Code of Federal Regulations, 2010 CFR
2010-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... Rules Visual Flight Rules § 91.161 Special awareness training required for pilots flying under visual...-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
NASA Astrophysics Data System (ADS)
Doyon-Poulin, Philippe
Flight deck of 21st century commercial aircrafts does not look like the one the Wright brothers used for their first flight. The rapid growth of civilian aviation resulted in an increase in the number of flight deck instruments and of their complexity, in order to complete a safe and ontime flight. However, presenting an abundance of visual information using visually cluttered flight instruments might reduce the pilot's flight performance. Visual clutter has received an increased interest by the aerospace community to understand the effects of visual density and information overload on pilots' performance. Aerospace regulations demand to minimize visual clutter of flight deck displays. Past studies found a mixed effect of visual clutter of the primary flight display on pilots' technical flight performance. More research is needed to better understand this subject. In this thesis, we did an experimental study in a flight simulator to test the effects of visual clutter of the primary flight display on the pilot's technical flight performance, mental workload and gaze pattern. First, we identified a gap in existing definitions of visual clutter and we proposed a new definition relevant to the aerospace community that takes into account the context of use of the display. Then, we showed that past research on the effects of visual clutter of the primary flight display on pilots' performance did not manipulate the variable of visual clutter in a similar manner. Past research changed visual clutter at the same time than the flight guidance function. Using a different flight guidance function between displays might have masked the effect of visual clutter on pilots' performance. To solve this issue, we proposed three requirements that all tested displays must satisfy to assure that only the variable of visual clutter is changed during study while leaving other variables unaffected. Then, we designed three primary flight displays with a different visual clutter level (low, medium, high) but with the same flight guidance function, by respecting the previous requirements. Twelve pilots, with a mean experience of over 4000 total flight hours, completed an instrument landing in a flight simulator using all three displays for a total of nine repetitions. Our results showed that pilots reported lower workload level and had better lateral precision during the approach using the medium-clutter display compared to the low- and high-clutter displays. Also, pilots reported that the medium-clutter display was the most useful for the flight task compared to the two other displays. Eye tracker results showed that pilots' gaze pattern was less efficient for the high-clutter display compared to the low- and medium-clutter displays. Overall, these new experimental results emphasize the importance of optimizing visual clutter of flight displays as it affects both objective and subjective performance of experienced pilots in their flying task. This thesis ends with practical recommendations to help designers optimize visual clutter of displays used for man-machine interface.
NASA Technical Reports Server (NTRS)
Laue, Jay H.
1998-01-01
The X-33 flight visualization effort has resulted in the integration of high-resolution terrain data with vehicle position and attitude data for planned flights of the X-33 vehicle from its launch site at Edwards AFB, California, to landings at Michael Army Air Field, Utah, and Maelstrom AFB, Montana. Video and Web Site representations of these flight visualizations were produced. In addition, a totally new module was developed to control viewpoints in real-time using a joystick input. Efforts have been initiated, and are presently being continued, for real-time flight coverage visualizations using the data streams from the X-33 vehicle flights. The flight visualizations that have resulted thus far give convincing support to the expectation that the flights of the X-33 will be exciting and significant space flight milestones... flights of this nation's one-half scale predecessor to its first single-stage-to-orbit, fully-reusable launch vehicle system.
Remote Infrared Thermography for In-Flight Flow Diagnostics
NASA Technical Reports Server (NTRS)
Shiu, H. J.; vanDam, C. P.
1999-01-01
The feasibility of remote in-flight boundary layer visualization via infrared in incompressible flow was established in earlier flight experiments. The past year's efforts focused on refining and determining the extent and accuracy of this technique of remote in-flight flow visualization via infrared. Investigations were made into flow separation visualization, visualization at transonic conditions, shock visualization, post-processing to mitigate banding noise in the NITE Hawk's thermograms, and a numeric model to predict surface temperature distributions. Although further flight tests are recommended, this technique continues to be promising.
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Gall, P. D.; Croom, C. C.; Manuel, G. S.; Kelliher, W. C.
