Sample records for visual error signals

  1. Visuomotor adaptation needs a validation of prediction error by feedback error

    PubMed Central

    Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle

    2014-01-01

    The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly attenuated. PMID:25408644

  2. Brain processing of visual information during fast eye movements maintains motor performance.

    PubMed

    Panouillères, Muriel; Gaveau, Valérie; Socasau, Camille; Urquizar, Christian; Pélisson, Denis

    2013-01-01

    Movement accuracy depends crucially on the ability to detect errors while actions are being performed. When inaccuracies occur repeatedly, both an immediate motor correction and a progressive adaptation of the motor command can unfold. Of all the movements in the motor repertoire of humans, saccadic eye movements are the fastest. Due to the high speed of saccades, and to the impairment of visual perception during saccades, a phenomenon called "saccadic suppression", it is widely believed that the adaptive mechanisms maintaining saccadic performance depend critically on visual error signals acquired after saccade completion. Here, we demonstrate that, contrary to this widespread view, saccadic adaptation can be based entirely on visual information presented during saccades. Our results show that visual error signals introduced during saccade execution--by shifting a visual target at saccade onset and blanking it at saccade offset--induce the same level of adaptation as error signals, presented for the same duration, but after saccade completion. In addition, they reveal that this processing of intra-saccadic visual information for adaptation depends critically on visual information presented during the deceleration phase, but not the acceleration phase, of the saccade. These findings demonstrate that the human central nervous system can use short intra-saccadic glimpses of visual information for motor adaptation, and they call for a reappraisal of current models of saccadic adaptation.

  3. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.

    PubMed

    Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2017-06-01

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  4. Perceptually tuned low-bit-rate video codec for ATM networks

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien

    1996-02-01

    In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.

  5. Dioptric defocus maps across the visual field for different indoor environments.

    PubMed

    García, Miguel García; Ohlendorf, Arne; Schaeffel, Frank; Wahl, Siegfried

    2018-01-01

    One of the factors proposed to regulate the eye growth is the error signal derived from the defocus in the retina and actually, this might arise from defocus not only in the fovea but the whole visual field. Therefore, myopia could be better predicted by spatio-temporally mapping the 'environmental defocus' over the visual field. At present, no devices are available that could provide this information. A 'Kinect sensor v1' camera (Microsoft Corp.) and a portable eye tracker were used for developing a system for quantifying 'indoor defocus error signals' across the central 58° of the visual field. Dioptric differences relative to the fovea (assumed to be in focus) were recorded over the visual field and 'defocus maps' were generated for various scenes and tasks.

  6. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning

    PubMed Central

    Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno

    2016-01-01

    Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor behaviours. PMID:26963919

  7. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning.

    PubMed

    Arrighi, Pieranna; Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno; Andre, Paolo

    2016-01-01

    Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor behaviours.

  8. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    PubMed Central

    Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude

    2013-01-01

    Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894

  9. Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Wu, Qian-zhong

    2013-09-01

    In order to improve the precision of optical-electric tracking device, proposing a kind of improved optical-electric tracking device based on MEMS, in allusion to the tracking error of gyroscope senor and the random drift, According to the principles of time series analysis of random sequence, establish AR model of gyro random error based on Kalman filter algorithm, then the output signals of gyro are multiple filtered with Kalman filter. And use ARM as micro controller servo motor is controlled by fuzzy PID full closed loop control algorithm, and add advanced correction and feed-forward links to improve response lag of angle input, Free-forward can make output perfectly follow input. The function of lead compensation link is to shorten the response of input signals, so as to reduce errors. Use the wireless video monitor module and remote monitoring software (Visual Basic 6.0) to monitor servo motor state in real time, the video monitor module gathers video signals, and the wireless video module will sent these signals to upper computer, so that show the motor running state in the window of Visual Basic 6.0. At the same time, take a detailed analysis to the main error source. Through the quantitative analysis of the errors from bandwidth and gyro sensor, it makes the proportion of each error in the whole error more intuitive, consequently, decrease the error of the system. Through the simulation and experiment results shows the system has good following characteristic, and it is very valuable for engineering application.

  10. Serotonergic antidepressants decrease hedonic signals but leave learning signals in the nucleus accumbens unaffected.

    PubMed

    Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit

    2016-01-06

    Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy.

  11. Multisensory Integration of Visual and Vestibular Signals Improves Heading Discrimination in the Presence of a Moving Object

    PubMed Central

    Dokka, Kalpana; DeAngelis, Gregory C.

    2015-01-01

    Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and may bias heading perception if the visual system cannot dissociate object motion from self-motion. We investigated whether adding vestibular self-motion signals to optic flow enhances the accuracy of heading judgments in the presence of a moving object. Macaque monkeys were trained to report their heading (leftward or rightward relative to straight-forward) when self-motion was specified by vestibular, visual, or combined visual-vestibular signals, while viewing a display in which an object moved independently in the (virtual) world. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. In addition, multisensory heading discrimination thresholds measured in the presence of a moving object were largely consistent with the predictions of an optimal cue integration strategy. These findings demonstrate that multisensory cues facilitate the perceptual dissociation of self-motion and object motion, consistent with computational work that suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. SIGNIFICANCE STATEMENT Objects that move independently in the world alter the optic flow field and can induce errors in perceiving the direction of self-motion (heading). We show that adding vestibular (inertial) self-motion signals to optic flow almost completely eliminates the errors in perceived heading induced by an independently moving object. Furthermore, this increased accuracy occurs without a substantial loss in the precision. Our results thus demonstrate that vestibular signals play a critical role in dissociating self-motion from object motion. PMID:26446214

  12. Visual Prediction Error Spreads Across Object Features in Human Visual Cortex

    PubMed Central

    Summerfield, Christopher; Egner, Tobias

    2016-01-01

    Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might “spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. SIGNIFICANCE STATEMENT We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of (and attention to) multiple object features with computational modeling and fMRI, we demonstrate that behavior and fMRI activity patterns in visual cortex are best accounted for by a model in which prediction error in one object feature spreads to other object features. These results demonstrate how predictive vision forms object-level expectations out of multiple independent features. PMID:27810936

  13. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.

    PubMed

    Chow, John W; Stokic, Dobrivoje S

    2018-03-01

    We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.

  14. Salient Distractors Can Induce Saccade Adaptation

    PubMed Central

    Khan, Afsheen; McFadden, Sally A.; Wallman, Josh

    2014-01-01

    When saccadic eye movements consistently fail to land on their intended target, saccade accuracy is maintained by gradually adapting the movement size of successive saccades. The proposed error signal for saccade adaptation has been based on the distance between where the eye lands and the visual target (retinal error). We studied whether the error signal could alternatively be based on the distance between the predicted and actual locus of attention after the saccade. Unlike conventional adaptation experiments that surreptitiously displace the target once a saccade is initiated towards it, we instead attempted to draw attention away from the target by briefly presenting salient distractor images on one side of the target after the saccade. To test whether less salient, more predictable distractors would induce less adaptation, we separately used fixed random noise distractors. We found that both visual attention distractors were able to induce a small degree of downward saccade adaptation but significantly more to the more salient distractors. As in conventional adaptation experiments, upward adaptation was less effective and salient distractors did not significantly increase amplitudes. We conclude that the locus of attention after the saccade can act as an error signal for saccade adaptation. PMID:24876947

  15. The cost of misremembering: Inferring the loss function in visual working memory.

    PubMed

    Sims, Chris R

    2015-03-04

    Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.

  16. Single Platform Geolocation of Radio Frequency Emitters

    DTIC Science & Technology

    2015-03-26

    Error SNR Signal to Noise Ratio SOI Signal of Interest STK Systems Tool Kit UCA Uniform Circular Array WGS World Geodetic System xv SINGLE PLATFORM...Section 2.6 describes a method to visualize the confidence of estimated parameters. 2.1 Coordinate Systems and Reference Frames The following...be used to visualize the confidence surface using the method developed in Section 2.6. The NLO method will be shown to be the minimization of the

  17. Memory and decision making in the frontal cortex during visual motion processing for smooth pursuit eye movements.

    PubMed

    Shichinohe, Natsuko; Akao, Teppei; Kurkin, Sergei; Fukushima, Junko; Kaneko, Chris R S; Fukushima, Kikuro

    2009-06-11

    Cortical motor areas are thought to contribute "higher-order processing," but what that processing might include is unknown. Previous studies of the smooth pursuit-related discharge of supplementary eye field (SEF) neurons have not distinguished activity associated with the preparation for pursuit from discharge related to processing or memory of the target motion signals. Using a memory-based task designed to separate these components, we show that the SEF contains signals coding retinal image-slip-velocity, memory, and assessment of visual motion direction, the decision of whether to pursue, and the preparation for pursuit eye movements. Bilateral muscimol injection into SEF resulted in directional errors in smooth pursuit, errors of whether to pursue, and impairment of initial correct eye movements. These results suggest an important role for the SEF in memory and assessment of visual motion direction and the programming of appropriate pursuit eye movements.

  18. Short-term saccadic adaptation in the macaque monkey: a binocular mechanism

    PubMed Central

    Schultz, K. P.

    2013-01-01

    Saccadic eye movements are rapid transfers of gaze between objects of interest. Their duration is too short for the visual system to be able to follow their progress in time. Adaptive mechanisms constantly recalibrate the saccadic responses by detecting how close the landings are to the selected targets. The double-step saccadic paradigm is a common method to simulate alterations in saccadic gain. While the subject is responding to a first target shift, a second shift is introduced in the middle of this movement, which masks it from visual detection. The error in landing introduced by the second shift is interpreted by the brain as an error in the programming of the initial response, with gradual gain changes aimed at compensating the apparent sensorimotor mismatch. A second shift applied dichoptically to only one eye introduces disconjugate landing errors between the two eyes. A monocular adaptive system would independently modify only the gain of the eye exposed to the second shift in order to reestablish binocular alignment. Our results support a binocular mechanism. A version-based saccadic adaptive process detects postsaccadic version errors and generates compensatory conjugate gain alterations. A vergence-based saccadic adaptive process detects postsaccadic disparity errors and generates corrective nonvisual disparity signals that are sent to the vergence system to regain binocularity. This results in striking dynamical similarities between visually driven combined saccade-vergence gaze transfers, where the disparity is given by the visual targets, and the double-step adaptive disconjugate responses, where an adaptive disparity signal is generated internally by the saccadic system. PMID:23076111

  19. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception

    PubMed Central

    Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou

    2017-01-01

    The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs. PMID:28348530

  20. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception.

    PubMed

    Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou

    2017-01-01

    The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs.

  1. Sensitivity to prediction error in reach adaptation

    PubMed Central

    Haith, Adrian M.; Harran, Michelle D.; Shadmehr, Reza

    2012-01-01

    It has been proposed that the brain predicts the sensory consequences of a movement and compares it to the actual sensory feedback. When the two differ, an error signal is formed, driving adaptation. How does an error in one trial alter performance in the subsequent trial? Here we show that the sensitivity to error is not constant but declines as a function of error magnitude. That is, one learns relatively less from large errors compared with small errors. We performed an experiment in which humans made reaching movements and randomly experienced an error in both their visual and proprioceptive feedback. Proprioceptive errors were created with force fields, and visual errors were formed by perturbing the cursor trajectory to create a visual error that was smaller, the same size, or larger than the proprioceptive error. We measured single-trial adaptation and calculated sensitivity to error, i.e., the ratio of the trial-to-trial change in motor commands to error size. We found that for both sensory modalities sensitivity decreased with increasing error size. A reanalysis of a number of previously published psychophysical results also exhibited this feature. Finally, we asked how the brain might encode sensitivity to error. We reanalyzed previously published probabilities of cerebellar complex spikes (CSs) and found that this probability declined with increasing error size. From this we posit that a CS may be representative of the sensitivity to error, and not error itself, a hypothesis that may explain conflicting reports about CSs and their relationship to error. PMID:22773782

  2. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback

    PubMed Central

    Hwang, Ing-Shiou; Lin, Yen-Ting; Huang, Wei-Min; Yang, Zong-Ru; Hu, Chia-Ling; Chen, Yi-Ching

    2017-01-01

    Discharge patterns from a population of motor units (MUs) were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF) to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF). In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13–35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band. PMID:28125658

  3. Dioptric defocus maps across the visual field for different indoor environments

    PubMed Central

    García, Miguel García; Ohlendorf, Arne; Schaeffel, Frank; Wahl, Siegfried

    2017-01-01

    One of the factors proposed to regulate the eye growth is the error signal derived from the defocus in the retina and actually, this might arise from defocus not only in the fovea but the whole visual field. Therefore, myopia could be better predicted by spatio-temporally mapping the ‘environmental defocus’ over the visual field. At present, no devices are available that could provide this information. A ‘Kinect sensor v1’ camera (Microsoft Corp.) and a portable eye tracker were used for developing a system for quantifying ‘indoor defocus error signals’ across the central 58° of the visual field. Dioptric differences relative to the fovea (assumed to be in focus) were recorded over the visual field and ‘defocus maps’ were generated for various scenes and tasks. PMID:29359108

  4. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  5. Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

    PubMed

    Cheng, Sen; Sabes, Philip N

    2007-04-01

    The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

  6. Visuo-Vestibular Interactions

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA3 includes short reports covering: (1) Vestibulo-Oculomotor Interaction in Long-Term Microgravity; (2) Effects of Weightlessness on the Spatial Orientation of Visually Induced Eye Movements; (3) Adaptive Modification of the Three-Dimensional Vestibulo-Ocular Reflex during Prolonged Microgravity; (4) The Dynamic Change of Brain Potential Related to Selective Attention to Visual Signals from Left and Right Visual Fields; (5) Locomotor Errors Caused by Vestibular Suppression; and (6) A Novel, Image-Based Technique for Three-Dimensional Eye Measurement.

  7. The effect of saccade metrics on the corollary discharge contribution to perceived eye location

    PubMed Central

    Bansal, Sonia; Jayet Bray, Laurence C.; Peterson, Matthew S.

    2015-01-01

    Corollary discharge (CD) is hypothesized to provide the movement information (direction and amplitude) required to compensate for the saccade-induced disruptions to visual input. Here, we investigated to what extent these conveyed metrics influence perceptual stability in human subjects with a target-displacement detection task. Subjects made saccades to targets located at different amplitudes (4°, 6°, or 8°) and directions (horizontal or vertical). During the saccade, the target disappeared and then reappeared at a shifted location either in the same direction or opposite to the movement vector. Subjects reported the target displacement direction, and from these reports we determined the perceptual threshold for shift detection and estimate of target location. Our results indicate that the thresholds for all amplitudes and directions generally scaled with saccade amplitude. Additionally, subjects on average produced hypometric saccades with an estimated CD gain <1. Finally, we examined the contribution of different error signals to perceptual performance, the saccade error (movement-to-movement variability in saccade amplitude) and visual error (distance between the fovea and the shifted target location). Perceptual judgment was not influenced by the fluctuations in movement amplitude, and performance was largely the same across movement directions for different magnitudes of visual error. Importantly, subjects reported the correct direction of target displacement above chance level for very small visual errors (<0.75°), even when these errors were opposite the target-shift direction. Collectively, these results suggest that the CD-based compensatory mechanisms for visual disruptions are highly accurate and comparable for saccades with different metrics. PMID:25761955

  8. Internally-generated error signals in monkey frontal eye field during an inferred motion task

    PubMed Central

    Ferrera, Vincent P.; Barborica, Andrei

    2010-01-01

    An internal model for predictive saccades in frontal cortex was investigated by recording neurons in monkey frontal eye field during an inferred motion task. Monkeys were trained to make saccades to the extrapolated position of a small moving target that was rendered temporarily invisible and whose trajectory was altered. On roughly two-thirds of the trials, monkeys made multiple saccades while the target was invisible. Primary saccades were correlated with extrapolated target position. Secondary saccades significantly reduced residual errors resulting from imperfect accuracy of the first saccade. These observations suggest that the second saccade was corrective. As there was no visual feedback, corrective saccades could only be driven by an internally generated error signal. Neuronal activity in the frontal eye field was directionally tuned prior to both primary and secondary saccades. Separate subpopulations of cells encoded either saccade direction or direction error prior to the second saccade. These results suggest that FEF neurons encode the error after the first saccade, as well as the direction of the second saccade. Hence, FEF appears to contribute to detecting and correcting movement errors based on internally generated signals. PMID:20810882

  9. Application of auditory signals to the operation of an agricultural vehicle: results of pilot testing.

    PubMed

    Karimi, D; Mondor, T A; Mann, D D

    2008-01-01

    The operation of agricultural vehicles is a multitask activity that requires proper distribution of attentional resources. Human factors theories suggest that proper utilization of the operator's sensory capacities under such conditions can improve the operator's performance and reduce the operator's workload. Using a tractor driving simulator, this study investigated whether auditory cues can be used to improve performance of the operator of an agricultural vehicle. Steering of a vehicle was simulated in visual mode (where driving error was shown to the subject using a lightbar) and in auditory mode (where a pair of speakers were used to convey the driving error direction and/or magnitude). A secondary task was also introduced in order to simulate the monitoring of an attached machine. This task included monitoring of two identical displays, which were placed behind the simulator, and responding to them, when needed, using a joystick. This task was also implemented in auditory mode (in which a beep signaled the subject to push the proper button when a response was needed) and in visual mode (in which there was no beep and visual, monitoring of the displays was necessary). Two levels of difficulty of the monitoring task were used. Deviation of the simulated vehicle from a desired straight line was used as the measure of performance in the steering task, and reaction time to the displays was used as the measure of performance in the monitoring task. Results of the experiments showed that steering performance was significantly better when steering was a visual task (driving errors were 40% to 60% of the driving errors in auditory mode), although subjective evaluations showed that auditory steering could be easier, depending on the implementation. Performance in the monitoring task was significantly better for auditory implementation (reaction time was approximately 6 times shorter), and this result was strongly supported by subjective ratings. The majority of the subjects preferred the combination of visual mode for the steering task and auditory mode for the monitoring task.

  10. Two wrongs make a right: linear increase of accuracy of visually-guided manual pointing, reaching, and height-matching with increase in hand-to-body distance.

    PubMed

    Li, Wenxun; Matin, Leonard

    2005-03-01

    Measurements were made of the accuracy of open-loop manual pointing and height-matching to a visual target whose elevation was perceptually mislocalized. Accuracy increased linearly with distance of the hand from the body, approaching complete accuracy at full extension; with the hand close to the body (within the midfrontal plane), the manual errors equaled the magnitude of the perceptual mislocalization. The visual inducing stimulus responsible for the perceptual errors was a single pitched-from-vertical line that was long (50 degrees), eccentrically-located (25 degrees horizontal), and viewed in otherwise total darkness. The line induced perceptual errors in the elevation of a small, circular visual target set to appear at eye level (VPEL), a setting that changed linearly with the change in the line's visual pitch as has been previously reported (pitch: -30 degrees topbackward to 30 degrees topforward); the elevation errors measured by VPEL settings varied systematically with pitch through an 18 degrees range. In a fourth experiment the visual inducing stimulus responsible for the perceptual errors was shown to induce separately-measured errors in the manual setting of the arm to feel horizontal that were also distance-dependent. The distance-dependence of the visually-induced changes in felt arm position accounts quantitatively for the distance-dependence of the manual errors in pointing/reaching and height matching to the visual target: The near equality of the changes in felt horizontal and changes in pointing/reaching with the finger at the end of the fully extended arm is responsible for the manual accuracy of the fully-extended point; with the finger in the midfrontal plane their large difference is responsible for the inaccuracies of the midfrontal-plane point. The results are inconsistent with the widely-held but controversial theory that visual spatial information employed for perception and action are dissociated and different with no illusory visual influence on action. A different two-system theory, the Proximal/Distal model, employing the same signals from vision and from the body-referenced mechanism with different weights for different hand-to-body distances, accounts for both the perceptual and the manual results in the present experiments.

  11. Brain negativity as an indicator of predictive error processing: the contribution of visual action effect monitoring.

    PubMed

    Joch, Michael; Hegele, Mathias; Maurer, Heiko; Müller, Hermann; Maurer, Lisa Katharina

    2017-07-01

    The error (related) negativity (Ne/ERN) is an event-related potential in the electroencephalogram (EEG) correlating with error processing. Its conditions of appearance before terminal external error information suggest that the Ne/ERN is indicative of predictive processes in the evaluation of errors. The aim of the present study was to specifically examine the Ne/ERN in a complex motor task and to particularly rule out other explaining sources of the Ne/ERN aside from error prediction processes. To this end, we focused on the dependency of the Ne/ERN on visual monitoring about the action outcome after movement termination but before result feedback (action effect monitoring). Participants performed a semi-virtual throwing task by using a manipulandum to throw a virtual ball displayed on a computer screen to hit a target object. Visual feedback about the ball flying to the target was masked to prevent action effect monitoring. Participants received a static feedback about the action outcome (850 ms) after each trial. We found a significant negative deflection in the average EEG curves of the error trials peaking at ~250 ms after ball release, i.e., before error feedback. Furthermore, this Ne/ERN signal did not depend on visual ball-flight monitoring after release. We conclude that the Ne/ERN has the potential to indicate error prediction in motor tasks and that it exists even in the absence of action effect monitoring. NEW & NOTEWORTHY In this study, we are separating different kinds of possible contributors to an electroencephalogram (EEG) error correlate (Ne/ERN) in a throwing task. We tested the influence of action effect monitoring on the Ne/ERN amplitude in the EEG. We used a task that allows us to restrict movement correction and action effect monitoring and to control the onset of result feedback. We ascribe the Ne/ERN to predictive error processing where a conscious feeling of failure is not a prerequisite. Copyright © 2017 the American Physiological Society.

  12. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    PubMed

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  13. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model

    PubMed Central

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher

    2015-01-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106

  14. A novel approach for automatic visualization and activation detection of evoked potentials induced by epidural spinal cord stimulation in individuals with spinal cord injury.

    PubMed

    Mesbah, Samineh; Angeli, Claudia A; Keynton, Robert S; El-Baz, Ayman; Harkema, Susan J

    2017-01-01

    Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several hours to less than 15 seconds for each set of data, and demonstrated an average accuracy of 98.28% based on the combined false positive and false negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) was tested using simulated EMG signals and compared to two existing methods, where the novel technique showed much lower sensitivity to the SNR.

  15. A novel approach for automatic visualization and activation detection of evoked potentials induced by epidural spinal cord stimulation in individuals with spinal cord injury

    PubMed Central

    Mesbah, Samineh; Angeli, Claudia A.; Keynton, Robert S.; Harkema, Susan J.

    2017-01-01

    Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several hours to less than 15 seconds for each set of data, and demonstrated an average accuracy of 98.28% based on the combined false positive and false negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) was tested using simulated EMG signals and compared to two existing methods, where the novel technique showed much lower sensitivity to the SNR. PMID:29020054

  16. Content-based multiple bitstream image transmission over noisy channels.

    PubMed

    Cao, Lei; Chen, Chang Wen

    2002-01-01

    In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.

  17. Nature and Nurture: the complex genetics of myopia and refractive error

    PubMed Central

    Wojciechowski, Robert

    2010-01-01

    The refractive errors, myopia and hyperopia, are optical defects of the visual system that can cause blurred vision. Uncorrected refractive errors are the most common causes of visual impairment worldwide. It is estimated that 2.5 billion people will be affected by myopia alone with in the next decade. Experimental, epidemiological and clinical research has shown that refractive development is influenced by both environmental and genetic factors. Animal models have demonstrated that eye growth and refractive maturation during infancy are tightly regulated by visually-guided mechanisms. Observational data in human populations provide compelling evidence that environmental influences and individual behavioral factors play crucial roles in myopia susceptibility. Nevertheless, the majority of the variance of refractive error within populations is thought to be due to hereditary factors. Genetic linkage studies have mapped two dozen loci, while association studies have implicated more than 25 different genes in refractive variation. Many of these genes are involved in common biological pathways known to mediate extracellular matrix composition and regulate connective tissue remodeling. Other associated genomic regions suggest novel mechanisms in the etiology of human myopia, such as mitochondrial-mediated cell death or photoreceptor-mediated visual signal transmission. Taken together, observational and experimental studies have revealed the complex nature of human refractive variation, which likely involves variants in several genes and functional pathways. Multiway interactions between genes and/or environmental factors may also be important in determining individual risks of myopia, and may help explain the complex pattern of refractive error in human populations. PMID:21155761

  18. Secondary adaptation of memory-guided saccades

    PubMed Central

    Srimal, Riju; Curtis, Clayton E.

    2011-01-01

    Adaptation of saccade gains in response to errors keeps vision and action co-registered in the absence of awareness or effort. Timing is key, as the visual error must be available shortly after the saccade is generated or adaptation does not occur. Here, we tested the hypothesis that when feedback is delayed, learning still occurs, but does so through small secondary corrective saccades. Using a memory-guided saccade task, we gave feedback about the accuracy of saccades that was falsely displaced by a consistent amount, but only after long delays. Despite the delayed feedback, over time subjects improved in accuracy toward the false feedback. They did so not by adjusting their primary saccades, but via directed corrective saccades made before feedback was given. We propose that saccade learning may be driven by different types of feedback teaching signals. One teaching signal relies upon a tight temporal relation with the saccade and contributes to obligatory learning independent of awareness. When this signal is ineffective due to delayed error feedback, a second compensatory teaching signal enables flexible adjustments to the spatial goal of saccades and helps maintain sensorimotor accuracy. PMID:20803135

  19. Low target prevalence is a stubborn source of errors in visual search tasks

    PubMed Central

    Wolfe, Jeremy M.; Horowitz, Todd S.; Van Wert, Michael J.; Kenner, Naomi M.; Place, Skyler S.; Kibbi, Nour

    2009-01-01

    In visual search tasks, observers look for targets in displays containing distractors. Likelihood that targets will be missed varies with target prevalence, the frequency with which targets are presented across trials. Miss error rates are much higher at low target prevalence (1–2%) than at high prevalence (50%). Unfortunately, low prevalence is characteristic of important search tasks like airport security and medical screening where miss errors are dangerous. A series of experiments show this prevalence effect is very robust. In signal detection terms, the prevalence effect can be explained as a criterion shift and not a change in sensitivity. Several efforts to induce observers to adopt a better criterion fail. However, a regime of brief retraining periods with high prevalence and full feedback allows observers to hold a good criterion during periods of low prevalence with no feedback. PMID:17999575

  20. Aging and the Visual Perception of Motion Direction: Solving the Aperture Problem.

    PubMed

    Shain, Lindsey M; Norman, J Farley

    2018-07-01

    An experiment required younger and older adults to estimate coherent visual motion direction from multiple motion signals, where each motion signal was locally ambiguous with respect to the true direction of pattern motion. Thus, accurate performance required the successful integration of motion signals across space (i.e., accurate performance required solution of the aperture problem) . The observers viewed arrays of either 64 or 9 moving line segments; because these lines moved behind apertures, their individual local motions were ambiguous with respect to direction (i.e., were subject to the aperture problem). Following 2.4 seconds of pattern motion on each trial (true motion directions ranged over the entire range of 360° in the fronto-parallel plane), the observers estimated the coherent direction of motion. There was an effect of direction, such that cardinal directions of pattern motion were judged with less error than oblique directions. In addition, a large effect of aging occurred-The average absolute errors of the older observers were 46% and 30.4% higher in magnitude than those exhibited by the younger observers for the 64 and 9 aperture conditions, respectively. Finally, the observers' precision markedly deteriorated as the number of apertures was reduced from 64 to 9.

  1. Effects of Foveal Ablation on Emmetropization and Form-Deprivation Myopia

    PubMed Central

    Smith, Earl L.; Ramamirtham, Ramkumar; Qiao-Grider, Ying; Hung, Li-Fang; Huang, Juan; Kee, Chea-su; Coats, David; Paysse, Evelyn

    2009-01-01

    Purpose Because of the prominence of central vision in primates, it has generally been assumed that signals from the fovea dominate refractive development. To test this assumption, the authors determined whether an intact fovea was essential for either normal emmetropization or the vision-induced myopic errors produced by form deprivation. Methods In 13 rhesus monkeys at 3 weeks of age, the fovea and most of the perifovea in one eye were ablated by laser photocoagulation. Five of these animals were subsequently allowed unrestricted vision. For the other eight monkeys with foveal ablations, a diffuser lens was secured in front of the treated eyes to produce form deprivation. Refractive development was assessed along the pupillary axis by retinoscopy, keratometry, and A-scan ultrasonography. Control data were obtained from 21 normal monkeys and three infants reared with plano lenses in front of both eyes. Results Foveal ablations had no apparent effect on emmetropization. Refractive errors for both eyes of the treated infants allowed unrestricted vision were within the control range throughout the observation period, and there were no systematic interocular differences in refractive error or axial length. In addition, foveal ablation did not prevent form deprivation myopia; six of the eight infants that experienced monocular form deprivation developed myopic axial anisometropias outside the control range. Conclusions Visual signals from the fovea are not essential for normal refractive development or the vision-induced alterations in ocular growth produced by form deprivation. Conversely, the peripheral retina, in isolation, can regulate emmetropizing responses and produce anomalous refractive errors in response to abnormal visual experience. These results indicate that peripheral vision should be considered when assessing the effects of visual experience on refractive development. PMID:17724167

  2. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task.

    PubMed

    Stahl, Jutta; Gibbons, Henning

    2007-03-01

    The aim of the present study was to investigate the functional significance of error (related) negativity Ne/ERN and individual differences in human action monitoring. A response-conflict model of Ne/ERN should be tested applying a stop-signal paradigm. After a few modifications of Ne/ERN response-conflict theory (Yeung N, Botvinick MM, Cohen JD. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychological Review 2004:111(4);931-959), strength and time course of response conflict could be modeled as a function of stop-signal delay. In Experiment 1, 35 participants performed a visual two-choice response-time task but tried to withhold the response if an auditory stop signal was presented. Probability of stopping errors was held at 50% using variable delays between visual and auditory stimuli. Experiment 2 (n=10) employed both auditory go and stop signals and confirmed that Ne/ERN effects are due to conflict induced by the auditory stop signal, and not the mere presence or absence of an additional stimulus. As predicted, amplitudes of both the stimulus-locked and response-locked Ne/ERN were largest for non-stopped responses, followed by successfully stopped and go responses. However, independently of response type Ne/ERN also increased with increasing stop-signal delay. Since longer delay invokes stronger response conflict, results specifically support the notion of Ne/ERN reflecting response-conflict monitoring. Furthermore, individual differences related to measures of response control and behavioral control were observed. Both low response control estimated from stop-task performance and high psychometric impulsivity were accompanied by smaller Ne/ERN amplitude on stop trials, suggesting reduced response-conflict monitoring. The present study supported the response-conflict view of Ne/ERN. Furthermore, the observed relationship between impulsivity and Ne/ERN amplitude suggested that individuals with low behavioral control were characterized by lower activity in anterior cingulate cortex, the neural generator of Ne/ERN, in situations of strong response conflict. The present study, for the first time, employed a stop-signal paradigm to verify predictions regarding the temporal dynamics of response-conflict processing as derived from response-conflict theory of ERN.

  3. SimCheck: An Expressive Type System for Simulink

    NASA Technical Reports Server (NTRS)

    Roy, Pritam; Shankar, Natarajan

    2010-01-01

    MATLAB Simulink is a member of a class of visual languages that are used for modeling and simulating physical and cyber-physical systems. A Simulink model consists of blocks with input and output ports connected using links that carry signals. We extend the type system of Simulink with annotations and dimensions/units associated with ports and links. These types can capture invariants on signals as well as relations between signals. We define a type-checker that checks the wellformedness of Simulink blocks with respect to these type annotations. The type checker generates proof obligations that are solved by SRI's Yices solver for satisfiability modulo theories (SMT). This translation can be used to detect type errors, demonstrate counterexamples, generate test cases, or prove the absence of type errors. Our work is an initial step toward the symbolic analysis of MATLAB Simulink models.

  4. Explaining neural signals in human visual cortex with an associative learning model.

    PubMed

    Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias

    2012-08-01

    "Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.

  5. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals ByUsing Microsoft Visual C Sharp.

    PubMed

    Younessi Heravi, M A; Khalilzadeh, M A; Joharinia, S

    2014-03-01

    One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP) by sphygmomanometer cuff. Objective :In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device wasinserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET ) was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  6. Motion correction for improved estimation of heart rate using a visual spectrum camera

    NASA Astrophysics Data System (ADS)

    Tarbox, Elizabeth A.; Rios, Christian; Kaur, Balvinder; Meyer, Shaun; Hirt, Lauren; Tran, Vy; Scott, Kaitlyn; Ikonomidou, Vasiliki

    2017-05-01

    Heart rate measurement using a visual spectrum recording of the face has drawn interest over the last few years as a technology that can have various health and security applications. In our previous work, we have shown that it is possible to estimate the heart beat timing accurately enough to perform heart rate variability analysis for contactless stress detection. However, a major confounding factor in this approach is the presence of movement, which can interfere with the measurements. To mitigate the effects of movement, in this work we propose the use of face detection and tracking based on the Karhunen-Loewe algorithm in order to counteract measurement errors introduced by normal subject motion, as expected during a common seated conversation setting. We analyze the requirements on image acquisition for the algorithm to work, and its performance under different ranges of motion, changes of distance to the camera, as well and the effect of illumination changes due to different positioning with respect to light sources on the acquired signal. Our results suggest that the effect of face tracking on visual-spectrum based cardiac signal estimation depends on the amplitude of the motion. While for larger-scale conversation-induced motion it can significantly improve estimation accuracy, with smaller-scale movements, such as the ones caused by breathing or talking without major movement errors in facial tracking may interfere with signal estimation. Overall, employing facial tracking is a crucial step in adapting this technology to real-life situations with satisfactory results.

  7. Multimodal assessment of visual attention using the Bethesda Eye & Attention Measure (BEAM).

    PubMed

    Ettenhofer, Mark L; Hershaw, Jamie N; Barry, David M

    2016-01-01

    Computerized cognitive tests measuring manual response time (RT) and errors are often used in the assessment of visual attention. Evidence suggests that saccadic RT and errors may also provide valuable information about attention. This study was conducted to examine a novel approach to multimodal assessment of visual attention incorporating concurrent measurements of saccadic eye movements and manual responses. A computerized cognitive task, the Bethesda Eye & Attention Measure (BEAM) v.34, was designed to evaluate key attention networks through concurrent measurement of saccadic and manual RT and inhibition errors. Results from a community sample of n = 54 adults were analyzed to examine effects of BEAM attention cues on manual and saccadic RT and inhibition errors, internal reliability of BEAM metrics, relationships between parallel saccadic and manual metrics, and relationships of BEAM metrics to demographic characteristics. Effects of BEAM attention cues (alerting, orienting, interference, gap, and no-go signals) were consistent with previous literature examining key attention processes. However, corresponding saccadic and manual measurements were weakly related to each other, and only manual measurements were related to estimated verbal intelligence or years of education. This study provides preliminary support for the feasibility of multimodal assessment of visual attention using the BEAM. Results suggest that BEAM saccadic and manual metrics provide divergent measurements. Additional research will be needed to obtain comprehensive normative data, to cross-validate BEAM measurements with other indicators of neural and cognitive function, and to evaluate the utility of these metrics within clinical populations of interest.

  8. Control and prediction components of movement planning in stuttering vs. nonstuttering adults

    PubMed Central

    Daliri, Ayoub; Prokopenko, Roman A.; Flanagan, J. Randall; Max, Ludo

    2014-01-01

    Purpose Stuttering individuals show speech and nonspeech sensorimotor deficiencies. To perform accurate movements, the sensorimotor system needs to generate appropriate control signals and correctly predict their sensory consequences. Using a reaching task, we examined the integrity of these control and prediction components, separately, for movements unrelated to the speech motor system. Method Nine stuttering and nine nonstuttering adults made fast reaching movements to visual targets while sliding an object under the index finger. To quantify control, we determined initial direction error and end-point error. To quantify prediction, we calculated the correlation between vertical and horizontal forces applied to the object—an index of how well vertical force (preventing slip) anticipated direction-dependent variations in horizontal force (moving the object). Results Directional and end-point error were significantly larger for the stuttering group. Both groups performed similarly in scaling vertical force with horizontal force. Conclusions The stuttering group's reduced reaching accuracy suggests limitations in generating control signals for voluntary movements, even for non-orofacial effectors. Typical scaling of vertical force with horizontal force suggests an intact ability to predict the consequences of planned control signals. Stuttering may be associated with generalized deficiencies in planning control signals rather than predicting the consequences of those signals. PMID:25203459

  9. Effects of local myopic defocus on refractive development in monkeys.

    PubMed

    Smith, Earl L; Hung, Li-Fang; Huang, Juan; Arumugam, Baskar

    2013-11-01

    Visual signals that produce myopia are mediated by local, regionally selective mechanisms. However, little is known about spatial integration for signals that slow eye growth. The purpose of this study was to determine whether the effects of myopic defocus are integrated in a local manner in primates. Beginning at 24 ± 2 days of age, seven rhesus monkeys were reared with monocular spectacles that produced 3 diopters (D) of relative myopic defocus in the nasal visual field of the treated eye but allowed unrestricted vision in the temporal field (NF monkeys). Seven monkeys were reared with monocular +3 D lenses that produced relative myopic defocus across the entire field of view (FF monkeys). Comparison data from previous studies were available for 11 control monkeys, 8 monkeys that experienced 3 D of hyperopic defocus in the nasal field, and 6 monkeys exposed to 3 D of hyperopic defocus across the entire field. Refractive development, corneal power, and axial dimensions were assessed at 2- to 4-week intervals using retinoscopy, keratometry, and ultrasonography, respectively. Eye shape was assessed using magnetic resonance imaging. In response to full-field myopic defocus, the FF monkeys developed compensating hyperopic anisometropia, the degree of which was relatively constant across the horizontal meridian. In contrast, the NF monkeys exhibited compensating hyperopic changes in refractive error that were greatest in the nasal visual field. The changes in the pattern of peripheral refractions in the NF monkeys reflected interocular differences in vitreous chamber shape. As with form deprivation and hyperopic defocus, the effects of myopic defocus are mediated by mechanisms that integrate visual signals in a local, regionally selective manner in primates. These results are in agreement with the hypothesis that peripheral vision can influence eye shape and potentially central refractive error in a manner that is independent of central visual experience.

  10. Direct evidence for a position input to the smooth pursuit system.

    PubMed

    Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe

    2005-07-01

    When objects move in our environment, the orientation of the visual axis in space requires the coordination of two types of eye movements: saccades and smooth pursuit. The principal input to the saccadic system is position error, whereas it is velocity error for the smooth pursuit system. Recently, it has been shown that catch-up saccades to moving targets are triggered and programmed by using velocity error in addition to position error. Here, we show that, when a visual target is flashed during ongoing smooth pursuit, it evokes a smooth eye movement toward the flash. The velocity of this evoked smooth movement is proportional to the position error of the flash; it is neither influenced by the velocity of the ongoing smooth pursuit eye movement nor by the occurrence of a saccade, but the effect is absent if the flash is ignored by the subject. Furthermore, the response started around 85 ms after the flash presentation and decayed with an average time constant of 276 ms. Thus this is the first direct evidence of a position input to the smooth pursuit system. This study shows further evidence for a coupling between saccadic and smooth pursuit systems. It also suggests that there is an interaction between position and velocity error signals in the control of more complex movements.

  11. Chaos based encryption system for encrypting electroencephalogram signals.

    PubMed

    Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De

    2014-05-01

    In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.

  12. Utility of an Occupational Therapy Driving Intervention for a Combat Veteran

    PubMed Central

    Monahan, Miriam; Canonizado, Maria; Winter, Sandra

    2014-01-01

    Many combat veterans are injured in motor vehicle crashes shortly after returning to civilian life, yet little evidence exists on effective driving interventions. In this single-subject design study, we compared clinical test results and driving errors in a returning combat veteran before and after an occupational therapy driving intervention. A certified driving rehabilitation specialist administered baseline clinical and simulated driving assessments; conducted three intervention sessions that discussed driving errors, retrained visual search skills, and invited commentary on driving; and administered a postintervention evaluation in conditions resembling those at baseline. Clinical test results were similar pre- and postintervention. Baseline versus postintervention driving errors were as follows: lane maintenance, 23 versus 7; vehicle positioning, 5 versus 1; signaling, 2 versus 0; speed regulation, 1 versus 1; visual scanning, 1 versus 0; and gap acceptance, 1 versus 0. Although the intervention appeared efficacious for this participant, threats to validity must be recognized and controlled for in a follow-up study. PMID:25005503

  13. Temporal and spatial localization of prediction-error signals in the visual brain.

    PubMed

    Johnston, Patrick; Robinson, Jonathan; Kokkinakis, Athanasios; Ridgeway, Samuel; Simpson, Michael; Johnson, Sam; Kaufman, Jordy; Young, Andrew W

    2017-04-01

    It has been suggested that the brain pre-empts changes in the environment through generating predictions, although real-time electrophysiological evidence of prediction violations in the domain of visual perception remain elusive. In a series of experiments we showed participants sequences of images that followed a predictable implied sequence or whose final image violated the implied sequence. Through careful design we were able to use the same final image transitions across predictable and unpredictable conditions, ensuring that any differences in neural responses were due only to preceding context and not to the images themselves. EEG and MEG recordings showed that early (N170) and mid-latency (N300) visual evoked potentials were robustly modulated by images that violated the implied sequence across a range of types of image change (expression deformations, rigid-rotations and visual field location). This modulation occurred irrespective of stimulus object category. Although the stimuli were static images, MEG source reconstruction of the early latency signal (N/M170) localized expectancy violation signals to brain areas associated with motion perception. Our findings suggest that the N/M170 can index mismatches between predicted and actual visual inputs in a system that predicts trajectories based on ongoing context. More generally we suggest that the N/M170 may reflect a "family" of brain signals generated across widespread regions of the visual brain indexing the resolution of top-down influences and incoming sensory data. This has important implications for understanding the N/M170 and investigating how the brain represents context to generate perceptual predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Rotational wind indicator enhances control of rotated displays

    NASA Technical Reports Server (NTRS)

    Cunningham, H. A.; Pavel, Misha

    1991-01-01

    Rotation by 108 deg of the spatial mapping between a visual display and a manual input device produces large spatial errors in a discrete aiming task. These errors are not easily corrected by voluntary mental effort, but the central nervous system does adapt gradually to the new mapping. Bernotat (1970) showed that adding true hand position to a 90 deg rotated display improved performance of a compensatory tracking task, but tracking error rose again upon removal of the explicit cue. This suggests that the explicit error signal did not induce changes in the neural mapping, but rather allowed the operator to reduce tracking error using a higher mental strategy. In this report, we describe an explicit visual display enhancement applied to a 108 deg rotated discrete aiming task. A 'wind indicator' corresponding to the effect of the mapping rotation is displayed on the operator-controlled cursor. The human operator is instructed to oppose the virtual force represented by the indicator, as one would do if flying an airplane in a crosswind. This enhancement reduces spatial aiming error in the first 10 minutes of practice by an average of 70 percent when compared to a no enhancement control condition. Moreover, it produces adaptation aftereffect, which is evidence of learning by neural adaptation rather than by mental strategy. Finally, aiming error does not rise upon removal of the explicit cue.

  15. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series.

    PubMed

    Bahaz, Mohamed; Benzid, Redha

    2018-03-01

    Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.

  16. 6-Hydroxy dopamine does not affect lens-induced refractive errors but suppresses deprivation myopia.

    PubMed

    Schaeffel, F; Hagel, G; Bartmann, M; Kohler, K; Zrenner, E

    1994-01-01

    Degradation of the retinal image by translucent occluders during postnatal development induces axial myopia in chickens, tree shrews and monkeys. Local visual deprivation produces myopia even in local regions of the eye and neither accommodation nor intact connection between the eye and the brain are necessary. Therefore, it is an important question whether a similar local-retinal pathway translating visual information into growth or stretch signals to the underlying sclera is acting to emmetropize the growing eye. It is not known until now whether occluder deprivation triggers similar eye growth (or scleral stretch) mechanisms that are also responsible for visual guidance of normal refractive development. We here report that, in chickens, 6-hydroxy dopamine suppresses deprivation-induced myopia but has no effect on the magnitude of changes in axial eye elongation that are induced by spectacle lenses. The result suggests that, in chickens with normal accommodation, two pharmacologically different feedback loops may be responsible for deprivation myopia and lens-induced refractive errors.

  17. Turbine flowmeter vs. Fleisch pneumotachometer: a comparative study for exercise testing.

    PubMed

    Yeh, M P; Adams, T D; Gardner, R M; Yanowitz, F G

    1987-09-01

    The purpose of this study was to investigate the characteristics of a newly developed turbine flowmeter (Alpha Technologies, model VMM-2) for use in an exercise testing system by comparing its measurement of expiratory flow (VE), O2 uptake (VO2), and CO2 output (VCO2) with the Fleisch pneumotachometer. An IBM PC/AT-based breath-by-breath system was developed, with turbine flowmeter and dual-Fleisch pneumotachometers connected in series. A normal subject was tested twice at rest, 100-W, and 175-W of exercise. Expired gas of 24-32 breaths was collected in a Douglas bag. VE was within 4% accuracy for both flowmeter systems. The Fleisch pneumotachometer system had 5% accuracy for VO2 and VCO2 at rest and exercise. The turbine flowmeter system had up to 20% error for VO2 and VCO2 at rest. Errors decreased as work load increased. Visual observations of the flow curves revealed the turbine signal always lagged the Fleisch signal at the beginning of inspiration or expiration. At the end of inspiration or expiration, the turbine signal continued after the Fleisch signal had returned to zero. The "lag-before-start" and "spin-after-stop" effects of the turbine flowmeter resulted in larger than acceptable error for the VO2 and VCO2 measurements at low flow rates.

  18. Expansion of visual space during optokinetic afternystagmus (OKAN).

    PubMed

    Kaminiarz, André; Krekelberg, Bart; Bremmer, Frank

    2008-05-01

    The mechanisms underlying visual perceptual stability are usually investigated using voluntary eye movements. In such studies, errors in perceptual stability during saccades and pursuit are commonly interpreted as mismatches between actual eye position and eye-position signals in the brain. The generality of this interpretation could in principle be tested by investigating spatial localization during reflexive eye movements whose kinematics are very similar to those of voluntary eye movements. Accordingly, in this study, we determined mislocalization of flashed visual targets during optokinetic afternystagmus (OKAN). These eye movements are quite unique in that they occur in complete darkness and are generated by subcortical control mechanisms. We found that during horizontal OKAN slow phases, subjects mislocalize targets away from the fovea in the horizontal direction. This corresponds to a perceived expansion of visual space and is unlike mislocalization found for any other voluntary or reflexive eye movement. Around the OKAN fast phases, we found a bias in the direction of the fast phase prior to its onset and opposite to the fast-phase direction thereafter. Such a biphasic modulation has also been reported in the temporal vicinity of saccades and during optokinetic nystagmus (OKN). A direct comparison, however, showed that the modulation during OKAN was much larger and occurred earlier relative to fast-phase onset than during OKN. A simple mismatch between the current eye position and the eye-position signal in the brain is unlikely to explain such disparate results across similar eye movements. Instead, these data support the view that mislocalization arises from errors in eye-centered position information.

  19. Alteration of a motor learning rule under mirror-reversal transformation does not depend on the amplitude of visual error.

    PubMed

    Kasuga, Shoko; Kurata, Makiko; Liu, Meigen; Ushiba, Junichi

    2015-05-01

    Human's sophisticated motor learning system paradoxically interferes with motor performance when visual information is mirror-reversed (MR), because normal movement error correction further aggravates the error. This error-increasing mechanism makes performing even a simple reaching task difficult, but is overcome by alterations in the error correction rule during the trials. To isolate factors that trigger learners to change the error correction rule, we manipulated the gain of visual angular errors when participants made arm-reaching movements with mirror-reversed visual feedback, and compared the rule alteration timing between groups with normal or reduced gain. Trial-by-trial changes in the visual angular error was tracked to explain the timing of the change in the error correction rule. Under both gain conditions, visual angular errors increased under the MR transformation, and suddenly decreased after 3-5 trials with increase. The increase became degressive at different amplitude between the two groups, nearly proportional to the visual gain. The findings suggest that the alteration of the error-correction rule is not dependent on the amplitude of visual angular errors, and possibly determined by the number of trials over which the errors increased or statistical property of the environment. The current results encourage future intensive studies focusing on the exact rule-change mechanism. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  20. The impact of command signal power distribution, processing delays, and speed scaling on neurally-controlled devices.

    PubMed

    Marathe, A R; Taylor, D M

    2015-08-01

    Decoding algorithms for brain-machine interfacing (BMI) are typically only optimized to reduce the magnitude of decoding errors. Our goal was to systematically quantify how four characteristics of BMI command signals impact closed-loop performance: (1) error magnitude, (2) distribution of different frequency components in the decoding errors, (3) processing delays, and (4) command gain. To systematically evaluate these different command features and their interactions, we used a closed-loop BMI simulator where human subjects used their own wrist movements to command the motion of a cursor to targets on a computer screen. Random noise with three different power distributions and four different relative magnitudes was added to the ongoing cursor motion in real time to simulate imperfect decoding. These error characteristics were tested with four different visual feedback delays and two velocity gains. Participants had significantly more trouble correcting for errors with a larger proportion of low-frequency, slow-time-varying components than they did with jittery, higher-frequency errors, even when the error magnitudes were equivalent. When errors were present, a movement delay often increased the time needed to complete the movement by an order of magnitude more than the delay itself. Scaling down the overall speed of the velocity command can actually speed up target acquisition time when low-frequency errors and delays are present. This study is the first to systematically evaluate how the combination of these four key command signal features (including the relatively-unexplored error power distribution) and their interactions impact closed-loop performance independent of any specific decoding method. The equations we derive relating closed-loop movement performance to these command characteristics can provide guidance on how best to balance these different factors when designing BMI systems. The equations reported here also provide an efficient way to compare a diverse range of decoding options offline.

  1. The impact of command signal power distribution, processing delays, and speed scaling on neurally-controlled devices

    NASA Astrophysics Data System (ADS)

    Marathe, A. R.; Taylor, D. M.

    2015-08-01

    Objective. Decoding algorithms for brain-machine interfacing (BMI) are typically only optimized to reduce the magnitude of decoding errors. Our goal was to systematically quantify how four characteristics of BMI command signals impact closed-loop performance: (1) error magnitude, (2) distribution of different frequency components in the decoding errors, (3) processing delays, and (4) command gain. Approach. To systematically evaluate these different command features and their interactions, we used a closed-loop BMI simulator where human subjects used their own wrist movements to command the motion of a cursor to targets on a computer screen. Random noise with three different power distributions and four different relative magnitudes was added to the ongoing cursor motion in real time to simulate imperfect decoding. These error characteristics were tested with four different visual feedback delays and two velocity gains. Main results. Participants had significantly more trouble correcting for errors with a larger proportion of low-frequency, slow-time-varying components than they did with jittery, higher-frequency errors, even when the error magnitudes were equivalent. When errors were present, a movement delay often increased the time needed to complete the movement by an order of magnitude more than the delay itself. Scaling down the overall speed of the velocity command can actually speed up target acquisition time when low-frequency errors and delays are present. Significance. This study is the first to systematically evaluate how the combination of these four key command signal features (including the relatively-unexplored error power distribution) and their interactions impact closed-loop performance independent of any specific decoding method. The equations we derive relating closed-loop movement performance to these command characteristics can provide guidance on how best to balance these different factors when designing BMI systems. The equations reported here also provide an efficient way to compare a diverse range of decoding options offline.

  2. Match graph generation for symbolic indirect correlation

    NASA Astrophysics Data System (ADS)

    Lopresti, Daniel; Nagy, George; Joshi, Ashutosh

    2006-01-01

    Symbolic indirect correlation (SIC) is a new approach for bringing lexical context into the recognition of unsegmented signals that represent words or phrases in printed or spoken form. One way of viewing the SIC problem is to find the correspondence, if one exists, between two bipartite graphs, one representing the matching of the two lexical strings and the other representing the matching of the two signal strings. While perfect matching cannot be expected with real-world signals and while some degree of mismatch is allowed for in the second stage of SIC, such errors, if they are too numerous, can present a serious impediment to a successful implementation of the concept. In this paper, we describe a framework for evaluating the effectiveness of SIC match graph generation and examine the relatively simple, controlled cases of synthetic images of text strings typeset, both normally and in highly condensed fashion. We quantify and categorize the errors that arise, as well as present a variety of techniques we have developed to visualize the intermediate results of the SIC process.

  3. Mesolimbic confidence signals guide perceptual learning in the absence of external feedback

    PubMed Central

    Guggenmos, Matthias; Wilbertz, Gregor; Hebart, Martin N; Sterzer, Philipp

    2016-01-01

    It is well established that learning can occur without external feedback, yet normative reinforcement learning theories have difficulties explaining such instances of learning. Here, we propose that human observers are capable of generating their own feedback signals by monitoring internal decision variables. We investigated this hypothesis in a visual perceptual learning task using fMRI and confidence reports as a measure for this monitoring process. Employing a novel computational model in which learning is guided by confidence-based reinforcement signals, we found that mesolimbic brain areas encoded both anticipation and prediction error of confidence—in remarkable similarity to previous findings for external reward-based feedback. We demonstrate that the model accounts for choice and confidence reports and show that the mesolimbic confidence prediction error modulation derived through the model predicts individual learning success. These results provide a mechanistic neurobiological explanation for learning without external feedback by augmenting reinforcement models with confidence-based feedback. DOI: http://dx.doi.org/10.7554/eLife.13388.001 PMID:27021283

  4. The absence or temporal offset of visual feedback does not influence adaptation to novel movement dynamics.

    PubMed

    McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M

    2017-10-01

    Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of 1 ) delayed and 2 ) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information. Copyright © 2017 the American Physiological Society.

  5. Improving the color fidelity of cameras for advanced television systems

    NASA Astrophysics Data System (ADS)

    Kollarits, Richard V.; Gibbon, David C.

    1992-08-01

    In this paper we compare the accuracy of the color information obtained from television cameras using three and five wavelength bands. This comparison is based on real digital camera data. The cameras are treated as colorimeters whose characteristics are not linked to that of the display. The color matrices for both cameras were obtained by identical optimization procedures that minimized the color error The color error for the five band camera is 2. 5 times smaller than that obtained from the three band camera. Visual comparison of color matches on a characterized color monitor indicate that the five band camera is capable of color measurements that produce no significant visual error on the display. Because the outputs from the five band camera are reduced to the normal three channels conventionally used for display there need be no increase in signal handling complexity outside the camera. Likewise it is possible to construct a five band camera using only three sensors as in conventional cameras. The principal drawback of the five band camera is the reduction in effective camera sensitivity by about 3/4 of an I stop. 1.

  6. Effects of divided attention and operating room noise on perception of pulse oximeter pitch changes: a laboratory study.

