 (change detection), the critical event was a feature change in one item across the memory and test arrays. In Experiment 2 (sameness detection), the critical event was the absence of a feature change in one item across the two arrays. Auditory cues indicated the feature dimension (color or shape) of the critical event with 80 % validity; the cues were presented either prior to the memory array, during the ISI, or simultaneously with the test array. In Experiment 1, the cue validity influenced sensitivity only when the cue was given at the earliest position; in Experiment 2, the cue validity influenced sensitivity at all three cue positions. We attributed the greater effectiveness of top-down guidance by cues in the sameness detection task to the more active nature of the comparison process required to detect sameness events (Hyun, Woodman, Vogel, Hollingworth, & Luck, Journal of Experimental Psychology: Human Perception and Performance, 35; 1140-1160, 2009).
Nonexplicit change detection in complex dynamic settings: what eye movements reveal.
Vachon, François; Vallières, Benoît R; Jones, Dylan M; Tremblay, Sébastien
2012-12-01
We employed a computer-controlled command-and-control (C2) simulation and recorded eye movements to examine the extent and nature of the inability to detect critical changes in dynamic displays when change detection is implicit (i.e., requires no explicit report) to the operator's task. Change blindness-the failure to notice significant changes to a visual scene-may have dire consequences on performance in C2 and surveillance operations. Participants performed a radar-based risk-assessment task involving multiple subtasks. Although participants were not required to explicitly report critical changes to the operational display, change detection was critical in informing decision making. Participants' eye movements were used as an index of visual attention across the display. Nonfixated (i.e., unattended) changes were more likely to be missed than were fixated (i.e., attended) changes, supporting the idea that focused attention is necessary for conscious change detection. The finding of significant pupil dilation for changes undetected but fixated suggests that attended changes can nonetheless be missed because of a failure of attentional processes. Change blindness in complex dynamic displays takes the form of failures in establishing task-appropriate patterns of attentional allocation. These findings have implications in the design of change-detection support tools for dynamic displays and work procedure in C2 and surveillance.
Almeida, Inês; van Asselen, Marieke; Castelo-Branco, Miguel
2013-09-01
In human cognition, most relevant stimuli, such as faces, are processed in central vision. However, it is widely believed that recognition of relevant stimuli (e.g. threatening animal faces) at peripheral locations is also important due to their survival value. Moreover, task instructions have been shown to modulate brain regions involved in threat recognition (e.g. the amygdala). In this respect it is also controversial whether tasks requiring explicit focus on stimulus threat content vs. implicit processing differently engage primitive subcortical structures involved in emotional appraisal. Here we have addressed the role of central vs. peripheral processing in the human amygdala using animal threatening vs. non-threatening face stimuli. First, a simple animal face recognition task with threatening and non-threatening animal faces, as well as non-face control stimuli, was employed in naïve subjects (implicit task). A subsequent task was then performed with the same stimulus categories (but different stimuli) in which subjects were told to explicitly detect threat signals. We found lateralized amygdala responses both to the spatial location of stimuli and to the threatening content of faces depending on the task performed: the right amygdala showed increased responses to central compared to left presented stimuli specifically during the threat detection task, while the left amygdala was better prone to discriminate threatening faces from non-facial displays during the animal face recognition task. Additionally, the right amygdala responded to faces during the threat detection task but only when centrally presented. Moreover, we have found no evidence for superior responses of the amygdala to peripheral stimuli. Importantly, we have found that striatal regions activate differentially depending on peripheral vs. central processing of threatening faces. Accordingly, peripheral processing of these stimuli activated more strongly the putaminal region, while central processing engaged mainly the caudate nucleus. We conclude that the human amygdala has a central bias for face stimuli, and that visual processing recruits different striatal regions, putaminal or caudate based, depending on the task and on whether peripheral or central visual processing is involved. © 2013 Elsevier Ltd. All rights reserved.
Iconic memory requires attention
Persuh, Marjan; Genzer, Boris; Melara, Robert D.
2012-01-01
Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features. PMID:22586389
Iconic memory requires attention.
Persuh, Marjan; Genzer, Boris; Melara, Robert D
2012-01-01
Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features.
Detection of emotional faces: salient physical features guide effective visual search.
Calvo, Manuel G; Nummenmaa, Lauri
2008-08-01
In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent, surprised and disgusted faces was found both under upright and inverted display conditions. Inversion slowed down the detection of these faces less than that of others (fearful, angry, and sad). Accordingly, the detection advantage involves processing of featural rather than configural information. The facial features responsible for the detection advantage are located in the mouth rather than the eye region. Computationally modeled visual saliency predicted both attentional orienting and detection. Saliency was greatest for the faces (happy) and regions (mouth) that were fixated earlier and detected faster, and there was close correspondence between the onset of the modeled saliency peak and the time at which observers initially fixated the faces. The authors conclude that visual saliency of specific facial features--especially the smiling mouth--is responsible for facilitated initial orienting, which thus shortens detection. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Psychophysical and perceptual performance in a simulated-scotoma model of human eye injury
NASA Astrophysics Data System (ADS)
Brandeis, R.; Egoz, I.; Peri, D.; Sapiens, N.; Turetz, J.
2008-02-01
Macular scotomas, affecting visual functioning, characterize many eye and neurological diseases like AMD, diabetes mellitus, multiple sclerosis, and macular hole. In this work, foveal visual field defects were modeled, and their effects were evaluated on spatial contrast sensitivity and a task of stimulus detection and aiming. The modeled occluding scotomas, of different size, were superimposed on the stimuli presented on the computer display, and were stabilized on the retina using a mono Purkinje Eye-Tracker. Spatial contrast sensitivity was evaluated using square-wave grating stimuli, whose contrast thresholds were measured using the method of constant stimuli with "catch trials". The detection task consisted of a triple conjunctive visual search display of: size (in visual angle), contrast and background (simple, low-level features vs. complex, high-level features). Search/aiming accuracy as well as R.T. measures used for performance evaluation. Artificially generated scotomas suppressed spatial contrast sensitivity in a size dependent manner, similar to previous studies. Deprivation effect was dependent on spatial frequency, consistent with retinal inhomogeneity models. Stimulus detection time was slowed in complex background search situation more than in simple background. Detection speed was dependent on scotoma size and size of stimulus. In contrast, visually guided aiming was more sensitive to scotoma effect in simple background search situation than in complex background. Both stimulus aiming R.T. and accuracy (precision targeting) were impaired, as a function of scotoma size and size of stimulus. The data can be explained by models distinguishing between saliency-based, parallel and serial search processes, guiding visual attention, which are supported by underlying retinal as well as neural mechanisms.
Malavita, Menaka S; Vidyasagar, Trichur R; McKendrick, Allison M
2017-02-01
The purpose of this study was to study how, in midperipheral vision, aging affects visual processes that interfere with target detection (crowding and surround suppression) and to determine whether the performance on such tasks are related to visuospatial attention as measured by visual search. We investigated the effect of aging on crowding and suppression in detection of a target in peripheral vision, using different types of flanking stimuli. Both thresholds were also obtained while varying the position of the flanker (placed inside or outside of target, relative to fixation). Crowding thresholds were also estimated with spatial uncertainty (jitter). Additionally, we included a visual search task comprising Gabor stimuli to investigate whether performance is related to top-down attention. Twenty young adults (age, 18-32 years; mean age, 26.1 years; 10 males) and 19 older adults (age, 60-74 years; mean age, 70.3 years; 10 males) participated in the study. Older adults showed more surround suppression than the young (F[1,37] = 4.21; P < 0.05), but crowding was unaffected by age. In the younger group, the position of the flanker influenced the strength of crowding, but not the strength of suppression (F[1,39] = 4.11; P < 0.05). Crowding was not affected by spatial jitter of the stimuli. Neither crowding nor surround suppression was predicted by attentional efficiency measured in the visual search task. There was also no significant correlation between crowding and surround suppression. We show that aging does not affect visual crowding but does increase surround suppression of contrast, suggesting that crowding and surround suppression may be distinct visual phenomena. Furthermore, strengths of crowding and surround suppression did not correlate with each other nor could they be predicted by efficiency of visual search.
Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.
Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel
2015-08-15
When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.
The visual analysis of emotional actions.
Chouchourelou, Arieta; Matsuka, Toshihiko; Harber, Kent; Shiffrar, Maggie
2006-01-01
Is the visual analysis of human actions modulated by the emotional content of those actions? This question is motivated by a consideration of the neuroanatomical connections between visual and emotional areas. Specifically, the superior temporal sulcus (STS), known to play a critical role in the visual detection of action, is extensively interconnected with the amygdala, a center for emotion processing. To the extent that amygdala activity influences STS activity, one would expect to find systematic differences in the visual detection of emotional actions. A series of psychophysical studies tested this prediction. Experiment 1 identified point-light walker movies that convincingly depicted five different emotional states: happiness, sadness, neutral, anger, and fear. In Experiment 2, participants performed a walker detection task with these movies. Detection performance was systematically modulated by the emotional content of the gaits. Participants demonstrated the greatest visual sensitivity to angry walkers. The results of Experiment 3 suggest that local velocity cues to anger may account for high false alarm rates to the presence of angry gaits. These results support the hypothesis that the visual analysis of human action depends upon emotion processes.
Chromatic Perceptual Learning but No Category Effects without Linguistic Input
Grandison, Alexandra; Sowden, Paul T.; Drivonikou, Vicky G.; Notman, Leslie A.; Alexander, Iona; Davies, Ian R. L.
2016-01-01
Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest. PMID:27252669
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.
Stone, Scott A; Tata, Matthew S
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality
Tata, Matthew S.
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible. PMID:28792518
Changes in the Capacity of Visual Working Memory in 5- to 10-Year-Olds
ERIC Educational Resources Information Center
Riggs, Kevin J.; McTaggart, James; Simpson, Andrew; Freeman, Richard P. J.
2006-01-01
Using the Luck and Vogel change detection paradigm, we sought to investigate the capacity of visual working memory in 5-, 7-, and 10-year-olds. We found that performance on the task improved significantly with age and also obtained evidence that the capacity of visual working memory approximately doubles between 5 and 10 years of age, where it…
Effect of subliminal visual material on an auditory signal detection task.
Moroney, E; Bross, M
1984-02-01
An experiment assessed the effect of subliminally embedded, visual material on an auditory detection task. 22 women and 19 men were presented tachistoscopically with words designated as "emotional" or "neutral" on the basis of prior GSRs and a Word Rating List under four conditions: (a) Unembedded Neutral, (b) Embedded Neutral, (c) Unembedded Emotional, and (d) Embedded Emotional. On each trial subjects made forced choices concerning the presence or absence of an auditory tone (1000 Hz) at threshold level; hits and false alarm rates were used to compute non-parametric indices for sensitivity (A') and response bias (B"). While over-all analyses of variance yielded no significant differences, further examination of the data suggests the presence of subliminally "receptive" and "non-receptive" subpopulations.
Contextual cueing: implicit learning and memory of visual context guides spatial attention.
Chun, M M; Jiang, Y
1998-06-01
Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.
Just one look: Direct gaze briefly disrupts visual working memory.
Wang, J Jessica; Apperly, Ian A
2017-04-01
Direct gaze is a salient social cue that affords rapid detection. A body of research suggests that direct gaze enhances performance on memory tasks (e.g., Hood, Macrae, Cole-Davies, & Dias, Developmental Science, 1, 67-71, 2003). Nonetheless, other studies highlight the disruptive effect direct gaze has on concurrent cognitive processes (e.g., Conty, Gimmig, Belletier, George, & Huguet, Cognition, 115(1), 133-139, 2010). This discrepancy raises questions about the effects direct gaze may have on concurrent memory tasks. We addressed this topic by employing a change detection paradigm, where participants retained information about the color of small sets of agents. Experiment 1 revealed that, despite the irrelevance of the agents' eye gaze to the memory task at hand, participants were worse at detecting changes when the agents looked directly at them compared to when the agents looked away. Experiment 2 showed that the disruptive effect was relatively short-lived. Prolonged presentation of direct gaze led to recovery from the initial disruption, rather than a sustained disruption on change detection performance. The present study provides the first evidence that direct gaze impairs visual working memory with a rapidly-developing yet short-lived effect even when there is no need to attend to agents' gaze.
Supèr, Hans; Spekreijse, Henk; Lamme, Victor A F
2003-06-26
To look at an object its position in the visual scene has to be localized and subsequently appropriate oculo-motor behavior needs to be initiated. This kind of behavior is largely controlled by the cortical executive system, such as the frontal eye field. In this report, we analyzed neural activity in the visual cortex in relation to oculo-motor behavior. We show that in a figure-ground detection task, the strength of late modulated activity in the primary visual cortex correlates with the saccade latency. We propose that this may indicate that the variability of reaction times in the detection of a visual stimulus is reflected in low-level visual areas as well as in high-level areas.
The role of convexity in perception of symmetry and in visual short-term memory.
Bertamini, Marco; Helmy, Mai Salah; Hulleman, Johan
2013-01-01
Visual perception of shape is affected by coding of local convexities and concavities. For instance, a recent study reported that deviations from symmetry carried by convexities were easier to detect than deviations carried by concavities. We removed some confounds and extended this work from a detection of reflection of a contour (i.e., bilateral symmetry), to a detection of repetition of a contour (i.e., translational symmetry). We tested whether any convexity advantage is specific to bilateral symmetry in a two-interval (Experiment 1) and a single-interval (Experiment 2) detection task. In both, we found a convexity advantage only for repetition. When we removed the need to choose which region of the contour to monitor (Experiment 3) the effect disappeared. In a second series of studies, we again used shapes with multiple convex or concave features. Participants performed a change detection task in which only one of the features could change. We did not find any evidence that convexities are special in visual short-term memory, when the to-be-remembered features only changed shape (Experiment 4), when they changed shape and changed from concave to convex and vice versa (Experiment 5), or when these conditions were mixed (Experiment 6). We did find a small advantage for coding convexity as well as concavity over an isolated (and thus ambiguous) contour. The latter is consistent with the known effect of closure on processing of shape. We conclude that convexity plays a role in many perceptual tasks but that it does not have a basic encoding advantage over concavity.
Color-Change Detection Activity in the Primate Superior Colliculus.
Herman, James P; Krauzlis, Richard J
2017-01-01
The primate superior colliculus (SC) is a midbrain structure that participates in the control of spatial attention. Previous studies examining the role of the SC in attention have mostly used luminance-based visual features (e.g., motion, contrast) as the stimuli and saccadic eye movements as the behavioral response, both of which are known to modulate the activity of SC neurons. To explore the limits of the SC's involvement in the control of spatial attention, we recorded SC neuronal activity during a task using color, a visual feature dimension not traditionally associated with the SC, and required monkeys to detect threshold-level changes in the saturation of a cued stimulus by releasing a joystick during maintained fixation. Using this color-based spatial attention task, we found substantial cue-related modulation in all categories of visually responsive neurons in the intermediate layers of the SC. Notably, near-threshold changes in color saturation, both increases and decreases, evoked phasic bursts of activity with magnitudes as large as those evoked by stimulus onset. This change-detection activity had two distinctive features: activity for hits was larger than for misses, and the timing of change-detection activity accounted for 67% of joystick release latency, even though it preceded the release by at least 200 ms. We conclude that during attention tasks, SC activity denotes the behavioral relevance of the stimulus regardless of feature dimension and that phasic event-related SC activity is suitable to guide the selection of manual responses as well as saccadic eye movements.
Eyes Matched to the Prize: The State of Matched Filters in Insect Visual Circuits.
Kohn, Jessica R; Heath, Sarah L; Behnia, Rudy
2018-01-01
Confronted with an ever-changing visual landscape, animals must be able to detect relevant stimuli and translate this information into behavioral output. A visual scene contains an abundance of information: to interpret the entirety of it would be uneconomical. To optimally perform this task, neural mechanisms exist to enhance the detection of important features of the sensory environment while simultaneously filtering out irrelevant information. This can be accomplished by using a circuit design that implements specific "matched filters" that are tuned to relevant stimuli. Following this rule, the well-characterized visual systems of insects have evolved to streamline feature extraction on both a structural and functional level. Here, we review examples of specialized visual microcircuits for vital behaviors across insect species, including feature detection, escape, and estimation of self-motion. Additionally, we discuss how these microcircuits are modulated to weigh relevant input with respect to different internal and behavioral states.
Visual Detection and Identification Are Not the Same: Evidence from Psychophysics and fMRI
ERIC Educational Resources Information Center
Straube, Sirko; Fahle, Manfred
2011-01-01
Sometimes object detection as opposed to identification is sufficient to initiate the appropriate action. To explore the neural origin of behavioural differences between the two tasks, we combine psychophysical measurements and fMRI, specifically contrasting shape detection versus identification of a figure. This figure consisted of Gabor elements…
Visual search in Dementia with Lewy Bodies and Alzheimer's disease.
Landy, Kelly M; Salmon, David P; Filoteo, J Vincent; Heindel, William C; Galasko, Douglas; Hamilton, Joanne M
2015-12-01
Visual search is an aspect of visual cognition that may be more impaired in Dementia with Lewy Bodies (DLB) than Alzheimer's disease (AD). To assess this possibility, the present study compared patients with DLB (n = 17), AD (n = 30), or Parkinson's disease with dementia (PDD; n = 10) to non-demented patients with PD (n = 18) and normal control (NC) participants (n = 13) on single-feature and feature-conjunction visual search tasks. In the single-feature task participants had to determine if a target stimulus (i.e., a black dot) was present among 3, 6, or 12 distractor stimuli (i.e., white dots) that differed in one salient feature. In the feature-conjunction task participants had to determine if a target stimulus (i.e., a black circle) was present among 3, 6, or 12 distractor stimuli (i.e., white dots and black squares) that shared either of the target's salient features. Results showed that target detection time in the single-feature task was not influenced by the number of distractors (i.e., "pop-out" effect) for any of the groups. In contrast, target detection time increased as the number of distractors increased in the feature-conjunction task for all groups, but more so for patients with AD or DLB than for any of the other groups. These results suggest that the single-feature search "pop-out" effect is preserved in DLB and AD patients, whereas ability to perform the feature-conjunction search is impaired. This pattern of preserved single-feature search with impaired feature-conjunction search is consistent with a deficit in feature binding that may be mediated by abnormalities in networks involving the dorsal occipito-parietal cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.
Visual Search in Dementia with Lewy Bodies and Alzheimer’s Disease
Landy, Kelly M.; Salmon, David P.; Filoteo, J. Vincent; Heindel, William C.; Galasko, Douglas; Hamilton, Joanne M.
2016-01-01
Visual search is an aspect of visual cognition that may be more impaired in Dementia with Lewy Bodies (DLB) than Alzheimer’s disease (AD). To assess this possibility, the present study compared patients with DLB (n=17), AD (n=30), or Parkinson’s disease with dementia (PDD; n=10) to non-demented patients with PD (n=18) and normal control (NC) participants (n=13) on single-feature and feature-conjunction visual search tasks. In the single-feature task participants had to determine if a target stimulus (i.e., a black dot) was present among 3, 6, or 12 distractor stimuli (i.e., white dots) that differed in one salient feature. In the feature-conjunction task participants had to determine if a target stimulus (i.e., a black circle) was present among 3, 6, or 12 distractor stimuli (i.e., white dots and black squares) that shared either of the target’s salient features. Results showed that target detection time in the single-feature task was not influenced by the number of distractors (i.e., “pop-out” effect) for any of the groups. In contrast, target detection time increased as the number of distractors increased in the feature-conjunction task for all groups, but more so for patients with AD or DLB than for any of the other groups. These results suggest that the single-feature search “pop-out” effect is preserved in DLB and AD patients, whereas ability to perform the feature-conjunction search is impaired. This pattern of preserved single-feature search with impaired feature-conjunction search is consistent with a deficit in feature binding that may be mediated by abnormalities in networks involving the dorsal occipito-parietal cortex. PMID:26476402
Individual Differences in Dual Task Performance.
1981-06-10
SJCURITY CLASSIFICATION OF THIS PAGE("en Data Entered) second experimental series, we compared ability to detect visual and audi- tory targets in single...used performance on a simple secondary task executed during an easy primary task to predict performance on a more diffi- cult’version of the same...process concepts developed b’j cognitive ps:choloqists°’ In this laborators, we adapted a number of experimental tasks to 4ield individual measures of the
Delhey, Kaspar; Hall, Michelle; Kingma, Sjouke A.; Peters, Anne
2013-01-01
Colour signals are expected to match visual sensitivities of intended receivers. In birds, evolutionary shifts from violet-sensitive (V-type) to ultraviolet-sensitive (U-type) vision have been linked to increased prevalence of colours rich in shortwave reflectance (ultraviolet/blue), presumably due to better perception of such colours by U-type vision. Here we provide the first test of this widespread idea using fairy-wrens and allies (Family Maluridae) as a model, a family where shifts in visual sensitivities from V- to U-type eyes are associated with male nuptial plumage rich in ultraviolet/blue colours. Using psychophysical visual models, we compared the performance of both types of visual systems at two tasks: (i) detecting contrast between male plumage colours and natural backgrounds, and (ii) perceiving intraspecific chromatic variation in male plumage. While U-type outperforms V-type vision at both tasks, the crucial test here is whether U-type vision performs better at detecting and discriminating ultraviolet/blue colours when compared with other colours. This was true for detecting contrast between plumage colours and natural backgrounds (i), but not for discriminating intraspecific variability (ii). Our data indicate that selection to maximize conspicuousness to conspecifics may have led to the correlation between ultraviolet/blue colours and U-type vision in this clade of birds. PMID:23118438
Comparing visual search and eye movements in bilinguals and monolinguals
Hout, Michael C.; Walenchok, Stephen C.; Azuma, Tamiko; Goldinger, Stephen D.
2017-01-01
Recent research has suggested that bilinguals show advantages over monolinguals in visual search tasks, although these findings have been derived from global behavioral measures of accuracy and response times. In the present study we sought to explore the bilingual advantage by using more sensitive eyetracking techniques across three visual search experiments. These spatially and temporally fine-grained measures allowed us to carefully investigate any nuanced attentional differences between bilinguals and monolinguals. Bilingual and monolingual participants completed visual search tasks that varied in difficulty. The experiments required participants to make careful discriminations in order to detect target Landolt Cs among similar distractors. In Experiment 1, participants performed both feature and conjunction search. In Experiments 2 and 3, participants performed visual search while making different types of speeded discriminations, after either locating the target or mentally updating a constantly changing target. The results across all experiments revealed that bilinguals and monolinguals were equally efficient at guiding attention and generating responses. These findings suggest that the bilingual advantage does not reflect a general benefit in attentional guidance, but could reflect more efficient guidance only under specific task demands. PMID:28508116
Glyph-based generic network visualization
NASA Astrophysics Data System (ADS)
Erbacher, Robert F.
2002-03-01
Network managers and system administrators have an enormous task set before them in this day of growing network usage. This is particularly true of e-commerce companies and others dependent on a computer network for their livelihood. Network managers and system administrators must monitor activity for intrusions and misuse while at the same time monitoring performance of the network. In this paper, we describe our visualization techniques for assisting in the monitoring of networks for both of these tasks. The goal of these visualization techniques is to integrate the visual representation of both network performance/usage as well as data relevant to intrusion detection. The main difficulties arise from the difference in the intrinsic data and layout needs of each of these tasks. Glyph based techniques are additionally used to indicate the representative values of the necessary data parameters over time. Additionally, our techniques are geared towards providing an environment that can be used continuously for constant real-time monitoring of the network environment.
Detecting distortion: bridging visual and quantitative reasoning on similarity tasks
NASA Astrophysics Data System (ADS)
Cox, Dana C.; Lo, Jane-Jane
2014-03-01
This study is focused on identifying and describing the reasoning patterns of middle grade students when examining potentially similar figures. Described here is a framework that includes 11 strategies that students used during clinical interview to differentiate similar and non-similar figures. Two factors were found to influence the strategies students selected: the complexity of the figures being compared and the type of distortion present in nonsimilar pairings. Data from this study support the theory that distortions are identified as a dominant property of figures and that students use the presence and absence of distortion to visually decide if two figures are similar. Furthermore, this study shows that visual reasoning is not as primitive or nonconstructive as represented in earlier literature and supports students who are developing numeric reasoning strategies. This illuminates possible pathways students may take when advancing from using visual and additive reasoning strategies to using multiplicative proportional reasoning on similarity tasks. In particular, distortion detection is a visual activity that enables students to reflect upon and evaluate the validity and accuracy of differentiation and quantify perceived relationships leading to ratio. This study has implications for curriculum developers as well as future research.
Distinct roles of the cortical layers of area V1 in figure-ground segregation.
Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R
2013-11-04
What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.
Threat captures attention but does not affect learning of contextual regularities.
Yamaguchi, Motonori; Harwood, Sarah L
2017-04-01
Some of the stimulus features that guide visual attention are abstract properties of objects such as potential threat to one's survival, whereas others are complex configurations such as visual contexts that are learned through past experiences. The present study investigated the two functions that guide visual attention, threat detection and learning of contextual regularities, in visual search. Search arrays contained images of threat and non-threat objects, and their locations were fixed on some trials but random on other trials. Although they were irrelevant to the visual search task, threat objects facilitated attention capture and impaired attention disengagement. Search time improved for fixed configurations more than for random configurations, reflecting learning of visual contexts. Nevertheless, threat detection had little influence on learning of the contextual regularities. The results suggest that factors guiding visual attention are different from factors that influence learning to guide visual attention.
Active visual search in non-stationary scenes: coping with temporal variability and uncertainty
NASA Astrophysics Data System (ADS)
Ušćumlić, Marija; Blankertz, Benjamin
2016-02-01
Objective. State-of-the-art experiments for studying neural processes underlying visual cognition often constrain sensory inputs (e.g., static images) and our behavior (e.g., fixed eye-gaze, long eye fixations), isolating or simplifying the interaction of neural processes. Motivated by the non-stationarity of our natural visual environment, we investigated the electroencephalography (EEG) correlates of visual recognition while participants overtly performed visual search in non-stationary scenes. We hypothesized that visual effects (such as those typically used in human-computer interfaces) may increase temporal uncertainty (with reference to fixation onset) of cognition-related EEG activity in an active search task and therefore require novel techniques for single-trial detection. Approach. We addressed fixation-related EEG activity in an active search task with respect to stimulus-appearance styles and dynamics. Alongside popping-up stimuli, our experimental study embraces two composite appearance styles based on fading-in, enlarging, and motion effects. Additionally, we explored whether the knowledge obtained in the pop-up experimental setting can be exploited to boost the EEG-based intention-decoding performance when facing transitional changes of visual content. Main results. The results confirmed our initial hypothesis that the dynamic of visual content can increase temporal uncertainty of the cognition-related EEG activity in active search with respect to fixation onset. This temporal uncertainty challenges the pivotal aim to keep the decoding performance constant irrespective of visual effects. Importantly, the proposed approach for EEG decoding based on knowledge transfer between the different experimental settings gave a promising performance. Significance. Our study demonstrates that the non-stationarity of visual scenes is an important factor in the evolution of cognitive processes, as well as in the dynamic of ocular behavior (i.e., dwell time and fixation duration) in an active search task. In addition, our method to improve single-trial detection performance in this adverse scenario is an important step in making brain-computer interfacing technology available for human-computer interaction applications.
What you fear will appear: detection of schematic spiders in spider fear.
Peira, Nathalie; Golkar, Armita; Larsson, Maria; Wiens, Stefan
2010-01-01
Various experimental tasks suggest that fear guides attention. However, because these tasks often lack ecological validity, it is unclear to what extent results from these tasks can be generalized to real-life situations. In change detection tasks, a brief interruption of the visual input (i.e., a blank interval or a scene cut) often results in undetected changes in the scene. This setup resembles real-life viewing behavior and is used here to increase ecological validity of the attentional task without compromising control over the stimuli presented. Spider-fearful and nonfearful women detected schematic spiders and flowers that were added to one of two identical background pictures that alternated with a brief blank in between them (i.e., flicker paradigm). Results showed that spider-fearful women detected spiders (but not flowers) faster than did nonfearful women. Because spiders and flowers had similar low-level features, these findings suggest that fear guides attention on the basis of object features rather than simple low-level features.
Rehearsal in serial memory for visual-spatial information: evidence from eye movements.
Tremblay, Sébastien; Saint-Aubin, Jean; Jalbert, Annie
2006-06-01
It is well established that rote rehearsal plays a key role in serial memory for lists of verbal items. Although a great deal of research has informed us about the nature of verbal rehearsal, much less attention has been devoted to rehearsal in serial memory for visual-spatial information. By using the dot task--a visual-spatial analogue of the classical verbal serial recall task--with delayed recall, performance and eyetracking data were recorded in order to establish whether visual-spatial rehearsal could be evidenced by eye movement. The use of eye movement as a form of rehearsal is detectable (Experiment 1), and it seems to contribute to serial memory performance over and above rehearsal based on shifts of spatial attention (Experiments 1 and 2).
Hindi Attar, Catherine; Andersen, Søren K; Müller, Matthias M
2010-12-01
Selective attention to a primary task can be biased by the occurrence of emotional distractors that involuntary attract attention due to their intrinsic stimulus significance. What is largely unknown is the time course and magnitude of competitive interactions between a to-be-attended foreground task and emotional distractors. We used pleasant, unpleasant and neutral pictures from the International Affective Picture System (IAPS) that were either presented in intact or phase-scrambled form. Pictures were superimposed by a flickering display of moving random dots, which constituted the primary task and enabled us to record steady-state visual evoked potentials (SSVEPs) as a continuous measure of attentional resource allocation directed to the task. Subjects were required to attend to the dots and to detect short intervals of coherent motion while ignoring the background pictures. We found that pleasant and unpleasant relative to neutral pictures more strongly influenced task-related processing as reflected in a significant decrease in SSVEP amplitudes and target detection rates, both covering a time window of several hundred milliseconds. Strikingly, the effect of semantic relative to phase-scrambled pictures on task-related activity was much larger, emerged earlier and lasted longer in time compared to the specific effect of emotion. The observed differences in size and duration of time courses of semantic and emotional picture processing strengthen the assumption of separate functional mechanisms for both processes rather than a general boosting of neural activity in favor of emotional stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.
Performance characteristics of a visual-search human-model observer with sparse PET image data
NASA Astrophysics Data System (ADS)
Gifford, Howard C.
2012-02-01
As predictors of human performance in detection-localization tasks, statistical model observers can have problems with tasks that are primarily limited by target contrast or structural noise. Model observers with a visual-search (VS) framework may provide a more reliable alternative. This framework provides for an initial holistic search that identifies suspicious locations for analysis by a statistical observer. A basic VS observer for emission tomography focuses on hot "blobs" in an image and uses a channelized nonprewhitening (CNPW) observer for analysis. In [1], we investigated this model for a contrast-limited task with SPECT images; herein, a statisticalnoise limited task involving PET images is considered. An LROC study used 2D image slices with liver, lung and soft-tissue tumors. Human and model observers read the images in coronal, sagittal and transverse display formats. The study thus measured the detectability of tumors in a given organ as a function of display format. The model observers were applied under several task variants that tested their response to structural noise both at the organ boundaries alone and over the organs as a whole. As measured by correlation with the human data, the VS observer outperformed the CNPW scanning observer.
Effect of display size on visual attention.
Chen, I-Ping; Liao, Chia-Ning; Yeh, Shih-Hao
2011-06-01
Attention plays an important role in the design of human-machine interfaces. However, current knowledge about attention is largely based on data obtained when using devices of moderate display size. With advancement in display technology comes the need for understanding attention behavior over a wider range of viewing sizes. The effect of display size on test participants' visual search performance was studied. The participants (N = 12) performed two types of visual search tasks, that is, parallel and serial search, under three display-size conditions (16 degrees, 32 degrees, and 60 degrees). Serial, but not parallel, search was affected by display size. In the serial task, mean reaction time for detecting a target increased with the display size.