1986-01-01
The visualization of laminar to turbulent boundary layer transition plays an important role in flight and wind-tunnel aerodynamic testing of aircraft wing and body surfaces. Visualization can help provide a more complete understanding of both transition location as well as transition modes; without visualization, the transition process can be very difficult to understand. In the past, the most valuable transition visualization methods for flight applications included sublimating chemicals and oil flows. Each method has advantages and limitations. In particular, sublimating chemicals are impractical to use in subsonic applications much above 20,000 feet because of the greatly reduced rates of sublimation at lower temperatures (less than -4 degrees Farenheit). Both oil flow and sublimating chemicals have the disadvantage of providing only one good data point per flight. Thus, for many important flight conditions, transition visualization has not been readily available. This paper discusses a new method for visualizing transition in flight by the use of liquid crystals. The new method overcomes the limitations of past techniques, and provides transition visualization capability throughout almost the entire altitude and speed ranges of virtually all subsonic aircraft flight envelopes. The method also has wide applicability for supersonic transition visualization in flight and for general use in wind tunnel research over wide subsonic and supersonic speed ranges.
Verspui, Remko; Gray, John R
2009-10-01
Animals rely on multimodal sensory integration for proper orientation within their environment. For example, odour-guided behaviours often require appropriate integration of concurrent visual cues. To gain a further understanding of mechanisms underlying sensory integration in odour-guided behaviour, our study examined the effects of visual stimuli induced by self-motion and object-motion on odour-guided flight in male M. sexta. By placing stationary objects (pillars) on either side of a female pheromone plume, moths produced self-induced visual motion during odour-guided flight. These flights showed a reduction in both ground and flight speeds and inter-turn interval when compared with flight tracks without stationary objects. Presentation of an approaching 20 cm disc, to simulate object-motion, resulted in interrupted odour-guided flight and changes in flight direction away from the pheromone source. Modifications of odour-guided flight behaviour in the presence of stationary objects suggest that visual information, in conjunction with olfactory cues, can be used to control the rate of counter-turning. We suggest that the behavioural responses to visual stimuli induced by object-motion indicate the presence of a neural circuit that relays visual information to initiate escape responses. These behavioural responses also suggest the presence of a sensory conflict requiring a trade-off between olfactory and visually driven behaviours. The mechanisms underlying olfactory and visual integration are discussed in the context of these behavioural responses.
Visual and flight performance recovery after PRK or LASIK in helicopter pilots.
Van de Pol, Corina; Greig, Joanna L; Estrada, Art; Bissette, Gina M; Bower, Kraig S
2007-06-01
Refractive surgery, specifically photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK), is becoming more accepted in the military environment. Determination of the impact on visual performance in the more demanding aviation environment was the impetus for this study. A prospective evaluation of 20 Black Hawk pilots pre-surgically and at 1 wk, 1 mo, and 6 mo postsurgery was conducted to assess both PRK and LASIK visual and flight performance outcomes on the return of aviators to duty. Of 20 pilots, 19 returned to flight status at 1 mo after surgery; 1 PRK subject was delayed due to corneal haze and subjective visual symptoms. Improvements were seen under simulator night and night vision goggle flight after LASIK; no significant changes in flight performance were measured in the aircraft. Results indicated a significantly faster recovery of all visual performance outcomes 1 wk after LASIK vs. PRK, with no difference between procedures at 1 and 6 mo. Low contrast acuity and contrast sensitivity only weakly correlated to flight performance in the early post-operative period. Overall flight performance assessed in this study after PRK and LASIK was stable or improved from baseline, indicating a resilience of performance despite measured decrements in visual performance, especially in PRK. More visually demanding flight tasks may be impacted by subtle changes in visual performance. Contrast tests are more sensitive to the effects of refractive surgical intervention and may prove to be a better indicator of visual recovery for return to flight status.
[Review of visual display system in flight simulator].
Xie, Guang-hui; Wei, Shao-ning
2003-06-01
Visual display system is the key part and plays a very important role in flight simulators and flight training devices. The developing history of visual display system is recalled and the principle and characters of some visual display systems including collimated display systems and back-projected collimated display systems are described. The future directions of visual display systems are analyzed.