    PubMed

    Stevenson, Ryan A; Schlesinger, Joseph J; Wallace, Mark T

    2013-02-01

    Anesthesiology requires performing visually oriented procedures while monitoring auditory information about a patient's vital signs. A concern in operating room environments is the amount of competing information and the effects that divided attention has on patient monitoring, such as detecting auditory changes in arterial oxygen saturation via pulse oximetry. The authors measured the impact of visual attentional load and auditory background noise on the ability of anesthesia residents to monitor the pulse oximeter auditory display in a laboratory setting. Accuracies and response times were recorded reflecting anesthesiologists' abilities to detect changes in oxygen saturation across three levels of visual attention in quiet and with noise. Results show that visual attentional load substantially affects the ability to detect changes in oxygen saturation concentrations conveyed by auditory cues signaling 99 and 98% saturation. These effects are compounded by auditory noise, up to a 17% decline in performance. These deficits are seen in the ability to accurately detect a change in oxygen saturation and in speed of response. Most anesthesia accidents are initiated by small errors that cascade into serious events. Lack of monitor vigilance and inattention are two of the more commonly cited factors. Reducing such errors is thus a priority for improving patient safety. Specifically, efforts to reduce distractors and decrease background noise should be considered during induction and emergence, periods of especially high risk, when anesthesiologists has to attend to many tasks and are thus susceptible to error.

  7. Hybrid Speaker Recognition Using Universal Acoustic Model

    NASA Astrophysics Data System (ADS)

    Nishimura, Jun; Kuroda, Tadahiro

    We propose a novel speaker recognition approach using a speaker-independent universal acoustic model (UAM) for sensornet applications. In sensornet applications such as “Business Microscope”, interactions among knowledge workers in an organization can be visualized by sensing face-to-face communication using wearable sensor nodes. In conventional studies, speakers are detected by comparing energy of input speech signals among the nodes. However, there are often synchronization errors among the nodes which degrade the speaker recognition performance. By focusing on property of the speaker's acoustic channel, UAM can provide robustness against the synchronization error. The overall speaker recognition accuracy is improved by combining UAM with the energy-based approach. For 0.1s speech inputs and 4 subjects, speaker recognition accuracy of 94% is achieved at the synchronization error less than 100ms.

  8. What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor

    PubMed Central

    Takamuku, Shinya; Gomi, Hiroaki

    2015-01-01

    How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the ‘inverse’ computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. PMID:26156766

  9. SINGLE NEURON ACTIVITY AND THETA MODULATION IN POSTRHINAL CORTEX DURING VISUAL OBJECT DISCRIMINATION

    PubMed Central

    Furtak, Sharon C.; Ahmed, Omar J.; Burwell, Rebecca D.

    2012-01-01

    Postrhinal cortex, the rodent homolog of the primate parahippocampal cortex, processes spatial and contextual information. Our hypothesis of postrhinal function is that it serves to encode context, in part, by forming representations that link objects to places. We recorded postrhinal neuronal activity and local field potentials (LFPs) in rats trained on a two-choice, visual discrimination task. As predicted, a large proportion of postrhinal neurons signaled object-location conjunctions. In addition, postrhinal LFPs exhibited strong oscillatory rhythms in the theta band, and many postrhinal neurons were phase locked to theta. Although correlated with running speed, theta power was lower than predicted by speed alone immediately before and after choice. However, theta power was significantly increased following incorrect decisions, suggesting a role in signaling error. These findings provide evidence that postrhinal cortex encodes representations that link objects to places and suggest that postrhinal theta modulation extends to cognitive as well as spatial functions. PMID:23217745

  10. Effects of VDT workstation lighting conditions on operator visual workload.

    PubMed

    Lin, Chiuhsiang Joe; Feng, Wen-Yang; Chao, Chin-Jung; Tseng, Feng-Yi

    2008-04-01

    Industrial lighting covers a wide range of different characteristics of working interiors and work tasks. This study investigated the effects of illumination on visual workload in visual display terminal (VDT) workstation. Ten college students (5 males and 5 females) were recruited as participants to perform VDT signal detection tasks. A randomized block design was utilized with four light colors (red, blue, green and white), two ambient illumination levels (20 lux and 340 lux), with the subject as the block. The dependent variables were the change of critical fusion frequency (CFF), visual acuity, reaction time of targets detection, error rates, and rating scores in a subjective questionnaire. The study results showed that both visual acuity and the subjective visual fatigue were significantly affected by the color of light. The illumination had significant effect on CFF threshold change and reaction time. Subjects prefer to perform VDT task under blue and white lights than green and red. Based on these findings, the study discusses and suggests ways of color lighting and ambient illumination to promote operators' visual performance and prevent visual fatigue effectively.

  11. Seeing Your Error Alters My Pointing: Observing Systematic Pointing Errors Induces Sensori-Motor After-Effects

    PubMed Central

    Ronchi, Roberta; Revol, Patrice; Katayama, Masahiro; Rossetti, Yves; Farnè, Alessandro

    2011-01-01

    During the procedure of prism adaptation, subjects execute pointing movements to visual targets under a lateral optical displacement: As consequence of the discrepancy between visual and proprioceptive inputs, their visuo-motor activity is characterized by pointing errors. The perception of such final errors triggers error-correction processes that eventually result into sensori-motor compensation, opposite to the prismatic displacement (i.e., after-effects). Here we tested whether the mere observation of erroneous pointing movements, similar to those executed during prism adaptation, is sufficient to produce adaptation-like after-effects. Neurotypical participants observed, from a first-person perspective, the examiner's arm making incorrect pointing movements that systematically overshot visual targets location to the right, thus simulating a rightward optical deviation. Three classical after-effect measures (proprioceptive, visual and visual-proprioceptive shift) were recorded before and after first-person's perspective observation of pointing errors. Results showed that mere visual exposure to an arm that systematically points on the right-side of a target (i.e., without error correction) produces a leftward after-effect, which mostly affects the observer's proprioceptive estimation of her body midline. In addition, being exposed to such a constant visual error induced in the observer the illusion “to feel” the seen movement. These findings indicate that it is possible to elicit sensori-motor after-effects by mere observation of movement errors. PMID:21731649

  12. Estimation of errors in luminance signals encoded by primate retina resulting from sampling of natural images with red and green cones.

    PubMed

    Osorio, D; Ruderman, D L; Cronin, T W

    1998-01-01

    Both long-wavelength-sensitive (L) and medium-wavelength-sensitive (M) cones contribute to luminance mechanisms in human vision. This means that luminance and chromatic signals may be confounded. We use power spectra from natural images to estimate the magnitude of the corruption of luminance signals encoded by an array of retinal ganglion cells resembling the primate magnocellular neurons. The magnitude of this corruption is dependent on the cone lattice and is most severe where cones form clumps of a single spectral type. We find that chromatic corruption may equal or exceed the amplitude of other sources of noise and so could impose constraints on visual performance and on eye design.

  13. Three-dimensional holoscopic image coding scheme using high-efficiency video coding with kernel-based minimum mean-square-error estimation

    NASA Astrophysics Data System (ADS)

    Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai

    2016-07-01

    Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.

  14. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on.

    PubMed

    Moors, Pieter

    2015-01-01

    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  15. Audio visual speech source separation via improved context dependent association model

    NASA Astrophysics Data System (ADS)

    Kazemi, Alireza; Boostani, Reza; Sobhanmanesh, Fariborz

    2014-12-01

    In this paper, we exploit the non-linear relation between a speech source and its associated lip video as a source of extra information to propose an improved audio-visual speech source separation (AVSS) algorithm. The audio-visual association is modeled using a neural associator which estimates the visual lip parameters from a temporal context of acoustic observation frames. We define an objective function based on mean square error (MSE) measure between estimated and target visual parameters. This function is minimized for estimation of the de-mixing vector/filters to separate the relevant source from linear instantaneous or time-domain convolutive mixtures. We have also proposed a hybrid criterion which uses AV coherency together with kurtosis as a non-Gaussianity measure. Experimental results are presented and compared in terms of visually relevant speech detection accuracy and output signal-to-interference ratio (SIR) of source separation. The suggested audio-visual model significantly improves relevant speech classification accuracy compared to existing GMM-based model and the proposed AVSS algorithm improves the speech separation quality compared to reference ICA- and AVSS-based methods.

  16. Perception of the dynamic visual vertical during sinusoidal linear motion.

    PubMed

    Pomante, A; Selen, L P J; Medendorp, W P

    2017-10-01

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the disambiguation of linear acceleration and spatial orientation. We discuss the dynamics of these illusory percepts in terms of a dynamic Bayesian model that combines uncertainty in the vestibular signals with priors based on the natural statistics of head motion. Copyright © 2017 the American Physiological Society.

  17. Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets

    PubMed Central

    Mizunami, Makoto; Matsumoto, Yukihisa

    2017-01-01

    Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of “blocking” and “auto-blocking” phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals. PMID:29311961

  18. Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets.

    PubMed

    Mizunami, Makoto; Matsumoto, Yukihisa

    2017-01-01

    Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of "blocking" and "auto-blocking" phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals.

  19. eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.

    PubMed

    Sbrollini, Agnese; Agostinelli, Angela; Marcantoni, Ilaria; Morettini, Micaela; Burattini, Luca; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2018-03-01

    Cardiotocography (CTG), consisting in the simultaneous recording of fetal heart rate (FHR) and maternal uterine contractions (UC), is a popular clinical test to assess fetal health status. Typically, CTG machines provide paper reports that are visually interpreted by clinicians. Consequently, visual CTG interpretation depends on clinician's experience and has a poor reproducibility. The lack of databases containing digital CTG signals has limited number and importance of retrospective studies finalized to set up procedures for automatic CTG analysis that could contrast visual CTG interpretation subjectivity. In order to help overcoming this problem, this study proposes an electronic procedure, termed eCTG, to extract digital CTG signals from digital CTG images, possibly obtainable by scanning paper CTG reports. eCTG was specifically designed to extract digital CTG signals from digital CTG images. It includes four main steps: pre-processing, Otsu's global thresholding, signal extraction and signal calibration. Its validation was performed by means of the "CTU-UHB Intrapartum Cardiotocography Database" by Physionet, that contains digital signals of 552 CTG recordings. Using MATLAB, each signal was plotted and saved as a digital image that was then submitted to eCTG. Digital CTG signals extracted by eCTG were eventually compared to corresponding signals directly available in the database. Comparison occurred in terms of signal similarity (evaluated by the correlation coefficient ρ, and the mean signal error MSE) and clinical features (including FHR baseline and variability; number, amplitude and duration of tachycardia, bradycardia, acceleration and deceleration episodes; number of early, variable, late and prolonged decelerations; and UC number, amplitude, duration and period). The value of ρ between eCTG and reference signals was 0.85 (P < 10 -560 ) for FHR and 0.97 (P < 10 -560 ) for UC. On average, MSE value was 0.00 for both FHR and UC. No CTG feature was found significantly different when measured in eCTG vs. reference signals. eCTG procedure is a promising useful tool to accurately extract digital FHR and UC signals from digital CTG images. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Signed reward prediction errors drive declarative learning

    PubMed Central

    Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning–a quintessentially human form of learning–remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; “better-than-expected” signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli. PMID:29293493

  1. Signed reward prediction errors drive declarative learning.

    PubMed

    De Loof, Esther; Ergo, Kate; Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.

  2. A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes.

    PubMed

    Erdeniz, Burak; Rohe, Tim; Done, John; Seidler, Rachael D

    2013-01-01

    Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called "model-based" functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes.

  3. Learning a visuomotor rotation: simultaneous visual and proprioceptive information is crucial for visuomotor remapping.

    PubMed

    Shabbott, Britne A; Sainburg, Robert L

    2010-05-01

    Visuomotor adaptation is mediated by errors between intended and sensory-detected arm positions. However, it is not clear whether visual-based errors that are shown during the course of motion lead to qualitatively different or more efficient adaptation than errors shown after movement. For instance, continuous visual feedback mediates online error corrections, which may facilitate or inhibit the adaptation process. We addressed this question by manipulating the timing of visual error information and task instructions during a visuomotor adaptation task. Subjects were exposed to a visuomotor rotation, during which they received continuous visual feedback (CF) of hand position with instructions to correct or not correct online errors, or knowledge-of-results (KR), provided as a static hand-path at the end of each trial. Our results showed that all groups improved performance with practice, and that online error corrections were inconsequential to the adaptation process. However, in contrast to the CF groups, the KR group showed relatively small reductions in mean error with practice, increased inter-trial variability during rotation exposure, and more limited generalization across target distances and workspace. Further, although the KR group showed improved performance with practice, after-effects were minimal when the rotation was removed. These findings suggest that simultaneous visual and proprioceptive information is critical in altering neural representations of visuomotor maps, although delayed error information may elicit compensatory strategies to offset perturbations.

  4. What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor.

    PubMed

    Takamuku, Shinya; Gomi, Hiroaki

    2015-07-22

    How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the 'inverse' computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Reconstruction of lightning channel geometry by localizing thunder sources

    NASA Astrophysics Data System (ADS)

    Bodhika, J. A. P.; Dharmarathna, W. G. D.; Fernando, Mahendra; Cooray, Vernon

    2013-09-01

    Thunder is generated as a result of a shock wave created by sudden expansion of air in the lightning channel due to high temperature variations. Even though the highest amplitudes of thunder signatures are generated at the return stroke stage, thunder signals generated at other events such as preliminary breakdown pulses also can be of amplitudes which are large enough to record using a sensitive system. In this study, it was attempted to reconstruct the lightning channel geometry of cloud and ground flashes by locating the temporal and spatial variations of thunder sources. Six lightning flashes were reconstructed using the recorded thunder signatures. Possible effects due to atmospheric conditions were neglected. Numerical calculations suggest that the time resolution of the recorded signal and 10 ms-1error in speed of sound leads to 2% and 3% errors, respectively, in the calculated coordinates. Reconstructed channel geometries for cloud and ground flashes agreed with the visual observations. Results suggest that the lightning channel can be successfully reconstructed using this technique.

  6. A potential risk of overestimating apparent diffusion coefficient in parotid glands.

    PubMed

    Liu, Yi-Jui; Lee, Yi-Hsiung; Chang, Hing-Chiu; Huang, Teng-Yi; Chiu, Hui-Chu; Wang, Chih-Wei; Chiou, Ta-Wei; Hsu, Kang; Juan, Chun-Jung; Huang, Guo-Shu; Hsu, Hsian-He

    2015-01-01

    To investigate transient signal loss on diffusion weighted images (DWI) and overestimation of apparent diffusion coefficient (ADC) in parotid glands using single shot echoplanar DWI (EPDWI). This study enrolled 6 healthy subjects and 7 patients receiving radiotherapy. All participants received dynamic EPDWI with a total of 8 repetitions. Imaging quality of DWI was evaluated. Probability of severe overestimation of ADC (soADC), defined by an ADC ratio more than 1.2, was calculated. Error on T2WI, DWI, and ADC was computed. Statistical analysis included paired Student t testing and Mann-Whitney U test. A P value less than 0.05 was considered statistically significant. Transient signal loss was visually detected on some excitations of DWI but not on T2WI or mean DWI. soADC occurred randomly among 8 excitations and 3 directions of diffusion encoding gradients. Probability of soADC was significantly higher in radiotherapy group (42.86%) than in healthy group (24.39%). The mean error percentage decreased as the number of excitations increased on all images, and, it was smallest on T2WI, followed by DWI and ADC in an increasing order. Transient signal loss on DWI was successfully detected by dynamic EPDWI. The signal loss on DWI and overestimation of ADC could be partially remedied by increasing the number of excitations.

  7. Task relevance modulates the behavioural and neural effects of sensory predictions

    PubMed Central

    Friston, Karl J.; Nobre, Anna C.

    2017-01-01

    The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. PMID:29206225

  8. Doing molecular biophysics: finding, naming, and picturing signal within complexity.

    PubMed

    Richardson, Jane S; Richardson, David C

    2013-01-01

    A macromolecular structure, as measured data or as a list of coordinates or even on-screen as a full atomic model, is an extremely complex and confusing object. The underlying rules of how it folds, moves, and interacts as a biological entity are even less evident or intuitive to the human mind. To do science on such molecules, or to relate them usefully to higher levels of biology, we need to start with a natural history that names their features in meaningful ways and with multiple representations (visual or algebraic) that show some aspect of their organizing principles. The two of us have jointly enjoyed a highly varied and engrossing career in biophysical research over nearly 50 years. Our frequent changes of emphasis are tied together by two threads: first, by finding the right names, visualizations, and methods to help both ourselves and others to better understand the 3D structures of protein and RNA molecules, and second, by redefining the boundary between signal and noise for complex data, in both directions-sometimes identifying and promoting real signal up out of what seemed just noise, and sometimes demoting apparent signal into noise or systematic error. Here we relate parts of our scientific and personal lives, including ups and downs, influences, anecdotes, and guiding principles such as the title theme.

  9. Eye-Hand Synergy and Intermittent Behaviors during Target-Directed Tracking with Visual and Non-visual Information

    PubMed Central

    Huang, Chien-Ting; Hwang, Ing-Shiou

    2012-01-01

    Visual feedback and non-visual information play different roles in tracking of an external target. This study explored the respective roles of the visual and non-visual information in eleven healthy volunteers who coupled the manual cursor to a rhythmically moving target of 0.5 Hz under three sensorimotor conditions: eye-alone tracking (EA), eye-hand tracking with visual feedback of manual outputs (EH tracking), and the same tracking without such feedback (EHM tracking). Tracking error, kinematic variables, and movement intermittency (saccade and speed pulse) were contrasted among tracking conditions. The results showed that EHM tracking exhibited larger pursuit gain, less tracking error, and less movement intermittency for the ocular plant than EA tracking. With the vision of manual cursor, EH tracking achieved superior tracking congruency of the ocular and manual effectors with smaller movement intermittency than EHM tracking, except that the rate precision of manual action was similar for both types of tracking. The present study demonstrated that visibility of manual consequences altered mutual relationships between movement intermittency and tracking error. The speed pulse metrics of manual output were linked to ocular tracking error, and saccade events were time-locked to the positional error of manual tracking during EH tracking. In conclusion, peripheral non-visual information is critical to smooth pursuit characteristics and rate control of rhythmic manual tracking. Visual information adds to eye-hand synchrony, underlying improved amplitude control and elaborate error interpretation during oculo-manual tracking. PMID:23236498

  10. Driving Errors in Parkinson’s Disease: Moving Closer to Predicting On-Road Outcomes

    PubMed Central

    Brumback, Babette; Monahan, Miriam; Malaty, Irene I.; Rodriguez, Ramon L.; Okun, Michael S.; McFarland, Nikolaus R.

    2014-01-01

    Age-related medical conditions such as Parkinson’s disease (PD) compromise driver fitness. Results from studies are unclear on the specific driving errors that underlie passing or failing an on-road assessment. In this study, we determined the between-group differences and quantified the on-road driving errors that predicted pass or fail on-road outcomes in 101 drivers with PD (mean age = 69.38 ± 7.43) and 138 healthy control (HC) drivers (mean age = 71.76 ± 5.08). Participants with PD had minor differences in demographics and driving habits and history but made more and different driving errors than HC participants. Drivers with PD failed the on-road test to a greater extent than HC drivers (41% vs. 9%), χ2(1) = 35.54, HC N = 138, PD N = 99, p < .001. The driving errors predicting on-road pass or fail outcomes (95% confidence interval, Nagelkerke R2 =.771) were made in visual scanning, signaling, vehicle positioning, speeding (mainly underspeeding, t(61) = 7.004, p < .001, and total errors. Although it is difficult to predict on-road outcomes, this study provides a foundation for doing so. PMID:24367958

  11. An information theory of image gathering

    NASA Technical Reports Server (NTRS)

    Fales, Carl L.; Huck, Friedrich O.

    1991-01-01

    Shannon's mathematical theory of communication is extended to image gathering. Expressions are obtained for the total information that is received with a single image-gathering channel and with parallel channels. It is concluded that the aliased signal components carry information even though these components interfere with the within-passband components in conventional image gathering and restoration, thereby degrading the fidelity and visual quality of the restored image. An examination of the expression for minimum mean-square-error, or Wiener-matrix, restoration from parallel image-gathering channels reveals a method for unscrambling the within-passband and aliased signal components to restore spatial frequencies beyond the sampling passband out to the spatial frequency response cutoff of the optical aperture.

  12. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion

    NASA Technical Reports Server (NTRS)

    Zivotofsky, A. Z.; Rottach, K. G.; Averbuch-Heller, L.; Kori, A. A.; Thomas, C. W.; Dell'Osso, L. F.; Leigh, R. J.

    1996-01-01

    1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the "memory period" (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the "spatial error" than with the "retinal error"; this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal error was greater than under any other experimental condition. 6. In most trials, the initial saccade to the remembered target was followed by additional saccades while the subject was still in darkness. These secondary saccades, which were executed in the absence of visual feedback, brought the eye closer to the target location. During paradigms involving horizontal background movement, these corrections were more prominent horizontally than vertically. 7. Further measurements were made in two subjects to determine whether inaccuracy of memory-guided saccades, in the horizontal plane, was due to mislocalization at the time that the target flashed, misrepresentation of the trajectory of the pursuit eye movement during the memory period, or both. 8. The magnitude of the saccadic error, both with and without corrections made in darkness, was mislocalized by approximately 30% of the displacement of the background at the time that the target flashed. The magnitude of the saccadic error also was influenced by net movement of the background during the memory period, corresponding to approximately 25% of net background movement for the initial saccade and approximately 13% for the final eye position achieved in darkness. 9. We formulated simple linear models to test specific hypotheses about which combinations of signals best describe the observed saccadic amplitudes. We tested the possibilities that the brain made an accurate memory of target location and a reliable representation of the eye movement during the memory period, or that one or both of these was corrupted by the illusory visual stimulus. Our data were best accounted for by a model in which both the working memory of target location and the internal representation of the horizontal eye movements were corrupted by the illusory visual stimulus. We conclude that extraretinal signals played only a minor role, in comparison with visual estimates of the direction of gaze, in planning eye movements to remembered targ.

  13. Parietal blood oxygenation level-dependent response evoked by covert visual search reflects set-size effect in monkeys.

    PubMed

    Atabaki, A; Marciniak, K; Dicke, P W; Karnath, H-O; Thier, P

    2014-03-01

    Distinguishing a target from distractors during visual search is crucial for goal-directed behaviour. The more distractors that are presented with the target, the larger is the subject's error rate. This observation defines the set-size effect in visual search. Neurons in areas related to attention and eye movements, like the lateral intraparietal area (LIP) and frontal eye field (FEF), diminish their firing rates when the number of distractors increases, in line with the behavioural set-size effect. Furthermore, human imaging studies that have tried to delineate cortical areas modulating their blood oxygenation level-dependent (BOLD) response with set size have yielded contradictory results. In order to test whether BOLD imaging of the rhesus monkey cortex yields results consistent with the electrophysiological findings and, moreover, to clarify if additional other cortical regions beyond the two hitherto implicated are involved in this process, we studied monkeys while performing a covert visual search task. When varying the number of distractors in the search task, we observed a monotonic increase in error rates when search time was kept constant as was expected if monkeys resorted to a serial search strategy. Visual search consistently evoked robust BOLD activity in the monkey FEF and a region in the intraparietal sulcus in its lateral and middle part, probably involving area LIP. Whereas the BOLD response in the FEF did not depend on set size, the LIP signal increased in parallel with set size. These results demonstrate the virtue of BOLD imaging in monkeys when trying to delineate cortical areas underlying a cognitive process like visual search. However, they also demonstrate the caution needed when inferring neural activity from BOLD activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. [Refractive errors as causes of visual impairment in children from public schools of the Botucatu region - SP].

    PubMed

    Oliveira, Claudia Akemi Shiratori de; Hisatomi, Kenia Scrocaro; Leite, Cristiano Pinheiro; Schellini, Silvana Artioli; Padovani, Carlos Roberto; Padovani, Carlos Roberto Pereira

    2009-01-01

    To evaluate the refractive errors as cause of visual impairment in school children from the Botucatu region. A sectional study was conducted evaluating preschool and elementary school students, according to gender, refractive error, visual acuity and treatment. Four thousand six hundred and twenty-three (4,623) children were submitted to visual acuity evaluation and 8.1% of them were submitted to complete ocular examination. There were 63.2% hyperopic astigmatism, 15.7% myopic astigmatism, 12.5% astigmatism, 4.9% hyperopia and 3.7% myopia. Corrective lenses were prescribed for 48.7% of the evaluated children. The most frequent refractive error was hyperopic astigmatism and 50% of the children received treatment. The frequency of refractive errors was 3.9% of the studied population.

  15. Reading color barcodes using visual snakes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, Hanspeter

    2004-05-01

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method,more » the numeric bar codes reveal if the target is right-side-up or up-side-down.« less

  16. Oscillatory Activity in the Medial Prefrontal Cortex and Nucleus Accumbens Correlates with Impulsivity and Reward Outcome

    PubMed Central

    Rich, P. Dylan; Nevado-Holgado, Alejo J.; Fernando, Anushka B. P.; Van Dijck, Gert; Holzhammer, Tobias; Paul, Oliver; Ruther, Patrick; Paulsen, Ole; Robbins, Trevor W.; Dalley, Jeffrey W.

    2014-01-01

    Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50–60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7–9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour. PMID:25333512

  17. [A delayed motor production of open chains of linear strokes presented visually in static and dynamic modes: a comparison between 9 to 11 years old children and adults].

    PubMed

    Antonova, A A; Absatova, K A; Korneev, A A; Kurgansky, A V

    2015-01-01

    The production of drawing movements was studied in 29 right-handed children of 9-to-11 years old. The movements were the sequences of horizontal and vertical linear stokes conjoined at right angle (open polygonal chains) referred to throughout the paper as trajectories. The length of a trajectory varied from 4 to 6. The trajectories were presented visually to a subject in static (linedrawing) and dynamic (moving cursor that leaves no trace) modes. The subjects were asked to draw (copy) a trajectory in response to delayed go-signal (short click) as fast as possible without lifting the pen. The production latency time, the average movement duration along a trajectory segment, and overall number of errors committed by a subject during trajectory production were analyzed. A comparison of children's data with similar data in adults (16 subjects) shows the following. First, a substantial reduction in error rate is observed in the age range between 9 and 11 years old for both static and dynamic modes of trajectory presentation, with children of 11 still committing more error than adults. Second, the averaged movement duration shortens with age while the latency time tends to increase. Third, unlike the adults, the children of 9-11 do not show any difference in latency time between static and dynamic modes of visual presentation of trajectories. The difference in trajectory production between adult and children is attributed to the predominant involvement of on-line programming in children and pre-programming in adults.

  18. Visual disability, visual function, and myopia among rural chinese secondary school children: the Xichang Pediatric Refractive Error Study (X-PRES)--report 1.

    PubMed

    Congdon, Nathan; Wang, Yunfei; Song, Yue; Choi, Kai; Zhang, Mingzhi; Zhou, Zhongxia; Xie, Zhenling; Li, Liping; Liu, Xueyu; Sharma, Abhishek; Wu, Bin; Lam, Dennis S C

    2008-07-01

    To evaluate visual acuity, visual function, and prevalence of refractive error among Chinese secondary-school children in a cross-sectional school-based study. Uncorrected, presenting, and best corrected visual acuity, cycloplegic autorefraction with refinement, and self-reported visual function were assessed in a random, cluster sample of rural secondary school students in Xichang, China. Among the 1892 subjects (97.3% of the consenting children, 84.7% of the total sample), mean age was 14.7 +/- 0.8 years, 51.2% were female, and 26.4% were wearing glasses. The proportion of children with uncorrected, presenting, and corrected visual disability (< or = 6/12 in the better eye) was 41.2%, 19.3%, and 0.5%, respectively. Myopia < -0.5, < -2.0, and < -6.0 D in both eyes was present in 62.3%, 31.1%, and 1.9% of the subjects, respectively. Among the children with visual disability when tested without correction, 98.7% was due to refractive error, while only 53.8% (414/770) of these children had appropriate correction. The girls had significantly (P < 0.001) more presenting visual disability and myopia < -2.0 D than did the boys. More myopic refractive error was associated with worse self-reported visual function (ANOVA trend test, P < 0.001). Visual disability in this population was common, highly correctable, and frequently uncorrected. The impact of refractive error on self-reported visual function was significant. Strategies and studies to understand and remove barriers to spectacle wear are needed.

  19. Error amplification to promote motor learning and motivation in therapy robotics.

    PubMed

    Shirzad, Navid; Van der Loos, H F Machiel

    2012-01-01

    To study the effects of different feedback error amplification methods on a subject's upper-limb motor learning and affect during a point-to-point reaching exercise, we developed a real-time controller for a robotic manipulandum. The reaching environment was visually distorted by implementing a thirty degrees rotation between the coordinate systems of the robot's end-effector and the visual display. Feedback error amplification was provided to subjects as they trained to learn reaching within the visually rotated environment. Error amplification was provided either visually or through both haptic and visual means, each method with two different amplification gains. Subjects' performance (i.e., trajectory error) and self-reports to a questionnaire were used to study the speed and amount of adaptation promoted by each error amplification method and subjects' emotional changes. We found that providing haptic and visual feedback promotes faster adaptation to the distortion and increases subjects' satisfaction with the task, leading to a higher level of attentiveness during the exercise. This finding can be used to design a novel exercise regimen, where alternating between error amplification methods is used to both increase a subject's motor learning and maintain a minimum level of motivational engagement in the exercise. In future experiments, we will test whether such exercise methods will lead to a faster learning time and greater motivation to pursue a therapy exercise regimen.

  20. Prevalence and risk factors of undercorrected refractive errors among Singaporean Malay adults: the Singapore Malay Eye Study.

    PubMed

    Rosman, Mohamad; Wong, Tien Y; Tay, Wan-Ting; Tong, Louis; Saw, Seang-Mei

    2009-08-01

    To describe the prevalence and the risk factors of undercorrected refractive error in an adult urban Malay population. This population-based, cross-sectional study was conducted in Singapore in 3280 Malay adults, aged 40 to 80 years. All individuals were examined at a centralized clinic and underwent standardized interviews and assessment of refractive errors and presenting and best corrected visual acuities. Distance presenting visual acuity was monocularly measured by using a logarithm of the minimum angle of resolution (logMAR) number chart at a distance of 4 m, with the participants wearing their "walk-in" optical corrections (spectacles or contact lenses), if any. Refraction was determined by subjective refraction by trained, certified study optometrists. Best corrected visual acuity was monocularly assessed and recorded in logMAR scores using the same test protocol as was used for presenting visual acuity. Undercorrected refractive error was defined as an improvement of at least 0.2 logMAR (2 lines equivalent) in the best corrected visual acuity compared with the presenting visual acuity in the better eye. The mean age of the subjects included in our study was 58 +/- 11 years, and 52% of the subjects were women. The prevalence rate of undercorrected refractive error among Singaporean Malay adults in our study (n = 3115) was 20.4% (age-standardized prevalence rate, 18.3%). More of the women had undercorrected refractive error than the men (21.8% vs. 18.8%, P = 0.04). Undercorrected refractive error was also more common in subjects older than 50 years than in subjects aged 40 to 49 years (22.6% vs. 14.3%, P < 0.001). Non-spectacle wearers were more likely to have undercorrected refractive errors than were spectacle wearers (24.4% vs. 14.4%, P < 0.001). Persons with primary school education or less were 1.89 times (P = 0.03) more likely to have undercorrected refractive errors than those with post-secondary school education or higher. In contrast, persons with a history of eye disease were 0.74 times (P = 0.003) less likely to have undercorrected refractive errors. The proportion of undercorrected refractive error among the Singaporean Malay adults with refractive errors was higher than that of the Singaporean Chinese adults with refractive errors. Undercorrected refractive error is a significant cause of correctable visual impairment among Singaporean Malay adults, affecting one in five persons.

  1. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gupta, Amit; Shaina, Nagpal

    2017-08-01

    Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.

  2. Manual method of visually identifying candidate signals for a targeted peptide.

    PubMed

    Filimonov, Aleksey; Kopylov, Arthur; Lisitsa, Andrey; Archakov, Alexander

    2018-04-15

    The purpose of this study is to improve peptide signal identification in groups of extracted ion chromatograms (XICs) obtained with the liquid chromatography-selected reaction monitoring (LC-SRM) technique and a triple quadrupole mass spectrometer (QqQ) operating in one of the supported multiple reaction monitoring (MRM) modes. The imperfection of quadrupole mass analyzers causes ion interference, which impedes the identification of peptide signals as chromatographic peak groups in relevant retention time intervals. To investigate this problem in depth, the QqQ conversion of the eluate into XIC groups was considered as the consecutive transformations of the particles' abundances as the corresponding functions of retention time. In this study, the hypothesis that, during this conversion, the same chromatographic profile should be preserved as an implicit sign in each chromatographic peak of the signal was confirmed for peptides. To examine chromatographic profiles, continuous transformations of XIC groups were derived and implemented in srm2prot Express software (s2pe, http://msr.ibmc.msk.ru/s2pe). Because of ion interference, several peptide-like signals may appear in one XIC group. Therefore, these signals must be considered candidates for a targeted peptide's signal and should be resolved after identification. The theoretical investigation of intensity functions as XICs that are not distorted by noise produced three rules for Identifying Candidate Signals for a targeted Peptide (ICSP, http://msr.ibmc.msk.ru/ICSP) that constitute the proposed manual visual method. We theoretically and experimentally compared this method with the conventional semiempirical intuitive technique and found that the former significantly streamlines peptide signal identification and avoids typical errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A feasibility study on estimation of tissue mixture contributions in 3D arterial spin labeling sequence

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Pu, Huangsheng; Zhang, Xi; Li, Baojuan; Liang, Zhengrong; Lu, Hongbing

    2017-03-01

    Arterial spin labeling (ASL) provides a noninvasive measurement of cerebral blood flow (CBF). Due to relatively low spatial resolution, the accuracy of CBF measurement is affected by the partial volume (PV) effect. To obtain accurate CBF estimation, the contribution of each tissue type in the mixture is desirable. In general, this can be obtained according to the registration of ASL and structural image in current ASL studies. This approach can obtain probability of each tissue type inside each voxel, but it also introduces error, which include error of registration algorithm and imaging itself error in scanning of ASL and structural image. Therefore, estimation of mixture percentage directly from ASL data is greatly needed. Under the assumption that ASL signal followed the Gaussian distribution and each tissue type is independent, a maximum a posteriori expectation-maximization (MAP-EM) approach was formulated to estimate the contribution of each tissue type to the observed perfusion signal at each voxel. Considering the sensitivity of MAP-EM to the initialization, an approximately accurate initialization was obtain using 3D Fuzzy c-means method. Our preliminary results demonstrated that the GM and WM pattern across the perfusion image can be sufficiently visualized by the voxel-wise tissue mixtures, which may be promising for the diagnosis of various brain diseases.

  4. A concept for a visual computer interface to make error taxonomies useful at the point of primary care.

    PubMed

    Singh, Ranjit; Pace, Wilson; Singh, Sonjoy; Singh, Ashok; Singh, Gurdev

    2007-01-01

    Evidence suggests that the quality of care delivered by the healthcare industry currently falls far short of its capabilities. Whilst most patient safety and quality improvement work to date has focused on inpatient settings, some estimates suggest that outpatient settings are equally important, with up to 200,000 avoidable deaths annually in the United States of America (USA) alone. There is currently a need for improved error reporting and taxonomy systems that are useful at the point of care. This provides an opportunity to harness the benefits of computer visualisation to help structure and illustrate the 'stories' behind errors. In this paper we present a concept for a visual taxonomy of errors, based on visual models of the healthcare system at both macrosystem and microsystem levels (previously published in this journal), and describe how this could be used to create a visual database of errors. In an alphatest in a US context, we were able to code a sample of 20 errors from an existing error database using the visual taxonomy. The approach is designed to capture and disseminate patient safety information in an unambiguous format that is useful to all members of the healthcare team (including the patient) at the point of care as well as at the policy-making level.

  5. What You Don't Notice Can Harm You: Age-Related Differences in Detecting Concurrent Visual, Auditory, and Tactile Cues.

    PubMed

    Pitts, Brandon J; Sarter, Nadine

    2018-06-01

    Objective This research sought to determine whether people can perceive and process three nonredundant (and unrelated) signals in vision, hearing, and touch at the same time and how aging and concurrent task demands affect this ability. Background Multimodal displays have been shown to improve multitasking and attention management; however, their potential limitations are not well understood. The majority of studies on multimodal information presentation have focused on the processing of only two concurrent and, most often, redundant cues by younger participants. Method Two experiments were conducted in which younger and older adults detected and responded to a series of singles, pairs, and triplets of visual, auditory, and tactile cues in the absence (Experiment 1) and presence (Experiment 2) of an ongoing simulated driving task. Detection rates, response times, and driving task performance were measured. Results Compared to younger participants, older adults showed longer response times and higher error rates in response to cues/cue combinations. Older participants often missed the tactile cue when three cues were combined. They sometimes falsely reported the presence of a visual cue when presented with a pair of auditory and tactile signals. Driving performance suffered most in the presence of cue triplets. Conclusion People are more likely to miss information if more than two concurrent nonredundant signals are presented to different sensory channels. Application The findings from this work help inform the design of multimodal displays and ensure their usefulness across different age groups and in various application domains.

  6. Refractive Errors Affect the Vividness of Visual Mental Images

    PubMed Central

    Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia

    2013-01-01

    The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception. PMID:23755186

  7. Refractive errors affect the vividness of visual mental images.

    PubMed

    Palermo, Liana; Nori, Raffaella; Piccardi, Laura; Zeri, Fabrizio; Babino, Antonio; Giusberti, Fiorella; Guariglia, Cecilia

    2013-01-01

    The hypothesis that visual perception and mental imagery are equivalent has never been explored in individuals with vision defects not preventing the visual perception of the world, such as refractive errors. Refractive error (i.e., myopia, hyperopia or astigmatism) is a condition where the refracting system of the eye fails to focus objects sharply on the retina. As a consequence refractive errors cause blurred vision. We subdivided 84 individuals according to their spherical equivalent refraction into Emmetropes (control individuals without refractive errors) and Ametropes (individuals with refractive errors). Participants performed a vividness task and completed a questionnaire that explored their cognitive style of thinking before their vision was checked by an ophthalmologist. Although results showed that Ametropes had less vivid mental images than Emmetropes this did not affect the development of their cognitive style of thinking; in fact, Ametropes were able to use both verbal and visual strategies to acquire and retrieve information. Present data are consistent with the hypothesis of equivalence between imagery and perception.

  8. Color extended visual cryptography using error diffusion.

    PubMed

    Kang, InKoo; Arce, Gonzalo R; Lee, Heung-Kyu

    2011-01-01

    Color visual cryptography (VC) encrypts a color secret message into n color halftone image shares. Previous methods in the literature show good results for black and white or gray scale VC schemes, however, they are not sufficient to be applied directly to color shares due to different color structures. Some methods for color visual cryptography are not satisfactory in terms of producing either meaningless shares or meaningful shares with low visual quality, leading to suspicion of encryption. This paper introduces the concept of visual information pixel (VIP) synchronization and error diffusion to attain a color visual cryptography encryption method that produces meaningful color shares with high visual quality. VIP synchronization retains the positions of pixels carrying visual information of original images throughout the color channels and error diffusion generates shares pleasant to human eyes. Comparisons with previous approaches show the superior performance of the new method.

  9. Delayed visual attention caused by high myopic refractive error.

    PubMed

    Winges, Kimberly M; Zarpellon, Ursula; Hou, Chuan; Good, William V

    2005-06-01

    Delayed visual maturation (DVM) is usually a retrospective diagnosis given to infants who are born with no or poor visually-directed behavior, despite normal acuity on objective testing, but who recover months later. This condition can be organized into several types based on associated neurodevelopmental or ocular findings, but the etiology of DVM is probably complex and involves multiple possible origins. Here we report two infants who presented with delayed visual maturation (attention). They were visually unresponsive at birth but were later found to have high myopic errors. Patient 1 had -4 D right eye, -5 D left eye. Patient 2 had -9 D o.u. Upon spectacle correction at 5 and 4 months, respectively, both infants immediately displayed visually-directed behavior, suggesting that a high refractive error was the cause of inattention in these patients. These findings could add to knowledge surrounding DVM and the diagnosis of apparently blind infants. Findings presented here also indicate the importance of prompt refractive error measurement in such cases.

  10. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004

    PubMed Central

    Pascolini, Donatella; Mariotti, Silvio P; Pokharel, Gopal P

    2008-01-01

    Abstract Estimates of the prevalence of visual impairment caused by uncorrected refractive errors in 2004 have been determined at regional and global levels for people aged 5 years and over from recent published and unpublished surveys. The estimates were based on the prevalence of visual acuity of less than 6/18 in the better eye with the currently available refractive correction that could be improved to equal to or better than 6/18 by refraction or pinhole. A total of 153 million people (range of uncertainty: 123 million to 184 million) are estimated to be visually impaired from uncorrected refractive errors, of whom eight million are blind. This cause of visual impairment has been overlooked in previous estimates that were based on best-corrected vision. Combined with the 161 million people visually impaired estimated in 2002 according to best-corrected vision, 314 million people are visually impaired from all causes: uncorrected refractive errors become the main cause of low vision and the second cause of blindness. Uncorrected refractive errors can hamper performance at school, reduce employability and productivity, and generally impair quality of life. Yet the correction of refractive errors with appropriate spectacles is among the most cost-effective interventions in eye health care. The results presented in this paper help to unearth a formerly hidden problem of public health dimensions and promote policy development and implementation, programmatic decision-making and corrective interventions, as well as stimulate research. PMID:18235892

  11. Magnetic Nanoparticle Thermometer: An Investigation of Minimum Error Transmission Path and AC Bias Error

    PubMed Central

    Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing

    2015-01-01

    The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188

  12. Headaches associated with refractive errors: myth or reality?

    PubMed

    Gil-Gouveia, R; Martins, I P

    2002-04-01

    Headache and refractive errors are very common conditions in the general population, and those with headache often attribute their pain to a visual problem. The International Headache Society (IHS) criteria for the classification of headache includes an entity of headache associated with refractive errors (HARE), but indicates that its importance is widely overestimated. To compare overall headache frequency and HARE frequency in healthy subjects with uncorrected or miscorrected refractive errors and a control group. We interviewed 105 individuals with uncorrected refractive errors and a control group of 71 subjects (with properly corrected or without refractive errors) regarding their headache history. We compared the occurrence of headache and its diagnosis in both groups and assessed its relation to their habits of visual effort and type of refractive errors. Headache frequency was similar in both subjects and controls. Headache associated with refractive errors was the only headache type significantly more common in subjects with refractive errors than in controls (6.7% versus 0%). It was associated with hyperopia and was unrelated to visual effort or to the severity of visual error. With adequate correction, 72.5% of the subjects with headache and refractive error reported improvement in their headaches, and 38% had complete remission of headache. Regardless of the type of headache present, headache frequency was significantly reduced in these subjects (t = 2.34, P =.02). Headache associated with refractive errors was rarely identified in individuals with refractive errors. In those with chronic headache, proper correction of refractive errors significantly improved headache complaints and did so primarily by decreasing the frequency of headache episodes.

  13. Spatial asymmetry in tactile sensor skin deformation aids perception of edge orientation during haptic exploration.

    PubMed

    Ponce Wong, Ruben D; Hellman, Randall B; Santos, Veronica J

    2014-01-01

    Upper-limb amputees rely primarily on visual feedback when using their prostheses to interact with others or objects in their environment. A constant reliance upon visual feedback can be mentally exhausting and does not suffice for many activities when line-of-sight is unavailable. Upper-limb amputees could greatly benefit from the ability to perceive edges, one of the most salient features of 3D shape, through touch alone. We present an approach for estimating edge orientation with respect to an artificial fingertip through haptic exploration using a multimodal tactile sensor on a robot hand. Key parameters from the tactile signals for each of four exploratory procedures were used as inputs to a support vector regression model. Edge orientation angles ranging from -90 to 90 degrees were estimated with an 85-input model having an R (2) of 0.99 and RMS error of 5.08 degrees. Electrode impedance signals provided the most useful inputs by encoding spatially asymmetric skin deformation across the entire fingertip. Interestingly, sensor regions that were not in direct contact with the stimulus provided particularly useful information. Methods described here could pave the way for semi-autonomous capabilities in prosthetic or robotic hands during haptic exploration, especially when visual feedback is unavailable.

  14. Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics.

    PubMed

    Shao, Feng; Lin, Weisi; Gu, Shanbo; Jiang, Gangyi; Srikanthan, Thambipillai

    2013-05-01

    Perceptual quality assessment is a challenging issue in 3D signal processing research. It is important to study 3D signal directly instead of studying simple extension of the 2D metrics directly to the 3D case as in some previous studies. In this paper, we propose a new perceptual full-reference quality assessment metric of stereoscopic images by considering the binocular visual characteristics. The major technical contribution of this paper is that the binocular perception and combination properties are considered in quality assessment. To be more specific, we first perform left-right consistency checks and compare matching error between the corresponding pixels in binocular disparity calculation, and classify the stereoscopic images into non-corresponding, binocular fusion, and binocular suppression regions. Also, local phase and local amplitude maps are extracted from the original and distorted stereoscopic images as features in quality assessment. Then, each region is evaluated independently by considering its binocular perception property, and all evaluation results are integrated into an overall score. Besides, a binocular just noticeable difference model is used to reflect the visual sensitivity for the binocular fusion and suppression regions. Experimental results show that compared with the relevant existing metrics, the proposed metric can achieve higher consistency with subjective assessment of stereoscopic images.

  15. Visual judgements of steadiness in one-legged stance: reliability and validity.

    PubMed

    Haupstein, T; Goldie, P

    2000-01-01

    There is a paucity of information about the validity and reliability of clinicians' visual judgements of steadiness in one-legged stance. Such judgements are used frequently in clinical practice to support decisions about treatment in the fields of neurology, sports medicine, paediatrics and orthopaedics. The aim of the present study was to address the validity and reliability of visual judgements of steadiness in one-legged stance in a group of physiotherapists. A videotape of 20 five-second performances was shown to 14 physiotherapists with median clinical experience of 6.75 years. Validity of visual judgement was established by correlating scores obtained from an 11-point rating scale with criterion scores obtained from a force platform. In addition, partial correlations were used to control for the potential influence of body weight on the relationship between the visual judgements and criterion scores. Inter-observer reliability was quantified between the physiotherapists; intra-observer reliability was quantified between two tests four weeks apart. Mean criterion-related validity was high, regardless of whether body weight was controlled for statistically (Pearson's r = 0.84, 0.83, respectively). The standard error of estimating the criterion score was 3.3 newtons. Inter-observer reliability was high (ICC (2,1) = 0.81 at Test 1 and 0.82 at Test 2). Intra-observer reliability was high (on average ICC (2,1) = 0.88; Pearson's r = 0.90). The standard error of measurement for the 11-point scale was one unit. The finding of higher accuracy of making visual judgements than previously reported may be due to several aspects of design: use of a criterion score derived from the variability of the force signal which is more discriminating than variability of centre of pressure; use of a discriminating visual rating scale; specificity and clear definition of the phenomenon to be rated.

  16. Cleared for the visual approach: Human factor problems in air carrier operations

    NASA Technical Reports Server (NTRS)

    Monan, W. P.

    1983-01-01

    The study described herein, a set of 353 ASRS reports of unique aviation occurrences significantly involving visual approaches was examined to identify hazards and pitfalls embedded in the visual approach procedure and to consider operational practices that might help avoid future mishaps. Analysis of the report set identified nine aspects of the visual approach procedure that appeared to be predisposing conditions for inducing or exacerbating the effects of operational errors by flight crew members or controllers. Predisposing conditions, errors, and operational consequences of the errors are discussed. In a summary, operational policies that might mitigate the problems are examined.

  17. Nurses' Behaviors and Visual Scanning Patterns May Reduce Patient Identification Errors

    ERIC Educational Resources Information Center

    Marquard, Jenna L.; Henneman, Philip L.; He, Ze; Jo, Junghee; Fisher, Donald L.; Henneman, Elizabeth A.

    2011-01-01

    Patient identification (ID) errors occurring during the medication administration process can be fatal. The aim of this study is to determine whether differences in nurses' behaviors and visual scanning patterns during the medication administration process influence their capacities to identify patient ID errors. Nurse participants (n = 20)…

  18. Visual impairment and spectacle use in schoolchildren in rural and urban regions in Beijing.

    PubMed

    Guo, Yin; Liu, Li Juan; Xu, Liang; Lv, Yan Yun; Tang, Ping; Feng, Yi; Meng, Lei; Jonas, Jost B

    2014-01-01

    To determine prevalence and associations of visual impairment and frequency of spectacle use among grade 1 and grade 4 students in Beijing. This school-based, cross-sectional study included 382 grade 1 children (age 6.3 ± 0.5 years) and 299 grade 4 children (age 9.4 ± 0.7 years) who underwent a comprehensive eye examination including visual acuity, noncycloplegic refractometry, and ocular biometry. Presenting visual acuity (mean 0.04 ± 0.17 logMAR) was associated with younger age (p = 0.002), hyperopic refractive error (p<0.001), and male sex (p = 0.03). Presenting visual impairment (presenting visual acuity ≤20/40 in the better eye) was found in 44 children (prevalence 6.64 ± 1.0% [95% confidence interval (CI) 4.74, 8.54]). Mean best-corrected visual acuity (right eyes -0.02 ± 0.04 logMAR) was associated with more hyperopic refractive error (p = 0.03) and rural region of habitation (p<0.001). The prevalence of best-corrected visual impairment (best-corrected visual acuity ≤20/40 in the better eye) was 2/652 (0.30 ± 0.21% [95% CI 0.00, 0.72]). Undercorrection of refractive error was present in 53 children (7.99 ± 1.05%) and was associated with older age (p = 0.003; B 0.53; OR 1.71 [95% CI 1.20, 2.42]), myopic refractive error (p = 0.001; B -0.72; OR 0.49 [95% CI 0.35, 0.68]), and longer axial length (p = 0.002; B 0.74; OR 2.10 [95% CI 1.32, 3.32]). Spectacle use was reported for 54 children (8.14 ± 1.06%). Mean refractive error of the worse eyes of these children was -2.09 ± 2.88 D (range -7.38 to +7.25 D). Factors associated with presenting visual impairment were older age, myopic refractive error, and higher maternal education level. Despite a prevalence of myopia of 33% in young schoolchildren in Greater Beijing, prevalence of best-corrected visual impairment (0.30% ± 0.21%), presenting visual impairment (6.64% ± 1.0%), and undercorrection of refractive error (7.99% ± 1.05%) were relatively low.

  19. Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.

    PubMed

    Tanabe, Hiroki C; Honda, Manabu; Sadato, Norihiro

    2005-07-06

    To clarify the neural substrates and their dynamics during crossmodal association learning, we conducted functional magnetic resonance imaging (MRI) during audiovisual paired-association learning of delayed matching-to-sample tasks. Thirty subjects were involved in the study; 15 performed an audiovisual paired-association learning task, and the remainder completed a control visuo-visual task. Each trial consisted of the successive presentation of a pair of stimuli. Subjects were asked to identify predefined audiovisual or visuo-visual pairs by trial and error. Feedback for each trial was given regardless of whether the response was correct or incorrect. During the delay period, several areas showed an increase in the MRI signal as learning proceeded: crossmodal activity increased in unimodal areas corresponding to visual or auditory areas, and polymodal responses increased in the occipitotemporal junction and parahippocampal gyrus. This pattern was not observed in the visuo-visual intramodal paired-association learning task, suggesting that crossmodal associations might be formed by binding unimodal sensory areas via polymodal regions. In both the audiovisual and visuo-visual tasks, the MRI signal in the superior temporal sulcus (STS) in response to the second stimulus and feedback peaked during the early phase of learning and then decreased, indicating that the STS might be key to the creation of paired associations, regardless of stimulus type. In contrast to the activity changes in the regions discussed above, there was constant activity in the frontoparietal circuit during the delay period in both tasks, implying that the neural substrates for the formation and storage of paired associates are distinct from working memory circuits.

  20. A Visual-Based Approach for Indoor Radio Map Construction Using Smartphones.

    PubMed

    Liu, Tao; Zhang, Xing; Li, Qingquan; Fang, Zhixiang

    2017-08-04

    Localization of users in indoor spaces is a common issue in many applications. Among various technologies, a Wi-Fi fingerprinting based localization solution has attracted much attention, since it can be easily deployed using the existing off-the-shelf mobile devices and wireless networks. However, the collection of the Wi-Fi radio map is quite labor-intensive, which limits its potential for large-scale application. In this paper, a visual-based approach is proposed for the construction of a radio map in anonymous indoor environments. This approach collects multi-sensor data, e.g., Wi-Fi signals, video frames, inertial readings, when people are walking in indoor environments with smartphones in their hands. Then, it spatially recovers the trajectories of people by using both visual and inertial information. Finally, it estimates the location of fingerprints from the trajectories and constructs a Wi-Fi radio map. Experiment results show that the average location error of the fingerprints is about 0.53 m. A weighted k-nearest neighbor method is also used to evaluate the constructed radio map. The average localization error is about 3.2 m, indicating that the quality of the constructed radio map is at the same level as those constructed by site surveying. However, this approach can greatly reduce the human labor cost, which increases the potential for applying it to large indoor environments.

  1. Extended Kalman smoother with differential evolution technique for denoising of ECG signal.

    PubMed

    Panigrahy, D; Sahu, P K

    2016-09-01

    Electrocardiogram (ECG) signal gives a lot of information on the physiology of heart. In reality, noise from various sources interfere with the ECG signal. To get the correct information on physiology of the heart, noise cancellation of the ECG signal is required. In this paper, the effectiveness of extended Kalman smoother (EKS) with the differential evolution (DE) technique for noise cancellation of the ECG signal is investigated. DE is used as an automatic parameter selection method for the selection of ten optimized components of the ECG signal, and those are used to create the ECG signal according to the real ECG signal. These parameters are used by the EKS for the development of the state equation and also for initialization of the parameters of EKS. EKS framework is used for denoising the ECG signal from the single channel. The effectiveness of proposed noise cancellation technique has been evaluated by adding white, colored Gaussian noise and real muscle artifact noise at different SNR to some visually clean ECG signals from the MIT-BIH arrhythmia database. The proposed noise cancellation technique of ECG signal shows better signal to noise ratio (SNR) improvement, lesser mean square error (MSE) and percent of distortion (PRD) compared to other well-known methods.

  2. Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.

    PubMed

    Montagnini, Anna; Spering, Miriam; Masson, Guillaume S

    2006-12-01

    Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.

  3. Novel detection method for chemiluminescence derived from the Kinase-Glo luminescent kinase assay platform: Advantages over traditional microplate luminometers.