Dual-Tasking Alleviated Sleep Deprivation Disruption in Visuomotor Tracking: An fMRI Study
ERIC Educational Resources Information Center
Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Basner, Robert C.; Ghez, Claude; Stern, Yaakov
2012-01-01
Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a…
Krummenacher, Joseph; Müller, Hermann J; Zehetleitner, Michael; Geyer, Thomas
2009-03-01
Two experiments compared reaction times (RTs) in visual search for singleton feature targets defined, variably across trials, in either the color or the orientation dimension. Experiment 1 required observers to simply discern target presence versus absence (simple-detection task); Experiment 2 required them to respond to a detection-irrelevant form attribute of the target (compound-search task). Experiment 1 revealed a marked dimensional intertrial effect of 34 ms for an target defined in a changed versus a repeated dimension, and an intertrial target distance effect, with an 4-ms increase in RTs (per unit of distance) as the separation of the current relative to the preceding target increased. Conversely, in Experiment 2, the dimension change effect was markedly reduced (11 ms), while the intertrial target distance effect was markedly increased (11 ms per unit of distance). The results suggest that dimension change/repetition effects are modulated by the amount of attentional focusing required by the task, with space-based attention altering the integration of dimension-specific feature contrast signals at the level of the overall-saliency map.
The forest, the trees, and the leaves: Differences of processing across development.
Krakowski, Claire-Sara; Poirel, Nicolas; Vidal, Julie; Roëll, Margot; Pineau, Arlette; Borst, Grégoire; Houdé, Olivier
2016-08-01
To act and think, children and adults are continually required to ignore irrelevant visual information to focus on task-relevant items. As real-world visual information is organized into structures, we designed a feature visual search task containing 3-level hierarchical stimuli (i.e., local shapes that constituted intermediate shapes that formed the global figure) that was presented to 112 participants aged 5, 6, 9, and 21 years old. This task allowed us to explore (a) which level is perceptively the most salient at each age (i.e., the fastest detected level) and (b) what kind of attentional processing occurs for each level across development (i.e., efficient processing: detection time does not increase with the number of stimuli on the display; less efficient processing: detection time increases linearly with the growing number of distractors). Results showed that the global level was the most salient at 5 years of age, whereas the global and intermediate levels were both salient for 9-year-olds and adults. Interestingly, at 6 years of age, the intermediate level was the most salient level. Second, all participants showed an efficient processing of both intermediate and global levels of hierarchical stimuli, and a less efficient processing of the local level, suggesting a local disadvantage rather than a global advantage in visual search. The cognitive cost for selecting the local target was higher for 5- and 6-year-old children compared to 9-year-old children and adults. These results are discussed with regards to the development of executive control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Improving resolution of dynamic communities in human brain networks through targeted node removal
Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.
2017-01-01
Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662
Incidental orthographic learning during a color detection task.
Protopapas, Athanassios; Mitsi, Anna; Koustoumbardis, Miltiadis; Tsitsopoulou, Sofia M; Leventi, Marianna; Seitz, Aaron R
2017-09-01
Orthographic learning refers to the acquisition of knowledge about specific spelling patterns forming words and about general biases and constraints on letter sequences. It is thought to occur by strengthening simultaneously activated visual and phonological representations during reading. Here we demonstrate that a visual perceptual learning procedure that leaves no time for articulation can result in orthographic learning evidenced in improved reading and spelling performance. We employed task-irrelevant perceptual learning (TIPL), in which the stimuli to be learned are paired with an easy task target. Assorted line drawings and difficult-to-spell words were presented in red color among sequences of other black-colored words and images presented in rapid succession, constituting a fast-TIPL procedure with color detection being the explicit task. In five experiments, Greek children in Grades 4-5 showed increased recognition of words and images that had appeared in red, both during and after the training procedure, regardless of within-training testing, and also when targets appeared in blue instead of red. Significant transfer to reading and spelling emerged only after increased training intensity. In a sixth experiment, children in Grades 2-3 showed generalization to words not presented during training that carried the same derivational affixes as in the training set. We suggest that reinforcement signals related to detection of the target stimuli contribute to the strengthening of orthography-phonology connections beyond earlier levels of visually-based orthographic representation learning. These results highlight the potential of perceptual learning procedures for the reinforcement of higher-level orthographic representations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Cognitive markers of psychotic unipolar depression: a meta-analytic study.
Zaninotto, Leonardo; Guglielmo, Riccardo; Calati, Raffaella; Ioime, Lucia; Camardese, Giovanni; Janiri, Luigi; Bria, Pietro; Serretti, Alessandro
2015-03-15
The goal of the current meta-analysis was to review and examine in detail the features of cognitive performance in psychotic (MDDP) versus non-psychotic (MDD) major depressive disorder. An electronic literature search was performed to find studies comparing cognitive performance in MDDP versus MDD. A meta-analysis of broad cognitive domains (processing speed, reasoning/problem solving, verbal learning, visual learning, attention/working memory) and individual cognitive tasks was conducted on all included studies (n=12). Demographic and clinical features were investigated via meta-regression analysis as moderators of cognitive performance. No difference in socio-demographic and clinical variables was detected between groups. In general, a poorer cognitive performance was detected in MDDP versus MDD subjects (ES=0.38), with a greater effect size in drug-free patients (ES=0.69). MDDP patients were more impaired in verbal learning (ES=0.67), visual learning (ES=0.62) and processing speed (ES=0.71) tasks. A significantly poorer performance was also detected in MDDP patients for individual tasks as Trail Making Test A, WAIS-R digit span backward and WAIS-R digit symbol. Age resulted to have a negative effect on tasks involved in working memory performance. In line with previous meta-analyses, our findings seem to support an association between psychosis and cognitive deficits in the context of affective disorders. Psychosis during the course of MDD is associated with poorer cognitive performance in some specific cognitive domains, such as visual and verbal learning and executive functions. Copyright © 2014 Elsevier B.V. All rights reserved.
Hahn, Sowon; Buttaccio, Daniel R; Hahn, Jungwon; Lee, Taehun
2015-01-01
The present study demonstrates that levels of extraversion and neuroticism can predict attentional performance during a change detection task. After completing a change detection task built on the flicker paradigm, participants were assessed for personality traits using the Revised Eysenck Personality Questionnaire (EPQ-R). Multiple regression analyses revealed that higher levels of extraversion predict increased change detection accuracies, while higher levels of neuroticism predict decreased change detection accuracies. In addition, neurotic individuals exhibited decreased sensitivity A' and increased fixation dwell times. Hierarchical regression analyses further revealed that eye movement measures mediate the relationship between neuroticism and change detection accuracies. Based on the current results, we propose that neuroticism is associated with decreased attentional control over the visual field, presumably due to decreased attentional disengagement. Extraversion can predict increased attentional performance, but the effect is smaller than the relationship between neuroticism and attention.
Task-dependent enhancement of facial expression and identity representations in human cortex.
Dobs, Katharina; Schultz, Johannes; Bülthoff, Isabelle; Gardner, Justin L
2018-05-15
What cortical mechanisms allow humans to easily discern the expression or identity of a face? Subjects detected changes in expression or identity of a stream of dynamic faces while we measured BOLD responses from topographically and functionally defined areas throughout the visual hierarchy. Responses in dorsal areas increased during the expression task, whereas responses in ventral areas increased during the identity task, consistent with previous studies. Similar to ventral areas, early visual areas showed increased activity during the identity task. If visual responses are weighted by perceptual mechanisms according to their magnitude, these increased responses would lead to improved attentional selection of the task-appropriate facial aspect. Alternatively, increased responses could be a signature of a sensitivity enhancement mechanism that improves representations of the attended facial aspect. Consistent with the latter sensitivity enhancement mechanism, attending to expression led to enhanced decoding of exemplars of expression both in early visual and dorsal areas relative to attending identity. Similarly, decoding identity exemplars when attending to identity was improved in dorsal and ventral areas. We conclude that attending to expression or identity of dynamic faces is associated with increased selectivity in representations consistent with sensitivity enhancement. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Preattentive visual search and perceptual grouping in schizophrenia.
Carr, V J; Dewis, S A; Lewin, T J
1998-06-15
To help determine whether patients with schizophrenia show deficits in the stimulus-based aspects of preattentive processing, we undertook a series of experiments within the framework of feature integration theory. Thirty subjects with a DSM-III-R diagnosis of schizophrenia and 30 age-, gender-, and education-matched normal control subjects completed two computerized experimental tasks, a visual search task assessing parallel and serial information processing (Experiment 1) and a task which examined the effects of perceptual grouping on visual search strategies (Experiment 2). We also assessed current symptomatology and its relationship to task performance. While the schizophrenia subjects had longer reaction times in Experiment 1, their overall pattern of performance across both experimental tasks was similar to that of the control subjects, and generally unrelated to current symptomatology. Predictions from feature integration theory about the impact of varying display size (Experiment 1) and number of perceptual groups (Experiment 2) on the detection of feature and conjunction targets were strongly supported. This study revealed no firm evidence that schizophrenia is associated with a preattentive abnormality in visual search using stimuli that differ on the basis of physical characteristics. While subject and task characteristics may partially account for differences between this and previous studies, it is more likely that preattentive processing abnormalities in schizophrenia may occur only under conditions involving selected 'top-down' factors such as context and meaning.
Mouthon, A; Ruffieux, J; Mouthon, M; Hoogewoud, H-M; Annoni, J-M; Taube, W
2018-01-01
Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations.
Ruffieux, J.; Mouthon, M.; Hoogewoud, H.-M.; Taube, W.
2018-01-01
Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations. PMID:29675037
Robotic Attention Processing And Its Application To Visual Guidance
NASA Astrophysics Data System (ADS)
Barth, Matthew; Inoue, Hirochika
1988-03-01
This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.
Ferlazzo, Fabio; Fagioli, Sabrina; Di Nocera, Francesco; Sdoia, Stefano
2008-11-01
In three experiments, participants performed two tasks concurrently during driving. In the peripheral detection task, they responded manually to visual stimuli delivered through a LED placed on the internal rear mirror; in the conversation task, they were engaged in a conversation with a passenger, or through earphone-operated, loudspeaker-operated, or hand-held cell phones. Results showed that drivers were slower at responding to the visual stimuli when conversing through a hand-held cell phone or an earphone-operated cell phone than when conversing through a loudspeaker-operated cell phone or with a passenger. These results suggest that due to the brain coding the space into multiple representations, devices that make phone conversations taking place in the near, personal space make drivers slower at responding to visual stimuli, compared to devices that make the conversation occurring in a far space.
Grasp posture alters visual processing biases near the hands
Thomas, Laura E.
2015-01-01
Observers experience biases in visual processing for objects within easy reach of their hands that may assist them in evaluating items that are candidates for action. I investigated the hypothesis that hand postures affording different types of actions differentially bias vision. Across three experiments, participants performed global motion detection and global form perception tasks while their hands were positioned a) near the display in a posture affording a power grasp, b) near the display in a posture affording a precision grasp, or c) in their laps. Although the power grasp posture facilitated performance on the motion task, the precision grasp posture instead facilitated performance on the form task. These results suggest that the visual system weights processing based on an observer’s current affordances for specific actions: fast and forceful power grasps enhance temporal sensitivity, while detail-oriented precision grasps enhance spatial sensitivity. PMID:25862545
Perceptual learning effect on decision and confidence thresholds.
Solovey, Guillermo; Shalom, Diego; Pérez-Schuster, Verónica; Sigman, Mariano
2016-10-01
Practice can enhance of perceptual sensitivity, a well-known phenomenon called perceptual learning. However, the effect of practice on subjective perception has received little attention. We approach this problem from a visual psychophysics and computational modeling perspective. In a sequence of visual search experiments, subjects significantly increased the ability to detect a "trained target". Before and after training, subjects performed two psychophysical protocols that parametrically vary the visibility of the "trained target": an attentional blink and a visual masking task. We found that confidence increased after learning only in the attentional blink task. Despite large differences in some observables and task settings, we identify common mechanisms for decision-making and confidence. Specifically, our behavioral results and computational model suggest that perceptual ability is independent of processing time, indicating that changes in early cortical representations are effective, and learning changes decision criteria to convey choice and confidence. Copyright © 2016 Elsevier Inc. All rights reserved.
Prefrontal Neuronal Responses during Audiovisual Mnemonic Processing
Hwang, Jaewon
2015-01-01
During communication we combine auditory and visual information. Neurophysiological research in nonhuman primates has shown that single neurons in ventrolateral prefrontal cortex (VLPFC) exhibit multisensory responses to faces and vocalizations presented simultaneously. However, whether VLPFC is also involved in maintaining those communication stimuli in working memory or combining stored information across different modalities is unknown, although its human homolog, the inferior frontal gyrus, is known to be important in integrating verbal information from auditory and visual working memory. To address this question, we recorded from VLPFC while rhesus macaques (Macaca mulatta) performed an audiovisual working memory task. Unlike traditional match-to-sample/nonmatch-to-sample paradigms, which use unimodal memoranda, our nonmatch-to-sample task used dynamic movies consisting of both facial gestures and the accompanying vocalizations. For the nonmatch conditions, a change in the auditory component (vocalization), the visual component (face), or both components was detected. Our results show that VLPFC neurons are activated by stimulus and task factors: while some neurons simply responded to a particular face or a vocalization regardless of the task period, others exhibited activity patterns typically related to working memory such as sustained delay activity and match enhancement/suppression. In addition, we found neurons that detected the component change during the nonmatch period. Interestingly, some of these neurons were sensitive to the change of both components and therefore combined information from auditory and visual working memory. These results suggest that VLPFC is not only involved in the perceptual processing of faces and vocalizations but also in their mnemonic processing. PMID:25609614
Contextual cueing of pop-out visual search: when context guides the deployment of attention.
Geyer, Thomas; Zehetleitner, Michael; Müller, Hermann J
2010-05-01
Visual context information can guide attention in demanding (i.e., inefficient) search tasks. When participants are repeatedly presented with identically arranged ('repeated') displays, reaction times are faster relative to newly composed ('non-repeated') displays. The present article examines whether this 'contextual cueing' effect operates also in simple (i.e., efficient) search tasks and if so, whether there it influences target, rather than response, selection. The results were that singleton-feature targets were detected faster when the search items were presented in repeated, rather than non-repeated, arrangements. Importantly, repeated, relative to novel, displays also led to an increase in signal detection accuracy. Thus, contextual cueing can expedite the selection of pop-out targets, most likely by enhancing feature contrast signals at the overall-salience computation stage.
ROUTE-DEPENDENT EFFECTS OF TOLUENE ON SIGNAL DETECTION BEHAVIOR IN RATS.
The acute effects of toluene and other solvents on behavior are thought to depend upon their concentration in the brain. We have shown previously that inhaled toluene and trichloroethylene disrupt sustained attention in rats as assessed with a visual signal detection task (SDT). ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragan, Eric D.; Bowman, Doug A.; Kopper, Regis
Virtual reality training systems are commonly used in a variety of domains, and it is important to understand how the realism of a training simulation influences training effectiveness. The paper presents a framework for evaluating the effects of virtual reality fidelity based on an analysis of a simulation’s display, interaction, and scenario components. Following this framework, we conducted a controlled experiment to test the effects of fidelity on training effectiveness for a visual scanning task. The experiment varied the levels of field of view and visual realism during a training phase and then evaluated scanning performance with the simulator’s highestmore » level of fidelity. To assess scanning performance, we measured target detection and adherence to a prescribed strategy. The results show that both field of view and visual realism significantly affected target detection during training; higher field of view led to better performance and higher visual realism worsened performance. Additionally, the level of visual realism during training significantly affected learning of the prescribed visual scanning strategy, providing evidence that high visual realism was important for learning the technique. The results also demonstrate that task performance during training was not always a sufficient measure of mastery of an instructed technique. That is, if learning a prescribed strategy or skill is the goal of a training exercise, performance in a simulation may not be an appropriate indicator of effectiveness outside of training—evaluation in a more realistic setting may be necessary.« less
Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance
Veniero, Domenica
2017-01-01
Abstract Prestimulus oscillatory neural activity has been linked to perceptual outcomes during performance of psychophysical detection and discrimination tasks. Specifically, the power and phase of low frequency oscillations have been found to predict whether an upcoming weak visual target will be detected or not. However, the mechanisms by which baseline oscillatory activity influences perception remain unclear. Recent studies suggest that the frequently reported negative relationship between α power and stimulus detection may be explained by changes in detection criterion (i.e., increased target present responses regardless of whether the target was present/absent) driven by the state of neural excitability, rather than changes in visual sensitivity (i.e., more veridical percepts). Here, we recorded EEG while human participants performed a luminance discrimination task on perithreshold stimuli in combination with single-trial ratings of perceptual awareness. Our aim was to investigate whether the power and/or phase of prestimulus oscillatory activity predict discrimination accuracy and/or perceptual awareness on a trial-by-trial basis. Prestimulus power (3–28 Hz) was inversely related to perceptual awareness ratings (i.e., higher ratings in states of low prestimulus power/high excitability) but did not predict discrimination accuracy. In contrast, prestimulus oscillatory phase did not predict awareness ratings or accuracy in any frequency band. These results provide evidence that prestimulus α power influences the level of subjective awareness of threshold visual stimuli but does not influence visual sensitivity when a decision has to be made regarding stimulus features. Hence, we find a clear dissociation between the influence of ongoing neural activity on conscious awareness and objective performance. PMID:29255794
King, Andy J; Gehl, Robert W; Grossman, Douglas; Jensen, Jakob D
2013-12-01
Skin self-examination (SSE) is one method for identifying atypical nevi among members of the general public. Unfortunately, past research has shown that SSE has low sensitivity in detecting atypical nevi. The current study investigates whether crowdsourcing (collective effort) can improve SSE identification accuracy. Collective effort is potentially useful for improving people's visual identification of atypical nevi during SSE because, even when a single person has low reliability at a task, the pattern of the group can overcome the limitations of each individual. Adults (N=500) were recruited from a shopping mall in the Midwest. Participants viewed educational pamphlets about SSE and then completed a mole identification task. For the task, participants were asked to circle mole images that appeared atypical. Forty nevi images were provided; nine of the images were of nevi that were later diagnosed as melanoma. Consistent with past research, individual effort exhibited modest sensitivity (.58) for identifying atypical nevi in the mole identification task. As predicted, collective effort overcame the limitations of individual effort. Specifically, a 19% collective effort identification threshold exhibited superior sensitivity (.90). The results of the current study suggest that limitations of SSE can be countered by collective effort, a finding that supports the pursuit of interventions promoting early melanoma detection that contain crowdsourced visual identification components. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng
2016-01-01
Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.
Perceptual learning increases the strength of the earliest signals in visual cortex.
Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A
2010-11-10
Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.
Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian
2017-01-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469
Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen
2017-06-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
Dossett, D; Burns, B
2000-06-01
Developmental changes in kindergarten, 1st-, and 4th-grade children's knowledge about the variables that affect attention sharing and resource allocation were examined. Findings from the 2 experiments showed that kindergartners understood that person and strategy variables affect performance in attention-sharing tasks. However, knowledge of how task variables affect performance was not evident to them and was inconsistent for 1st and 4th graders. Children's knowledge about resource allocation revealed a different pattern and varied according to the dissimilarity of task demands in the attention-sharing task. In Experiment 1, in which the dual attention tasks were similar (i.e., visual detection), kindergarten and 1st-grade children did not differentiate performance in single and dual tasks. Fourth graders demonstrated knowledge that performance on a single task would be better than performance on the dual tasks for only 2 of the variables examined. In Experiment 2, in which the dual attention tasks were dissimilar (i.e., visual and auditory detection), kindergarten and 1st-grade children demonstrated knowledge that performance in the single task would be better than in the dual tasks for 1 of the task variables examined. However, 4th-grade children consistently gave higher ratings for performance on the single than on the dual attention tasks for all variables examined. These findings (a) underscore that children's meta-attention is not unitary and (b) demonstrate that children's knowledge about variables affecting attention sharing and resource allocation have different developmental pathways. Results show that knowledge about attention sharing and about the factors that influence the control of attention develops slowly and undergoes reorganization in middle childhood.
The impact of visual scanning in the laparoscopic environment after engaging in strain coping.
Klein, Martina I; DeLucia, Patricia R; Olmstead, Ryan
2013-06-01
We aimed to determine whether visual scanning has a detrimental impact on the monitoring of critical signals and the performance of a concurrent laparoscopic training task after participants engaged in Hockey's strain coping. Strain coping refers to straining cognitive (attentional) resources joined with latent decrements (i.e., stress). DeLucia and Betts (2008) reported that monitoring critical signals degraded performance of a laparoscopic peg-reversal task compared with no monitoring. However, performance did not differ between displays in which critical signals were shown on split screens (less visual scanning) and separated displays (more visual scanning). We hypothesized that effects of scanning may occur after prolonged strain coping. Using a between-subjects design, we had undergraduates perform a laparoscopic training task that induced strain coping. Then they performed a laparoscopic peg-reversal task while monitoring critical signals with a split-screen or separated display. We administered the NASA-Task Load Index (TLX) and Dundee Stress State Questionnaire (DSSQ) to assess strain coping. The TLX and DSSQ profiles indicated that participants engaged in strain coping. Monitoring critical signals resulted in slowed peg-reversal performance compared with no monitoring. Separated displays degraded critical-signal monitoring compared with split-screen displays. After novice observers experience strain coping, visual scanning can impair the detection of critical signals. Results suggest that the design and arrangement of displays in the operating room must incorporate the attentional limitations of the surgeon. Designs that induce visual scanning may impair monitoring of critical information at least in novices. Presenting displays closely in space may be beneficial.
Contributions of Invariants, Heuristics, and Exemplars to the Visual Perception of Relative Mass
ERIC Educational Resources Information Center
Cohen, Andrew L.
2006-01-01
Some potential contributions of invariants, heuristics, and exemplars to the perception of dynamic properties in the colliding balls task were explored. On each trial, an observer is asked to determine the heavier of 2 colliding balls. The invariant approach assumes that people can learn to detect complex visual patterns that reliably specify…
ERIC Educational Resources Information Center
de la Rosa, Stephan; Choudhery, Rabia N.; Chatziastros, Astros
2011-01-01
Recent evidence suggests that the recognition of an object's presence and its explicit recognition are temporally closely related. Here we re-examined the time course (using a fine and a coarse temporal resolution) and the sensitivity of three possible component processes of visual object recognition. In particular, participants saw briefly…
Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru
2017-01-01
Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs) during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food), low-fat food (i.e., Japanese diet), and non-food (i.e., kitchen utensils) targets within crowds of non-food distractors (i.e., cars). Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection. PMID:28690568
Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru
2017-01-01
Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs) during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food), low-fat food (i.e., Japanese diet), and non-food (i.e., kitchen utensils) targets within crowds of non-food distractors (i.e., cars). Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection.
Transient Distraction and Attentional Control during a Sustained Selective Attention Task.
Demeter, Elise; Woldorff, Marty G
2016-07-01
Distracting stimuli in the environment can pull our attention away from our goal-directed tasks. fMRI studies have implicated regions in right frontal cortex as being particularly important for processing distractors [e.g., de Fockert, J. W., & Theeuwes, J. Role of frontal cortex in attentional capture by singleton distractors. Brain and Cognition, 80, 367-373, 2012; Demeter, E., Hernandez-Garcia, L., Sarter, M., & Lustig, C. Challenges to attention: A continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. Neuroimage, 54, 1518-1529, 2011]. Less is known, however, about the timing and sequence of how right frontal or other brain regions respond selectively to distractors and how distractors impinge upon the cascade of processes related to detecting and processing behaviorally relevant target stimuli. Here we used EEG and ERPs to investigate the neural consequences of a perceptually salient but task-irrelevant distractor on the detection of rare target stimuli embedded in a rapid, serial visual presentation (RSVP) stream. We found that distractors that occur during the presentation of a target interfere behaviorally with detection of those targets, reflected by reduced detection rates, and that these missed targets show a reduced amplitude of the long-latency, detection-related P3 component. We also found that distractors elicited a right-lateralized frontal negativity beginning at 100 msec, whose amplitude negatively correlated across participants with their distraction-related behavioral impairment. Finally, we also quantified the instantaneous amplitude of the steady-state visual evoked potentials elicited by the RSVP stream and found that the occurrence of a distractor resulted in a transient amplitude decrement of the steady-state visual evoked potential, presumably reflecting the pull of attention away from the RSVP stream when distracting stimuli occur in the environment.
McElree, Brian; Carrasco, Marisa
2012-01-01
Feature and conjunction searches have been argued to delineate parallel and serial operations in visual processing. The authors evaluated this claim by examining the temporal dynamics of the detection of features and conjunctions. The 1st experiment used a reaction time (RT) task to replicate standard mean RT patterns and to examine the shapes of the RT distributions. The 2nd experiment used the response-signal speed–accuracy trade-off (SAT) procedure to measure discrimination (asymptotic detection accuracy) and detection speed (processing dynamics). Set size affected discrimination in both feature and conjunction searches but affected detection speed only in the latter. Fits of models to the SAT data that included a serial component overpredicted the magnitude of the observed dynamics differences. The authors concluded that both features and conjunctions are detected in parallel. Implications for the role of attention in visual processing are discussed. PMID:10641310
Detection of fresh bruises in apples by structured-illumination reflectance imaging
USDA-ARS?s Scientific Manuscript database
Detection of fresh bruises in apples remains a challenging task due to the absence of visual symptoms and significant chemical alterations of fruit tissues during the initial stage after the fruit have been bruised. This paper reports on a new structured-illumination reflectance imaging (SIRI) techn...
Hazardous sign detection for safety applications in traffic monitoring
NASA Astrophysics Data System (ADS)
Benesova, Wanda; Kottman, Michal; Sidla, Oliver
2012-01-01
The transportation of hazardous goods in public streets systems can pose severe safety threats in case of accidents. One of the solutions for these problems is an automatic detection and registration of vehicles which are marked with dangerous goods signs. We present a prototype system which can detect a trained set of signs in high resolution images under real-world conditions. This paper compares two different methods for the detection: bag of visual words (BoW) procedure and our approach presented as pairs of visual words with Hough voting. The results of an extended series of experiments are provided in this paper. The experiments show that the size of visual vocabulary is crucial and can significantly affect the recognition success rate. Different code-book sizes have been evaluated for this detection task. The best result of the first method BoW was 67% successfully recognized hazardous signs, whereas the second method proposed in this paper - pairs of visual words and Hough voting - reached 94% of correctly detected signs. The experiments are designed to verify the usability of the two proposed approaches in a real-world scenario.
Spatial and temporal coherence in perceptual binding
Blake, Randolph; Yang, Yuede
1997-01-01
Component visual features of objects are registered by distributed patterns of activity among neurons comprising multiple pathways and visual areas. How these distributed patterns of activity give rise to unified representations of objects remains unresolved, although one recent, controversial view posits temporal coherence of neural activity as a binding agent. Motivated by the possible role of temporal coherence in feature binding, we devised a novel psychophysical task that requires the detection of temporal coherence among features comprising complex visual images. Results show that human observers can more easily detect synchronized patterns of temporal contrast modulation within hybrid visual images composed of two components when those components are drawn from the same original picture. Evidently, time-varying changes within spatially coherent features produce more salient neural signals. PMID:9192701
Visual short-term memory guides infants' visual attention.
Mitsven, Samantha G; Cantrell, Lisa M; Luck, Steven J; Oakes, Lisa M
2018-08-01
Adults' visual attention is guided by the contents of visual short-term memory (VSTM). Here we asked whether 10-month-old infants' (N = 41) visual attention is also guided by the information stored in VSTM. In two experiments, we modified the one-shot change detection task (Oakes, Baumgartner, Barrett, Messenger, & Luck, 2013) to create a simplified cued visual search task to ask how information stored in VSTM influences where infants look. A single sample item (e.g., a colored circle) was presented at fixation for 500 ms, followed by a brief (300 ms) retention interval and then a test array consisting of two items, one on each side of fixation. One item in the test array matched the sample stimulus and the other did not. Infants were more likely to look at the non-matching item than at the matching item, demonstrating that the information stored rapidly in VSTM guided subsequent looking behavior. Copyright © 2018 Elsevier B.V. All rights reserved.
[Visual representation of natural scenes in flicker changes].
Nakashima, Ryoichi; Yokosawa, Kazuhiko
2010-08-01
Coherence theory in scene perception (Rensink, 2002) assumes the retention of volatile object representations on which attention is not focused. On the other hand, visual memory theory in scene perception (Hollingworth & Henderson, 2002) assumes that robust object representations are retained. In this study, we hypothesized that the difference between these two theories is derived from the difference of the experimental tasks that they are based on. In order to verify this hypothesis, we examined the properties of visual representation by using a change detection and memory task in a flicker paradigm. We measured the representations when participants were instructed to search for a change in a scene, and compared them with the intentional memory representations. The visual representations were retained in visual long-term memory even in the flicker paradigm, and were as robust as the intentional memory representations. However, the results indicate that the representations are unavailable for explicitly localizing a scene change, but are available for answering the recognition test. This suggests that coherence theory and visual memory theory are compatible.
Sensory dominance and multisensory integration as screening tools in aging.
Murray, Micah M; Eardley, Alison F; Edginton, Trudi; Oyekan, Rebecca; Smyth, Emily; Matusz, Pawel J
2018-06-11
Multisensory information typically confers neural and behavioural advantages over unisensory information. We used a simple audio-visual detection task to compare healthy young (HY), healthy older (HO) and mild-cognitive impairment (MCI) individuals. Neuropsychological tests assessed individuals' learning and memory impairments. First, we provide much-needed clarification regarding the presence of enhanced multisensory benefits in both healthily and abnormally aging individuals. The pattern of sensory dominance shifted with healthy and abnormal aging to favour a propensity of auditory-dominant behaviour (i.e., detecting sounds faster than flashes). Notably, multisensory benefits were larger only in healthy older than younger individuals who were also visually-dominant. Second, we demonstrate that the multisensory detection task offers benefits as a time- and resource-economic MCI screening tool. Receiver operating characteristic (ROC) analysis demonstrated that MCI diagnosis could be reliably achieved based on the combination of indices of multisensory integration together with indices of sensory dominance. Our findings showcase the importance of sensory profiles in determining multisensory benefits in healthy and abnormal aging. Crucially, our findings open an exciting possibility for multisensory detection tasks to be used as a cost-effective screening tool. These findings clarify relationships between multisensory and memory functions in aging, while offering new avenues for improved dementia diagnostics.
Casual Video Games as Training Tools for Attentional Processes in Everyday Life.
Stroud, Michael J; Whitbourne, Susan Krauss
2015-11-01
Three experiments examined the attentional components of the popular match-3 casual video game, Bejeweled Blitz (BJB). Attentionally demanding, BJB is highly popular among adults, particularly those in middle and later adulthood. In experiment 1, 54 older adults (Mage = 70.57) and 33 younger adults (Mage = 19.82) played 20 rounds of BJB, and completed online tasks measuring reaction time, simple visual search, and conjunction visual search. Prior experience significantly predicted BJB scores for younger adults, but for older adults, both prior experience and simple visual search task scores predicted BJB performance. Experiment 2 tested whether BJB practice alone would result in a carryover benefit to a visual search task in a sample of 58 young adults (Mage = 19.57) who completed 0, 10, or 30 rounds of BJB followed by a BJB-like visual search task with targets present or absent. Reaction times were significantly faster for participants who completed 30 but not 10 rounds of BJB compared with the search task only. This benefit was evident when targets were both present and absent, suggesting that playing BJB improves not only target detection, but also the ability to quit search effectively. Experiment 3 tested whether the attentional benefit in experiment 2 would apply to non-BJB stimuli. The results revealed a similar numerical but not significant trend. Taken together, the findings suggest there are benefits of casual video game playing to attention and relevant everyday skills, and that these games may have potential value as training tools.