Flow visualization techniques for flight research
NASA Technical Reports Server (NTRS)
Fisher, David F.; Meyer, Robert R., Jr.
1989-01-01
In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids were obtained. Off-surface flow visualization of vortical flow was obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented.
Flow Visualization Techniques for Flight Research
NASA Technical Reports Server (NTRS)
Fisher, David F.; Meyer, Robert R., Jr.
1988-01-01
In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids have been obtained. Off-surface flow visualization of vortical flow has been obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented.
1986-12-26
NAVAL TRAINING SYSTEMS CENTER ORLANDO. FLORIDA IT FILE COPY THE EFFECTS OF ASYNCHRONOUS VISUAL DELAYS ON SIMULATOR FLIGHT PERFORMANCE AND THE...ASYNCHRONOUS VISUAL. DELAYS ON SI.WLATOR FLIGHT PERF OMANCE AND THE DEVELOPMENT OF SIMLATOR SICKNESS SYMPTOMATOLOGY K. C. Uliano, E. Y. Lambert, R. S. Kennedy...ACCESSION NO. N63733N SP-01 0785-7P6 I. 4780 11. TITLE (Include Security Classification) The Effects of Asynchronous Visual Delays on Simulator Flight
Code of Federal Regulations, 2012 CFR
2012-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME. (a) Operations within a 60-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
Code of Federal Regulations, 2011 CFR
2011-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME. (a) Operations within a 60-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
Code of Federal Regulations, 2013 CFR
2013-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME. (a) Operations within a 60-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
Code of Federal Regulations, 2014 CFR
2014-01-01
... pilots flying under visual flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME... flight rules within a 60-nautical mile radius of the Washington, DC VOR/DME. (a) Operations within a 60-nautical mile radius of the Washington, DC VOR/DME under visual flight rules (VFR). Except as provided...
Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.
2013-01-01
Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.
Visual flight control in naturalistic and artificial environments.
Baird, Emily; Dacke, Marie
2012-12-01
Although the visual flight control strategies of flying insects have evolved to cope with the complexity of the natural world, studies investigating this behaviour have typically been performed indoors using simplified two-dimensional artificial visual stimuli. How well do the results from these studies reflect the natural behaviour of flying insects considering the radical differences in contrast, spatial composition, colour and dimensionality between these visual environments? Here, we aim to answer this question by investigating the effect of three- and two-dimensional naturalistic and artificial scenes on bumblebee flight control in an outdoor setting and compare the results with those of similar experiments performed in an indoor setting. In particular, we focus on investigating the effect of axial (front-to-back) visual motion cues on ground speed and centring behaviour. Our results suggest that, in general, ground speed control and centring behaviour in bumblebees is not affected by whether the visual scene is two- or three dimensional, naturalistic or artificial, or whether the experiment is conducted indoors or outdoors. The only effect that we observe between naturalistic and artificial scenes on flight control is that when the visual scene is three-dimensional and the visual information on the floor is minimised, bumblebees fly further from the midline of the tunnel. The findings presented here have implications not only for understanding the mechanisms of visual flight control in bumblebees, but also for the results of past and future investigations into visually guided flight control in other insects.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.
2011-01-01
An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.
A New Definition for Ground Control
NASA Technical Reports Server (NTRS)
2002-01-01
LandForm(R) VisualFlight(R) blends the power of a geographic information system with the speed of a flight simulator to transform a user's desktop computer into a "virtual cockpit." The software product, which is fully compatible with all Microsoft(R) Windows(R) operating systems, provides distributed, real-time three-dimensional flight visualization over a host of networks. From a desktop, a user can immediately obtain a cockpit view, a chase-plane view, or an airborne tracker view. A customizable display also allows the user to overlay various flight parameters, including latitude, longitude, altitude, pitch, roll, and heading information. Rapid Imaging Software sought assistance from NASA, and the VisualFlight technology came to fruition under a Phase II SBIR contract with Johnson Space Center in 1998. Three years later, on December 13, 2001, Ken Ham successfully flew NASA's X-38 spacecraft from a remote, ground-based cockpit using LandForm VisualFlight as part of his primary situation awareness display in a flight test at Edwards Air Force Base, California.