    PubMed

    Bell, Ryan A V; Storey, Kenneth B

    2014-01-01

    The efficacy of cellular signal transduction is of paramount importance for the proper functioning of a cell and an organism as a whole. Protein kinases are responsible for much of this transmission and thus have been the focal point of extensive research. While there are numerous commercially available protein kinase assays, the Kinase-Glo luminescent kinase assay (Promega) provides an easy-to-use and high throughput platform for determining protein kinase activity. This assay is said to require the use of a microplate spectrophotometer capable of detecting a luminescent signal. This study shows that:•The ChemiGenius Bioimaging system (Syngene), typically used for visualizing chemiluminescence from Western blots, provides an alternative detection system for Kinase-Glo luminescence.•The novel detection system confers an advantage over traditional luminometers, in that it allows visualization of the luminescent wells, which allows for the real-time analysis and correction of experimental errors (i.e. bubble formation).•Determining kinase kinetics using this detection system produced comparable results to previous studies on the same enzyme (i.e. glycogen synthase kinase 3).

  4. Caffeine Increases the Linearity of the Visual BOLD Response

    PubMed Central

    Liu, Thomas T.; Liau, Joy

    2009-01-01

    Although the blood oxygenation level dependent (BOLD) signal used in most functional magnetic resonance imaging (fMRI) studies has been shown to exhibit nonlinear characteristics, most analyses assume that the BOLD signal responds in a linear fashion to stimulus. This assumption of linearity can lead to errors in the estimation of the BOLD response, especially for rapid event-related fMRI studies. In this study, we used a rapid event-related design and Volterra kernel analysis to assess the effect of a 200 mg oral dose of caffeine on the linearity of the visual BOLD response. The caffeine dose significantly (p < 0.02) increased the linearity of the BOLD response in a sample of 11 healthy volunteers studied on a 3 Tesla MRI system. In addition, the agreement between nonlinear and linear estimates of the hemodynamic response function was significantly increased (p= 0.013) with the caffeine dose. These findings indicate that differences in caffeine usage should be considered as a potential source of bias in the analysis of rapid event-related fMRI studies. PMID:19854278

  5. A signal detection-item response theory model for evaluating neuropsychological measures.

    PubMed

    Thomas, Michael L; Brown, Gregory G; Gur, Ruben C; Moore, Tyler M; Patt, Virginie M; Risbrough, Victoria B; Baker, Dewleen G

    2018-02-05

    Models from signal detection theory are commonly used to score neuropsychological test data, especially tests of recognition memory. Here we show that certain item response theory models can be formulated as signal detection theory models, thus linking two complementary but distinct methodologies. We then use the approach to evaluate the validity (construct representation) of commonly used research measures, demonstrate the impact of conditional error on neuropsychological outcomes, and evaluate measurement bias. Signal detection-item response theory (SD-IRT) models were fitted to recognition memory data for words, faces, and objects. The sample consisted of U.S. Infantry Marines and Navy Corpsmen participating in the Marine Resiliency Study. Data comprised item responses to the Penn Face Memory Test (PFMT; N = 1,338), Penn Word Memory Test (PWMT; N = 1,331), and Visual Object Learning Test (VOLT; N = 1,249), and self-report of past head injury with loss of consciousness. SD-IRT models adequately fitted recognition memory item data across all modalities. Error varied systematically with ability estimates, and distributions of residuals from the regression of memory discrimination onto self-report of past head injury were positively skewed towards regions of larger measurement error. Analyses of differential item functioning revealed little evidence of systematic bias by level of education. SD-IRT models benefit from the measurement rigor of item response theory-which permits the modeling of item difficulty and examinee ability-and from signal detection theory-which provides an interpretive framework encompassing the experimentally validated constructs of memory discrimination and response bias. We used this approach to validate the construct representation of commonly used research measures and to demonstrate how nonoptimized item parameters can lead to erroneous conclusions when interpreting neuropsychological test data. Future work might include the development of computerized adaptive tests and integration with mixture and random-effects models.

  6. Stimfit: quantifying electrophysiological data with Python

    PubMed Central

    Guzman, Segundo J.; Schlögl, Alois; Schmidt-Hieber, Christoph

    2013-01-01

    Intracellular electrophysiological recordings provide crucial insights into elementary neuronal signals such as action potentials and synaptic currents. Analyzing and interpreting these signals is essential for a quantitative understanding of neuronal information processing, and requires both fast data visualization and ready access to complex analysis routines. To achieve this goal, we have developed Stimfit, a free software package for cellular neurophysiology with a Python scripting interface and a built-in Python shell. The program supports most standard file formats for cellular neurophysiology and other biomedical signals through the Biosig library. To quantify and interpret the activity of single neurons and communication between neurons, the program includes algorithms to characterize the kinetics of presynaptic action potentials and postsynaptic currents, estimate latencies between pre- and postsynaptic events, and detect spontaneously occurring events. We validate and benchmark these algorithms, give estimation errors, and provide sample use cases, showing that Stimfit represents an efficient, accessible and extensible way to accurately analyze and interpret neuronal signals. PMID:24600389

  7. Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1993-01-01

    Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.

  8. Encoder fault analysis system based on Moire fringe error signal

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Chen, Wei; Wan, Qiu-hua; Lu, Xin-ran; Xie, Chun-yu

    2018-02-01

    Aiming at the problem of any fault and wrong code in the practical application of photoelectric shaft encoder, a fast and accurate encoder fault analysis system is researched from the aspect of Moire fringe photoelectric signal processing. DSP28335 is selected as the core processor and high speed serial A/D converter acquisition card is used. And temperature measuring circuit using AD7420 is designed. Discrete data of Moire fringe error signal is collected at different temperatures and it is sent to the host computer through wireless transmission. The error signal quality index and fault type is displayed on the host computer based on the error signal identification method. The error signal quality can be used to diagnosis the state of error code through the human-machine interface.

  9. The Relationship of Error and Correction of Error in Oral Reading to Visual-Form Perception and Word Attack Skills.

    ERIC Educational Resources Information Center

    Clayman, Deborah P. Goldweber

    The ability of 100 second-grade boys and girls to self-correct oral reading errors was studied in relationship to visual-form perception, phonic skills, response speed, and reading level. Each child was tested individually with the Bender-Error Test, the Gray Oral Paragraphs, and the Roswell-Chall Diagnostic Reading Test and placed into a group of…

  10. Redundancy reduction explains the expansion of visual direction space around the cardinal axes.

    PubMed

    Perrone, John A; Liston, Dorion B

    2015-06-01

    Motion direction discrimination in humans is worse for oblique directions than for the cardinal directions (the oblique effect). For some unknown reason, the human visual system makes systematic errors in the estimation of particular motion directions; a direction displacement near a cardinal axis appears larger than it really is whereas the same displacement near an oblique axis appears to be smaller. Although the perceptual effects are robust and are clearly measurable in smooth pursuit eye movements, all attempts to identify the neural underpinnings for the oblique effect have failed. Here we show that a model of image velocity estimation based on the known properties of neurons in primary visual cortex (V1) and the middle temporal (MT) visual area of the primate brain produces the oblique effect. We also provide an explanation for the unusual asymmetric patterns of inhibition that have been found surrounding MT neurons. These patterns are consistent with a mechanism within the visual system that prevents redundant velocity signals from being passed onto the next motion-integration stage, (dorsal Medial superior temporal, MSTd). We show that model redundancy-reduction mechanisms within the MT-MSTd pathway produce the oblique effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Method and apparatus for detecting timing errors in a system oscillator

    DOEpatents

    Gliebe, Ronald J.; Kramer, William R.

    1993-01-01

    A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.

  12. Refractive errors.

    PubMed

    Schiefer, Ulrich; Kraus, Christina; Baumbach, Peter; Ungewiß, Judith; Michels, Ralf

    2016-10-14

    All over the world, refractive errors are among the most frequently occuring treatable distur - bances of visual function. Ametropias have a prevalence of nearly 70% among adults in Germany and are thus of great epidemiologic and socio-economic relevance. In the light of their own clinical experience, the authors review pertinent articles retrieved by a selective literature search employing the terms "ametropia, "anisometropia," "refraction," "visual acuity," and epidemiology." In 2011, only 31% of persons over age 16 in Germany did not use any kind of visual aid; 63.4% wore eyeglasses and 5.3% wore contact lenses. Refractive errors were the most common reason for consulting an ophthalmologist, accounting for 21.1% of all outpatient visits. A pinhole aperture (stenopeic slit) is a suitable instrument for the basic diagnostic evaluation of impaired visual function due to optical factors. Spherical refractive errors (myopia and hyperopia), cylindrical refractive errors (astigmatism), unequal refractive errors in the two eyes (anisometropia), and the typical optical disturbance of old age (presbyopia) cause specific functional limitations and can be detected by a physician who does not need to be an ophthalmologist. Simple functional tests can be used in everyday clinical practice to determine quickly, easily, and safely whether the patient is suffering from a benign and easily correctable type of visual impairment, or whether there are other, more serious underlying causes.

  13. Characteristics of Chinese-English bilingual dyslexia in right occipito-temporal lesion.

    PubMed

    Ting, Simon Kang Seng; Chia, Pei Shi; Chan, Yiong Huak; Kwek, Kevin Jun Hong; Tan, Wilnard; Hameed, Shahul; Tan, Eng-King

    2017-11-01

    Current literature suggests that right hemisphere lesions produce predominant spatial-related dyslexic error in English speakers. However, little is known regarding such lesions in Chinese speakers. In this paper, we describe the dyslexic characteristics of a Chinese-English bilingual patient with a right posterior cortical lesion. He was found to have profound spatial-related errors during his English word reading, in both real and non-words. During Chinese word reading, there was significantly less error compared to English, probably due to the ideographic nature of the Chinese language. He was also found to commit phonological-like visual errors in English, characterized by error responses that were visually similar to the actual word. There was no significant difference in visual errors during English word reading compared with Chinese. In general, our patient's performance in both languages appears to be consistent with the current literature on right posterior hemisphere lesions. Additionally, his performance also likely suggests that the right posterior cortical region participates in the visual analysis of orthographical word representation, both in ideographical and alphabetic languages, at least from a bilingual perspective. Future studies should further examine the role of the right posterior region in initial visual analysis of both languages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Handwriting Error Patterns of Children with Mild Motor Difficulties.

    ERIC Educational Resources Information Center

    Malloy-Miller, Theresa; And Others

    1995-01-01

    A test of handwriting legibility and 6 perceptual-motor tests were completed by 66 children ages 7-12. Among handwriting error patterns, execution was associated with visual-motor skill and sensory discrimination, aiming with visual-motor and fine-motor skills. The visual-spatial factor had no significant association with perceptual-motor…

  15. Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning.

    PubMed

    Roemmich, Ryan T; Long, Andrew W; Bastian, Amy J

    2016-10-24

    In human motor learning, it is thought that the more information we have about our errors, the faster we learn. Here, we show that additional error information can lead to improved motor performance without any concomitant improvement in learning. We studied split-belt treadmill walking that drives people to learn a new gait pattern using sensory prediction errors detected by proprioceptive feedback. When we also provided visual error feedback, participants acquired the new walking pattern far more rapidly and showed accelerated restoration of the normal walking pattern during washout. However, when the visual error feedback was removed during either learning or washout, errors reappeared with performance immediately returning to the level expected based on proprioceptive learning alone. These findings support a model with two mechanisms: a dual-rate adaptation process that learns invariantly from sensory prediction error detected by proprioception and a visual-feedback-dependent process that monitors learning and corrects residual errors but shows no learning itself. We show that our voluntary correction model accurately predicted behavior in multiple situations where visual feedback was used to change acquisition of new walking patterns while the underlying learning was unaffected. The computational and behavioral framework proposed here suggests that parallel learning and error correction systems allow us to rapidly satisfy task demands without necessarily committing to learning, as the relative permanence of learning may be inappropriate or inefficient when facing environments that are liable to change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. 33 CFR 175.130 - Visual distress signals accepted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Visual distress signals accepted... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.130 Visual distress signals accepted. (a) Any of the following signals, when carried in the number required, can be used to meet the...

  17. 33 CFR 175.130 - Visual distress signals accepted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Visual distress signals accepted... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.130 Visual distress signals accepted. (a) Any of the following signals, when carried in the number required, can be used to meet the...

  18. 33 CFR 175.130 - Visual distress signals accepted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Visual distress signals accepted... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.130 Visual distress signals accepted. (a) Any of the following signals, when carried in the number required, can be used to meet the...

  19. Modified fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1992-01-01

    A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.

  20. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    PubMed

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Adaptive control for accelerators

    DOEpatents

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  2. Eventogram: A Visual Representation of Main Events in Biomedical Signals.

    PubMed

    Elgendi, Mohamed

    2016-09-22

    Biomedical signals carry valuable physiological information and many researchers have difficulty interpreting and analyzing long-term, one-dimensional, quasi-periodic biomedical signals. Traditionally, biomedical signals are analyzed and visualized using periodogram, spectrogram, and wavelet methods. However, these methods do not offer an informative visualization of main events within the processed signal. This paper attempts to provide an event-related framework to overcome the drawbacks of the traditional visualization methods and describe the main events within the biomedical signal in terms of duration and morphology. Electrocardiogram and photoplethysmogram signals are used in the analysis to demonstrate the differences between the traditional visualization methods, and their performance is compared against the proposed method, referred to as the " eventogram " in this paper. The proposed method is based on two event-related moving averages that visualizes the main time-domain events in the processed biomedical signals. The traditional visualization methods were unable to find dominant events in processed signals while the eventogram was able to visualize dominant events in signals in terms of duration and morphology. Moreover, eventogram -based detection algorithms succeeded with detecting main events in different biomedical signals with a sensitivity and positive predictivity >95%. The output of the eventogram captured unique patterns and signatures of physiological events, which could be used to visualize and identify abnormal waveforms in any quasi-periodic signal.

  3. Correction of Refractive Errors in Rhesus Macaques (Macaca mulatta) Involved in Visual Research

    PubMed Central

    Mitchell, Jude F; Boisvert, Chantal J; Reuter, Jon D; Reynolds, John H; Leblanc, Mathias

    2014-01-01

    Macaques are the most common animal model for studies in vision research, and due to their high value as research subjects, often continue to participate in studies well into old age. As is true in humans, visual acuity in macaques is susceptible to refractive errors. Here we report a case study in which an aged macaque demonstrated clear impairment in visual acuity according to performance on a demanding behavioral task. Refraction demonstrated bilateral myopia that significantly affected behavioral and visual tasks. Using corrective lenses, we were able to restore visual acuity. After correction of myopia, the macaque's performance on behavioral tasks was comparable to that of a healthy control. We screened 20 other male macaques to assess the incidence of refractive errors and ocular pathologies in a larger population. Hyperopia was the most frequent ametropia but was mild in all cases. A second macaque had mild myopia and astigmatism in one eye. There were no other pathologies observed on ocular examination. We developed a simple behavioral task that visual research laboratories could use to test visual acuity in macaques. The test was reliable and easily learned by the animals in 1 d. This case study stresses the importance of screening macaques involved in visual science for refractive errors and ocular pathologies to ensure the quality of research; we also provide simple methodology for screening visual acuity in these animals. PMID:25427343

  4. The efficacy of a novel mobile phone application for goldmann ptosis visual field interpretation.

    PubMed

    Maamari, Robi N; D'Ambrosio, Michael V; Joseph, Jeffrey M; Tao, Jeremiah P

    2014-01-01

    To evaluate the efficacy of a novel mobile phone application that calculates superior visual field defects on Goldmann visual field charts. Experimental study in which the mobile phone application and 14 oculoplastic surgeons interpreted the superior visual field defect in 10 Goldmann charts. Percent error of the mobile phone application and the oculoplastic surgeons' estimates were calculated compared with computer software computation of the actual defects. Precision and time efficiency of the application were evaluated by processing the same Goldmann visual field chart 10 repeated times. The mobile phone application was associated with a mean percent error of 1.98% (95% confidence interval[CI], 0.87%-3.10%) in superior visual field defect calculation. The average mean percent error of the oculoplastic surgeons' visual estimates was 19.75% (95% CI, 14.39%-25.11%). Oculoplastic surgeons, on average, underestimated the defect in all 10 Goldmann charts. There was high interobserver variance among oculoplastic surgeons. The percent error of the 10 repeated measurements on a single chart was 0.93% (95% CI, 0.40%-1.46%). The average time to process 1 chart was 12.9 seconds (95% CI, 10.9-15.0 seconds). The mobile phone application was highly accurate, precise, and time-efficient in calculating the percent superior visual field defect using Goldmann charts. Oculoplastic surgeon visual interpretations were highly inaccurate, highly variable, and usually underestimated the field vision loss.

  5. Correction of refractive errors in rhesus macaques (Macaca mulatta) involved in visual research.

    PubMed

    Mitchell, Jude F; Boisvert, Chantal J; Reuter, Jon D; Reynolds, John H; Leblanc, Mathias

    2014-08-01

    Macaques are the most common animal model for studies in vision research, and due to their high value as research subjects, often continue to participate in studies well into old age. As is true in humans, visual acuity in macaques is susceptible to refractive errors. Here we report a case study in which an aged macaque demonstrated clear impairment in visual acuity according to performance on a demanding behavioral task. Refraction demonstrated bilateral myopia that significantly affected behavioral and visual tasks. Using corrective lenses, we were able to restore visual acuity. After correction of myopia, the macaque's performance on behavioral tasks was comparable to that of a healthy control. We screened 20 other male macaques to assess the incidence of refractive errors and ocular pathologies in a larger population. Hyperopia was the most frequent ametropia but was mild in all cases. A second macaque had mild myopia and astigmatism in one eye. There were no other pathologies observed on ocular examination. We developed a simple behavioral task that visual research laboratories could use to test visual acuity in macaques. The test was reliable and easily learned by the animals in 1 d. This case study stresses the importance of screening macaques involved in visual science for refractive errors and ocular pathologies to ensure the quality of research; we also provide simple methodology for screening visual acuity in these animals.

  6. EEG error potentials detection and classification using time-frequency features for robot reinforcement learning.

    PubMed

    Boubchir, Larbi; Touati, Youcef; Daachi, Boubaker; Chérif, Arab Ali

    2015-08-01

    In thought-based steering of robots, error potentials (ErrP) can appear when the action resulting from the brain-machine interface (BMI) classifier/controller does not correspond to the user's thought. Using the Steady State Visual Evoked Potentials (SSVEP) techniques, ErrP, which appear when a classification error occurs, are not easily recognizable by only examining the temporal or frequency characteristics of EEG signals. A supplementary classification process is therefore needed to identify them in order to stop the course of the action and back up to a recovery state. This paper presents a set of time-frequency (t-f) features for the detection and classification of EEG ErrP in extra-brain activities due to misclassification observed by a user exploiting non-invasive BMI and robot control in the task space. The proposed features are able to characterize and detect ErrP activities in the t-f domain. These features are derived from the information embedded in the t-f representation of EEG signals, and include the Instantaneous Frequency (IF), t-f information complexity, SVD information, energy concentration and sub-bands' energies. The experiment results on real EEG data show that the use of the proposed t-f features for detecting and classifying EEG ErrP achieved an overall classification accuracy up to 97% for 50 EEG segments using 2-class SVM classifier.

  7. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task

    PubMed Central

    Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel

    2016-01-01

    When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221

  8. A Visual Profile of Queensland Indigenous Children.

    PubMed

    Hopkins, Shelley; Sampson, Geoff P; Hendicott, Peter L; Wood, Joanne M

    2016-03-01

    Little is known about the prevalence of refractive error, binocular vision, and other visual conditions in Australian Indigenous children. This is important given the association of these visual conditions with reduced reading performance in the wider population, which may also contribute to the suboptimal reading performance reported in this population. The aim of this study was to develop a visual profile of Queensland Indigenous children. Vision testing was performed on 595 primary schoolchildren in Queensland, Australia. Vision parameters measured included visual acuity, refractive error, color vision, nearpoint of convergence, horizontal heterophoria, fusional vergence range, accommodative facility, AC/A ratio, visual motor integration, and rapid automatized naming. Near heterophoria, nearpoint of convergence, and near fusional vergence range were used to classify convergence insufficiency (CI). Although refractive error (Indigenous, 10%; non-Indigenous, 16%; p = 0.04) and strabismus (Indigenous, 0%; non-Indigenous, 3%; p = 0.03) were significantly less common in Indigenous children, CI was twice as prevalent (Indigenous, 10%; non-Indigenous, 5%; p = 0.04). Reduced visual information processing skills were more common in Indigenous children (reduced visual motor integration [Indigenous, 28%; non-Indigenous, 16%; p < 0.01] and slower rapid automatized naming [Indigenous, 67%; non-Indigenous, 59%; p = 0.04]). The prevalence of visual impairment (reduced visual acuity) and color vision deficiency was similar between groups. Indigenous children have less refractive error and strabismus than their non-Indigenous peers. However, CI and reduced visual information processing skills were more common in this group. Given that vision screenings primarily target visual acuity assessment and strabismus detection, this is an important finding as many Indigenous children with CI and reduced visual information processing may be missed. Emphasis should be placed on identifying children with CI and reduced visual information processing given the potential effect of these conditions on school performance.

  9. Research of laser echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhou

    2015-11-01

    Laser echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR. System model and time series model of laser echo signal simulator are established. Some influential factors which could induce fixed error and random error on the simulated return signals are analyzed, and then these system insertion errors are analyzed quantitatively. Using this theoretical model, the simulation system is investigated experimentally. The results corrected by subtracting fixed error indicate that the range error of the simulated laser return signal is less than 0.25m, and the distance range that the system can simulate is from 50m to 20km.

  10. Clinical Outcomes of an Optimized Prolate Ablation Procedure for Correcting Residual Refractive Errors Following Laser Surgery.

    PubMed

    Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune; Kim, Tae-Im

    2017-02-01

    The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery.

  11. Gas turbine engine control system

    NASA Technical Reports Server (NTRS)

    Idelchik, Michael S. (Inventor)

    1991-01-01

    A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal.

  12. Prevalence of refractive error and visual impairment among rural school-age children of Goro District, Gurage Zone, Ethiopia.

    PubMed

    Kedir, Jafer; Girma, Abonesh

    2014-10-01

    Refractive error is one of the major causes of blindness and visual impairment in children; but community based studies are scarce especially in rural parts of Ethiopia. So, this study aims to assess the prevalence of refractive error and its magnitude as a cause of visual impairment among school-age children of rural community. This community-based cross-sectional descriptive study was conducted from March 1 to April 30, 2009 in rural villages of Goro district of Gurage Zone, found south west of Addis Ababa, the capital of Ethiopia. A multistage cluster sampling method was used with simple random selection of representative villages in the district. Chi-Square and t-tests were used in the data analysis. A total of 570 school-age children (age 7-15) were evaluated, 54% boys and 46% girls. The prevalence of refractive error was 3.5% (myopia 2.6% and hyperopia 0.9%). Refractive error was the major cause of visual impairment accounting for 54% of all causes in the study group. No child was found wearing corrective spectacles during the study period. Refractive error was the commonest cause of visual impairment in children of the district, but no measures were taken to reduce the burden in the community. So, large scale community level screening for refractive error should be conducted and integrated with regular school eye screening programs. Effective strategies need to be devised to provide low cost corrective spectacles in the rural community.

  13. 33 CFR 175.110 - Visual distress signals required.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Visual distress signals required... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.110 Visual distress signals... signals selected from the list in § 175.130 or the alternatives in § 175.135, in the number required, are...

  14. 33 CFR 175.110 - Visual distress signals required.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Visual distress signals required... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.110 Visual distress signals... signals selected from the list in § 175.130 or the alternatives in § 175.135, in the number required, are...

  15. 33 CFR 175.110 - Visual distress signals required.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Visual distress signals required... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.110 Visual distress signals... signals selected from the list in § 175.130 or the alternatives in § 175.135, in the number required, are...

  16. 33 CFR 175.110 - Visual distress signals required.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Visual distress signals required... (CONTINUED) BOATING SAFETY EQUIPMENT REQUIREMENTS Visual Distress Signals § 175.110 Visual distress signals... signals selected from the list in § 175.130 or the alternatives in § 175.135, in the number required, are...

  17. Transient shifts in frontal and parietal circuits scale with enhanced visual feedback and changes in force variability and error

    PubMed Central

    Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.

    2013-01-01

    When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186

  18. Non-linear dynamic compensation system

    NASA Technical Reports Server (NTRS)

    Lin, Yu-Hwan (Inventor); Lurie, Boris J. (Inventor)

    1992-01-01

    A non-linear dynamic compensation subsystem is added in the feedback loop of a high precision optical mirror positioning control system to smoothly alter the control system response bandwidth from a relatively wide response bandwidth optimized for speed of control system response to a bandwidth sufficiently narrow to reduce position errors resulting from the quantization noise inherent in the inductosyn used to measure mirror position. The non-linear dynamic compensation system includes a limiter for limiting the error signal within preselected limits, a compensator for modifying the limiter output to achieve the reduced bandwidth response, and an adder for combining the modified error signal with the difference between the limited and unlimited error signals. The adder output is applied to control system motor so that the system response is optimized for accuracy when the error signal is within the preselected limits, optimized for speed of response when the error signal is substantially beyond the preselected limits and smoothly varied therebetween as the error signal approaches the preselected limits.

  19. A tactual display aid for primary flight training

    NASA Technical Reports Server (NTRS)

    Gilson, R. D.

    1979-01-01

    A means of flight instruction is discussed. In addition to verbal assistance, control feedback was continously presented via a nonvisual means utilizing touch. A kinesthetic-tactile (KT) display was used as a readout and tracking device for a computer generated signal of desired angle of attack during the approach and landing. Airspeed and glide path information was presented via KT or visual heads up display techniques. Performance with the heads up display of pitch information was shown to be significantly better than performance with the KT pitch display. Testing without the displays showed that novice pilots who had received tactile pitch error information performed both pitch and throttle control tasks significantly better than those who had received the same information from the visual heads up display of pitch during the test series of approaches to landing.

  20. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex.

    PubMed

    Takahashi, Yuji K; Roesch, Matthew R; Wilson, Robert C; Toreson, Kathy; O'Donnell, Patricio; Niv, Yael; Schoenbaum, Geoffrey

    2011-10-30

    The orbitofrontal cortex has been hypothesized to carry information regarding the value of expected rewards. Such information is essential for associative learning, which relies on comparisons between expected and obtained reward for generating instructive error signals. These error signals are thought to be conveyed by dopamine neurons. To test whether orbitofrontal cortex contributes to these error signals, we recorded from dopamine neurons in orbitofrontal-lesioned rats performing a reward learning task. Lesions caused marked changes in dopaminergic error signaling. However, the effect of lesions was not consistent with a simple loss of information regarding expected value. Instead, without orbitofrontal input, dopaminergic error signals failed to reflect internal information about the impending response that distinguished externally similar states leading to differently valued future rewards. These results are consistent with current conceptualizations of orbitofrontal cortex as supporting model-based behavior and suggest an unexpected role for this information in dopaminergic error signaling.

  1. Error Propagation in a System Model

    NASA Technical Reports Server (NTRS)

    Schloegel, Kirk (Inventor); Bhatt, Devesh (Inventor); Oglesby, David V. (Inventor); Madl, Gabor (Inventor)

    2015-01-01

    Embodiments of the present subject matter can enable the analysis of signal value errors for system models. In an example, signal value errors can be propagated through the functional blocks of a system model to analyze possible effects as the signal value errors impact incident functional blocks. This propagation of the errors can be applicable to many models of computation including avionics models, synchronous data flow, and Kahn process networks.

  2. Reduced change blindness suggests enhanced attention to detail in individuals with autism.

    PubMed

    Smith, Hayley; Milne, Elizabeth

    2009-03-01

    The phenomenon of change blindness illustrates that a limited number of items within the visual scene are attended to at any one time. It has been suggested that individuals with autism focus attention on less contextually relevant aspects of the visual scene, show superior perceptual discrimination and notice details which are often ignored by typical observers. In this study we investigated change blindness in autism by asking participants to detect continuity errors deliberately introduced into a short film. Whether the continuity errors involved central/marginal or social/non-social aspects of the visual scene was varied. Thirty adolescent participants, 15 with autistic spectrum disorder (ASD) and 15 typically developing (TD) controls participated. The participants with ASD detected significantly more errors than the TD participants. Both groups identified more errors involving central rather than marginal aspects of the scene, although this effect was larger in the TD participants. There was no difference in the number of social or non-social errors detected by either group of participants. In line with previous data suggesting an abnormally broad attentional spotlight and enhanced perceptual function in individuals with ASD, the results of this study suggest enhanced awareness of the visual scene in ASD. The results of this study could reflect superior top-down control of visual search in autism, enhanced perceptual function, or inefficient filtering of visual information in ASD.

  3. Method and Apparatus for Evaluating the Visual Quality of Processed Digital Video Sequences

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2002-01-01

    A Digital Video Quality (DVQ) apparatus and method that incorporate a model of human visual sensitivity to predict the visibility of artifacts. The DVQ method and apparatus are used for the evaluation of the visual quality of processed digital video sequences and for adaptively controlling the bit rate of the processed digital video sequences without compromising the visual quality. The DVQ apparatus minimizes the required amount of memory and computation. The input to the DVQ apparatus is a pair of color image sequences: an original (R) non-compressed sequence, and a processed (T) sequence. Both sequences (R) and (T) are sampled, cropped, and subjected to color transformations. The sequences are then subjected to blocking and discrete cosine transformation, and the results are transformed to local contrast. The next step is a time filtering operation which implements the human sensitivity to different time frequencies. The results are converted to threshold units by dividing each discrete cosine transform coefficient by its respective visual threshold. At the next stage the two sequences are subtracted to produce an error sequence. The error sequence is subjected to a contrast masking operation, which also depends upon the reference sequence (R). The masked errors can be pooled in various ways to illustrate the perceptual error over various dimensions, and the pooled error can be converted to a visual quality measure.

  4. Visual-Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey.

    PubMed

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-10-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.

  5. Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.

    PubMed

    Chen, Guifen; Manson, Daniel; Cacucci, Francesca; Wills, Thomas Joseph

    2016-09-12

    Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism's position by integrating speed and direction of movement [2-10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Prevalence of refractive errors among schoolchildren in rural central Ethiopia.

    PubMed

    Mehari, Zelalem Addisu; Yimer, Abdirahman Wollie

    2013-01-01

    The aim of the present study was to assess the prevalence of refractive errors and visual impairment among schoolchildren in rural central Ethiopia. A cross-sectional study was conducted from November 2010 to January 2011 among 5,470 schoolchildren from 14 schools, of whom 4,238 (aged 7-18 years) were screened for refractive errors. In all participants, uncorrected vision and best corrected visual acuity were determined and those with a visual acuity of 6/12 or worse, underwent a complete ophthalmic examination to determine the cause of visual impairment. Myopia was defined as a spherical equivalent of -0.50 dioptre (D) or greater in one or both eyes and hyperopia as a spherical equivalent of +2.00 D or greater. A cylindrical power of -0.50 DC (D cylinder) or greater was considered as astigmatism. Chi-square was used to test differences in proportions. Differences were considered to be statistically significant at the five per cent level. Of the 4,238 children, 405 (9.5 per cent) were visually impaired and of these 267 children were diagnosed as having refractive errors, with an overall prevalence of 6.3 per cent, comprised of 6.1 per cent in boys and 6.6 per cent in girls. Myopia is the most prevalent refractive error; accounting for 6.0 per cent, followed by compound myopic astigmatism 1.2 per cent, then simple myopic astigmatism 0.5 per cent, mixed astigmatism 0.26 per cent and finally hyperopia 0.33 per cent. Reasons for visual acuity of 6/12 or worse in the better eye were found to be refractive error (65.9 per cent), corneal problems (12.8 per cent) and amblyopia (9.6 per cent). The prevalence of manifest strabismus in the study group was 1.1 per cent (n = 45). The study concluded that uncorrected refractive error is a common cause of visual impairment among schoolchildren in rural central Ethiopia. This indicates the need for regular school-screening programs that provide glasses at low cost or free of charge for those who have refractive errors. © 2012 The Authors; Clinical and Experimental Optometry © 2012 Optometrists Association Australia.

  7. Peripheral Vision Can Influence Eye Growth and Refractive Development in Infant Monkeys

    PubMed Central

    Smith, Earl L.; Kee, Chea-su; Ramamirtham, Ramkumar; Qiao-Grider, Ying; Hung, Li-Fang

    2006-01-01

    PURPOSE Given the prominence of central vision in humans, it has been assumed that visual signals from the fovea dominate emmetropization. The purpose of this study was to examine the impact of peripheral vision on emmetropization. METHODS Bilateral, peripheral form deprivation was produced in 12 infant monkeys by rearing them with diffusers that had either 4- or 8-mm apertures centered on the pupils of each eye, to allow 24° or 37° of unrestricted central vision, respectively. At the end of the lens-rearing period, an argon laser was used to ablate the fovea in one eye of each of seven monkeys. Subsequently, all the animals were allowed unrestricted vision. Refractive error and axial dimensions were measured along the pupillary axis by retinoscopy and A-scan ultrasonography, respectively. Control data were obtained from 21 normal monkeys and 3 infants reared with binocular plano lenses. RESULTS Nine of the 12 treated monkeys had refractive errors that fell outside the 10th- and 90th-percentile limits for the age-matched control subjects, and the average refractive error for the treated animals was more variable and significantly less hyperopic/more myopic (+0.03 ± 2.39 D vs. +2.39 ± 0.92 D). The refractive changes were symmetric in the two eyes of a given animal and axial in nature. After lens removal, all the treated monkeys recovered from the induced refractive errors. No interocular differences in the recovery process were observed in the animals with monocular foveal lesions. CONCLUSIONS On the one hand, the peripheral retina can contribute to emmetropizing responses and to ametropias produced by an abnormal visual experience. On the other hand, unrestricted central vision is not sufficient to ensure normal refractive development, and the fovea is not essential for emmetropizing responses. PMID:16249469

  8. Dynamic Neural Correlates of Motor Error Monitoring and Adaptation during Trial-to-Trial Learning

    PubMed Central

    Tan, Huiling; Jenkinson, Ned

    2014-01-01

    A basic EEG feature upon voluntary movements in healthy human subjects is a β (13–30 Hz) band desynchronization followed by a postmovement event-related synchronization (ERS) over contralateral sensorimotor cortex. The functional implications of these changes remain unclear. We hypothesized that, because β ERS follows movement, it may reflect the degree of error in that movement, and the salience of that error to the task at hand. As such, the signal might underpin trial-to-trial modifications of the internal model that informs future movements. To test this hypothesis, EEG was recorded in healthy subjects while they moved a joystick-controlled cursor to visual targets on a computer screen, with different rotational perturbations applied between the joystick and cursor. We observed consistently lower β ERS in trials with large error, even when other possible motor confounds, such as reaction time, movement duration, and path length, were controlled, regardless of whether the perturbation was random or constant. There was a negative trial-to-trial correlation between the size of the absolute initial angular error and the amplitude of the β ERS, and this negative correlation was enhanced when other contextual information about the behavioral salience of the angular error, namely, the bias and variance of errors in previous trials, was additionally considered. These same features also had an impact on the behavioral performance. The findings suggest that the β ERS reflects neural processes that evaluate motor error and do so in the context of the prior history of errors. PMID:24741058

  9. Prediction suppression and surprise enhancement in monkey inferotemporal cortex.

    PubMed

    Ramachandran, Suchitra; Meyer, Travis; Olson, Carl R

    2017-07-01

    Exposing monkeys, over the course of days and weeks, to pairs of images presented in fixed sequence, so that each leading image becomes a predictor for the corresponding trailing image, affects neuronal visual responsiveness in area TE. At the end of the training period, neurons respond relatively weakly to a trailing image when it appears in a trained sequence and, thus, confirms prediction, whereas they respond relatively strongly to the same image when it appears in an untrained sequence and, thus, violates prediction. This effect could arise from prediction suppression (reduced firing in response to the occurrence of a probable event) or surprise enhancement (elevated firing in response to the omission of a probable event). To identify its cause, we compared firing under the prediction-confirming and prediction-violating conditions to firing under a prediction-neutral condition. The results provide strong evidence for prediction suppression and limited evidence for surprise enhancement. NEW & NOTEWORTHY In predictive coding models of the visual system, neurons carry signed prediction error signals. We show here that monkey inferotemporal neurons exhibit prediction-modulated firing, as posited by these models, but that the signal is unsigned. The response to a prediction-confirming image is suppressed, and the response to a prediction-violating image may be enhanced. These results are better explained by a model in which the visual system emphasizes unpredicted events than by a predictive coding model. Copyright © 2017 the American Physiological Society.

  10. Visual Data Analysis for Satellites

    NASA Technical Reports Server (NTRS)

    Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick

    2008-01-01

    The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.

  11. [Effect of actoprotectors on the work capacity of operators during modeling of various factors of space flight].

    PubMed

    Bobkov, Iu G; Epishkin, A K

    1988-01-01

    This paper presents experimental findings indicating that bemithyl, an actoprotective agent, has a beneficial effect on the health status and work capacity of operators during simulated space flight and 56-hour continuous work. The drug enhanced psychophysiological tolerance of the operators and improved the quality of their work: the quality of their compensatory tracking was on the average 10% higher, the number of errors of their porsuit tracking was 1.8 times lower, and the time of visual signal detection was 2.4 times shorter as compared to the placebo controls.

  12. The role of visual spatial attention in adult developmental dyslexia.

    PubMed

    Collis, Nathan L; Kohnen, Saskia; Kinoshita, Sachiko

    2013-01-01

    The present study investigated the nature of visual spatial attention deficits in adults with developmental dyslexia, using a partial report task with five-letter, digit, and symbol strings. Participants responded by a manual key press to one of nine alternatives, which included other characters in the string, allowing an assessment of position errors as well as intrusion errors. The results showed that the dyslexic adults performed significantly worse than age-matched controls with letter and digit strings but not with symbol strings. Both groups produced W-shaped serial position functions with letter and digit strings. The dyslexics' deficits with letter string stimuli were limited to position errors, specifically at the string-interior positions 2 and 4. These errors correlated with letter transposition reading errors (e.g., reading slat as "salt"), but not with the Rapid Automatized Naming (RAN) task. Overall, these results suggest that the dyslexic adults have a visual spatial attention deficit; however, the deficit does not reflect a reduced span in visual-spatial attention, but a deficit in processing a string of letters in parallel, probably due to difficulty in the coding of letter position.

  13. 33 CFR 117.15 - Signals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... used to request the opening of the draw and to acknowledge that request shall be sound signals, visual signals, or radiotelephone communications described in this subpart. (3) Any of the means of signaling... by the requesting vessel. (c) Visual signals. (1) The visual signal to request the opening of a draw...

  14. Hierarchical learning induces two simultaneous, but separable, prediction errors in human basal ganglia.

    PubMed

    Diuk, Carlos; Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew; Niv, Yael

    2013-03-27

    Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.

  15. A biologically inspired neural model for visual and proprioceptive integration including sensory training.

    PubMed

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi

    2013-12-01

    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model simulation.

  16. Influence of uncorrected refractive error and unmet refractive error on visual impairment in a Brazilian population.

    PubMed

    Ferraz, Fabio H; Corrente, José E; Opromolla, Paula; Schellini, Silvana A

    2014-06-25

    The World Health Organization (WHO) definitions of blindness and visual impairment are widely based on best-corrected visual acuity excluding uncorrected refractive errors (URE) as a visual impairment cause. Recently, URE was included as a cause of visual impairment, thus emphasizing the burden of visual impairment due to refractive error (RE) worldwide is substantially higher. The purpose of the present study is to determine the reversal of visual impairment and blindness in the population correcting RE and possible associations between RE and individual characteristics. A cross-sectional study was conducted in nine counties of the western region of state of São Paulo, using systematic and random sampling of households between March 2004 and July 2005. Individuals aged more than 1 year old were included and were evaluated for demographic data, eye complaints, history, and eye exam, including no corrected visual acuity (NCVA), best corrected vision acuity (BCVA), automatic and manual refractive examination. The definition adopted for URE was applied to individuals with NCVA > 0.15 logMAR and BCVA ≤ 0.15 logMAR after refractive correction and unmet refractive error (UREN), individuals who had visual impairment or blindness (NCVA > 0.5 logMAR) and BCVA ≤ 0.5 logMAR after optical correction. A total of 70.2% of subjects had normal NCVA. URE was detected in 13.8%. Prevalence of 4.6% of optically reversible low vision and 1.8% of blindness reversible by optical correction were found. UREN was detected in 6.5% of individuals, more frequently observed in women over the age of 50 and in higher RE carriers. Visual impairment related to eye diseases is not reversible with spectacles. Using multivariate analysis, associations between URE and UREN with regard to sex, age and RE was observed. RE is an important cause of reversible blindness and low vision in the Brazilian population.

  17. Influence of uncorrected refractive error and unmet refractive error on visual impairment in a Brazilian population

    PubMed Central

    2014-01-01

    Background The World Health Organization (WHO) definitions of blindness and visual impairment are widely based on best-corrected visual acuity excluding uncorrected refractive errors (URE) as a visual impairment cause. Recently, URE was included as a cause of visual impairment, thus emphasizing the burden of visual impairment due to refractive error (RE) worldwide is substantially higher. The purpose of the present study is to determine the reversal of visual impairment and blindness in the population correcting RE and possible associations between RE and individual characteristics. Methods A cross-sectional study was conducted in nine counties of the western region of state of São Paulo, using systematic and random sampling of households between March 2004 and July 2005. Individuals aged more than 1 year old were included and were evaluated for demographic data, eye complaints, history, and eye exam, including no corrected visual acuity (NCVA), best corrected vision acuity (BCVA), automatic and manual refractive examination. The definition adopted for URE was applied to individuals with NCVA > 0.15 logMAR and BCVA ≤ 0.15 logMAR after refractive correction and unmet refractive error (UREN), individuals who had visual impairment or blindness (NCVA > 0.5 logMAR) and BCVA ≤ 0.5 logMAR after optical correction. Results A total of 70.2% of subjects had normal NCVA. URE was detected in 13.8%. Prevalence of 4.6% of optically reversible low vision and 1.8% of blindness reversible by optical correction were found. UREN was detected in 6.5% of individuals, more frequently observed in women over the age of 50 and in higher RE carriers. Visual impairment related to eye diseases is not reversible with spectacles. Using multivariate analysis, associations between URE and UREN with regard to sex, age and RE was observed. Conclusion RE is an important cause of reversible blindness and low vision in the Brazilian population. PMID:24965318

  18. Paediatric Refractive Errors in an Eye Clinic in Osogbo, Nigeria.

    PubMed

    Michaeline, Isawumi; Sheriff, Agboola; Bimbo, Ayegoro

    2016-03-01

    Paediatric ophthalmology is an emerging subspecialty in Nigeria and as such there is paucity of data on refractive errors in the country. This study set out to determine the pattern of refractive errors in children attending an eye clinic in South West Nigeria. A descriptive study of 180 consecutive subjects seen over a 2-year period. Presenting complaints, presenting visual acuity (PVA), age and sex were recorded. Clinical examination of the anterior and posterior segments of the eyes, extraocular muscle assessment and refraction were done. The types of refractive errors and their grades were determined. Corrected VA was obtained. Data was analysed using descriptive statistics in proportions, chi square with p value <0.05. The age range of subjects was between 3 and 16 years with mean age = 11.7 and SD = 0.51; with males making up 33.9%.The commonest presenting complaint was blurring of distant vision (40%), presenting visual acuity 6/9 (33.9%), normal vision constituted >75.0%, visual impairment20% and low vision 23.3%. Low grade spherical and cylindrical errors occurred most frequently (35.6% and 59.9% respectively). Regular astigmatism was significantly more common, P <0.001. The commonest diagnosis was simple myopic astigmatism (41.1%). Four cases of strabismus were seen. Simple spherical and cylindrical errors were the commonest types of refractive errors seen. Visual impairment and low vision occurred and could be a cause of absenteeism from school. Low-cost spectacle production or dispensing unit and health education are advocated for the prevention of visual impairment in a hospital set-up.

  19. Age-Related Eye Diseases and Visual Impairment Among U.S. Adults

    PubMed Central

    Chou, Chiu-Fang; Cotch, Mary Frances; Vitale, Susan; Zhang, Xinzhi; Klein, Ronald; Friedman, David S.; Klein, Barbara E.K.; Saaddine, Jinan B.

    2014-01-01

    Background Visual impairment is a common health-related disability in the U.S. The association between clinical measurements of age-related eye diseases and visual impairment in data from a national survey has not been reported. Purpose To examine common eye conditions and other correlates associated with visual impairment in the U.S. Methods Data from the 2005–2008 National Health and Nutrition Examination Survey of 5222 Americans aged ≥40 years were analyzed in 2012 for visual impairment (presenting distance visual acuity worse than 20/40 in the better-seeing eye), and visual impairment not due to refractive error (distance visual acuity worse than 20/40 after refraction). Diabetic retinopathy (DR) and age-related macular degeneration (AMD) were assessed from retinal fundus images; glaucoma was assessed from two successive frequency-doubling tests and a cup-to-disc ratio measurement. Results Prevalence of visual impairment and of visual impairment not due to refractive error was 7.5% (95% CI=6.9%, 8.1%) and 2.0% (1.7%, 2.3%), respectively. The prevalence of visual impairment not due to refractive error was significantly higher among people with AMD (2.2%) compared to those without AMD (0.8%), or with DR (3.5%) compared to those without DR (1.2%). Independent predictive factors of visual impairment not due to refractive error were AMD (OR=4.52, 95% CI=2.50, 8.17); increasing age (OR=1.09 per year, 95% CI=1.06, 1.13); and less than a high school education (OR=2.99, 95% CI=1.18, 7.55). Conclusions Visual impairment is a public health problem in the U.S. Visual impairment in two thirds of adults could be eliminated with refractive correction. Screening of the older population may identify adults at increased risk of visual impairment due to eye diseases. PMID:23790986

  20. Small refractive errors--their correction and practical importance.

    PubMed

    Skrbek, Matej; Petrová, Sylvie

    2013-04-01

    Small refractive errors present a group of specifc far-sighted refractive dispositions that are compensated by enhanced accommodative exertion and aren't exhibited by loss of the visual acuity. This paper should answer a few questions about their correction, flowing from theoretical presumptions and expectations of this dilemma. The main goal of this research was to (dis)confirm the hypothesis about convenience, efficiency and frequency of the correction that do not raise the visual acuity (or if the improvement isn't noticeable). The next goal was to examine the connection between this correction and other factors (age, size of the refractive error, etc.). The last aim was to describe the subjective personal rating of the correction of these small refractive errors, and to determine the minimal improvement of the visual acuity, that is attractive enough for the client to purchase the correction (glasses, contact lenses). It was confirmed, that there's an indispensable group of subjects with good visual acuity, where the correction is applicable, although it doesn't improve the visual acuity much. The main importance is to eliminate the asthenopia. The prime reason for acceptance of the correction is typically changing during the life, so as the accommodation is declining. Young people prefer the correction on the ground of the asthenopia, caused by small refractive error or latent strabismus; elderly people acquire the correction because of improvement of the visual acuity. Generally the correction was found useful in more than 30%, if the gain of the visual acuity was at least 0,3 of the decimal row.

  1. Illusory Reversal of Causality between Touch and Vision has No Effect on Prism Adaptation Rate.

    PubMed

    Tanaka, Hirokazu; Homma, Kazuhiro; Imamizu, Hiroshi

    2012-01-01

    Learning, according to Oxford Dictionary, is "to gain knowledge or skill by studying, from experience, from being taught, etc." In order to learn from experience, the central nervous system has to decide what action leads to what consequence, and temporal perception plays a critical role in determining the causality between actions and consequences. In motor adaptation, causality between action and consequence is implicitly assumed so that a subject adapts to a new environment based on the consequence caused by her action. Adaptation to visual displacement induced by prisms is a prime example; the visual error signal associated with the motor output contributes to the recovery of accurate reaching, and a delayed feedback of visual error can decrease the adaptation rate. Subjective feeling of temporal order of action and consequence, however, can be modified or even reversed when her sense of simultaneity is manipulated with an artificially delayed feedback. Our previous study (Tanaka et al., 2011; Exp. Brain Res.) demonstrated that the rate of prism adaptation was unaffected when the subjective delay of visual feedback was shortened. This study asked whether subjects could adapt to prism adaptation and whether the rate of prism adaptation was affected when the subjective temporal order was illusory reversed. Adapting to additional 100 ms delay and its sudden removal caused a positive shift of point of simultaneity in a temporal order judgment experiment, indicating an illusory reversal of action and consequence. We found that, even in this case, the subjects were able to adapt to prism displacement with the learning rate that was statistically indistinguishable to that without temporal adaptation. This result provides further evidence to the dissociation between conscious temporal perception and motor adaptation.

  2. 46 CFR 25.25-19 - Visual distress signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Visual distress signals. 25.25-19 Section 25.25-19... Other Lifesaving Equipment § 25.25-19 Visual distress signals. Each uninspected passenger vessel must meet the visual distress signal requirements of 33 CFR part 175 applicable to the vessel. [USCG-1999...

  3. 46 CFR 25.25-19 - Visual distress signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Visual distress signals. 25.25-19 Section 25.25-19... Other Lifesaving Equipment § 25.25-19 Visual distress signals. Each uninspected passenger vessel must meet the visual distress signal requirements of 33 CFR part 175 applicable to the vessel. [USCG-1999...

  4. 46 CFR 25.25-19 - Visual distress signals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Visual distress signals. 25.25-19 Section 25.25-19... Other Lifesaving Equipment § 25.25-19 Visual distress signals. Each uninspected passenger vessel must meet the visual distress signal requirements of 33 CFR part 175 applicable to the vessel. [USCG-1999...

  5. 46 CFR 25.25-19 - Visual distress signals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Visual distress signals. 25.25-19 Section 25.25-19... Other Lifesaving Equipment § 25.25-19 Visual distress signals. Each uninspected passenger vessel must meet the visual distress signal requirements of 33 CFR part 175 applicable to the vessel. [USCG-1999...

  6. Multipath induced errors in meteorological Doppler/interferometer location systems

    NASA Technical Reports Server (NTRS)

    Wallace, R. G.

    1984-01-01

    One application of an RF interferometer aboard a low-orbiting spacecraft to determine the location of ground-based transmitters is in tracking high-altitude balloons for meteorological studies. A source of error in this application is reflection of the signal from the sea surface. Through propagating and signal analysis, the magnitude of the reflection-induced error in both Doppler frequency measurements and interferometer phase measurements was estimated. The theory of diffuse scattering from random surfaces was applied to obtain the power spectral density of the reflected signal. The processing of the combined direct and reflected signals was then analyzed to find the statistics of the measurement error. It was found that the error varies greatly during the satellite overpass and attains its maximum value at closest approach. The maximum values of interferometer phase error and Doppler frequency error found for the system configuration considered were comparable to thermal noise-induced error.

  7. Gas turbine engine control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idelchik, M.S.

    1991-02-19

    This paper describes a method for controlling a gas turbine engine. It includes receiving an error signal and processing the error signal to form a primary control signal; receiving at least one anticipatory demand signal and processing the signal to form an anticipatory fuel control signal.

  8. Rapid, Accurate, and Non-Invasive Measurement of Zebrafish Axial Length and Other Eye Dimensions Using SD-OCT Allows Longitudinal Analysis of Myopia and Emmetropization

    PubMed Central

    Collery, Ross F.; Veth, Kerry N.; Dubis, Adam M.; Carroll, Joseph; Link, Brian A.

    2014-01-01

    Refractive errors in vision can be caused by aberrant axial length of the eye, irregular corneal shape, or lens abnormalities. Causes of eye length overgrowth include multiple genetic loci, and visual parameters. We evaluate zebrafish as a potential animal model for studies of the genetic, cellular, and signaling basis of emmetropization and myopia. Axial length and other eye dimensions of zebrafish were measured using spectral domain-optical coherence tomography (SD-OCT). We used ocular lens and body metrics to normalize and compare eye size and relative refractive error (difference between observed retinal radial length and controls) in wild-type and lrp2 zebrafish. Zebrafish were dark-reared to assess effects of visual deprivation on eye size. Two relative measurements, ocular axial length to body length and axial length to lens diameter, were found to accurately normalize comparisons of eye sizes between different sized fish (R2 = 0.9548, R2 = 0.9921). Ray-traced focal lengths of wild-type zebrafish lenses were equal to their retinal radii, while lrp2 eyes had longer retinal radii than focal lengths. Both genetic mutation (lrp2) and environmental manipulation (dark-rearing) caused elongated eye axes. lrp2 mutants had relative refractive errors of −0.327 compared to wild-types, and dark-reared wild-type fish had relative refractive errors of −0.132 compared to light-reared siblings. Therefore, zebrafish eye anatomy (axial length, lens radius, retinal radius) can be rapidly and accurately measured by SD-OCT, facilitating longitudinal studies of regulated eye growth and emmetropization. Specifically, genes homologous to human myopia candidates may be modified, inactivated or overexpressed in zebrafish, and myopia-sensitizing conditions used to probe gene-environment interactions. Our studies provide foundation for such investigations into genetic contributions that control eye size and impact refractive errors. PMID:25334040

  9. Causal Inference for Spatial Constancy across Saccades

    PubMed Central

    Atsma, Jeroen; Maij, Femke; Koppen, Mathieu; Irwin, David E.; Medendorp, W. Pieter

    2016-01-01

    Our ability to interact with the environment hinges on creating a stable visual world despite the continuous changes in retinal input. To achieve visual stability, the brain must distinguish the retinal image shifts caused by eye movements and shifts due to movements of the visual scene. This process appears not to be flawless: during saccades, we often fail to detect whether visual objects remain stable or move, which is called saccadic suppression of displacement (SSD). How does the brain evaluate the memorized information of the presaccadic scene and the actual visual feedback of the postsaccadic visual scene in the computations for visual stability? Using a SSD task, we test how participants localize the presaccadic position of the fixation target, the saccade target or a peripheral non-foveated target that was displaced parallel or orthogonal during a horizontal saccade, and subsequently viewed for three different durations. Results showed different localization errors of the three targets, depending on the viewing time of the postsaccadic stimulus and its spatial separation from the presaccadic location. We modeled the data through a Bayesian causal inference mechanism, in which at the trial level an optimal mixing of two possible strategies, integration vs. separation of the presaccadic memory and the postsaccadic sensory signals, is applied. Fits of this model generally outperformed other plausible decision strategies for producing SSD. Our findings suggest that humans exploit a Bayesian inference process with two causal structures to mediate visual stability. PMID:26967730

  10. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  11. Hierarchical Learning Induces Two Simultaneous, But Separable, Prediction Errors in Human Basal Ganglia

    PubMed Central

    Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew

    2013-01-01

    Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously. PMID:23536092

  12. Multivariable manual control with simultaneous visual and auditory presentation of information. [for improved compensatory tracking performance of human operator

    NASA Technical Reports Server (NTRS)

    Uhlemann, H.; Geiser, G.

    1975-01-01

    Multivariable manual compensatory tracking experiments were carried out in order to determine typical strategies of the human operator and conditions for improvement of his performance if one of the visual displays of the tracking errors is supplemented by an auditory feedback. Because the tracking error of the system which is only visually displayed is found to decrease, but not in general that of the auditorally supported system, it was concluded that the auditory feedback unloads the visual system of the operator who can then concentrate on the remaining exclusively visual displays.