NASA Astrophysics Data System (ADS)
Kang, Ziho
This dissertation is divided into four parts: 1) Development of effective methods for comparing visual scanning paths (or scanpaths) for a dynamic task of multiple moving targets, 2) application of the methods to compare the scanpaths of experts and novices for a conflict detection task of multiple aircraft on radar screen, 3) a post-hoc analysis of other eye movement characteristics of experts and novices, and 4) finding out whether the scanpaths of experts can be used to teach the novices. In order to compare experts' and novices' scanpaths, two methods are developed. The first proposed method is the matrix comparisons using the Mantel test. The second proposed method is the maximum transition-based agglomerative hierarchical clustering (MTAHC) where comparisons of multi-level visual groupings are held out. The matrix comparison method was useful for a small number of targets during the preliminary experiment, but turned out to be inapplicable to a realistic case when tens of aircraft were presented on screen; however, MTAHC was effective with large number of aircraft on screen. The experiments with experts and novices on the aircraft conflict detection task showed that their scanpaths are different. The MTAHC result was able to explicitly show how experts visually grouped multiple aircraft based on similar altitudes while novices tended to group them based on convergence. Also, the MTAHC results showed that novices paid much attention to the converging aircraft groups even if they are safely separated by altitude; therefore, less attention was given to the actual conflicting pairs resulting in low correct conflict detection rates. Since the analysis showed the scanpath differences, experts' scanpaths were shown to novices in order to find out its effectiveness. The scanpath treatment group showed indications that they changed their visual movements from trajectory-based to altitude-based movements. Between the treatment and the non-treatment group, there were no significant differences in terms of number of correct detections; however, the treatment group made significantly fewer false alarms.
A Portable Platform for Evaluation of Visual Performance in Glaucoma Patients
Rosen, Peter N.; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; Diniz-Filho, Alberto; Marvasti, Amir H.; Medeiros, Felipe A.
2015-01-01
Purpose To propose a new tablet-enabled test for evaluation of visual performance in glaucoma, the PERformance CEntered Portable Test (PERCEPT), and to evaluate its ability to predict history of falls and motor vehicle crashes. Design Cross-sectional study. Methods The study involved 71 patients with glaucomatous visual field defects on standard automated perimetry (SAP) and 59 control subjects. The PERCEPT was based on the concept of increasing visual task difficulty to improve detection of central visual field losses in glaucoma patients. Subjects had to perform a foveal 8-alternative-forced-choice orientation discrimination task, while detecting a simultaneously presented peripheral stimulus within a limited presentation time. Subjects also underwent testing with the Useful Field of View (UFOV) divided attention test. The ability to predict history of motor vehicle crashes and falls was investigated by odds ratios and incident-rate ratios, respectively. Results When adjusted for age, only the PERCEPT processing speed parameter showed significantly larger values in glaucoma compared to controls (difference: 243ms; P<0.001). PERCEPT results had a stronger association with history of motor vehicle crashes and falls than UFOV. Each 1 standard deviation increase in PERCEPT processing speed was associated with an odds ratio of 2.69 (P = 0.003) for predicting history of motor vehicle crashes and with an incident-rate ratio of 1.95 (P = 0.003) for predicting history of falls. Conclusion A portable platform for testing visual function was able to detect functional deficits in glaucoma, and its results were significantly associated with history of involvement in motor vehicle crashes and history of falls. PMID:26445501
Optimization of Visual Information Presentation for Visual Prosthesis.
Guo, Fei; Yang, Yuan; Gao, Yong
2018-01-01
Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.
Optimization of Visual Information Presentation for Visual Prosthesis
Gao, Yong
2018-01-01
Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis. PMID:29731769
Learning rational temporal eye movement strategies.
Hoppe, David; Rothkopf, Constantin A
2016-07-19
During active behavior humans redirect their gaze several times every second within the visual environment. Where we look within static images is highly efficient, as quantified by computational models of human gaze shifts in visual search and face recognition tasks. However, when we shift gaze is mostly unknown despite its fundamental importance for survival in a dynamic world. It has been suggested that during naturalistic visuomotor behavior gaze deployment is coordinated with task-relevant events, often predictive of future events, and studies in sportsmen suggest that timing of eye movements is learned. Here we establish that humans efficiently learn to adjust the timing of eye movements in response to environmental regularities when monitoring locations in the visual scene to detect probabilistically occurring events. To detect the events humans adopt strategies that can be understood through a computational model that includes perceptual and acting uncertainties, a minimal processing time, and, crucially, the intrinsic costs of gaze behavior. Thus, subjects traded off event detection rate with behavioral costs of carrying out eye movements. Remarkably, based on this rational bounded actor model the time course of learning the gaze strategies is fully explained by an optimal Bayesian learner with humans' characteristic uncertainty in time estimation, the well-known scalar law of biological timing. Taken together, these findings establish that the human visual system is highly efficient in learning temporal regularities in the environment and that it can use these regularities to control the timing of eye movements to detect behaviorally relevant events.
Feature saliency and feedback information interactively impact visual category learning
Hammer, Rubi; Sloutsky, Vladimir; Grill-Spector, Kalanit
2015-01-01
Visual category learning (VCL) involves detecting which features are most relevant for categorization. VCL relies on attentional learning, which enables effectively redirecting attention to object’s features most relevant for categorization, while ‘filtering out’ irrelevant features. When features relevant for categorization are not salient, VCL relies also on perceptual learning, which enables becoming more sensitive to subtle yet important differences between objects. Little is known about how attentional learning and perceptual learning interact when VCL relies on both processes at the same time. Here we tested this interaction. Participants performed VCL tasks in which they learned to categorize novel stimuli by detecting the feature dimension relevant for categorization. Tasks varied both in feature saliency (low-saliency tasks that required perceptual learning vs. high-saliency tasks), and in feedback information (tasks with mid-information, moderately ambiguous feedback that increased attentional load, vs. tasks with high-information non-ambiguous feedback). We found that mid-information and high-information feedback were similarly effective for VCL in high-saliency tasks. This suggests that an increased attentional load, associated with the processing of moderately ambiguous feedback, has little effect on VCL when features are salient. In low-saliency tasks, VCL relied on slower perceptual learning; but when the feedback was highly informative participants were able to ultimately attain the same performance as during the high-saliency VCL tasks. However, VCL was significantly compromised in the low-saliency mid-information feedback task. We suggest that such low-saliency mid-information learning scenarios are characterized by a ‘cognitive loop paradox’ where two interdependent learning processes have to take place simultaneously. PMID:25745404
Heinz, Andrew J; Johnson, Jeffrey S
2017-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP) during the delay period of verbal and visual working memory (VWM) tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP) components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference.
Heinz, Andrew J.; Johnson, Jeffrey S.
2017-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP) during the delay period of verbal and visual working memory (VWM) tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP) components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference. PMID:28555099
Srivastava, Nishant R; Troyk, Philip R; Dagnelie, Gislin
2014-01-01
In order to assess visual performance using a future cortical prosthesis device, the ability of normally sighted and low vision subjects to adapt to a dotted ‘phosphene’ image was studied. Similar studies have been conduced in the past and adaptation to phosphene maps has been shown but the phosphene maps used have been square or hexagonal in pattern. The phosphene map implemented for this testing is what is expected from a cortical implantation of the arrays of intracortical electrodes, generating multiple phosphenes. The dotted image created depends upon the surgical location of electrodes decided for implantation and the expected cortical response. The subjects under tests were required to perform tasks requiring visual inspection, eye–hand coordination and way finding. The subjects did not have any tactile feedback and the visual information provided was live dotted images captured by a camera on a head-mounted low vision enhancing system and processed through a filter generating images similar to the images we expect the blind persons to perceive. The images were locked to the subject’s gaze by means of video-based pupil tracking. In the detection and visual inspection task, the subject scanned a modified checkerboard and counted the number of square white fields on a square checkerboard, in the eye–hand coordination task, the subject placed black checkers on the white fields of the checkerboard, and in the way-finding task, the subjects maneuvered themselves through a virtual maze using a game controller. The accuracy and the time to complete the task were used as the measured outcome. As per the surgical studies by this research group, it might be possible to implant up to 650 electrodes; hence, 650 dots were used to create images and performance studied under 0% dropout (650 dots), 25% dropout (488 dots) and 50% dropout (325 dots) conditions. It was observed that all the subjects under test were able to learn the given tasks and showed improvement in performance with practice even with a dropout condition of 50% (325 dots). Hence, if a cortical prosthesis is implanted in human subjects, they might be able to perform similar tasks and with practice should be able to adapt to dotted images even with a low resolution of 325 dots of phosphene. PMID:19458397
Neural correlates of change detection and change blindness in a working memory task.
Pessoa, Luiz; Ungerleider, Leslie G
2004-05-01
Detecting changes in an ever-changing environment is highly advantageous, and this ability may be critical for survival. In the present study, we investigated the neural substrates of change detection in the context of a visual working memory task. Subjects maintained a sample visual stimulus in short-term memory for 6 s, and were asked to indicate whether a subsequent, test stimulus matched or did not match the original sample. To study change detection largely uncontaminated by attentional state, we compared correct change and correct no-change trials at test. Our results revealed that correctly detecting a change was associated with activation of a network comprising parietal and frontal brain regions, as well as activation of the pulvinar, cerebellum, and inferior temporal gyrus. Moreover, incorrectly reporting a change when none occurred led to a very similar pattern of activations. Finally, few regions were differentially activated by trials in which a change occurred but subjects failed to detect it (change blindness). Thus, brain activation was correlated with a subject's report of a change, instead of correlated with the physical change per se. We propose that frontal and parietal regions, possibly assisted by the cerebellum and the pulvinar, might be involved in controlling the deployment of attention to the location of a change, thereby allowing further processing of the visual stimulus. Visual processing areas, such as the inferior temporal gyrus, may be the recipients of top-down feedback from fronto-parietal regions that control the reactive deployment of attention, and thus exhibit increased activation when a change is reported (irrespective of whether it occurred or not). Whereas reporting that a change occurred, be it correctly or incorrectly, was associated with strong activation in fronto-parietal sites, change blindness appears to involve very limited territories.
Altering attentional control settings causes persistent biases of visual attention.
Knight, Helen C; Smith, Daniel T; Knight, David C; Ellison, Amanda
2016-01-01
Attentional control settings have an important role in guiding visual behaviour. Previous work within cognitive psychology has found that the deployment of general attentional control settings can be modulated by training. However, research has not yet established whether long-term modifications of one particular type of attentional control setting can be induced. To address this, we investigated persistent alterations to feature search mode, also known as an attentional bias, towards an arbitrary stimulus in healthy participants. Subjects were biased towards the colour green by an information sheet. Attentional bias was assessed using a change detection task. After an interval of either 1 or 2 weeks, participants were then retested on the same change detection task, tested on a different change detection task where colour was irrelevant, or were biased towards an alternative colour. One experiment included trials in which the distractor stimuli (but never the target stimuli) were green. The key finding was that green stimuli in the second task attracted attention, despite this impairing task performance. Furthermore, inducing a second attentional bias did not override the initial bias toward green objects. The attentional bias also persisted for at least two weeks. It is argued that this persistent attentional bias is mediated by a chronic change to participants' attentional control settings, which is aided by long-term representations involving contextual cueing. We speculate that similar changes to attentional control settings and continuous cueing may relate to attentional biases observed in psychopathologies. Targeting these biases may be a productive approach to treatment.
Akiva-Kabiri, Lilach; Linkovski, Omer; Gertner, Limor; Henik, Avishai
2014-08-01
In musical-space synesthesia, musical pitches are perceived as having a spatially defined array. Previous studies showed that symbolic inducers (e.g., numbers, months) can modulate response according to the inducer's relative position on the synesthetic spatial form. In the current study we tested two musical-space synesthetes and a group of matched controls on three different tasks: musical-space mapping, spatial cue detection and a spatial Stroop-like task. In the free mapping task, both synesthetes exhibited a diagonal organization of musical pitch tones rising from bottom left to the top right. This organization was found to be consistent over time. In the subsequent tasks, synesthetes were asked to ignore an auditory or visually presented musical pitch (irrelevant information) and respond to a visual target (i.e., an asterisk) on the screen (relevant information). Compatibility between musical pitch and the target's spatial location was manipulated to be compatible or incompatible with the synesthetes' spatial representations. In the spatial cue detection task participants had to press the space key immediately upon detecting the target. In the Stroop-like task, they had to reach the target by using a mouse cursor. In both tasks, synesthetes' performance was modulated by the compatibility between irrelevant and relevant spatial information. Specifically, the target's spatial location conflicted with the spatial information triggered by the irrelevant musical stimulus. These results reveal that for musical-space synesthetes, musical information automatically orients attention according to their specific spatial musical-forms. The present study demonstrates the genuineness of musical-space synesthesia by revealing its two hallmarks-automaticity and consistency. In addition, our results challenge previous findings regarding an implicit vertical representation for pitch tones in non-synesthete musicians. Copyright © 2014 Elsevier Inc. All rights reserved.
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2007-01-01
The case of a 23‐year‐old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug‐induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non‐verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced. PMID:17369595
Kleiter, Ingo; Luerding, Ralf; Diendorfer, Gerhard; Rek, Helga; Bogdahn, Ulrich; Schalke, Berthold
2009-01-01
The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was sent into a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise largely recovered. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. At 4 months after the accident, she developed a psychological reaction consisting of nightmares, with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning strike were retrospectively retraced PMID:21734915
Beck, Melissa R; Martin, Benjamin A; Smitherman, Emily; Gaschen, Lorrie
2013-08-01
Our aim was to examine the specificity of the effects of acquiring expertise on visual working memory (VWM) and the degree to which higher levels of experience within the domain of expertise are associated with more efficient use of VWM. Previous research is inconsistent on whether expertise effects are specific to the area of expertise or generalize to other tasks that also involve the same cognitive processes. It is also unclear whether more training and/or experience will lead to continued improvement on domain-relevant tasks or whether a plateau could be reached. In Experiment I, veterinary medicine students completed a one-shot visual change detection task. In Experiment 2, veterinarians completed a flicker change detection task. Both experiments involved stimuli specific to the domain of radiology and general stimuli. In Experiment I, veterinary medicine students who had completed an "eyes-on" radiological training demonstrated a domain-specific effect in which performance was better on the domain-specific stimuli than on the domain-general stimuli. In Experiment 2, veterinarians again showed a domain-specific effect, but performance was unrelated to the amount of experience veterinarians had accumulated. The effect of experience is domain specific and occurs during the first few years of training, after which a plateau is reached. VWM training in one domain may not lead to improved performance on other VWM tasks. In acquiring expertise, eyes-on training is important initially, but continued experience may not be associated with further improvements in the efficiency of VWM.
NASA Astrophysics Data System (ADS)
Yu, Yongtao; Li, Jonathan; Wen, Chenglu; Guan, Haiyan; Luo, Huan; Wang, Cheng
2016-03-01
This paper presents a novel algorithm for detection and recognition of traffic signs in mobile laser scanning (MLS) data for intelligent transportation-related applications. The traffic sign detection task is accomplished based on 3-D point clouds by using bag-of-visual-phrases representations; whereas the recognition task is achieved based on 2-D images by using a Gaussian-Bernoulli deep Boltzmann machine-based hierarchical classifier. To exploit high-order feature encodings of feature regions, a deep Boltzmann machine-based feature encoder is constructed. For detecting traffic signs in 3-D point clouds, the proposed algorithm achieves an average recall, precision, quality, and F-score of 0.956, 0.946, 0.907, and 0.951, respectively, on the four selected MLS datasets. For on-image traffic sign recognition, a recognition accuracy of 97.54% is achieved by using the proposed hierarchical classifier. Comparative studies with the existing traffic sign detection and recognition methods demonstrate that our algorithm obtains promising, reliable, and high performance in both detecting traffic signs in 3-D point clouds and recognizing traffic signs on 2-D images.
Ryan, Denise S; Sia, Rose K; Stutzman, Richard D; Pasternak, Joseph F; Howard, Robin S; Howell, Christopher L; Maurer, Tana; Torres, Mark F; Bower, Kraig S
2017-01-01
To compare visual performance, marksmanship performance, and threshold target identification following wavefront-guided (WFG) versus wavefront-optimized (WFO) photorefractive keratectomy (PRK). In this prospective, randomized clinical trial, active duty U.S. military Soldiers, age 21 or over, electing to undergo PRK were randomized to undergo WFG (n = 27) or WFO (n = 27) PRK for myopia or myopic astigmatism. Binocular visual performance was assessed preoperatively and 1, 3, and 6 months postoperatively: Super Vision Test high contrast, Super Vision Test contrast sensitivity (CS), and 25% contrast acuity with night vision goggle filter. CS function was generated testing at five spatial frequencies. Marksmanship performance in low light conditions was evaluated in a firing tunnel. Target detection and identification performance was tested for probability of identification of varying target sets and probability of detection of humans in cluttered environments. Visual performance, CS function, marksmanship, and threshold target identification demonstrated no statistically significant differences over time between the two treatments. Exploratory regression analysis of firing range tasks at 6 months showed no significant differences or correlations between procedures. Regression analysis of vehicle and handheld probability of identification showed a significant association with pretreatment performance. Both WFG and WFO PRK results translate to excellent and comparable visual and military performance. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Effects of Alzheimer’s Disease on Visual Target Detection: A “Peripheral Bias”
Vallejo, Vanessa; Cazzoli, Dario; Rampa, Luca; Zito, Giuseppe A.; Feuerstein, Flurin; Gruber, Nicole; Müri, René M.; Mosimann, Urs P.; Nef, Tobias
2016-01-01
Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer’s Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view. PMID:27582704
Effects of Alzheimer's Disease on Visual Target Detection: A "Peripheral Bias".
Vallejo, Vanessa; Cazzoli, Dario; Rampa, Luca; Zito, Giuseppe A; Feuerstein, Flurin; Gruber, Nicole; Müri, René M; Mosimann, Urs P; Nef, Tobias
2016-01-01
Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer's Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view.
Brain correlates of automatic visual change detection.
Cléry, H; Andersson, F; Fonlupt, P; Gomot, M
2013-07-15
A number of studies support the presence of visual automatic detection of change, but little is known about the brain generators involved in such processing and about the modulation of brain activity according to the salience of the stimulus. The study presented here was designed to locate the brain activity elicited by unattended visual deviant and novel stimuli using fMRI. Seventeen adult participants were presented with a passive visual oddball sequence while performing a concurrent visual task. Variations in BOLD signal were observed in the modality-specific sensory cortex, but also in non-specific areas involved in preattentional processing of changing events. A degree-of-deviance effect was observed, since novel stimuli elicited more activity in the sensory occipital regions and at the medial frontal site than small changes. These findings could be compared to those obtained in the auditory modality and might suggest a "general" change detection process operating in several sensory modalities. Copyright © 2013 Elsevier Inc. All rights reserved.
The impact of attentional, linguistic, and visual features during object naming
Clarke, Alasdair D. F.; Coco, Moreno I.; Keller, Frank
2013-01-01
Object detection and identification are fundamental to human vision, and there is mounting evidence that objects guide the allocation of visual attention. However, the role of objects in tasks involving multiple modalities is less clear. To address this question, we investigate object naming, a task in which participants have to verbally identify objects they see in photorealistic scenes. We report an eye-tracking study that investigates which features (attentional, visual, and linguistic) influence object naming. We find that the amount of visual attention directed toward an object, its position and saliency, along with linguistic factors such as word frequency, animacy, and semantic proximity, significantly influence whether the object will be named or not. We then ask how features from different modalities are combined during naming, and find significant interactions between saliency and position, saliency and linguistic features, and attention and position. We conclude that when the cognitive system performs tasks such as object naming, it uses input from one modality to constraint or enhance the processing of other modalities, rather than processing each input modality independently. PMID:24379792
Stimulus information contaminates summation tests of independent neural representations of features
NASA Technical Reports Server (NTRS)
Shimozaki, Steven S.; Eckstein, Miguel P.; Abbey, Craig K.
2002-01-01
Many models of visual processing assume that visual information is analyzed into separable and independent neural codes, or features. A common psychophysical test of independent features is known as a summation study, which measures performance in a detection, discrimination, or visual search task as the number of proposed features increases. Improvement in human performance with increasing number of available features is typically attributed to the summation, or combination, of information across independent neural coding of the features. In many instances, however, increasing the number of available features also increases the stimulus information in the task, as assessed by an optimal observer that does not include the independent neural codes. In a visual search task with spatial frequency and orientation as the component features, a particular set of stimuli were chosen so that all searches had equivalent stimulus information, regardless of the number of features. In this case, human performance did not improve with increasing number of features, implying that the improvement observed with additional features may be due to stimulus information and not the combination across independent features.
Donohue, Sarah E.; Liotti, Mario; Perez, Rick; Woldorff, Marty G.
2011-01-01
The electrophysiological correlates of conflict processing and cognitive control have been well characterized for the visual modality in paradigms such as the Stroop task. Much less is known about corresponding processes in the auditory modality. Here, electroencephalographic recordings of brain activity were measured during an auditory Stroop task, using three different forms of behavioral response (Overt verbal, Covert verbal, and Manual), that closely paralleled our previous visual-Stroop study. As expected, behavioral responses were slower and less accurate for incongruent compared to congruent trials. Neurally, incongruent trials showed an enhanced fronto-central negative-polarity wave (Ninc), similar to the N450 in visual-Stroop tasks, with similar variations as a function of behavioral response mode, but peaking ~150 ms earlier, followed by an enhanced positive posterior wave. In addition, sequential behavioral and neural effects were observed that supported the conflict-monitoring and cognitive-adjustment hypothesis. Thus, while some aspects of the conflict detection processes, such as timing, may be modality-dependent, the general mechanisms would appear to be supramodal. PMID:21964643
Pitts, Brandon J; Sarter, Nadine
2018-06-01
Objective This research sought to determine whether people can perceive and process three nonredundant (and unrelated) signals in vision, hearing, and touch at the same time and how aging and concurrent task demands affect this ability. Background Multimodal displays have been shown to improve multitasking and attention management; however, their potential limitations are not well understood. The majority of studies on multimodal information presentation have focused on the processing of only two concurrent and, most often, redundant cues by younger participants. Method Two experiments were conducted in which younger and older adults detected and responded to a series of singles, pairs, and triplets of visual, auditory, and tactile cues in the absence (Experiment 1) and presence (Experiment 2) of an ongoing simulated driving task. Detection rates, response times, and driving task performance were measured. Results Compared to younger participants, older adults showed longer response times and higher error rates in response to cues/cue combinations. Older participants often missed the tactile cue when three cues were combined. They sometimes falsely reported the presence of a visual cue when presented with a pair of auditory and tactile signals. Driving performance suffered most in the presence of cue triplets. Conclusion People are more likely to miss information if more than two concurrent nonredundant signals are presented to different sensory channels. Application The findings from this work help inform the design of multimodal displays and ensure their usefulness across different age groups and in various application domains.
NASA Technical Reports Server (NTRS)
Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.
1997-01-01
Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.
On the Temporal Relation of Top-Down and Bottom-Up Mechanisms during Guidance of Attention
ERIC Educational Resources Information Center
Wykowska, Agnieszka; Schubo, Anna
2010-01-01
Two mechanisms are said to be responsible for guiding focal attention in visual selection: bottom-up, saliency-driven capture and top-down control. These mechanisms were examined with a paradigm that combined a visual search task with postdisplay probe detection. Two SOAs between the search display and probe onsets were introduced to investigate…
ERIC Educational Resources Information Center
Lorenzo-Lopez, L.; Gutierrez, R.; Moratti, S.; Maestu, F.; Cadaveira, F.; Amenedo, E.
2011-01-01
Recently, an event-related potential (ERP) study (Lorenzo-Lopez et al., 2008) provided evidence that normal aging significantly delays and attenuates the electrophysiological correlate of the allocation of visuospatial attention (N2pc component) during a feature-detection visual search task. To further explore the effects of normal aging on the…
Effect of attention on the detection and identification of masked spatial patterns.
Põder, Endel
2005-01-01
The effect of attention on the detection and identification of vertically and horizontally oriented Gabor patterns in the condition of simultaneous masking with obliquely oriented Gabors was studied. Attention was manipulated by varying the set size in a visual-search experiment. In the first experiment, small target Gabors were presented on the background of larger masking Gabors. In the detection task, the effect of set size was as predicted by unlimited-capacity signal detection theory. In the orientation identification task, increasing the set size from 1 to 8 resulted in a much larger decline in performance. The results of the additional experiments suggest that attention can reduce the crowding effect of maskers.
Sex Differences during Visual Scanning of Occlusion Events in Infants
ERIC Educational Resources Information Center
Wilcox, Teresa; Alexander, Gerianne M.; Wheeler, Lesley; Norvell, Jennifer M.
2012-01-01
A growing number of sex differences in infancy have been reported. One task on which they have been observed reliably is the event-mapping task. In event mapping, infants view an occlusion event involving 1 or 2 objects, the occluder is removed, and then infants see 1 object. Typically, boys are more likely than girls to detect an inconsistency…
ERIC Educational Resources Information Center
Arend, Anna M.; Zimmer, Hubert D.
2011-01-01
In the lateralized change detection task, two item arrays are presented, one on each side of the display. Participants have to remember the items in the relevant hemifield and ignore the items in the irrelevant hemifield. A difference wave between contralateral and ipsilateral slow potentials with respect to the relevant items, the contralateral…
DOT National Transportation Integrated Search
1982-04-01
The present study examines the effects of wearing bifocal glasses and interpolated rest periods on the performance of 40- to 50-year-old subjects on a radar monitoring task. The visual display was designed to resemble an air traffic control radar dis...
Visual-search models for location-known detection tasks
NASA Astrophysics Data System (ADS)
Gifford, H. C.; Karbaschi, Z.; Banerjee, K.; Das, M.
2017-03-01
Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer's search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer's separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.
Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing
NASA Astrophysics Data System (ADS)
He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin
In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds accelerated the early process of visual cognition. There is a synergic effect between the effects of constant low-speed rotation and rotating speed of the background. Under certain conditions, they both served to facilitate the visual cognitive processing, and it had been started at the stage when extrastriate cortex perceiving the visual signal. Under the condition of constant low-speed rotation in higher cognitive load tasks, the rapid rotation of the background enhanced the magnitude of the signal transmission in the visual path, making signal to noise ratio increased and a higher signal to noise ratio is clearly in favor of target perception and recognition. This gave rise to the hypothesis that higher cognitive load tasks with higher top-down control had more power in counteracting the inhibition effect of higher velocity rotation background. Acknowledgements: This project was supported by National Natural Science Foundation of China (No. 30670715) and National High Technology Research and Development Program of China (No.2007AA04Z254).
Nagy, Helga; Bencsik, Krisztina; Rajda, Cecília; Benedek, Krisztina; Janáky, Márta; Beniczky, Sándor; Kéri, Szabolcs; Vécsei, László
2007-06-01
Visual impairment is a common feature of multiple sclerosis. The aim of this study was to investigate lateral interactions in the visual cortex of highly functioning patients with multiple sclerosis and to compare that with basic visual and neuropsychologic functions. Twenty-two young, visually unimpaired multiple sclerosis patients with minimal symptoms (Expanded Disability Status Scale <2) and 30 healthy controls subjects participated in the study. Lateral interactions were investigated with the flanker task, during which participants were asked to detect the orientation of a low-contrast Gabor patch (vertical or horizontal), flanked with 2 collinear or orthogonal Gabor patches. Stimulus exposure time was 40, 60, 80, and 100 ms. Digit span forward/backward, digit symbol, verbal fluency, and California Verbal Learning Test procedures were used for background neuropsychologic assessment. Results revealed that patients with multiple sclerosis showed intact visual contrast sensitivity and neuropsychologic functions, whereas orientation detection in the orthogonal condition was significantly impaired. At 40-ms exposure time, collinear flankers facilitated the orientation detection performance of the patients resulting in normal performance. In conclusion, the detection of briefly presented, low-contrast visual stimuli was selectively impaired in multiple sclerosis. Lateral interactions between target and flankers robustly facilitated target detection in the patient group.
Exploiting ensemble learning for automatic cataract detection and grading.
Yang, Ji-Jiang; Li, Jianqiang; Shen, Ruifang; Zeng, Yang; He, Jian; Bi, Jing; Li, Yong; Zhang, Qinyan; Peng, Lihui; Wang, Qing
2016-02-01
Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is one of the most common causes of visual impairment worldwide. Early diagnosis demands the expertise of trained healthcare professionals, which may present a barrier to early intervention due to underlying costs. To date, studies reported in the literature utilize a single learning model for retinal image classification in grading cataract severity. We present an ensemble learning based approach as a means to improving diagnostic accuracy. Three independent feature sets, i.e., wavelet-, sketch-, and texture-based features, are extracted from each fundus image. For each feature set, two base learning models, i.e., Support Vector Machine and Back Propagation Neural Network, are built. Then, the ensemble methods, majority voting and stacking, are investigated to combine the multiple base learning models for final fundus image classification. Empirical experiments are conducted for cataract detection (two-class task, i.e., cataract or non-cataractous) and cataract grading (four-class task, i.e., non-cataractous, mild, moderate or severe) tasks. The best performance of the ensemble classifier is 93.2% and 84.5% in terms of the correct classification rates for cataract detection and grading tasks, respectively. The results demonstrate that the ensemble classifier outperforms the single learning model significantly, which also illustrates the effectiveness of the proposed approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Visual Attention Measures Predict Pedestrian Detection in Central Field Loss: A Pilot Study
Alberti, Concetta F.; Horowitz, Todd; Bronstad, P. Matthew; Bowers, Alex R.
2014-01-01
Purpose The ability of visually impaired people to deploy attention effectively to maximize use of their residual vision in dynamic situations is fundamental to safe mobility. We conducted a pilot study to evaluate whether tests of dynamic attention (multiple object tracking; MOT) and static attention (Useful Field of View; UFOV) were predictive of the ability of people with central field loss (CFL) to detect pedestrian hazards in simulated driving. Methods 11 people with bilateral CFL (visual acuity 20/30-20/200) and 11 age-similar normally-sighted drivers participated. Dynamic and static attention were evaluated with brief, computer-based MOT and UFOV tasks, respectively. Dependent variables were the log speed threshold for 60% correct identification of targets (MOT) and the increase in the presentation duration for 75% correct identification of a central target when a concurrent peripheral task was added (UFOV divided and selective attention subtests). Participants drove in a simulator and pressed the horn whenever they detected pedestrians that walked or ran toward the road. The dependent variable was the proportion of timely reactions (could have stopped in time to avoid a collision). Results UFOV and MOT performance of CFL participants was poorer than that of controls, and the proportion of timely reactions was also lower (worse) (84% and 97%, respectively; p = 0.001). For CFL participants, higher proportions of timely reactions correlated significantly with higher (better) MOT speed thresholds (r = 0.73, p = 0.01), with better performance on the UFOV divided and selective attention subtests (r = −0.66 and −0.62, respectively, p<0.04), with better contrast sensitivity scores (r = 0.54, p = 0.08) and smaller scotomas (r = −0.60, p = 0.05). Conclusions Our results suggest that brief laboratory-based tests of visual attention may provide useful measures of functional visual ability of individuals with CFL relevant to more complex mobility tasks. PMID:24558495
Visual attention measures predict pedestrian detection in central field loss: a pilot study.