Flight-path estimation in passive low-altitude flight by visual cues
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.
1993-01-01
A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.
Comparison of Visually Guided Flight in Insects and Birds.
Altshuler, Douglas L; Srinivasan, Mandyam V
2018-01-01
Over the last half century, work with flies, bees, and moths have revealed a number of visual guidance strategies for controlling different aspects of flight. Some algorithms, such as the use of pattern velocity in forward flight, are employed by all insects studied so far, and are used to control multiple flight tasks such as regulation of speed, measurement of distance, and positioning through narrow passages. Although much attention has been devoted to long-range navigation and homing in birds, until recently, very little was known about how birds control flight in a moment-to-moment fashion. A bird that flies rapidly through dense foliage to land on a branch-as birds often do-engages in a veritable three-dimensional slalom, in which it has to continually dodge branches and leaves, and find, and possibly even plan a collision-free path to the goal in real time. Each mode of flight from take-off to goal could potentially involve a different visual guidance algorithm. Here, we briefly review strategies for visual guidance of flight in insects, synthesize recent work from short-range visual guidance in birds, and offer a general comparison between the two groups of organisms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... means, for the purposes of this subpart, a communications facility where flight plans or position... which the control of aircraft is required for reasons of national security. Defense visual flight rules... (except for Department of Defense and law enforcement aircraft) in accordance with visual flight rules in...
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.
Validating Visual Cues In Flight Simulator Visual Displays
NASA Astrophysics Data System (ADS)
Aronson, Moses
1987-09-01
Currently evaluation of visual simulators are performed by either pilot opinion questionnaires or comparison of aircraft terminal performance. The approach here is to compare pilot performance in the flight simulator with a visual display to his performance doing the same visual task in the aircraft as an indication that the visual cues are identical. The A-7 Night Carrier Landing task was selected. Performance measures which had high pilot performance prediction were used to compare two samples of existing pilot performance data to prove that the visual cues evoked the same performance. The performance of four pilots making 491 night landing approaches in an A-7 prototype part task trainer were compared with the performance of 3 pilots performing 27 A-7E carrier landing qualification approaches on the CV-60 aircraft carrier. The results show that the pilots' performances were similar, therefore concluding that the visual cues provided in the simulator were identical to those provided in the real world situation. Differences between the flight simulator's flight characteristics and the aircraft have less of an effect than the pilots individual performances. The measurement parameters used in the comparison can be used for validating the visual display for adequacy for training.
Neural basis of forward flight control and landing in honeybees.
Ibbotson, M R; Hung, Y-S; Meffin, H; Boeddeker, N; Srinivasan, M V
2017-11-06
The impressive repertoire of honeybee visually guided behaviors, and their ability to learn has made them an important tool for elucidating the visual basis of behavior. Like other insects, bees perform optomotor course correction to optic flow, a response that is dependent on the spatial structure of the visual environment. However, bees can also distinguish the speed of image motion during forward flight and landing, as well as estimate flight distances (odometry), irrespective of the visual scene. The neural pathways underlying these abilities are unknown. Here we report on a cluster of descending neurons (DNIIIs) that are shown to have the directional tuning properties necessary for detecting image motion during forward flight and landing on vertical surfaces. They have stable firing rates during prolonged periods of stimulation and respond to a wide range of image speeds, making them suitable to detect image flow during flight behaviors. While their responses are not strictly speed tuned, the shape and amplitudes of their speed tuning functions are resistant to large changes in spatial frequency. These cells are prime candidates not only for the control of flight speed and landing, but also the basis of a neural 'front end' of the honeybee's visual odometer.
Beyond the cockpit: The visual world as a flight instrument
NASA Technical Reports Server (NTRS)
Johnson, W. W.; Kaiser, M. K.; Foyle, D. C.