  13. Empirical Evaluation of Visual Fatigue from Display Alignment Errors Using Cerebral Hemodynamic Responses

    PubMed Central

    Wiyor, Hanniebey D.; Ntuen, Celestine A.

    2013-01-01

    The purpose of this study was to investigate the effect of stereoscopic display alignment errors on visual fatigue and prefrontal cortical tissue hemodynamic responses. We collected hemodynamic data and perceptual ratings of visual fatigue while participants performed visual display tasks on 8 ft × 6 ft NEC LT silver screen with NEC LT 245 DLP projectors. There was statistical significant difference between subjective measures of visual fatigue before air traffic control task (BATC) and after air traffic control task (ATC 3), (P < 0.05). Statistical significance was observed between left dorsolateral prefrontal cortex oxygenated hemoglobin (l DLPFC-HbO2), left dorsolateral prefrontal cortex deoxygenated hemoglobin (l DLPFC-Hbb), and right dorsolateral prefrontal cortex deoxygenated hemoglobin (r DLPFC-Hbb) on stereoscopic alignment errors (P < 0.05). Thus, cortical tissue oxygenation requirement in the left hemisphere indicates that the effect of visual fatigue is more pronounced in the left dorsolateral prefrontal cortex. PMID:27006917

  14. Visual–Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey

    PubMed Central

    Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas

    2015-01-01

    A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118

  15. Driver landmark and traffic sign identification in early Alzheimer's disease.

    PubMed

    Uc, E Y; Rizzo, M; Anderson, S W; Shi, Q; Dawson, J D

    2005-06-01

    To assess visual search and recognition of roadside targets and safety errors during a landmark and traffic sign identification task in drivers with Alzheimer's disease. 33 drivers with probable Alzheimer's disease of mild severity and 137 neurologically normal older adults underwent a battery of visual and cognitive tests and were asked to report detection of specific landmarks and traffic signs along a segment of an experimental drive. The drivers with mild Alzheimer's disease identified significantly fewer landmarks and traffic signs and made more at-fault safety errors during the task than control subjects. Roadside target identification performance and safety errors were predicted by scores on standardised tests of visual and cognitive function. Drivers with Alzheimer's disease are impaired in a task of visual search and recognition of roadside targets; the demands of these targets on visual perception, attention, executive functions, and memory probably increase the cognitive load, worsening driving safety.

  16. Accuracy aspects of stereo side-looking radar. [analysis of its visual perception and binocular vision

    NASA Technical Reports Server (NTRS)

    Leberl, F. W.

    1979-01-01

    The geometry of the radar stereo model and factors affecting visual radar stereo perception are reviewed. Limits to the vertical exaggeration factor of stereo radar are defined. Radar stereo model accuracies are analyzed with respect to coordinate errors caused by errors of radar sensor position and of range, and with respect to errors of coordinate differences, i.e., cross-track distances and height differences.

  17. Visualizing Uncertainty of Point Phenomena by Redesigned Error Ellipses

    NASA Astrophysics Data System (ADS)

    Murphy, Christian E.

    2018-05-01

    Visualizing uncertainty remains one of the great challenges in modern cartography. There is no overarching strategy to display the nature of uncertainty, as an effective and efficient visualization depends, besides on the spatial data feature type, heavily on the type of uncertainty. This work presents a design strategy to visualize uncertainty con-nected to point features. The error ellipse, well-known from mathematical statistics, is adapted to display the uncer-tainty of point information originating from spatial generalization. Modified designs of the error ellipse show the po-tential of quantitative and qualitative symbolization and simultaneous point based uncertainty symbolization. The user can intuitively depict the centers of gravity, the major orientation of the point arrays as well as estimate the ex-tents and possible spatial distributions of multiple point phenomena. The error ellipse represents uncertainty in an intuitive way, particularly suitable for laymen. Furthermore it is shown how applicable an adapted design of the er-ror ellipse is to display the uncertainty of point features originating from incomplete data. The suitability of the error ellipse to display the uncertainty of point information is demonstrated within two showcases: (1) the analysis of formations of association football players, and (2) uncertain positioning of events on maps for the media.

  18. Retrieving accurate temporal and spatial information about Taylor slug flows from non-invasive NIR photometry measurements

    NASA Astrophysics Data System (ADS)

    Helmers, Thorben; Thöming, Jorg; Mießner, Ulrich

    2017-11-01

    In this article, we introduce a novel approach to retrieve spatial- and time-resolved Taylor slug flow information from a single non-invasive photometric flow sensor. The presented approach uses disperse phase surface properties to retrieve the instantaneous velocity information from a single sensor's time-scaled signal. For this purpose, a photometric sensor system is simulated using a ray-tracing algorithm to calculate spatially resolved near-infrared transmission signals. At the signal position corresponding to the rear droplet cap, a correlation factor of the droplet's geometric properties is retrieved and used to extract the instantaneous droplet velocity from the real sensor's temporal transmission signal. Furthermore, a correlation for the rear cap geometry based on the a priori known total superficial flow velocity is developed, because the cap curvature is velocity sensitive itself. Our model for velocity derivation is validated, and measurements of a first prototype showcase the capability of the device. Long-term measurements visualize systematic fluctuations in droplet lengths, velocities, and frequencies that could otherwise, without the observation on a larger timescale, have been identified as measurement errors and not systematic phenomenas.

  19. Visual impairment in urban school children of low-income families in Kolkata, India.

    PubMed

    Ghosh, Sambuddha; Mukhopadhyay, Udayaditya; Maji, Dipankar; Bhaduri, Gautam

    2012-01-01

    To evaluate pattern of visual impairment in school children from low-income families in Kolkata, India, an institutional cross-sectional study was conducted among 2570 children of 10 primary schools. Ocular examination including refraction was done and pattern of visual impairment and refractive error was studied. The age range was 6-14 years. Refractive error was seen in 14.7%. Only 4 children were already wearing correction. Myopia and hypermetropia was present in 307 (11.9%) and 65 (2.5%) children, respectively. Visual acuity of less than 6/12 in better eye was present in 109 (4.2%) and 5 (0.2%) children pre- and post-correction, respectively. Eighteen children had amblyopia. Although prevalence of refractive error in this group is less compared to school children of all income categories reported from other cities of India, it is more compared to school children of all income categories from the same city. Refractive error mostly remains uncorrected in this group.

  20. Evoking visual neglect-like deficits in healthy volunteers - an investigation by repetitive navigated transcranial magnetic stimulation.

    PubMed

    Giglhuber, Katrin; Maurer, Stefanie; Zimmer, Claus; Meyer, Bernhard; Krieg, Sandro M

    2017-02-01

    In clinical practice, repetitive navigated transcranial magnetic stimulation (rTMS) is of particular interest for non-invasive mapping of cortical language areas. Yet, rTMS studies try to detect further cortical functions. Damage to the underlying network of visuospatial attention function can result in visual neglect-a severe neurological deficit and influencing factor for a significantly reduced functional outcome. This investigation aims to evaluate the use of rTMS for evoking visual neglect in healthy volunteers and the potential of specifically locating cortical areas that can be assigned for the function of visuospatial attention. Ten healthy, right-handed subjects underwent rTMS visual neglect mapping. Repetitive trains of 5 Hz and 10 pulses were applied to 52 pre-defined cortical spots on each hemisphere; each cortical spot was stimulated 10 times. Visuospatial attention was tested time-locked to rTMS pulses by a landmark task. Task pictures were displayed tachistoscopically for 50 ms. The subjects' performance was analyzed by video, and errors were referenced to cortical spots. We observed visual neglect-like deficits during the stimulation of both hemispheres. Errors were categorized into leftward, rightward, and no response errors. Rightward errors occurred significantly more often during stimulation of the right hemisphere than during stimulation of the left hemisphere (mean rightward error rate (ER) 1.6 ± 1.3 % vs. 1.0 ± 1.0 %, p = 0.0141). Within the left hemisphere, we observed predominantly leftward errors rather than rightward errors (mean leftward ER 2.0 ± 1.3 % vs. rightward ER 1.0 ± 1.0 %; p = 0.0005). Visual neglect can be elicited non-invasively by rTMS, and cortical areas eloquent for visuospatial attention can be detected. Yet, the correlation of this approach with clinical findings has to be shown in upcoming steps.

  1. Laws of attraction: from perceptual forces to conceptual similarity.

    PubMed

    Ziemkiewicz, Caroline; Kosara, Robert

    2010-01-01

    Many of the pressing questions in information visualization deal with how exactly a user reads a collection of visual marks as information about relationships between entities. Previous research has suggested that people see parts of a visualization as objects, and may metaphorically interpret apparent physical relationships between these objects as suggestive of data relationships. We explored this hypothesis in detail in a series of user experiments. Inspired by the concept of implied dynamics in psychology, we first studied whether perceived gravity acting on a mark in a scatterplot can lead to errors in a participant's recall of the mark's position. The results of this study suggested that such position errors exist, but may be more strongly influenced by attraction between marks. We hypothesized that such apparent attraction may be influenced by elements used to suggest relationship between objects, such as connecting lines, grouping elements, and visual similarity. We further studied what visual elements are most likely to cause this attraction effect, and whether the elements that best predicted attraction errors were also those which suggested conceptual relationships most strongly. Our findings show a correlation between attraction errors and intuitions about relatedness, pointing towards a possible mechanism by which the perception of visual marks becomes an interpretation of data relationships.

  2. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. PMID:23786386

  3. Retinal image quality during accommodation.

    PubMed

    López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N

    2013-07-01

    We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye's higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  4. Visual symptoms associated with refractive errors among Thangka artists of Kathmandu valley.

    PubMed

    Dhungel, Deepa; Shrestha, Gauri Shankar

    2017-12-21

    Prolong near work, especially among people with uncorrected refractive error is considered a potential source of visual symptoms. The present study aims to determine the visual symptoms and the association of those with refractive errors among Thangka artists. In a descriptive cross-sectional study, 242 (46.1%) participants of 525 thangka artists examined, with age ranged between 16 years to 39 years which comprised of 112 participants with significant refractive errors and 130 absolutely emmetropic participants, were enrolled from six Thangka painting schools. The visual symptoms were assessed using a structured questionnaire consisting of nine items and scoring from 0 to 6 consecutive scales. The eye examination included detailed anterior and posterior segment examination, objective and subjective refraction, and assessment of heterophoria, vergence and accommodation. Symptoms were presented in percentage and median. Variation in distribution of participants and symptoms was analysed using the Kruskal Wallis test for mean, and the correlation with the Pearson correlation coefficient. A significance level of 0.05 was applied for 95% confidence interval. The majority of participants (65.1%) among refractive error group (REG) were above the age of 30 years, with a male predominance (61.6%), compared to the participants in the normal cohort group (NCG), where majority of them (72.3%) were below 30 years of age (72.3%) and female (51.5%). Overall, the visual symptoms are high among Thangka artists. However, blurred vision (p = 0.003) and dry eye (p = 0.004) are higher among the REG than the NCG. Females have slightly higher symptoms than males. Most of the symptoms, such as sore/aching eye (p = 0.003), feeling dry (p = 0.005) and blurred vision (p = 0.02) are significantly associated with astigmatism. Thangka artists present with significant proportion of refractive error and visual symptoms, especially among females. The most commonly reported symptoms are blurred vision, dry eye and watering of the eye. The visual symptoms are more correlated with astigmatism.

  5. Audition dominates vision in duration perception irrespective of salience, attention, and temporal discriminability

    PubMed Central

    Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2014-01-01

    Whereas the visual modality tends to dominate over the auditory modality in bimodal spatial perception, the auditory modality tends to dominate over the visual modality in bimodal temporal perception. Recent results suggest that the visual modality dominates bimodal spatial perception because spatial discriminability is typically greater for the visual than auditory modality; accordingly, visual dominance is eliminated or reversed when visual-spatial discriminability is reduced by degrading visual stimuli to be equivalent or inferior to auditory spatial discriminability. Thus, for spatial perception, the modality that provides greater discriminability dominates. Here we ask whether auditory dominance in duration perception is similarly explained by factors that influence the relative quality of auditory and visual signals. In contrast to the spatial results, the auditory modality dominated over the visual modality in bimodal duration perception even when the auditory signal was clearly weaker, when the auditory signal was ignored (i.e., the visual signal was selectively attended), and when the temporal discriminability was equivalent for the auditory and visual signals. Thus, unlike spatial perception where the modality carrying more discriminable signals dominates, duration perception seems to be mandatorily linked to auditory processing under most circumstances. PMID:24806403

  6. Remembering forward: Neural correlates of memory and prediction in human motor adaptation

    PubMed Central

    Scheidt, Robert A; Zimbelman, Janice L; Salowitz, Nicole M G; Suminski, Aaron J; Mosier, Kristine M; Houk, James; Simo, Lucia

    2011-01-01

    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions - including prefrontal, parietal and hippocampal cortices - exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancellation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures. PMID:21840405

  7. The issue of multiple univariate comparisons in the context of neuroelectric brain mapping: an application in a neuromarketing experiment.

    PubMed

    Vecchiato, G; De Vico Fallani, F; Astolfi, L; Toppi, J; Cincotti, F; Mattia, D; Salinari, S; Babiloni, F

    2010-08-30

    This paper presents some considerations about the use of adequate statistical techniques in the framework of the neuroelectromagnetic brain mapping. With the use of advanced EEG/MEG recording setup involving hundred of sensors, the issue of the protection against the type I errors that could occur during the execution of hundred of univariate statistical tests, has gained interest. In the present experiment, we investigated the EEG signals from a mannequin acting as an experimental subject. Data have been collected while performing a neuromarketing experiment and analyzed with state of the art computational tools adopted in specialized literature. Results showed that electric data from the mannequin's head presents statistical significant differences in power spectra during the visualization of a commercial advertising when compared to the power spectra gathered during a documentary, when no adjustments were made on the alpha level of the multiple univariate tests performed. The use of the Bonferroni or Bonferroni-Holm adjustments returned correctly no differences between the signals gathered from the mannequin in the two experimental conditions. An partial sample of recently published literature on different neuroscience journals suggested that at least the 30% of the papers do not use statistical protection for the type I errors. While the occurrence of type I errors could be easily managed with appropriate statistical techniques, the use of such techniques is still not so largely adopted in the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Remediating Common Math Errors.

    ERIC Educational Resources Information Center

    Wagner, Rudolph F.

    1981-01-01

    Explanations and remediation suggestions for five types of mathematics errors due either to perceptual or cognitive difficulties are given. Error types include directionality problems, mirror writing, visually misperceived signs, diagnosed directionality problems, and mixed process errors. (CL)

  9. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    PubMed

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of orientation in visual working memory.

  10. Predictive and Feedback Performance Errors are Signaled in the Simple Spike Discharge of Individual Purkinje Cells

    PubMed Central

    Popa, Laurentiu S.; Hewitt, Angela L.; Ebner, Timothy J.

    2012-01-01

    The cerebellum has been implicated in processing motor errors required for online control of movement and motor learning. The dominant view is that Purkinje cell complex spike discharge signals motor errors. This study investigated whether errors are encoded in the simple spike discharge of Purkinje cells in monkeys trained to manually track a pseudo-randomly moving target. Four task error signals were evaluated based on cursor movement relative to target movement. Linear regression analyses based on firing residuals ensured that the modulation with a specific error parameter was independent of the other error parameters and kinematics. The results demonstrate that simple spike firing in lobules IV–VI is significantly correlated with position, distance and directional errors. Independent of the error signals, the same Purkinje cells encode kinematics. The strongest error modulation occurs at feedback timing. However, in 72% of cells at least one of the R2 temporal profiles resulting from regressing firing with individual errors exhibit two peak R2 values. For these bimodal profiles, the first peak is at a negative τ (lead) and a second peak at a positive τ (lag), implying that Purkinje cells encode both prediction and feedback about an error. For the majority of the bimodal profiles, the signs of the regression coefficients or preferred directions reverse at the times of the peaks. The sign reversal results in opposing simple spike modulation for the predictive and feedback components. Dual error representations may provide the signals needed to generate sensory prediction errors used to update a forward internal model. PMID:23115173

  11. Predictors of driving safety in early Alzheimer disease

    PubMed Central

    Dawson, J D.; Anderson, S W.; Uc, E Y.; Dastrup, E; Rizzo, M

    2009-01-01

    Objective: To measure the association of cognition, visual perception, and motor function with driving safety in Alzheimer disease (AD). Methods: Forty drivers with probable early AD (mean Mini-Mental State Examination score 26.5) and 115 elderly drivers without neurologic disease underwent a battery of cognitive, visual, and motor tests, and drove a standardized 35-mile route in urban and rural settings in an instrumented vehicle. A composite cognitive score (COGSTAT) was calculated for each subject based on eight neuropsychological tests. Driving safety errors were noted and classified by a driving expert based on video review. Results: Drivers with AD committed an average of 42.0 safety errors/drive (SD = 12.8), compared to an average of 33.2 (SD = 12.2) for drivers without AD (p < 0.0001); the most common errors were lane violations. Increased age was predictive of errors, with a mean of 2.3 more errors per drive observed for each 5-year age increment. After adjustment for age and gender, COGSTAT was a significant predictor of safety errors in subjects with AD, with a 4.1 increase in safety errors observed for a 1 SD decrease in cognitive function. Significant increases in safety errors were also found in subjects with AD with poorer scores on Benton Visual Retention Test, Complex Figure Test-Copy, Trail Making Subtest-A, and the Functional Reach Test. Conclusion: Drivers with Alzheimer disease (AD) exhibit a range of performance on tests of cognition, vision, and motor skills. Since these tests provide additional predictive value of driving performance beyond diagnosis alone, clinicians may use these tests to help predict whether a patient with AD can safely operate a motor vehicle. GLOSSARY AD = Alzheimer disease; AVLT = Auditory Verbal Learning Test; Blocks = Block Design subtest; BVRT = Benton Visual Retention Test; CFT = Complex Figure Test; CI = confidence interval; COWA = Controlled Oral Word Association; CS = contrast sensitivity; FVA = far visual acuity; JLO = Judgment of Line Orientation; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; NVA = near visual acuity; SFM = structure from motion; TMT = Trail-Making Test; UFOV = Useful Field of View. PMID:19204261

  12. What Is the Evidence for Inter-laminar Integration in a Prefrontal Cortical Minicolumn?

    PubMed

    Opris, Ioan; Chang, Stephano; Noga, Brian R

    2017-01-01

    The objective of this perspective article is to examine columnar inter-laminar integration during the executive control of behavior. The integration hypothesis posits that perceptual and behavioral signals are integrated within the prefrontal cortical inter-laminar microcircuits. Inter-laminar minicolumnar activity previously recorded from the dorsolateral prefrontal cortex (dlPFC) of nonhuman primates, trained in a visual delay match-to-sample (DMS) task, was re-assessed from an integrative perspective. Biomorphic multielectrode arrays (MEAs) played a unique role in the in vivo recording of columnar cell firing in the dlPFC layers 2/3 and 5/6. Several integrative aspects stem from these experiments: 1. Functional integration of perceptual and behavioral signals across cortical layers during executive control. The integrative effect of dlPFC minicolumns was shown by: (i) increased correlated firing on correct vs. error trials; (ii) decreased correlated firing when the number of non-matching images increased; and (iii) similar spatial firing preference across cortical-striatal cells during spatial-trials, and less on object-trials. 2. Causal relations to integration of cognitive signals by the minicolumnar turbo-engines. The inter-laminar integration between the perceptual and executive circuits was facilitated by stimulating the infra-granular layers with firing patterns obtained from supra-granular layers that enhanced spatial preference of percent correct performance on spatial trials. 3. Integration across hierarchical levels of the brain. The integration of intention signals (visual spatial, direction) with movement preparation (timing, velocity) in striatum and with the motor command and posture in midbrain is also discussed. These findings provide evidence for inter-laminar integration of executive control signals within brain's prefrontal cortical microcircuits.

  13. Correction of Hysteretic Respiratory Motion in SPECT Myocardial Perfusion Imaging: Simulation and Patient Studies

    PubMed Central

    Dasari, Paul K. R.; Könik, Arda; Pretorius, P. Hendrik; Johnson, Karen L.; Segars, William P.; Shazeeb, Mohammed. S.; King, Michael A.

    2017-01-01

    Purpose Amplitude based respiratory gating is known to capture the extent of respiratory motion (RM) accurately but results in residual motion in the presence of respiratory hysteresis. In our previous study, we proposed and developed a novel approach to account for respiratory hysteresis by applying the Bouc-Wen (BW) model of hysteresis to external surrogate signals of anterior / posterior motion of the abdomen and chest with respiration. In this work using simulated and clinical SPECT myocardial perfusion imaging (MPI) studies, we investigate the effects of respiratory hysteresis and evaluate the benefit of correcting it using the proposed BW model in comparison with the abdomen signal typically employed clinically. Methods The MRI navigator data acquired in free breathing human volunteers were used in the specially modified 4-D NCAT phantoms to allow simulating three types of respiratory patterns: monotonic, mild-hysteresis, and strong-hysteresis with normal myocardial uptake, and perfusion defects in the anterior, lateral, inferior, and septal locations of the mid-ventricular wall. Clinical scans were performed using a 99mTc-Sestamibi MPI protocol while recording respiratory signals from thoracic and abdomen regions using a Visual Tracking System (VTS). The performance of the correction using the respiratory signals was assessed through polar map analysis in phantom and ten clinical studies selected on the basis of having substantial RM. Results In phantom studies, simulations illustrating normal myocardial uptake showed significant differences (p<0.001) in the uniformity of the polar maps between the RM uncorrected and corrected. No significant differences were seen in the polar map uniformity across the RM corrections. Studies simulating perfusion defects showed significantly decreased errors (p<0.001) in defect severity and extent for the RM corrected compared to the uncorrected. Only for the strong-hysteretic pattern was there a significant difference (p<0.001) among the RM corrections. The errors in defect severity and extent for the RM correction using abdomen signal were significantly higher compared to that of the BW (severity=-4.0%, p<0.001; extent=-65.4%, p<0.01) and chest (severity=-4.1%, p<0.001; extent=-52.5%, p<0.01) signals. In clinical studies, the quantitative analysis of the polar maps demonstrated qualitative and quantitative but not statistically significant differences (p=0.73) between the correction methods that used the BW signal and the abdominal signal. Conclusions This study shows that hysteresis in respiration affects the extent of residual motion left in the RM binned data, which can impact wall uniformity and the visualization of defects. Thus there appears to be the potential for improved accuracy in reconstruction in the presence of hysteretic RM with the BW model method providing a possible step in the direction of improvement. PMID:28032913

  14. Measurement of electromagnetic tracking error in a navigated breast surgery setup

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor

    2016-03-01

    PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.

  15. Experimental test of visuomotor updating models that explain perisaccadic mislocalization.

    PubMed

    Van Wetter, Sigrid M C I; Van Opstal, A John

    2008-10-23

    Localization of a brief visual target is inaccurate when presented around saccade onset. Perisaccadic mislocalization is maximal in the saccade direction and varies systematically with the target-saccade onset disparity. It has been hypothesized that this effect is either due to a sluggish representation of eye position, to low-pass filtering of the visual event, to saccade-induced compression of visual space, or to a combination of these effects. Despite their differences, these schemes all predict that the pattern of localization errors varies systematically with the saccade amplitude and kinematics. We tested these predictions for the double-step paradigm by analyzing the errors for saccades of widely varying amplitudes. Our data show that the measured error patterns are only mildly influenced by the primary-saccade amplitude over a large range of saccade properties. An alternative possibility, better accounting for the data, assumes that around saccade onset perceived target location undergoes a uniform shift in the saccade direction that varies with amplitude only for small saccades. The strength of this visual effect saturates at about 10 deg and also depends on target duration. Hence, we propose that perisaccadic mislocalization results from errors in visual-spatial perception rather than from sluggish oculomotor feedback.

  16. Stereoscopic distance perception

    NASA Technical Reports Server (NTRS)

    Foley, John M.

    1989-01-01

    Limited cue, open-loop tasks in which a human observer indicates distances or relations among distances are discussed. By open-loop tasks, it is meant tasks in which the observer gets no feedback as to the accuracy of the responses. What happens when cues are added and when the loop is closed are considered. The implications of this research for the effectiveness of visual displays is discussed. Errors in visual distance tasks do not necessarily mean that the percept is in error. The error could arise in transformations that intervene between the percept and the response. It is argued that the percept is in error. It is also argued that there exist post-perceptual transformations that may contribute to the error or be modified by feedback to correct for the error.

  17. Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement

    PubMed Central

    Hu, Bo; Knill, David C.

    2012-01-01

    Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567

  18. Linking Cognitive and Visual Perceptual Decline in Healthy Aging: The Information Degradation Hypothesis

    PubMed Central

    Monge, Zachary A.; Madden, David J.

    2016-01-01

    Several hypotheses attempt to explain the relation between cognitive and perceptual decline in aging (e.g., common-cause, sensory deprivation, cognitive load on perception, information degradation). Unfortunately, the majority of past studies examining this association have used correlational analyses, not allowing for these hypotheses to be tested sufficiently. This correlational issue is especially relevant for the information degradation hypothesis, which states that degraded perceptual signal inputs, resulting from either age-related neurobiological processes (e.g., retinal degeneration) or experimental manipulations (e.g., reduced visual contrast), lead to errors in perceptual processing, which in turn may affect non-perceptual, higher-order cognitive processes. Even though the majority of studies examining the relation between age-related cognitive and perceptual decline have been correlational, we reviewed several studies demonstrating that visual manipulations affect both younger and older adults’ cognitive performance, supporting the information degradation hypothesis and contradicting implications of other hypotheses (e.g., common-cause, sensory deprivation, cognitive load on perception). The reviewed evidence indicates the necessity to further examine the information degradation hypothesis in order to identify mechanisms underlying age-related cognitive decline. PMID:27484869

  19. Statistical Projections for Multi-resolution, Multi-dimensional Visual Data Exploration and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoa T. Nguyen; Stone, Daithi; E. Wes Bethel

    2016-01-01

    An ongoing challenge in visual exploration and analysis of large, multi-dimensional datasets is how to present useful, concise information to a user for some specific visualization tasks. Typical approaches to this problem have proposed either reduced-resolution versions of data, or projections of data, or both. These approaches still have some limitations such as consuming high computation or suffering from errors. In this work, we explore the use of a statistical metric as the basis for both projections and reduced-resolution versions of data, with a particular focus on preserving one key trait in data, namely variation. We use two different casemore » studies to explore this idea, one that uses a synthetic dataset, and another that uses a large ensemble collection produced by an atmospheric modeling code to study long-term changes in global precipitation. The primary findings of our work are that in terms of preserving the variation signal inherent in data, that using a statistical measure more faithfully preserves this key characteristic across both multi-dimensional projections and multi-resolution representations than a methodology based upon averaging.« less

  20. Reconfigurable Auditory-Visual Display

    NASA Technical Reports Server (NTRS)

    Begault, Durand R. (Inventor); Anderson, Mark R. (Inventor); McClain, Bryan (Inventor); Miller, Joel D. (Inventor)

    2008-01-01

    System and method for visual and audible communication between a central operator and N mobile communicators (N greater than or equal to 2), including an operator transceiver and interface, configured to receive and display, for the operator, visually perceptible and audibly perceptible signals from each of the mobile communicators. The interface (1) presents an audible signal from each communicator as if the audible signal is received from a different location relative to the operator and (2) allows the operator to select, to assign priority to, and to display, the visual signals and the audible signals received from a specified communicator. Each communicator has an associated signal transmitter that is configured to transmit at least one of the visual signals and the audio signal associated with the communicator, where at least one of the signal transmitters includes at least one sensor that senses and transmits a sensor value representing a selected environmental or physiological parameter associated with the communicator.

  1. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    PubMed Central

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  2. Efficacy of Visual-Acoustic Biofeedback Intervention for Residual Rhotic Errors: A Single-Subject Randomization Study

    ERIC Educational Resources Information Center

    Byun, Tara McAllister

    2017-01-01

    Purpose: This study documented the efficacy of visual-acoustic biofeedback intervention for residual rhotic errors, relative to a comparison condition involving traditional articulatory treatment. All participants received both treatments in a single-subject experimental design featuring alternating treatments with blocked randomization of…

  3. Visual perception and imagery: a new molecular hypothesis.

    PubMed

    Bókkon, I

    2009-05-01

    Here, we put forward a redox molecular hypothesis about the natural biophysical substrate of visual perception and visual imagery. This hypothesis is based on the redox and bioluminescent processes of neuronal cells in retinotopically organized cytochrome oxidase-rich visual areas. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells that are not part of haphazard process, but rather a very strict mechanism used in signaling pathways. We point out that there is a direct relationship between neuronal activity and the biophoton emission process in the brain. Electrical and biochemical processes in the brain represent sensory information from the external world. During encoding or retrieval of information, electrical signals of neurons can be converted into synchronized biophoton signals by bioluminescent radical and non-radical processes. Therefore, information in the brain appears not only as an electrical (chemical) signal but also as a regulated biophoton (weak optical) signal inside neurons. During visual perception, the topological distribution of photon stimuli on the retina is represented by electrical neuronal activity in retinotopically organized visual areas. These retinotopic electrical signals in visual neurons can be converted into synchronized biophoton signals by radical and non-radical processes in retinotopically organized mitochondria-rich areas. As a result, regulated bioluminescent biophotons can create intrinsic pictures (depictive representation) in retinotopically organized cytochrome oxidase-rich visual areas during visual imagery and visual perception. The long-term visual memory is interpreted as epigenetic information regulated by free radicals and redox processes. This hypothesis does not claim to solve the secret of consciousness, but proposes that the evolution of higher levels of complexity made the intrinsic picture representation of the external visual world possible by regulated redox and bioluminescent reactions in the visual system during visual perception and visual imagery.

  4. The high accuracy data processing system of laser interferometry signals based on MSP430

    NASA Astrophysics Data System (ADS)

    Qi, Yong-yue; Lin, Yu-chi; Zhao, Mei-rong

    2009-07-01

    Generally speaking there are two orthogonal signals used in single-frequency laser interferometer for differentiating direction and electronic subdivision. However there usually exist three errors with the interferential signals: zero offsets error, unequal amplitude error and quadrature phase shift error. These three errors have a serious impact on subdivision precision. Based on Heydemann error compensation algorithm, it is proposed to achieve compensation of the three errors. Due to complicated operation of the Heydemann mode, a improved arithmetic is advanced to decrease the calculating time effectively in accordance with the special characteristic that only one item of data will be changed in each fitting algorithm operation. Then a real-time and dynamic compensatory circuit is designed. Taking microchip MSP430 as the core of hardware system, two input signals with the three errors are turned into digital quantity by the AD7862. After data processing in line with improved arithmetic, two ideal signals without errors are output by the AD7225. At the same time two original signals are turned into relevant square wave and imported to the differentiating direction circuit. The impulse exported from the distinguishing direction circuit is counted by the timer of the microchip. According to the number of the pulse and the soft subdivision the final result is showed by LED. The arithmetic and the circuit are adopted to test the capability of a laser interferometer with 8 times optical path difference and the measuring accuracy of 12-14nm is achieved.

  5. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be applied to any unknown chip before inspection. A wealth of information can be provided by this learning procedure, which greatly benefits the interpretation of inspection signals afterwards.

  6. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    PubMed

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring.

    PubMed

    Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes

    2017-09-01

    The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min -1 . Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from  -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean : R 2   =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.

  8. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring

    NASA Astrophysics Data System (ADS)

    Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes

    2017-09-01

    The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min-1. Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from  -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean: R 2  =  0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.

  9. Clinical vision characteristics of the congenital achromatopsias. I. Visual acuity, refractive error, and binocular status.

    PubMed

    Haegerstrom-Portnoy, G; Schneck, M E; Verdon, W A; Hewlett, S E

    1996-07-01

    Visual acuity, refractive error, and binocular status were determined in 43 autosomal recessive (AR) and 15 X-linked (XL) congenital achromats. The achromats were classified by color matching and spectral sensitivity data. Large interindividual variation in refractive error and visual acuity was present within each achromat group (complete AR, incomplete AR, and XL). However, the number of individuals with significant interocular acuity differences is very small. Most XLs are myopic; ARs show a wide range of refractive error from high myopia to high hyperopia. Acuity of the AR and XL groups was very similar. With-the-rule astigmatism of large amount is very common in achromats, particularly ARs. There is a close association between strabismus and interocular acuity differences in the ARs, with the fixating eye having better than average acuity. The large overlap of acuity and refractive error of XL and AR achromats suggests that these measures are less useful for differential diagnosis than generally indicated by the clinical literature.

  10. Residual Optically Stimulated Luminescent (OSL) Signals For Al2O3: C and a Readout System With Reproducible Partial Signal Clearance.

    PubMed

    Abraham, Sara A; Kearfott, Kimberlee J

    2018-06-15

    Optically stimulated luminescent dosimeters are devices that, when stimulated with light, emit light in proportion to the integrated ionizing radiation dose. The stimulation of optically stimulated luminescent material results in the loss of a small fraction of signal stored within the dosimetric traps. Previous studies have investigated the signal loss due to readout stimulation and the optical annealing of optically stimulated luminescent dosimeters. This study builds on former research by examining the behavior of optically stimulated luminescent signals after annealing, exploring the functionality of a previously developed signal loss model, and comparing uncertainties for dosimeters reused with or without annealing. For a completely annealed dosimeter, the minimum signal level was 56 ± 8 counts, and readings followed a Gaussian distribution. For dosimeters above this signal level, the fractional signal loss due to the reading process has a linear relationship with the calculated signal. At low signal levels (below 20,000 counts) in this optically stimulated luminescent dosimeter system, calculated signal percent errors increase significantly but otherwise are on average 0.72 ± 0.27%, 0.40 ± 0.19%, 0.33 ± 0.12%, and 0.24 ± 0.07% for 30, 75, 150, and 300 readings, respectively. Theoretical calculations of uncertainties showed that annealing before reusing dosimeters allows for dose errors below 1% with as few as 30 readings. Reusing dosimeters multiple times increases the dose errors especially with low numbers of readouts, so theoretically around 300 readings would be necessary to achieve errors around 1% or below in most scenarios. Note that these dose errors do not include the error associated with the signal-to-dose conversion factor.

  11. Piggyback intraocular lens implantation to correct pseudophakic refractive error after segmental multifocal intraocular lens implantation.

    PubMed

    Venter, Jan A; Oberholster, Andre; Schallhorn, Steven C; Pelouskova, Martina

    2014-04-01

    To evaluate refractive and visual outcomes of secondary piggyback intraocular lens implantation in patients diagnosed as having residual ametropia following segmental multifocal lens implantation. Data of 80 pseudophakic eyes with ametropia that underwent Sulcoflex aspheric 653L intraocular lens implantation (Rayner Intraocular Lenses Ltd., East Sussex, United Kingdom) to correct residual refractive error were analyzed. All eyes previously had in-the-bag zonal refractive multifocal intraocular lens implantation (Lentis Mplus MF30, models LS-312 and LS-313; Oculentis GmbH, Berlin, Germany) and required residual refractive error correction. Outcome measurements included uncorrected distance visual acuity, corrected distance visual acuity, uncorrected near visual acuity, distance-corrected near visual acuity, manifest refraction, and complications. One-year data are presented in this study. The mean spherical equivalent ranged from -1.75 to +3.25 diopters (D) preoperatively (mean: +0.58 ± 1.15 D) and reduced to -1.25 to +0.50 D (mean: -0.14 ± 0.28 D; P < .01). Postoperatively, 93.8% of eyes were within ±0.50 D and 98.8% were within ±1.00 D of emmetropia. The mean uncorrected distance visual acuity improved significantly from 0.28 ± 0.16 to 0.01 ± 0.10 logMAR and 78.8% of eyes achieved 6/6 (Snellen 20/20) or better postoperatively. The mean uncorrected near visual acuity changed from 0.43 ± 0.28 to 0.19 ± 0.15 logMAR. There was no significant change in corrected distance visual acuity or distance-corrected near visual acuity. No serious intraoperative or postoperative complications requiring secondary intraocular lens removal occurred. Sulcoflex lenses proved to be a predictable and safe option for correcting residual refractive error in patients diagnosed as having pseudophakia. Copyright 2014, SLACK Incorporated.

  12. A process-based approach to characterizing the effect of acute alprazolam challenge on visual paired associate learning and memory in healthy older adults.

    PubMed

    Pietrzak, Robert H; Scott, James Cobb; Harel, Brian T; Lim, Yen Ying; Snyder, Peter J; Maruff, Paul

    2012-11-01

    Alprazolam is a benzodiazepine that, when administered acutely, results in impairments in several aspects of cognition, including attention, learning, and memory. However, the profile (i.e., component processes) that underlie alprazolam-related decrements in visual paired associate learning has not been fully explored. In this double-blind, placebo-controlled, randomized cross-over study of healthy older adults, we used a novel, "process-based" computerized measure of visual paired associate learning to examine the effect of a single, acute 1-mg dose of alprazolam on component processes of visual paired associate learning and memory. Acute alprazolam challenge was associated with a large magnitude reduction in visual paired associate learning and memory performance (d = 1.05). Process-based analyses revealed significant increases in distractor, exploratory, between-search, and within-search error types. Analyses of percentages of each error type suggested that, relative to placebo, alprazolam challenge resulted in a decrease in the percentage of exploratory errors and an increase in the percentage of distractor errors, both of which reflect memory processes. Results of this study suggest that acute alprazolam challenge decreases visual paired associate learning and memory performance by reducing the strength of the association between pattern and location, which may reflect a general breakdown in memory consolidation, with less evidence of reductions in executive processes (e.g., working memory) that facilitate visual paired associate learning and memory. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Visuo-vestibular interaction: predicting the position of a visual target during passive body rotation.

    PubMed

    Mackrous, I; Simoneau, M

    2011-11-10

    Following body rotation, optimal updating of the position of a memorized target is attained when retinal error is perceived and corrective saccade is performed. Thus, it appears that these processes may enable the calibration of the vestibular system by facilitating the sharing of information between both reference frames. Here, it is assessed whether having sensory information regarding body rotation in the target reference frame could enhance an individual's learning rate to predict the position of an earth-fixed target. During rotation, participants had to respond when they felt their body midline had crossed the position of the target and received knowledge of result. During practice blocks, for two groups, visual cues were displayed in the same reference frame of the target, whereas a third group relied on vestibular information (vestibular-only group) to predict the location of the target. Participants, unaware of the role of the visual cues (visual cues group), learned to predict the location of the target and spatial error decreased from 16.2 to 2.0°, reflecting a learning rate of 34.08 trials (determined from fitting a falling exponential model). In contrast, the group aware of the role of the visual cues (explicit visual cues group) showed a faster learning rate (i.e. 2.66 trials) but similar final spatial error 2.9°. For the vestibular-only group, similar accuracy was achieved (final spatial error of 2.3°), but their learning rate was much slower (i.e. 43.29 trials). Transferring to the Post-test (no visual cues and no knowledge of result) increased the spatial error of the explicit visual cues group (9.5°), but it did not change the performance of the vestibular group (1.2°). Overall, these results imply that cognition assists the brain in processing the sensory information within the target reference frame. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Error Sources in Proccessing LIDAR Based Bridge Inspection

    NASA Astrophysics Data System (ADS)

    Bian, H.; Chen, S. E.; Liu, W.

    2017-09-01

    Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of inspection techniques.

  15. Merging Psychophysical and Psychometric Theory to Estimate Global Visual State Measures from Forced-Choices

    NASA Astrophysics Data System (ADS)

    Massof, Robert W.; Schmidt, Karen M.; Laby, Daniel M.; Kirschen, David; Meadows, David

    2013-09-01

    Visual acuity, a forced-choice psychophysical measure of visual spatial resolution, is the sine qua non of clinical visual impairment testing in ophthalmology and optometry patients with visual system disorders ranging from refractive error to retinal, optic nerve, or central visual system pathology. Visual acuity measures are standardized against a norm, but it is well known that visual acuity depends on a variety of stimulus parameters, including contrast and exposure duration. This paper asks if it is possible to estimate a single global visual state measure from visual acuity measures as a function of stimulus parameters that can represent the patient's overall visual health state with a single variable. Psychophysical theory (at the sensory level) and psychometric theory (at the decision level) are merged to identify the conditions that must be satisfied to derive a global visual state measure from parameterised visual acuity measures. A global visual state measurement model is developed and tested with forced-choice visual acuity measures from 116 subjects with no visual impairments and 560 subjects with uncorrected refractive error. The results are in agreement with the expectations of the model.

  16. Multiplicative noise removal via a learned dictionary.

    PubMed

    Huang, Yu-Mei; Moisan, Lionel; Ng, Michael K; Zeng, Tieyong

    2012-11-01

    Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, in this paper, we propose to learn a dictionary from the logarithmic transformed image, and then to use it in a variational model built for noise removal. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio, and mean absolute deviation error, the proposed algorithm outperforms state-of-the-art methods.

  17. Online learning and control of attraction basins for the development of sensorimotor control strategies.

    PubMed

    de Rengervé, Antoine; Andry, Pierre; Gaussier, Philippe

    2015-04-01

    Imitation and learning from humans require an adequate sensorimotor controller to learn and encode behaviors. We present the Dynamic Muscle Perception-Action(DM-PerAc) model to control a multiple degrees-of-freedom (DOF) robot arm. In the original PerAc model, path-following or place-reaching behaviors correspond to the sensorimotor attractors resulting from the dynamics of learned sensorimotor associations. The DM-PerAc model, inspired by human muscles, permits one to combine impedance-like control with the capability of learning sensorimotor attraction basins. We detail a solution to learn incrementally online the DM-PerAc visuomotor controller. Postural attractors are learned by adapting the muscle activations in the model depending on movement errors. Visuomotor categories merging visual and proprioceptive signals are associated with these muscle activations. Thus, the visual and proprioceptive signals activate the motor action generating an attractor which satisfies both visual and proprioceptive constraints. This visuomotor controller can serve as a basis for imitative behaviors. In addition, the muscle activation patterns can define directions of movement instead of postural attractors. Such patterns can be used in state-action couples to generate trajectories like in the PerAc model. We discuss a possible extension of the DM-PerAc controller by adapting the Fukuyori's controller based on the Langevin's equation. This controller can serve not only to reach attractors which were not explicitly learned, but also to learn the state/action couples to define trajectories.

  18. PID-based error signal modeling

    NASA Astrophysics Data System (ADS)

    Yohannes, Tesfay

    1997-10-01

    This paper introduces a PID based signal error modeling. The error modeling is based on the betterment process. The resulting iterative learning algorithm is introduced and a detailed proof is provided for both linear and nonlinear systems.

  19. Phenomenology of the sound-induced flash illusion.

    PubMed

    Abadi, Richard V; Murphy, Jonathan S

    2014-07-01

    Past studies, using pairings of auditory tones and visual flashes, which were static and coincident in space but variable in time, demonstrated errors in judging the temporal patterning of the visual flashes-the sound-induced flash illusion. These errors took one of the two forms: under-reporting (sound-induced fusion) or over-reporting (sound-induced fission) of the flash numbers. Our study had three objectives: to examine the robustness of both illusions and to consider the effects of stimulus set and response bias. To this end, we used an extended range of fixed spatial location flash-tone pairings, examined stimuli that were variable in space and time and measured confidence in judging flash numbers. Our results indicated that the sound-induced flash illusion is a robust percept, a finding underpinned by the confidence measures. Sound-induced fusion was found to be more robust than sound-induced fission and a most likely outcome when high numbers of flashes were incorporated within an incongruent flash-tone pairing. Conversely, sound-induced fission was the most likely outcome for the flash-tone pairing which contained two flashes. Fission was also shown to be strongly driven by stimuli confounds such as categorical boundary conditions (e.g. flash-tone pairings with ≤2 flashes) and compressed response options. These findings suggest whilst both fission and fusion are associated with 'auditory driving', the differences in the occurrence and strength of the two illusions not only reflect the separate neuronal mechanisms underlying audio and visual signal processing, but also the test conditions that have been used to investigate the sound-induced flash illusion.

  20. Digital implementation of a laser frequency stabilisation technique in the telecommunications band

    NASA Astrophysics Data System (ADS)

    Jivan, Pritesh; van Brakel, Adriaan; Manuel, Rodolfo Martínez; Grobler, Michael

    2016-02-01

    Laser frequency stabilisation in the telecommunications band was realised using the Pound-Drever-Hall (PDH) error signal. The transmission spectrum of the Fabry-Perot cavity was used as opposed to the traditionally used reflected spectrum. A comparison was done using an analogue as well as a digitally implemented system. This study forms part of an initial step towards developing a portable optical time and frequency standard. The frequency discriminator used in the experimental setup was a fibre-based Fabry-Perot etalon. The phase sensitive system made use of the optical heterodyne technique to detect changes in the phase of the system. A lock-in amplifier was used to filter and mix the input signals to generate the error signal. This error signal may then be used to generate a control signal via a PID controller. An error signal was realised at a wavelength of 1556 nm which correlates to an optical frequency of 1.926 THz. An implementation of the analogue PDH technique yielded an error signal with a bandwidth of 6.134 GHz, while a digital implementation yielded a bandwidth of 5.774 GHz.

  1. Visual Survey of Infantry Troops. Part 1. Visual Acuity, Refractive Status, Interpupillary Distance and Visual Skills

    DTIC Science & Technology

    1989-06-01

    letters on one line and several letters on the next line, there is no accurate way to credit these extra letters for statistical analysis. The decimal and...contains the descriptive statistics of the objective refractive error components of infantrymen. Figures 8-11 show the frequency distributions for sphere...equivalents. Nonspectacle wearers Table 12 contains the idescriptive statistics for non- spectacle wearers. Based or these refractive error data, about 30

  2. Context effects on smooth pursuit and manual interception of a disappearing target.

    PubMed

    Kreyenmeier, Philipp; Fooken, Jolande; Spering, Miriam

    2017-07-01

    In our natural environment, we interact with moving objects that are surrounded by richly textured, dynamic visual contexts. Yet most laboratory studies on vision and movement show visual objects in front of uniform gray backgrounds. Context effects on eye movements have been widely studied, but it is less well known how visual contexts affect hand movements. Here we ask whether eye and hand movements integrate motion signals from target and context similarly or differently, and whether context effects on eye and hand change over time. We developed a track-intercept task requiring participants to track the initial launch of a moving object ("ball") with smooth pursuit eye movements. The ball disappeared after a brief presentation, and participants had to intercept it in a designated "hit zone." In two experiments ( n = 18 human observers each), the ball was shown in front of a uniform or a textured background that either was stationary or moved along with the target. Eye and hand movement latencies and speeds were similarly affected by the visual context, but eye and hand interception (eye position at time of interception, and hand interception timing error) did not differ significantly between context conditions. Eye and hand interception timing errors were strongly correlated on a trial-by-trial basis across all context conditions, highlighting the close relation between these responses in manual interception tasks. Our results indicate that visual contexts similarly affect eye and hand movements but that these effects may be short-lasting, affecting movement trajectories more than movement end points. NEW & NOTEWORTHY In a novel track-intercept paradigm, human observers tracked a briefly shown object moving across a textured, dynamic context and intercepted it with their finger after it had disappeared. Context motion significantly affected eye and hand movement latency and speed, but not interception accuracy; eye and hand position at interception were correlated on a trial-by-trial basis. Visual context effects may be short-lasting, affecting movement trajectories more than movement end points. Copyright © 2017 the American Physiological Society.

  3. Temporal specificity of reward prediction errors signaled by putative dopamine neurons in rat VTA depends on ventral striatum

    PubMed Central

    Takahashi, Yuji K.; Langdon, Angela J.; Niv, Yael; Schoenbaum, Geoffrey

    2016-01-01

    Summary Dopamine neurons signal reward prediction errors. This requires accurate reward predictions. It has been suggested that the ventral striatum provides these predictions. Here we tested this hypothesis by recording from putative dopamine neurons in the VTA of rats performing a task in which prediction errors were induced by shifting reward timing or number. In controls, the neurons exhibited error signals in response to both manipulations. However, dopamine neurons in rats with ipsilateral ventral striatal lesions exhibited errors only to changes in number and failed to respond to changes in timing of reward. These results, supported by computational modeling, indicate that predictions about the temporal specificity and the number of expected rewards are dissociable, and that dopaminergic prediction-error signals rely on the ventral striatum for the former but not the latter. PMID:27292535

  4. Prevalence of amblyopia and refractive errors in an unscreened population of children.

    PubMed

    Polling, Jan-Roelof; Loudon, Sjoukje E; Klaver, Caroline C W

    2012-11-01

    To describe the frequency of refractive errors and amblyopia in unscreened children aged 2 months to 12 years from a rural town in Poland. Five hundred ninety-one children were identified by medical records and examined in a standardized manner.Visual acuity was measured using LogMAR charts; refractive error was determined using retinoscopy or autorefraction after cycloplegia. Myopia was defined as spherical equivalent (SE) ≤ -0.50 D, emmetropia as SE between -0.5 D and+0.5 D, mild hyperopia as SE between +0.5 D and +2.0 D, and high hyperopia as SE Q+2.0 D. Amblyopia was classified as best-corrected visual acuity ≥0.3 (≤ 20/40) LogMAR, in combination with a 2 LogMAR line difference between the two eyes and the presence of an amblyogenic factor. Refractive errors ranged from 84.2% in children aged up to 2 years to 75.5% in those aged 10 to 12 years.Refractive error showed a myopic shift with age; myopia prevalence increased from 2.2% in those aged 6 to 7 years to 6.3% in those aged 10 to 12 years. Of the examined children, 77 (16.3%) had refractive errors, with visual loss; of these,60 (78%) did not use corrections. The prevalence of amblyopia was 3.1%, and refractive error attributed to the amblyopiain 9 of 13 (69%) children. Refractive errors are common in Caucasian children and often remain undiagnosed. The prevalence of amblyopia was three times higher in this unscreened population compared with screened populations. Greater awarenessof these common treatable visual conditions in children is warranted.

  5. Neural Pathways Conveying Novisual Information to the Visual Cortex

    PubMed Central

    2013-01-01

    The visual cortex has been traditionally considered as a stimulus-driven, unimodal system with a hierarchical organization. However, recent animal and human studies have shown that the visual cortex responds to non-visual stimuli, especially in individuals with visual deprivation congenitally, indicating the supramodal nature of the functional representation in the visual cortex. To understand the neural substrates of the cross-modal processing of the non-visual signals in the visual cortex, we firstly showed the supramodal nature of the visual cortex. We then reviewed how the nonvisual signals reach the visual cortex. Moreover, we discussed if these non-visual pathways are reshaped by early visual deprivation. Finally, the open question about the nature (stimulus-driven or top-down) of non-visual signals is also discussed. PMID:23840972

  6. Detection and quantification of coronary calcium from dual energy chest x-rays: Phantom feasibility study.

    PubMed

    Zhou, Bo; Wen, Di; Nye, Katelyn; Gilkeson, Robert C; Eck, Brendan; Jordan, David; Wilson, David L

    2017-10-01

    We have demonstrated the ability to identify coronary calcium, a reliable biomarker of coronary artery disease, using nongated, 2-shot, dual energy (DE) chest x-ray imaging. Here we will use digital simulations, backed up by measurements, to characterize DE calcium signals and the role of potential confounds such as beam hardening, x-ray scatter, cardiac motion, and pulmonary artery pulsation. For the DE calcium signal, we will consider quantification, as compared to CT calcium score, and visualization. We created stylized and anatomical digital 3D phantoms including heart, lung, coronary calcium, spine, ribs, pulmonary artery, and adipose. We simulated high and low kVp x-ray acquisitions with x-ray spectra, energy dependent attenuation, scatter, ideal detector, and automatic exposure control (AEC). Phantoms allowed us to vary adipose thickness, cardiac motion, etc. We used specialized dual energy coronary calcium (DECC) processing that includes corrections for scatter and beam hardening. Beam hardening over a wide range of adipose thickness (0-30 cm) reduced the change in intensity of a coronary artery calcification (ΔI CAC ) by < 3% in DECC images. Scatter correction errors of ±50% affected the calcium signal (ΔI CAC ) in DECC images ±9%. If a simulated pulmonary artery fills with blood between exposures, it can give rise to a residual signal in DECC images, explaining pulmonary artery visibility in some clinical images. Residual misregistration can be mostly compensated by integrating signals in an enlarged region encompassing registration artifacts. DECC calcium score compared favorably to CT mass and volume scores over a number of phantom perturbations. Simulations indicate that proper DECC processing can faithfully recover coronary calcium signals. Beam hardening, errors in scatter estimation, cardiac motion, calcium residual misregistration etc., are all manageable. Simulations are valuable as we continue to optimize DE coronary calcium image processing and quantitative analysis. © 2017 American Association of Physicists in Medicine.

  7. Adaptation to sensory-motor reflex perturbations is blind to the source of errors.

    PubMed

    Hudson, Todd E; Landy, Michael S

    2012-01-06

    In the study of visual-motor control, perhaps the most familiar findings involve adaptation to externally imposed movement errors. Theories of visual-motor adaptation based on optimal information processing suppose that the nervous system identifies the sources of errors to effect the most efficient adaptive response. We report two experiments using a novel perturbation based on stimulating a visually induced reflex in the reaching arm. Unlike adaptation to an external force, our method induces a perturbing reflex within the motor system itself, i.e., perturbing forces are self-generated. This novel method allows a test of the theory that error source information is used to generate an optimal adaptive response. If the self-generated source of the visually induced reflex perturbation is identified, the optimal response will be via reflex gain control. If the source is not identified, a compensatory force should be generated to counteract the reflex. Gain control is the optimal response to reflex perturbation, both because energy cost and movement errors are minimized. Energy is conserved because neither reflex-induced nor compensatory forces are generated. Precision is maximized because endpoint variance is proportional to force production. We find evidence against source-identified adaptation in both experiments, suggesting that sensory-motor information processing is not always optimal.

  8. Power saver circuit for audio/visual signal unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Right, R. W.

    1985-02-12

    A combined audio and visual signal unit with the audio and visual components actuated alternately and powered over a single cable pair in such a manner that only one of the audio and visual components is drawing power from the power supply at any given instant. Thus, the power supply is never called upon to provide more energy than that drawn by the one of the components having the greater power requirement. This is particularly advantageous when several combined audio and visual signal units are coupled in parallel on one cable pair. Typically, the signal unit may comprise a hornmore » and a strobe light for a fire alarm signalling system.« less

  9. An MEG signature corresponding to an axiomatic model of reward prediction error.

    PubMed

    Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J

    2012-01-02

    Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  11. Effects of Age-Related Macular Degeneration on Driving Performance

    PubMed Central

    Wood, Joanne M.; Black, Alex A.; Mallon, Kerry; Kwan, Anthony S.; Owsley, Cynthia

    2018-01-01

    Purpose To explore differences in driving performance of older adults with age-related macular degeneration (AMD) and age-matched controls, and to identify the visual determinants of driving performance in this population. Methods Participants included 33 older drivers with AMD (mean age [M] = 76.6 ± 6.1 years; better eye Age-Related Eye Disease Study grades: early [61%] and intermediate [39%]) and 50 age-matched controls (M = 74.6 ± 5.0 years). Visual tests included visual acuity, contrast sensitivity, visual fields, and motion sensitivity. On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist (masked to drivers' visual status). Outcome measures included driving safety ratings (scale of 1–10, where higher values represented safer driving), types of driving behavior errors, locations at which errors were made, and number of critical errors (CE) requiring an instructor intervention. Results Drivers with AMD were rated as less safe than controls (4.8 vs. 6.2; P = 0.012); safety ratings were associated with AMD severity (early: 5.5 versus intermediate: 3.7), even after adjusting for age. Drivers with AMD had higher CE rates than controls (1.42 vs. 0.36, respectively; rate ratio 3.05, 95% confidence interval 1.47–6.36, P = 0.003) and exhibited more observation, lane keeping, and gap selection errors and made more errors at traffic light–controlled intersections (P < 0.05). Only motion sensitivity was significantly associated with driving safety in the AMD drivers (P = 0.005). Conclusions Drivers with early and intermediate AMD can exhibit impairments in their driving performance, particularly during complex driving situations; motion sensitivity was most strongly associated with driving performance. These findings have important implications for assessing the driving ability of older drivers with visual impairment. PMID:29340641

  12. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    PubMed

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Calibration and comparison of the acoustic location methods used during the spring migration of the bowhead whale, Balaena mysticetus, off Pt. Barrow, Alaska, 1984-1993.