Alberti, Concetta F; Horowitz, Todd; Bronstad, P Matthew; Bowers, Alex R
2014-01-01
The ability of visually impaired people to deploy attention effectively to maximize use of their residual vision in dynamic situations is fundamental to safe mobility. We conducted a pilot study to evaluate whether tests of dynamic attention (multiple object tracking; MOT) and static attention (Useful Field of View; UFOV) were predictive of the ability of people with central field loss (CFL) to detect pedestrian hazards in simulated driving. 11 people with bilateral CFL (visual acuity 20/30-20/200) and 11 age-similar normally-sighted drivers participated. Dynamic and static attention were evaluated with brief, computer-based MOT and UFOV tasks, respectively. Dependent variables were the log speed threshold for 60% correct identification of targets (MOT) and the increase in the presentation duration for 75% correct identification of a central target when a concurrent peripheral task was added (UFOV divided and selective attention subtests). Participants drove in a simulator and pressed the horn whenever they detected pedestrians that walked or ran toward the road. The dependent variable was the proportion of timely reactions (could have stopped in time to avoid a collision). UFOV and MOT performance of CFL participants was poorer than that of controls, and the proportion of timely reactions was also lower (worse) (84% and 97%, respectively; p = 0.001). For CFL participants, higher proportions of timely reactions correlated significantly with higher (better) MOT speed thresholds (r = 0.73, p = 0.01), with better performance on the UFOV divided and selective attention subtests (r = -0.66 and -0.62, respectively, p<0.04), with better contrast sensitivity scores (r = 0.54, p = 0.08) and smaller scotomas (r = -0.60, p = 0.05). Our results suggest that brief laboratory-based tests of visual attention may provide useful measures of functional visual ability of individuals with CFL relevant to more complex mobility tasks.
Salience Is Only Briefly Represented: Evidence from Probe-Detection Performance
ERIC Educational Resources Information Center
Donk, Mieke; Soesman, Leroy
2010-01-01
Salient objects in the visual field tend to capture attention. The present study aimed to examine the time-course of salience effects using a probe-detection task. Eight experiments investigated how the salience of different orientation singletons affected probe reaction time as a function of stimulus onset asynchrony (SOA) between the…
Proactive interference from items previously stored in visual working memory.
Makovski, Tal; Jiang, Yuhong V
2008-01-01
This study investigates the fate of information that was previously stored in visual working memory but that is no longer needed. Previous research has found inconsistent results, with some showing effective release of irrelevant information and others showing proactive interference. Using change detection tasks of colors or shapes, we show that participants tend to falsely classify a changed item as "no change" if it matches one of the memory items on the preceding trial. The interference is spatially specific: Memory for the preceding trial interferes more if it matches the feature value and the location of a test item than if it does not. Interference results from retaining information in visual working memory, since it is absent when items on the preceding trials are passively viewed, or are attended but not memorized. We conclude that people cannot fully eliminate unwanted visual information from current working memory tasks.
Cognitive Control Network Contributions to Memory-Guided Visual Attention
Rosen, Maya L.; Stern, Chantal E.; Michalka, Samantha W.; Devaney, Kathryn J.; Somers, David C.
2016-01-01
Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network (CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. PMID:25750253
Statistical learning and auditory processing in children with music training: An ERP study.
Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne
2017-07-01
The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network.
Li, Yuexiang; Shen, Linlin
2018-02-11
Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.
Real-Time Performance Feedback for the Manual Control of Spacecraft
NASA Astrophysics Data System (ADS)
Karasinski, John Austin
Real-time performance metrics were developed to quantify workload, situational awareness, and manual task performance for use as visual feedback to pilots of aerospace vehicles. Results from prior lunar lander experiments with variable levels of automation were replicated and extended to provide insights for the development of real-time metrics. Increased levels of automation resulted in increased flight performance, lower workload, and increased situational awareness. Automated Speech Recognition (ASR) was employed to detect verbal callouts as a limited measure of subjects' situational awareness. A one-dimensional manual tracking task and simple instructor-model visual feedback scheme was developed. This feedback was indicated to the operator by changing the color of a guidance element on the primary flight display, similar to how a flight instructor points out elements of a display to a student pilot. Experiments showed that for this low-complexity task, visual feedback did not change subject performance, but did increase the subjects' measured workload. Insights gained from these experiments were applied to a Simplified Aid for EVA Rescue (SAFER) inspection task. The effects of variations of an instructor-model performance-feedback strategy on human performance in a novel SAFER inspection task were investigated. Real-time feedback was found to have a statistically significant effect of improving subject performance and decreasing workload in this complicated four degree of freedom manual control task with two secondary tasks.
The impact of walking while using a smartphone on pedestrians' awareness of roadside events.
Lin, Ming-I Brandon; Huang, Yu-Ping
2017-04-01
Previous studies have shown that using a cell phone to talk or text while walking changes gait kinematics and encourages risky street-crossing behaviors. However, less is known about how the motor-cognitive interference imposed by smartphone tasks affects pedestrians' situational awareness to environmental targets relevant to pedestrian safety. This study systematically investigated the influence of smartphone use on detection of and responses to a variety of roadside events in a semi-virtual walking environment. Twenty-four healthy participants completed six treadmill walking sessions while engaged in a concurrent picture-dragging, texting, or news-reading task. During distracted walking, they were required to simultaneously monitor the occurrence of road events for two different levels of event frequency. Performance measures for smartphone tasks and event responses, eye movements, and perceived workload and situational awareness were compared across different dual-task conditions. The results revealed that during dual-task walking, the reading app was associated with a significantly higher level of perceived workload, and impaired awareness of the surrounding environment to a greater extent compared with the texting or picture-dragging apps. Pedestrians took longer to visually detect the roadside events in the reading and texting conditions than in the dragging condition. Differences in event response performances were mainly dependent on their salient features but were also affected by the type of smartphone task. Texting was found to make participants more reliant on their central vision to detect road events. Moreover, different gaze-scanning patterns were adopted by participants to better protect dual-task performance in response to the changes in road-event frequency. The findings of relationships between workload, dual-task performances, and allocation strategies for visual attention further our understanding of pedestrian behavior and safety. By knowing how attentional and motor demands involved in different smartphone tasks affect pedestrians' awareness to critical roadside events, effective awareness campaigns might be devised to discourage smartphone use while walking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Executive working memory load induces inattentional blindness.
Fougnie, Daryl; Marois, René
2007-02-01
When attention is engaged in a task, unexpected events in the visual scene may go undetected, a phenomenon known as inattentional blindness (IB). At what stage of information processing must attention be engaged for IB to occur? Although manipulations that tax visuospatial attention can induce IB, the evidence is more equivocal for tasks that engage attention at late, central stages of information processing. Here, we tested whether IB can be specifically induced by central executive processes. An unexpected visual stimulus was presented during the retention interval of a working memory task that involved either simply maintaining verbal material or rearranging the material into alphabetical order. The unexpected stimulus was more likely to be missed during manipulation than during simple maintenance of the verbal information. Thus, the engagement of executive processes impairs the ability to detect unexpected, task-irrelevant stimuli, suggesting that IB can result from central, amodal stages of processing.
Audiovisual speech perception development at varying levels of perceptual processing
Lalonde, Kaylah; Holt, Rachael Frush
2016-01-01
This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children. PMID:27106318
Audiovisual speech perception development at varying levels of perceptual processing.
Lalonde, Kaylah; Holt, Rachael Frush
2016-04-01
This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children.
Separating Decision and Encoding Noise in Signal Detection Tasks
Cabrera, Carlos Alexander; Lu, Zhong-Lin; Dosher, Barbara Anne
2015-01-01
In this paper we develop an extension to the Signal Detection Theory (SDT) framework to separately estimate internal noise arising from representational and decision processes. Our approach constrains SDT models with decision noise by combining a multi-pass external noise paradigm with confidence rating responses. In a simulation study we present evidence that representation and decision noise can be separately estimated over a range of representative underlying representational and decision noise level configurations. These results also hold across a number of decision rules and show resilience to rule miss-specification. The new theoretical framework is applied to a visual detection confidence-rating task with three and five response categories. This study compliments and extends the recent efforts of researchers (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008; Rosner & Kochanski, 2009, Kellen, Klauer, & Singmann, 2012) to separate and quantify underlying sources of response variability in signal detection tasks. PMID:26120907
ERIC Educational Resources Information Center
LoBue, Vanessa
2010-01-01
Spiders are among the most common targets of fears and phobias in the world. In visual search tasks, adults detect their presence more rapidly than other kinds of stimuli. Reported here is an investigation of whether young children share this attentional bias for the detection of spiders. In a series of experiments, preschoolers and adults were…
Rapid natural scene categorization in the near absence of attention
Li, Fei Fei; VanRullen, Rufin; Koch, Christof; Perona, Pietro
2002-01-01
What can we see when we do not pay attention? It is well known that we can be “blind” even to major aspects of natural scenes when we attend elsewhere. The only tasks that do not need attention appear to be carried out in the early stages of the visual system. Contrary to this common belief, we report that subjects can rapidly detect animals or vehicles in briefly presented novel natural scenes while simultaneously performing another attentionally demanding task. By comparison, they are unable to discriminate large T's from L's, or bisected two-color disks from their mirror images under the same conditions. We conclude that some visual tasks associated with “high-level” cortical areas may proceed in the near absence of attention. PMID:12077298
Training in Contrast Detection Improves Motion Perception of Sinewave Gratings in Amblyopia
Hou, Fang; Huang, Chang-bing; Tao, Liming; Feng, Lixia; Zhou, Yifeng; Lu, Zhong-Lin
2011-01-01
Purpose. One critical concern about using perceptual learning to treat amblyopia is whether training with one particular stimulus and task generalizes to other stimuli and tasks. In the spatial domain, it has been found that the bandwidth of contrast sensitivity improvement is much broader in amblyopes than in normals. Because previous studies suggested the local motion deficits in amblyopia are explained by the spatial vision deficits, the hypothesis for this study was that training in the spatial domain could benefit motion perception of sinewave gratings. Methods. Nine adult amblyopes (mean age, 22.1 ± 5.6 years) were trained in a contrast detection task in the amblyopic eye for 10 days. Visual acuity, spatial contrast sensitivity functions, and temporal modulation transfer functions (MTF) for sinewave motion detection and discrimination were measured for each eye before and after training. Eight adult amblyopes (mean age, 22.6 ± 6.7 years) served as control subjects. Results. In the amblyopic eye, training improved (1) contrast sensitivity by 6.6 dB (or 113.8%) across spatial frequencies, with a bandwidth of 4.4 octaves; (2) sensitivity of motion detection and discrimination by 3.2 dB (or 44.5%) and 3.7 dB (or 53.1%) across temporal frequencies, with bandwidths of 3.9 and 3.1 octaves, respectively; (3) visual acuity by 3.2 dB (or 44.5%). The fellow eye also showed a small amount of improvement in contrast sensitivities and no significant change in motion perception. Control subjects who received no training demonstrated no obvious improvement in any measure. Conclusions. The results demonstrate substantial plasticity in the amblyopic visual system, and provide additional empirical support for perceptual learning as a potential treatment for amblyopia. PMID:21693615
Koopman, K E; Roefs, A; Elbers, D C E; Fliers, E; Booij, J; Serlie, M J; la Fleur, S E
2016-06-01
In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between striatal DA transporters (DAT) and diencephalic 5-HT transporters (SERT), behavioral tasks and questionnaires, and food intake. We measured striatal DAT and diencephalic SERT binding with [123I]FP-CIT SPECT in 36 lean male subjects. Visual attention bias for food (detection speed and distraction time) and degree of impulsivity were measured using response-latency-based computer tasks. Craving and emotional eating were assessed with questionnaires and ratings of hunger by means of VAS scores. Food intake was assessed through a self-reported online diet journal. Striatal DAT and diencephalic SERT binding negatively correlated with food detection speed (p = 0.008, r = -0.50 and p = 0.002, r = -0.57, respectively), but not with food distraction time, ratings of hunger, craving or impulsivity. Striatal DAT and diencephalic SERT binding did not correlate with free choice food intake, whereas food detection speed positively correlated with total caloric intake (p = 0.001, r = 0.60), protein intake (p = 0.01, r = 0.44), carbohydrate intake (p = 0.03, r = 0.39) and fat intake (p = 0.06, r = 0.35). These results indicate a role for the central 5-HT and DA system in the regulation of visual attention bias for food, which contributes to the motivation to eat, in non-obese, healthy humans. In addition, this study confirms that food detection speed, measured with the latency-based computer task, positively correlates with total food and macronutrient intake.
Reinforcement learning in computer vision
NASA Astrophysics Data System (ADS)
Bernstein, A. V.; Burnaev, E. V.
2018-04-01
Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.
Directed Forgetting and Directed Remembering in Visual Working Memory
Williams, Melonie; Woodman, Geoffrey F.
2013-01-01
A defining characteristic of visual working memory is its limited capacity. This means that it is crucial to maintain only the most relevant information in visual working memory. However, empirical research is mixed as to whether it is possible to selectively maintain a subset of the information previously encoded into visual working memory. Here we examined the ability of subjects to use cues to either forget or remember a subset of the information already stored in visual working memory. In Experiment 1, participants were cued to either forget or remember one of two groups of colored squares during a change-detection task. We found that both types of cues aided performance in the visual working memory task, but that observers benefited more from a cue to remember than a cue to forget a subset of the objects. In Experiment 2, we show that the previous findings, which indicated that directed-forgetting cues are ineffective, were likely due to the presence of invalid cues that appear to cause observers to disregard such cues as unreliable. In Experiment 3, we recorded event-related potentials (ERPs) and show that an electrophysiological index of focused maintenance is elicited by cues that indicate which subset of information in visual working memory needs to be remembered, ruling out alternative explanations of the behavioral effects of retention-interval cues. The present findings demonstrate that observers can focus maintenance mechanisms on specific objects in visual working memory based on cues indicating future task relevance. PMID:22409182
Children with Autism Detect Targets at Very Rapid Presentation Rates with Similar Accuracy as Adults
ERIC Educational Resources Information Center
Hagmann, Carl Erick; Wyble, Bradley; Shea, Nicole; LeBlanc, Megan; Kates, Wendy R.; Russo, Natalie
2016-01-01
Enhanced perception may allow for visual search superiority by individuals with Autism Spectrum Disorder (ASD), but does it occur over time? We tested high-functioning children with ASD, typically developing (TD) children, and TD adults in two tasks at three presentation rates (50, 83.3, and 116.7 ms/item) using rapid serial visual presentation.…
Berti, Stefan
2013-01-01
Distraction of goal-oriented performance by a sudden change in the auditory environment is an everyday life experience. Different types of changes can be distracting, including a sudden onset of a transient sound and a slight deviation of otherwise regular auditory background stimulation. With regard to deviance detection, it is assumed that slight changes in a continuous sequence of auditory stimuli are detected by a predictive coding mechanisms and it has been demonstrated that this mechanism is capable of distracting ongoing task performance. In contrast, it is open whether transient detection—which does not rely on predictive coding mechanisms—can trigger behavioral distraction, too. In the present study, the effect of rare auditory changes on visual task performance is tested in an auditory-visual cross-modal distraction paradigm. The rare changes are either embedded within a continuous standard stimulation (triggering deviance detection) or are presented within an otherwise silent situation (triggering transient detection). In the event-related brain potentials, deviants elicited the mismatch negativity (MMN) while transients elicited an enhanced N1 component, mirroring pre-attentive change detection in both conditions but on the basis of different neuro-cognitive processes. These sensory components are followed by attention related ERP components including the P3a and the reorienting negativity (RON). This demonstrates that both types of changes trigger switches of attention. Finally, distraction of task performance is observable, too, but the impact of deviants is higher compared to transients. These findings suggest different routes of distraction allowing for the automatic processing of a wide range of potentially relevant changes in the environment as a pre-requisite for adaptive behavior. PMID:23874278
The visual discrimination of negative facial expressions by younger and older adults.
Mienaltowski, Andrew; Johnson, Ellen R; Wittman, Rebecca; Wilson, Anne-Taylor; Sturycz, Cassandra; Norman, J Farley
2013-04-05
Previous research has demonstrated that older adults are not as accurate as younger adults at perceiving negative emotions in facial expressions. These studies rely on emotion recognition tasks that involve choosing between many alternatives, creating the possibility that age differences emerge for cognitive rather than perceptual reasons. In the present study, an emotion discrimination task was used to investigate younger and older adults' ability to visually discriminate between negative emotional facial expressions (anger, sadness, fear, and disgust) at low (40%) and high (80%) expressive intensity. Participants completed trials blocked by pairs of emotions. Discrimination ability was quantified from the participants' responses using signal detection measures. In general, the results indicated that older adults had more difficulty discriminating between low intensity expressions of negative emotions than did younger adults. However, younger and older adults did not differ when discriminating between anger and sadness. These findings demonstrate that age differences in visual emotion discrimination emerge when signal detection measures are used but that these differences are not uniform and occur only in specific contexts.
Norton, Daniel; McBain, Ryan; Holt, Daphne J; Ongur, Dost; Chen, Yue
2009-06-15
Impaired emotion recognition has been reported in schizophrenia, yet the nature of this impairment is not completely understood. Recognition of facial emotion depends on processing affective and nonaffective facial signals, as well as basic visual attributes. We examined whether and how poor facial emotion recognition in schizophrenia is related to basic visual processing and nonaffective face recognition. Schizophrenia patients (n = 32) and healthy control subjects (n = 29) performed emotion discrimination, identity discrimination, and visual contrast detection tasks, where the emotionality, distinctiveness of identity, or visual contrast was systematically manipulated. Subjects determined which of two presentations in a trial contained the target: the emotional face for emotion discrimination, a specific individual for identity discrimination, and a sinusoidal grating for contrast detection. Patients had significantly higher thresholds (worse performance) than control subjects for discriminating both fearful and happy faces. Furthermore, patients' poor performance in fear discrimination was predicted by performance in visual detection and face identity discrimination. Schizophrenia patients require greater emotional signal strength to discriminate fearful or happy face images from neutral ones. Deficient emotion recognition in schizophrenia does not appear to be determined solely by affective processing but is also linked to the processing of basic visual and facial information.
High contrast sensitivity for visually guided flight control in bumblebees.
Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie
2017-12-01
Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.
Seeing visual word forms: spatial summation, eccentricity and spatial configuration.
Kao, Chien-Hui; Chen, Chien-Chung
2012-06-01
We investigated observers' performance in detecting and discriminating visual word forms as a function of target size and retinal eccentricity. The contrast threshold of visual words was measured with a spatial two-alternative forced-choice paradigm and a PSI adaptive method. The observers were to indicate which of two sides contained a stimulus in the detection task, and which contained a real character (as opposed to a pseudo- or non-character) in the discrimination task. When the target size was sufficiently small, the detection threshold of a character decreased as its size increased, with a slope of -1/2 on log-log coordinates, up to a critical size at all eccentricities and for all stimulus types. The discrimination threshold decreased with target size with a slope of -1 up to a critical size that was dependent on stimulus type and eccentricity. Beyond that size, the threshold decreased with a slope of -1/2 on log-log coordinates before leveling out. The data was well fit by a spatial summation model that contains local receptive fields (RFs) and a summation across these filters within an attention window. Our result implies that detection is mediated by local RFs smaller than any tested stimuli and thus detection performance is dominated by summation across receptive fields. On the other hand, discrimination is dominated by a summation within a local RF in the fovea but a cross RF summation in the periphery. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kirchner, Elsa A; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.
Overlapping neural circuits for visual attention and eye movements in the human cerebellum.
Striemer, Christopher L; Chouinard, Philippe A; Goodale, Melvyn A; de Ribaupierre, Sandrine
2015-03-01
Previous research in patients with cerebellar damage suggests that the cerebellum plays a role in covert visual attention. One limitation of some of these studies is that they examined patients with heterogeneous cerebellar damage. As a result, the patterns of reported deficits have been inconsistent. In the current study, we used functional neuroimaging (fMRI) in healthy adults (N=14) to examine whether or not the cerebellum plays a role in covert visual attention. Participants performed two covert attention tasks in which they were cued exogenously (with peripheral flashes) or endogenously (using directional arrows) to attend to marked locations in the visual periphery without moving their eyes. We compared BOLD activation in these covert attention conditions to a number of control conditions including: the same attention tasks with eye movements, a target detection task with no cueing, and a self-paced button-press task. Subtracting these control conditions from the covert attention conditions allowed us to effectively remove the contribution of the cerebellum to motor output. In addition to the usual fronto-parietal networks commonly engaged by these attention tasks, lobule VI of the vermis in the cerebellum was also activated when participants performed the covert attention tasks with or without eye movements. Interestingly, this effect was larger for exogenous compared to endogenous cueing. These results, in concert with recent patient studies, provide independent yet converging evidence that the same cerebellar structures that are involved in eye movements are also involved in visuospatial attention. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rabin, Alon; Einstein, Ofira; Kozol, Zvi
2018-04-01
Altered movement patterns, including increased frontal-plane knee movement and decreased sagittal-plane hip and knee movement, have been associated with several knee disorders. Nevertheless, the ability of clinicians to visually detect such altered movement patterns during high-speed athletic tasks is relatively unknown. To explore the association between visual assessment and 2-dimensional (2D) analysis of frontal-plane knee movement and sagittal-plane hip and knee movement during a jump-landing task among healthy female athletes. Cross-sectional study. Gymnasiums of participating volleyball teams. A total of 39 healthy female volleyball players (age = 21.0 ± 5.2 years, height = 172.0 ± 8.6 cm, mass = 64.2 ± 7.2 kg) from Divisions I and II of the Israeli Volleyball Association. Frontal-plane knee movement and sagittal-plane hip and knee movement during jump landing were visually rated as good, moderate, or poor based on previously established criteria. Frontal-plane knee excursion and sagittal-plane hip and knee excursions were measured using free motion-analysis software and compared among athletes with different visual ratings of the corresponding movements. Participants with different visual ratings of frontal-plane knee movement displayed differences in 2D frontal-plane knee excursion ( P < .01), whereas participants with different visual ratings of sagittal-plane hip and knee movement displayed differences in 2D sagittal-plane hip and knee excursions ( P < .01). Visual ratings of frontal-plane knee movement and sagittal-plane hip and knee movement were associated with differences in the corresponding 2D hip and knee excursions. Visual rating of these movements may serve as an initial screening tool for detecting altered movement patterns during jump landings.
Saliency affects feedforward more than feedback processing in early visual cortex.
Emmanouil, Tatiana Aloi; Avigan, Philip; Persuh, Marjan; Ro, Tony
2013-07-01
Early visual cortex activity is influenced by both bottom-up and top-down factors. To investigate the influences of bottom-up (saliency) and top-down (task) factors on different stages of visual processing, we used transcranial magnetic stimulation (TMS) of areas V1/V2 to induce visual suppression at varying temporal intervals. Subjects were asked to detect and discriminate the color or the orientation of briefly-presented small lines that varied on color saliency based on color contrast with the surround. Regardless of task, color saliency modulated the magnitude of TMS-induced visual suppression, especially at earlier temporal processing intervals that reflect the feedforward stage of visual processing in V1/V2. In a second experiment we found that our color saliency effects were also influenced by an inherent advantage of the color red relative to other hues and that color discrimination difficulty did not affect visual suppression. These results support the notion that early visual processing is stimulus driven and that feedforward and feedback processing encode different types of information about visual scenes. They further suggest that certain hues can be prioritized over others within our visual systems by being more robustly represented during early temporal processing intervals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Eye-tracking AFROC study of the influence of experience and training on chest x-ray interpretation
NASA Astrophysics Data System (ADS)
Manning, David; Ethell, Susan C.; Crawford, Trevor
2003-05-01
Four observer groups with different levels of expertise were tested in an investigation into the comparative nature of expert performance. The radiological task was the detection and localization of significant pulmonary nodules in postero-anterior vies of the chest in adults. Three test banks of 40 images were used. The observer groups were 6 experienced radiographers prior to a six month training program in chest image interpretation, the same radiographers after their tr4aining program, and 6 fresher undergraduate radiography students. Eye tracking was carried out on all observers to demonstrate differences in visual activity and nodule detection performance was measured with an AFROC technique. Detection performances of the four groups showed the radiologists and radiographers after training were measurably superior at the task. The eye-tracking parameters saccadic length, number of fixations visual coverage and scrutiny timer per film were measured for all subjects and compared. The missed nodules fixated and not fixated were also determined for the radiologist group. Results have shown distinct stylistic differences in the visual scanning strategies between the experienced and inexperienced observers that we believe can be generalized into a description of characteristics of expert versus non-expert performance. The findings will be used in the educational program of image interpretation for non-radiology practitioners.
Todd, J Jay; Fougnie, Daryl; Marois, René
2005-12-01
The right temporo-parietal junction (TPJ) is critical for stimulus-driven attention and visual awareness. Here we show that as the visual short-term memory (VSTM) load of a task increases, activity in this region is increasingly suppressed. Correspondingly, increasing VSTM load impairs the ability of subjects to consciously detect the presence of a novel, unexpected object in the visual field. These results not only demonstrate that VSTM load suppresses TPJ activity and induces inattentional blindness, but also offer a plausible neural mechanism for this perceptual deficit: suppression of the stimulus-driven attentional network.
Using multisensory cues to facilitate air traffic management.
Ngo, Mary K; Pierce, Russell S; Spence, Charles
2012-12-01
In the present study, we sought to investigate whether auditory and tactile cuing could be used to facilitate a complex, real-world air traffic management scenario. Auditory and tactile cuing provides an effective means of improving both the speed and accuracy of participants' performance in a variety of laboratory-based visual target detection and identification tasks. A low-fidelity air traffic simulation task was used in which participants monitored and controlled aircraft.The participants had to ensure that the aircraft landed or exited at the correct altitude, speed, and direction and that they maintained a safe separation from all other aircraft and boundaries. The performance measures recorded included en route time, handoff delay, and conflict resolution delay (the performance measure of interest). In a baseline condition, the aircraft in conflict was highlighted in red (visual cue), and in the experimental conditions, this standard visual cue was accompanied by a simultaneously presented auditory, vibrotactile, or audiotactile cue. Participants responded significantly more rapidly, but no less accurately, to conflicts when presented with an additional auditory or audiotactile cue than with either a vibrotactile or visual cue alone. Auditory and audiotactile cues have the potential for improving operator performance by reducing the time it takes to detect and respond to potential visual target events. These results have important implications for the design and use of multisensory cues in air traffic management.
Loughman, James; Davison, Peter; Flitcroft, Ian
2007-11-01
Preattentive visual search (PAVS) describes rapid and efficient retinal and neural processing capable of immediate target detection in the visual field. Damage to the nerve fibre layer or visual pathway might reduce the efficiency with which the visual system performs such analysis. The purpose of this study was to test the hypothesis that patients with glaucoma are impaired on parallel search tasks, and that this would serve to distinguish glaucoma in early cases. Three groups of observers (glaucoma patients, suspect and normal individuals) were examined, using computer-generated flicker, orientation, and vertical motion displacement targets to assess PAVS efficiency. The task required rapid and accurate localisation of a singularity embedded in a field of 119 homogeneous distractors on either the left or right-hand side of a computer monitor. All subjects also completed a choice reaction time (CRT) task. Independent sample T tests revealed PAVS efficiency to be significantly impaired in the glaucoma group compared with both normal and suspect individuals. Performance was impaired in all types of glaucoma tested. Analysis between normal and suspect individuals revealed a significant difference only for motion displacement response times. Similar analysis using a PAVS/CRT index confirmed the glaucoma findings but also showed statistically significant differences between suspect and normal individuals across all target types. A test of PAVS efficiency appears capable of differentiating early glaucoma from both normal and suspect cases. Analysis incorporating a PAVS/CRT index enhances the diagnostic capacity to differentiate normal from suspect cases.
Neurofeedback training of gamma band oscillations improves perceptual processing.
Salari, Neda; Büchel, Christian; Rose, Michael
2014-10-01
In this study, a noninvasive electroencephalography-based neurofeedback method is applied to train volunteers to deliberately increase gamma band oscillations (40 Hz) in the visual cortex. Gamma band oscillations in the visual cortex play a functional role in perceptual processing. In a previous study, we were able to demonstrate that gamma band oscillations prior to stimulus presentation have a significant influence on perceptual processing of visual stimuli. In the present study, we aimed to investigate longer lasting effects of gamma band neurofeedback training on perceptual processing. For this purpose, a feedback group was trained to modulate oscillations in the gamma band, while a control group participated in a task with an identical design setting but without gamma band feedback. Before and after training, both groups participated in a perceptual object detection task and a spatial attention task. Our results clearly revealed that only the feedback group but not the control group exhibited a visual processing advantage and an increase in oscillatory gamma band activity in the pre-stimulus period of the processing of the visual object stimuli after the neurofeedback training. Results of the spatial attention task showed no difference between the groups, which underlines the specific role of gamma band oscillations for perceptual processing. In summary, our results show that modulation of gamma band activity selectively affects perceptual processing and therefore supports the relevant role of gamma band activity for this specific process. Furthermore, our results demonstrate the eligibility of gamma band oscillations as a valuable tool for neurofeedback applications.
Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition.
Cerasa, Antonio; Hagberg, Gisela E; Bianciardi, Marta; Sabatini, Umberto
2005-01-03
A well-known issue in functional neuroimaging studies, regarding motor synchronization, is to design suitable control tasks able to discriminate between the brain structures involved in primary time-keeper functions and those related to other processes such as attentional effort. The aim of this work was to investigate how the predictability of stimulus onsets in the baseline condition modulates the activity in brain structures related to processes involved in time-keeper functions during the performance of a visually cued motor synchronization task (VM). The rational behind this choice derives from the notion that using different stimulus predictability can vary the subject's attention and the consequently neural activity. For this purpose, baseline levels of BOLD activity were obtained from 12 subjects during a conventional-baseline condition: maintained fixation of the visual rhythmic stimuli presented in the VM task, and a random-baseline condition: maintained fixation of visual stimuli occurring randomly. fMRI analysis demonstrated that while brain areas with a documented role in basic time processing are detected independent of the baseline condition (right cerebellum, bilateral putamen, left thalamus, left superior temporal gyrus, left sensorimotor cortex, left dorsal premotor cortex and supplementary motor area), the ventral premotor cortex, caudate nucleus, insula and inferior frontal gyrus exhibited a baseline-dependent activation. We conclude that maintained fixation of unpredictable visual stimuli can be employed in order to reduce or eliminate neural activity related to attentional components present in the synchronization task.
Optical defocus: differential effects on size and contrast letter recognition thresholds.
Rabin, J
1994-02-01
To determine if optical defocus produces a greater reduction in visual acuity or small-letter contrast sensitivity. Letter charts were used to measure visual acuity and small-letter contrast sensitivity (20/25 Snellen equivalent) as a function of optical defocus. Letter size (acuity) and contrast (contrast sensitivity) were varied in equal logarithmic steps to make the task the same for the two types of measurement. Both visual acuity and contrast sensitivity declined with optical defocus, but the effect was far greater in the contrast domain. However, measurement variability also was greater for contrast sensitivity. After correction for this variability, measurement in the contrast domain still proved to be a more sensitive (1.75x) index of optical defocus. Small-letter contrast sensitivity is a powerful technique for detecting subtle amounts of optical defocus. This adjunctive approach may be useful when there are small changes in resolution that are not detected by standard measures of visual acuity. Potential applications include evaluating the course of vision in refractive surgery, classification of cataracts, detection of corneal or macular edema, and detection of visual loss in the aging eye. Evaluation of candidates for occupations requiring unique visual abilities also may be enhanced by measuring resolution in the contrast domain.
DOT National Transportation Integrated Search
1988-01-01
Operational monitoring situations, in contrast to typical laboratory vigilance tasks, generally involve more than just stimulus detection and recognition. They frequently involve complex multidimensional discriminations, interpretations of significan...
NASA Astrophysics Data System (ADS)
Li, Heng; Zeng, Yajie; Lu, Zhuofan; Cao, Xiaofei; Su, Xiaofan; Sui, Xiaohong; Wang, Jing; Chai, Xinyu
2018-04-01
Objective. Retinal prosthesis devices have shown great value in restoring some sight for individuals with profoundly impaired vision, but the visual acuity and visual field provided by prostheses greatly limit recipients’ visual experience. In this paper, we employ computer vision approaches to seek to expand the perceptible visual field in patients implanted potentially with a high-density retinal prosthesis while maintaining visual acuity as much as possible. Approach. We propose an optimized content-aware image retargeting method, by introducing salient object detection based on color and intensity-difference contrast, aiming to remap important information of a scene into a small visual field and preserve their original scale as much as possible. It may improve prosthetic recipients’ perceived visual field and aid in performing some visual tasks (e.g. object detection and object recognition). To verify our method, psychophysical experiments, detecting object number and recognizing objects, are conducted under simulated prosthetic vision. As control, we use three other image retargeting techniques, including Cropping, Scaling, and seam-assisted shrinkability. Main results. Results show that our method outperforms in preserving more key features and has significantly higher recognition accuracy in comparison with other three image retargeting methods under the condition of small visual field and low-resolution. Significance. The proposed method is beneficial to expand the perceived visual field of prosthesis recipients and improve their object detection and recognition performance. It suggests that our method may provide an effective option for image processing module in future high-density retinal implants.