1992-01-01
The use of cockpit instruments to guide flight control is not always an option (e.g., low level rotorcraft flight). Under such circumstances the pilot must use out-the-window information for control and navigation. Thus it is important to determine the basis of visually guided flight for several reasons: (1) to guide the design and construction of the visual displays used in training simulators; (2) to allow modeling of visibility restrictions brought about by weather, cockpit constraints, or distortions introduced by sensor systems; and (3) to aid in the development of displays that augment the cockpit window scene and are compatible with the pilot's visual extraction of information from the visual scene. The authors are actively pursuing these questions. We have on-going studies using both low-cost, lower fidelity flight simulators, and state-of-the-art helicopter simulation research facilities. Research results will be presented on: (1) the important visual scene information used in altitude and speed control; (2) the utility of monocular, stereo, and hyperstereo cues for the control of flight; (3) perceptual effects due to the differences between normal unaided daylight vision, and that made available by various night vision devices (e.g., light intensifying goggles and infra-red sensor displays); and (4) the utility of advanced contact displays in which instrument information is made part of the visual scene, as on a 'scene linked' head-up display (e.g., displaying altimeter information on a virtual billboard located on the ground).
Visual control of flight speed in Drosophila melanogaster.
Fry, Steven N; Rohrseitz, Nicola; Straw, Andrew D; Dickinson, Michael H
2009-04-01
Flight control in insects depends on self-induced image motion (optic flow), which the visual system must process to generate appropriate corrective steering maneuvers. Classic experiments in tethered insects applied rigorous system identification techniques for the analysis of turning reactions in the presence of rotating pattern stimuli delivered in open-loop. However, the functional relevance of these measurements for visual free-flight control remains equivocal due to the largely unknown effects of the highly constrained experimental conditions. To perform a systems analysis of the visual flight speed response under free-flight conditions, we implemented a 'one-parameter open-loop' paradigm using 'TrackFly' in a wind tunnel equipped with real-time tracking and virtual reality display technology. Upwind flying flies were stimulated with sine gratings of varying temporal and spatial frequencies, and the resulting speed responses were measured from the resulting flight speed reactions. To control flight speed, the visual system of the fruit fly extracts linear pattern velocity robustly over a broad range of spatio-temporal frequencies. The speed signal is used for a proportional control of flight speed within locomotor limits. The extraction of pattern velocity over a broad spatio-temporal frequency range may require more sophisticated motion processing mechanisms than those identified in flies so far. In Drosophila, the neuromotor pathways underlying flight speed control may be suitably explored by applying advanced genetic techniques, for which our data can serve as a baseline. Finally, the high-level control principles identified in the fly can be meaningfully transferred into a robotic context, such as for the robust and efficient control of autonomous flying micro air vehicles.
The free-flight response of Drosophila to motion of the visual environment.
Mronz, Markus; Lehmann, Fritz-Olaf
2008-07-01
In the present study we investigated the behavioural strategies with which freely flying fruit flies (Drosophila) control their flight trajectories during active optomotor stimulation in a free-flight arena. We measured forward, turning and climbing velocities of single flies using high-speed video analysis and estimated the output of a 'Hassenstein-Reichardt' elementary motion detector (EMD) array and the fly's gaze to evaluate flight behaviour in response to a rotating visual panorama. In a stationary visual environment, flight is characterized by flight saccades during which the animals turn on average 120 degrees within 130 ms. In a rotating environment, the fly's behaviour typically changes towards distinct, concentric circular flight paths where the radius of the paths increases with increasing arena velocity. The EMD simulation suggests that this behaviour is driven by a rotation-sensitive EMD detector system that minimizes retinal slip on each compound eye, whereas an expansion-sensitive EMD system with a laterally centred visual focus potentially helps to achieve centring response on the circular flight path. We developed a numerical model based on force balance between horizontal, vertical and lateral forces that allows predictions of flight path curvature at a given locomotor capacity of the fly. The model suggests that turning flight in Drosophila is constrained by the production of centripetal forces needed to avoid side-slip movements. At maximum horizontal velocity this force may account for up to 70% of the fly's body weight during yaw turning. Altogether, our analyses are widely consistent with previous studies on Drosophila free flight and those on the optomotor response under tethered flight conditions.