    PubMed

    Clark, C W; Ellison, W T

    2000-06-01

    Between 1984 and 1993, visual and acoustic methods were combined to census the Bering-Chukchi-Beaufort bowhead whale, Balaena mysticetus, population. Passive acoustic location was based on arrival-time differences of transient bowhead sounds detected on sparse arrays of three to five hydrophones distributed over distances of 1.5-4.5 km along the ice edge. Arrival-time differences were calculated from either digital cross correlation of spectrograms (old method), or digital cross correlation of time waveforms (new method). Acoustic calibration was conducted in situ in 1985 at five sites with visual site position determined by triangulation using two theodolites. The discrepancy between visual and acoustic locations was <1%-5% of visual range and less than 0.7 degrees of visual bearing for either method. Comparison of calibration results indicates that the new method yielded slightly more precise and accurate positions than the old method. Comparison of 217 bowhead whale call locations from both acoustic methods showed that the new method was more precise, with location errors 3-4 times smaller than the old method. Overall, low-frequency bowhead transients were reliably located out to ranges of 3-4 times array size. At these ranges in shallow water, signal propagation appears to be dominated by the fundamental mode and is not corrupted by multipath.

  14. Combined influence of visual scene and body tilt on arm pointing movements: gravity matters!

    PubMed

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R; Bourdin, Christophe; Mestre, Daniel R; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., 'combined' tilts equal to the sum of 'single' tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues.

  15. Combined Influence of Visual Scene and Body Tilt on Arm Pointing Movements: Gravity Matters!

    PubMed Central

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R.; Bourdin, Christophe; Mestre, Daniel R.; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., ‘combined’ tilts equal to the sum of ‘single’ tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues. PMID:24925371

  16. Sources of medical error in refractive surgery.

    PubMed

    Moshirfar, Majid; Simpson, Rachel G; Dave, Sonal B; Christiansen, Steven M; Edmonds, Jason N; Culbertson, William W; Pascucci, Stephen E; Sher, Neal A; Cano, David B; Trattler, William B

    2013-05-01

    To evaluate the causes of laser programming errors in refractive surgery and outcomes in these cases. In this multicenter, retrospective chart review, 22 eyes of 18 patients who had incorrect data entered into the refractive laser computer system at the time of treatment were evaluated. Cases were analyzed to uncover the etiology of these errors, patient follow-up treatments, and final outcomes. The results were used to identify potential methods to avoid similar errors in the future. Every patient experienced compromised uncorrected visual acuity requiring additional intervention, and 7 of 22 eyes (32%) lost corrected distance visual acuity (CDVA) of at least one line. Sixteen patients were suitable candidates for additional surgical correction to address these residual visual symptoms and six were not. Thirteen of 22 eyes (59%) received surgical follow-up treatment; nine eyes were treated with contact lenses. After follow-up treatment, six patients (27%) still had a loss of one line or more of CDVA. Three significant sources of error were identified: errors of cylinder conversion, data entry, and patient identification error. Twenty-seven percent of eyes with laser programming errors ultimately lost one or more lines of CDVA. Patients who underwent surgical revision had better outcomes than those who did not. Many of the mistakes identified were likely avoidable had preventive measures been taken, such as strict adherence to patient verification protocol or rigorous rechecking of treatment parameters. Copyright 2013, SLACK Incorporated.

  17. Optimized universal color palette design for error diffusion

    NASA Astrophysics Data System (ADS)

    Kolpatzik, Bernd W.; Bouman, Charles A.

    1995-04-01

    Currently, many low-cost computers can only simultaneously display a palette of 256 color. However, this palette is usually selectable from a very large gamut of available colors. For many applications, this limited palette size imposes a significant constraint on the achievable image quality. We propose a method for designing an optimized universal color palette for use with halftoning methods such as error diffusion. The advantage of a universal color palette is that it is fixed and therefore allows multiple images to be displayed simultaneously. To design the palette, we employ a new vector quantization method known as sequential scalar quantization (SSQ) to allocate the colors in a visually uniform color space. The SSQ method achieves near-optimal allocation, but may be efficiently implemented using a series of lookup tables. When used with error diffusion, SSQ adds little computational overhead and may be used to minimize the visual error in an opponent color coordinate system. We compare the performance of the optimized algorithm to standard error diffusion by evaluating a visually weighted mean-squared-error measure. Our metric is based on the color difference in CIE L*AL*B*, but also accounts for the lowpass characteristic of human contrast sensitivity.

  18. Visual Image Sensor Organ Replacement: Implementation

    NASA Technical Reports Server (NTRS)

    Maluf, A. David (Inventor)

    2011-01-01

    Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.

  19. Eye Movements Affect Postural Control in Young and Older Females

    PubMed Central

    Thomas, Neil M.; Bampouras, Theodoros M.; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions. PMID:27695412

  20. Eye Movements Affect Postural Control in Young and Older Females.

    PubMed

    Thomas, Neil M; Bampouras, Theodoros M; Donovan, Tim; Dewhurst, Susan

    2016-01-01

    Visual information is used for postural stabilization in humans. However, little is known about how eye movements prevalent in everyday life interact with the postural control system in older individuals. Therefore, the present study assessed the effects of stationary gaze fixations, smooth pursuits, and saccadic eye movements, with combinations of absent, fixed and oscillating large-field visual backgrounds to generate different forms of retinal flow, on postural control in healthy young and older females. Participants were presented with computer generated visual stimuli, whilst postural sway and gaze fixations were simultaneously assessed with a force platform and eye tracking equipment, respectively. The results showed that fixed backgrounds and stationary gaze fixations attenuated postural sway. In contrast, oscillating backgrounds and smooth pursuits increased postural sway. There were no differences regarding saccades. There were also no differences in postural sway or gaze errors between age groups in any visual condition. The stabilizing effect of the fixed visual stimuli show how retinal flow and extraocular factors guide postural adjustments. The destabilizing effect of oscillating visual backgrounds and smooth pursuits may be related to more challenging conditions for determining body shifts from retinal flow, and more complex extraocular signals, respectively. Because the older participants matched the young group's performance in all conditions, decreases of posture and gaze control during stance may not be a direct consequence of healthy aging. Further research examining extraocular and retinal mechanisms of balance control and the effects of eye movements, during locomotion, is needed to better inform fall prevention interventions.

  1. Visuomotor adaptation to a visual rotation is gravity dependent.

    PubMed

    Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry

    2015-03-15

    Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.

  2. Watch what you type: the role of visual feedback from the screen and hands in skilled typewriting.

    PubMed

    Snyder, Kristy M; Logan, Gordon D; Yamaguchi, Motonori

    2015-01-01

    Skilled typing is controlled by two hierarchically structured processing loops (Logan & Crump, 2011): The outer loop, which produces words, commands the inner loop, which produces keystrokes. Here, we assessed the interplay between the two loops by investigating how visual feedback from the screen (responses either were or were not echoed on the screen) and the hands (the hands either were or were not covered with a box) influences the control of skilled typing. Our results indicated, first, that the reaction time of the first keystroke was longer when responses were not echoed than when they were. Also, the interkeystroke interval (IKSI) was longer when the hands were covered than when they were visible, and the IKSI for responses that were not echoed was longer when explicit error monitoring was required (Exp. 2) than when it was not required (Exp. 1). Finally, explicit error monitoring was more accurate when response echoes were present than when they were absent, and implicit error monitoring (i.e., posterror slowing) was not influenced by visual feedback from the screen or the hands. These findings suggest that the outer loop adjusts the inner-loop timing parameters to compensate for reductions in visual feedback. We suggest that these adjustments are preemptive control strategies designed to execute keystrokes more cautiously when visual feedback from the hands is absent, to generate more cautious motor programs when visual feedback from the screen is absent, and to enable enough time for the outer loop to monitor keystrokes when visual feedback from the screen is absent and explicit error reports are required.

  3. Failure to use corollary discharge to remap visual target locations is associated with psychotic symptom severity in schizophrenia

    PubMed Central

    Rösler, Lara; Rolfs, Martin; van der Stigchel, Stefan; Neggers, Sebastiaan F. W.; Cahn, Wiepke; Kahn, René S.

    2015-01-01

    Corollary discharge (CD) refers to “copies” of motor signals sent to sensory areas, allowing prediction of future sensory states. They enable the putative mechanisms supporting the distinction between self-generated and externally generated sensations. Accordingly, many authors have suggested that disturbed CD engenders psychotic symptoms of schizophrenia, which are characterized by agency distortions. CD also supports perceived visual stability across saccadic eye movements and is used to predict the postsaccadic retinal coordinates of visual stimuli, a process called remapping. We tested whether schizophrenia patients (SZP) show remapping disturbances as evidenced by systematic transsaccadic mislocalizations of visual targets. SZP and healthy controls (HC) performed a task in which a saccadic target disappeared upon saccade initiation and, after a brief delay, reappeared at a horizontally displaced position. HC judged the direction of this displacement accurately, despite spatial errors in saccade landing site, indicating that their comparison of the actual to predicted postsaccadic target location relied on accurate CD. SZP performed worse and relied more on saccade landing site as a proxy for the presaccadic target, consistent with disturbed CD. This remapping failure was strongest in patients with more severe psychotic symptoms, consistent with the theoretical link between disturbed CD and phenomenological experiences in schizophrenia. PMID:26108951

  4. Planet Detectability in the Alpha Centauri System

    NASA Astrophysics Data System (ADS)

    Zhao, Lily; Fischer, Debra A.; Brewer, John; Giguere, Matt; Rojas-Ayala, Bárbara

    2018-01-01

    We use more than a decade of radial-velocity measurements for α {Cen} A, B, and Proxima Centauri from the High Accuracy Radial Velocity Planet Searcher, CTIO High Resolution Spectrograph, and the Ultraviolet and Visual Echelle Spectrograph to identify the M\\sin i and orbital periods of planets that could have been detected if they existed. At each point in a mass–period grid, we sample a simulated, Keplerian signal with the precision and cadence of existing data and assess the probability that the signal could have been produced by noise alone. Existing data places detection thresholds in the classically defined habitable zones at about M\\sin i of 53 {M}\\oplus for α {Cen} A, 8.4 {M}\\oplus for α {Cen} B, and 0.47 {M}\\oplus for Proxima Centauri. Additionally, we examine the impact of systematic errors, or “red noise” in the data. A comparison of white- and red-noise simulations highlights quasi-periodic variability in the radial velocities that may be caused by systematic errors, photospheric velocity signals, or planetary signals. For example, the red-noise simulations show a peak above white-noise simulations at the period of Proxima Centauri b. We also carry out a spectroscopic analysis of the chemical composition of the α {Centauri} stars. The stars have super-solar metallicity with ratios of C/O and Mg/Si that are similar to the Sun, suggesting that any small planets in the α {Cen} system may be compositionally similar to our terrestrial planets. Although the small projected separation of α {Cen} A and B currently hampers extreme-precision radial-velocity measurements, the angular separation is now increasing. By 2019, α {Cen} A and B will be ideal targets for renewed Doppler planet surveys.

  5. Shunt regulation electric power system

    NASA Technical Reports Server (NTRS)

    Wright, W. H.; Bless, J. J. (Inventor)

    1971-01-01

    A regulated electric power system having load and return bus lines is described. A plurality of solar cells interconnected in a power supplying relationship and having a power shunt tap point electrically spaced from the bus lines is provided. A power dissipator is connected to the shunt tap point and provides for a controllable dissipation of excess energy supplied by the solar cells. A dissipation driver is coupled to the power dissipator and controls its conductance and dissipation and is also connected to the solar cells in a power taping relationship to derive operating power therefrom. An error signal generator is coupled to the load bus and to a reference signal generator to provide an error output signal which is representative of the difference between the electric parameters existing at the load bus and the reference signal generator. An error amplifier is coupled to the error signal generator and the dissipation driver to provide the driver with controlling signals.

  6. Low Target Prevalence Is a Stubborn Source of Errors in Visual Search Tasks

    ERIC Educational Resources Information Center

    Wolfe, Jeremy M.; Horowitz, Todd S.; Van Wert, Michael J.; Kenner, Naomi M.; Place, Skyler S.; Kibbi, Nour

    2007-01-01

    In visual search tasks, observers look for targets in displays containing distractors. Likelihood that targets will be missed varies with target prevalence, the frequency with which targets are presented across trials. Miss error rates are much higher at low target prevalence (1%-2%) than at high prevalence (50%). Unfortunately, low prevalence is…

  7. Visual Scanning: Comparisons Between Student and Instructor Pilots. Final Report.

    ERIC Educational Resources Information Center

    DeMaio, Joseph; And Others

    The performance of instructor pilots and student pilots was compared in two visual scanning tasks. In the first task both groups were shown slides of T-37 instrument displays in which errors were to be detected. Instructor pilots detected errors faster and with greater accuracy than student pilots, thus providing evidence for the validity of the…

  8. Clinical outcomes of Transepithelial photorefractive keratectomy to treat low to moderate myopic astigmatism.

    PubMed

    Xi, Lei; Zhang, Chen; He, Yanling

    2018-05-09

    To evaluate the refractive and visual outcomes of Transepithelial photorefractive keratectomy (TransPRK) in the treatment of low to moderate myopic astigmatism. This retrospective study enrolled a total of 47 eyes that had undergone Transepithelial photorefractive keratectomy. Preoperative cylinder diopters ranged from - 0.75D to - 2.25D (mean - 1.11 ± 0.40D), and the sphere was between - 1.50D to - 5.75D. Visual outcomes and vector analysis of astigmatism that included error ratio (ER), correction ratio (CR), error of magnitude (EM) and error of angle (EA) were evaluated. At 6 months after TransPRK, all eyes had an uncorrected distance visual acuity of 20/20 or better, no eyes lost ≥2 lines of corrected distant visual acuity (CDVA), and 93.6% had residual refractive cylinder within ±0.50D of intended correction. On vector analysis, the mean correction ratio for refractive cylinder was 1.03 ± 0.30. The mean error magnitude was - 0.04 ± 0.36. The mean error of angle was 0.44° ± 7.42°and 80.9% of eyes had axis shift within ±10°. The absolute astigmatic error of magnitude was statistically significantly correlated with the intended cylinder correction (r = 0.48, P < 0.01). TransPRK showed safe, effective and predictable results in the correction of low to moderate astigmatism and myopia.

  9. Intraoperative visualization and assessment of electromagnetic tracking error

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Ungi, Tamas; Lasso, Andras; MacDonald, Andrew; Nanji, Sulaiman; Fichtinger, Gabor

    2015-03-01

    Electromagnetic tracking allows for increased flexibility in designing image-guided interventions, however it is well understood that electromagnetic tracking is prone to error. Visualization and assessment of the tracking error should take place in the operating room with minimal interference with the clinical procedure. The goal was to achieve this ideal in an open-source software implementation in a plug and play manner, without requiring programming from the user. We use optical tracking as a ground truth. An electromagnetic sensor and optical markers are mounted onto a stylus device, pivot calibrated for both trackers. Electromagnetic tracking error is defined as difference of tool tip position between electromagnetic and optical readings. Multiple measurements are interpolated into the thin-plate B-spline transform visualized in real time using 3D Slicer. All tracked devices are used in a plug and play manner through the open-source SlicerIGT and PLUS extensions of the 3D Slicer platform. Tracking error was measured multiple times to assess reproducibility of the method, both with and without placing ferromagnetic objects in the workspace. Results from exhaustive grid sampling and freehand sampling were similar, indicating that a quick freehand sampling is sufficient to detect unexpected or excessive field distortion in the operating room. The software is available as a plug-in for the 3D Slicer platforms. Results demonstrate potential for visualizing electromagnetic tracking error in real time for intraoperative environments in feasibility clinical trials in image-guided interventions.

  10. Medial-Frontal Stimulation Enhances Learning in Schizophrenia by Restoring Prediction Error Signaling.

    PubMed

    Reinhart, Robert M G; Zhu, Julia; Park, Sohee; Woodman, Geoffrey F

    2015-09-02

    Posterror learning, associated with medial-frontal cortical recruitment in healthy subjects, is compromised in neuropsychiatric disorders. Here we report novel evidence for the mechanisms underlying learning dysfunctions in schizophrenia. We show that, by noninvasively passing direct current through human medial-frontal cortex, we could enhance the event-related potential related to learning from mistakes (i.e., the error-related negativity), a putative index of prediction error signaling in the brain. Following this causal manipulation of brain activity, the patients learned a new task at a rate that was indistinguishable from healthy individuals. Moreover, the severity of delusions interacted with the efficacy of the stimulation to improve learning. Our results demonstrate a causal link between disrupted prediction error signaling and inefficient learning in schizophrenia. These findings also demonstrate the feasibility of nonpharmacological interventions to address cognitive deficits in neuropsychiatric disorders. When there is a difference between what we expect to happen and what we actually experience, our brains generate a prediction error signal, so that we can map stimuli to responses and predict outcomes accurately. Theories of schizophrenia implicate abnormal prediction error signaling in the cognitive deficits of the disorder. Here, we combine noninvasive brain stimulation with large-scale electrophysiological recordings to establish a causal link between faulty prediction error signaling and learning deficits in schizophrenia. We show that it is possible to improve learning rate, as well as the neural signature of prediction error signaling, in patients to a level quantitatively indistinguishable from that of healthy subjects. The results provide mechanistic insight into schizophrenia pathophysiology and suggest a future therapy for this condition. Copyright © 2015 the authors 0270-6474/15/3512232-09$15.00/0.

  11. Research on key technologies of LADAR echo signal simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Ye, Jiansen; Wang, Xin; Li, Zhuo

    2015-10-01

    LADAR echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR, which is designed to simulate the LADAR return signal in laboratory conditions. The device can provide the laser echo signal of target and background for imaging LADAR systems to test whether it is of good performance. Some key technologies are investigated in this paper. Firstly, the 3D model of typical target is built, and transformed to the data of the target echo signal based on ranging equation and targets reflection characteristics. Then, system model and time series model of LADAR echo signal simulator are established. Some influential factors which could induce fixed delay error and random delay error on the simulated return signals are analyzed. In the simulation system, the signal propagating delay of circuits and the response time of pulsed lasers are belong to fixed delay error. The counting error of digital delay generator, the jitter of system clock and the desynchronized between trigger signal and clock signal are a part of random delay error. Furthermore, these system insertion delays are analyzed quantitatively, and the noisy data are obtained. The target echo signals are got by superimposing of the noisy data and the pure target echo signal. In order to overcome these disadvantageous factors, a method of adjusting the timing diagram of the simulation system is proposed. Finally, the simulated echo signals are processed by using a detection algorithm to complete the 3D model reconstruction of object. The simulation results reveal that the range resolution can be better than 8 cm.

  12. Design and Implementation of an Intrinsically Safe Liquid-Level Sensor Using Coaxial Cable

    PubMed Central

    Jin, Baoquan; Liu, Xin; Bai, Qing; Wang, Dong; Wang, Yu

    2015-01-01

    Real-time detection of liquid level in complex environments has always been a knotty issue. In this paper, an intrinsically safe liquid-level sensor system for flammable and explosive environments is designed and implemented. The poly vinyl chloride (PVC) coaxial cable is chosen as the sensing element and the measuring mechanism is analyzed. Then, the capacitance-to-voltage conversion circuit is designed and the expected output signal is achieved by adopting parameter optimization. Furthermore, the experimental platform of the liquid-level sensor system is constructed, which involves the entire process of measuring, converting, filtering, processing, visualizing and communicating. Additionally, the system is designed with characteristics of intrinsic safety by limiting the energy of the circuit to avoid or restrain the thermal effects and sparks. Finally, the approach of the piecewise linearization is adopted in order to improve the measuring accuracy by matching the appropriate calibration points. The test results demonstrate that over the measurement range of 1.0 m, the maximum nonlinearity error is 0.8% full-scale span (FSS), the maximum repeatability error is 0.5% FSS, and the maximum hysteresis error is reduced from 0.7% FSS to 0.5% FSS by applying software compensation algorithms. PMID:26029949

  13. Design and implementation of an intrinsically safe liquid-level sensor using coaxial cable.

    PubMed

    Jin, Baoquan; Liu, Xin; Bai, Qing; Wang, Dong; Wang, Yu

    2015-05-28

    Real-time detection of liquid level in complex environments has always been a knotty issue. In this paper, an intrinsically safe liquid-level sensor system for flammable and explosive environments is designed and implemented. The poly vinyl chloride (PVC) coaxial cable is chosen as the sensing element and the measuring mechanism is analyzed. Then, the capacitance-to-voltage conversion circuit is designed and the expected output signal is achieved by adopting parameter optimization. Furthermore, the experimental platform of the liquid-level sensor system is constructed, which involves the entire process of measuring, converting, filtering, processing, visualizing and communicating. Additionally, the system is designed with characteristics of intrinsic safety by limiting the energy of the circuit to avoid or restrain the thermal effects and sparks. Finally, the approach of the piecewise linearization is adopted in order to improve the measuring accuracy by matching the appropriate calibration points. The test results demonstrate that over the measurement range of 1.0 m, the maximum nonlinearity error is 0.8% full-scale span (FSS), the maximum repeatability error is 0.5% FSS, and the maximum hysteresis error is reduced from 0.7% FSS to 0.5% FSS by applying software compensation algorithms.

  14. Interoceptive signals impact visual processing: Cardiac modulation of visual body perception.

    PubMed

    Ronchi, Roberta; Bernasconi, Fosco; Pfeiffer, Christian; Bello-Ruiz, Javier; Kaliuzhna, Mariia; Blanke, Olaf

    2017-09-01

    Multisensory perception research has largely focused on exteroceptive signals, but recent evidence has revealed the integration of interoceptive signals with exteroceptive information. Such research revealed that heartbeat signals affect sensory (e.g., visual) processing: however, it is unknown how they impact the perception of body images. Here we linked our participants' heartbeat to visual stimuli and investigated the spatio-temporal brain dynamics of cardio-visual stimulation on the processing of human body images. We recorded visual evoked potentials with 64-channel electroencephalography while showing a body or a scrambled-body (control) that appeared at the frequency of the on-line recorded participants' heartbeat or not (not-synchronous, control). Extending earlier studies, we found a body-independent effect, with cardiac signals enhancing visual processing during two time periods (77-130 ms and 145-246 ms). Within the second (later) time-window we detected a second effect characterised by enhanced activity in parietal, temporo-occipital, inferior frontal, and right basal ganglia-insula regions, but only when non-scrambled body images were flashed synchronously with the heartbeat (208-224 ms). In conclusion, our results highlight the role of interoceptive information for the visual processing of human body pictures within a network integrating cardio-visual signals of relevance for perceptual and cognitive aspects of visual body processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Dopamine reward prediction error coding.

    PubMed

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  16. Dopamine reward prediction error coding

    PubMed Central

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377

  17. Visual feedback system to reduce errors while operating roof bolting machines

    PubMed Central

    Steiner, Lisa J.; Burgess-Limerick, Robin; Eiter, Brianna; Porter, William; Matty, Tim

    2015-01-01

    Problem Operators of roof bolting machines in underground coal mines do so in confined spaces and in very close proximity to the moving equipment. Errors in the operation of these machines can have serious consequences, and the design of the equipment interface has a critical role in reducing the probability of such errors. Methods An experiment was conducted to explore coding and directional compatibility on actual roof bolting equipment and to determine the feasibility of a visual feedback system to alert operators of critical movements and to also alert other workers in close proximity to the equipment to the pending movement of the machine. The quantitative results of the study confirmed the potential for both selection errors and direction errors to be made, particularly during training. Results Subjective data confirmed a potential benefit of providing visual feedback of the intended operations and movements of the equipment. Impact This research may influence the design of these and other similar control systems to provide evidence for the use of warning systems to improve operator situational awareness. PMID:23398703

  18. Refractive error and visual impairment in school children in Northern Ireland.

    PubMed

    O'Donoghue, L; McClelland, J F; Logan, N S; Rudnicka, A R; Owen, C G; Saunders, K J

    2010-09-01

    To describe the prevalence of refractive error (myopia and hyperopia) and visual impairment in a representative sample of white school children. The Northern Ireland Childhood Errors of Refraction study, a population-based cross-sectional study, examined 661 white 12-13-year-old and 392 white 6-7-year-old children between 2006 and 2008. Procedures included assessment of monocular logarithm of the minimum angle of resolution (logMAR), visual acuity (unaided and presenting) and binocular open-field cycloplegic (1% cyclopentolate) autorefraction. Myopia was defined as -0.50DS or more myopic spherical equivalent refraction (SER) in either eye, hyperopia as > or =+2.00DS SER in either eye if not previously classified as myopic. Visual impairment was defined as >0.30 logMAR units (equivalent to 6/12). Levels of myopia were 2.8% (95% CI 1.3% to 4.3%) in younger and 17.7% (95% CI 13.2% to 22.2%) in older children: corresponding levels of hyperopia were 26% (95% CI 20% to 33%) and 14.7% (95% CI 9.9% to 19.4%). The prevalence of presenting visual impairment in the better eye was 3.6% in 12-13-year-old children compared with 1.5% in 6-7-year-old children. Almost one in four children fails to bring their spectacles to school. This study is the first to provide robust population-based data on the prevalence of refractive error and visual impairment in Northern Irish school children. Strategies to improve compliance with spectacle wear are required.

  19. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice.

    PubMed

    Jorratt, Pascal; Delano, Paul H; Delgado, Carolina; Dagnino-Subiabre, Alexies; Terreros, Gonzalo

    2017-01-01

    The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  20. PREVALENCE OF UNCORRECTED REFRACTIVE ERRORS IN ADULTS AGED 30 YEARS AND ABOVE IN A RURAL POPULATION IN PAKISTAN.

    PubMed

    Abdullah, Ayesha S; Jadoon, Milhammad Zahid; Akram, Mohammad; Awan, Zahid Hussain; Azam, Mohammad; Safdar, Mohammad; Nigar, Mohammad

    2015-01-01

    Uncorrected refractive errors are a leading cause of visual disability globally. This population-based study was done to estimate the prevalence of uncorrected refractive errors in adults aged 30 years and above of village Pawakah, Khyber Pakhtunkhwa (KPK), Pakistan. It was a cross-sectional survey in which 1000 individuals were included randomly. All the individuals were screened for uncorrected refractive errors and those whose visual acuity (VA) was found to be less than 6/6 were refracted. In whom refraction was found to be unsatisfactory (i.e., a best corrected visual acuity of <6/6) further examination was done to establish the cause for the subnormal vision. A total of 917 subjects participated in the survey (response rate 92%). The prevalence of uncorrected refractive errors was found to be 23.97% among males and 20% among females. The prevalence of visually disabling refractive errors was 6.89% in males and 5.71% in females. The prevalence was seen to increase with age, with maximum prevalence in 51-60 years age group. Hypermetropia (10.14%) was found to be the commonest refractive error followed by Myopia (6.00%) and Astigmatism (5.6%). The prevalence of Presbyopia was 57.5% (60.45% in males and 55.23% in females). Poor affordability was the commonest barrier to the use of spectacles, followed by unawareness. Cataract was the commonest reason for impaired vision after refractive correction. The prevalence of blindness was 1.96% (1.53% in males and 2.28% in females) in this community with cataract as the commonest cause. Despite being the most easily avoidable cause of subnormal vision uncorrected refractive errors still account for a major proportion of the burden of decreased vision in this area. Effective measures for the screening and affordable correction of uncorrected refractive errors need to be incorpora'ted into the health care delivery system.

  1. Majority-voted logic fail-sense circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    Fail-sense circuit has majority-voted logic component which receives three error voltage signals that are sensed at single point by three error amplifiers. If transistor shorts, only one signal is required to operate; if transistor opens, two signals are required.

  2. One year study on the integrative intervention of acupressure and interactive multimedia for visual health in school children.

    PubMed

    Yeh, Mei-Ling; Chen, Hsing-Hsia; Chung, Yu-Chu

    2012-12-01

    This study used a larger sample size, added a long-term observation of the effect of intervention, and provided an integrated intervention of acupressure and interactive multimedia of visual health instruction for school children. The short- and long-term effects of the interventions were then evaluated by visual health knowledge, visual acuity, and refractive error. A repeated pretest-posttest controlled trial was used with two experimental groups and one control group. Four elementary schools in northern Taiwan. 287 School children with visual impairment in fourth grade were recruited. One experimental group received the integrative intervention of acupressure and interactive multimedia of visual health instruction (ACIMU), and another received auricular acupressure (AC) alone; whereas a control group received no intervention. Two 10-week interventions were separately given in the fall and spring semesters. The short- and long-term effects of the interventions were then evaluated by visual health knowledge, visual acuity, and refractive error. During the school year the visual health knowledge was significantly higher in the ACIMU group than the control group (p<0.001). A significant difference in the changing visual acuity was in the three groups (p<0.001), with the improvement in the ACIMU group. No difference in the refractive error was found between any two groups (p>0.05). This study demonstrated that a long-term period of acupressure is required to improve school children's visual health. School children receiving the intervention of acupressure combined with interactive multimedia had better improvement of visual health and related knowledge than others. Further study is suggested in which visual health and preventative needs can be established for early childhood. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    PubMed

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  4. Excitation system for rotating synchronous machines

    DOEpatents

    Umans, Stephen D.; Driscoll, David J.

    2002-01-01

    A system for providing DC current to a rotating superconducting winding is provided. The system receives current feedback from the superconducting winding and determines an error signal based on the current feedback and a reference signal. The system determines a control signal corresponding to the error signal and provides a positive and negative superconducting winding excitation voltage based on the control signal.

  5. Visuospatial selective attention in chickens.

    PubMed

    Sridharan, Devarajan; Ramamurthy, Deepa L; Schwarz, Jason S; Knudsen, Eric I

    2014-05-13

    Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d') increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an "indecision" model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens--a highly visual species that is easily trained and amenable to cutting-edge experimental technologies--as an attractive model for linking behavior to neural mechanisms of selective attention.

  6. Error reduction in EMG signal decomposition

    PubMed Central

    Kline, Joshua C.

    2014-01-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159

  7. Mate choice in the eye and ear of the beholder? Female multimodal sensory configuration influences her preferences.

    PubMed

    Ronald, Kelly L; Fernández-Juricic, Esteban; Lucas, Jeffrey R

    2018-05-16

    A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird ( Molothrus ater ) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive. © 2018 The Author(s).

  8. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex

    PubMed Central

    Imhof, Fabia; Martini, Francisco J.; Hofer, Sonja B.

    2017-01-01

    Sensory perception depends on the context within which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher-order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context – yet the nature of the signals conveyed to cortex by higher-order thalamus remains poorly understood. Here we use axonal calcium imaging to measure information provided to visual cortex by the pulvinar equivalent in mice, the lateral posterior nucleus (LP), as well as the dorsolateral geniculate nucleus (dLGN). We found that dLGN conveys retinotopically precise visual signals, while LP provides distributed information from the visual scene. Both LP and dLGN projections carry locomotion signals. However, while dLGN inputs often respond to positive combinations of running and visual flow speed, LP signals discrepancies between self-generated and external visual motion. This higher-order thalamic nucleus therefore conveys diverse contextual signals that inform visual cortex about visual scene changes not predicted by the animal’s own actions. PMID:26691828

  9. Credit assignment in movement-dependent reinforcement learning

    PubMed Central

    Boggess, Matthew J.; Crossley, Matthew J.; Parvin, Darius; Ivry, Richard B.; Taylor, Jordan A.

    2016-01-01

    When a person fails to obtain an expected reward from an object in the environment, they face a credit assignment problem: Did the absence of reward reflect an extrinsic property of the environment or an intrinsic error in motor execution? To explore this problem, we modified a popular decision-making task used in studies of reinforcement learning, the two-armed bandit task. We compared a version in which choices were indicated by key presses, the standard response in such tasks, to a version in which the choices were indicated by reaching movements, which affords execution failures. In the key press condition, participants exhibited a strong risk aversion bias; strikingly, this bias reversed in the reaching condition. This result can be explained by a reinforcement model wherein movement errors influence decision-making, either by gating reward prediction errors or by modifying an implicit representation of motor competence. Two further experiments support the gating hypothesis. First, we used a condition in which we provided visual cues indicative of movement errors but informed the participants that trial outcomes were independent of their actual movements. The main result was replicated, indicating that the gating process is independent of participants’ explicit sense of control. Second, individuals with cerebellar degeneration failed to modulate their behavior between the key press and reach conditions, providing converging evidence of an implicit influence of movement error signals on reinforcement learning. These results provide a mechanistically tractable solution to the credit assignment problem. PMID:27247404

  10. Credit assignment in movement-dependent reinforcement learning.

    PubMed

    McDougle, Samuel D; Boggess, Matthew J; Crossley, Matthew J; Parvin, Darius; Ivry, Richard B; Taylor, Jordan A

    2016-06-14

    When a person fails to obtain an expected reward from an object in the environment, they face a credit assignment problem: Did the absence of reward reflect an extrinsic property of the environment or an intrinsic error in motor execution? To explore this problem, we modified a popular decision-making task used in studies of reinforcement learning, the two-armed bandit task. We compared a version in which choices were indicated by key presses, the standard response in such tasks, to a version in which the choices were indicated by reaching movements, which affords execution failures. In the key press condition, participants exhibited a strong risk aversion bias; strikingly, this bias reversed in the reaching condition. This result can be explained by a reinforcement model wherein movement errors influence decision-making, either by gating reward prediction errors or by modifying an implicit representation of motor competence. Two further experiments support the gating hypothesis. First, we used a condition in which we provided visual cues indicative of movement errors but informed the participants that trial outcomes were independent of their actual movements. The main result was replicated, indicating that the gating process is independent of participants' explicit sense of control. Second, individuals with cerebellar degeneration failed to modulate their behavior between the key press and reach conditions, providing converging evidence of an implicit influence of movement error signals on reinforcement learning. These results provide a mechanistically tractable solution to the credit assignment problem.

  11. Modification of saccadic gain by reinforcement

    PubMed Central

    Paeye, Céline; Wallman, Josh

    2011-01-01

    Control of saccadic gain is often viewed as a simple compensatory process in which gain is adjusted over many trials by the postsaccadic retinal error, thereby maintaining saccadic accuracy. Here, we propose that gain might also be changed by a reinforcement process not requiring a visual error. To test this hypothesis, we used experimental paradigms in which retinal error was removed by extinguishing the target at the start of each saccade and either an auditory tone or the vision of the target on the fovea was provided as reinforcement after those saccades that met an amplitude criterion. These reinforcement procedures caused a progressive change in saccade amplitude in nearly all subjects, although the rate of adaptation differed greatly among subjects. When we reversed the contingencies and reinforced those saccades landing closer to the original target location, saccade gain changed back toward normal gain in most subjects. When subjects had saccades adapted first by reinforcement and a week later by conventional intrasaccadic step adaptation, both paradigms yielded similar degrees of gain changes and similar transfer to new amplitudes and to new starting positions of the target step as well as comparable rates of recovery. We interpret these changes in saccadic gain in the absence of postsaccadic retinal error as showing that saccade adaptation is not controlled by a single error signal. More generally, our findings suggest that normal saccade adaptation might involve general learning mechanisms rather than only specialized mechanisms for motor calibration. PMID:21525366

  12. Using EMG to anticipate head motion for virtual-environment applications

    NASA Technical Reports Server (NTRS)

    Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion

    2005-01-01

    In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.

  13. Using EMG to anticipate head motion for virtual-environment applications.

    PubMed

    Barniv, Yair; Aguilar, Mario; Hasanbelliu, Erion

    2005-06-01

    In virtual environment (VE) applications, where virtual objects are presented in a see-through head-mounted display, virtual images must be continuously stabilized in space in response to user's head motion. Time delays in head-motion compensation cause virtual objects to "swim" around instead of being stable in space which results in misalignment errors when overlaying virtual and real objects. Visual update delays are a critical technical obstacle for implementing head-mounted displays in applications such as battlefield simulation/training, telerobotics, and telemedicine. Head motion is currently measurable by a head-mounted 6-degrees-of-freedom inertial measurement unit. However, even given this information, overall VE-system latencies cannot be reduced under about 25 ms. We present a novel approach to eliminating latencies, which is premised on the fact that myoelectric signals from a muscle precede its exertion of force, thereby limb or head acceleration. We thus suggest utilizing neck-muscles' myoelectric signals to anticipate head motion. We trained a neural network to map such signals onto equivalent time-advanced inertial outputs. The resulting network can achieve time advances of up to 70 ms.

  14. A Signal Detection Theory Approach to Evaluating Oculometer Data Quality

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Lynn, William, III; Barry, John S.; Kelly, Lon; Shih, Ming-Yun

    2013-01-01

    Currently, data quality is described in terms of spatial and temporal accuracy and precision [Holmqvist et al. in press]. While this approach provides precise errors in pixels, or visual angle, often experiments are more concerned with whether subjects'points of gaze can be said to be reliable with respect to experimentally-relevant areas of interest. This paper proposes a method to characterize oculometer data quality using Signal Detection Theory (SDT) [Marcum 1947]. SDT classification results in four cases: Hit (correct report of a signal), Miss (failure to report a ), False Alarm (a signal falsely reported), Correct Reject (absence of a signal correctly reported). A technique is proposed where subjects' are directed to look at points in and outside of an AOI, and the resulting Points of Gaze (POG) are classified as Hits (points known to be internal to an AOI are classified as such), Misses (AOI points are not indicated as such), False Alarms (points external to AOIs are indicated as in the AOI), or Correct Rejects (points external to the AOI are indicated as such). SDT metrics describe performance in terms of discriminability, sensitivity, and specificity. This paper presentation will provide the procedure for conducting this assessment and an example of data collected for AOIs in a simulated flightdeck environment.

  15. Error correcting mechanisms during antisaccades: contribution of online control during primary saccades and offline control via secondary saccades.

    PubMed

    Bedi, Harleen; Goltz, Herbert C; Wong, Agnes M F; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary "corrective" saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.

  16. Error Correcting Mechanisms during Antisaccades: Contribution of Online Control during Primary Saccades and Offline Control via Secondary Saccades

    PubMed Central

    Bedi, Harleen; Goltz, Herbert C.; Wong, Agnes M. F.; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task. PMID:23936308

  17. The prevalence of uncorrected refractive errors in underserved rural areas.

    PubMed

    Hashemi, Hassan; Abbastabar, Hedayat; Yekta, Abbasali; Heydarian, Samira; Khabazkhoob, Mehdi

    2017-12-01

    To determine the prevalence of uncorrected refractive errors, need for spectacles, and the determinants of unmet need in underserved rural areas of Iran. In a cross-sectional study, multistage cluster sampling was done in 2 underserved rural areas of Iran. Then, all subjects underwent vision testing and ophthalmic examinations including the measurement of uncorrected visual acuity (UCVA), best corrected visual acuity, visual acuity with current spectacles, auto-refraction, retinoscopy, and subjective refraction. Need for spectacles was defined as UCVA worse than 20/40 in the better eye that could be corrected to better than 20/40 with suitable spectacles. Of the 3851 selected individuals, 3314 participated in the study. Among participants, 18.94% [95% confidence intervals (CI): 13.48-24.39] needed spectacles and 11.23% (95% CI: 7.57-14.89) had an unmet need. The prevalence of need for spectacles was 46.8% and 23.8% in myopic and hyperopic participants, respectively. The prevalence of unmet need was 27% in myopic, 15.8% in hyperopic, and 25.46% in astigmatic participants. Multiple logistic regression showed that education and type of refractive errors were associated with uncorrected refractive errors; the odds of uncorrected refractive errors were highest in illiterate participants, and the odds of unmet need were 12.13, 5.1, and 4.92 times higher in myopic, hyperopic and astigmatic participants as compared with emmetropic individuals. The prevalence of uncorrected refractive errors was rather high in our study. Since rural areas have less access to health care facilities, special attention to the correction of refractive errors in these areas, especially with inexpensive methods like spectacles, can prevent a major proportion of visual impairment.

  18. Longitudinal decline of driving safety in Parkinson disease.

    PubMed

    Uc, Ergun Y; Rizzo, Matthew; O'Shea, Amy M J; Anderson, Steven W; Dawson, Jeffrey D

    2017-11-07

    To longitudinally assess and predict on-road driving safety in Parkinson disease (PD). Drivers with PD (n = 67) and healthy controls (n = 110) drove a standardized route in an instrumented vehicle and were invited to return 2 years later. A professional driving expert reviewed drive data and videos to score safety errors. At baseline, drivers with PD performed worse on visual, cognitive, and motor tests, and committed more road safety errors compared to controls (median PD 38.0 vs controls 30.5; p < 0.001). A smaller proportion of drivers with PD returned for repeat testing (42.8% vs 62.7%; p < 0.01). At baseline, returnees with PD made fewer errors than nonreturnees with PD (median 34.5 vs 40.0; p < 0.05) and performed similar to control returnees (median 33). Baseline global cognitive performance of returnees with PD was better than that of nonreturnees with PD, but worse than for control returnees ( p < 0.05). After 2 years, returnees with PD showed greater cognitive decline and larger increase in error counts than control returnees (median increase PD 13.5 vs controls 3.0; p < 0.001). Driving error count increase in the returnees with PD was predicted by greater error count and worse visual acuity at baseline, and by greater interval worsening of global cognition, Unified Parkinson's Disease Rating Scale activities of daily living score, executive functions, visual processing speed, and attention. Despite drop out of the more impaired drivers within the PD cohort, returning drivers with PD, who drove like controls without PD at baseline, showed many more driving safety errors than controls after 2 years. Driving decline in PD was predicted by baseline driving performance and deterioration of cognitive, visual, and functional abnormalities on follow-up. © 2017 American Academy of Neurology.

  19. A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    PubMed Central

    Costa, Daniel G.; Guedes, Luiz Affonso

    2011-01-01

    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908

  20. Effects of refractive errors on visual evoked magnetic fields.

    PubMed

    Suzuki, Masaya; Nagae, Mizuki; Nagata, Yuko; Kumagai, Naoya; Inui, Koji; Kakigi, Ryusuke

    2015-11-09

    The latency and amplitude of visual evoked cortical responses are known to be affected by refractive states, suggesting that they may be used as an objective index of refractive errors. In order to establish an easy and reliable method for this purpose, we herein examined the effects of refractive errors on visual evoked magnetic fields (VEFs). Binocular VEFs following the presentation of a simple grating of 0.16 cd/m(2) in the lower visual field were recorded in 12 healthy volunteers and compared among four refractive states: 0D, +1D, +2D, and +4D, by using plus lenses. The low-luminance visual stimulus evoked a main MEG response at approximately 120 ms (M100) that reversed its polarity between the upper and lower visual field stimulations and originated from the occipital midline area. When refractive errors were induced by plus lenses, the latency of M100 increased, while its amplitude decreased with an increase in power of the lens. Differences from the control condition (+0D) were significant for all three lenses examined. The results of dipole analyses showed that evoked fields for the control (+0D) condition were explainable by one dipole in the primary visual cortex (V1), while other sources, presumably in V3 or V6, slightly contributed to shape M100 for the +2D or +4D condition. The present results showed that the latency and amplitude of M100 are both useful indicators for assessing refractive states. The contribution of neural sources other than V1 to M100 was modest under the 0D and +1D conditions. By considering the nature of the activity of M100 including its high sensitivity to a spatial frequency and lower visual field dominance, a simple low-luminance grating stimulus at an optimal spatial frequency in the lower visual field appears appropriate for obtaining data on high S/N ratios and reducing the load on subjects.

  1. Source memory errors in schizophrenia, hallucinations and negative symptoms: a synthesis of research findings.

    PubMed

    Brébion, G; Ohlsen, R I; Bressan, R A; David, A S

    2012-12-01

    Previous research has shown associations between source memory errors and hallucinations in patients with schizophrenia. We bring together here findings from a broad memory investigation to specify better the type of source memory failure that is associated with auditory and visual hallucinations. Forty-one patients with schizophrenia and 43 healthy participants underwent a memory task involving recall and recognition of lists of words, recognition of pictures, memory for temporal and spatial context of presentation of the stimuli, and remembering whether target items were presented as words or pictures. False recognition of words and pictures was associated with hallucination scores. The extra-list intrusions in free recall were associated with verbal hallucinations whereas the intra-list intrusions were associated with a global hallucination score. Errors in discriminating the temporal context of word presentation and the spatial context of picture presentation were associated with auditory hallucinations. The tendency to remember verbal labels of items as pictures of these items was associated with visual hallucinations. Several memory errors were also inversely associated with affective flattening and anhedonia. Verbal and visual hallucinations are associated with confusion between internal verbal thoughts or internal visual images and perception. In addition, auditory hallucinations are associated with failure to process or remember the context of presentation of the events. Certain negative symptoms have an opposite effect on memory errors.

  2. Prevalence of Visual Impairment and Refractive Errors in Children of South Sinai, Egypt.

    PubMed

    Yamamah, Gamal Abdel Naser; Talaat Abdel Alim, Ahmed Ahmed; Mostafa, Yehia Salah El Din; Ahmed, Rania Ahmed Abdel Salam; Mohammed, Asmaa Mahmoud; Mahmoud, Asmaa Mohammed

    2015-01-01

    To assess the prevalence and causes of visual impairment in children of South Sinai, and to evaluate outcomes of rehabilitation programs. Population-based, cross-sectional analysis of 2070 healthy school children screened for visual impairment from 2009 through 2010 in cities of South Sinai and their surrounding Bedouin settlements. Visual acuity (VA) was tested using Snellen charts followed by cycloplegic autorefractometry for cases with presenting VA ≤ 6/9. Appropriate eyeglasses were prescribed and VA re-evaluated. This study included 1047 boys and 1023 girls, mean age 10.7 ± 3.1 years. Visual impairment (uncorrected VA ≤ 6/9) was detected in 29.4% of children, while 2.0% had moderate-severe visual impairment (uncorrected VA ≤ 6/24). There were statistically significant differences in prevalence of visual impairment between the studied cities (p < 0.05), with the highest prevalence in Abu Redis. Prevalence of visual impairment was significantly higher among girls (p < 0.05) and those with positive consanguinity (p < 0.05). Bedouin children showed significantly lower prevalences of visual impairment. Only age was a reliable predictor of visual impairment (odds ratio 0.94, p < 0.0001). Ophthalmic examination revealed other disorders, e.g. dry eye (4.74%), squint (2.37%), exophthalmos (1.58%) and ptosis (0.79%). VA significantly improved in children who received spectacles (p < 0.001). A total of 29.4% of South Sinai children had some form of visual impairment, 90.32% of which comprised refractive errors (mainly astigmatism) which were significantly corrected with eyeglasses. VA screening and correction of refractive errors are of the utmost importance for ensuring better visual outcomes and improved school performance.

  3. Students’ Errors in Geometry Viewed from Spatial Intelligence

    NASA Astrophysics Data System (ADS)

    Riastuti, N.; Mardiyana, M.; Pramudya, I.

    2017-09-01

    Geometry is one of the difficult materials because students must have ability to visualize, describe images, draw shapes, and know the kind of shapes. This study aim is to describe student error based on Newmans’ Error Analysis in solving geometry problems viewed from spatial intelligence. This research uses descriptive qualitative method by using purposive sampling technique. The datas in this research are the result of geometri material test and interview by the 8th graders of Junior High School in Indonesia. The results of this study show that in each category of spatial intelligence has a different type of error in solving the problem on the material geometry. Errors are mostly made by students with low spatial intelligence because they have deficiencies in visual abilities. Analysis of student error viewed from spatial intelligence is expected to help students do reflection in solving the problem of geometry.

  4. Effects of shape, size, and chromaticity of stimuli on estimated size in normally sighted, severely myopic, and visually impaired students.

    PubMed

    Huang, Kuo-Chen; Wang, Hsiu-Feng; Chen, Chun-Ching

    2010-06-01

    Effects of shape, size, and chromaticity of stimuli on participants' errors when estimating the size of simultaneously presented standard and comparison stimuli were examined. 48 Taiwanese college students ages 20 to 24 years old (M = 22.3, SD = 1.3) participated. Analysis showed that the error for estimated size was significantly greater for those in the low-vision group than for those in the normal-vision and severe-myopia groups. The errors were significantly greater with green and blue stimuli than with red stimuli. Circular stimuli produced smaller mean errors than did square stimuli. The actual size of the standard stimulus significantly affected the error for estimated size. Errors for estimations using smaller sizes were significantly higher than when the sizes were larger. Implications of the results for graphics-based interface design, particularly when taking account of visually impaired users, are discussed.

  5. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris.

    PubMed

    Déaux, Éloïse C; Clarke, Jennifer A; Charrier, Isabelle

    2015-01-01

    Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function.

  6. A Novel Image Steganography Technique for Secured Online Transaction Using DWT and Visual Cryptography

    NASA Astrophysics Data System (ADS)

    Anitha Devi, M. D.; ShivaKumar, K. B.

    2017-08-01

    Online payment eco system is the main target especially for cyber frauds. Therefore end to end encryption is very much needed in order to maintain the integrity of secret information related to transactions carried online. With access to payment related sensitive information, which enables lot of money transactions every day, the payment infrastructure is a major target for hackers. The proposed system highlights, an ideal approach for secure online transaction for fund transfer with a unique combination of visual cryptography and Haar based discrete wavelet transform steganography technique. This combination of data hiding technique reduces the amount of information shared between consumer and online merchant needed for successful online transaction along with providing enhanced security to customer’s account details and thereby increasing customer’s confidence preventing “Identity theft” and “Phishing”. To evaluate the effectiveness of proposed algorithm Root mean square error, Peak signal to noise ratio have been used as evaluation parameters

  7. Robotic System for MRI-Guided Stereotactic Neurosurgery

    PubMed Central

    Li, Gang; Cole, Gregory A.; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Pilitsis, Julie G.; Fischer, Gregory S.

    2015-01-01

    Stereotaxy is a neurosurgical technique that can take several hours to reach a specific target, typically utilizing a mechanical frame and guided by preoperative imaging. An error in any one of the numerous steps or deviations of the target anatomy from the preoperative plan such as brain shift (up to 20 mm), may affect the targeting accuracy and thus the treatment effectiveness. Moreover, because the procedure is typically performed through a small burr hole opening in the skull that prevents tissue visualization, the intervention is basically “blind” for the operator with limited means of intraoperative confirmation that may result in reduced accuracy and safety. The presented system is intended to address the clinical needs for enhanced efficiency, accuracy, and safety of image-guided stereotactic neurosurgery for Deep Brain Stimulation (DBS) lead placement. The work describes a magnetic resonance imaging (MRI)-guided, robotically actuated stereotactic neural intervention system for deep brain stimulation procedure, which offers the potential of reducing procedure duration while improving targeting accuracy and enhancing safety. This is achieved through simultaneous robotic manipulation of the instrument and interactively updated in situ MRI guidance that enables visualization of the anatomy and interventional instrument. During simultaneous actuation and imaging, the system has demonstrated less than 15% signal-to-noise ratio (SNR) variation and less than 0.20% geometric distortion artifact without affecting the imaging usability to visualize and guide the procedure. Optical tracking and MRI phantom experiments streamline the clinical workflow of the prototype system, corroborating targeting accuracy with 3-axis root mean square error 1.38 ± 0.45 mm in tip position and 2.03 ± 0.58° in insertion angle. PMID:25376035

  8. Tectonigral Projections in the Primate: A Pathway for Pre-Attentive Sensory Input to Midbrain Dopaminergic Neurons

    PubMed Central

    May, Paul J.; McHaffie, John G.; Stanford, Terrence R.; Jiang, Huai; Costello, M. Gabriela; Coizet, Veronique; Hayes, Lauren M.; Haber, Suzanne N.; Redgrave, Peter

    2010-01-01

    Much of the evidence linking the short-latency phasic signaling of midbrain dopaminergic neurons with reward-prediction errors used in learning and habit formation comes from recording the visual responses of monkey dopaminergic neurons. However, the information encoded by dopaminergic neuron activity is constrained by the qualities of the afferent visual signals made available to these cells. Recent evidence from rats and cats indicates the primary source of this visual input originates subcortically, via a direct tectonigral projection. The present anatomical study sought to establish whether a direct tectonigral projection is a significant feature of the primate brain. Injections of anterograde tracers into the superior colliculus of macaque monkeys labelled terminal arbors throughout the substantia nigra, with the densest terminations in the dorsal tier. Labelled boutons were found in close association (possibly indicative of synaptic contact) with ventral midbrain neurons staining positively for the dopaminergic marker tyrosine hydroxylase. Injections of retrograde tracer confined to the macaque substantia nigra retrogradely labelled small to medium sized neurons in the intermediate and deep layers of the superior colliculus. Together, these data indicate that a direct tectonigral projection is also a feature of the monkey brain, and therefore likely to have been conserved throughout mammalian evolution. Insofar as the superior colliculus is configured to detect unpredicted, biologically salient, sensory events, it may be safer to regard the phasic responses of midbrain dopaminergic neurons as ‘sensory prediction errors’ rather than ‘reward prediction errors’, in which case, dopamine-based theories of reinforcement learning will require revision. PMID:19175405

  9. A simple approach to ignoring irrelevant variables by population decoding based on multisensory neurons

    PubMed Central

    Kim, HyungGoo R.; Pitkow, Xaq; Angelaki, Dora E.