The contributions of visual and central attention to visual working memory.
Souza, Alessandra S; Oberauer, Klaus
2017-10-01
We investigated the role of two kinds of attention-visual and central attention-for the maintenance of visual representations in working memory (WM). In Experiment 1 we directed attention to individual items in WM by presenting cues during the retention interval of a continuous delayed-estimation task, and instructing participants to think of the cued items. Attending to items improved recall commensurate with the frequency with which items were attended (0, 1, or 2 times). Experiments 1 and 3 further tested which kind of attention-visual or central-was involved in WM maintenance. We assessed the dual-task costs of two types of distractor tasks, one tapping sustained visual attention and one tapping central attention. Only the central attention task yielded substantial dual-task costs, implying that central attention substantially contributes to maintenance of visual information in WM. Experiment 2 confirmed that the visual-attention distractor task was demanding enough to disrupt performance in a task relying on visual attention. We combined the visual-attention and the central-attention distractor tasks with a multiple object tracking (MOT) task. Distracting visual attention, but not central attention, impaired MOT performance. Jointly, the three experiments provide a double dissociation between visual and central attention, and between visual WM and visual object tracking: Whereas tracking multiple targets across the visual filed depends on visual attention, visual WM depends mostly on central attention.
Camilleri, Rebecca; Pavan, Andrea; Campana, Gianluca
2016-08-01
It has recently been demonstrated how perceptual learning, that is an improvement in a sensory/perceptual task upon practice, can be boosted by concurrent high-frequency transcranial random noise stimulation (tRNS). It has also been shown that perceptual learning can generalize and produce an improvement of visual functions in participants with mild refractive defects. By using three different groups of participants (single-blind study), we tested the efficacy of a short training (8 sessions) using a single Gabor contrast-detection task with concurrent hf-tRNS in comparison with the same training with sham stimulation or hf-tRNS with no concurrent training, in improving visual acuity (VA) and contrast sensitivity (CS) of individuals with uncorrected mild myopia. A short training with a contrast detection task is able to improve VA and CS only if coupled with hf-tRNS, whereas no effect on VA and marginal effects on CS are seen with the sole administration of hf-tRNS. Our results support the idea that, by boosting the rate of perceptual learning via the modulation of neuronal plasticity, hf-tRNS can be successfully used to reduce the duration of the perceptual training and/or to increase its efficacy in producing perceptual learning and generalization to improved VA and CS in individuals with uncorrected mild myopia. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Jarrold, Christopher; Gilchrist, Iain D.; Bender, Alison
2005-01-01
Individuals with autism show relatively strong performance on tasks that require them to identify the constituent parts of a visual stimulus. This is assumed to be the result of a bias towards processing the local elements in a display that follows from a weakened ability to integrate information at the global level. The results of the current…
ERIC Educational Resources Information Center
Buchholz, J.; Davies, A.A.
2005-01-01
Performance on a covert visual attention task is compared between a group of adults with developmental dyslexia (specifically phonological difficulties) and a group of age and IQ matched controls. The group with dyslexia were generally slower to detect validly-cued targets. Costs of shifting attention toward the periphery when the target was…
Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A
2009-09-01
Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.
Cognitive Food Processing in Binge-Eating Disorder: An Eye-Tracking Study.
Sperling, Ingmar; Baldofski, Sabrina; Lüthold, Patrick; Hilbert, Anja
2017-08-19
Studies indicate an attentional bias towards food in binge-eating disorder (BED); however, more evidence on attentional engagement and disengagement and processing of multiple attention-competing stimuli is needed. This study aimed to examine visual attention to food and non-food stimuli in BED. In n = 23 participants with full-syndrome and subsyndromal BED and n = 23 individually matched healthy controls, eye-tracking was used to assess attention to food and non-food stimuli during a free exploration paradigm and a visual search task. In the free exploration paradigm, groups did not differ in their initial fixation position. While both groups fixated non-food stimuli significantly longer than food stimuli, the BED group allocated significantly more attention towards food than controls. In the visual search task, groups did not differ in detection times. However, a significant detection bias for food was found in full-syndrome BED, but not in controls. An increased initial attention towards food was related to greater BED symptomatology and lower body mass index (BMI) only in full-syndrome BED, while a greater maintained attention to food was associated with lower BMI in controls. The results suggest food-biased visual attentional processing in adults with BED. Further studies should clarify the implications of attentional processes for the etiology and maintenance of BED.
Cognitive Food Processing in Binge-Eating Disorder: An Eye-Tracking Study
Sperling, Ingmar; Lüthold, Patrick; Hilbert, Anja
2017-01-01
Studies indicate an attentional bias towards food in binge-eating disorder (BED); however, more evidence on attentional engagement and disengagement and processing of multiple attention-competing stimuli is needed. This study aimed to examine visual attention to food and non-food stimuli in BED. In n = 23 participants with full-syndrome and subsyndromal BED and n = 23 individually matched healthy controls, eye-tracking was used to assess attention to food and non-food stimuli during a free exploration paradigm and a visual search task. In the free exploration paradigm, groups did not differ in their initial fixation position. While both groups fixated non-food stimuli significantly longer than food stimuli, the BED group allocated significantly more attention towards food than controls. In the visual search task, groups did not differ in detection times. However, a significant detection bias for food was found in full-syndrome BED, but not in controls. An increased initial attention towards food was related to greater BED symptomatology and lower body mass index (BMI) only in full-syndrome BED, while a greater maintained attention to food was associated with lower BMI in controls. The results suggest food-biased visual attentional processing in adults with BED. Further studies should clarify the implications of attentional processes for the etiology and maintenance of BED. PMID:28825607
Simple real-time computerized tasks for detection of malingering among murderers with schizophrenia.
Kertzman, Semion; Grinspan, Haim; Birger, Moshe; Shliapnikov, Nina; Alish, Yakov; Ben Nahum, Zeev; Mester, Roberto; Kotler, Moshe
2006-01-01
It is our contention that computer-based two-alternative forced choice techniques can be useful tools for the detection of patients with schizophrenia who feign acute psychotic symptoms and cognitive impairment as opposed to patients with schizophrenia with a true active psychosis. In our experiment, Visual Simple and Choice Reaction Time tasks were used. Reaction time in milliseconds was recorded and accuracy rate was obtained for all subjects' responses. Both types of task were administered to 27 patients with schizophrenia suspected of having committed murder. Patients with schizophrenia who were clinically assessed as malingerers achieved significantly fewer correct results, were significantly slower and less consistent in their reaction time. Congruence of performance between the Simple and Choice tasks was an additional parameter for the accurate diagnosis of malingering. The four parameters of both tests (accuracy of response, reaction time, standard deviation of reaction time and task congruency) are simple and constitute a user-friendly means for the detection of malingering in forensic practice. Another advantage of this procedure is that the software automatically measures and evaluates all the parameters.
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network
2018-01-01
Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved. PMID:29439500
Playing checkers: detection and eye hand coordination in simulated prosthetic vision
NASA Astrophysics Data System (ADS)
Dagnelie, Gislin; Walter, Matthias; Yang, Liancheng
2006-09-01
In order to assess the potential for visual inspection and eye hand coordination without tactile feedback under conditions that may be available to future retinal prosthesis wearers, we studied the ability of sighted individuals to act upon pixelized visual information at very low resolution, equivalent to 20/2400 visual acuity. Live images from a head-mounted camera were low-pass filtered and presented in a raster of 6 × 10 circular Gaussian dots. Subjects could either freely move their gaze across the raster (free-viewing condition) or the raster position was locked to the subject's gaze by means of video-based pupil tracking (gaze-locked condition). Four normally sighted and one severely visually impaired subject with moderate nystagmus participated in a series of four experiments. Subjects' task was to count 1 to 16 white fields randomly distributed across an otherwise black checkerboard (counting task) or to place a black checker on each of the white fields (placing task). We found that all subjects were capable of learning both tasks after varying amounts of practice, both in the free-viewing and in the gaze-locked conditions. Normally sighted subjects all reached very similar performance levels independent of the condition. The practiced performance level of the visually impaired subject in the free-viewing condition was indistinguishable from that of the normally sighted subjects, but required approximately twice the amount of time to place checkers in the gaze-locked condition; this difference is most likely attributable to this subject's nystagmus. Thus, if early retinal prosthesis wearers can achieve crude form vision, then on the basis of these results they too should be able to perform simple eye hand coordination tasks without tactile feedback.
Fisher, Derek J; Knobelsdorf, Amy; Jaworska, Natalia; Daniels, Richelle; Knott, Verner J
2013-01-01
Research in smokers has shown that nicotine may have the ability to improve certain aspects of cognitive performance, including working memory and attention, processes which implicate frontal and frontal-parietal brain networks. There is limited research on the cognitive effects of nicotine and their associated neural underpinnings in non-smokers. This study examined the effects of acute nicotine on a working memory task alone or combined with a visual detection task (single- and dual-task conditions) using electroencephalographic (EEG) recordings and behavioural performance measures. Twenty non-smokers (13 females; 7 males) received nicotine gum (6 mg) in a double-blind, randomized, placebo-controlled, repeated measures design. Spectral EEG, together with response speed and accuracy measures, were obtained while participants completed a series of N-Back tasks under single- and dual-task conditions. Nicotine failed to exert any significant effects on performance measures, however, EEG changes were observed, primarily in frontal recordings, which varied with memory load, task condition and hemisphere. These findings, discussed in relation to previous studies in smokers, support the notion that nicotine may modulate central executive systems and contribute to smoking behaviour. Copyright © 2012 Elsevier Inc. All rights reserved.
Task-dependent individual differences in prefrontal connectivity.
Biswal, Bharat B; Eldreth, Dana A; Motes, Michael A; Rypma, Bart
2010-09-01
Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit-symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior.
Task-Dependent Individual Differences in Prefrontal Connectivity
Biswal, Bharat B.; Eldreth, Dana A.; Motes, Michael A.
2010-01-01
Recent advances in neuroimaging have permitted testing of hypotheses regarding the neural bases of individual differences, but this burgeoning literature has been characterized by inconsistent results. To test the hypothesis that differences in task demands could contribute to between-study variability in brain-behavior relationships, we had participants perform 2 tasks that varied in the extent of cognitive involvement. We examined connectivity between brain regions during a low-demand vigilance task and a higher-demand digit–symbol visual search task using Granger causality analysis (GCA). Our results showed 1) Significant differences in numbers of frontoparietal connections between low- and high-demand tasks 2) that GCA can detect activity changes that correspond with task-demand changes, and 3) faster participants showed more vigilance-related activity than slower participants, but less visual-search activity. These results suggest that relatively low-demand cognitive performance depends on spontaneous bidirectionally fluctuating network activity, whereas high-demand performance depends on a limited, unidirectional network. The nature of brain-behavior relationships may vary depending on the extent of cognitive demand. High-demand network activity may reflect the extent to which individuals require top-down executive guidance of behavior for successful task performance. Low-demand network activity may reflect task- and performance monitoring that minimizes executive requirements for guidance of behavior. PMID:20064942
Maekawa, Toru; de Brecht, Matthew; Yamagishi, Noriko
2018-01-01
The study of visual perception has largely been completed without regard to the influence that an individual’s emotional status may have on their performance in visual tasks. However, there is a growing body of evidence to suggest that mood may affect not only creative abilities and interpersonal skills but also the capacity to perform low-level cognitive tasks. Here, we sought to determine whether rudimentary visual search processes are similarly affected by emotion. Specifically, we examined whether an individual’s perceived happiness level affects their ability to detect a target in noise. To do so, we employed pop-out and serial visual search paradigms, implemented using a novel smartphone application that allowed search times and self-rated levels of happiness to be recorded throughout each twenty-four-hour period for two weeks. This experience sampling protocol circumvented the need to alter mood artificially with laboratory-based induction methods. Using our smartphone application, we were able to replicate the classic visual search findings, whereby pop-out search times remained largely unaffected by the number of distractors whereas serial search times increased with increasing number of distractors. While pop-out search times were unaffected by happiness level, serial search times with the maximum numbers of distractors (n = 30) were significantly faster for high happiness levels than low happiness levels (p = 0.02). Our results demonstrate the utility of smartphone applications in assessing ecologically valid measures of human visual performance. We discuss the significance of our findings for the assessment of basic visual functions using search time measures, and for our ability to search effectively for targets in real world settings. PMID:29664952
Maekawa, Toru; Anderson, Stephen J; de Brecht, Matthew; Yamagishi, Noriko
2018-01-01
The study of visual perception has largely been completed without regard to the influence that an individual's emotional status may have on their performance in visual tasks. However, there is a growing body of evidence to suggest that mood may affect not only creative abilities and interpersonal skills but also the capacity to perform low-level cognitive tasks. Here, we sought to determine whether rudimentary visual search processes are similarly affected by emotion. Specifically, we examined whether an individual's perceived happiness level affects their ability to detect a target in noise. To do so, we employed pop-out and serial visual search paradigms, implemented using a novel smartphone application that allowed search times and self-rated levels of happiness to be recorded throughout each twenty-four-hour period for two weeks. This experience sampling protocol circumvented the need to alter mood artificially with laboratory-based induction methods. Using our smartphone application, we were able to replicate the classic visual search findings, whereby pop-out search times remained largely unaffected by the number of distractors whereas serial search times increased with increasing number of distractors. While pop-out search times were unaffected by happiness level, serial search times with the maximum numbers of distractors (n = 30) were significantly faster for high happiness levels than low happiness levels (p = 0.02). Our results demonstrate the utility of smartphone applications in assessing ecologically valid measures of human visual performance. We discuss the significance of our findings for the assessment of basic visual functions using search time measures, and for our ability to search effectively for targets in real world settings.
ERIC Educational Resources Information Center
Coffman, B. A.; Trumbo, M. C.; Flores, R. A.; Garcia, C. M.; van der Merwe, A. J.; Wassermann, E. M.; Weisend, M. P.; Clark, V. P.
2012-01-01
We have previously found that transcranial direct current stimulation (tDCS) over right inferior frontal cortex (RIFC) enhances performance during learning of a difficult visual target detection task (Clark et al., 2012). In order to examine the cognitive mechanisms of tDCS that lead to enhanced performance, here we analyzed its differential…
de Fockert, Jan W; Bremner, Andrew J
2011-12-01
An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus detection is competing for attention with a concurrent visual task. Participants were required to judge which of two lines was the longer while holding in working memory either one digit (low load) or six digits (high load). An unexpected visual stimulus was presented once alongside the line judgment task. Detection of the unexpected stimulus was significantly improved under conditions of higher working memory load. This improvement in performance prompts the striking conclusion that an effect of cognitive load is to increase attentional spread, thereby enhancing our ability to detect perceptual stimuli to which we would normally be inattentionally blind under less taxing cognitive conditions. We discuss the implications of these findings for our understanding of the relationship between working memory and selective attention. Copyright © 2011 Elsevier B.V. All rights reserved.
Kirchner, Elsa A.; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660
NASA Technical Reports Server (NTRS)
Kirkpatrick, M.; Brye, R. G.
1974-01-01
A motion cue investigation program is reported that deals with human factor aspects of high fidelity vehicle simulation. General data on non-visual motion thresholds and specific threshold values are established for use as washout parameters in vehicle simulation. A general purpose similator is used to test the contradictory cue hypothesis that acceleration sensitivity is reduced during a vehicle control task involving visual feedback. The simulator provides varying acceleration levels. The method of forced choice is based on the theory of signal detect ability.
Searching for differences in race: is there evidence for preferential detection of other-race faces?
Lipp, Ottmar V; Terry, Deborah J; Smith, Joanne R; Tellegen, Cassandra L; Kuebbeler, Jennifer; Newey, Mareka
2009-06-01
Previous research has suggested that like animal and social fear-relevant stimuli, other-race faces (African American) are detected preferentially in visual search. Three experiments using Chinese or Indonesian faces as other-race faces yielded the opposite pattern of results: faster detection of same-race faces among other-race faces. This apparently inconsistent pattern of results was resolved by showing that Asian and African American faces are detected preferentially in tasks that have small stimulus sets and employ fixed target searches. Asian and African American other-race faces are found slower among Caucasian face backgrounds if larger stimulus sets are used in tasks with a variable mapping of stimulus to background or target. Thus, preferential detection of other-race faces was not found under task conditions in which preferential detection of animal and social fear-relevant stimuli is evident. Although consistent with the view that same-race faces are processed in more detail than other-race faces, the current findings suggest that other-race faces do not draw attention preferentially.
Accessing long-term memory representations during visual change detection.
Beck, Melissa R; van Lamsweerde, Amanda E
2011-04-01
In visual change detection tasks, providing a cue to the change location concurrent with the test image (post-cue) can improve performance, suggesting that, without a cue, not all encoded representations are automatically accessed. Our studies examined the possibility that post-cues can encourage the retrieval of representations stored in long-term memory (LTM). Participants detected changes in images composed of familiar objects. Performance was better when the cue directed attention to the post-change object. Supporting the role of LTM in the cue effect, the effect was similar regardless of whether the cue was presented during the inter-stimulus interval, concurrent with the onset of the test image, or after the onset of the test image. Furthermore, the post-cue effect and LTM performance were similarly influenced by encoding time. These findings demonstrate that monitoring the visual world for changes does not automatically engage LTM retrieval.
Analytic Guided-Search Model of Human Performance Accuracy in Target- Localization Search Tasks
NASA Technical Reports Server (NTRS)
Eckstein, Miguel P.; Beutter, Brent R.; Stone, Leland S.
2000-01-01
Current models of human visual search have extended the traditional serial/parallel search dichotomy. Two successful models for predicting human visual search are the Guided Search model and the Signal Detection Theory model. Although these models are inherently different, it has been difficult to compare them because the Guided Search model is designed to predict response time, while Signal Detection Theory models are designed to predict performance accuracy. Moreover, current implementations of the Guided Search model require the use of Monte-Carlo simulations, a method that makes fitting the model's performance quantitatively to human data more computationally time consuming. We have extended the Guided Search model to predict human accuracy in target-localization search tasks. We have also developed analytic expressions that simplify simulation of the model to the evaluation of a small set of equations using only three free parameters. This new implementation and extension of the Guided Search model will enable direct quantitative comparisons with human performance in target-localization search experiments and with the predictions of Signal Detection Theory and other search accuracy models.
The reliability and stability of visual working memory capacity.
Xu, Z; Adam, K C S; Fang, X; Vogel, E K
2018-04-01
Because of the central role of working memory capacity in cognition, many studies have used short measures of working memory capacity to examine its relationship to other domains. Here, we measured the reliability and stability of visual working memory capacity, measured using a single-probe change detection task. In Experiment 1, the participants (N = 135) completed a large number of trials of a change detection task (540 in total, 180 each of set sizes 4, 6, and 8). With large numbers of both trials and participants, reliability estimates were high (α > .9). We then used an iterative down-sampling procedure to create a look-up table for expected reliability in experiments with small sample sizes. In Experiment 2, the participants (N = 79) completed 31 sessions of single-probe change detection. The first 30 sessions took place over 30 consecutive days, and the last session took place 30 days later. This unprecedented number of sessions allowed us to examine the effects of practice on stability and internal reliability. Even after much practice, individual differences were stable over time (average between-session r = .76).
Attention during active visual tasks: counting, pointing, or simply looking
Wilder, John D.; Schnitzer, Brian S.; Gersch, Timothy M.; Dosher, Barbara A.
2009-01-01
Visual attention and saccades are typically studied in artificial situations, with stimuli presented to the steadily fixating eye, or saccades made along specified paths. By contrast, in the real world saccadic patterns are constrained only by the demands of the motivating task. We studied attention during pauses between saccades made to perform 3 free-viewing tasks: counting dots, pointing to the same dots with a visible cursor, or simply looking at the dots using a freely-chosen path. Attention was assessed by the ability to identify the orientation of a briefly-presented Gabor probe. All primary tasks produced losses in identification performance, with counting producing the largest losses, followed by pointing and then looking-only. Looking-only resulted in a 37% increase in contrast thresholds in the orientation task. Counting produced more severe losses that were not overcome by increasing Gabor contrast. Detection or localization of the Gabor, unlike identification, were largely unaffected by any of the primary tasks. Taken together, these results show that attention is required to control saccades, even with freely-chosen paths, but the attentional demands of saccades are less than those attached to tasks such as counting, which have a significant cognitive load. Counting proved to be a highly demanding task that either exhausted momentary processing capacity (e.g., working memory or executive functions), or, alternatively, encouraged a strategy of filtering out all signals irrelevant to counting itself. The fact that the attentional demands of saccades (as well as those of detection/localization) are relatively modest makes it possible to continually adjust both the spatial and temporal pattern of saccades so as to re-allocate attentional resources as needed to handle the complex and multifaceted demands of real-world environments. PMID:18649913
Effects of spatial cues on color-change detection in humans
Herman, James P.; Bogadhi, Amarender R.; Krauzlis, Richard J.
2015-01-01
Studies of covert spatial attention have largely used motion, orientation, and contrast stimuli as these features are fundamental components of vision. The feature dimension of color is also fundamental to visual perception, particularly for catarrhine primates, and yet very little is known about the effects of spatial attention on color perception. Here we present results using novel dynamic color stimuli in both discrimination and color-change detection tasks. We find that our stimuli yield comparable discrimination thresholds to those obtained with static stimuli. Further, we find that an informative spatial cue improves performance and speeds response time in a color-change detection task compared with an uncued condition, similar to what has been demonstrated for motion, orientation, and contrast stimuli. Our results demonstrate the use of dynamic color stimuli for an established psychophysical task and show that color stimuli are well suited to the study of spatial attention. PMID:26047359
Centralized Alert-Processing and Asset Planning for Sensorwebs
NASA Technical Reports Server (NTRS)
Castano, Rebecca; Chien, Steve A.; Rabideau, Gregg R.; Tang, Benyang
2010-01-01
A software program provides a Sensorweb architecture for alert-processing, event detection, asset allocation and planning, and visualization. It automatically tasks and re-tasks various types of assets such as satellites and robotic vehicles in response to alerts (fire, weather) extracted from various data sources, including low-level Webcam data. JPL has adapted cons iderable Sensorweb infrastructure that had been previously applied to NASA Earth Science applications. This NASA Earth Science Sensorweb has been in operational use since 2003, and has proven reliability of the Sensorweb technologies for robust event detection and autonomous response using space and ground assets. Unique features of the software include flexibility to a range of detection and tasking methods including those that require aggregation of data over spatial and temporal ranges, generality of the response structure to represent and implement a range of response campaigns, and the ability to respond rapidly.
Livnat, Yarden; Galli, Nathan; Samore, Matthew H; Gundlapalli, Adi V
2012-01-01
Advances in surveillance science have supported public health agencies in tracking and responding to disease outbreaks. Increasingly, epidemiologists have been tasked with interpreting multiple streams of heterogeneous data arising from varied surveillance systems. As a result public health personnel have experienced an overload of plots and charts as information visualization techniques have not kept pace with the rapid expansion in data availability. This study sought to advance the science of public health surveillance data visualization by conceptualizing a visual paradigm that provides an ‘epidemiological canvas’ for detection, monitoring, exploration and discovery of regional infectious disease activity and developing a software prototype of an ‘infectious disease weather map'. Design objectives were elucidated and the conceptual model was developed using cognitive task analysis with public health epidemiologists. The software prototype was pilot tested using retrospective data from a large, regional pediatric hospital, and gastrointestinal and respiratory disease outbreaks were re-created as a proof of concept. PMID:22358039
Nguyen, Hung P; Ayachi, Fouaz; Lavigne-Pelletier, Catherine; Blamoutier, Margaux; Rahimi, Fariborz; Boissy, Patrick; Jog, Mandar; Duval, Christian
2015-04-11
Recently, much attention has been given to the use of inertial sensors for remote monitoring of individuals with limited mobility. However, the focus has been mostly on the detection of symptoms, not specific activities. The objective of the present study was to develop an automated recognition and segmentation algorithm based on inertial sensor data to identify common gross motor patterns during activity of daily living. A modified Time-Up-And-Go (TUG) task was used since it is comprised of four common daily living activities; Standing, Walking, Turning, and Sitting, all performed in a continuous fashion resulting in six different segments during the task. Sixteen healthy older adults performed two trials of a 5 and 10 meter TUG task. They were outfitted with 17 inertial motion sensors covering each body segment. Data from the 10 meter TUG were used to identify pertinent sensors on the trunk, head, hip, knee, and thigh that provided suitable data for detecting and segmenting activities associated with the TUG. Raw data from sensors were detrended to remove sensor drift, normalized, and band pass filtered with optimal frequencies to reveal kinematic peaks that corresponded to different activities. Segmentation was accomplished by identifying the time stamps of the first minimum or maximum to the right and the left of these peaks. Segmentation time stamps were compared to results from two examiners visually segmenting the activities of the TUG. We were able to detect these activities in a TUG with 100% sensitivity and specificity (n = 192) during the 10 meter TUG. The rate of success was subsequently confirmed in the 5 meter TUG (n = 192) without altering the parameters of the algorithm. When applying the segmentation algorithms to the 10 meter TUG, we were able to parse 100% of the transition points (n = 224) between different segments that were as reliable and less variable than visual segmentation performed by two independent examiners. The present study lays the foundation for the development of a comprehensive algorithm to detect and segment naturalistic activities using inertial sensors, in hope of evaluating automatically motor performance within the detected tasks.
The effect of fMRI task combinations on determining the hemispheric dominance of language functions.
Niskanen, Eini; Könönen, Mervi; Villberg, Ville; Nissi, Mikko; Ranta-Aho, Perttu; Säisänen, Laura; Karjalainen, Pasi; Aikiä, Marja; Kälviäinen, Reetta; Mervaala, Esa; Vanninen, Ritva
2012-04-01
The purpose of this study is to establish the most suitable combination of functional magnetic resonance imaging (fMRI) language tasks for clinical use in determining language dominance and to define the variability in laterality index (LI) and activation power between different combinations of language tasks. Activation patterns of different fMRI analyses of five language tasks (word generation, responsive naming, letter task, sentence comprehension, and word pair) were defined for 20 healthy volunteers (16 right-handed). LIs and sums of T values were calculated for each task separately and for four combinations of tasks in predefined regions of interest. Variability in terms of activation power and lateralization was defined in each analysis. In addition, the visual assessment of lateralization of language functions based on the individual fMRI activation maps was conducted by an experienced neuroradiologist. A combination analysis of word generation, responsive naming, and sentence comprehension was the most suitable in terms of activation power, robustness to detect essential language areas, and scanning time. In general, combination analyses of the tasks provided higher overall activation levels than single tasks and reduced the number of outlier voxels disturbing the calculation of LI. A combination of auditory and visually presented tasks that activate different aspects of language functions with sufficient activation power may be a useful task battery for determining language dominance in patients.
Featural and temporal attention selectively enhance task-appropriate representations in human V1
Warren, Scott; Yacoub, Essa; Ghose, Geoffrey
2015-01-01
Our perceptions are often shaped by focusing our attention toward specific features or periods of time irrespective of location. We explore the physiological bases of these non-spatial forms of attention by imaging brain activity while subjects perform a challenging change detection task. The task employs a continuously varying visual stimulus that, for any moment in time, selectively activates functionally distinct subpopulations of primary visual cortex (V1) neurons. When subjects are cued to the timing and nature of the change, the mapping of orientation preference across V1 was systematically shifts toward the cued stimulus just prior to its appearance. A simple linear model can explain this shift: attentional changes are selectively targeted toward neural subpopulations representing the attended feature at the times the feature was anticipated. Our results suggest that featural attention is mediated by a linear change in the responses of task-appropriate neurons across cortex during appropriate periods of time. PMID:25501983
Camouflage target detection via hyperspectral imaging plus information divergence measurement
NASA Astrophysics Data System (ADS)
Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin
2016-01-01
Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.
The fate of object memory traces under change detection and change blindness.
Busch, Niko A
2013-07-03
Observers often fail to detect substantial changes in a visual scene. This so-called change blindness is often taken as evidence that visual representations are sparse and volatile. This notion rests on the assumption that the failure to detect a change implies that representations of the changing objects are lost all together. However, recent evidence suggests that under change blindness, object memory representations may be formed and stored, but not retrieved. This study investigated the fate of object memory representations when changes go unnoticed. Participants were presented with scenes consisting of real world objects, one of which changed on each trial, while recording event-related potentials (ERPs). Participants were first asked to localize where the change had occurred. In an additional recognition task, participants then discriminated old objects, either from the pre-change or the post-change scene, from entirely new objects. Neural traces of object memories were studied by comparing ERPs for old and novel objects. Participants performed poorly in the detection task and often failed to recognize objects from the scene, especially pre-change objects. However, a robust old/novel effect was observed in the ERP, even when participants were change blind and did not recognize the old object. This implicit memory trace was found both for pre-change and post-change objects. These findings suggest that object memories are stored even under change blindness. Thus, visual representations may not be as sparse and volatile as previously thought. Rather, change blindness may point to a failure to retrieve and use these representations for change detection. Copyright © 2013 Elsevier B.V. All rights reserved.
Lin, Zhimin; Zeng, Ying; Tong, Li; Zhang, Hangming; Zhang, Chi
2017-01-01
The application of electroencephalogram (EEG) generated by human viewing images is a new thrust in image retrieval technology. A P300 component in the EEG is induced when the subjects see their point of interest in a target image under the rapid serial visual presentation (RSVP) experimental paradigm. We detected the single-trial P300 component to determine whether a subject was interested in an image. In practice, the latency and amplitude of the P300 component may vary in relation to different experimental parameters, such as target probability and stimulus semantics. Thus, we proposed a novel method, Target Recognition using Image Complexity Priori (TRICP) algorithm, in which the image information is introduced in the calculation of the interest score in the RSVP paradigm. The method combines information from the image and EEG to enhance the accuracy of single-trial P300 detection on the basis of traditional single-trial P300 detection algorithm. We defined an image complexity parameter based on the features of the different layers of a convolution neural network (CNN). We used the TRICP algorithm to compute for the complexity of an image to quantify the effect of different complexity images on the P300 components and training specialty classifier according to the image complexity. We compared TRICP with the HDCA algorithm. Results show that TRICP is significantly higher than the HDCA algorithm (Wilcoxon Sign Rank Test, p<0.05). Thus, the proposed method can be used in other and visual task-related single-trial event-related potential detection. PMID:29283998
Detection of Brain Reorganization in Pediatric Multiple Sclerosis Using Functional MRI
2015-10-01
accomplish this, we apply comparative assessments of fMRI mappings of language, memory , and motor function, and performance on clinical neurocognitive...community at a target rate of 13 volunteers per quarter period; acquire fMRI data for language, memory , and visual-motor functions (months 3-12). c...consensus fMRI activation maps for language, memory , and visual-motor tasks (months 8-12). f) Subtask 1f. Prepare publication to disseminate our
Does working memory load facilitate target detection?
Fruchtman-Steinbok, Tom; Kessler, Yoav
2016-02-01
Previous studies demonstrated that increasing working memory (WM) load delays performance of a concurrent task, by distracting attention and thus interfering with encoding and maintenance processes. The present study used a version of the change detection task with a target detection requirement during the retention interval. In contrast to the above prediction, target detection was faster following a larger set-size, specifically when presented shortly after the memory array (up to 400 ms). The effect of set-size on target detection was also evident when no memory retention was required. The set-size effect was also found using different modalities. Moreover, it was only observed when the memory array was presented simultaneously, but not sequentially. These results were explained by increased phasic alertness exerted by the larger visual display. The present study offers new evidence of ongoing attentional processes in the commonly-used change detection paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.