    2016-01-01

    Sensory input reflects events that occur in the environment, but multiple events may be confounded in sensory signals. For example, under many natural viewing conditions, retinal image motion reflects some combination of self-motion and movement of objects in the world. To estimate one stimulus event and ignore others, the brain can perform marginalization operations, but the neural bases of these operations are poorly understood. Using computational modeling, we examine how multisensory signals may be processed to estimate the direction of self-motion (i.e., heading) and to marginalize out effects of object motion. Multisensory neurons represent heading based on both visual and vestibular inputs and come in two basic types: “congruent” and “opposite” cells. Congruent cells have matched heading tuning for visual and vestibular cues and have been linked to perceptual benefits of cue integration during heading discrimination. Opposite cells have mismatched visual and vestibular heading preferences and are ill-suited for cue integration. We show that decoding a mixed population of congruent and opposite cells substantially reduces errors in heading estimation caused by object motion. In addition, we present a general formulation of an optimal linear decoding scheme that approximates marginalization and can be implemented biologically by simple reinforcement learning mechanisms. We also show that neural response correlations induced by task-irrelevant variables may greatly exceed intrinsic noise correlations. Overall, our findings suggest a general computational strategy by which neurons with mismatched tuning for two different sensory cues may be decoded to perform marginalization operations that dissociate possible causes of sensory inputs. PMID:27334948

  10. Higher-order ionospheric error at Arecibo, Millstone, and Jicamarca

    NASA Astrophysics Data System (ADS)

    Matteo, N. A.; Morton, Y. T.

    2010-12-01

    The ionosphere is a dominant source of Global Positioning System receiver range measurement error. Although dual-frequency receivers can eliminate the first-order ionospheric error, most second- and third-order errors remain in the range measurements. Higher-order ionospheric error is a function of both electron density distribution and the magnetic field vector along the GPS signal propagation path. This paper expands previous efforts by combining incoherent scatter radar (ISR) electron density measurements, the International Reference Ionosphere model, exponential decay extensions of electron densities, the International Geomagnetic Reference Field, and total electron content maps to compute higher-order error at ISRs in Arecibo, Puerto Rico; Jicamarca, Peru; and Millstone Hill, Massachusetts. Diurnal patterns, dependency on signal direction, seasonal variation, and geomagnetic activity dependency are analyzed. Higher-order error is largest at Arecibo with code phase maxima circa 7 cm for low-elevation southern signals. The maximum variation of the error over all angles of arrival is circa 8 cm.

  11. Parallel Processing of Broad-Band PPM Signals

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).

  12. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  13. Uncorrected refractive errors, presbyopia and spectacle coverage: results from a rapid assessment of refractive error survey.

    PubMed

    Marmamula, Srinivas; Keeffe, Jill E; Rao, Gullapalli N

    2009-01-01

    To investigate the prevalence of uncorrected refractive errors, presbyopia and spectacle coverage in subjects aged 15-50 years using rapid assessment methodology in the Mahabubnagar district of Andhra Pradesh, India. A population-based cross sectional study was conducted using cluster random sampling to enumerate 3,300 subjects from 55 clusters. Unaided, aided and pinhole visual acuity was assessed using a LogMAR chart at a distance of 4 meters. Near vision was assessed using N notation chart. Uncorrected refractive error was defined as presenting visual acuity worse than 6/12 but improving to at least 6/12 or better on using a pinhole. Presbyopia is defined as binocular near vision worse than N8 in subjects aged more than 35 years with binocular distance visual acuity of 6/12 or better. Of the 3,300 subjects enumerated from 55 clusters, 3,203 (97%) subjects were available for examination. Of these, 1,496 (46.7%) were females and 930 (29%) were > or = 40 years. Age and gender adjusted prevalence of uncorrected refractive errors causing visual impairment in the better eye was 2.7% (95% CI, 2.1-3.2%). Presbyopia was present in 690 (63.7%, 95% CI, 60.8-66.6%) subjects aged over 35 years. Spectacle coverage for refractive error was 29% and for presbyopia it was 19%. There is a large unmet need for refractive correction in this area in India. Rapid assessment methods are an effective means of assessing the need for services and the impact of models of care.

  14. Monitoring others' errors: The role of the motor system in early childhood and adulthood.

    PubMed

    Meyer, Marlene; Braukmann, Ricarda; Stapel, Janny C; Bekkering, Harold; Hunnius, Sabine

    2016-03-01

    Previous research demonstrates that from early in life, our cortical sensorimotor areas are activated both when performing and when observing actions (mirroring). Recent findings suggest that the adult motor system is also involved in detecting others' rule violations. Yet, how this translates to everyday action errors (e.g., accidentally dropping something) and how error-sensitive motor activity for others' actions emerges are still unknown. In this study, we examined the role of the motor system in error monitoring. Participants observed successful and unsuccessful pincer grasp actions while their electroencephalography was registered. We tested infants (8- and 14-month-olds) at different stages of learning the pincer grasp and adults as advanced graspers. Power in Alpha- and Beta-frequencies was analysed to assess motor and visual processing. Adults showed enhanced motor activity when observing erroneous actions. However, neither 8- nor 14-month-olds displayed this error sensitivity, despite showing motor activity for both actions. All groups did show similar visual activity, that is more Alpha-suppression, when observing correct actions. Thus, while correct and erroneous actions were processed as visually distinct in all age groups, only the adults' motor system was sensitive to action correctness. Functionality of different brain oscillations in the development of error monitoring and mirroring is discussed. © 2015 The British Psychological Society.

  15. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOEpatents

    Danko, George [Reno, NV

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  16. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  17. Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

    PubMed Central

    Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.

    2015-01-01

    We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341

  18. Comparative Study of Refractive Errors, Strabismus, Microsaccades, and Visual Perception Between Preterm and Full-Term Children With Infantile Cerebral Palsy.

    PubMed

    Kozeis, Nikolaos; Panos, Georgios D; Zafeiriou, Dimitrios I; de Gottrau, Philippe; Gatzioufas, Zisis

    2015-07-01

    The purpose of this study was to examine the refractive status, orthoptic status and visual perception in a group of preterm and another of full-term children with cerebral palsy, in order to investigate whether prematurity has an effect on the development of refractive errors and binocular disorders. A hundred school-aged children, 70 preterm and 30 full-term, with congenital cerebral palsy were examined. Differences for hypermetropia, myopia, and emmetropia were not statistically significant between the 2 groups. Astigmatism was significantly increased in the preterm group. The orthoptic status was similar for both groups. Visual perception was markedly reduced in both groups, but the differences were not significant. In conclusion, children with cerebral palsy have impaired visual skills, leading to reading difficulties. The presence of prematurity does not appear to represent an additional risk factor for the development of refractive errors and binocular disorders. © The Author(s) 2014.

  19. Analysis of focusing error signals by differential astigmatic method under off-center tracking in the land-groove-type optical disk

    NASA Astrophysics Data System (ADS)

    Shinoda, Masahisa; Nakatani, Hidehiko

    2015-04-01

    We theoretically calculate the behavior of the focusing error signal in the land-groove-type optical disk when the objective lens traverses on out of the radius of the optical disk. The differential astigmatic method is employed instead of the conventional astigmatic method for generating the focusing error signals. The signal behaviors are compared and analyzed in terms of the gain difference of the slope sensitivity of the focusing error signals from the land and the groove. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and advantageous conditions for suppressing the gain difference are investigated. The calculation method and results described in this paper will be reflected in the next generation land-groove-type optical disks.

  20. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS....646 Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal. (a...

  1. Analysis of the PLL phase error in presence of simulated ionospheric scintillation events

    NASA Astrophysics Data System (ADS)

    Forte, B.

    2012-01-01

    The functioning of standard phase locked loops (PLL), including those used to track radio signals from Global Navigation Satellite Systems (GNSS), is based on a linear approximation which holds in presence of small phase errors. Such an approximation represents a reasonable assumption in most of the propagation channels. However, in presence of a fading channel the phase error may become large, making the linear approximation no longer valid. The PLL is then expected to operate in a non-linear regime. As PLLs are generally designed and expected to operate in their linear regime, whenever the non-linear regime comes into play, they will experience a serious limitation in their capability to track the corresponding signals. The phase error and the performance of a typical PLL embedded into a commercial multiconstellation GNSS receiver were analyzed in presence of simulated ionospheric scintillation. Large phase errors occurred during scintillation-induced signal fluctuations although cycle slips only occurred during the signal re-acquisition after a loss of lock. Losses of lock occurred whenever the signal faded below the minimumC/N0threshold allowed for tracking. The simulations were performed for different signals (GPS L1C/A, GPS L2C, GPS L5 and Galileo L1). L5 and L2C proved to be weaker than L1. It appeared evident that the conditions driving the PLL phase error in the specific case of GPS receivers in presence of scintillation-induced signal perturbations need to be evaluated in terms of the combination of the minimumC/N0 tracking threshold, lock detector thresholds, possible cycle slips in the tracking PLL and accuracy of the observables (i.e. the error propagation onto the observables stage).

  2. Testing a key assumption in animal communication: between-individual variation in female visual systems alters perception of male signals

    PubMed Central

    Ensminger, Amanda L.; Shawkey, Matthew D.; Lucas, Jeffrey R.; Fernández-Juricic, Esteban

    2017-01-01

    ABSTRACT Variation in male signal production has been extensively studied because of its relevance to animal communication and sexual selection. Although we now know much about the mechanisms that can lead to variation between males in the properties of their signals, there is still a general assumption that there is little variation in terms of how females process these male signals. Variation between females in signal processing may lead to variation between females in how they rank individual males, meaning that one single signal may not be universally attractive to all females. We tested this assumption in a group of female wild-caught brown-headed cowbirds (Molothrus ater), a species that uses a male visual signal (e.g. a wingspread display) to make its mate-choice decisions. We found that females varied in two key parameters of their visual sensory systems related to chromatic and achromatic vision: cone densities (both total and proportions) and cone oil droplet absorbance. Using visual chromatic and achromatic contrast modeling, we then found that this between-individual variation in visual physiology leads to significant between-individual differences in how females perceive chromatic and achromatic male signals. These differences may lead to variation in female preferences for male visual signals, which would provide a potential mechanism for explaining individual differences in mate-choice behavior. PMID:29247048

  3. Testing a key assumption in animal communication: between-individual variation in female visual systems alters perception of male signals.

    PubMed

    Ronald, Kelly L; Ensminger, Amanda L; Shawkey, Matthew D; Lucas, Jeffrey R; Fernández-Juricic, Esteban

    2017-12-15

    Variation in male signal production has been extensively studied because of its relevance to animal communication and sexual selection. Although we now know much about the mechanisms that can lead to variation between males in the properties of their signals, there is still a general assumption that there is little variation in terms of how females process these male signals. Variation between females in signal processing may lead to variation between females in how they rank individual males, meaning that one single signal may not be universally attractive to all females. We tested this assumption in a group of female wild-caught brown-headed cowbirds ( Molothrus ater ), a species that uses a male visual signal (e.g. a wingspread display) to make its mate-choice decisions. We found that females varied in two key parameters of their visual sensory systems related to chromatic and achromatic vision: cone densities (both total and proportions) and cone oil droplet absorbance. Using visual chromatic and achromatic contrast modeling, we then found that this between-individual variation in visual physiology leads to significant between-individual differences in how females perceive chromatic and achromatic male signals. These differences may lead to variation in female preferences for male visual signals, which would provide a potential mechanism for explaining individual differences in mate-choice behavior. © 2017. Published by The Company of Biologists Ltd.

  4. Ciliates learn to diagnose and correct classical error syndromes in mating strategies

    PubMed Central

    Clark, Kevin B.

    2013-01-01

    Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in social contexts. PMID:23966987

  5. Perceived Synchrony of Frog Multimodal Signal Components Is Influenced by Content and Order.

    PubMed

    Taylor, Ryan C; Page, Rachel A; Klein, Barrett A; Ryan, Michael J; Hunter, Kimberly L

    2017-10-01

    Multimodal signaling is common in communication systems. Depending on the species, individual signal components may be produced synchronously as a result of physiological constraint (fixed) or each component may be produced independently (fluid) in time. For animals that rely on fixed signals, a basic prediction is that asynchrony between the components should degrade the perception of signal salience, reducing receiver response. Male túngara frogs, Physalaemus pustulosus, produce a fixed multisensory courtship signal by vocalizing with two call components (whines and chucks) and inflating a vocal sac (visual component). Using a robotic frog, we tested female responses to variation in the temporal arrangement between acoustic and visual components. When the visual component lagged a complex call (whine + chuck), females largely rejected this asynchronous multisensory signal in favor of the complex call absent the visual cue. When the chuck component was removed from one call, but the robofrog inflation lagged the complex call, females responded strongly to the asynchronous multimodal signal. When the chuck component was removed from both calls, females reversed preference and responded positively to the asynchronous multisensory signal. When the visual component preceded the call, females responded as often to the multimodal signal as to the call alone. These data show that asynchrony of a normally fixed signal does reduce receiver responsiveness. The magnitude and overall response, however, depend on specific temporal interactions between the acoustic and visual components. The sensitivity of túngara frogs to lagging visual cues, but not leading ones, and the influence of acoustic signal content on the perception of visual asynchrony is similar to those reported in human psychophysics literature. Virtually all acoustically communicating animals must conduct auditory scene analyses and identify the source of signals. Our data suggest that some basic audiovisual neural integration processes may be at work in the vertebrate brain. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in the public domain in the US.

  6. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  7. Reducing visual deficits caused by refractive errors in school and preschool children: results of a pilot school program in the Andean region of Apurimac, Peru.

    PubMed

    Latorre-Arteaga, Sergio; Gil-González, Diana; Enciso, Olga; Phelan, Aoife; García-Muñoz, Angel; Kohler, Johannes

    2014-01-01

    Refractive error is defined as the inability of the eye to bring parallel rays of light into focus on the retina, resulting in nearsightedness (myopia), farsightedness (Hyperopia) or astigmatism. Uncorrected refractive error in children is associated with increased morbidity and reduced educational opportunities. Vision screening (VS) is a method for identifying children with visual impairment or eye conditions likely to lead to visual impairment. To analyze the utility of vision screening conducted by teachers and to contribute to a better estimation of the prevalence of childhood refractive errors in Apurimac, Peru. Design : A pilot vision screening program in preschool (Group I) and elementary school children (Group II) was conducted with the participation of 26 trained teachers. Children whose visual acuity was<6/9 [20/30] (Group I) and ≤ 6/9 (Group II) in one or both eyes, measured with the Snellen Tumbling E chart at 6 m, were referred for a comprehensive eye exam. Specificity and positive predictive value to detect refractive error were calculated against clinical examination. Program assessment with participants was conducted to evaluate outcomes and procedures. A total sample of 364 children aged 3-11 were screened; 45 children were examined at Centro Oftalmológico Monseñor Enrique Pelach (COMEP) Eye Hospital. Prevalence of refractive error was 6.2% (Group I) and 6.9% (Group II); specificity of teacher vision screening was 95.8% and 93.0%, while positive predictive value was 59.1% and 47.8% for each group, respectively. Aspects highlighted to improve the program included extending training, increasing parental involvement, and helping referred children to attend the hospital. Prevalence of refractive error in children is significant in the region. Vision screening performed by trained teachers is a valid intervention for early detection of refractive error, including screening of preschool children. Program sustainability and improvements in education and quality of life resulting from childhood vision screening require further research.

  8. The prevalence of visual impairment and blindness in underserved rural areas: a crucial issue for future.

    PubMed

    Hashemi, H; Yekta, A; Jafarzadehpur, E; Doostdar, A; Ostadimoghaddam, H; Khabazkhoob, M

    2017-08-01

    PurposeTo determine the prevalence of visual impairment and blindness in underserved Iranian villages and to identify the most common cause of visual impairment and blindness.Patients and methodsMultistage cluster sampling was used to select the participants who were then invited to undergo complete examinations. Optometric examinations including visual acuity, and refraction were performed for all individuals. Ophthalmic examinations included slit-lamp biomicroscopy and ophthalmoscopy. Visual impairment was determined according to the definitions of the WHO and presenting vision.ResultsOf 3851 selected individuals, 3314 (86.5%) participated in the study. After using the exclusion criteria, the present report was prepared based on the data of 3095 participants. The mean age of the participants was 37.6±20.7 years (3-93 years). The prevalence of visual impairment and blindness was 6.43% (95% confidence interval (CI): 3.71-9.14) and 1.18% (95% CI: 0.56-1.79), respectively. The prevalence of visual impairment varied from 0.75% in participants aged less than 5 years to 38.36% in individuals above the age of 70 years. Uncorrected refractive errors and cataract were the first and second leading causes of visual impairment; moreover, cataract and refractive errors were responsible for 35.90 and 20.51% of the cases of blindness, respectively.ConclusionThe prevalence of visual impairment was markedly high in this study. Lack of access to health services was the main reason for the high prevalence of visual impairment in this study. Cataract and refractive errors are responsible for 80% of visual impairments which can be due to poverty in underserved villages.

  9. Media/Device Configurations for Platoon Leader Tactical Training

    DTIC Science & Technology

    1985-02-01

    munication and visual communication sig- na ls, VInputs to the The device should simulate the real- Platoon Leader time receipt of all tactical voice...communication, audio and visual battle- field cues, and visual communication signals. 14- Table 4 (Continued) Functional Capability Categories and...battlefield cues, and visual communication signals. 0.8 Receipt of limited tactical voice communication, plus audio and visual battlefield cues, and visual

  10. Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.

    PubMed

    Badgaiyan, Rajendra D

    2012-12-01

    Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.

  11. [Analysis of intrusion errors in free recall].

    PubMed

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  12. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector

    NASA Technical Reports Server (NTRS)

    Safren, H. G.

    1987-01-01

    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  13. Assessing the effect of physical differences in the articulation of consonants and vowels on audiovisual temporal perception

    PubMed Central

    Vatakis, Argiro; Maragos, Petros; Rodomagoulakis, Isidoros; Spence, Charles

    2012-01-01

    We investigated how the physical differences associated with the articulation of speech affect the temporal aspects of audiovisual speech perception. Video clips of consonants and vowels uttered by three different speakers were presented. The video clips were analyzed using an auditory-visual signal saliency model in order to compare signal saliency and behavioral data. Participants made temporal order judgments (TOJs) regarding which speech-stream (auditory or visual) had been presented first. The sensitivity of participants' TOJs and the point of subjective simultaneity (PSS) were analyzed as a function of the place, manner of articulation, and voicing for consonants, and the height/backness of the tongue and lip-roundedness for vowels. We expected that in the case of the place of articulation and roundedness, where the visual-speech signal is more salient, temporal perception of speech would be modulated by the visual-speech signal. No such effect was expected for the manner of articulation or height. The results demonstrate that for place and manner of articulation, participants' temporal percept was affected (although not always significantly) by highly-salient speech-signals with the visual-signals requiring smaller visual-leads at the PSS. This was not the case when height was evaluated. These findings suggest that in the case of audiovisual speech perception, a highly salient visual-speech signal may lead to higher probabilities regarding the identity of the auditory-signal that modulate the temporal window of multisensory integration of the speech-stimulus. PMID:23060756

  14. Apparatus and Method to Enable Precision and Fast Laser Frequency Tuning

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R. (Inventor); Numata, Kenji (Inventor); Wu, Stewart T. (Inventor); Yang, Guangning (Inventor)

    2015-01-01

    An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports.

  15. Design and analysis of multihypothesis motion-compensated prediction (MHMCP) codec for error-resilient visual communications

    NASA Astrophysics Data System (ADS)

    Kung, Wei-Ying; Kim, Chang-Su; Kuo, C.-C. Jay

    2004-10-01

    A multi-hypothesis motion compensated prediction (MHMCP) scheme, which predicts a block from a weighted superposition of more than one reference blocks in the frame buffer, is proposed and analyzed for error resilient visual communication in this research. By combining these reference blocks effectively, MHMCP can enhance the error resilient capability of compressed video as well as achieve a coding gain. In particular, we investigate the error propagation effect in the MHMCP coder and analyze the rate-distortion performance in terms of the hypothesis number and hypothesis coefficients. It is shown that MHMCP suppresses the short-term effect of error propagation more effectively than the intra refreshing scheme. Simulation results are given to confirm the analysis. Finally, several design principles for the MHMCP coder are derived based on the analytical and experimental results.

  16. Optimization design of spectral discriminator for high-spectral-resolution lidar based on error analysis.

    PubMed

    Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao

    2017-03-06

    Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.

  17. Refractive Error and Visual Functions in Children with Special Needs Compared with the First Grade School Students in Oman

    PubMed Central

    Vora, Urmi; Khandekar, Rajiv; Natrajan, Sarvanan; Al-Hadrami, Khalfan

    2010-01-01

    Background: We evaluated the refractive status and visual function of children with special needs (other handicap) in 2010 and compared them with healthy 1st grade school students in Oman. Materials and Methods: This was a cohort study. Optometrists recorded vision using a logarithm of minimum angle of resolution (LogMAR) chart. Preferential looking method was used for testing 31 children. Cycloplegic refraction was performed on all children. Contrast sensitivity was tested using 2.5%, 10%, and 100% contrast charts. Ocular movement, alignment, and anterior segment were also assessed. A pediatrician reviewed the health records of all the children at the time of their enrollment in this study to determine if the child had been diagnosed with a systemic condition or syndromes. The visual functions were assessed by study investigators. We estimated the rates and the risk of different visual function defects in children with special needs. Result: The prevalence of refractive error in 70 children (4.7 ± 0.8 years) with special needs (group 1) and 175 normal healthy first grade students (group 2) were 58.5% and 2.9%, respectively. The risk of refractive error was significantly higher in children with special needs [relative risk, 48.1 (95% confidence interval, 17.54–131.8)]. Hyperopia (>1.00 D), myopia (≥ 1.00D) and astigmatism (≥ ±1.00 D) were found in 18.6%, 24.3%, and 27.1%, respectively, in group 1. Six children in this group had defective near vision. Sixteen (80%) children with Down syndrome had refractive error. Seven (50%) children with developmental disorder showed decreased contrast sensitivity. Conclusion: Prevalence of uncorrected refractive error was much higher in children with special needs. Prevalence of strabismus, nystagmus, and reduced contrast sensitivity was also higher in children with special needs. Early vision screening, visual function assessment, correction of refractive error, and frequent follow-up are recommended. PMID:21180428

  18. Discordance between net analyte signal theory and practical multivariate calibration.

    PubMed

    Brown, Christopher D

    2004-08-01

    Lorber's concept of net analyte signal is reviewed in the context of classical and inverse least-squares approaches to multivariate calibration. It is shown that, in the presence of device measurement error, the classical and inverse calibration procedures have radically different theoretical prediction objectives, and the assertion that the popular inverse least-squares procedures (including partial least squares, principal components regression) approximate Lorber's net analyte signal vector in the limit is disproved. Exact theoretical expressions for the prediction error bias, variance, and mean-squared error are given under general measurement error conditions, which reinforce the very discrepant behavior between these two predictive approaches, and Lorber's net analyte signal theory. Implications for multivariate figures of merit and numerous recently proposed preprocessing treatments involving orthogonal projections are also discussed.

  19. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests

    PubMed Central

    Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  20. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h.

  1. Reduced error signalling in medication-naive children with ADHD: associations with behavioural variability and post-error adaptations

    PubMed Central

    Plessen, Kerstin J.; Allen, Elena A.; Eichele, Heike; van Wageningen, Heidi; Høvik, Marie Farstad; Sørensen, Lin; Worren, Marius Kalsås; Hugdahl, Kenneth; Eichele, Tom

    2016-01-01

    Background We examined the blood-oxygen level–dependent (BOLD) activation in brain regions that signal errors and their association with intraindividual behavioural variability and adaptation to errors in children with attention-deficit/hyperactivity disorder (ADHD). Methods We acquired functional MRI data during a Flanker task in medication-naive children with ADHD and healthy controls aged 8–12 years and analyzed the data using independent component analysis. For components corresponding to performance monitoring networks, we compared activations across groups and conditions and correlated them with reaction times (RT). Additionally, we analyzed post-error adaptations in behaviour and motor component activations. Results We included 25 children with ADHD and 29 controls in our analysis. Children with ADHD displayed reduced activation to errors in cingulo-opercular regions and higher RT variability, but no differences of interference control. Larger BOLD amplitude to error trials significantly predicted reduced RT variability across all participants. Neither group showed evidence of post-error response slowing; however, post-error adaptation in motor networks was significantly reduced in children with ADHD. This adaptation was inversely related to activation of the right-lateralized ventral attention network (VAN) on error trials and to task-driven connectivity between the cingulo-opercular system and the VAN. Limitations Our study was limited by the modest sample size and imperfect matching across groups. Conclusion Our findings show a deficit in cingulo-opercular activation in children with ADHD that could relate to reduced signalling for errors. Moreover, the reduced orienting of the VAN signal may mediate deficient post-error motor adaptions. Pinpointing general performance monitoring problems to specific brain regions and operations in error processing may help to guide the targets of future treatments for ADHD. PMID:26441332

  2. Intermittently-visual Tracking Experiments Reveal the Roles of Error-correction and Predictive Mechanisms in the Human Visual-motor Control System

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji

    Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

  3. Retinal degeneration increases susceptibility to myopia in mice

    PubMed Central

    Park, Hanna; Tan, Christopher C.; Faulkner, Amanda; Jabbar, Seema B.; Schmid, Gregor; Abey, Jane; Iuvone, P. Michael

    2013-01-01

    Purpose Retinal diseases are often associated with refractive errors, suggesting the importance of normal retinal signaling during emmetropization. For instance, retinitis pigmentosa, a disease characterized by severe photoreceptor degeneration, is associated with myopia; however, the underlying link between these conditions is not known. This study examines the influence of photoreceptor degeneration on refractive development by testing two mouse models of retinitis pigmentosa under normal and form deprivation visual conditions. Dopamine, a potential stop signal for refractive eye growth, was assessed as a potential underlying mechanism. Methods Refractive eye growth in mice that were homozygous for a mutation in Pde6b, Pde6brd1/rd1 (rd1), or Pde6brd10/rd10 (rd10) was measured weekly from 4 to 12 weeks of age and compared to age-matched wild-type (WT) mice. Refractive error was measured using an eccentric infrared photorefractor, and axial length was measured with partial coherence interferometry or spectral domain ocular coherence tomography. A cohort of mice received head-mounted diffuser goggles to induce form deprivation from 4 to 6 weeks of age. Dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were measured with high-performance liquid chromatography in each strain after exposure to normal or form deprivation conditions. Results The rd1 and rd10 mice had significantly greater hyperopia relative to the WT controls throughout normal development; however, axial length became significantly longer only in WT mice starting at 7 weeks of age. After 2 weeks of form deprivation, the rd1 and rd10 mice demonstrated a faster and larger myopic shift (−6.14±0.62 and −7.38±1.46 diopter, respectively) compared to the WT mice (−2.41±0.47 diopter). Under normal visual conditions, the DOPAC levels and DOPAC/dopamine ratios, a measure of dopamine turnover, were significantly lower in the rd1 and rd10 mice compared to the WT mice, while the dopamine levels were similar or higher than WT in the rd10 mice. Lower basal levels of DOPAC were highly correlated with increasing myopic shifts. Conclusions Refractive development under normal visual conditions was disrupted toward greater hyperopia from 4 to 12 weeks of age in these photoreceptor degeneration models, despite significantly lower DOPAC levels. However, the retinal degeneration models with low basal levels of DOPAC had increased susceptibility to form deprivation myopia. These results indicate that photoreceptor degeneration may alter dopamine metabolism, leading to increased susceptibility to myopia with an environmental visual challenge. PMID:24146540

  4. Analysis of phase error effects in multishot diffusion-prepared turbo spin echo imaging

    PubMed Central

    Cervantes, Barbara; Kooijman, Hendrik; Karampinos, Dimitrios C.

    2017-01-01

    Background To characterize the effect of phase errors on the magnitude and the phase of the diffusion-weighted (DW) signal acquired with diffusion-prepared turbo spin echo (dprep-TSE) sequences. Methods Motion and eddy currents were identified as the main sources of phase errors. An analytical expression for the effect of phase errors on the acquired signal was derived and verified using Bloch simulations, phantom, and in vivo experiments. Results Simulations and experiments showed that phase errors during the diffusion preparation cause both magnitude and phase modulation on the acquired data. When motion-induced phase error (MiPe) is accounted for (e.g., with motion-compensated diffusion encoding), the signal magnitude modulation due to the leftover eddy-current-induced phase error cannot be eliminated by the conventional phase cycling and sum-of-squares (SOS) method. By employing magnitude stabilizers, the phase-error-induced magnitude modulation, regardless of its cause, was removed but the phase modulation remained. The in vivo comparison between pulsed gradient and flow-compensated diffusion preparations showed that MiPe needed to be addressed in multi-shot dprep-TSE acquisitions employing magnitude stabilizers. Conclusions A comprehensive analysis of phase errors in dprep-TSE sequences showed that magnitude stabilizers are mandatory in removing the phase error induced magnitude modulation. Additionally, when multi-shot dprep-TSE is employed the inconsistent signal phase modulation across shots has to be resolved before shot-combination is performed. PMID:28516049

  5. Is forceps more useful than visualization for measurement of colon polyp size?

    PubMed Central

    Kim, Jae Hyun; Park, Seun Ja; Lee, Jong Hoon; Kim, Tae Oh; Kim, Hyun Jin; Kim, Hyung Wook; Lee, Sang Heon; Baek, Dong Hoon; (BIGS), Busan Ulsan Gyeongnam Intestinal Study Group Society

    2016-01-01

    AIM: To identify whether the forceps estimation is more useful than visual estimation in the measurement of colon polyp size. METHODS: We recorded colonoscopy video clips that included scenes visualizing the polyp and scenes using open biopsy forceps in association with the polyp, which were used for an exam. A total of 40 endoscopists from the Busan Ulsan Gyeongnam Intestinal Study Group Society (BIGS) participated in this study. Participants watched 40 pairs of video clips of the scenes for visual estimation and forceps estimation, and wrote down the estimated polyp size on the exam paper. When analyzing the results of the exam, we assessed inter-observer differences, diagnostic accuracy, and error range in the measurement of the polyp size. RESULTS: The overall intra-class correlation coefficients (ICC) of inter-observer agreement for forceps estimation and visual estimation were 0.804 (95%CI: 0.731-0.873, P < 0.001) and 0.743 (95%CI: 0.656-0.828, P < 0.001), respectively. The ICCs of each group for forceps estimation were higher than those for visual estimation (Beginner group, 0.761 vs 0.693; Expert group, 0.887 vs 0.840, respectively). The overall diagnostic accuracy for visual estimation was 0.639 and for forceps estimation was 0.754 (P < 0.001). In the beginner group and the expert group, the diagnostic accuracy for the forceps estimation was significantly higher than that of the visual estimation (Beginner group, 0.734 vs 0.613, P < 0.001; Expert group, 0.784 vs 0.680, P < 0.001, respectively). The overall error range for visual estimation and forceps estimation were 1.48 ± 1.18 and 1.20 ± 1.10, respectively (P < 0.001). The error ranges of each group for forceps estimation were significantly smaller than those for visual estimation (Beginner group, 1.38 ± 1.08 vs 1.68 ± 1.30, P < 0.001; Expert group, 1.12 ± 1.11 vs 1.42 ± 1.11, P < 0.001, respectively). CONCLUSION: Application of the open biopsy forceps method when measuring colon polyp size could help reduce inter-observer differences and error rates. PMID:27003999

  6. Is forceps more useful than visualization for measurement of colon polyp size?

    PubMed

    Kim, Jae Hyun; Park, Seun Ja; Lee, Jong Hoon; Kim, Tae Oh; Kim, Hyun Jin; Kim, Hyung Wook; Lee, Sang Heon; Baek, Dong Hoon; Bigs, Busan Ulsan Gyeongnam Intestinal Study Group Society

    2016-03-21

    To identify whether the forceps estimation is more useful than visual estimation in the measurement of colon polyp size. We recorded colonoscopy video clips that included scenes visualizing the polyp and scenes using open biopsy forceps in association with the polyp, which were used for an exam. A total of 40 endoscopists from the Busan Ulsan Gyeongnam Intestinal Study Group Society (BIGS) participated in this study. Participants watched 40 pairs of video clips of the scenes for visual estimation and forceps estimation, and wrote down the estimated polyp size on the exam paper. When analyzing the results of the exam, we assessed inter-observer differences, diagnostic accuracy, and error range in the measurement of the polyp size. The overall intra-class correlation coefficients (ICC) of inter-observer agreement for forceps estimation and visual estimation were 0.804 (95%CI: 0.731-0.873, P < 0.001) and 0.743 (95%CI: 0.656-0.828, P < 0.001), respectively. The ICCs of each group for forceps estimation were higher than those for visual estimation (Beginner group, 0.761 vs 0.693; Expert group, 0.887 vs 0.840, respectively). The overall diagnostic accuracy for visual estimation was 0.639 and for forceps estimation was 0.754 (P < 0.001). In the beginner group and the expert group, the diagnostic accuracy for the forceps estimation was significantly higher than that of the visual estimation (Beginner group, 0.734 vs 0.613, P < 0.001; Expert group, 0.784 vs 0.680, P < 0.001, respectively). The overall error range for visual estimation and forceps estimation were 1.48 ± 1.18 and 1.20 ± 1.10, respectively (P < 0.001). The error ranges of each group for forceps estimation were significantly smaller than those for visual estimation (Beginner group, 1.38 ± 1.08 vs 1.68 ± 1.30, P < 0.001; Expert group, 1.12 ± 1.11 vs 1.42 ± 1.11, P < 0.001, respectively). Application of the open biopsy forceps method when measuring colon polyp size could help reduce inter-observer differences and error rates.

  7. A MIMO radar quadrature and multi-channel amplitude-phase error combined correction method based on cross-correlation

    NASA Astrophysics Data System (ADS)

    Yun, Lingtong; Zhao, Hongzhong; Du, Mengyuan

    2018-04-01

    Quadrature and multi-channel amplitude-phase error have to be compensated in the I/Q quadrature sampling and signal through multi-channel. A new method that it doesn't need filter and standard signal is presented in this paper. And it can combined estimate quadrature and multi-channel amplitude-phase error. The method uses cross-correlation and amplitude ratio between the signal to estimate the two amplitude-phase errors simply and effectively. And the advantages of this method are verified by computer simulation. Finally, the superiority of the method is also verified by measure data of outfield experiments.

  8. Prevalence of refractive error in malay primary school children in suburban area of Kota Bharu, Kelantan, Malaysia.

    PubMed

    Hashim, Syaratul-Emma; Tan, Hui-Ken; Wan-Hazabbah, W H; Ibrahim, Mohtar

    2008-11-01

    Refractive error remains one of the primary causes of visual impairment in children worldwide, and the prevalence of refractive error varies widely. The objective of this study was to determine the prevalence of refractive error and study the possible associated factors inducing refractive error among primary school children of Malay ethnicity in the suburban area of Kota Bharu, Kelantan, Malaysia. A school-based cross-sectional study was performed from January to July 2006 by random selection on Standard 1 to Standard 6 students of 10 primary schools in the Kota Bharu district. Visual acuity assessment was measured using logMAR ETDRS chart. Positive predictive value of uncorrected visual acuity equal or worse than 20/40, was used as a cut-off point for further evaluation by automated refraction and retinoscopic refraction. A total of 840 students were enumerated but only 705 were examined. The prevalence of uncorrected visual impairment was seen in 54 (7.7%) children. The main cause of the uncorrected visual impairment was refractive error which contributed to 90.7% of the total, and with 7.0% prevalence for the studied population. Myopia is the most common type of refractive error among children aged 6 to 12 years with prevalence of 5.4%, followed by hyperopia at 1.0% and astigmatism at 0.6%. A significant positive correlation was noted between myopia development with increasing age (P <0.005), more hours spent on reading books (P <0.005) and background history of siblings with glasses (P <0.005) and whose parents are of higher educational level (P <0.005). Malays in suburban Kelantan (5.4%) have the lowest prevalence of myopia compared with Malays in the metropolitan cities of Kuala Lumpur (9.2%) and Singapore (22.1%). The ethnicity-specific prevalence rate of myopia was the lowest among Malays in Kota Bharu, followed by Kuala Lumpur, and is the highest among Singaporean Malays. Better socio-economic factors could have contributed to higher myopia rates in the cities, since the genetic background of these ethnic Malays are similar.

  9. Behavioural evidence for a visual and proprioceptive control of head roll in hoverflies (Episyrphus balteatus).

    PubMed

    Goulard, Roman; Julien-Laferriere, Alice; Fleuriet, Jérome; Vercher, Jean-Louis; Viollet, Stéphane

    2015-12-01

    The ability of hoverflies to control their head orientation with respect to their body contributes importantly to their agility and their autonomous navigation abilities. Many tasks performed by this insect during flight, especially while hovering, involve a head stabilization reflex. This reflex, which is mediated by multisensory channels, prevents the visual processing from being disturbed by motion blur and maintains a consistent perception of the visual environment. The so-called dorsal light response (DLR) is another head control reflex, which makes insects sensitive to the brightest part of the visual field. In this study, we experimentally validate and quantify the control loop driving the head roll with respect to the horizon in hoverflies. The new approach developed here consisted of using an upside-down horizon in a body roll paradigm. In this unusual configuration, tethered flying hoverflies surprisingly no longer use purely vision-based control for head stabilization. These results shed new light on the role of neck proprioceptor organs in head and body stabilization with respect to the horizon. Based on the responses obtained with male and female hoverflies, an improved model was then developed in which the output signals delivered by the neck proprioceptor organs are combined with the visual error in the estimated position of the body roll. An internal estimation of the body roll angle with respect to the horizon might explain the extremely accurate flight performances achieved by some hovering insects. © 2015. Published by The Company of Biologists Ltd.

  10. Visual consciousness and bodily self-consciousness.

    PubMed

    Faivre, Nathan; Salomon, Roy; Blanke, Olaf

    2015-02-01

    In recent years, consciousness has become a central topic in cognitive neuroscience. This review focuses on the relation between bodily self-consciousness - the feeling of being a subject in a body - and visual consciousness - the subjective experience associated with the perception of visual signals. Findings from clinical and experimental work have shown that bodily self-consciousness depends on specific brain networks and is related to the integration of signals from multiple sensory modalities including vision. In addition, recent experiments have shown that visual consciousness is shaped by the body, including vestibular, tactile, proprioceptive, and motor signals. Several lines of evidence suggest reciprocal relationships between vision and bodily signals, indicating that a comprehensive understanding of visual and bodily self-consciousness requires studying them in unison.

  11. What You See Isn’t Always What You Get: Auditory Word Signals Trump Consciously Perceived Words in Lexical Access

    PubMed Central

    Ostrand, Rachel; Blumstein, Sheila E.; Ferreira, Victor S.; Morgan, James L.

    2016-01-01

    Human speech perception often includes both an auditory and visual component. A conflict in these signals can result in the McGurk illusion, in which the listener perceives a fusion of the two streams, implying that information from both has been integrated. We report two experiments investigating whether auditory-visual integration of speech occurs before or after lexical access, and whether the visual signal influences lexical access at all. Subjects were presented with McGurk or Congruent primes and performed a lexical decision task on related or unrelated targets. Although subjects perceived the McGurk illusion, McGurk and Congruent primes with matching real-word auditory signals equivalently primed targets that were semantically related to the auditory signal, but not targets related to the McGurk percept. We conclude that the time course of auditory-visual integration is dependent on the lexicality of the auditory and visual input signals, and that listeners can lexically access one word and yet consciously perceive another. PMID:27011021

  12. Noise screen for attitude control system

    NASA Technical Reports Server (NTRS)

    Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)

    2002-01-01

    An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.

  13. Nonparametric Signal Extraction and Measurement Error in the Analysis of Electroencephalographic Activity During Sleep

    PubMed Central

    Crainiceanu, Ciprian M.; Caffo, Brian S.; Di, Chong-Zhi; Punjabi, Naresh M.

    2009-01-01

    We introduce methods for signal and associated variability estimation based on hierarchical nonparametric smoothing with application to the Sleep Heart Health Study (SHHS). SHHS is the largest electroencephalographic (EEG) collection of sleep-related data, which contains, at each visit, two quasi-continuous EEG signals for each subject. The signal features extracted from EEG data are then used in second level analyses to investigate the relation between health, behavioral, or biometric outcomes and sleep. Using subject specific signals estimated with known variability in a second level regression becomes a nonstandard measurement error problem. We propose and implement methods that take into account cross-sectional and longitudinal measurement error. The research presented here forms the basis for EEG signal processing for the SHHS. PMID:20057925

  14. Interceptive Beam Diagnostics - Signal Creation and Materials Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plum, Michael; Spallation Neutron Source, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN

    2004-11-10

    The focus of this tutorial will be on interceptive beam diagnostics such as wire scanners, screens, and harps. We will start with an overview of the various ways beams interact with materials to create signals useful for beam diagnostics systems. We will then discuss the errors in a harp or wire scanner profile measurement caused by errors in wire position, number of samples, and signal errors. Finally we will apply our results to two design examples-the SNS wire scanner system and the SNS target harp.

  15. Search for gamma-ray events in the BATSE data base

    NASA Technical Reports Server (NTRS)

    Lewin, Walter

    1994-01-01

    We find large location errors and error radii in the locations of channel 1 Cygnus X-1 events. These errors and their associated uncertainties are a result of low signal-to-noise ratios (a few sigma) in the two brightest detectors for each event. The untriggered events suffer from similarly low signal-to-noise ratios, and their location errors are expected to be at least as large as those found for Cygnus X-1 with a given signal-to-noise ratio. The statistical error radii are consistent with those found for Cygnus X-1 and with the published estimates. We therefore expect approximately 20 - 30 deg location errors for the untriggered events. Hence, many of the untriggered events occurring within a few months of the triggered activity from SGR 1900 plus 14 are indeed consistent with the SGR source location, although Cygnus X-1 is also a good candidate.

  16. Use of scan overlap redundancy to enhance multispectral aircraft scanner data

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Keat, J.

    1973-01-01

    Two criteria were suggested for optimizing the resolution error versus signal-to-noise-ratio tradeoff. The first criterion uses equal weighting coefficients and chooses n, the number of lines averaged, so as to make the average resolution error equal to the noise error. The second criterion adjusts both the number and relative sizes of the weighting coefficients so as to minimize the total error (resolution error plus noise error). The optimum set of coefficients depends upon the geometry of the resolution element, the number of redundant scan lines, the scan line increment, and the original signal-to-noise ratio of the channel. Programs were developed to find the optimum number and relative weights of the averaging coefficients. A working definition of signal-to-noise ratio was given and used to try line averaging on a typical set of data. Line averaging was evaluated only with respect to its effect on classification accuracy.

  17. When is an error not a prediction error? An electrophysiological investigation.

    PubMed

    Holroyd, Clay B; Krigolson, Olave E; Baker, Robert; Lee, Seung; Gibson, Jessica

    2009-03-01

    A recent theory holds that the anterior cingulate cortex (ACC) uses reinforcement learning signals conveyed by the midbrain dopamine system to facilitate flexible action selection. According to this position, the impact of reward prediction error signals on ACC modulates the amplitude of a component of the event-related brain potential called the error-related negativity (ERN). The theory predicts that ERN amplitude is monotonically related to the expectedness of the event: It is larger for unexpected outcomes than for expected outcomes. However, a recent failure to confirm this prediction has called the theory into question. In the present article, we investigated this discrepancy in three trial-and-error learning experiments. All three experiments provided support for the theory, but the effect sizes were largest when an optimal response strategy could actually be learned. This observation suggests that ACC utilizes dopamine reward prediction error signals for adaptive decision making when the optimal behavior is, in fact, learnable.

  18. A new methodology for vibration error compensation of optical encoders.

    PubMed

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new "ad hoc" methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained.

  19. Visual difference metric for realistic image synthesis

    NASA Astrophysics Data System (ADS)

    Bolin, Mark R.; Meyer, Gary W.

    1999-05-01

    An accurate and efficient model of human perception has been developed to control the placement of sample in a realistic image synthesis algorithm. Previous sampling techniques have sought to spread the error equally across the image plane. However, this approach neglects the fact that the renderings are intended to be displayed for a human observer. The human visual system has a varying sensitivity to error that is based upon the viewing context. This means that equivalent optical discrepancies can be very obvious in one situation and imperceptible in another. It is ultimately the perceptibility of this error that governs image quality and should be used as the basis of a sampling algorithm. This paper focuses on a simplified version of the Lubin Visual Discrimination Metric (VDM) that was developed for insertion into an image synthesis algorithm. The sampling VDM makes use of a Haar wavelet basis for the cortical transform and a less severe spatial pooling operation. The model was extended for color including the effects of chromatic aberration. Comparisons are made between the execution time and visual difference map for the original Lubin and simplified visual difference metrics. Results for the realistic image synthesis algorithm are also presented.

  20. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke

    PubMed Central

    2011-01-01

    Background Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task. Methods Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error. Results Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke. Conclusions Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for the hemiparetic arm, suggesting that the increased demands associated with controlling an affected arm make the motor system more prone to slack when distracted. Providing an alternate sensory channel for feedback, i.e., auditory feedback of tracking error, enabled the participants to simultaneously perform the tracking task and distracter task effectively. Thus, incorporating real-time auditory feedback of performance errors might improve clinical outcomes of robotic therapy systems. PMID:21513561

  1. The prevalence and causes of visual impairment in seven-year-old children.

    PubMed

    Ghaderi, Soraya; Hashemi, Hassan; Jafarzadehpur, Ebrahim; Yekta, Abbasali; Ostadimoghaddam, Hadi; Mirzajani, Ali; Khabazkhoob, Mehdi

    2018-05-01

    To report the prevalence and causes of visual impairment in seven-year-old children in Iran and its relationship with socio-economic conditions. In a cross-sectional population-based study, first-grade students in the primary schools of eight cities in the country were randomly selected from different geographic locations using multistage cluster sampling. The examinations included visual acuity measurement, ocular motility evaluation, and cycloplegic and non-cycloplegic refraction. Using the definitions of the World Health Organization (presenting visual acuity less than or equal to 6/18 in the better eye) to estimate the prevalence of vision impairment, the present study reported presenting visual impairment in seven-year-old children. Of 4,614 selected students, 4,106 students participated in the study (response rate 89 per cent), of whom 2,127 (51.8 per cent) were male. The prevalence of visual impairment according to a visual acuity of 6/18 was 0.341 per cent (95 per cent confidence interval 0.187-0.571); 1.34 per cent (95 per cent confidence interval 1.011-1.74) of children had visual impairment according to a visual acuity of 6/18 in at least one eye. Sixty-six (1.6 per cent) and 23 (0.24 per cent) children had visual impairment according to a visual acuity of 6/12 in the worse and better eye, respectively. The most common causes of visual impairment were refractive errors (81.8 per cent) and amblyopia (14.5 per cent). Among different types of refractive errors, astigmatism was the main refractive error leading to visual impairment. According to the concentration index, the distribution of visual impairment in children from low-income families was higher. This study revealed a high prevalence of visual impairment in a representative sample of seven-year-old Iranian children. Astigmatism and amblyopia were the most common causes of visual impairment. The distribution of visual impairment was higher in children from low-income families. Cost-effective strategies are needed to address these easily treatable causes of visual impairment. © 2017 Optometry Australia.

  2. Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality.

    PubMed

    Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio

    2016-02-04

    Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle's location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent.

  3. Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality

    PubMed Central

    Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio

    2016-01-01

    Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle’s location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent. PMID:26861320

  4. What triggers catch-up saccades during visual tracking?

    PubMed

    de Brouwer, Sophie; Yuksel, Demet; Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe

    2002-03-01

    When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).

  5. Effects of Foveal Ablation on the Pattern of Peripheral Refractive Errors in Normal and Form-deprived Infant Rhesus Monkeys (Macaca mulatta)

    PubMed Central

    Huang, Juan; Hung, Li-Fang

    2011-01-01

    Purpose. The purpose of this study was to determine whether visual signals from the fovea contribute to the changes in the pattern of peripheral refractions associated with form deprivation myopia in monkeys. Methods. Monocular form-deprivation was produced in 18 rhesus monkeys by securing diffusers in front of their treated eyes between 22 ± 2 and 155 ± 17 days of age. In eight of these form-deprived monkeys, the fovea and most of the perifovea of the treated eye were ablated by laser photocoagulation at the start of the diffuser-rearing period. Each eye's refractive status was measured by retinoscopy along the pupillary axis and at 15° intervals along the horizontal meridian to eccentricities of 45°. Control data were obtained from 12 normal monkeys and five monkeys that had monocular foveal ablations and were subsequently reared with unrestricted vision. Results. Foveal ablation, by itself, did not produce systematic alterations in either the central or peripheral refractive errors of the treated eyes. In addition, foveal ablation did not alter the patterns of peripheral refractions in monkeys with form-deprivation myopia. The patterns of peripheral refractive errors in the two groups of form-deprived monkeys, either with or without foveal ablation, were qualitatively similar (treated eyes: F = 0.31, P = 0.74; anisometropia: F = 0.61, P = 0.59), but significantly different from those found in the normal monkeys (F = 8.46 and 9.38 respectively, P < 0.05). Conclusions. Central retinal signals do not contribute in an essential way to the alterations in eye shape that occur during the development of vision-induced axial myopia. PMID:21693598

  6. The look of royalty: visual and odour signals of reproductive status in a paper wasp

    PubMed Central

    Tannure-Nascimento, Ivelize C; Nascimento, Fabio S; Zucchi, Ronaldo

    2008-01-01

    Reproductive conflicts within animal societies occur when all females can potentially reproduce. In social insects, these conflicts are regulated largely by behaviour and chemical signalling. There is evidence that presence of signals, which provide direct information about the quality of the reproductive females would increase the fitness of all parties. In this study, we present an association between visual and chemical signals in the paper wasp Polistes satan. Our results showed that in nest-founding phase colonies, variation of visual signals is linked to relative fertility, while chemical signals are related to dominance status. In addition, experiments revealed that higher hierarchical positions were occupied by subordinates with distinct proportions of cuticular hydrocarbons and distinct visual marks. Therefore, these wasps present cues that convey reliable information of their reproductive status. PMID:18682372

  7. The look of royalty: visual and odour signals of reproductive status in a paper wasp.

    PubMed

    Tannure-Nascimento, Ivelize C; Nascimento, Fabio S; Zucchi, Ronaldo

    2008-11-22

    Reproductive conflicts within animal societies occur when all females can potentially reproduce. In social insects, these conflicts are regulated largely by behaviour and chemical signalling. There is evidence that presence of signals, which provide direct information about the quality of the reproductive females would increase the fitness of all parties. In this study, we present an association between visual and chemical signals in the paper wasp Polistes satan. Our results showed that in nest-founding phase colonies, variation of visual signals is linked to relative fertility, while chemical signals are related to dominance status. In addition, experiments revealed that higher hierarchical positions were occupied by subordinates with distinct proportions of cuticular hydrocarbons and distinct visual marks. Therefore, these wasps present cues that convey reliable information of their reproductive status.

  8. Effect of phase errors in stepped-frequency radar systems

    NASA Astrophysics Data System (ADS)

    Vanbrundt, H. E.

    1988-04-01

    Stepped-frequency waveforms are being considered for inverse synthetic aperture radar (ISAR) imaging from ship and airborne platforms and for detailed radar cross section (RCS) measurements of ships and aircraft. These waveforms make it possible to achieve resolutions of 1.0 foot by using existing radar designs and processing technology. One problem not yet fully resolved in using stepped-frequency waveform for ISAR imaging is the deterioration in signal level caused by random frequency error. Random frequency error of the stepped-frequency source results in reduced peak responses and increased null responses. The resulting reduced signal-to-noise ratio is range dependent. Two of the major concerns addressed in this report are radar range limitations for ISAR and the error in calibration for RCS measurements caused by differences in range between a passive reflector used for an RCS reference and the target to be measured. In addressing these concerns, NOSC developed an analysis to assess the tolerable frequency error in terms of resulting power loss in signal power and signal-to-phase noise.

  9. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  10. Assessing the accuracy and feasibility of a refractive error screening program conducted by school teachers in pre-primary and primary schools in Thailand.

    PubMed

    Teerawattananon, Kanlaya; Myint, Chaw-Yin; Wongkittirux, Kwanjai; Teerawattananon, Yot; Chinkulkitnivat, Bunyong; Orprayoon, Surapong; Kusakul, Suwat; Tengtrisorn, Supaporn; Jenchitr, Watanee

    2014-01-01

    As part of the development of a system for the screening of refractive error in Thai children, this study describes the accuracy and feasibility of establishing a program conducted by teachers. To assess the accuracy and feasibility of screening by teachers. A cross-sectional descriptive and analytical study was conducted in 17 schools in four provinces representing four geographic regions in Thailand. A two-staged cluster sampling was employed to compare the detection rate of refractive error among eligible students between trained teachers and health professionals. Serial focus group discussions were held for teachers and parents in order to understand their attitude towards refractive error screening at schools and the potential success factors and barriers. The detection rate of refractive error screening by teachers among pre-primary school children is relatively low (21%) for mild visual impairment but higher for moderate visual impairment (44%). The detection rate for primary school children is high for both levels of visual impairment (52% for mild and 74% for moderate). The focus group discussions reveal that both teachers and parents would benefit from further education regarding refractive errors and that the vast majority of teachers are willing to conduct a school-based screening program. Refractive error screening by health professionals in pre-primary and primary school children is not currently implemented in Thailand due to resource limitations. However, evidence suggests that a refractive error screening program conducted in schools by teachers in the country is reasonable and feasible because the detection and treatment of refractive error in very young generations is important and the screening program can be implemented and conducted with relatively low costs.

  11. Prevalence of uncorrected refractive errors, presbyopia and spectacle coverage in marine fishing communities in South India: Rapid Assessment of Visual Impairment (RAVI) project.

    PubMed

    Marmamula, Srinivas; Madala, Sreenivas R; Rao, Gullapalli N

    2012-03-01

    To investigate the prevalence of uncorrected refractive errors, presbyopia and spectacle coverage in subjects aged 40 years or more using a novel Rapid Assessment of Visual Impairment (RAVI) methodology. A population-based cross-sectional study was conducted using cluster random sampling to enumerate 1700 subjects from 34 clusters predominantly inhabited by marine fishing communities in the Prakasam district of Andhra Pradesh, India. Unaided, aided and pinhole visual acuity (VA) was assessed using a Snellen chart at a distance of 6 m. Near vision was assessed using an N notation chart. Uncorrected refractive error was defined as presenting VA < 6/18 and improving to ≥6/18 with pinhole. Uncorrected presbyopia was defined as binocular near vision worse than N8 in subjects with binocular distance VA ≥ 6/18. 1560 subjects (response rate - 92%) were available for examination. Of these, 54.6% were female and 10.1% were ≥70 years of age. Refractive error was present in 250 individuals. It was uncorrected in 179 (unmet need) and corrected in 71 (met need) individuals. Among 1094 individuals with no distance visual impairment, presbyopia was present in 494 individuals. It was uncorrected in 439 (unmet need) and corrected in 55 individuals (met need). Spectacle coverage was 28.4% for refractive errors and 11.1% for presbyopia. There is a high unmet need for uncorrected refractive errors and presbyopia among marine fishing communities in the Prakasam district of South India. The data from this study can now be used as a baseline prior to the commencement of eye care services in this region. Ophthalmic & Physiological Optics © 2012 The College of Optometrists.