Using Eye Movement Analysis to Study Auditory Effects on Visual Memory Recall
Marandi, Ramtin Zargari; Sabzpoushan, Seyed Hojjat
2014-01-01
Recent studies in affective computing are focused on sensing human cognitive context using biosignals. In this study, electrooculography (EOG) was utilized to investigate memory recall accessibility via eye movement patterns. 12 subjects were participated in our experiment wherein pictures from four categories were presented. Each category contained nine pictures of which three were presented twice and the rest were presented once only. Each picture presentation took five seconds with an adjoining three seconds interval. Similarly, this task was performed with new pictures together with related sounds. The task was free viewing and participants were not informed about the task's purpose. Using pattern recognition techniques, participants’ EOG signals in response to repeated and non-repeated pictures were classified for with and without sound stages. The method was validated with eight different participants. Recognition rate in “with sound” stage was significantly reduced as compared with “without sound” stage. The result demonstrated that the familiarity of visual-auditory stimuli can be detected from EOG signals and the auditory input potentially improves the visual recall process. PMID:25436085
Cognitive workload modulation through degraded visual stimuli: a single-trial EEG study
NASA Astrophysics Data System (ADS)
Yu, K.; Prasad, I.; Mir, H.; Thakor, N.; Al-Nashash, H.
2015-08-01
Objective. Our experiments explored the effect of visual stimuli degradation on cognitive workload. Approach. We investigated the subjective assessment, event-related potentials (ERPs) as well as electroencephalogram (EEG) as measures of cognitive workload. Main results. These experiments confirm that degradation of visual stimuli increases cognitive workload as assessed by subjective NASA task load index and confirmed by the observed P300 amplitude attenuation. Furthermore, the single-trial multi-level classification using features extracted from ERPs and EEG is found to be promising. Specifically, the adopted single-trial oscillatory EEG/ERP detection method achieved an average accuracy of 85% for discriminating 4 workload levels. Additionally, we found from the spatial patterns obtained from EEG signals that the frontal parts carry information that can be used for differentiating workload levels. Significance. Our results show that visual stimuli can modulate cognitive workload, and the modulation can be measured by the single trial EEG/ERP detection method.
Location cue validity affects inhibition of return of visual processing.
Wright, R D; Richard, C M
2000-01-01
Inhibition-of-return is the process by which visual search for an object positioned among others is biased toward novel rather than previously inspected items. It is thought to occur automatically and to increase search efficiency. We examined this phenomenon by studying the facilitative and inhibitory effects of location cueing on target-detection response times in a search task. The results indicated that facilitation was a reflexive consequence of cueing whereas inhibition appeared to depend on cue informativeness. More specifically, the inhibition-of-return effect occurred only when the cue provided no information about the impending target's location. We suggest that the results are consistent with the notion of two levels of visual processing. The first involves rapid and reflexive operations that underlie the facilitative effects of location cueing on target detection. The second involves a rapid but goal-driven inhibition procedure that the perceiver can invoke if doing so will enhance visual search performance.
Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning
Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka
2012-01-01
Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849
Effects of task-irrelevant grouping on visual selection in partial report.
Lunau, Rasmus; Habekost, Thomas
2017-07-01
Perceptual grouping modulates performance in attention tasks such as partial report and change detection. Specifically, grouping of search items according to a task-relevant feature improves the efficiency of visual selection. However, the role of task-irrelevant feature grouping is not clearly understood. In the present study, we investigated whether grouping of targets by a task-irrelevant feature influences performance in a partial-report task. In this task, participants must report as many target letters as possible from a briefly presented circular display. The crucial manipulation concerned the color of the elements in these trials. In the sorted-color condition, the color of the display elements was arranged according to the selection criterion, and in the unsorted-color condition, colors were randomly assigned. The distractor cost was inferred by subtracting performance in partial-report trials from performance in a control condition that had no distractors in the display. Across five experiments, we manipulated trial order, selection criterion, and exposure duration, and found that attentional selectivity was improved in sorted-color trials when the exposure duration was 200 ms and the selection criterion was luminance. This effect was accompanied by impaired selectivity in unsorted-color trials. Overall, the results suggest that the benefit of task-irrelevant color grouping of targets is contingent on the processing locus of the selection criterion.
Abbey, Craig K.; Zemp, Roger J.; Liu, Jie; Lindfors, Karen K.; Insana, Michael F.
2009-01-01
We investigate and extend the ideal observer methodology developed by Smith and Wagner to detection and discrimination tasks related to breast sonography. We provide a numerical approach for evaluating the ideal observer acting on radio-frequency (RF) frame data, which involves inversion of large nonstationary covariance matrices, and we describe a power-series approach to computing this inverse. Considering a truncated power series suggests that the RF data be Wiener-filtered before forming the final envelope image. We have compared human performance for Wiener-filtered and conventional B-mode envelope images using psychophysical studies for 5 tasks related to breast cancer classification. We find significant improvements in visual detection and discrimination efficiency in four of these five tasks. We also use the Smith-Wagner approach to distinguish between human and processing inefficiencies, and find that generally the principle limitation comes from the information lost in computing the final envelope image. PMID:16468454
Belkaid, Marwen; Cuperlier, Nicolas; Gaussier, Philippe
2017-01-01
Emotions play a significant role in internal regulatory processes. In this paper, we advocate four key ideas. First, novelty detection can be grounded in the sensorimotor experience and allow higher order appraisal. Second, cognitive processes, such as those involved in self-assessment, influence emotional states by eliciting affects like boredom and frustration. Third, emotional processes such as those triggered by self-assessment influence attentional processes. Last, close emotion-cognition interactions implement an efficient feedback loop for the purpose of top-down behavior regulation. The latter is what we call 'Emotional Metacontrol'. We introduce a model based on artificial neural networks. This architecture is used to control a robotic system in a visual search task. The emotional metacontrol intervenes to bias the robot visual attention during active object recognition. Through a behavioral and statistical analysis, we show that this mechanism increases the robot performance and fosters the exploratory behavior to avoid deadlocks.
The Influence of Similarity on Visual Working Memory Representations
Lin, Po-Han; Luck, Steven J.
2007-01-01
In verbal memory, similarity between items in memory often leads to interference and impaired memory performance. The present study sought to determine whether analogous interference effects would be observed in visual working memory by varying the similarity of the to-be-remembered objects in a color change-detection task. Instead of leading to interference and impaired performance, increased similarity among the items being held in memory led to improved performance. Moreover, when two similar colors were presented along with one dissimilar color, memory performance was better for the similar colors than for the dissimilar color. Similarity produced better performance even when the objects were presented sequentially and even when memory for the first item in the sequence was tested. These findings show that similarity does not lead to interference between representations in visual working memory. Instead, similarity may lead to improved task performance, possibly due to increased stability or precision of the memory representations during maintenance. PMID:19430536
Behavior and neural basis of near-optimal visual search
Ma, Wei Ji; Navalpakkam, Vidhya; Beck, Jeffrey M; van den Berg, Ronald; Pouget, Alexandre
2013-01-01
The ability to search efficiently for a target in a cluttered environment is one of the most remarkable functions of the nervous system. This task is difficult under natural circumstances, as the reliability of sensory information can vary greatly across space and time and is typically a priori unknown to the observer. In contrast, visual-search experiments commonly use stimuli of equal and known reliability. In a target detection task, we randomly assigned high or low reliability to each item on a trial-by-trial basis. An optimal observer would weight the observations by their trial-to-trial reliability and combine them using a specific nonlinear integration rule. We found that humans were near-optimal, regardless of whether distractors were homogeneous or heterogeneous and whether reliability was manipulated through contrast or shape. We present a neural-network implementation of near-optimal visual search based on probabilistic population coding. The network matched human performance. PMID:21552276
Tracking, aiming, and hitting the UAV with ordinary assault rifle
NASA Astrophysics Data System (ADS)
Racek, František; Baláž, Teodor; Krejčí, Jaroslav; Procházka, Stanislav; Macko, Martin
2017-10-01
The usage small-unmanned aerial vehicles (UAVs) is significantly increasing nowadays. They are being used as a carrier of military spy and reconnaissance devices (taking photos, live video streaming and so on), or as a carrier of potentially dangerous cargo (intended for destruction and killing). Both ways of utilizing the UAV cause the necessity to disable it. From the military point of view, to disable the UAV means to bring it down by a weapon of an ordinary soldier that is the assault rifle. This task can be challenging for the soldier because he needs visually detect and identify the target, track the target visually and aim on the target. The final success of the soldier's mission depends not only on the said visual tasks, but also on the properties of the weapon and ammunition. The paper deals with possible methods of prediction of probability of hitting the UAV targets.
Tas, A. Caglar; Luck, Steven J.; Hollingworth, Andrew
2016-01-01
There is substantial debate over whether visual working memory (VWM) and visual attention constitute a single system for the selection of task-relevant perceptual information or whether they are distinct systems that can be dissociated when their representational demands diverge. In the present study, we focused on the relationship between visual attention and the encoding of objects into visual working memory (VWM). Participants performed a color change-detection task. During the retention interval, a secondary object, irrelevant to the memory task, was presented. Participants were instructed either to execute an overt shift of gaze to this object (Experiments 1–3) or to attend it covertly (Experiments 4 and 5). Our goal was to determine whether these overt and covert shifts of attention disrupted the information held in VWM. We hypothesized that saccades, which typically introduce a memorial demand to bridge perceptual disruption, would lead to automatic encoding of the secondary object. However, purely covert shifts of attention, which introduce no such demand, would not result in automatic memory encoding. The results supported these predictions. Saccades to the secondary object produced substantial interference with VWM performance, but covert shifts of attention to this object produced no interference with VWM performance. These results challenge prevailing theories that consider attention and VWM to reflect a common mechanism. In addition, they indicate that the relationship between attention and VWM is dependent on the memorial demands of the orienting behavior. PMID:26854532
Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin
2016-02-01
Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination.
Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin
2016-01-01
Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination. PMID:26829898
Observer efficiency in free-localization tasks with correlated noise.
Abbey, Craig K; Eckstein, Miguel P
2014-01-01
The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks.
Observer efficiency in free-localization tasks with correlated noise
Abbey, Craig K.; Eckstein, Miguel P.
2014-01-01
The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks. PMID:24817854
Oei, Adam C; Patterson, Michael D
2015-01-01
Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis.
Low target prevalence is a stubborn source of errors in visual search tasks
Wolfe, Jeremy M.; Horowitz, Todd S.; Van Wert, Michael J.; Kenner, Naomi M.; Place, Skyler S.; Kibbi, Nour
2009-01-01
In visual search tasks, observers look for targets in displays containing distractors. Likelihood that targets will be missed varies with target prevalence, the frequency with which targets are presented across trials. Miss error rates are much higher at low target prevalence (1–2%) than at high prevalence (50%). Unfortunately, low prevalence is characteristic of important search tasks like airport security and medical screening where miss errors are dangerous. A series of experiments show this prevalence effect is very robust. In signal detection terms, the prevalence effect can be explained as a criterion shift and not a change in sensitivity. Several efforts to induce observers to adopt a better criterion fail. However, a regime of brief retraining periods with high prevalence and full feedback allows observers to hold a good criterion during periods of low prevalence with no feedback. PMID:17999575
Oei, Adam C.; Patterson, Michael D.
2015-01-01
Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis. PMID:25713551
Rogé, Joceline; Pébayle, Thierry; Lambilliotte, Elina; Spitzenstetter, Florence; Giselbrecht, Danièle; Muzet, Alain
2004-10-01
Recent research has shown that the useful visual field deteriorates in simulated car driving when the latter can induce a decrease in the level of activation. The first aim of this study was to verify if the same phenomenon occurs when driving is performed in a simulated road traffic situation. The second aim was to discover if this field also deteriorates as a function of the driver's age and of the vehicle's speed. Nine young drivers (from 22 to 34 years) and nine older drivers (from 46 to 59 years) followed a vehicle in road traffic during two two-hour sessions. The car-following task involved driving at 90 km.h(-1) (speed limit on road in France) in one session and at 130 km.h(-1) (speed limit on motorway in France) in the other session. While following the vehicle, the driver had to detect the changes in colour of a luminous signal located in the central part of his/her visual field and a visual signal that appeared at different eccentricities on the rear lights of the vehicles in the traffic. The analysis of the data indicates that the useful visual field deteriorates with the prolongation of the monotonous simulated driving task, with the driver's age and with the vehicle's speed. The results are discussed in terms of general interference and tunnel vision.
Unrealistic optimism and 'nosognosia': illness recognition in the healthy brain.
McKay, Ryan; Buchmann, Andreas; Germann, Nicole; Yu, Shancong; Brugger, Peter
2014-12-01
At the centenary of research on anosognosia, the time seems ripe to supplement work in anosognosic patients with empirical studies on nosognosia in healthy participants. To this end, we adopted a signal detection framework to investigate the lateralized recognition of illness words--an operational measure of nosognosia--in healthy participants. As positively biased reports about one's current health status (anosognosia) and future health status (unrealistic optimism) have both been associated with deficient right hemispheric functioning, and conversely with undisturbed left hemispheric functioning, we hypothesised that more optimistic participants would adopt a more conservative response criterion, and/or display less sensitivity, when identifying illnesses in our nosognosia task; especially harmful illnesses presented to the left hemisphere via the right visual field. Thirty-two healthy right-handed men estimated their own relative risk of contracting a series of illnesses in the future, and then completed a novel computer task assessing their recognition of illness names presented to the left or right visual field. To check that effects were specific to the recognition of illness (rather than reflecting recognition of lexical items per se), we also administered a standard lateralized lexical decision task. Highly optimistic participants tended to be more conservative in detecting illnesses, especially harmful illnesses presented to the right visual field. Contrary to expectation, they were also more sensitive to illness names in this half-field. We suggest that, in evolutionary terms, unrealistic optimism may be an adaptive trait that combines a high perceptual sensitivity to threat with a high threshold for acknowledging its presence. The signal detection approach to nosognosia developed here may open up new avenues for the understanding of anosognosia in neurological patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Leach, P T; Crawley, J N
2017-12-20
Mutant mouse models of neurodevelopmental disorders with intellectual disabilities provide useful translational research tools, especially in cases where robust cognitive deficits are reproducibly detected. However, motor, sensory and/or health issues consequent to the mutation may introduce artifacts that preclude testing in some standard cognitive assays. Touchscreen learning and memory tasks in small operant chambers have the potential to circumvent these confounds. Here we use touchscreen visual discrimination learning to evaluate performance in the maternally derived Ube3a mouse model of Angelman syndrome, the Ts65Dn trisomy mouse model of Down syndrome, and the Mecp2 Bird mouse model of Rett syndrome. Significant deficits in acquisition of a 2-choice visual discrimination task were detected in both Ube3a and Ts65Dn mice. Procedural control measures showed no genotype differences during pretraining phases or during acquisition. Mecp2 males did not survive long enough for touchscreen training, consistent with previous reports. Most Mecp2 females failed on pretraining criteria. Significant impairments on Morris water maze spatial learning were detected in both Ube3a and Ts65Dn, replicating previous findings. Abnormalities on rotarod in Ube3a, and on open field in Ts65Dn, replicating previous findings, may have contributed to the observed acquisition deficits and swim speed abnormalities during water maze performance. In contrast, these motor phenotypes do not appear to have affected touchscreen procedural abilities during pretraining or visual discrimination training. Our findings of slower touchscreen learning in 2 mouse models of neurodevelopmental disorders with intellectual disabilities indicate that operant tasks offer promising outcome measures for the preclinical discovery of effective pharmacological therapeutics. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Detailed sensory memory, sloppy working memory.
Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F
2010-01-01
Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.
ERIC Educational Resources Information Center
Dalvit, Silvia; Eimer, Martin
2011-01-01
Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2…
Task by stimulus interactions in brain responses during Chinese character processing.
Yang, Jianfeng; Wang, Xiaojuan; Shu, Hua; Zevin, Jason D
2012-04-02
In the visual word recognition literature, it is well understood that various stimulus effects interact with behavioral task. For example, effects of word frequency are exaggerated and effects of spelling-to-sound regularity are reduced in the lexical decision task, relative to reading aloud. Neuroimaging studies of reading often examine effects of task and stimulus properties on brain activity independently, but potential interactions between task demands and stimulus effects have not been extensively explored. To address this issue, we conducted lexical decision and symbol detection tasks using stimuli that varied parametrically in their word-likeness, and tested for task by stimulus class interactions. Interactions were found throughout the reading system, such that stimulus selectivity was observed during the lexical decision task, but not during the symbol detection task. Further, the pattern of stimulus selectivity was directly related to task difficulty, so that the strongest brain activity was observed to the most word-like stimuli that required "no" responses, whereas brain activity to words, which elicit rapid and accurate "yes" responses were relatively weak. This is in line with models that argue for task-dependent specialization of brain regions, and contrasts with the notion of task-independent stimulus selectivity in the reading system. Copyright © 2012 Elsevier Inc. All rights reserved.
Driver Distraction Using Visual-Based Sensors and Algorithms.
Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén
2016-10-28
Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed.
Driver Distraction Using Visual-Based Sensors and Algorithms
Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén
2016-01-01
Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed. PMID:27801822
Gintautas, Vadas; Ham, Michael I.; Kunsberg, Benjamin; Barr, Shawn; Brumby, Steven P.; Rasmussen, Craig; George, John S.; Nemenman, Ilya; Bettencourt, Luís M. A.; Kenyon, Garret T.
2011-01-01
Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas. PMID:21998562
Visual search for changes in scenes creates long-term, incidental memory traces.
Utochkin, Igor S; Wolfe, Jeremy M
2018-05-01
Humans are very good at remembering large numbers of scenes over substantial periods of time. But how good are they at remembering changes to scenes? In this study, we tested scene memory and change detection two weeks after initial scene learning. In Experiments 1-3, scenes were learned incidentally during visual search for change. In Experiment 4, observers explicitly memorized scenes. At test, after two weeks observers were asked to discriminate old from new scenes, to recall a change that they had detected in the study phase, or to detect a newly introduced change in the memorization experiment. Next, they performed a change detection task, usually looking for the same change as in the study period. Scene recognition memory was found to be similar in all experiments, regardless of the study task. In Experiment 1, more difficult change detection produced better scene memory. Experiments 2 and 3 supported a "depth-of-processing" account for the effects of initial search and change detection on incidental memory for scenes. Of most interest, change detection was faster during the test phase than during the study phase, even when the observer had no explicit memory of having found that change previously. This result was replicated in two of our three change detection experiments. We conclude that scenes can be encoded incidentally as well as explicitly and that changes in those scenes can leave measurable traces even if they are not explicitly recalled.
PFIESTERIA PISCICIDA-INDUCED COGNITIVE EFFECTS: VISUAL SIGNAL DETECTION PERFORMANCE AND REVERSAL.
Humans exposed to Pfiesteria piscicida report cognitive impairment. In a rat model, we showed that exposure to Pfiesteria impaired learning a new task, but not performance of previously-learned behavior. In this study, we characterized the behavioral effects of Pfiesteria in rats...
The effect of increased monitoring load on vigilance performance using a simulated radar display.
DOT National Transportation Integrated Search
1977-07-01
The present study examined the extent to which level of target density influences the ability to sustain attention to a complex monitoring task requiring only a detection response to simple stimulus change. The visual display was designed to approxim...
Acoustic facilitation of object movement detection during self-motion
Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.
2011-01-01
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050
Altered prefrontal function with aging: insights into age-associated performance decline.
Solbakk, Anne-Kristin; Fuhrmann Alpert, Galit; Furst, Ansgar J; Hale, Laura A; Oga, Tatsuhide; Chetty, Sundari; Pickard, Natasha; Knight, Robert T
2008-09-26
We examined the effects of aging on visuo-spatial attention. Participants performed a bi-field visual selective attention task consisting of infrequent target and task-irrelevant novel stimuli randomly embedded among repeated standards in either attended or unattended visual fields. Blood oxygenation level dependent (BOLD) responses to the different classes of stimuli were measured using functional magnetic resonance imaging. The older group had slower reaction times to targets, and committed more false alarms but had comparable detection accuracy to young controls. Attended target and novel stimuli activated comparable widely distributed attention networks, including anterior and posterior association cortex, in both groups. The older group had reduced spatial extent of activation in several regions, including prefrontal, basal ganglia, and visual processing areas. In particular, the anterior cingulate and superior frontal gyrus showed more restricted activation in older compared with young adults across all attentional conditions and stimulus categories. The spatial extent of activations correlated with task performance in both age groups, but the regional pattern of association between hemodynamic responses and behavior differed between the groups. Whereas the young subjects relied on posterior regions, the older subjects engaged frontal areas. The results indicate that aging alters the functioning of neural networks subserving visual attention, and that these changes are related to cognitive performance.
Age Differences in Visual-Auditory Self-Motion Perception during a Simulated Driving Task
Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L.
2016-01-01
Recent evidence suggests that visual-auditory cue integration may change as a function of age such that integration is heightened among older adults. Our goal was to determine whether these changes in multisensory integration are also observed in the context of self-motion perception under realistic task constraints. Thus, we developed a simulated driving paradigm in which we provided older and younger adults with visual motion cues (i.e., optic flow) and systematically manipulated the presence or absence of congruent auditory cues to self-motion (i.e., engine, tire, and wind sounds). Results demonstrated that the presence or absence of congruent auditory input had different effects on older and younger adults. Both age groups demonstrated a reduction in speed variability when auditory cues were present compared to when they were absent, but older adults demonstrated a proportionally greater reduction in speed variability under combined sensory conditions. These results are consistent with evidence indicating that multisensory integration is heightened in older adults. Importantly, this study is the first to provide evidence to suggest that age differences in multisensory integration may generalize from simple stimulus detection tasks to the integration of the more complex and dynamic visual and auditory cues that are experienced during self-motion. PMID:27199829
Neuronal correlates of visual and auditory alertness in the DMT and ketamine model of psychosis.
Daumann, J; Wagner, D; Heekeren, K; Neukirch, A; Thiel, C M; Gouzoulis-Mayfrank, E
2010-10-01
Deficits in attentional functions belong to the core cognitive symptoms in schizophrenic patients. Alertness is a nonselective attention component that refers to a state of general readiness that improves stimulus processing and response initiation. The main goal of the present study was to investigate cerebral correlates of alertness in the human 5HT(2A) agonist and N-methyl-D-aspartic acid (NMDA) antagonist model of psychosis. Fourteen healthy volunteers participated in a randomized double-blind, cross-over event-related functional magnetic resonance imaging (fMRI) study with dimethyltryptamine (DMT) and S-ketamine. A target detection task with cued and uncued trials in both the visual and the auditory modality was used. Administration of DMT led to decreased blood oxygenation level-dependent response during performance of an alertness task, particularly in extrastriate regions during visual alerting and in temporal regions during auditory alerting. In general, the effects for the visual modality were more pronounced. In contrast, administration of S-ketamine led to increased cortical activation in the left insula and precentral gyrus in the auditory modality. The results of the present study might deliver more insight into potential differences and overlapping pathomechanisms in schizophrenia. These conclusions must remain preliminary and should be explored by further fMRI studies with schizophrenic patients performing modality-specific alertness tasks.
Kawashima, Tomoya; Matsumoto, Eriko
2016-03-23
Items in working memory guide visual attention toward a memory-matching object. Recent studies have shown that when searching for an object this attentional guidance can be modulated by knowing the probability that the target will match an item in working memory. Here, we recorded the P3 and contralateral delay activity to investigate how top-down knowledge controls the processing of working memory items. Participants performed memory task (recognition only) and memory-or-search task (recognition or visual search) in which they were asked to maintain two colored oriented bars in working memory. For visual search, we manipulated the probability that target had the same color as memorized items (0, 50, or 100%). Participants knew the probabilities before the task. Target detection in 100% match condition was faster than that in 50% match condition, indicating that participants used their knowledge of the probabilities. We found that the P3 amplitude in 100% condition was larger than in other conditions and that contralateral delay activity amplitude did not vary across conditions. These results suggest that more attention was allocated to the memory items when observers knew in advance that their color would likely match a target. This led to better search performance despite using qualitatively equal working memory representations.
Neural Correlates of Changes in a Visual Search Task due to Cognitive Training in Seniors
Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.
2012-01-01
This study aimed to elucidate the underlying neural sources of near transfer after a multidomain cognitive training in older participants in a visual search task. Participants were randomly assigned to a social control, a no-contact control and a training group, receiving a 4-month paper-pencil and PC-based trainer guided cognitive intervention. All participants were tested in a before and after session with a conjunction visual search task. Performance and event-related potentials (ERPs) suggest that the cognitive training improved feature processing of the stimuli which was expressed in an increased rate of target detection compared to the control groups. This was paralleled by enhanced amplitudes of the frontal P2 in the ERP and by higher activation in lingual and parahippocampal brain areas which are discussed to support visual feature processing. Enhanced N1 and N2 potentials in the ERP for nontarget stimuli after cognitive training additionally suggest improved attention and subsequent processing of arrays which were not immediately recognized as targets. Possible test repetition effects were confined to processes of stimulus categorisation as suggested by the P3b potential. The results show neurocognitive plasticity in aging after a broad cognitive training and allow pinpointing the functional loci of effects induced by cognitive training. PMID:23029625
Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV).
Bouman, Zita; Hendriks, Marc P H; Schmand, Ben A; Kessels, Roy P C; Aldenkamp, Albert P
2016-01-01
Recognition and visual working memory tasks from the Wechsler Memory Scale-Fourth Edition (WMS-IV) have previously been documented as useful indicators for suboptimal performance. The present study examined the clinical utility of the Dutch version of the WMS-IV (WMS-IV-NL) for the identification of suboptimal performance using an analogue study design. The patient group consisted of 59 mixed-etiology patients; the experimental malingerers were 50 healthy individuals who were asked to simulate cognitive impairment as a result of a traumatic brain injury; the last group consisted of 50 healthy controls who were instructed to put forth full effort. Experimental malingerers performed significantly lower on all WMS-IV-NL tasks than did the patients and healthy controls. A binary logistic regression analysis was performed on the experimental malingerers and the patients. The first model contained the visual working memory subtests (Spatial Addition and Symbol Span) and the recognition tasks of the following subtests: Logical Memory, Verbal Paired Associates, Designs, Visual Reproduction. The results showed an overall classification rate of 78.4%, and only Spatial Addition explained a significant amount of variation (p < .001). Subsequent logistic regression analysis and receiver operating characteristic (ROC) analysis supported the discriminatory power of the subtest Spatial Addition. A scaled score cutoff of <4 produced 93% specificity and 52% sensitivity for detection of suboptimal performance. The WMS-IV-NL Spatial Addition subtest may provide clinically useful information for the detection of suboptimal performance.
NASA Astrophysics Data System (ADS)
Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre
2017-02-01
Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.
Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk
2018-04-23
Unilateral spatial neglect (USN), a highly prevalent and disabling post-stroke impairment, has been shown to affect the recovery of locomotor and navigation skills needed for community mobility. We recently found that USN alters goal-directed locomotion in conditions of different cognitive/perceptual demands. However, sensorimotor post-stroke dysfunction (e.g. decreased walking speed) could have influenced the results. Analogous to a previously used goal-directed locomotor paradigm, a seated, joystick-driven navigation experiment, minimizing locomotor demands, was employed in individuals with and without post-stroke USN (USN+ and USN-, respectively) and healthy controls (HC). Participants (n = 15 per group) performed a seated, joystick-driven navigation and detection time task to targets 7 m away at 0°, ±15°/30° in actual (visually-guided), remembered (memory-guided) and shifting (visually-guided with representational updating component) conditions while immersed in a 3D virtual reality environment. Greater end-point mediolateral errors to left-sided targets (remembered and shifting conditions) and overall lengthier onsets in reorientation strategy (shifting condition) were found for USN+ vs. USN- and vs. HC (p < 0.05). USN+ individuals mostly overshot left targets (- 15°/- 30°). Greater delays in detection time for target locations across the visual spectrum (left, middle and right) were found in USN+ vs. USN- and HC groups (p < 0.05). USN-related attentional-perceptual deficits alter navigation abilities in memory-guided and shifting conditions, independently of post-stroke locomotor deficits. Lateralized and non-lateralized deficits in object detection are found. The employed paradigm could be considered in the design and development of sensitive and functional assessment methods for neglect; thereby addressing the drawbacks of currently used traditional paper-and-pencil tools.
Anodal tDCS to V1 blocks visual perceptual learning consolidation.
Peters, Megan A K; Thompson, Benjamin; Merabet, Lotfi B; Wu, Allan D; Shams, Ladan
2013-06-01
This study examined the effects of visual cortex transcranial direct current stimulation (tDCS) on visual processing and learning. Participants performed a contrast detection task on two consecutive days. Each session consisted of a baseline measurement followed by measurements made during active or sham stimulation. On the first day, one group received anodal stimulation to primary visual cortex (V1), while another received cathodal stimulation. Stimulation polarity was reversed for these groups on the second day. The third (control) group of subjects received sham stimulation on both days. No improvements or decrements in contrast sensitivity relative to the same-day baseline were observed during real tDCS, nor was any within-session learning trend observed. However, task performance improved significantly from Day 1 to Day 2 for the participants who received cathodal tDCS on Day 1 and for the sham group. No such improvement was found for the participants who received anodal stimulation on Day 1, indicating that anodal tDCS blocked overnight consolidation of visual learning, perhaps through engagement of inhibitory homeostatic plasticity mechanisms or alteration of the signal-to-noise ratio within stimulated cortex. These results show that applying tDCS to the visual cortex can modify consolidation of visual learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pietrzyk, Mariusz W.; Manning, David J.; Dix, Alan; Donovan, Tim
2009-02-01
Aim: The goal of the study is to determine the spatial frequency characteristics at locations in the image of overt and covert observers' decisions and find out if there are any similarities in different observers' groups: the same radiological experience group or the same accuracy scored level. Background: The radiological task is described as a visual searching decision making procedure involving visual perception and cognitive processing. Humans perceive the world through a number of spatial frequency channels, each sensitive to visual information carried by different spatial frequency ranges and orientations. Recent studies have shown that particular physical properties of local and global image-based elements are correlated with the performance and the level of experience of human observers in breast cancer and lung nodule detections. Neurological findings in visual perception were an inspiration for wavelet applications in vision research because the methodology tries to mimic the brain processing algorithms. Methods: The wavelet approach to the set of postero-anterior chest radiographs analysis has been used to characterize perceptual preferences observers with different levels of experience in the radiological task. Psychophysical methodology has been applied to track eye movements over the image, where particular ROIs related to the observers' fixation clusters has been analysed in the spaces frame by Daubechies functions. Results: Significance differences have been found between the spatial frequency characteristics at the location of different decisions.
Interaction between numbers and size during visual search.
Krause, Florian; Bekkering, Harold; Pratt, Jay; Lindemann, Oliver
2017-05-01
The current study investigates an interaction between numbers and physical size (i.e. size congruity) in visual search. In three experiments, participants had to detect a physically large (or small) target item among physically small (or large) distractors in a search task comprising single-digit numbers. The relative numerical size of the digits was varied, such that the target item was either among the numerically large or small numbers in the search display and the relation between numerical and physical size was either congruent or incongruent. Perceptual differences of the stimuli were controlled by a condition in which participants had to search for a differently coloured target item with the same physical size and by the usage of LCD-style numbers that were matched in visual similarity by shape transformations. The results of all three experiments consistently revealed that detecting a physically large target item is significantly faster when the numerical size of the target item is large as well (congruent), compared to when it is small (incongruent). This novel finding of a size congruity effect in visual search demonstrates an interaction between numerical and physical size in an experimental setting beyond typically used binary comparison tasks, and provides important new evidence for the notion of shared cognitive codes for numbers and sensorimotor magnitudes. Theoretical consequences for recent models on attention, magnitude representation and their interactions are discussed.