  12. Robot Command Interface Using an Audio-Visual Speech Recognition System

    NASA Astrophysics Data System (ADS)

    Ceballos, Alexánder; Gómez, Juan; Prieto, Flavio; Redarce, Tanneguy

    In recent years audio-visual speech recognition has emerged as an active field of research thanks to advances in pattern recognition, signal processing and machine vision. Its ultimate goal is to allow human-computer communication using voice, taking into account the visual information contained in the audio-visual speech signal. This document presents a command's automatic recognition system using audio-visual information. The system is expected to control the laparoscopic robot da Vinci. The audio signal is treated using the Mel Frequency Cepstral Coefficients parametrization method. Besides, features based on the points that define the mouth's outer contour according to the MPEG-4 standard are used in order to extract the visual speech information.

  13. Analysis of a flare-director concept for an externally blown flap STOL aircraft

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.

    1974-01-01

    A flare-director concept involving a thrust-required flare-guidance equation was developed and tested on a moving-base simulator. The equation gives a signal to command thrust as a linear function of the errors between the variables thrust, altitude, and altitude rate and corresponding values on a desired reference flare trajectory. During the simulator landing tests this signal drove either the horizontal command bar of the aircraft's flight director or a thrust-command dot on a head-up virtual-image display of a flare director. It was also used as the input to a simple autoflare system. An externally blown flap STOL (short take-off and landing) aircraft (with considerable stability and control augmentation) was modeled for the landing tests. The pilots considered the flare director a valuable guide for executing a proper flare-thrust program under instrument-landing conditions, but were reluctant to make any use of the head-up display when they were performing the landings visually.

  14. Context-sensitivity of the feedback-related negativity for zero-value feedback outcomes.

    PubMed

    Pfabigan, Daniela M; Seidel, Eva-Maria; Paul, Katharina; Grahl, Arvina; Sailer, Uta; Lanzenberger, Rupert; Windischberger, Christian; Lamm, Claus

    2015-01-01

    The present study investigated whether the same visual stimulus indicating zero-value feedback (€0) elicits feedback-related negativity (FRN) variation, depending on whether the outcomes correspond with expectations or not. Thirty-one volunteers performed a monetary incentive delay (MID) task while EEG was recorded. FRN amplitudes were comparable and more negative when zero-value outcome deviated from expectations than with expected gain or loss, supporting theories emphasising the impact of unexpectedness and salience on FRN amplitudes. Surprisingly, expected zero-value outcomes elicited the most negative FRNs. However, source localisation showed that such outcomes evoked less activation in cingulate areas than unexpected zero-value outcomes. Our study illustrates the context dependency of identical zero-value feedback stimuli. Moreover, the results indicate that the incentive cues in the MID task evoke different reward prediction error signals. These prediction signals differ in FRN amplitude and neuronal sources, and have to be considered in the design and interpretation of future studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Complex noise suppression using a sparse representation and 3D filtering of images

    NASA Astrophysics Data System (ADS)

    Kravchenko, V. F.; Ponomaryov, V. I.; Pustovoit, V. I.; Palacios-Enriquez, A.

    2017-08-01

    A novel method for the filtering of images corrupted by complex noise composed of randomly distributed impulses and additive Gaussian noise has been substantiated for the first time. The method consists of three main stages: the detection and filtering of pixels corrupted by impulsive noise, the subsequent image processing to suppress the additive noise based on 3D filtering and a sparse representation of signals in a basis of wavelets, and the concluding image processing procedure to clean the final image of the errors emerged at the previous stages. A physical interpretation of the filtering method under complex noise conditions is given. A filtering block diagram has been developed in accordance with the novel approach. Simulations of the novel image filtering method have shown an advantage of the proposed filtering scheme in terms of generally recognized criteria, such as the structural similarity index measure and the peak signal-to-noise ratio, and when visually comparing the filtered images.

  16. Automatic Construction of Wi-Fi Radio Map Using Smartphones

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Li, Qingquan; Zhang, Xing

    2016-06-01

    Indoor positioning could provide interesting services and applications. As one of the most popular indoor positioning methods, location fingerprinting determines the location of mobile users by matching the received signal strength (RSS) which is location dependent. However, fingerprinting-based indoor positioning requires calibration and updating of the fingerprints which is labor-intensive and time-consuming. In this paper, we propose a visual-based approach for the construction of radio map for anonymous indoor environments without any prior knowledge. This approach collects multi-sensors data, e.g. video, accelerometer, gyroscope, Wi-Fi signals, etc., when people (with smartphones) walks freely in indoor environments. Then, it uses the multi-sensor data to restore the trajectories of people based on an integrated structure from motion (SFM) and image matching method, and finally estimates location of sampling points on the trajectories and construct Wi-Fi radio map. Experiment results show that the average location error of the fingerprints is about 0.53 m.

  17. Error reduction study employing a pseudo-random binary sequence for use in acoustic pyrometry of gases

    NASA Astrophysics Data System (ADS)

    Ewan, B. C. R.; Ireland, S. N.

    2000-12-01

    Acoustic pyrometry uses the temperature dependence of sound speed in materials to measure temperature. This is normally achieved by measuring the transit time for a sound signal over a known path length and applying the material relation between temperature and velocity to extract an "average" temperature. Sources of error associated with the measurement of mean transit time are discussed in implementing the technique in gases, one of the principal causes being background noise in typical industrial environments. A number of transmitted signal and processing strategies which can be used in the area are examined and the expected error in mean transit time associated with each technique is quantified. Transmitted signals included pulses, pure frequencies, chirps, and pseudorandom binary sequences (prbs), while processing involves edge detection and correlation. Errors arise through the misinterpretation of the positions of edge arrival or correlation peaks due to instantaneous deviations associated with background noise and these become more severe as signal to noise amplitude ratios decrease. Population errors in the mean transit time are estimated for the different measurement strategies and it is concluded that PRBS combined with correlation can provide the lowest errors when operating in high noise environments. The operation of an instrument based on PRBS transmitted signals is described and test results under controlled noise conditions are presented. These confirm the value of the strategy and demonstrate that measurements can be made with signal to noise amplitude ratios down to 0.5.

  18. The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning

    PubMed Central

    Nasser, Helen M.; Calu, Donna J.; Schoenbaum, Geoffrey; Sharpe, Melissa J.

    2017-01-01

    Phasic activity of midbrain dopamine neurons is currently thought to encapsulate the prediction-error signal described in Sutton and Barto’s (1981) model-free reinforcement learning algorithm. This phasic signal is thought to contain information about the quantitative value of reward, which transfers to the reward-predictive cue after learning. This is argued to endow the reward-predictive cue with the value inherent in the reward, motivating behavior toward cues signaling the presence of reward. Yet theoretical and empirical research has implicated prediction-error signaling in learning that extends far beyond a transfer of quantitative value to a reward-predictive cue. Here, we review the research which demonstrates the complexity of how dopaminergic prediction errors facilitate learning. After briefly discussing the literature demonstrating that phasic dopaminergic signals can act in the manner described by Sutton and Barto (1981), we consider how these signals may also influence attentional processing across multiple attentional systems in distinct brain circuits. Then, we discuss how prediction errors encode and promote the development of context-specific associations between cues and rewards. Finally, we consider recent evidence that shows dopaminergic activity contains information about causal relationships between cues and rewards that reflect information garnered from rich associative models of the world that can be adapted in the absence of direct experience. In discussing this research we hope to support the expansion of how dopaminergic prediction errors are thought to contribute to the learning process beyond the traditional concept of transferring quantitative value. PMID:28275359

  19. Aminergic neuromodulation of associative visual learning in harnessed honey bees.

    PubMed

    Mancini, Nino; Giurfa, Martin; Sandoz, Jean-Christophe; Avarguès-Weber, Aurore

    2018-05-21

    The honey bee Apis mellifera is a major insect model for studying visual cognition. Free-flying honey bees learn to associate different visual cues with a sucrose reward and may deploy sophisticated cognitive strategies to this end. Yet, the neural bases of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but training them to respond appetitively to visual stimuli paired with sucrose reward is difficult. Here we succeeded in coupling visual conditioning in harnessed bees with pharmacological analyses on the role of octopamine (OA), dopamine (DA) and serotonin (5-HT) in visual learning. We also studied if and how these biogenic amines modulate sucrose responsiveness and phototaxis behaviour as intact reward and visual perception are essential prerequisites for appetitive visual learning. Our results suggest that both octopaminergic and dopaminergic signaling mediate either the appetitive sucrose signaling or the association between color and sucrose reward in the bee brain. Enhancing and inhibiting serotonergic signaling both compromised learning performances, probably via an impairment of visual perception. We thus provide a first analysis of the role of aminergic signaling in visual learning and retention in the honey bee and discuss further research trends necessary to understand the neural bases of visual cognition in this insect. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Temporal integration characteristics of the axial and choroidal responses to myopic defocus induced by prior form deprivation versus positive spectacle lens wear in chickens.

    PubMed

    Nickla, Debora L; Sharda, Vandhana; Troilo, David

    2005-04-01

    In chicks, the temporal response characteristics to form deprivation and to spectacle lens wear (myopic and hyperopic defocus) show essential differences, suggesting that the emmetropization system "weights" the visual signals differently. To further explore how the eye integrates opposing visual signals, we examined the responses to myopic defocus induced by prior form deprivation vs. that induced by positive spectacle lenses, in both cases alternating with form deprivation. Three experimental paradigms were used: 1) Form deprivation was induced by monocular occluders for 7 days. Over the subsequent 7 days, the occluders were removed daily for 12 hours (n = 13), 4 hours (n = 7), 2 hours (n = 7), or 0 hours (n = 6). 2) Birds were form-deprived on day 12. Over the subsequent 7 days, occluders were replaced with a +10 D lens for 2 hours per day (n = 13). 3) Starting at day 11, a +10 D lens was placed over one eye for 2 hours (n = 13), 3 hours (n = 5), or 6 hours (n = 10) per day and were otherwise untreated. Ocular dimensions were measured with high-frequency A-scan ultrasonography; refractive errors were measured by streak retinoscopy at various intervals. In recovering eyes, 2 hours per day of myopic defocus was as effective as 12 hours at inducing refractive and axial recovery (change in refractive error: +10 D vs. +13 D, respectively). By contrast, 2 hours of lens-induced defocus (alternating with form deprivation) was not sufficient to induce refractive or axial compensation (change in refractive error: -1.7 D). When myopic defocus alternated with unrestricted vision, 6 hours per day were sufficient to induce nearly full compensation (2 hours vs. 6 hours: 4.4 D vs. 8.2 D; p < 0.0005). Choroids showed rapid increases in thickness to the daily episodes of myopic defocus; these resulted in "long-term" thickness changes in recovering eyes and eyes wearing lenses for 3 or 6 hours per day. The response to myopic defocus induced by prior form deprivation is more robust than the response induced by positive lenses, suggesting that the underlying mechanisms differ. Presumably, this difference is related to the size of the eye at the onset. Compensatory decreases in growth rate occur without full compensatory choroidal thickening.

  1. Prevalence of refraction errors and color blindness in heavy vehicle drivers.

    PubMed

    Erdoğan, Haydar; Ozdemir, Levent; Arslan, Seher; Cetin, Ilhan; Ozeç, Ayşe Vural; Cetinkaya, Selma; Sümer, Haldun

    2011-01-01

    To investigate the frequency of eye disorders in heavy vehicle drivers. A cross-sectional type study was conducted between November 2004 and September 2006 in 200 driver and 200 non-driver persons. A complete ophthalmologic examination was performed, including visual acuity, and dilated examination of the posterior segment. We used the auto refractometer for determining refractive errors. According to eye examination results, the prevalence of the refractive error was 21.5% and 31.3% in study and control groups respectively (P<0.05). The most common type of refraction error in the study group was myopic astigmatism (8.3%) while in the control group simple myopia (12.8%). Prevalence of dyschromatopsia in the rivers, control group and total group was 2.2%, 2.8% and 2.6% respectively. A considerably high number of drivers are in lack of optimal visual acuity. Refraction errors in drivers may impair the traffic security.

  2. Prevalence of refraction errors and color blindness in heavy vehicle drivers

    PubMed Central

    Erdoğan, Haydar; Özdemir, Levent; Arslan, Seher; Çetin, Ilhan; Özeç, Ayşe Vural; Çetinkaya, Selma; Sümer, Haldun

    2011-01-01

    AIM To investigate the frequency of eye disorders in heavy vehicle drivers. METHODS A cross-sectional type study was conducted between November 2004 and September 2006 in 200 driver and 200 non-driver persons. A complete ophthalmologic examination was performed, including visual acuity, and dilated examination of the posterior segment. We used the auto refractometer for determining refractive errors. RESULTS According to eye examination results, the prevalence of the refractive error was 21.5% and 31.3% in study and control groups respectively (P<0.05). The most common type of refraction error in the study group was myopic astigmatism (8.3%) while in the control group simple myopia (12.8%). Prevalence of dyschromatopsia in the rivers, control group and total group was 2.2%, 2.8% and 2.6% respectively. CONCLUSION A considerably high number of drivers are in lack of optimal visual acuity. Refraction errors in drivers may impair the traffic security. PMID:22553671

  3. Mathematics skills in good readers with hydrocephalus.

    PubMed

    Barnes, Marcia A; Pengelly, Sarah; Dennis, Maureen; Wilkinson, Margaret; Rogers, Tracey; Faulkner, Heather

    2002-01-01

    Children with hydrocephalus have poor math skills. We investigated the nature of their arithmetic computation errors by comparing written subtraction errors in good readers with hydrocephalus, typically developing good readers of the same age, and younger children matched for math level to the children with hydrocephalus. Children with hydrocephalus made more procedural errors (although not more fact retrieval or visual-spatial errors) than age-matched controls; they made the same number of procedural errors as younger, math-level matched children. We also investigated a broad range of math abilities, and found that children with hydrocephalus performed more poorly than age-matched controls on tests of geometry and applied math skills such as estimation and problem solving. Computation deficits in children with hydrocephalus reflect delayed development of procedural knowledge. Problems in specific math domains such as geometry and applied math, were associated with deficits in constituent cognitive skills such as visual spatial competence, memory, and general knowledge.

  4. Classification-Based Spatial Error Concealment for Visual Communications

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Zheng, Yefeng; Wu, Min

    2006-12-01

    In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.

  5. The screening of visual impairment among preschool children in an urban population in Malaysia; the Kuching pediatric eye study: a cross sectional study

    PubMed Central

    2013-01-01

    Background To screen for visual impairment in Malaysian preschool children. Methods Visual screening was conducted in 400 preschool children aged 4 to 6 years. The screening involved two basic procedures; the distant visual acuity test using the Sheridan Gardiner chart and the depth perception test using the Langs stereoacuity test. Criteria for referral were a visual acuity of 6/12 or less in the better eye or a fail in the depth perception test. Results The prevalence of visual impairment was 5% (95% confidence interval [CI] = 3.3, 7.6). Of the 400 preschool children screened, 20 of them failed the distant visual acuity test or the stereopsis test. Refractive errors were the most common cause of visual impairment (95%, 95% CI = 76.2, 98.8); myopic astigmatism was the commonest type of refractive error (63.2%, 95% CI = 40.8, 80.9). Conclusion The study is a small but important step in the effort to understand the problem of visual impairment among our preschool children. Our study showed that it is feasible to measure distant visual acuity and stereopsis in this age group. PMID:23601160

  6. The screening of visual impairment among preschool children in an urban population in Malaysia; the Kuching pediatric eye study: a cross sectional study.

    PubMed

    Premsenthil, Mallika; Manju, Rose; Thanaraj, Asokumaran; Rahman, Syed Alwi Syed Abdul; Kah, Tan Aik

    2013-04-19

    To screen for visual impairment in Malaysian preschool children. Visual screening was conducted in 400 preschool children aged 4 to 6 years. The screening involved two basic procedures; the distant visual acuity test using the Sheridan Gardiner chart and the depth perception test using the Langs stereoacuity test. Criteria for referral were a visual acuity of 6/12 or less in the better eye or a fail in the depth perception test. The prevalence of visual impairment was 5% (95% confidence interval [CI] = 3.3, 7.6). Of the 400 preschool children screened, 20 of them failed the distant visual acuity test or the stereopsis test. Refractive errors were the most common cause of visual impairment (95%, 95% CI = 76.2, 98.8); myopic astigmatism was the commonest type of refractive error (63.2%, 95% CI = 40.8, 80.9). The study is a small but important step in the effort to understand the problem of visual impairment among our preschool children. Our study showed that it is feasible to measure distant visual acuity and stereopsis in this age group.

  7. Mechanisms of migraine aura revealed by functional MRI in human visual cortex

    PubMed Central

    Hadjikhani, Nouchine; Sanchez del Rio, Margarita; Wu, Ona; Schwartz, Denis; Bakker, Dick; Fischl, Bruce; Kwong, Kenneth K.; Cutrer, F. Michael; Rosen, Bruce R.; Tootell, Roger B. H.; Sorensen, A. Gregory; Moskowitz, Michael A.

    2001-01-01

    Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex. PMID:11287655

  8. Hybrid online sensor error detection and functional redundancy for systems with time-varying parameters.

    PubMed

    Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali

    2017-12-01

    Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.

  9. Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases

    PubMed Central

    Qutaish, Mohammed Q.; Zhou, Zhuxian; Prabhu, David; Liu, Yiqiao; Busso, Mallory R.; Izadnegahdar, Donna; Gargesha, Madhusudhana; Lu, Hong; Lu, Zheng-Rong

    2018-01-01

    We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy. PMID:29805438

  10. Brain-computer interface: changes in performance using virtual reality techniques.

    PubMed

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  11. Finite-difference time-domain modelling of through-the-Earth radio signal propagation

    NASA Astrophysics Data System (ADS)

    Ralchenko, M.; Svilans, M.; Samson, C.; Roper, M.

    2015-12-01

    This research seeks to extend the knowledge of how a very low frequency (VLF) through-the-Earth (TTE) radio signal behaves as it propagates underground, by calculating and visualizing the strength of the electric and magnetic fields for an arbitrary geology through numeric modelling. To achieve this objective, a new software tool has been developed using the finite-difference time-domain method. This technique is particularly well suited to visualizing the distribution of electromagnetic fields in an arbitrary geology. The frequency range of TTE radio (400-9000 Hz) and geometrical scales involved (1 m resolution for domains a few hundred metres in size) involves processing a grid composed of millions of cells for thousands of time steps, which is computationally expensive. Graphics processing unit acceleration was used to reduce execution time from days and weeks, to minutes and hours. Results from the new modelling tool were compared to three cases for which an analytic solution is known. Two more case studies were done featuring complex geologic environments relevant to TTE communications that cannot be solved analytically. There was good agreement between numeric and analytic results. Deviations were likely caused by numeric artifacts from the model boundaries; however, in a TTE application in field conditions, the uncertainty in the conductivity of the various geologic formations will greatly outweigh these small numeric errors.

  12. VizieR Online Data Catalog: V and R CCD photometry of visual binaries (Abad+, 2004)

    NASA Astrophysics Data System (ADS)

    Abad, C.; Docobo, J. A.; Lanchares, V.; Lahulla, J. F.; Abelleira, P.; Blanco, J.; Alvarez, C.

    2003-11-01

    Table 1 gives relevant data for the visual binaries observed. Observations were carried out over a short period of time, therefore we assign the mean epoch (1998.58) for the totality of data. Data of individual stars are presented as average data with errors, by parameter, when various observations have been calculated, as well as the number of observations involved. Errors corresponding to astrometric relative positions between components are always present. For single observations, parameter fitting errors, specially for dx and dy parameters, have been calculated analysing the chi2 test around the minimum. Following the rules for error propagation, theta and rho errors can be estimated. Then, Table 1 shows single observation errors with an additional significant digit. When a star does not have known references, we include it in Table 2, where J2000 position and magnitudes are from the USNO-A2.0 catalogue (Monet et al., 1998, Cat. ). (2 data files).

  13. [Allocation of attentional resource and monitoring processes under rapid serial visual presentation].

    PubMed

    Nishiura, K

    1998-08-01

    With the use of rapid serial visual presentation (RSVP), the present study investigated the cause of target intrusion errors and functioning of monitoring processes. Eighteen students participated in Experiment 1, and 24 in Experiment 2. In Experiment 1, different target intrusion errors were found depending on different kinds of letters --romaji, hiragana, and kanji. In Experiment 2, stimulus set size and context information were manipulated in an attempt to explore the cause of post-target intrusion errors. Results showed that as stimulus set size increased, the post-target intrusion errors also increased, but contextual information did not affect the errors. Results concerning mean report probability indicated that increased allocation of attentional resource to response-defining dimension was the cause of the errors. In addition, results concerning confidence rating showed that monitoring of temporal and contextual information was extremely accurate, but it was not so for stimulus information. These results suggest that attentional resource is different from monitoring resource.

  14. Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.

    PubMed

    Ward, Bryan K; Bockisch, Christopher J; Caramia, Nicoletta; Bertolini, Giovanni; Tarnutzer, Alexander Andrea

    2017-05-01

    Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P < 0.005). Offsets grew from 3.9 ± 1.8° (upright) to 22.1 ± 11.8° (±120° roll tilt, P < 0.001). Trial-to-trial variability increased with roll angle, demonstrating a nonsignificant increase when providing optokinetic stimulation. Variability and optokinetic bias were correlated ( R 2 = 0.71, slope = 0.71, 95% confidence interval = 0.57-0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic-induced bias to correlate with the roll angle. These findings allow the hypothesis that the established optimal weighting of single-sensory cues depending on their reliability to estimate direction of gravity could be extended to a bias caused by visual self-motion stimuli. Copyright © 2017 the American Physiological Society.

  15. Research on calibration error of carrier phase against antenna arraying

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Hou, Xiaomin

    2016-11-01

    It is the technical difficulty of uplink antenna arraying that signals from various quarters can not be automatically aligned at the target in deep space. The size of the far-field power combining gain is directly determined by the accuracy of carrier phase calibration. It is necessary to analyze the entire arraying system in order to improve the accuracy of the phase calibration. This paper analyzes the factors affecting the calibration error of carrier phase of uplink antenna arraying system including the error of phase measurement and equipment, the error of the uplink channel phase shift, the position error of ground antenna, calibration receiver and target spacecraft, the error of the atmospheric turbulence disturbance. Discuss the spatial and temporal autocorrelation model of atmospheric disturbances. Each antenna of the uplink antenna arraying is no common reference signal for continuous calibration. So it must be a system of the periodic calibration. Calibration is refered to communication of one or more spacecrafts in a certain period. Because the deep space targets are not automatically aligned to multiplexing received signal. Therefore the aligned signal should be done in advance on the ground. Data is shown that the error can be controlled within the range of demand by the use of existing technology to meet the accuracy of carrier phase calibration. The total error can be controlled within a reasonable range.

  16. Crosslinking EEG time-frequency decomposition and fMRI in error monitoring.

    PubMed

    Hoffmann, Sven; Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian

    2014-03-01

    Recent studies implicate a common response monitoring system, being active during erroneous and correct responses. Converging evidence from time-frequency decompositions of the response-related ERP revealed that evoked theta activity at fronto-central electrode positions differentiates correct from erroneous responses in simple tasks, but also in more complex tasks. However, up to now it is unclear how different electrophysiological parameters of error processing, especially at the level of neural oscillations are related, or predictive for BOLD signal changes reflecting error processing at a functional-neuroanatomical level. The present study aims to provide crosslinks between time domain information, time-frequency information, MRI BOLD signal and behavioral parameters in a task examining error monitoring due to mistakes in a mental rotation task. The results show that BOLD signal changes reflecting error processing on a functional-neuroanatomical level are best predicted by evoked oscillations in the theta frequency band. Although the fMRI results in this study account for an involvement of the anterior cingulate cortex, middle frontal gyrus, and the Insula in error processing, the correlation of evoked oscillations and BOLD signal was restricted to a coupling of evoked theta and anterior cingulate cortex BOLD activity. The current results indicate that although there is a distributed functional-neuroanatomical network mediating error processing, only distinct parts of this network seem to modulate electrophysiological properties of error monitoring.

  17. Emotion recognition ability in mothers at high and low risk for child physical abuse.

    PubMed

    Balge, K A; Milner, J S

    2000-10-01

    The study sought to determine if high-risk, compared to low-risk, mothers make more emotion recognition errors when they attempt to recognize emotions in children and adults. Thirty-two demographically matched high-risk (n = 16) and low-risk (n = 16) mothers were asked to identify different emotions expressed by children and adults. Sets of high- and low-intensity, visual and auditory emotions were presented. Mothers also completed measures of stress, depression, and ego-strength. High-risk, compared to low-risk, mothers showed a tendency to make more errors on the visual and auditory emotion recognition tasks, with a trend toward more errors on the low-intensity, visual stimuli. However, the observed trends were not significant. Only a post-hoc test of error rates across all stimuli indicated that high-risk, compared to low-risk, mothers made significantly more emotion recognition errors. Although situational stress differences were not found, high-risk mothers reported significantly higher levels of general parenting stress and depression and lower levels of ego-strength. Since only trends and a significant post hoc finding of more overall emotion recognition errors in high-risk mothers were observed, additional research is needed to determine if high-risk mothers have emotion recognition deficits that may impact parent-child interactions. As in prior research, the study found that high-risk mothers reported more parenting stress and depression and less ego-strength.

  18. New GRACE-Derived Storage Change Estimates Using Empirical Mode Extraction

    NASA Astrophysics Data System (ADS)

    Aierken, A.; Lee, H.; Yu, H.; Ate, P.; Hossain, F.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Shum, C. K.

    2017-12-01

    Estimated mass change from GRACE spherical harmonic solutions have north/south stripes and east/west banded errors due to random noise and modeling errors. Low pass filters like decorrelation and Gaussian smoothing are typically applied to reduce noise and errors. However, these filters introduce leakage errors that need to be addressed. GRACE mascon estimates (JPL and CSR mascon solutions) do not need decorrelation or Gaussian smoothing and offer larger signal magnitudes compared to the GRACE spherical harmonics (SH) filtered results. However, a recent study [Chen et al., JGR, 2017] demonstrated that both JPL and CSR mascon solutions also have leakage errors. We developed a new postprocessing method based on empirical mode decomposition to estimate mass change from GRACE SH solutions without decorrelation and Gaussian smoothing, the two main sources of leakage errors. We found that, without any post processing, the noise and errors in spherical harmonic solutions introduced very clear high frequency components in the spatial domain. By removing these high frequency components and reserve the overall pattern of the signal, we obtained better mass estimates with minimum leakage errors. The new global mass change estimates captured all the signals observed by GRACE without the stripe errors. Results were compared with traditional methods over the Tonle Sap Basin in Cambodia, Northwestern India, Central Valley in California, and the Caspian Sea. Our results provide larger signal magnitudes which are in good agreement with the leakage corrected (forward modeled) SH results.

  19. Visual impairment attributable to uncorrected refractive error and other causes in the Ghanaian youth: The University of Cape Coast Survey.

    PubMed

    Abokyi, Samuel; Ilechie, Alex; Nsiah, Peter; Darko-Takyi, Charles; Abu, Emmanuel Kwasi; Osei-Akoto, Yaw Jnr; Youfegan-Baanam, Mathurin

    2016-01-01

    To determine the prevalence of visual impairment attributable to refractive error and other causes in a youthful Ghanaian population. A prospective survey of all consecutive visits by first-year tertiary students to the Optometry clinic between August, 2013 and April, 2014. Of the 4378 first-year students aged 16-39 years enumerated, 3437 (78.5%) underwent the eye examination. The examination protocol included presenting visual acuity (PVA), ocular motility, and slit-lamp examination of the external eye, anterior segment and media, and non-dilated fundus examination. Pinhole acuity and fundus examination were performed when the PVA≤6/12 in one or both eyes to determine the principal cause of the vision loss. The mean age of participants was 21.86 years (95% CI: 21.72-21.99). The prevalence of bilateral visual impairment (BVI; PVA in the better eye ≤6/12) and unilateral visual impairment UVI; PVA in the worse eye ≤6/12) were 3.08% (95% CI: 2.56-3.72) and 0.79% (95% CI: 0.54-1.14), respectively. Among 106 participants with BVI, refractive error (96.2%) and corneal opacity (3.8%) were the causes. Of the 27 participants with UVI, refractive error (44.4%), maculopathy (18.5%) and retinal disease (14.8%) were the major causes. There was unequal distribution of BVI in the different age groups, with those above 20 years having a lesser burden. Eye screening and provision of affordable spectacle correction to the youth could be timely to eliminate visual impairment. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  20. Visual impairment attributable to uncorrected refractive error and other causes in the Ghanaian youth: The University of Cape Coast Survey

    PubMed Central

    Abokyi, Samuel; Ilechie, Alex; Nsiah, Peter; Darko-Takyi, Charles; Abu, Emmanuel Kwasi; Osei-Akoto, Yaw Jnr; Youfegan-Baanam, Mathurin

    2015-01-01

    Purpose To determine the prevalence of visual impairment attributable to refractive error and other causes in a youthful Ghanaian population. Methods A prospective survey of all consecutive visits by first-year tertiary students to the Optometry clinic between August, 2013 and April, 2014. Of the 4378 first-year students aged 16–39 years enumerated, 3437 (78.5%) underwent the eye examination. The examination protocol included presenting visual acuity (PVA), ocular motility, and slit-lamp examination of the external eye, anterior segment and media, and non-dilated fundus examination. Pinhole acuity and fundus examination were performed when the PVA ≤ 6/12 in one or both eyes to determine the principal cause of the vision loss. Results The mean age of participants was 21.86 years (95% CI: 21.72–21.99). The prevalence of bilateral visual impairment (BVI; PVA in the better eye ≤6/12) and unilateral visual impairment UVI; PVA in the worse eye ≤6/12) were 3.08% (95% CI: 2.56–3.72) and 0.79% (95% CI: 0.54–1.14), respectively. Among 106 participants with BVI, refractive error (96.2%) and corneal opacity (3.8%) were the causes. Of the 27 participants with UVI, refractive error (44.4%), maculopathy (18.5%) and retinal disease (14.8%) were the major causes. There was unequal distribution of BVI in the different age groups, with those above 20 years having a lesser burden. Conclusion Eye screening and provision of affordable spectacle correction to the youth could be timely to eliminate visual impairment. PMID:26025809

  1. Ophthalmologic abnormalities among students with cognitive impairment in eastern Taiwan: The special group with undetected visual impairment.

    PubMed

    Tsao, Wei-Shan; Hsieh, Hsi-Pao; Chuang, Yi-Ting; Sheu, Min-Muh

    2017-05-01

    Students with cognitive impairment are at increased risk of suffering from visual impairment due to refractive errors and ocular disease, which can adversely influence learning and daily activities. The purpose of this study was to evaluate the ocular and visual status among students at the special education school in Hualien. All students at the National Hualien Special Education School were evaluated. Full eye examinations were conducted by a skilled ophthalmologist. The students' medical records and disability types were reviewed. A total of 241 students, aged 7-18 years, were examined. Visual acuity could be assessed in 138 students. A total of 169/477 (35.4%) eyes were found to suffer from refractive errors, including 20 eyes with high myopia (≤-6.0 D) and 16 eyes with moderate hypermetropia (+3.0 D to +5.0 D). A total of 84/241 (34.8%) students needed spectacles to correct their vision, thus improving their daily activities and learning process, but only 15/241 (6.2%) students were wearing suitable corrective spectacles. A total of 55/241 students (22.8%) had ocular disorders, which influenced their visual function. The multiple disability group had a statistically significant higher prevalence of ocular disorders (32.9%) than the simple intellectual disability group (19.6%). Students with cognitive impairment in eastern Taiwan have a high risk of visual impairment due to refractive errors and ocular disorders. Importantly, many students have unrecognized correctable refractive errors. Regular ophthalmic examination should be administered to address this issue and prevent further disability in this already handicapped group. Copyright © 2016. Published by Elsevier B.V.

  2. Interaction between visual and chemical cues in a Liolaemus lizard: a multimodal approach.

    PubMed

    Vicente, Natalin S; Halloy, Monique

    2017-12-01

    Multimodal communication involves the use of signals and cues across two or more sensory modalities. The genus Liolaemus (Iguania: Liolaemidae) offers a great potential for studies on the ecology and evolution of multimodal communication, including visual and chemical signals. In this study, we analyzed the response of male and female Liolaemus pacha to chemical, visual and combined (multimodal) stimuli. Using cue-isolation tests, we registered the number of tongue flicks and headbob displays from exposure to signals in each modality. Number of tongue flicks was greater when a chemical stimulus was presented alone than in the presence of visual or multimodal stimuli. In contrast, headbob displays were fewer in number with visual and chemical stimuli alone, but significantly higher in number when combined. Female signallers triggered significantly more tongue flicks than male signallers, suggesting that chemical cues are involved in sexual recognition. We did not find an inhibition between chemical and visual cues. On the contrary, we observed a dominance of the chemical modality, because when presented with visual stimuli, lizards also responded with more tongue flicks than headbob displays. The total response produced by multimodal stimuli was similar to that of the chemical stimuli alone, possibly suggesting non-redundancy. We discuss whether the visual component of a multimodal signal could attract attention at a distance, increasing the effectiveness of transmission and reception of the information in chemical cues. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Optimal information transfer in enzymatic networks: A field theoretic formulation

    NASA Astrophysics Data System (ADS)

    Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.

    2017-07-01

    Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in networks of arbitrary complexity.

  4. Automatic detection of motor unit innervation zones of the external anal sphincter by multichannel surface EMG.

    PubMed

    Ullah, Khalil; Cescon, Corrado; Afsharipour, Babak; Merletti, Roberto

    2014-12-01

    A method to detect automatically the location of innervation zones (IZs) from 16-channel surface EMG (sEMG) recordings from the external anal sphincter (EAS) muscle is presented in order to guide episiotomy during child delivery. The new algorithm (2DCorr) is applied to individual motor unit action potential (MUAP) templates and is based on bidimensional cross correlation between the interpolated image of each MUAP template and two images obtained by flipping upside-down (around a horizontal axis) and left-right (around a vertical axis) the original one. The method was tested on 640 simulated MUAP templates of the sphincter muscle and compared with previously developed algorithms (Radon Transform, RT; Template Match, TM). Experimental signals were detected from the EAS of 150 subjects using an intra-anal probe with 16 equally spaced circumferential electrodes. The results of the three algorithms were compared with the actual IZ location (simulated signal) and with IZ location provided by visual analysis (VA) (experimental signals). For simulated signals, the inter quartile error range (IQR) between the estimated and the actual locations of the IZ was 0.20, 0.23, 0.42, and 2.32 interelectrode distances (IED) for the VA, 2DCorr, RT and TM methods respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. SU-F-T-471: Simulated External Beam Delivery Errors Detection with a Large Area Ion Chamber Transmission Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D; Dyer, B; Kumaran Nair, C

    Purpose: The Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area, linac-mounted ion chamber used to monitor photon fluence during patient treatment. Our previous work evaluated the change of the ion chamber’s response to deviations from static 1×1 cm2 and 10×10 cm2 photon beams and other characteristics integral to use in external beam detection. The aim of this work is to simulate two external beam radiation delivery errors, quantify the detection of simulated errors and evaluate the reduction in patient harm resulting from detection. Methods: Two well documented radiation oncology delivery errors were selected formore » simulation. The first error was recreated by modifying a wedged whole breast treatment, removing the physical wedge and calculating the planned dose with Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI). The second error was recreated by modifying a static-gantry IMRT pharyngeal tonsil plan to be delivered in 3 unmodulated fractions. A radiation oncologist evaluated the dose for simulated errors and predicted morbidity and mortality commiserate with the original reported toxicity, indicating that reported errors were approximately simulated. The ion chamber signal of unmodified treatments was compared to the simulated error signal and evaluated in Pinnacle TPS again with radiation oncologist prediction of simulated patient harm. Results: Previous work established that transmission detector system measurements are stable within 0.5% standard deviation (SD). Errors causing signal change greater than 20 SD (10%) were considered detected. The whole breast and pharyngeal tonsil IMRT simulated error increased signal by 215% and 969%, respectively, indicating error detection after the first fraction and IMRT segment, respectively. Conclusion: The transmission detector system demonstrated utility in detecting clinically significant errors and reducing patient toxicity/harm in simulated external beam delivery. Future work will evaluate detection of other smaller magnitude delivery errors.« less

  6. Navigation in Difficult Environments: Multi-Sensor Fusion Techniques

    DTIC Science & Technology

    2010-03-01

    Hwang , Introduction to Random Signals and Applied Kalman Filtering, 3rd ed., John Wiley & Sons, Inc., New York, 1997. [17] J. L. Farrell, “GPS/INS...nav solution Navigation outputs Estimation of inertial errors ( Kalman filter) Error estimates Core sensor Incoming signal INS Estimates of signal...the INS drift terms is performed using the mechanism of a complementary Kalman filter. The idea is that a signal parameter can be generally

  7. Advanced Technology for Portable Personal Visualization

    DTIC Science & Technology

    1991-12-01

    sites. VPL Research began in 1989 selling0IDapitP incodaesyemW commemcillys a KD system that used a glove to control the actions of flying and grabbing...problem of beacon switching error or its equivalent . Steps we took to control these errors would apply to other (3) Ascension Technology Corporation. The...AD-A245 905 / /7 Advanced Technology for Portable Personal Visualization I) ICReport of Research Progress JAN 3.ELEC April - December 1991I ELECTE I

  8. Research on the output bit error rate of 2DPSK signal based on stochastic resonance theory

    NASA Astrophysics Data System (ADS)

    Yan, Daqin; Wang, Fuzhong; Wang, Shuo

    2017-12-01

    Binary differential phase-shift keying (2DPSK) signal is mainly used for high speed data transmission. However, the bit error rate of digital signal receiver is high in the case of wicked channel environment. In view of this situation, a novel method based on stochastic resonance (SR) is proposed, which is aimed to reduce the bit error rate of 2DPSK signal by coherent demodulation receiving. According to the theory of SR, a nonlinear receiver model is established, which is used to receive 2DPSK signal under small signal-to-noise ratio (SNR) circumstances (between -15 dB and 5 dB), and compared with the conventional demodulation method. The experimental results demonstrate that when the input SNR is in the range of -15 dB to 5 dB, the output bit error rate of nonlinear system model based on SR has a significant decline compared to the conventional model. It could reduce 86.15% when the input SNR equals -7 dB. Meanwhile, the peak value of the output signal spectrum is 4.25 times as that of the conventional model. Consequently, the output signal of the system is more likely to be detected and the accuracy can be greatly improved.

  9. Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming

    NASA Astrophysics Data System (ADS)

    Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali

    2018-03-01

    Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.

  10. New Abstraction Networks and a New Visualization Tool in Support of Auditing the SNOMED CT Content

    PubMed Central

    Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan

    2012-01-01

    Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT. PMID:23304293

  11. New abstraction networks and a new visualization tool in support of auditing the SNOMED CT content.

    PubMed

    Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan

    2012-01-01

    Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT.

  12. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris

    PubMed Central

    Déaux, Éloïse C.; Clarke, Jennifer A.; Charrier, Isabelle

    2015-01-01

    Evidence of animal multimodal signalling is widespread and compelling. Dogs’ aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs’ bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as ‘equivalent’ or ‘enhancing’ as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal’s function. PMID:26571266

  13. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  14. Surprise beyond prediction error

    PubMed Central

    Chumbley, Justin R; Burke, Christopher J; Stephan, Klaas E; Friston, Karl J; Tobler, Philippe N; Fehr, Ernst

    2014-01-01

    Surprise drives learning. Various neural “prediction error” signals are believed to underpin surprise-based reinforcement learning. Here, we report a surprise signal that reflects reinforcement learning but is neither un/signed reward prediction error (RPE) nor un/signed state prediction error (SPE). To exclude these alternatives, we measured surprise responses in the absence of RPE and accounted for a host of potential SPE confounds. This new surprise signal was evident in ventral striatum, primary sensory cortex, frontal poles, and amygdala. We interpret these findings via a normative model of surprise. PMID:24700400

  15. Simulation study of communication link for Pioneer Saturn/Uranus atmospheric entry probe. [signal acquisition by candidate modem for radio link

    NASA Technical Reports Server (NTRS)

    Hinrichs, C. A.

    1974-01-01

    A digital simulation is presented for a candidate modem in a modeled atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the radio link conditions for an outer planets atmospheric entry probe. The results indicate that the signal acquisition characteristics and the channel error rate are acceptable for the system requirements of the radio link. The simulation also outputs data for calculating other error statistics and a quantized symbol stream from which error correction decoding can be analyzed.

  16. SUS Source Level Error Analysis

    DTIC Science & Technology

    1978-01-20

    RIECIP1IEN’ CATALOG NUMBER * ITLE (and SubaltIe) S. TYP aof REPORT & _V9RCO SUS~ SOURCE LEVEL ERROR ANALYSIS & Fia 1.r,. -. pAURWORONTIUMm N (s)$S...Fourier Transform (FFTl) SUS Signal model ___ 10 TRA&C (CeEOINIMII1& ro"* *140O tidat n9#*#*Y a"d 0e~ntiff 6T 69*.4 apbt The report provides an analysis ...of major terms which contribute to signal analysis error in a proposed experiment to c-librate sourr - I levels of SUS (Signal Underwater Sound). A

  17. Visual and tactile interfaces for bi-directional human robot communication

    NASA Astrophysics Data System (ADS)

    Barber, Daniel; Lackey, Stephanie; Reinerman-Jones, Lauren; Hudson, Irwin

    2013-05-01

    Seamless integration of unmanned and systems and Soldiers in the operational environment requires robust communication capabilities. Multi-Modal Communication (MMC) facilitates achieving this goal due to redundancy and levels of communication superior to single mode interaction using auditory, visual, and tactile modalities. Visual signaling using arm and hand gestures is a natural method of communication between people. Visual signals standardized within the U.S. Army Field Manual and in use by Soldiers provide a foundation for developing gestures for human to robot communication. Emerging technologies using Inertial Measurement Units (IMU) enable classification of arm and hand gestures for communication with a robot without the requirement of line-of-sight needed by computer vision techniques. These devices improve the robustness of interpreting gestures in noisy environments and are capable of classifying signals relevant to operational tasks. Closing the communication loop between Soldiers and robots necessitates them having the ability to return equivalent messages. Existing visual signals from robots to humans typically require highly anthropomorphic features not present on military vehicles. Tactile displays tap into an unused modality for robot to human communication. Typically used for hands-free navigation and cueing, existing tactile display technologies are used to deliver equivalent visual signals from the U.S. Army Field Manual. This paper describes ongoing research to collaboratively develop tactile communication methods with Soldiers, measure classification accuracy of visual signal interfaces, and provides an integration example including two robotic platforms.

  18. Emergency Control Aircraft System Using Thrust Modulation

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor)

    2000-01-01

    A digital longitudinal Aircraft Propulsion Control (APC system of a multiengine aircraft is provided by engine thrust modulation in response to comparing an input flightpath angle signal (gamma)c from a pilot thumbwheel. or an ILS system with a sensed flightpath angle y to produce an error signal (gamma)e that is then integrated (with reasonable limits) to generate a drift correction signal to be added to the error signal (gamma)e after first subtracting a lowpass filtered velocity signal Vel(sub f) for phugoid damping. The output error signal is multiplied by a constant to produce an aircraft thrust control signal ATC of suitable amplitude to drive a throttle servo for all engines. each of which includes its own full-authority digital engine control (FADEC) computer. An alternative APC system omits sensed flightpath angle feedback and instead controls the flightpath angle by feedback of the lowpass filtered velocity signal Vel(sub f) which also inherently provides phugoid damping. The feature of drift compensation is retained.

  19. Global Erratum for Kepler Q0-Q17 and K2 C0-C5 Short Cadence Data

    NASA Technical Reports Server (NTRS)

    Caldwell, Douglas; Van Cleve, Jeffrey E.

    2016-01-01

    An accounting error has scrambled much of the short-cadence collateral smear data used to correct for the effects of Keplers shutterless readout. This error has been present since launch and affects approximately half of all short-cadence targets observed by Kepler and K2 to date. The resulting calibration errors are present in both the short-cadence target pixel files and the short-cadence light curves for Kepler Data Releases 1-24 and K2 Data Releases 1-7. This error does not affect long-cadence data. Since it will take some time to correct this error and reprocess all Kepler and K2 data, a list of affected targets is provided. Even though the affected targets are readily identified, the science impact for any particular target may be difficult to assess. Since the smear signal is often small compared to the target signal, the effect is negligible for many targets. However, the smear signal is scene-dependent, so time varying signals can be introduced into any target by the other stars falling on the same CCD column. Some tips on how to assess the severity of the calibration error are provided in this document.

  20. Point process analysis of noise in early invertebrate vision

    PubMed Central

    Vinnicombe, Glenn

    2017-01-01

    Noise is a prevalent and sometimes even dominant aspect of many biological processes. While many natural systems have adapted to attenuate or even usefully integrate noise, the variability it introduces often still delimits the achievable precision across biological functions. This is particularly so for visual phototransduction, the process responsible for converting photons of light into usable electrical signals (quantum bumps). Here, randomness of both the photon inputs (regarded as extrinsic noise) and the conversion process (intrinsic noise) are seen as two distinct, independent and significant limitations on visual reliability. Past research has attempted to quantify the relative effects of these noise sources by using approximate methods that do not fully account for the discrete, point process and time ordered nature of the problem. As a result the conclusions drawn from these different approaches have led to inconsistent expositions of phototransduction noise performance. This paper provides a fresh and complete analysis of the relative impact of intrinsic and extrinsic noise in invertebrate phototransduction using minimum mean squared error reconstruction techniques based on Bayesian point process (Snyder) filters. An integrate-fire based algorithm is developed to reliably estimate photon times from quantum bumps and Snyder filters are then used to causally estimate random light intensities both at the front and back end of the phototransduction cascade. Comparison of these estimates reveals that the dominant noise source transitions from extrinsic to intrinsic as light intensity increases. By extending the filtering techniques to account for delays, it is further found that among the intrinsic noise components, which include bump latency (mean delay and jitter) and shape (amplitude and width) variance, it is the mean delay that is critical to noise performance. As the timeliness of visual information is important for real-time action, this delay could potentially limit the speed at which invertebrates can respond to stimuli. Consequently, if one wants to increase visual fidelity, reducing the photoconversion lag is much more important than improving the regularity of the electrical signal. PMID:29077703

  1. Using Anatomic Magnetic Resonance Image Information to Enhance Visualization and Interpretation of Functional Images: A Comparison of Methods Applied to Clinical Arterial Spin Labeling Images

    PubMed Central

    Dai, Weiying; Soman, Salil; Hackney, David B.; Wong, Eric T.; Robson, Philip M.; Alsop, David C.

    2017-01-01

    Functional imaging provides hemodynamic and metabolic information and is increasingly being incorporated into clinical diagnostic and research studies. Typically functional images have reduced signal-to-noise ratio and spatial resolution compared to other non-functional cross sectional images obtained as part of a routine clinical protocol. We hypothesized that enhancing visualization and interpretation of functional images with anatomic information could provide preferable quality and superior diagnostic value. In this work, we implemented five methods (frequency addition, frequency multiplication, wavelet transform, non-subsampled contourlet transform and intensity-hue-saturation) and a newly proposed ShArpening by Local Similarity with Anatomic images (SALSA) method to enhance the visualization of functional images, while preserving the original functional contrast and quantitative signal intensity characteristics over larger spatial scales. Arterial spin labeling blood flow MR images of the brain were visualization enhanced using anatomic images with multiple contrasts. The algorithms were validated on a numerical phantom and their performance on images of brain tumor patients were assessed by quantitative metrics and neuroradiologist subjective ratings. The frequency multiplication method had the lowest residual error for preserving the original functional image contrast at larger spatial scales (55%–98% of the other methods with simulated data and 64%–86% with experimental data). It was also significantly more highly graded by the radiologists (p<0.005 for clear brain anatomy around the tumor). Compared to other methods, the SALSA provided 11%–133% higher similarity with ground truth images in the simulation and showed just slightly lower neuroradiologist grading score. Most of these monochrome methods do not require any prior knowledge about the functional and anatomic image characteristics, except the acquired resolution. Hence, automatic implementation on clinical images should be readily feasible. PMID:27723582

  2. The prevalence and risk factors of visual impairment among the elderly in Eastern Taiwan.

    PubMed

    Wang, Wen-Li; Chen, Nancy; Sheu, Min-Muh; Wang, Jen-Hung; Hsu, Wen-Lin; Hu, Yih-Jin

    2016-09-01

    Visual impairment is associated with disability and poor quality of life. This study aimed to investigate the prevalence and associated risk factors of visual impairment among the suburban elderly in Eastern Taiwan. The cross-sectional research was conducted from April 2012 to August 2012. The ocular condition examination took place in suburban areas of Hualien County. Medical records from local infirmaries and questionnaires were utilized to collect demographic data and systemic disease status. Logistic regression models were used for the simultaneous analysis of the association between the prevalence of visual impairment and risk factors. Six hundred and eighty-one residents participated in this project. The mean age of the participants was 71.4±7.3 years. The prevalence of vision impairment (better eye<6/18) was 11.0%. Refractive error and cataract were the main causes of vision impairment. Logistic regression analysis showed that people aged 65-75 years had a 3.8 times higher risk of developing visual impairment (p=0.021), while the odds ratio of people aged > 75 years was 10.0 (p<0.001). In addition, patients with diabetic retinopathy had a 3.7 times higher risk of developing visual impairment (p=0.002), while the odds ratio of refractive error was 0.36 (p<0.001). The prevalence of visual impairment was relatively high compared with previous studies. Diabetic retinopathy was an important risk factor of visual impairment; by contrast, refractive error was beneficial to resist visual impairment. Therefore, regular screening of ocular condition and early intervention might aid in the prevention of avoidable vision loss. Copyright © 2016. Published by Elsevier Taiwan.

  3. Productivity associated with visual status of computer users.

    PubMed

    Daum, Kent M; Clore, Katherine A; Simms, Suzanne S; Vesely, Jon W; Wilczek, Dawn D; Spittle, Brian M; Good, Greg W

    2004-01-01

    The aim of this project is to examine the potential connection between the astigmatic refractive corrections of subjects using computers and their productivity and comfort. We hypothesize that improving the visual status of subjects using computers results in greater productivity, as well as improved visual comfort. Inclusion criteria required subjects 19 to 30 years of age with complete vision examinations before being enrolled. Using a double-masked, placebo-controlled, randomized design, subjects completed three experimental tasks calculated to assess the effects of refractive error on productivity (time to completion and the number of errors) at a computer. The tasks resembled those commonly undertaken by computer users and involved visual search tasks of: (1) counties and populations; (2) nonsense word search; and (3) a modified text-editing task. Estimates of productivity for time to completion varied from a minimum of 2.5% upwards to 28.7% with 2 D cylinder miscorrection. Assuming a conservative estimate of an overall 2.5% increase in productivity with appropriate astigmatic refractive correction, our data suggest a favorable cost-benefit ratio of at least 2.3 for the visual correction of an employee (total cost 268 dollars) with a salary of 25,000 dollars per year. We conclude that astigmatic refractive error affected both productivity and visual comfort under the conditions of this experiment. These data also suggest a favorable cost-benefit ratio for employers who provide computer-specific eyewear to their employees.

  4. Quantitative Assessment of Blood Pressure Measurement Accuracy and Variability from Visual Auscultation Method by Observers without Receiving Medical Training

    PubMed Central

    Feng, Yong; Chen, Aiqing

    2017-01-01

    This study aimed to quantify blood pressure (BP) measurement accuracy and variability with different techniques. Thirty video clips of BP recordings from the BHS training database were converted to Korotkoff sound waveforms. Ten observers without receiving medical training were asked to determine BPs using (a) traditional manual auscultatory method and (b) visual auscultation method by visualizing the Korotkoff sound waveform, which was repeated three times on different days. The measurement error was calculated against the reference answers, and the measurement variability was calculated from the SD of the three repeats. Statistical analysis showed that, in comparison with the auscultatory method, visual method significantly reduced overall variability from 2.2 to 1.1 mmHg for SBP and from 1.9 to 0.9 mmHg for DBP (both p < 0.001). It also showed that BP measurement errors were significant for both techniques (all p < 0.01, except DBP from the traditional method). Although significant, the overall mean errors were small (−1.5 and −1.2 mmHg for SBP and −0.7 and 2.6 mmHg for DBP, resp., from the traditional auscultatory and visual auscultation methods). In conclusion, the visual auscultation method had the ability to achieve an acceptable degree of BP measurement accuracy, with smaller variability in comparison with the traditional auscultatory method. PMID:29423405

  5. Naturalistic distraction and driving safety in older drivers.

    PubMed

    Aksan, Nazan; Dawson, Jeffrey D; Emerson, Jamie L; Yu, Lixi; Uc, Ergun Y; Anderson, Steven W; Rizzo, Matthew

    2013-08-01

    In this study, we aimed to quantify and compare performance of middle-aged and older drivers during a naturalistic distraction paradigm (visual search for roadside targets) and to predict older drivers performance given functioning in visual, motor, and cognitive domains. Distracted driving can imperil healthy adults and may disproportionally affect the safety of older drivers with visual, motor, and cognitive decline. A total of 203 drivers, 120 healthy older (61 men and 59 women, ages 65 years and older) and 83 middle-aged drivers (38 men and 45 women, ages 40 to 64 years), participated in an on-road test in an instrumented vehicle. Outcome measures included performance in roadside target identification (traffic signs and restaurants) and concurrent driver safety. Differences in visual, motor, and cognitive functioning served as predictors. Older drivers identified fewer landmarks and drove slower but committed more safety errors than did middle-aged drivers. Greater familiarity with local roads benefited performance of middle-aged but not older drivers.Visual cognition predicted both traffic sign identification and safety errors, and executive function predicted traffic sign identification over and above vision. Older adults are susceptible to driving safety errors while distracted by common secondary visual search tasks that are inherent to driving. The findings underscore that age-related cognitive decline affects older drivers' management of driving tasks at multiple levels and can help inform the design of on-road tests and interventions for older drivers.

  6. Misperception of exocentric directions in auditory space

    PubMed Central

    Arthur, Joeanna C.; Philbeck, John W.; Sargent, Jesse; Dopkins, Stephen

    2008-01-01

    Previous studies have demonstrated large errors (over 30°) in visually perceived exocentric directions (the direction between two objects that are both displaced from the observer’s location; e.g., Philbeck et al., in press). Here, we investigated whether a similar pattern occurs in auditory space. Blindfolded participants either attempted to aim a pointer at auditory targets (an exocentric task) or gave a verbal estimate of the egocentric target azimuth. Targets were located at 20° to 160° azimuth in the right hemispace. For comparison, we also collected pointing and verbal judgments for visual targets. We found that exocentric pointing responses exhibited sizeable undershooting errors, for both auditory and visual targets, that tended to become more strongly negative as azimuth increased (up to −19° for visual targets at 160°). Verbal estimates of the auditory and visual target azimuths, however, showed a dramatically different pattern, with relatively small overestimations of azimuths in the rear hemispace. At least some of the differences between verbal and pointing responses appear to be due to the frames of reference underlying the responses; when participants used the pointer to reproduce the egocentric target azimuth rather than the exocentric target direction relative to the pointer, the pattern of pointing errors more closely resembled that seen in verbal reports. These results show that there are similar distortions in perceiving exocentric directions in visual and auditory space. PMID:18555205

  7. Neuronal basis of covert spatial attention in the frontal eye field.

    PubMed

    Thompson, Kirk G; Biscoe, Keri L; Sato, Takashi R

    2005-10-12

    The influential "premotor theory of attention" proposes that developing oculomotor commands mediate covert visual spatial attention. A likely source of this attentional bias is the frontal eye field (FEF), an area of the frontal cortex involved in converting visual information into saccade commands. We investigated the link between FEF activity and covert spatial attention by recording from FEF visual and saccade-related neurons in monkeys performing covert visual search tasks without eye movements. Here we show that the source of attention signals in the FEF is enhanced activity of visually responsive neurons. At the time attention is allocated to the visual search target, nonvisually responsive saccade-related movement neurons are inhibited. Therefore, in the FEF, spatial attention signals are independent of explicit saccade command signals. We propose that spatially selective activity in FEF visually responsive neurons corresponds to the mental spotlight of attention via modulation of ongoing visual processing.