Differential contribution of early visual areas to the perceptual process of contour processing.
Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A
2004-04-01
We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.
Opposite brain laterality in analogous auditory and visual tests.
Oltedal, Leif; Hugdahl, Kenneth
2017-11-01
Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.
Martoni, Riccardo Maria; Salgari, Giulia; Galimberti, Elisa; Cavallini, Maria Cristina; O'Neill, Joseph
2015-12-01
Visuospatial working memory (VSWM) is the ability of the brain to transiently store and manipulate visual information. VSWM deficiencies have been reported in obsessive-compulsive disorder (OCD), but not consistently, perhaps due to variability in task design and clinical patient factors. To explore this variability, this study assessed effects of the design factors task difficulty and executive organizational strategy and of the clinical factors gender, OCD symptom dimension, and duration of illness on VSWM in OCD. The CANTAB spatial working memory, spatial recognition memory, delayed matching to sample, and stop signal tasks were administered to 42 adult OCD patients and 42 age- and sex-matched healthy controls. Aims were to detect a possible VSWM deficit in the OCD sample, to evaluate influences of the above task and patient factors, to determine the specificity of the deficit to the visuospatial subdomain, and to examine effects of sustained attention as potential neurocognitive confound. We confirmed previous findings of a VSWM deficit in OCD that was more severe for greater memory load (task difficulty) and that was affected by task strategy (executive function). We failed to demonstrate significant deficits in neighboring or confounding neurocognitive subdomains (visual object recognition or visual object short-term memory, sustained attention). Notably, the VSWM deficit was only significant for female patients, adding to evidence for sexual dimorphism in OCD. Again as in prior work, more severe OCD symptoms in the symmetry dimension (but no other dimension) significantly negatively impacted VSWM. Duration of illness had no significant effect on VSWM. VSWM deficits in OCD appear more severe with higher task load and may be mediated through poor task strategy. Such deficits may present mainly in female patients and in (male and female) patients with symmetry symptoms.
Camouflage and visual perception
Troscianko, Tom; Benton, Christopher P.; Lovell, P. George; Tolhurst, David J.; Pizlo, Zygmunt
2008-01-01
How does an animal conceal itself from visual detection by other animals? This review paper seeks to identify general principles that may apply in this broad area. It considers mechanisms of visual encoding, of grouping and object encoding, and of search. In most cases, the evidence base comes from studies of humans or species whose vision approximates to that of humans. The effort is hampered by a relatively sparse literature on visual function in natural environments and with complex foraging tasks. However, some general constraints emerge as being potentially powerful principles in understanding concealment—a ‘constraint’ here means a set of simplifying assumptions. Strategies that disrupt the unambiguous encoding of discontinuities of intensity (edges), and of other key visual attributes, such as motion, are key here. Similar strategies may also defeat grouping and object-encoding mechanisms. Finally, the paper considers how we may understand the processes of search for complex targets in complex scenes. The aim is to provide a number of pointers towards issues, which may be of assistance in understanding camouflage and concealment, particularly with reference to how visual systems can detect the shape of complex, concealed objects. PMID:18990671
Graeber, R C; Schroeder, D M; Jane, J A; Ebbesson, S O
1978-07-15
An instrumental conditioning task was used to examine the role of the nurse shark telencephalon in black-white (BW) and horizontal-vertical stripes (HV) discrimination performance. In the first experiment, subjects initially received either bilateral anterior telencephalic control lesions or bilateral posterior telencephalic lesions aimed at destroying the central telencephalic nuclei (CN), which are known to receive direct input from the thalamic visual area. Postoperatively, the sharks were trained first on BW and then on HV. Those with anterior lesions learned both tasks as rapidly as unoperated subjects. Those with posterior lesions exhibited visual discrimination deficits related to the amount of damage to the CN and its connecting pathways. Severe damage resulted in an inability to learn either task but caused no impairments in motivation or general learning ability. In the second experiment, the sharks were first trained on BW and HV and then operated. Suction ablations were used to remove various portions of the CN. Sharks with 10% or less damage to the CN retained the preoperatively acquired discriminations almost perfectly. Those with 11-50% damage had to be retrained on both tasks. Almost total removal of the CN produced behavioral indications of blindness along with an inability to perform above the chance level on BW despite excellent retention of both discriminations over a 28-day period before surgery. It appears, however, that such sharks can still detect light. These results implicate the central telencephalic nuclei in the control of visually guided behavior in sharks.
Preattentive binding of auditory and visual stimulus features.
Winkler, István; Czigler, István; Sussman, Elyse; Horváth, János; Balázs, Lászlo
2005-02-01
We investigated the role of attention in feature binding in the auditory and the visual modality. One auditory and one visual experiment used the mismatch negativity (MMN and vMMN, respectively) event-related potential to index the memory representations created from stimulus sequences, which were either task-relevant and, therefore, attended or task-irrelevant and ignored. In the latter case, the primary task was a continuous demanding within-modality task. The test sequences were composed of two frequently occurring stimuli, which differed from each other in two stimulus features (standard stimuli) and two infrequently occurring stimuli (deviants), which combined one feature from one standard stimulus with the other feature of the other standard stimulus. Deviant stimuli elicited MMN responses of similar parameters across the different attentional conditions. These results suggest that the memory representations involved in the MMN deviance detection response encoded the frequently occurring feature combinations whether or not the test sequences were attended. A possible alternative to the memory-based interpretation of the visual results, the elicitation of the McCollough color-contingent aftereffect, was ruled out by the results of our third experiment. The current results are compared with those supporting the attentive feature integration theory. We conclude that (1) with comparable stimulus paradigms, similar results have been obtained in the two modalities, (2) there exist preattentive processes of feature binding, however, (3) conjoining features within rich arrays of objects under time pressure and/or longterm retention of the feature-conjoined memory representations may require attentive processes.
Gaze shifts during dual-tasking stair descent.
Miyasike-daSilva, Veronica; McIlroy, William E
2016-11-01
To investigate the role of vision in stair locomotion, young adults descended a seven-step staircase during unrestricted walking (CONTROL), and while performing a concurrent visual reaction time (RT) task displayed on a monitor. The monitor was located at either 3.5 m (HIGH) or 0.5 m (LOW) above ground level at the end of the stairway, which either restricted (HIGH) or facilitated (LOW) the view of the stairs in the lower field of view as participants walked downstairs. Downward gaze shifts (recorded with an eye tracker) and gait speed were significantly reduced in HIGH and LOW compared with CONTROL. Gaze and locomotor behaviour were not different between HIGH and LOW. However, inter-individual variability increased in HIGH, in which participants combined different response characteristics including slower walking, handrail use, downward gaze, and/or increasing RTs. The fastest RTs occurred in the midsteps (non-transition steps). While gait and visual task performance were not statistically different prior to the top and bottom transition steps, gaze behaviour and RT were more variable prior to transition steps in HIGH. This study demonstrated that, in the presence of a visual task, people do not look down as often when walking downstairs and require minimum adjustments provided that the view of the stairs is available in the lower field of view. The middle of the stairs seems to require less from executive function, whereas visual attention appears a requirement to detect the last transition via gaze shifts or peripheral vision.
Mesbah, Samineh; Angeli, Claudia A; Keynton, Robert S; El-Baz, Ayman; Harkema, Susan J
2017-01-01
Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several hours to less than 15 seconds for each set of data, and demonstrated an average accuracy of 98.28% based on the combined false positive and false negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) was tested using simulated EMG signals and compared to two existing methods, where the novel technique showed much lower sensitivity to the SNR.
Mesbah, Samineh; Angeli, Claudia A.; Keynton, Robert S.; Harkema, Susan J.
2017-01-01
Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several hours to less than 15 seconds for each set of data, and demonstrated an average accuracy of 98.28% based on the combined false positive and false negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) was tested using simulated EMG signals and compared to two existing methods, where the novel technique showed much lower sensitivity to the SNR. PMID:29020054
The Influence of Texture Symmetry in Marker Pointing:. Experimenting with Humans and Algorithms
NASA Astrophysics Data System (ADS)
Cardaci, M.; Tabacchi, M. E.
2012-12-01
Symmetry plays a fundamental role in aiding the visual system, to organize its environmental stimuli and to detect visual patterns of natural and artificial objects. Various kinds of symmetry exist, and we will discuss how internal symmetry due to textures influences the choice of direction in visual tasks. Two experiments are presented: the first, with human subjects, deals with the effect of textures on preferences for a pointing direction. The second emulates the performances obtained in the first through the use of an algorithm based on a physic metaphor. Results from both experiments are shown and comment.
A Quantitative Relationship between Signal Detection in Attention and Approach/Avoidance Behavior
Viswanathan, Vijay; Sheppard, John P.; Kim, Byoung W.; Plantz, Christopher L.; Ying, Hao; Lee, Myung J.; Raman, Kalyan; Mulhern, Frank J.; Block, Martin P.; Calder, Bobby; Lee, Sang; Mortensen, Dale T.; Blood, Anne J.; Breiter, Hans C.
2017-01-01
This study examines how the domains of reward and attention, which are often studied as independent processes, in fact interact at a systems level. We operationalize divided attention with a continuous performance task and variables from signal detection theory (SDT), and reward/aversion with a keypress task measuring approach/avoidance in the framework of relative preference theory (RPT). Independent experiments with the same subjects showed a significant association between one SDT and two RPT variables, visualized as a three-dimensional structure. Holding one of these three variables constant, further showed a significant relationship between a loss aversion-like metric from the approach/avoidance task, and the response bias observed during the divided attention task. These results indicate that a more liberal response bias under signal detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms) is associated with higher “loss aversion.” Furthermore, our functional model suggests a mechanism for processing constraints with divided attention and reward/aversion. Together, our results argue for a systematic relationship between divided attention and reward/aversion processing in humans. PMID:28270776
A Quantitative Relationship between Signal Detection in Attention and Approach/Avoidance Behavior.
Viswanathan, Vijay; Sheppard, John P; Kim, Byoung W; Plantz, Christopher L; Ying, Hao; Lee, Myung J; Raman, Kalyan; Mulhern, Frank J; Block, Martin P; Calder, Bobby; Lee, Sang; Mortensen, Dale T; Blood, Anne J; Breiter, Hans C
2017-01-01
This study examines how the domains of reward and attention, which are often studied as independent processes, in fact interact at a systems level. We operationalize divided attention with a continuous performance task and variables from signal detection theory (SDT), and reward/aversion with a keypress task measuring approach/avoidance in the framework of relative preference theory (RPT). Independent experiments with the same subjects showed a significant association between one SDT and two RPT variables, visualized as a three-dimensional structure. Holding one of these three variables constant, further showed a significant relationship between a loss aversion-like metric from the approach/avoidance task, and the response bias observed during the divided attention task. These results indicate that a more liberal response bias under signal detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms) is associated with higher "loss aversion." Furthermore, our functional model suggests a mechanism for processing constraints with divided attention and reward/aversion. Together, our results argue for a systematic relationship between divided attention and reward/aversion processing in humans.
Anderson, Afrouz A; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Dashtestani, Hadis; Chowdhry, Fatima A; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H
2018-01-01
Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.
Anderson, Afrouz A.; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Chowdhry, Fatima A.; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H.
2018-01-01
Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing. PMID:29870536
Icon Duration and Development.
ERIC Educational Resources Information Center
Gummerman, Kent; And Others
In this study, developmental changes in duration of the icon (visual sensory store) were investigated with three converging tachistoscopic tasks. (1) Stimulus interuption detection (SID), a variation of the two-flash threshold method, was performed by 29 first- and 32 fifth-graders, and 32 undergraduates. Icon duration was estimated by stimulus…
DOSE RESPONSE DEETERMINATION OF NMDA ANTAGONISTS AND GABA AGONIST ON SUSTAINED ATTENTION.
We have shown that acute inhalation of toluene impairs sustained attention as assessed with a visual signal detection task (SDT). In vitro studies indicate that the NMDA and GABA systems are primary targets of anesthetic agents and organic solvents such as toluene. Pharmacologica...
Basic multisensory functions can be acquired after congenital visual pattern deprivation in humans.
Putzar, Lisa; Gondan, Matthias; Röder, Brigitte
2012-01-01
People treated for bilateral congenital cataracts offer a model to study the influence of visual deprivation in early infancy on visual and multisensory development. We investigated cross-modal integration capabilities in cataract patients using a simple detection task that provided redundant information to two different senses. In both patients and controls, redundancy gains were consistent with coactivation models, indicating an integrated processing of modality-specific information. This finding is in contrast with recent studies showing impaired higher-level multisensory interactions in cataract patients. The present results suggest that basic cross-modal integrative processes for simple short stimuli do not depend on visual and/or crossmodal input since birth.
A task-dependent causal role for low-level visual processes in spoken word comprehension.
Ostarek, Markus; Huettig, Falk
2017-08-01
It is well established that the comprehension of spoken words referring to object concepts relies on high-level visual areas in the ventral stream that build increasingly abstract representations. It is much less clear whether basic low-level visual representations are also involved. Here we asked in what task situations low-level visual representations contribute functionally to concrete word comprehension using an interference paradigm. We interfered with basic visual processing while participants performed a concreteness task (Experiment 1), a lexical-decision task (Experiment 2), and a word class judgment task (Experiment 3). We found that visual noise interfered more with concrete versus abstract word processing, but only when the task required visual information to be accessed. This suggests that basic visual processes can be causally involved in language comprehension, but that their recruitment is not automatic and rather depends on the type of information that is required in a given task situation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Reimer, Christina B; Strobach, Tilo; Schubert, Torsten
2017-12-01
Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.
Temporal Ventriloquism Reveals Intact Audiovisual Temporal Integration in Amblyopia.
Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F
2018-02-01
We have shown previously that amblyopia involves impaired detection of asynchrony between auditory and visual events. To distinguish whether this impairment represents a defect in temporal integration or nonintegrative multisensory processing (e.g., cross-modal matching), we used the temporal ventriloquism effect in which visual temporal order judgment (TOJ) is normally enhanced by a lagging auditory click. Participants with amblyopia (n = 9) and normally sighted controls (n = 9) performed a visual TOJ task. Pairs of clicks accompanied the two lights such that the first click preceded the first light, or second click lagged the second light by 100, 200, or 450 ms. Baseline audiovisual synchrony and visual-only conditions also were tested. Within both groups, just noticeable differences for the visual TOJ task were significantly reduced compared with baseline in the 100- and 200-ms click lag conditions. Within the amblyopia group, poorer stereo acuity and poorer visual acuity in the amblyopic eye were significantly associated with greater enhancement in visual TOJ performance in the 200-ms click lag condition. Audiovisual temporal integration is intact in amblyopia, as indicated by perceptual enhancement in the temporal ventriloquism effect. Furthermore, poorer stereo acuity and poorer visual acuity in the amblyopic eye are associated with a widened temporal binding window for the effect. These findings suggest that previously reported abnormalities in audiovisual multisensory processing may result from impaired cross-modal matching rather than a diminished capacity for temporal audiovisual integration.
Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H
2015-06-01
To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.
Brown, Stephen B R E; Slagter, Heleen A; van Noorden, Martijn S; Giltay, Erik J; van der Wee, Nic J A; Nieuwenhuis, Sander
2016-01-01
The specific role of neuromodulator systems in regulating rapid fluctuations of attention is still poorly understood. In this study, we examined the effects of clonidine and scopolamine on multiple target detection in a rapid serial visual presentation task to assess the role of the central noradrenergic and cholinergic systems in temporal attention. Eighteen healthy volunteers took part in a crossover double-dummy study in which they received clonidine (150/175 μg), scopolamine (1.2 mg), and placebo by mouth in counterbalanced order. A dual-target attentional blink task was administered at 120 min after scopolamine intake and 180 min after clonidine intake. The electroencephalogram was measured during task performance. Clonidine and scopolamine both impaired detection of the first target (T1). For clonidine, this impairment was accompanied by decreased amplitudes of the P2 and P3 components of the event-related potential. The drugs did not impair second-target (T2) detection, except if T2 was presented immediately after T1. The attentional blink for T2 was not affected, in line with a previous study that found no effect of clonidine on the attentional blink. These and other results suggest that clonidine and scopolamine may impair temporal attention through a decrease in tonic alertness and that this decrease in alertness can be temporarily compensated by a phasic alerting response to a salient stimulus. The comparable behavioral effects of clonidine and scopolamine are consistent with animal studies indicating close interactions between the noradrenergic and cholinergic neuromodulator systems.
Familiarity enhances visual working memory for faces.
Jackson, Margaret C; Raymond, Jane E
2008-06-01
Although it is intuitive that familiarity with complex visual objects should aid their preservation in visual working memory (WM), empirical evidence for this is lacking. This study used a conventional change-detection procedure to assess visual WM for unfamiliar and famous faces in healthy adults. Across experiments, faces were upright or inverted and a low- or high-load concurrent verbal WM task was administered to suppress contribution from verbal WM. Even with a high verbal memory load, visual WM performance was significantly better and capacity estimated as significantly greater for famous versus unfamiliar faces. Face inversion abolished this effect. Thus, neither strategic, explicit support from verbal WM nor low-level feature processing easily accounts for the observed benefit of high familiarity for visual WM. These results demonstrate that storage of items in visual WM can be enhanced if robust visual representations of them already exist in long-term memory.
ERIC Educational Resources Information Center
Alvarez, George A.; Horowitz, Todd S.; Arsenio, Helga C.; DiMase, Jennifer S.; Wolfe, Jeremy M.
2005-01-01
Multielement visual tracking and visual search are 2 tasks that are held to require visual-spatial attention. The authors used the attentional operating characteristic (AOC) method to determine whether both tasks draw continuously on the same attentional resource (i.e., whether the 2 tasks are mutually exclusive). The authors found that observers…
NASA Astrophysics Data System (ADS)
Iramina, Keiji; Ge, Sheng; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo
2009-04-01
In this study, we applied a transcranial magnetic stimulation (TMS) to investigate the temporal aspect for the functional processing of visual attention. Although it has been known that right posterior parietal cortex (PPC) in the brain has a role in certain visual search tasks, there is little knowledge about the temporal aspect of this area. Three visual search tasks that have different difficulties of task execution individually were carried out. These three visual search tasks are the "easy feature task," the "hard feature task," and the "conjunction task." To investigate the temporal aspect of the PPC involved in the visual search, we applied various stimulus onset asynchronies (SOAs) and measured the reaction time of the visual search. The magnetic stimulation was applied on the right PPC or the left PPC by the figure-eight coil. The results show that the reaction times of the hard feature task are longer than those of the easy feature task. When SOA=150 ms, compared with no-TMS condition, there was a significant increase in target-present reaction time when TMS pulses were applied. We considered that the right PPC was involved in the visual search at about SOA=150 ms after visual stimulus presentation. The magnetic stimulation to the right PPC disturbed the processing of the visual search. However, the magnetic stimulation to the left PPC gives no effect on the processing of the visual search.
Behavior analysis for elderly care using a network of low-resolution visual sensors
NASA Astrophysics Data System (ADS)
Eldib, Mohamed; Deboeverie, Francis; Philips, Wilfried; Aghajan, Hamid
2016-07-01
Recent advancements in visual sensor technologies have made behavior analysis practical for in-home monitoring systems. The current in-home monitoring systems face several challenges: (1) visual sensor calibration is a difficult task and not practical in real-life because of the need for recalibration when the visual sensors are moved accidentally by a caregiver or the senior citizen, (2) privacy concerns, and (3) the high hardware installation cost. We propose to use a network of cheap low-resolution visual sensors (30×30 pixels) for long-term behavior analysis. The behavior analysis starts by visual feature selection based on foreground/background detection to track the motion level in each visual sensor. Then a hidden Markov model (HMM) is used to estimate the user's locations without calibration. Finally, an activity discovery approach is proposed using spatial and temporal contexts. We performed experiments on 10 months of real-life data. We show that the HMM approach outperforms the k-nearest neighbor classifier against ground truth for 30 days. Our framework is able to discover 13 activities of daily livings (ADL parameters). More specifically, we analyze mobility patterns and some of the key ADL parameters to detect increasing or decreasing health conditions.
High visual working memory capacity in trait social anxiety.
Moriya, Jun; Sugiura, Yoshinori
2012-01-01
Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.
Towards Understanding the Role of Colour Information in Scene Perception using Night Vision Device
2009-06-01
possessing a visual system much simplified from that of living birds, reptiles, and teleost (bony) fish , which are generally tetrachromatic (Bowmaker...Levkowitz and Herman (1992) speculated that the results might be limited to “ blob ” detection. A possible mediating factor may have been the size and...sharpness of the “ blobs ” used in their task. Mullen (1985) showed that the visual system is much more sensitive to the 7 DSTO-RR-0345 high spatial
Giuliano, Ryan J; Karns, Christina M; Neville, Helen J; Hillyard, Steven A
2014-12-01
A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70-90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.
Task-specific reorganization of the auditory cortex in deaf humans
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-01
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964
Task-specific reorganization of the auditory cortex in deaf humans.
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-24
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.
Age-related changes in visual exploratory behavior in a natural scene setting
Hamel, Johanna; De Beukelaer, Sophie; Kraft, Antje; Ohl, Sven; Audebert, Heinrich J.; Brandt, Stephan A.
2013-01-01
Diverse cognitive functions decline with increasing age, including the ability to process central and peripheral visual information in a laboratory testing situation (useful visual field of view). To investigate whether and how this influences activities of daily life, we studied age-related changes in visual exploratory behavior in a natural scene setting: a driving simulator paradigm of variable complexity was tested in subjects of varying ages with simultaneous eye- and head-movement recordings via a head-mounted camera. Detection and reaction times were also measured by visual fixation and manual reaction. We considered video computer game experience as a possible influence on performance. Data of 73 participants of varying ages were analyzed, driving two different courses. We analyzed the influence of route difficulty level, age, and eccentricity of test stimuli on oculomotor and driving behavior parameters. No significant age effects were found regarding saccadic parameters. In the older subjects head-movements increasingly contributed to gaze amplitude. More demanding courses and more peripheral stimuli locations induced longer reaction times in all age groups. Deterioration of the functionally useful visual field of view with increasing age was not suggested in our study group. However, video game-experienced subjects revealed larger saccade amplitudes and a broader distribution of fixations on the screen. They reacted faster to peripheral objects suggesting the notion of a general detection task rather than perceiving driving as a central task. As the video game-experienced population consisted of younger subjects, our study indicates that effects due to video game experience can easily be misinterpreted as age effects if not accounted for. We therefore view it as essential to consider video game experience in all testing methods using virtual media. PMID:23801970
Sklar, A E; Sarter, N B
1999-12-01
Observed breakdowns in human-machine communication can be explained, in part, by the nature of current automation feedback, which relies heavily on focal visual attention. Such feedback is not well suited for capturing attention in case of unexpected changes and events or for supporting the parallel processing of large amounts of data in complex domains. As suggested by multiple-resource theory, one possible solution to this problem is to distribute information across various sensory modalities. A simulator study was conducted to compare the effectiveness of visual, tactile, and redundant visual and tactile cues for indicating unexpected changes in the status of an automated cockpit system. Both tactile conditions resulted in higher detection rates for, and faster response times to, uncommanded mode transitions. Tactile feedback did not interfere with, nor was its effectiveness affected by, the performance of concurrent visual tasks. The observed improvement in task-sharing performance indicates that the introduction of tactile feedback is a promising avenue toward better supporting human-machine communication in event-driven, information-rich domains.
Cognitive Control Network Contributions to Memory-Guided Visual Attention.
Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C
2016-05-01
Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Role of Gamma-Band Synchronization in Priming of Form Discrimination for Multiobject Displays
ERIC Educational Resources Information Center
Lu, Hongjing; Morrison, Robert G.; Hummel, John E.; Holyoak, Keith J.
2006-01-01
Previous research has shown that synchronized flicker can facilitate detection of a single Kanizsa square. The present study investigated the role of temporally structured priming in discrimination tasks involving perceptual relations between multiple Kanizsa-type figures. Results indicate that visual information presented as temporally structured…
The Influence of Phonetic Dimensions on Aphasic Speech Perception
ERIC Educational Resources Information Center
Hessler, Dorte; Jonkers, Roel; Bastiaanse, Roelien
2010-01-01
Individuals with aphasia have more problems detecting small differences between speech sounds than larger ones. This paper reports how phonemic processing is impaired and how this is influenced by speechreading. A non-word discrimination task was carried out with "audiovisual", "auditory only" and "visual only" stimulus display. Subjects had to…
A physiologically-based pharmacokinetic (PBPK) model is being developed to estimate the dosimetry of toluene in rats inhaling the VOC under various experimental conditions. The effects of physical activity are currently being estimated utilizing a three-step process. First, we d...
Interference with olfactory memory by visual and verbal tasks.
Annett, J M; Cook, N M; Leslie, J C
1995-06-01
It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.
Non-visual spatial tasks reveal increased interactions with stance postural control.
Woollacott, Marjorie; Vander Velde, Timothy
2008-05-07
The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.
Rolinski, Michal; Zokaei, Nahid; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E; Husain, Masud; Hu, Michele T M
2016-01-01
Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson's disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson's disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson's disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of 'prodromal' Parkinson's disease that might be useful in tracking disease progression and for disease-modifying intervention trials. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Tas, A Caglar; Luck, Steven J; Hollingworth, Andrew
2016-08-01
There is substantial debate over whether visual working memory (VWM) and visual attention constitute a single system for the selection of task-relevant perceptual information or whether they are distinct systems that can be dissociated when their representational demands diverge. In the present study, we focused on the relationship between visual attention and the encoding of objects into VWM. Participants performed a color change-detection task. During the retention interval, a secondary object, irrelevant to the memory task, was presented. Participants were instructed either to execute an overt shift of gaze to this object (Experiments 1-3) or to attend it covertly (Experiments 4 and 5). Our goal was to determine whether these overt and covert shifts of attention disrupted the information held in VWM. We hypothesized that saccades, which typically introduce a memorial demand to bridge perceptual disruption, would lead to automatic encoding of the secondary object. However, purely covert shifts of attention, which introduce no such demand, would not result in automatic memory encoding. The results supported these predictions. Saccades to the secondary object produced substantial interference with VWM performance, but covert shifts of attention to this object produced no interference with VWM performance. These results challenge prevailing theories that consider attention and VWM to reflect a common mechanism. In addition, they indicate that the relationship between attention and VWM is dependent on the memorial demands of the orienting behavior. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Sensory Contributions to Impaired Emotion Processing in Schizophrenia
Butler, Pamela D.; Abeles, Ilana Y.; Weiskopf, Nicole G.; Tambini, Arielle; Jalbrzikowski, Maria; Legatt, Michael E.; Zemon, Vance; Loughead, James; Gur, Ruben C.; Javitt, Daniel C.
2009-01-01
Both emotion and visual processing deficits are documented in schizophrenia, and preferential magnocellular visual pathway dysfunction has been reported in several studies. This study examined the contribution to emotion-processing deficits of magnocellular and parvocellular visual pathway function, based on stimulus properties and shape of contrast response functions. Experiment 1 examined the relationship between contrast sensitivity to magnocellular- and parvocellular-biased stimuli and emotion recognition using the Penn Emotion Recognition (ER-40) and Emotion Differentiation (EMODIFF) tests. Experiment 2 altered the contrast levels of the faces themselves to determine whether emotion detection curves would show a pattern characteristic of magnocellular neurons and whether patients would show a deficit in performance related to early sensory processing stages. Results for experiment 1 showed that patients had impaired emotion processing and a preferential magnocellular deficit on the contrast sensitivity task. Greater deficits in ER-40 and EMODIFF performance correlated with impaired contrast sensitivity to the magnocellular-biased condition, which remained significant for the EMODIFF task even when nonspecific correlations due to group were considered in a step-wise regression. Experiment 2 showed contrast response functions indicative of magnocellular processing for both groups, with patients showing impaired performance. Impaired emotion identification on this task was also correlated with magnocellular-biased visual sensory processing dysfunction. These results provide evidence for a contribution of impaired early-stage visual processing in emotion recognition deficits in schizophrenia and suggest that a bottom-up approach to remediation may be effective. PMID:19793797
Sensory contributions to impaired emotion processing in schizophrenia.
Butler, Pamela D; Abeles, Ilana Y; Weiskopf, Nicole G; Tambini, Arielle; Jalbrzikowski, Maria; Legatt, Michael E; Zemon, Vance; Loughead, James; Gur, Ruben C; Javitt, Daniel C
2009-11-01
Both emotion and visual processing deficits are documented in schizophrenia, and preferential magnocellular visual pathway dysfunction has been reported in several studies. This study examined the contribution to emotion-processing deficits of magnocellular and parvocellular visual pathway function, based on stimulus properties and shape of contrast response functions. Experiment 1 examined the relationship between contrast sensitivity to magnocellular- and parvocellular-biased stimuli and emotion recognition using the Penn Emotion Recognition (ER-40) and Emotion Differentiation (EMODIFF) tests. Experiment 2 altered the contrast levels of the faces themselves to determine whether emotion detection curves would show a pattern characteristic of magnocellular neurons and whether patients would show a deficit in performance related to early sensory processing stages. Results for experiment 1 showed that patients had impaired emotion processing and a preferential magnocellular deficit on the contrast sensitivity task. Greater deficits in ER-40 and EMODIFF performance correlated with impaired contrast sensitivity to the magnocellular-biased condition, which remained significant for the EMODIFF task even when nonspecific correlations due to group were considered in a step-wise regression. Experiment 2 showed contrast response functions indicative of magnocellular processing for both groups, with patients showing impaired performance. Impaired emotion identification on this task was also correlated with magnocellular-biased visual sensory processing dysfunction. These results provide evidence for a contribution of impaired early-stage visual processing in emotion recognition deficits in schizophrenia and suggest that a bottom-up approach to remediation may be effective.
Robot-assisted laparoscopic ultrasonography for hepatic surgery.
Schneider, Caitlin M; Peng, Peter D; Taylor, Russell H; Dachs, Gregory W; Hasser, Christopher J; DiMaio, Simon P; Choti, Michael A
2012-05-01
This study describes and evaluates a novel, robot-assisted laparoscopic ultrasonographic device for hepatic surgery. Laparoscopic liver surgery is being performed with increasing frequency. One major drawback of this approach is the limited capability of intraoperative ultrasonography (IOUS) using standard laparoscopic devices. Robotic surgery systems offer the opportunity to develop new tools to improve techniques in minimally invasive surgery. This study evaluates a new integrated ultrasonography (US) device with the da Vinci Surgical System for laparoscopic visualization, comparing it with conventional handheld laparoscopic IOUS for performing key tasks in hepatic surgery. A prototype laparoscopic IOUS instrument was developed for the da Vinci Surgical System and compared with a conventional laparoscopic US device in simulation tasks: (1) In vivo porcine hepatic visualization and probe manipulation, (2) lesion detection accuracy, and (3) biopsy precision. Usability was queried by poststudy questionnaire. The robotic US proved better than conventional laparoscopic US in liver surface exploration (85% success vs 73%; P = .030) and tool manipulation (79% vs 57%; P = .028), whereas no difference was detected in lesion identification (63 vs 58; P = .41) and needle biopsy tasks (57 vs 48; P = .11). Subjects found the robotic US to facilitate better probe positioning (80%), decrease fatigue (90%), and be more useful overall (90%) on the post-task questionnaire. We found this robot-assisted IOUS system to be practical and useful in the performance of important tasks required for hepatic surgery, outperforming free-hand laparoscopic IOUS for certain tasks, and was more subjectively usable to the surgeon. Systems such as this may expand the use of robotic surgery for complex operative procedures requiring IOUS. Copyright © 2012 Mosby, Inc. All rights reserved.
Bellis, Teri James; Ross, Jody
2011-09-01
It has been suggested that, in order to validate a diagnosis of (C)APD (central auditory processing disorder), testing using direct cross-modal analogs should be performed to demonstrate that deficits exist solely or primarily in the auditory modality (McFarland and Cacace, 1995; Cacace and McFarland, 2005). This modality-specific viewpoint is controversial and not universally accepted (American Speech-Language-Hearing Association [ASHA], 2005; Musiek et al, 2005). Further, no such analogs have been developed to date, and neither the feasibility of such testing in normally functioning individuals nor the concurrent validity of cross-modal analogs has been established. The purpose of this study was to investigate the feasibility of cross-modal testing by examining the performance of normal adults and children on four tests of central auditory function and their corresponding visual analogs. In addition, this study investigated the degree to which concurrent validity of auditory and visual versions of these tests could be demonstrated. An experimental repeated measures design was employed. Participants consisted of two groups (adults, n=10; children, n=10) with normal and symmetrical hearing sensitivity, normal or corrected-to-normal visual acuity, and no family or personal history of auditory/otologic, language, learning, neurologic, or related disorders. Visual analogs of four tests in common clinical use for the diagnosis of (C)APD were developed (Dichotic Digits [Musiek, 1983]; Frequency Patterns [Pinheiro and Ptacek, 1971]; Duration Patterns [Pinheiro and Musiek, 1985]; and the Random Gap Detection Test [RGDT; Keith, 2000]). Participants underwent two 1 hr test sessions separated by at least 1 wk. Order of sessions (auditory, visual) and tests within each session were counterbalanced across participants. ANOVAs (analyses of variance) were used to examine effects of group, modality, and laterality (for the Dichotic/Dichoptic Digits tests) or response condition (for the auditory and visual Frequency Patterns and Duration Patterns tests). Pearson product-moment correlations were used to investigate relationships between auditory and visual performance. Adults performed significantly better than children on the Dichotic/Dichoptic Digits tests. Results also revealed a significant effect of modality, with auditory better than visual, and a significant modality×laterality interaction, with a right-ear advantage seen for the auditory task and a left-visual-field advantage seen for the visual task. For the Frequency Patterns test and its visual analog, results revealed a significant modality×response condition interaction, with humming better than labeling for the auditory version but the reversed effect for the visual version. For Duration Patterns testing, visual performance was significantly poorer than auditory performance. Due to poor test-retest reliability and ceiling effects for the auditory and visual gap-detection tasks, analyses could not be performed. No cross-modal correlations were observed for any test. Results demonstrated that cross-modal testing is at least feasible using easily accessible computer hardware and software. The lack of any cross-modal correlations suggests independent processing mechanisms for auditory and visual versions of each task. Examination of performance in individuals with central auditory and pan-sensory disorders is needed to determine the utility of cross-modal analogs in the differential diagnosis of (C)APD. American Academy of Audiology.
A systematic comparison between visual cues for boundary detection.
Mély, David A; Kim, Junkyung; McGill, Mason; Guo, Yuliang; Serre, Thomas
2016-03-01
The detection of object boundaries is a critical first step for many visual processing tasks. Multiple cues (we consider luminance, color, motion and binocular disparity) available in the early visual system may signal object boundaries but little is known about their relative diagnosticity and how to optimally combine them for boundary detection. This study thus aims at understanding how early visual processes inform boundary detection in natural scenes. We collected color binocular video sequences of natural scenes to construct a video database. Each scene was annotated with two full sets of ground-truth contours (one set limited to object boundaries and another set which included all edges). We implemented an integrated computational model of early vision that spans all considered cues, and then assessed their diagnosticity by training machine learning classifiers on individual channels. Color and luminance were found to be most diagnostic while stereo and motion were least. Combining all cues yielded a significant improvement in accuracy beyond that of any cue in isolation. Furthermore, the accuracy of individual cues was found to be a poor predictor of their unique contribution for the combination. This result suggested a complex interaction between cues, which we further quantified using regularization techniques. Our systematic assessment of the accuracy of early vision models for boundary detection together with the resulting annotated video dataset should provide a useful benchmark towards the development of higher-level models of visual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yamani, Yusuke; Horrey, William J.; Liang, Yulan; Fisher, Donald L.
2016-01-01
Older drivers are at increased risk of intersection crashes. Previous work found that older drivers execute less frequent glances for detecting potential threats at intersections than middle-aged drivers. Yet, earlier work has also shown that an active training program doubled the frequency of these glances among older drivers, suggesting that these effects are not necessarily due to age-related functional declines. In light of findings, the current study sought to explore the ability of older drivers to coordinate their head and eye movements while simultaneously steering the vehicle as well as their glance behavior at intersections. In a driving simulator, older (M = 76 yrs) and middle-aged (M = 58 yrs) drivers completed different driving tasks: (1) travelling straight on a highway while scanning for peripheral information (a visual search task) and (2) navigating intersections with areas potential hazard. The results replicate that the older drivers did not execute glances for potential threats to the sides when turning at intersections as frequently as the middle-aged drivers. Furthermore, the results demonstrate costs of performing two concurrent tasks, highway driving and visual search task on the side displays: the older drivers performed more poorly on the visual search task and needed to correct their steering positions more compared to the middle-aged counterparts. The findings are consistent with the predictions and discussed in terms of a decoupling hypothesis, providing an account for the effects of the active training program. PMID:27736887
Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico
2012-07-24
The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.
The role of early visual cortex in visual short-term memory and visual attention.
Offen, Shani; Schluppeck, Denis; Heeger, David J
2009-06-01
We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.
NASA Astrophysics Data System (ADS)
Kortenkamp, David; Huber, Marcus J.; Congdon, Clare B.; Huffman, Scott B.; Bidlack, Clint R.; Cohen, Charles J.; Koss, Frank V.; Raschke, Ulrich; Weymouth, Terry E.
1993-05-01
This paper describes the design and implementation of an integrated system for combining obstacle avoidance, path planning, landmark detection and position triangulation. Such an integrated system allows the robot to move from place to place in an environment, avoiding obstacles and planning its way out of traps, while maintaining its position and orientation using distinctive landmarks. The task the robot performs is to search a 22 m X 22 m arena for 10 distinctive objects, visiting each object in turn. This same task was recently performed by a dozen different robots at a competition in which the robot described in this paper finished first.
Age and visual impairment decrease driving performance as measured on a closed-road circuit.
Wood, Joanne M
2002-01-01
In this study the effects of visual impairment and age on driving were investigated and related to visual function. Participants were 139 licensed drivers (young, middle-aged, and older participants with normal vision, and older participants with ocular disease). Driving performance was assessed during the daytime on a closed-road driving circuit. Visual performance was assessed using a vision testing battery. Age and visual impairment had a significant detrimental effect on recognition tasks (detection and recognition of signs and hazards), time to complete driving tasks (overall course time, reversing, and maneuvering), maneuvering ability, divided attention, and an overall driving performance index. All vision measures were significantly affected by group membership. A combination of motion sensitivity, useful field of view (UFOV), Pelli-Robson letter contrast sensitivity, and dynamic acuity could predict 50% of the variance in overall driving scores. These results indicate that older drivers with either normal vision or visual impairment had poorer driving performance compared with younger or middle-aged drivers with normal vision. The inclusion of tests such as motion sensitivity and the UFOV significantly improve the predictive power of vision tests for driving performance. Although such measures may not be practical for widespread screening, their application in selected cases should be considered.
Utz, Kathrin S.; Hankeln, Thomas M. A.; Jung, Lena; Lämmer, Alexandra; Waschbisch, Anne; Lee, De-Hyung; Linker, Ralf A.; Schenk, Thomas
2013-01-01
Background Despite the high frequency of cognitive impairment in multiple sclerosis, its assessment has not gained entrance into clinical routine yet, due to lack of time-saving and suitable tests for patients with multiple sclerosis. Objective The aim of the study was to compare the paradigm of visual search with neuropsychological standard tests, in order to identify the test that discriminates best between patients with multiple sclerosis and healthy individuals concerning cognitive functions, without being susceptible to practice effects. Methods Patients with relapsing remitting multiple sclerosis (n = 38) and age-and gender-matched healthy individuals (n = 40) were tested with common neuropsychological tests and a computer-based visual search task, whereby a target stimulus has to be detected amongst distracting stimuli on a touch screen. Twenty-eight of the healthy individuals were re-tested in order to determine potential practice effects. Results Mean reaction time reflecting visual attention and movement time indicating motor execution in the visual search task discriminated best between healthy individuals and patients with multiple sclerosis, without practice effects. Conclusions Visual search is a promising instrument for the assessment of cognitive functions and potentially cognitive changes in patients with multiple sclerosis thanks to its good discriminatory power and insusceptibility to practice effects. PMID:24282604
Secondary visual workload capability with primary visual and kinesthetic-tactual displays
NASA Technical Reports Server (NTRS)
Gilson, R. D.; Burke, M. W.; Jagacinski, R. J.
1978-01-01
Subjects performed a cross-adaptive tracking task with a visual secondary display and either a visual or a quickened kinesthetic-tactual (K-T) primary display. The quickened K-T display resulted in superior secondary task performance. Comparisons of secondary workload capability with integrated and separated visual displays indicated that the superiority of the quickened K-T display was not simply due to the elimination of visual scanning. When subjects did not have to perform a secondary task, there was no significant difference between visual and quickened K-T displays in performing a critical tracking task.
'Where' and 'what' in visual search.
Atkinson, J; Braddick, O J
1989-01-01
A line segment target can be detected among distractors of a different orientation by a fast 'preattentive' process. One view is that this depends on detection of a 'feature gradient', which enables subjects to locate where the target is without necessarily identifying what it is. An alternative view is that a target can be identified as distinctive in a particular 'feature map' without subjects knowing where it is in that map. Experiments are reported in which briefly exposed arrays of line segments were followed by a pattern mask, and the threshold stimulus-mask interval determined for three tasks: 'what'--subjects reported whether the target was vertical or horizontal among oblique distractors; 'coarse where'--subjects reported whether the target was in the upper or lower half of the array; 'fine where'--subjects reported whether or not the target was in a set of four particular array positions. The threshold interval was significantly lower for the 'coarse where' than for the 'what' task, indicating that, even though localization in this task depends on the target's orientation difference, this localization is possible without absolute identification of target orientation. However, for the 'fine where' task, intervals as long as or longer than those for the 'what' task were required. It appears either that different localization processes work at different levels of resolution, or that a single localization process, independent of identification, can increase its resolution at the expense of processing speed. These possibilities are discussed in terms of distinct neural representations of the visual field and fixed or variable localization processes acting upon them.
Attentional Modulation of Change Detection ERP Components by Peripheral Retro-Cueing
Pazo-Álvarez, Paula; Roca-Fernández, Adriana; Gutiérrez-Domínguez, Francisco-Javier; Amenedo, Elena
2017-01-01
Change detection is essential for visual perception and performance in our environment. However, observers often miss changes that should be easily noticed. A failure in any of the processes involved in conscious detection (encoding the pre-change display, maintenance of that information within working memory, and comparison of the pre and post change displays) can lead to change blindness. Given that unnoticed visual changes in a scene can be easily detected once attention is drawn to them, it has been suggested that attention plays an important role on visual awareness. In the present study, we used behavioral and electrophysiological (ERPs) measures to study whether the manipulation of retrospective spatial attention affects performance and modulates brain activity related to the awareness of a change. To that end, exogenous peripheral cues were presented during the delay period (retro-cues) between the first and the second array using a one-shot change detection task. Awareness of a change was associated with a posterior negative amplitude shift around 228–292 ms (“Visual Awareness Negativity”), which was independent of retrospective spatial attention, as it was elicited to both validly and invalidly cued change trials. Change detection was also associated with a larger positive deflection around 420–580 ms (“Late Positivity”), but only when the peripheral retro-cues correctly predicted the change. Present results confirm that the early and late ERP components related to change detection can be functionally dissociated through manipulations of exogenous retro-cueing using a change blindness paradigm. PMID:28270759
Haase, Steven J; Fisk, Gary D
2011-08-01
A key problem in unconscious perception research is ruling out the possibility that weak conscious awareness of stimuli might explain the results. In the present study, signal detection theory was compared with the objective threshold/strategic model as explanations of results for detection and identification sensitivity in a commonly used unconscious perception task. In the task, 64 undergraduate participants detected and identified one of four briefly displayed, visually masked letters. Identification was significantly above baseline (i.e., proportion correct > .25) at the highest detection confidence rating. This result is most consistent with signal detection theory's continuum of sensory states and serves as a possible index of conscious perception. However, there was limited support for the other model in the form of a predicted "looker's inhibition" effect, which produced identification performance that was significantly below baseline. One additional result, an interaction between the target stimulus and type of mask, raised concerns for the generality of unconscious perception effects.
Sinke, Christopher; Forkmann, Katarina; Schmidt, Katharina; Wiech, Katja; Bingel, Ulrike
2016-05-01
Over the recent years, neuroimaging studies have investigated the neural mechanisms underlying the influence of expectations on perception. However, it seems equally reasonable to assume that expectations impact cognitive functions. Here we used fMRI to explore the role of expectations on task performance and its underlying neural mechanisms. 43 healthy participants were randomly assigned to two groups. Using verbal instructions, group 1 was led to believe that pain enhances task performance while group 2 was instructed that pain hampers their performance. All participants performed a Rapid-Serial-Visual-Presentation (RSVP) Task (target detection and short-term memory component) with or without concomitant painful heat stimulation during 3T fMRI scanning. As hypothesized, short-term memory performance showed an interaction between painful stimulation and expectation. Positive expectations induced stronger neural activation in the right inferior parietal cortex (IPC) during painful stimulation than negative expectation. Moreover, IPC displayed differential functional coupling with the left inferior occipital cortex under pain as a function of expectancy. Our data show that an individual's expectation can influence cognitive performance in a visual short-term memory task which is associated with activity and connectivity changes in brain areas implicated in attentional processing and task performance. Copyright © 2016. Published by Elsevier Ltd.
Visual cue-specific craving is diminished in stressed smokers.
Cochran, Justinn R; Consedine, Nathan S; Lee, John M J; Pandit, Chinmay; Sollers, John J; Kydd, Robert R
2017-09-01
Craving among smokers is increased by stress and exposure to smoking-related visual cues. However, few experimental studies have tested both elicitors concurrently and considered how exposures may interact to influence craving. The current study examined craving in response to stress and visual cue exposure, separately and in succession, in order to better understand the relationship between craving elicitation and the elicitor. Thirty-nine smokers (21 males) who forwent smoking for 30 minutes were randomized to complete a stress task and a visual cue task in counterbalanced orders (creating the experimental groups); for the cue task, counterbalanced blocks of neutral, motivational control, and smoking images were presented. Self-reported craving was assessed after each block of visual stimuli and stress task, and after a recovery period following each task. As expected, the stress and smoking images generated greater craving than neutral or motivational control images (p < .001). Interactions indicated craving in those who completed the stress task first differed from those who completed the visual cues task first (p < .05), such that stress task craving was greater than all image type craving (all p's < .05) only if the visual cue task was completed first. Conversely, craving was stable across image types when the stress task was completed first. Findings indicate when smokers are stressed, visual cues have little additive effect on craving, and different types of visual cues elicit comparable craving. These findings may imply that once stressed, smokers will crave cigarettes comparably notwithstanding whether they are exposed to smoking image cues.
Improving visual perception through neurofeedback
Scharnowski, Frank; Hutton, Chloe; Josephs, Oliver; Weiskopf, Nikolaus; Rees, Geraint
2012-01-01
Perception depends on the interplay of ongoing spontaneous activity and stimulus-evoked activity in sensory cortices. This raises the possibility that training ongoing spontaneous activity alone might be sufficient for enhancing perceptual sensitivity. To test this, we trained human participants to control ongoing spontaneous activity in circumscribed regions of retinotopic visual cortex using real-time functional MRI based neurofeedback. After training, we tested participants using a new and previously untrained visual detection task that was presented at the visual field location corresponding to the trained region of visual cortex. Perceptual sensitivity was significantly enhanced only when participants who had previously learned control over ongoing activity were now exercising control, and only for that region of visual cortex. Our new approach allows us to non-invasively and non-pharmacologically manipulate regionally specific brain activity, and thus provide ‘brain training’ to deliver particular perceptual enhancements. PMID:23223302
A biological hierarchical model based underwater moving object detection.
Shen, Jie; Fan, Tanghuai; Tang, Min; Zhang, Qian; Sun, Zhen; Huang, Fengchen
2014-01-01
Underwater moving object detection is the key for many underwater computer vision tasks, such as object recognizing, locating, and tracking. Considering the super ability in visual sensing of the underwater habitats, the visual mechanism of aquatic animals is generally regarded as the cue for establishing bionic models which are more adaptive to the underwater environments. However, the low accuracy rate and the absence of the prior knowledge learning limit their adaptation in underwater applications. Aiming to solve the problems originated from the inhomogeneous lumination and the unstable background, the mechanism of the visual information sensing and processing pattern from the eye of frogs are imitated to produce a hierarchical background model for detecting underwater objects. Firstly, the image is segmented into several subblocks. The intensity information is extracted for establishing background model which could roughly identify the object and the background regions. The texture feature of each pixel in the rough object region is further analyzed to generate the object contour precisely. Experimental results demonstrate that the proposed method gives a better performance. Compared to the traditional Gaussian background model, the completeness of the object detection is 97.92% with only 0.94% of the background region that is included in the detection results.
A Biological Hierarchical Model Based Underwater Moving Object Detection
Shen, Jie; Fan, Tanghuai; Tang, Min; Zhang, Qian; Sun, Zhen; Huang, Fengchen
2014-01-01
Underwater moving object detection is the key for many underwater computer vision tasks, such as object recognizing, locating, and tracking. Considering the super ability in visual sensing of the underwater habitats, the visual mechanism of aquatic animals is generally regarded as the cue for establishing bionic models which are more adaptive to the underwater environments. However, the low accuracy rate and the absence of the prior knowledge learning limit their adaptation in underwater applications. Aiming to solve the problems originated from the inhomogeneous lumination and the unstable background, the mechanism of the visual information sensing and processing pattern from the eye of frogs are imitated to produce a hierarchical background model for detecting underwater objects. Firstly, the image is segmented into several subblocks. The intensity information is extracted for establishing background model which could roughly identify the object and the background regions. The texture feature of each pixel in the rough object region is further analyzed to generate the object contour precisely. Experimental results demonstrate that the proposed method gives a better performance. Compared to the traditional Gaussian background model, the completeness of the object detection is 97.92% with only 0.94% of the background region that is included in the detection results. PMID:25140194
Task relevance induces momentary changes in the functional visual field during reading.
Kaakinen, Johanna K; Hyönä, Jukka
2014-02-01
In the research reported here, we examined whether task demands can induce momentary tunnel vision during reading. More specifically, we examined whether the size of the functional visual field depends on task relevance. Forty participants read an expository text with a specific task in mind while their eye movements were recorded. A display-change paradigm with random-letter strings as preview masks was used to study the size of the functional visual field within sentences that contained task-relevant and task-irrelevant information. The results showed that orthographic parafoveal-on-foveal effects and preview benefits were observed for words within task-irrelevant but not task-relevant sentences. The results indicate that the size of the functional visual field is flexible and depends on the momentary processing demands of a reading task. The higher cognitive processing requirements experienced when reading task-relevant text rather than task-irrelevant text induce momentary tunnel vision, which narrows the functional visual field.
Visual perspective taking impairment in children with autistic spectrum disorder.
Hamilton, Antonia F de C; Brindley, Rachel; Frith, Uta
2009-10-01
Evidence from typical development and neuroimaging studies suggests that level 2 visual perspective taking - the knowledge that different people may see the same thing differently at the same time - is a mentalising task. Thus, we would expect children with autism, who fail typical mentalising tasks like false belief, to perform poorly on level 2 visual perspective taking as well. However, prior data on this issue are inconclusive. We re-examined this question, testing a group of 23 young autistic children, aged around 8years with a verbal mental age of around 4years and three groups of typical children (n=60) ranging in age from 4 to 8years on a level 2 visual perspective task and a closely matched mental rotation task. The results demonstrate that autistic children have difficulty with visual perspective taking compared to a task requiring mental rotation, relative to typical children. Furthermore, performance on the level 2 visual perspective taking task correlated with theory of mind performance. These findings resolve discrepancies in previous studies of visual perspective taking in autism, and demonstrate that level 2 visual perspective taking is a mentalising task.
Qualitative similarities in the visual short-term memory of pigeons and people.
Gibson, Brett; Wasserman, Edward; Luck, Steven J
2011-10-01
Visual short-term memory plays a key role in guiding behavior, and individual differences in visual short-term memory capacity are strongly predictive of higher cognitive abilities. To provide a broader evolutionary context for understanding this memory system, we directly compared the behavior of pigeons and humans on a change detection task. Although pigeons had a lower storage capacity and a higher lapse rate than humans, both species stored multiple items in short-term memory and conformed to the same basic performance model. Thus, despite their very different evolutionary histories and neural architectures, pigeons and humans have functionally similar visual short-term memory systems, suggesting that the functional properties of visual short-term memory are subject to similar selective pressures across these distant species.
Multi-modal information processing for visual workload relief
NASA Technical Reports Server (NTRS)
Burke, M. W.; Gilson, R. D.; Jagacinski, R. J.
1980-01-01
The simultaneous performance of two single-dimensional compensatory tracking tasks, one with the left hand and one with the right hand, is discussed. The tracking performed with the left hand was considered the primary task and was performed with a visual display or a quickened kinesthetic-tactual (KT) display. The right-handed tracking was considered the secondary task and was carried out only with a visual display. Although the two primary task displays had afforded equivalent performance in a critical tracking task performed alone, in the dual-task situation the quickened KT primary display resulted in superior secondary visual task performance. Comparisons of various combinations of primary and secondary visual displays in integrated or separated formats indicate that the superiority of the quickened KT display is not simply due to the elimination of visual scanning. Additional testing indicated that quickening per se also is not the immediate cause of the observed KT superiority.
Integrating visual learning within a model-based ATR system
NASA Astrophysics Data System (ADS)
Carlotto, Mark; Nebrich, Mark
2017-05-01
Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.
Audiovisual Temporal Processing and Synchrony Perception in the Rat.
Schormans, Ashley L; Scott, Kaela E; Vo, Albert M Q; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L
2016-01-01
Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer's ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats ( n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats ( n = 7) perceived the synchronous audiovisual stimuli to be "visual first" for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20-40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level.
Audiovisual Temporal Processing and Synchrony Perception in the Rat
Schormans, Ashley L.; Scott, Kaela E.; Vo, Albert M. Q.; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L.
2017-01-01
Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer’s ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats (n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats (n = 7) perceived the synchronous audiovisual stimuli to be “visual first” for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20–40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level. PMID:28119580
Gutierrez, Eduardo de A; Pessoa, Valdir F; Aguiar, Ludmilla M S; Pessoa, Daniel M A
2014-11-01
Bats are known for their well-developed echolocation. However, several experiments focused on the bat visual system have shown evidence of the importance of visual cues under specific luminosity for different aspects of bat biology, including foraging behavior. This study examined the foraging abilities of five female great fruit-eating bats, Artibeus lituratus, under different light intensities. Animals were given a series of tasks to test for discrimination between a food target against an inedible background, under light levels similar to the twilight illumination (18lx), the full moon (2lx) and complete darkness (0lx). We found that the bats required a longer time frame to detect targets under a light intensity similar to twilight, possibly due to inhibitory effects present under a more intense light level. Additionally, bats were more efficient at detecting and capturing targets under light conditions similar to the luminosity of a full moon, suggesting that visual cues were important for target discrimination. These results demonstrate that light intensity affects foraging behavior and enables the use of visual cues for food detection in frugivorous bats. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.
The modality effect of ego depletion: Auditory task modality reduces ego depletion.
Li, Qiong; Wang, Zhenhong
2016-08-01
An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Wood, Joanne M; Owsley, Cynthia
2014-01-01
The useful field of view test was developed to reflect the visual difficulties that older adults experience with everyday tasks. Importantly, the useful field of view test (UFOV) is one of the most extensively researched and promising predictor tests for a range of driving outcomes measures, including driving ability and crash risk as well as other everyday tasks. Currently available commercial versions of the test can be administered using personal computers; these measure the speed of visual processing for rapid detection and localization of targets under conditions of divided visual attention and in the presence and absence of visual clutter. The test is believed to assess higher-order cognitive abilities, but performance also relies on visual sensory function because in order for targets to be attended to, they must be visible. The format of the UFOV has been modified over the years; the original version estimated the spatial extent of useful field of view, while the latest version measures visual processing speed. While deficits in the useful field of view are associated with functional impairments in everyday activities in older adults, there is also emerging evidence from several research groups that improvements in visual processing speed can be achieved through training. These improvements have been shown to reduce crash risk, and can have a positive impact on health and functional well-being, with the potential to increase the mobility and hence the independence of older adults. © 2014 S. Karger AG, Basel
Bertone, Armando; Mottron, Laurent; Jelenic, Patricia; Faubert, Jocelyn
2005-10-01
Visuo-perceptual processing in autism is characterized by intact or enhanced performance on static spatial tasks and inferior performance on dynamic tasks, suggesting a deficit of dorsal visual stream processing in autism. However, previous findings by Bertone et al. indicate that neuro-integrative mechanisms used to detect complex motion, rather than motion perception per se, may be impaired in autism. We present here the first demonstration of concurrent enhanced and decreased performance in autism on the same visuo-spatial static task, wherein the only factor dichotomizing performance was the neural complexity required to discriminate grating orientation. The ability of persons with autism was found to be superior for identifying the orientation of simple, luminance-defined (or first-order) gratings but inferior for complex, texture-defined (or second-order) gratings. Using a flicker contrast sensitivity task, we demonstrated that this finding is probably not due to abnormal information processing at a sub-cortical level (magnocellular and parvocellular functioning). Together, these findings are interpreted as a clear indication of altered low-level perceptual information processing in autism, and confirm that the deficits and assets observed in autistic visual perception are contingent on the complexity of the neural network required to process a given type of visual stimulus. We suggest that atypical neural connectivity, resulting in enhanced lateral inhibition, may account for both enhanced and decreased low-level information processing in autism.
Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J; Wilson, Timothy D
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among learners beyond the classification of spatial visualization ability alone, and help elucidate what, if anything, high- and low-spatial visualization ability learners do differently while solving spatial anatomy task problems. Forty-two students completed a standardized measure of spatial visualization ability, a novel spatial anatomy task, and a questionnaire involving personal self-analysis of the processes and strategies used while performing the spatial anatomy task. Strategy reports revealed that there were different ways students approached answering the spatial anatomy task problems. However, chi-square test analyses established that differences in problem-solving strategies did not contribute to differences in task performance. Therefore, underlying spatial visualization ability is the main source of variation in spatial anatomy task performance, irrespective of strategy. In addition to scoring higher and spending less time on the anatomy task, participants with high spatial visualization ability were also more accurate when solving the task problems. © 2013 American Association of Anatomists.
Cuperlier, Nicolas; Gaussier, Philippe
2017-01-01
Emotions play a significant role in internal regulatory processes. In this paper, we advocate four key ideas. First, novelty detection can be grounded in the sensorimotor experience and allow higher order appraisal. Second, cognitive processes, such as those involved in self-assessment, influence emotional states by eliciting affects like boredom and frustration. Third, emotional processes such as those triggered by self-assessment influence attentional processes. Last, close emotion-cognition interactions implement an efficient feedback loop for the purpose of top-down behavior regulation. The latter is what we call ‘Emotional Metacontrol’. We introduce a model based on artificial neural networks. This architecture is used to control a robotic system in a visual search task. The emotional metacontrol intervenes to bias the robot visual attention during active object recognition. Through a behavioral and statistical analysis, we show that this mechanism increases the robot performance and fosters the exploratory behavior to avoid deadlocks. PMID:28934291
Finding a face in the crowd: testing the anger superiority effect in Asperger Syndrome.
Ashwin, Chris; Wheelwright, Sally; Baron-Cohen, Simon
2006-06-01
Social threat captures attention and is processed rapidly and efficiently, with many lines of research showing involvement of the amygdala. Visual search paradigms looking at social threat have shown angry faces 'pop-out' in a crowd, compared to happy faces. Autism and Asperger Syndrome (AS) are neurodevelopmental conditions characterised by social deficits, abnormal face processing, and amygdala dysfunction. We tested adults with high-functioning autism (HFA) and AS using a facial visual search paradigm with schematic neutral and emotional faces. We found, contrary to predictions, that people with HFA/AS performed similarly to controls in many conditions. However, the effect was reduced in the HFA/AS group when using widely varying crowd sizes and when faces were inverted, suggesting a difference in face-processing style may be evident even with simple schematic faces. We conclude there are intact threat detection mechanisms in AS, under simple and predictable conditions, but that like other face-perception tasks, the visual search of threat faces task reveals atypical face-processing in HFA/AS.
Spatial Probability Dynamically Modulates Visual Target Detection in Chickens
Sridharan, Devarajan; Ramamurthy, Deepa L.; Knudsen, Eric I.
2013-01-01
The natural world contains a rich and ever-changing landscape of sensory information. To survive, an organism must be able to flexibly and rapidly locate the most relevant sources of information at any time. Humans and non-human primates exploit regularities in the spatial distribution of relevant stimuli (targets) to improve detection at locations of high target probability. Is the ability to flexibly modify behavior based on visual experience unique to primates? Chickens (Gallus domesticus) were trained on a multiple alternative Go/NoGo task to detect a small, briefly-flashed dot (target) in each of the quadrants of the visual field. When targets were presented with equal probability (25%) in each quadrant, chickens exhibited a distinct advantage for detecting targets at lower, relative to upper, hemifield locations. Increasing the probability of presentation in the upper hemifield locations (to 80%) dramatically improved detection performance at these locations to be on par with lower hemifield performance. Finally, detection performance in the upper hemifield changed on a rapid timescale, improving with successive target detections, and declining with successive detections at the diagonally opposite location in the lower hemifield. These data indicate the action of a process that in chickens, as in primates, flexibly and dynamically modulates detection performance based on the spatial probabilities of sensory stimuli as well as on recent performance history. PMID:23734188
The role of iconic memory in change-detection tasks.
Becker, M W; Pashler, H; Anstis, S M
2000-01-01
In three experiments, subjects attempted to detect the change of a single item in a visually presented array of items. Subjects' ability to detect a change was greatly reduced if a blank interstimulus interval (ISI) was inserted between the original array and an array in which one item had changed ('change blindness'). However, change detection improved when the location of the change was cued during the blank ISI. This suggests that people represent more information of a scene than change blindness might suggest. We test two possible hypotheses why, in the absence of a cue, this representation fails to produce good change detection. The first claims that the intervening events employed to create change blindness result in multiple neural transients which co-occur with the to-be-detected change. Poor detection rates occur because a serial search of all the transient locations is required to detect the change, during which time the representation of the original scene fades. The second claims that the occurrence of the second frame overwrites the representation of the first frame, unless that information is insulated against overwriting by attention. The results support the second hypothesis. We conclude that people may have a fairly rich visual representation of a scene while the scene is present, but fail to detect changes because they lack the ability to simultaneously represent two complete visual representations.
The Use of Computer-Generated Fading Materials to Teach Visual-Visual Non-Identity Matching Tasks
ERIC Educational Resources Information Center
Murphy, Colleen; Figueroa, Maria; Martin, Garry L.; Yu, C. T.; Figueroa, Josue
2008-01-01
Many everyday matching tasks taught to persons with developmental disabilities are visual-visual non-identity matching (VVNM) tasks, such as matching the printed word DOG to a picture of a dog, or matching a sock to a shoe. Research has shown that, for participants who have failed a VVNM prototype task, it is very difficult to teach them various…
Distinct Effects of Trial-Driven and Task Set-Related Control in Primary Visual Cortex
Vaden, Ryan J.; Visscher, Kristina M.
2015-01-01
Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of intermodal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors—portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and does not differ among eccentricity sectors. These results are discussed in the context of previous literature examining top-down control of visual cortical areas. PMID:26163806