  8. Contextual signals in visual cortex.

    PubMed

    Khan, Adil G; Hofer, Sonja B

    2018-06-05

    Vision is an active process. What we perceive strongly depends on our actions, intentions and expectations. During visual processing, these internal signals therefore need to be integrated with the visual information from the retina. The mechanisms of how this is achieved by the visual system are still poorly understood. Advances in recording and manipulating neuronal activity in specific cell types and axonal projections together with tools for circuit tracing are beginning to shed light on the neuronal circuit mechanisms of how internal, contextual signals shape sensory representations. Here we review recent work, primarily in mice, that has advanced our understanding of these processes, focusing on contextual signals related to locomotion, behavioural relevance and predictions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Reward processing in the value-driven attention network: reward signals tracking cue identity and location.

    PubMed

    Anderson, Brian A

    2017-03-01

    Through associative reward learning, arbitrary cues acquire the ability to automatically capture visual attention. Previous studies have examined the neural correlates of value-driven attentional orienting, revealing elevated activity within a network of brain regions encompassing the visual corticostriatal loop [caudate tail, lateral occipital complex (LOC) and early visual cortex] and intraparietal sulcus (IPS). Such attentional priority signals raise a broader question concerning how visual signals are combined with reward signals during learning to create a representation that is sensitive to the confluence of the two. This study examines reward signals during the cued reward training phase commonly used to generate value-driven attentional biases. High, compared with low, reward feedback preferentially activated the value-driven attention network, in addition to regions typically implicated in reward processing. Further examination of these reward signals within the visual system revealed information about the identity of the preceding cue in the caudate tail and LOC, and information about the location of the preceding cue in IPS, while early visual cortex represented both location and identity. The results reveal teaching signals within the value-driven attention network during associative reward learning, and further suggest functional specialization within different regions of this network during the acquisition of an integrated representation of stimulus value. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  11. Out-of-plane ultrasonic velocity measurement

    DOEpatents

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  12. Low speed phaselock speed control system. [for brushless dc motor

    NASA Technical Reports Server (NTRS)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  13. Reduced vision and refractive errors, results from a school vision screening program in Kanchanpur District of far western Nepal.

    PubMed

    Awasthi, S; Pant, B P; Dhakal, H P

    2010-01-01

    At present there is no data available on reduced vision and refractive errors in school children of far western Nepal. So, school screening records were used to obtain data useful for planning of refractive services. Data are provided from school screening conducted by Geta Eye Hospital during February/March 2008. The cases with complete data sets on visual acuity, refractive error and age were included and analyzed using computer software. Of 1165 children (mean age 11.6 ± 2.5 years) examined, 98.8% (n = 1151) had uncorrected visual acuity of 6/9 and better in at least one eye whereas 1.2% (n = 14) had acuity 6/12 and worse in both eyes. Among them, either eye of 9 children improved to 6/9 and better with correction. However, visual acuity was 6/12 and worse in both eyes of 5 children even after correction. There were 24 children with refractive errors (myopia, 1.54%; n = 18 and hypermetropia, 0.51%; n = 6) in at least one eye. The spherical equivalent refraction was not significantly different with age and gender. The incidence of reduced vision and refractive errors among school children of this semi rural district were low.

  14. Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation

    PubMed Central

    Fukushima, Kikuro; Fukushima, Junko; Warabi, Tateo; Barnes, Graham R.

    2013-01-01

    Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioral evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioral responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go) or not pursue (no-go) according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST), supplementary eye fields (SEF), caudal frontal eye fields (FEF), cerebellar dorsal vermis lobules VI–VII, caudal fastigial nuclei (cFN), and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease (PD), the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying pathophysiology. PMID:23515488

  15. Three filters for visualization of phase objects with large variations of phase gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagan, Arkadiusz; Antosiewicz, Tomasz J.; Szoplik, Tomasz

    2009-02-20

    We propose three amplitude filters for visualization of phase objects. They interact with the spectra of pure-phase objects in the frequency plane and are based on tangent and error functions as well as antisymmetric combination of square roots. The error function is a normalized form of the Gaussian function. The antisymmetric square-root filter is composed of two square-root filters to widen its spatial frequency spectral range. Their advantage over other known amplitude frequency-domain filters, such as linear or square-root graded ones, is that they allow high-contrast visualization of objects with large variations of phase gradients.

  16. Visual functions of commercial drivers in relation to road accidents in Nigeria

    PubMed Central

    Oladehinde, M. K.; Adeoye, A. O.; Adegbehingbe, B. O.; Onakoya, A. O.

    2007-01-01

    Objective: To determine the effects of the visual functions on the occurrence of road traffic accidents (RTA) amongst commercial drivers in Ife central local government area (LGA) of Osun state of Nigeria. Design: A cross-sectional study. Settings: Four major motor parks located at Ife Central LGA. Materials and Methods: Of the estimated 270 commercial drivers in the four major parks of the LGA, 215 consecutive drivers were interviewed and had their eyes examined. Structured questionnaires were administered by an ophthalmologist. Results: The prevalence of visual impairment (visual acuity < 6/18) in the better eye without correction was 3.3% ± 2.4 and there was a significant association between uncorrected visual acuity impairment in the better eye and RTA (P = 0.0152). Refractive error was seen in 8.4% of the drivers, but none of these wear corrective glasses. Visual field defect, abnormal stereopsis and color vision impairment did not have any significant association with RTA. Conclusion: Poor visual acuity is strongly associated with RTA amongst Nigerian commercial drivers as opposed to visual field defect, abnormal color vision and stereopsis. A significant proportion of visual impairment was due to uncorrected refractive errors. PMID:21938219

  17. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory

    PubMed Central

    Pratte, Michael S.; Park, Young Eun; Rademaker, Rosanne L.; Tong, Frank

    2016-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. PMID:28004957

  18. Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory.

    PubMed

    Pratte, Michael S; Park, Young Eun; Rademaker, Rosanne L; Tong, Frank

    2017-01-01

    If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced "oblique effect," with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Exploratory behaviour in NO-dependent cyclase mutants of Drosophila shows defects in coincident neuronal signalling

    PubMed Central

    Tinette, Sylvette; Zhang, Lixing; Garnier, Amélie; Engler, Gilbert; Tares, Sophie; Robichon, Alain

    2007-01-01

    Background Drosophila flies explore the environment very efficiently in order to colonize it. They explore collectively, not individually, so that when a few land on a food spot, they attract the others by signs. This behaviour leads to aggregation of individuals and optimizes the screening of mates and egg-laying on the most favourable food spots. Results Flies perform cycles of exploration/aggregation depending on the resources of the environment. This behavioural ecology constitutes an excellent model for analyzing simultaneous processing of neurosensory information. We reasoned that the decision of flies to land somewhere in order to achieve aggregation is based on simultaneous integration of signals (visual, olfactory, acoustic) during their flight. On the basis of what flies do in nature, we designed laboratory tests to analyze the phenomenon of neuronal coincidence. We screened many mutants of genes involved in neuronal metabolism and the synaptic machinery. Conclusion Mutants of NO-dependent cyclase show a specifically-marked behaviour phenotype, but on the other hand they are associated with moderate biochemical defects. We show that these mutants present errors in integrative and/or coincident processing of signals, which are not reducible to the functions of the peripheral sensory cells. PMID:17683617

  20. Detecting Parkinson's disease from sustained phonation and speech signals.

    PubMed

    Vaiciukynas, Evaldas; Verikas, Antanas; Gelzinis, Adas; Bacauskiene, Marija

    2017-01-01

    This study investigates signals from sustained phonation and text-dependent speech modalities for Parkinson's disease screening. Phonation corresponds to the vowel /a/ voicing task and speech to the pronunciation of a short sentence in Lithuanian language. Signals were recorded through two channels simultaneously, namely, acoustic cardioid (AC) and smart phone (SP) microphones. Additional modalities were obtained by splitting speech recording into voiced and unvoiced parts. Information in each modality is summarized by 18 well-known audio feature sets. Random forest (RF) is used as a machine learning algorithm, both for individual feature sets and for decision-level fusion. Detection performance is measured by the out-of-bag equal error rate (EER) and the cost of log-likelihood-ratio. Essentia audio feature set was the best using the AC speech modality and YAAFE audio feature set was the best using the SP unvoiced modality, achieving EER of 20.30% and 25.57%, respectively. Fusion of all feature sets and modalities resulted in EER of 19.27% for the AC and 23.00% for the SP channel. Non-linear projection of a RF-based proximity matrix into the 2D space enriched medical decision support by visualization.

  1. Predictors of driving safety in early Alzheimer disease.

    PubMed

    Dawson, J D; Anderson, S W; Uc, E Y; Dastrup, E; Rizzo, M

    2009-02-10

    To measure the association of cognition, visual perception, and motor function with driving safety in Alzheimer disease (AD). Forty drivers with probable early AD (mean Mini-Mental State Examination score 26.5) and 115 elderly drivers without neurologic disease underwent a battery of cognitive, visual, and motor tests, and drove a standardized 35-mile route in urban and rural settings in an instrumented vehicle. A composite cognitive score (COGSTAT) was calculated for each subject based on eight neuropsychological tests. Driving safety errors were noted and classified by a driving expert based on video review. Drivers with AD committed an average of 42.0 safety errors/drive (SD = 12.8), compared to an average of 33.2 (SD = 12.2) for drivers without AD (p < 0.0001); the most common errors were lane violations. Increased age was predictive of errors, with a mean of 2.3 more errors per drive observed for each 5-year age increment. After adjustment for age and gender, COGSTAT was a significant predictor of safety errors in subjects with AD, with a 4.1 increase in safety errors observed for a 1 SD decrease in cognitive function. Significant increases in safety errors were also found in subjects with AD with poorer scores on Benton Visual Retention Test, Complex Figure Test-Copy, Trail Making Subtest-A, and the Functional Reach Test. Drivers with Alzheimer disease (AD) exhibit a range of performance on tests of cognition, vision, and motor skills. Since these tests provide additional predictive value of driving performance beyond diagnosis alone, clinicians may use these tests to help predict whether a patient with AD can safely operate a motor vehicle.

  2. Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers.

    PubMed

    Flowers-Jacobs, Nathan E; Fox, Anna E; Dresselhaus, Paul D; Schwall, Robert E; Benz, Samuel P

    2016-09-01

    The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors.

  3. EEG Characteristic Extraction Method of Listening Music and Objective Estimation Method Based on Latency Structure Model in Individual Characteristics

    NASA Astrophysics Data System (ADS)

    Ito, Shin-Ichi; Mitsukura, Yasue; Nakamura Miyamura, Hiroko; Saito, Takafumi; Fukumi, Minoru

    EEG is characterized by the unique and individual characteristics. Little research has been done to take into account the individual characteristics when analyzing EEG signals. Often the EEG has frequency components which can describe most of the significant characteristics. Then there is the difference of importance between the analyzed frequency components of the EEG. We think that the importance difference shows the individual characteristics. In this paper, we propose a new EEG extraction method of characteristic vector by a latency structure model in individual characteristics (LSMIC). The LSMIC is the latency structure model, which has personal error as the individual characteristics, based on normal distribution. The real-coded genetic algorithms (RGA) are used for specifying the personal error that is unknown parameter. Moreover we propose an objective estimation method that plots the EEG characteristic vector on a visualization space. Finally, the performance of the proposed method is evaluated using a realistic simulation and applied to a real EEG data. The result of our experiment shows the effectiveness of the proposed method.

  4. Disruption of State Estimation in the Human Lateral Cerebellum

    PubMed Central

    Miall, R. Chris; Christensen, Lars O. D; Cain, Owen; Stanley, James

    2007-01-01

    The cerebellum has been proposed to be a crucial component in the state estimation process that combines information from motor efferent and sensory afferent signals to produce a representation of the current state of the motor system. Such a state estimate of the moving human arm would be expected to be used when the arm is rapidly and skillfully reaching to a target. We now report the effects of transcranial magnetic stimulation (TMS) over the ipsilateral cerebellum as healthy humans were made to interrupt a slow voluntary movement to rapidly reach towards a visually defined target. Errors in the initial direction and in the final finger position of this reach-to-target movement were significantly higher for cerebellar stimulation than they were in control conditions. The average directional errors in the cerebellar TMS condition were consistent with the reaching movements being planned and initiated from an estimated hand position that was 138 ms out of date. We suggest that these results demonstrate that the cerebellum is responsible for estimating the hand position over this time interval and that TMS disrupts this state estimate. PMID:18044990

  5. Design of an off-axis visual display based on a free-form projection screen to realize stereo vision

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanming; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2017-10-01

    A free-form projection screen is designed for an off-axis visual display, which shows great potential in applications such as flight training for providing both accommodation and convergence cues for pilots. The method based on point cloud is proposed for the design of the free-form surface, and the design of the point cloud is controlled by a program written in the macro-language. In the visual display based on the free-form projection screen, when the error of the screen along Z-axis is 1 mm, the error of visual distance at each filed is less than 1%. And the resolution of the design for full field is better than 1‧, which meet the requirement of resolution for human eyes.

  6. Performance of correlation receivers in the presence of impulse noise.

    NASA Technical Reports Server (NTRS)

    Moore, J. D.; Houts, R. C.

    1972-01-01

    An impulse noise model, which assumes that each noise burst contains a randomly weighted version of a basic waveform, is used to derive the performance equations for a correlation receiver. The expected number of bit errors per noise burst is expressed as a function of the average signal energy, signal-set correlation coefficient, bit time, noise-weighting-factor variance and probability density function, and a time range function which depends on the crosscorrelation of the signal-set basis functions and the noise waveform. Unlike the performance results for additive white Gaussian noise, it is shown that the error performance for impulse noise is affected by the choice of signal-set basis function, and that Orthogonal signaling is not equivalent to On-Off signaling with the same average energy. Furthermore, it is demonstrated that the correlation-receiver error performance can be improved by inserting a properly specified nonlinear device prior to the receiver input.

  7. Reducing visual deficits caused by refractive errors in school and preschool children: results of a pilot school program in the Andean region of Apurimac, Peru

    PubMed Central

    Latorre-Arteaga, Sergio; Gil-González, Diana; Enciso, Olga; Phelan, Aoife; García-Muñoz, Ángel; Kohler, Johannes

    2014-01-01

    Background Refractive error is defined as the inability of the eye to bring parallel rays of light into focus on the retina, resulting in nearsightedness (myopia), farsightedness (Hyperopia) or astigmatism. Uncorrected refractive error in children is associated with increased morbidity and reduced educational opportunities. Vision screening (VS) is a method for identifying children with visual impairment or eye conditions likely to lead to visual impairment. Objective To analyze the utility of vision screening conducted by teachers and to contribute to a better estimation of the prevalence of childhood refractive errors in Apurimac, Peru. Design A pilot vision screening program in preschool (Group I) and elementary school children (Group II) was conducted with the participation of 26 trained teachers. Children whose visual acuity was<6/9 [20/30] (Group I) and≤6/9 (Group II) in one or both eyes, measured with the Snellen Tumbling E chart at 6 m, were referred for a comprehensive eye exam. Specificity and positive predictive value to detect refractive error were calculated against clinical examination. Program assessment with participants was conducted to evaluate outcomes and procedures. Results A total sample of 364 children aged 3–11 were screened; 45 children were examined at Centro Oftalmológico Monseñor Enrique Pelach (COMEP) Eye Hospital. Prevalence of refractive error was 6.2% (Group I) and 6.9% (Group II); specificity of teacher vision screening was 95.8% and 93.0%, while positive predictive value was 59.1% and 47.8% for each group, respectively. Aspects highlighted to improve the program included extending training, increasing parental involvement, and helping referred children to attend the hospital. Conclusion Prevalence of refractive error in children is significant in the region. Vision screening performed by trained teachers is a valid intervention for early detection of refractive error, including screening of preschool children. Program sustainability and improvements in education and quality of life resulting from childhood vision screening require further research. PMID:24560253

  8. Objective automated quantification of fluorescence signal in histological sections of rat lens.

    PubMed

    Talebizadeh, Nooshin; Hagström, Nanna Zhou; Yu, Zhaohua; Kronschläger, Martin; Söderberg, Per; Wählby, Carolina

    2017-08-01

    Visual quantification and classification of fluorescent signals is the gold standard in microscopy. The purpose of this study was to develop an automated method to delineate cells and to quantify expression of fluorescent signal of biomarkers in each nucleus and cytoplasm of lens epithelial cells in a histological section. A region of interest representing the lens epithelium was manually demarcated in each input image. Thereafter, individual cell nuclei within the region of interest were automatically delineated based on watershed segmentation and thresholding with an algorithm developed in Matlab™. Fluorescence signal was quantified within nuclei, cytoplasms and juxtaposed backgrounds. The classification of cells as labelled or not labelled was based on comparison of the fluorescence signal within cells with local background. The classification rule was thereafter optimized as compared with visual classification of a limited dataset. The performance of the automated classification was evaluated by asking 11 independent blinded observers to classify all cells (n = 395) in one lens image. Time consumed by the automatic algorithm and visual classification of cells was recorded. On an average, 77% of the cells were correctly classified as compared with the majority vote of the visual observers. The average agreement among visual observers was 83%. However, variation among visual observers was high, and agreement between two visual observers was as low as 71% in the worst case. Automated classification was on average 10 times faster than visual scoring. The presented method enables objective and fast detection of lens epithelial cells and quantification of expression of fluorescent signal with an accuracy comparable with the variability among visual observers. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  9. A posteriori error estimates in voice source recovery

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.; Sorokin, V. N.

    2017-12-01

    The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.

  10. PREVALENCE OF REFRACTIVE ERRORS IN MADRASSA STUDENTS OF HARIPUR DISTRICT.

    PubMed

    Atta, Zoia; Arif, Abdus Salam; Ahmed, Iftikhar; Farooq, Umer

    2015-01-01

    Visual impairment due to refractive errors is one of the most common problems among school-age children and is the second leading cause of treatable blindness. The Right to Sight, a global initiative launched by a coalition of non-government organizations and the World Health Organization (WHO), aims to eliminate avoidable visual impairment and blindness at a global level. In order to achieve this goal it is important to know the prevalence of different refractive errors in a community. Children and teenagers are the most susceptible groups to be affected by refractive errors. So, this population needs to be screened for different types of refractive errors. The study was done with the objective to find the frequency of different types of refractive errors in students of madrassas between the ages of 5-20 years in Haripur. This cross sectional study was done with 300 students between ages of 5-20 years in Madrassas of Haripur. The students were screened for refractive errors and the types of the errors were noted. After screening for refractive errors-the glasses were prescribed to the students. Myopia being 52.6% was the most frequent refractive error in students, followed by hyperopia 28.4% and astigmatism 19%. This study showed that myopia is an important problem in madrassa population. Females and males are almost equally affected. Spectacle correction of refractive errors is the cheapest and easy solution of this problem.

  11. A New Methodology for Vibration Error Compensation of Optical Encoders

    PubMed Central

    Lopez, Jesus; Artes, Mariano

    2012-01-01

    Optical encoders are sensors based on grating interference patterns. Tolerances inherent to the manufacturing process can induce errors in the position accuracy as the measurement signals stand apart from the ideal conditions. In case the encoder is working under vibrations, the oscillating movement of the scanning head is registered by the encoder system as a displacement, introducing an error into the counter to be added up to graduation, system and installation errors. Behavior improvement can be based on different techniques trying to compensate the error from measurement signals processing. In this work a new “ad hoc” methodology is presented to compensate the error of the encoder when is working under the influence of vibration. The methodology is based on fitting techniques to the Lissajous figure of the deteriorated measurement signals and the use of a look up table, giving as a result a compensation procedure in which a higher accuracy of the sensor is obtained. PMID:22666067

  12. Gating of neural error signals during motor learning

    PubMed Central

    Kimpo, Rhea R; Rinaldi, Jacob M; Kim, Christina K; Payne, Hannah L; Raymond, Jennifer L

    2014-01-01

    Cerebellar climbing fiber activity encodes performance errors during many motor learning tasks, but the role of these error signals in learning has been controversial. We compared two motor learning paradigms that elicited equally robust putative error signals in the same climbing fibers: learned increases and decreases in the gain of the vestibulo-ocular reflex (VOR). During VOR-increase training, climbing fiber activity on one trial predicted changes in cerebellar output on the next trial, and optogenetic activation of climbing fibers to mimic their encoding of performance errors was sufficient to implant a motor memory. In contrast, during VOR-decrease training, there was no trial-by-trial correlation between climbing fiber activity and changes in cerebellar output, and climbing fiber activation did not induce VOR-decrease learning. Our data suggest that the ability of climbing fibers to induce plasticity can be dynamically gated in vivo, even under conditions where climbing fibers are robustly activated by performance errors. DOI: http://dx.doi.org/10.7554/eLife.02076.001 PMID:24755290

  13. Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States

    DTIC Science & Technology

    2015-11-16

    a degraded visual environment, workload during the landing task begins to approach the limits of a human pilot’s capability. It is a similarly...Figure 2. Approach Trajectory ±4 ft landing error ±8 ft landing error ±12 ft landing error Flight Path -3000...heave and yaw axes. Figure 5. Open loop system generation ±4 ft landing error ±8 ft landing error ±12 ft landing error -10 -8 -6 -4 -2 0 2 4

  14. Visual impairment and spectacle coverage rate in Baoshan district, China: population-based study

    PubMed Central

    2013-01-01

    Background To investigate the prevalence and risk factors of visual impairment associated with refractive error and the unmet need for spectacles in a special suburban senior population in Baoshan District of Shanghai, one of several rural areas undergoing a transition from rural to urban area, where data of visual impairment are limited. Methods The study was a population based survey of 4545 Chinese aged (age: >60 years or older ) at Baoshan, Shanghai, in 2009. One copy of questionnaire was completed for each subject. Examinations included a standardized refraction and measurement of presenting and best corrected visual acuity (BCVA) as well as tonometry, slit lamp biomicroscopy, and fundus photography. Results The prevalence of mild (6/12 to 6/18), moderate (6/18 to 6/60) and severe visual impairment was 12.59%, 8.38% and 0.44%, respectively, and 5.26%, 3.06% and 0.09% with refractive correction. Visual impairment was associated with age, gender, education and career, but not insurance . The prevalence of correctable visual impairment was 5.81% (using 6/18 cutoff) and 13.18% (using 6/12 cutoff). Senior people and women were significantly at a higher risk of correctable visual impairment, while the well-educated on the contrary. The prevalence of undercorrected refractive error (improves by 2 or more lines with refraction) was 24.84%, and the proportion with undercorrected refractive error for mild, moderate , severe and no visual impairment was 61.54%, 67.98%, 60.00% and 14.10%, respectively. The spectacle coverage rate was 44.12%. Greater unmet need for spectacles was observed among elderly people, females, non-peasant, and subjects with less education and astigmatism only. Conclusions High prevalence of visual impairment, visual impairment alleviated by refractive correction, and low spectacle coverage existed among the senior population in Baoshan District of Shanghai. Education for the public of the importance of regular examination and appropriate and accessible refraction service might be helpful to solve the problem. PMID:23566106

  15. Estimation of bio-signal based on human motion for integrated visualization of daily-life.

    PubMed

    Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko

    2007-01-01

    This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.

  16. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.

    PubMed

    Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F

    2017-07-01

    Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.

  17. Signals of Opportunity Navigation Using Wi-Fi Signals

    DTIC Science & Technology

    2011-03-24

    Identifier . . . . . . . . . . . . . . . . . . . . . . . 54 MVM Mean Value Method . . . . . . . . . . . . . . . . . . . . . 60 SDM Scaled Differential...the mean value ( MVM ) and scaled differential (SDM) methods. An error was logged if the UI 60 correlation algorithm identified a packet index that did...Notable from this graph is that a window of 50 packets appears to provide zero errors for MVM and near zero errors for SDM. Also notable is that a

  18. Edge co-occurrences can account for rapid categorization of natural versus animal images

    NASA Astrophysics Data System (ADS)

    Perrinet, Laurent U.; Bednar, James A.

    2015-06-01

    Making a judgment about the semantic category of a visual scene, such as whether it contains an animal, is typically assumed to involve high-level associative brain areas. Previous explanations require progressively analyzing the scene hierarchically at increasing levels of abstraction, from edge extraction to mid-level object recognition and then object categorization. Here we show that the statistics of edge co-occurrences alone are sufficient to perform a rough yet robust (translation, scale, and rotation invariant) scene categorization. We first extracted the edges from images using a scale-space analysis coupled with a sparse coding algorithm. We then computed the “association field” for different categories (natural, man-made, or containing an animal) by computing the statistics of edge co-occurrences. These differed strongly, with animal images having more curved configurations. We show that this geometry alone is sufficient for categorization, and that the pattern of errors made by humans is consistent with this procedure. Because these statistics could be measured as early as the primary visual cortex, the results challenge widely held assumptions about the flow of computations in the visual system. The results also suggest new algorithms for image classification and signal processing that exploit correlations between low-level structure and the underlying semantic category.

  19. Subthalamic nucleus detects unnatural android movement.

    PubMed

    Ikeda, Takashi; Hirata, Masayuki; Kasaki, Masashi; Alimardani, Maryam; Matsushita, Kojiro; Yamamoto, Tomoyuki; Nishio, Shuichi; Ishiguro, Hiroshi

    2017-12-19

    An android, i.e., a realistic humanoid robot with human-like capabilities, may induce an uncanny feeling in human observers. The uncanny feeling about an android has two main causes: its appearance and movement. The uncanny feeling about an android increases when its appearance is almost human-like but its movement is not fully natural or comparable to human movement. Even if an android has human-like flexible joints, its slightly jerky movements cause a human observer to detect subtle unnaturalness in them. However, the neural mechanism underlying the detection of unnatural movements remains unclear. We conducted an fMRI experiment to compare the observation of an android and the observation of a human on which the android is modelled, and we found differences in the activation pattern of the brain regions that are responsible for the production of smooth and natural movement. More specifically, we found that the visual observation of the android, compared with that of the human model, caused greater activation in the subthalamic nucleus (STN). When the android's slightly jerky movements are visually observed, the STN detects their subtle unnaturalness. This finding suggests that the detection of unnatural movements is attributed to an error signal resulting from a mismatch between a visual input and an internal model for smooth movement.

  20. Prevalence and causes of visual impairment and rate of wearing spectacles in schools for children of migrant workers in Shanghai, China.

    PubMed

    He, Jiangnan; Lu, Lina; Zou, Haidong; He, Xiangui; Li, Qiangqiang; Wang, Weijie; Zhu, Jianfeng

    2014-12-22

    To assess the prevalence of visual impairment and rate of wearing spectacles in schools for children of migrant workers in Shanghai, China. Children from grade 1 to 5 in schools for children of migrant workers were randomly chosen for ocular examinations. All children were screened for uncorrected visual acuity and presenting visual acuity. After screening, the children whose uncorrected visual acuity was 20/40 or less received ocular motility evaluation, cycloplegic refraction/non-cycloplegic refraction, and external eye, anterior segment, media, and fundus examinations. A total of 9673 children were enumerated and 9512 (98.34%) participated in this study. The prevalence of uncorrected, presenting, and best-corrected visual acuity of 20/40 or worse in the better eye were 13.33%, 11.26%, and 0.63%, respectively. The rate of wearing spectacles of the children with visual impairment in one or both eyes was 15.50%. Of these, 26.05% were wearing spectacles with inaccurate prescriptions. Refractive error was a major cause of visual impairment, accounting for 89.48% of all the visual impairment causes. Other causes of visual impairment included amblyopia accounting for 10.12%; congenital cataract, 0.1%; congenital nystagmus, 0.1%; ocular prosthesis, 0.1%; macular degeneration, 0.05%; and opaque cornea, 0.05%. This is the first study of the prevalence and causes of visual impairment in schools for children of migrant workers in Shanghai, China. The visual impairment rate in schools for children of migrant workers in suburbs of Shanghai in the best eye before vision correction was lower than those of urban children in mainstream schools in Guangzhou in 2012, and higher than students in rural of Beijing in 1998 and in suburb of Chongqing in 2007. The refractive error was the principal cause of the visual impairment of the children of migrant workers. The rate of wearing spectacles was low and the percentage of inaccurate prescriptions, among those who wore spectacles, was high. Uncorrected refractive error was a significant cause of visual impairment in migrant children.

  1. Random synaptic feedback weights support error backpropagation for deep learning

    NASA Astrophysics Data System (ADS)

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-11-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning.

  2. Random synaptic feedback weights support error backpropagation for deep learning

    PubMed Central

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-01-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning. PMID:27824044

  3. A cognitive model for multidigit number reading: Inferences from individuals with selective impairments.

    PubMed

    Dotan, Dror; Friedmann, Naama

    2018-04-01

    We propose a detailed cognitive model of multi-digit number reading. The model postulates separate processes for visual analysis of the digit string and for oral production of the verbal number. Within visual analysis, separate sub-processes encode the digit identities and the digit order, and additional sub-processes encode the number's decimal structure: its length, the positions of 0, and the way it is parsed into triplets (e.g., 314987 → 314,987). Verbal production consists of a process that generates the verbal structure of the number, and another process that retrieves the phonological forms of each number word. The verbal number structure is first encoded in a tree-like structure, similarly to syntactic trees of sentences, and then linearized to a sequence of number-word specifiers. This model is based on an investigation of the number processing abilities of seven individuals with different selective deficits in number reading. We report participants with impairment in specific sub-processes of the visual analysis of digit strings - in encoding the digit order, in encoding the number length, or in parsing the digit string to triplets. Other participants were impaired in verbal production, making errors in the number structure (shifts of digits to another decimal position, e.g., 3,040 → 30,004). Their selective deficits yielded several dissociations: first, we found a double dissociation between visual analysis deficits and verbal production deficits. Second, several dissociations were found within visual analysis: a double dissociation between errors in digit order and errors in the number length; a dissociation between order/length errors and errors in parsing the digit string into triplets; and a dissociation between the processing of different digits - impaired order encoding of the digits 2-9, without errors in the 0 position. Third, within verbal production, a dissociation was found between digit shifts and substitutions of number words. A selective deficit in any of the processes described by the model would cause difficulties in number reading, which we propose to term "dysnumeria". Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High visual resolution matters in audiovisual speech perception, but only for some.

    PubMed

    Alsius, Agnès; Wayne, Rachel V; Paré, Martin; Munhall, Kevin G

    2016-07-01

    The basis for individual differences in the degree to which visual speech input enhances comprehension of acoustically degraded speech is largely unknown. Previous research indicates that fine facial detail is not critical for visual enhancement when auditory information is available; however, these studies did not examine individual differences in ability to make use of fine facial detail in relation to audiovisual speech perception ability. Here, we compare participants based on their ability to benefit from visual speech information in the presence of an auditory signal degraded with noise, modulating the resolution of the visual signal through low-pass spatial frequency filtering and monitoring gaze behavior. Participants who benefited most from the addition of visual information (high visual gain) were more adversely affected by the removal of high spatial frequency information, compared to participants with low visual gain, for materials with both poor and rich contextual cues (i.e., words and sentences, respectively). Differences as a function of gaze behavior between participants with the highest and lowest visual gains were observed only for words, with participants with the highest visual gain fixating longer on the mouth region. Our results indicate that the individual variance in audiovisual speech in noise performance can be accounted for, in part, by better use of fine facial detail information extracted from the visual signal and increased fixation on mouth regions for short stimuli. Thus, for some, audiovisual speech perception may suffer when the visual input (in addition to the auditory signal) is less than perfect.

  5. Digitized synchronous demodulator

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher E. (Inventor)

    1990-01-01

    A digitized synchronous demodulator is constructed entirely of digital components including timing logic, an accumulator, and means to digitally filter the digital output signal. Indirectly, it accepts, at its input, periodic analog signals which are converted to digital signals by traditional analog-to-digital conversion techniques. Broadly, the input digital signals are summed to one of two registers within an accumulator, based on the phase of the input signal and medicated by timing logic. At the end of a predetermined number of cycles of the inputted periodic signals, the contents of the register that accumulated samples from the negative half cycle is subtracted from the accumulated samples from the positive half cycle. The resulting difference is an accurate measurement of the narrow band amplitude of the periodic input signal during the measurement period. This measurement will not include error sources encountered in prior art synchronous demodulators using analog techniques such as offsets, charge injection errors, temperature drift, switching transients, settling time, analog to digital converter missing code, and linearity errors.

  6. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action.

    PubMed

    Bissonette, Gregory B; Roesch, Matthew R

    2016-01-01

    Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum.

  7. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action

    PubMed Central

    Roesch, Matthew R.

    2017-01-01

    Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum. PMID:26276036

  8. Female mate choice by chemical signals in a semi-terrestrial crab

    NASA Astrophysics Data System (ADS)

    Sal Moyano, María Paz; Silva, Paola; Luppi, Tomás; Gavio, María Andrea

    2014-01-01

    Information about the roles of both sexes in pair formation is required to better understand the mechanisms involved in sexual selection. Mate choice could depend on the courtship behavior, involving chemical, tactile and visual signals. We determined if Neohelice granulata mate choice is based on female or male choice, considering visual and chemical with contact and without contact signals between partners and different categories of individuals: receptive and unreceptive females; and large, small, mated or unmated males. Experiments showed that mate selection was based on receptive female's choice using chemical signals, but not visual ones. Since copulation occurs during high and low tides, water-borne chemical signals would be preferentially used during high tide, while contact ones during low tide. Females preferred large and unmated males, while males did not seem to recognize receptive females using chemical neither visual signals. Females were capable of detecting the presence of the chemical signals released by large and unmated males, but not its amount. It is proposed that small and mated males are probably releasing different types of chemical signals, not attractive to females, or that they are not emitting any signal.

  9. 47 CFR 87.145 - Acceptability of transmitters for licensing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...

  10. 47 CFR 87.145 - Acceptability of transmitters for licensing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...

  11. 47 CFR 87.145 - Acceptability of transmitters for licensing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...

  12. 47 CFR 87.145 - Acceptability of transmitters for licensing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... square error which assumes zero error for the received ground earth station signal and includes the AES transmit/receive frequency reference error and the AES automatic frequency control residual errors.) The...

  13. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with "sound visualization," acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-reverberation methods, both essentialfor visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, "Can we see two birds singing or one bird with two beaks?"

  14. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  15. Climbing fibers predict movement kinematics and performance errors.

    PubMed

    Streng, Martha L; Popa, Laurentiu S; Ebner, Timothy J

    2017-09-01

    Requisite for understanding cerebellar function is a complete characterization of the signals provided by complex spike (CS) discharge of Purkinje cells, the output neurons of the cerebellar cortex. Numerous studies have provided insights into CS function, with the most predominant view being that they are evoked by error events. However, several reports suggest that CSs encode other aspects of movements and do not always respond to errors or unexpected perturbations. Here, we evaluated CS firing during a pseudo-random manual tracking task in the monkey ( Macaca mulatta ). This task provides extensive coverage of the work space and relative independence of movement parameters, delivering a robust data set to assess the signals that activate climbing fibers. Using reverse correlation, we determined feedforward and feedback CSs firing probability maps with position, velocity, and acceleration, as well as position error, a measure of tracking performance. The direction and magnitude of the CS modulation were quantified using linear regression analysis. The major findings are that CSs significantly encode all three kinematic parameters and position error, with acceleration modulation particularly common. The modulation is not related to "events," either for position error or kinematics. Instead, CSs are spatially tuned and provide a linear representation of each parameter evaluated. The CS modulation is largely predictive. Similar analyses show that the simple spike firing is modulated by the same parameters as the CSs. Therefore, CSs carry a broader array of signals than previously described and argue for climbing fiber input having a prominent role in online motor control. NEW & NOTEWORTHY This article demonstrates that complex spike (CS) discharge of cerebellar Purkinje cells encodes multiple parameters of movement, including motor errors and kinematics. The CS firing is not driven by error or kinematic events; instead it provides a linear representation of each parameter. In contrast with the view that CSs carry feedback signals, the CSs are predominantly predictive of upcoming position errors and kinematics. Therefore, climbing fibers carry multiple and predictive signals for online motor control. Copyright © 2017 the American Physiological Society.

  16. Seven-year incidence of uncorrected refractive error among an elderly Chinese population in Shihpai, Taiwan: The Shihpai Eye Study

    PubMed Central

    Kuang, T-M; Tsai, S-Y; Liu, C J-L; Ko, Y-C; Lee, S-M; Chou, P

    2016-01-01

    Purpose To report the 7-year incidence of uncorrected refractive error in a metropolitan Chinese elderly population. Methods The Shihpai Eye Study 2006 included 460/824 (55.8%) subjects (age range 72–94 years old) of 1361 participants in the 1999 baseline survey for a follow-up eye examination. Visual acuity was assessed using a Snellen chart, uncorrected refractive error was defined as presenting visual acuity (naked eye if without spectacles and with distance spectacles if worn) in the better eye of <6/12 that improved to no impairment (≥6/12) after refractive correction. Results The 7-year incidence of uncorrected refractive error was 10.5% (95% confidence interval (CI): 7.6–13.4%). 92.7% of participants with uncorrection and 77.8% with undercorrection were able to improve at least two lines of visual acuity by refractive correction. In multivariate analysis controlling for covariates, uncorrected refractive error was significantly related to myopia (relative risk (RR): 3.15; 95% CI: 1.31–7.58) and living alone (RR: 2.94; 95% CI 1.14–7.53), whereas distance spectacles worn during examination was protective (RR: 0.35; 95% CI: 0.14–0.88). Conclusion Our study indicated that the incidence of uncorrected refractive error was high (10.5%) in this elderly Chinese population. Living alone and myopia are predisposing factors, whereas wearing distance spectacles at examination is protective. PMID:26795416

  17. Accessory stimulus modulates executive function during stepping task

    PubMed Central

    Watanabe, Tatsunori; Koyama, Soichiro; Tanabe, Shigeo

    2015-01-01

    When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls. PMID:25925321

  18. The effect of withdrawal of visual presentation of errors upon the frequency spectrum of tremor in a manual task

    PubMed Central

    Sutton, G. G.; Sykes, K.

    1967-01-01

    1. When a subject attempts to exert a steady pressure on a joystick he makes small unavoidable errors which, irrespective of their origin or frequency, may be called tremor. 2. Frequency analysis shows that low frequencies always contribute much more to the total error than high frequencies. If the subject is not allowed to check his performance visually, but has to rely on sensations of pressure in the finger tips, etc., the error power spectrum plotted on logarithmic co-ordinates approximates to a straight line falling at 6 db/octave from 0·4 to 9 c/s. In other words the amplitude of the tremor component at each frequency is inversely proportional to frequency. 3. When the subject is given a visual indication of his errors on an oscilloscope the shape of the tremor spectrum alters. The most striking change is the appearance of a tremor peak at about 9 c/s, but there is also a significant increase of error in the range 1-4 c/s. The extent of these changes varies from subject to subject. 4. If the 9 c/s peak represents oscillation of a muscle length-servo it would appear that greater use is made of this servo when positional information is available from the eyes than when proprioceptive impulses from the limbs have to be relied on. ImagesFig. 2 PMID:6048997

  19. SPV: a JavaScript Signaling Pathway Visualizer.

    PubMed

    Calderone, Alberto; Cesareni, Gianni

    2018-03-24

    The visualization of molecular interactions annotated in web resources is useful to offer to users such information in a clear intuitive layout. These interactions are frequently represented as binary interactions that are laid out in free space where, different entities, cellular compartments and interaction types are hardly distinguishable. SPV (Signaling Pathway Visualizer) is a free open source JavaScript library which offers a series of pre-defined elements, compartments and interaction types meant to facilitate the representation of signaling pathways consisting of causal interactions without neglecting simple protein-protein interaction networks. freely available under Apache version 2 license; Source code: https://github.com/Sinnefa/SPV_Signaling_Pathway_Visualizer_v1.0. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. sinnefa@gmail.com.

  20. Adaptive Locomotor Behavior in Larval Zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish. PMID:21909325

  1. Adaptive locomotor behavior in larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  2. Character displacement of Cercopithecini primate visual signals

    PubMed Central

    Allen, William L.; Stevens, Martin; Higham, James P.

    2014-01-01

    Animal visual signals have the potential to act as an isolating barrier to prevent interbreeding of populations through a role in species recognition. Within communities of competing species, species recognition signals are predicted to undergo character displacement, becoming more visually distinctive from each other, however this pattern has rarely been identified. Using computational face recognition algorithms to model primate face processing, we demonstrate that the face patterns of guenons (tribe: Cercopithecini) have evolved under selection to become more visually distinctive from those of other guenon species with whom they are sympatric. The relationship between the appearances of sympatric species suggests that distinguishing conspecifics from other guenon species has been a major driver of diversification in guenon face appearance. Visual signals that have undergone character displacement may have had an important role in the tribe’s radiation, keeping populations that became geographically separated reproductively isolated on secondary contact. PMID:24967517

  3. Space coding for sensorimotor transformations can emerge through unsupervised learning.

    PubMed

    De Filippo De Grazia, Michele; Cutini, Simone; Lisi, Matteo; Zorzi, Marco

    2012-08-01

    The posterior parietal cortex (PPC) is fundamental for sensorimotor transformations because it combines multiple sensory inputs and posture signals into different spatial reference frames that drive motor programming. Here, we present a computational model mimicking the sensorimotor transformations occurring in the PPC. A recurrent neural network with one layer of hidden neurons (restricted Boltzmann machine) learned a stochastic generative model of the sensory data without supervision. After the unsupervised learning phase, the activity of the hidden neurons was used to compute a motor program (a population code on a bidimensional map) through a simple linear projection and delta rule learning. The average motor error, calculated as the difference between the expected and the computed output, was less than 3°. Importantly, analyses of the hidden neurons revealed gain-modulated visual receptive fields, thereby showing that space coding for sensorimotor transformations similar to that observed in the PPC can emerge through unsupervised learning. These results suggest that gain modulation is an efficient coding strategy to integrate visual and postural information toward the generation of motor commands.

  4. Dichrometer errors resulting from large signals or improper modulator phasing.

    PubMed

    Sutherland, John C

    2012-09-01

    A single-beam spectrometer equipped with a photoelastic modulator can be configured to measure a number of different parameters useful in characterizing chemical and biochemical materials including natural and magnetic circular dichroism, linear dichroism, natural and magnetic fluorescence-detected circular dichroism, and fluorescence polarization anisotropy as well as total absorption and fluorescence. The derivations of the mathematical expressions used to extract these parameters from ultraviolet, visible, and near-infrared light-induced electronic signals in a dichrometer assume that the dichroic signals are sufficiently small that certain mathematical approximations will not introduce significant errors. This article quantifies errors resulting from these assumptions as a function of the magnitude of the dichroic signals. In the case of linear dichroism, improper modulator programming can result in errors greater than those resulting from the assumption of small signal size, whereas for fluorescence polarization anisotropy, improper modulator phase alone gives incorrect results. Modulator phase can also impact the values of total absorbance recorded simultaneously with linear dichroism and total fluorescence. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  5. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    PubMed

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  6. Frequency spectrum might act as communication code between retina and visual cortex I

    PubMed Central

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156

  7. Frequency spectrum might act as communication code between retina and visual cortex I.

    PubMed

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.

  8. Jewelled spiders manipulate colour-lure geometry to deceive prey

    PubMed Central

    2017-01-01

    Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally ‘static’ signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. PMID:28356411

  9. Jewelled spiders manipulate colour-lure geometry to deceive prey.

    PubMed

    White, Thomas E

    2017-03-01

    Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata , whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally 'static' signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. © 2017 The Author(s).

  10. Nurses' behaviors and visual scanning patterns may reduce patient identification errors.

    PubMed

    Marquard, Jenna L; Henneman, Philip L; He, Ze; Jo, Junghee; Fisher, Donald L; Henneman, Elizabeth A

    2011-09-01

    Patient identification (ID) errors occurring during the medication administration process can be fatal. The aim of this study is to determine whether differences in nurses' behaviors and visual scanning patterns during the medication administration process influence their capacities to identify patient ID errors. Nurse participants (n = 20) administered medications to 3 patients in a simulated clinical setting, with 1 patient having an embedded ID error. Error-identifying nurses tended to complete more process steps in a similar amount of time than non-error-identifying nurses and tended to scan information across artifacts (e.g., ID band, patient chart, medication label) rather than fixating on several pieces of information on a single artifact before fixating on another artifact. Non-error-indentifying nurses tended to increase their durations of off-topic conversations-a type of process interruption-over the course of the trials; the difference between groups was significant in the trial with the embedded ID error. Error-identifying nurses tended to have their most fixations in a row on the patient's chart, whereas non-error-identifying nurses did not tend to have a single artifact on which they consistently fixated. Finally, error-identifying nurses tended to have predictable eye fixation sequences across artifacts, whereas non-error-identifying nurses tended to have seemingly random eye fixation sequences. This finding has implications for nurse training and the design of tools and technologies that support nurses as they complete the medication administration process. (c) 2011 APA, all rights reserved.

  11. A population-based study of visual impairment among pre-school children in Beijing: the Beijing study of visual impairment in children.

    PubMed

    Lu, Qing; Zheng, Yuanyuan; Sun, Baochen; Cui, Tongtong; Congdon, Nathan; Hu, Ailian; Chen, Jianhua; Shi, Jiliang

    2009-06-01

    To evaluate the prevalence and causes of visual impairment among Chinese children aged 3 to 6 years in Beijing. Population-based prevalence survey. Presenting and pinhole visual acuity were tested using picture optotypes or, in children with pinhole vision < 6/18, a Snellen tumbling E chart. Comprehensive eye examinations and cycloplegic refraction were carried out for children with pinhole vision < 6/18 in the better-seeing eye. All examinations were completed on 17,699 children aged 3 to 6 years (95.3% of sample). Subjects with bilateral correctable low vision (presenting vision < 6/18 correctable to >or= 6/18) numbered 57 (0.322%; 95% confidence interval [CI], 0.237% to 0.403%), while 14 (0.079%; 95% CI, 0.038% to 0.120%) had bilateral uncorrectable low vision (best-corrected vision of < 6/18 and >or= 3/60), and 5 subjects (0.028%; 95% CI, 0.004% to 0.054%) were bilaterally blind (best-corrected acuity < 3/60). The etiology of 76 cases of visual impairment included: refractive error in 57 children (75%), hereditary factors (microphthalmos, congenital cataract, congenital motor nystagmus, albinism, and optic nerve disease) in 13 children (17.1 %), amblyopia in 3 children (3.95%), and cortical blindness in 1 child (1.3%). The cause of visual impairment could not be established in 2 (2.63%) children. The prevalence of visual impairment did not differ by gender, but correctable low vision was significantly (P < .0001) more common among urban as compared with rural children. The leading causes of visual impairment among Chinese preschool-aged children are refractive error and hereditary eye diseases. A higher prevalence of refractive error is already present among urban as compared with rural children in this preschool population.

  12. A circuit for saccadic suppression in the primate brain

    PubMed Central

    Cavanaugh, James; McAlonan, Kerry; Wurtz, Robert H.

    2017-01-01

    Saccades should cause us to see a blur as the eyes sweep across a visual scene. Specific brain mechanisms prevent this by producing suppression during saccades. Neuronal correlates of such suppression were first established in the visual superficial layers of the superior colliculus (SC) and subsequently have been observed in cortical visual areas, including the middle temporal visual area (MT). In this study, we investigated suppression in a recently identified circuit linking visual SC (SCs) to MT through the inferior pulvinar (PI). We examined responses to visual stimuli presented just before saccades to reveal a neuronal correlate of suppression driven by a copy of the saccade command, referred to as a corollary discharge. We found that visual responses were similarly suppressed in SCs, PI, and MT. Within each region, suppression of visual responses occurred with saccades into both visual hemifields, but only in the contralateral hemifield did this suppression consistently begin before the saccade (~100 ms). The consistency of the signal along the circuit led us to hypothesize that the suppression in MT was influenced by input from the SC. We tested this hypothesis in one monkey by inactivating neurons within the SC and found evidence that suppression in MT depends on corollary discharge signals from motor SC (SCi). Combining these results with recent findings in rodents, we propose a complete circuit originating with corollary discharge signals in SCi that produces suppression in visual SCs, PI, and ultimately, MT cortex. NEW & NOTEWORTHY A fundamental puzzle in visual neuroscience is that we frequently make rapid eye movements (saccades) but seldom perceive the visual blur accompanying each movement. We investigated neuronal correlates of this saccadic suppression by recording from and perturbing a recently identified circuit from brainstem to cortex. We found suppression at each stage, with evidence that it was driven by an internally generated signal. We conclude that this circuit contributes to neuronal suppression of visual signals during eye movements. PMID:28003409

  13. Visualization of Endoplasmic Reticulum and Mitochondria in Aurantiochytrium limacinum by the Expression of EGFP with Cell Organelle-Specific Targeting/Retaining Signals.

    PubMed

    Okino, Nozomu; Wakisaka, Hiroyoshi; Ishibashi, Yohei; Ito, Makoto

    2018-04-01

    Thraustochytrids are single cell marine eukaryotes that produce large amounts of polyunsaturated fatty acids such as docosahexaenoic acid. In the present study, we report the visualization of endoplasmic reticulum (ER) and mitochondria in a type strain of the thraustochytrid, Aurantiochytrium limacinum ATCC MYA-1381, using the enhanced green fluorescent protein (EGFP) with specific targeting/retaining signals. We expressed the egfp gene with ER targeting/retaining signals from A. limacinum calreticulin or BiP/GRP78 in the thraustochytrid, resulting in the distribution of EGFP signals at the perinuclear region and near lipid droplets. ER-Tracker™ Red, an authentic fluorescent probe for the visualization of ER in mammalian cells, also stained the same region. We observed small lipid droplets generated from the visualized ER in the early growth phase of cell culture. Expression of the egfp gene with the mitochondria targeting signal from A. limacinum cytochrome c oxidase resulted in the localization of EGFP near the plasma membrane. The distribution of EGFP signals coincided with that of MitoTracker® Red CMXRos, which is used to visualize mitochondria in eukaryotes. The ER and mitochondria of A. limacinum were visualized for the first time by EGFP with thraustochytrid cell organelle-specific targeting/retaining signals. These results will contribute to classification of the intracellular localization of proteins expressed in ER and mitochondria as well as analyses of these cell organelles in thraustochytrids.

  14. Analyzing the Reading Skills and Visual Perception Levels of First Grade Students

    ERIC Educational Resources Information Center

    Çayir, Aybala

    2017-01-01

    The purpose of this study was to analyze primary school first grade students' reading levels and correlate their visual perception skills. For this purpose, students' reading speed, reading comprehension and reading errors were determined using The Informal Reading Inventory. Students' visual perception levels were also analyzed using…

  15. Development of a Methodology to Optimally Allocate Visual Inspection Time

    DTIC Science & Technology

    1989-06-01

    Model and then takes into account the costs of the errors. The purpose of the Alternative Model is to not make 104 costly mistakes while meeting the...James Buck, and Virgil Anderson, AIIE Transactions, Volume 11, No.4, December 1979. 26. "Inspection of Sheet Materials - Model and Data", Colin G. Drury ...worker error, the probability of inspector error, and the cost of system error. Paired comparisons of error phenomena from operational personnel are

  16. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.

    PubMed

    Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.

  17. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate

    PubMed Central

    van de Ven, Vincent G.; Tong, Frank; Sack, Alexander T.

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. PMID:28384347

  18. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Urnes, James M., Sr. (Inventor); Smith, Timothy A. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  19. Reinforcement Learning Models and Their Neural Correlates: An Activation Likelihood Estimation Meta-Analysis

    PubMed Central

    Kumar, Poornima; Eickhoff, Simon B.; Dombrovski, Alexandre Y.

    2015-01-01

    Reinforcement learning describes motivated behavior in terms of two abstract signals. The representation of discrepancies between expected and actual rewards/punishments – prediction error – is thought to update the expected value of actions and predictive stimuli. Electrophysiological and lesion studies suggest that mesostriatal prediction error signals control behavior through synaptic modification of cortico-striato-thalamic networks. Signals in the ventromedial prefrontal and orbitofrontal cortex are implicated in representing expected value. To obtain unbiased maps of these representations in the human brain, we performed a meta-analysis of functional magnetic resonance imaging studies that employed algorithmic reinforcement learning models, across a variety of experimental paradigms. We found that the ventral striatum (medial and lateral) and midbrain/thalamus represented reward prediction errors, consistent with animal studies. Prediction error signals were also seen in the frontal operculum/insula, particularly for social rewards. In Pavlovian studies, striatal prediction error signals extended into the amygdala, while instrumental tasks engaged the caudate. Prediction error maps were sensitive to the model-fitting procedure (fixed or individually-estimated) and to the extent of spatial smoothing. A correlate of expected value was found in a posterior region of the ventromedial prefrontal cortex, caudal and medial to the orbitofrontal regions identified in animal studies. These findings highlight a reproducible motif of reinforcement learning in the cortico-striatal loops and identify methodological dimensions that may influence the reproducibility of activation patterns across studies. PMID:25665667

  20. Frequency of under-corrected refractive errors in elderly Chinese in Beijing.

    PubMed

    Xu, Liang; Li, Jianjun; Cui, Tongtong; Tong, Zhongbiao; Fan, Guizhi; Yang, Hua; Sun, Baochen; Zheng, Yuanyuan; Jonas, Jost B

    2006-07-01

    The aim of the study was to evaluate the prevalence of under-corrected refractive error among elderly Chinese in the Beijing area. The population-based, cross-sectional, cohort study comprised 4,439 subjects out of 5,324 subjects asked to participate (response rate 83.4%) with an age of 40+ years. It was divided into a rural part [1,973 (44.4%) subjects] and an urban part [2,466 (55.6%) subjects]. Habitual and best-corrected visual acuity was measured. Under-corrected refractive error was defined as an improvement in visual acuity of the better eye of at least two lines with best possible refractive correction. The rate of under-corrected refractive error was 19.4% (95% confidence interval, 18.2, 20.6). In a multiple regression analysis, prevalence and size of under-corrected refractive error in the better eye was significantly associated with lower level of education (P<0.001), female gender (P<0.001), and age (P=0.001). Under-correction of refractive error is relatively common among elderly Chinese in the Beijing area when compared with data from other populations.

Top