NASA Technical Reports Server (NTRS)
1979-01-01
The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.
Developing Tests of Visual Dependency
NASA Technical Reports Server (NTRS)
Kindrat, Alexandra N.
2011-01-01
Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.
Developments in flow visualization methods for flight research
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Obara, Clifford J.; Manuel, Gregory S.; Lee, Cynthia C.
1990-01-01
With the introduction of modern airplanes utilizing laminar flow, flow visualization has become an important diagnostic tool in determining aerodynamic characteristics such as surface flow direction and boundary-layer state. A refinement of the sublimating chemical technique has been developed to define both the boundary-layer transition location and the transition mode. In response to the need for flow visualization at subsonic and transonic speeds and altitudes above 20,000 feet, the liquid crystal technique has been developed. A third flow visualization technique that has been used is infrared imaging, which offers non-intrusive testing over a wide range of test conditions. A review of these flow visualization methods and recent flight results is presented for a variety of modern aircraft and flight conditions.
Modeling of pilot's visual behavior for low-level flight
NASA Astrophysics Data System (ADS)
Schulte, Axel; Onken, Reiner
1995-06-01
Developers of synthetic vision systems for low-level flight simulators deal with the problem to decide which features to incorporate in order to achieve most realistic training conditions. This paper supports an approach to this problem on the basis of modeling the pilot's visual behavior. This approach is founded upon the basic requirement that the pilot's mechanisms of visual perception should be identical in simulated and real low-level flight. Flight simulator experiments with pilots were conducted for knowledge acquisition. During the experiments video material of a real low-level flight mission containing different situations was displayed to the pilot who was acting under a realistic mission assignment in a laboratory environment. Pilot's eye movements could be measured during the replay. The visual mechanisms were divided into rule based strategies for visual navigation, based on the preflight planning process, as opposed to skill based processes. The paper results in a model of the pilot's planning strategy of a visual fixing routine as part of the navigation task. The model is a knowledge based system based upon the fuzzy evaluation of terrain features in order to determine the landmarks used by pilots. It can be shown that a computer implementation of the model selects those features, which were preferred by trained pilots, too.
Use of nontraditional flight displays for the reduction of central visual overload in the cockpit
NASA Technical Reports Server (NTRS)
Weinstein, Lisa F.; Wickens, Christopher D.
1992-01-01
The use of nontraditional flight displays to reduce visual overload in the cockpit was investigated in a dual-task paradigm. Three flight displays (central, peripheral, and ecological) were used between subjects for the primary tasks, and the type of secondary task (object identification or motion judgment) and the presentation of the location of the task in the visual field (central or peripheral) were manipulated with groups. The two visual-spatial tasks were time-shared to study the possibility of a compatibility mapping between task type and task location. The ecological display was found to allow for the most efficient time-sharing.
Flight simulator with spaced visuals
NASA Technical Reports Server (NTRS)
Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)
1980-01-01
A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.
Flight performance in night-flying sweat bees suffers at low light levels.
Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J
2007-11-01
The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Applicability. This appendix prescribes operating rules for airplane and helicopter visual flight rules air tour... any sightseeing flight conducted under visual flight rules in an airplane or helicopter for compensation or hire. “Air tour operator” means any person who conducts an air tour. Section 3. Helicopter...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Applicability. This appendix prescribes operating rules for airplane and helicopter visual flight rules air tour... any sightseeing flight conducted under visual flight rules in an airplane or helicopter for compensation or hire. “Air tour operator” means any person who conducts an air tour. Section 3. Helicopter...
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Applicability. This appendix prescribes operating rules for airplane and helicopter visual flight rules air tour... any sightseeing flight conducted under visual flight rules in an airplane or helicopter for compensation or hire. “Air tour operator” means any person who conducts an air tour. Section 3. Helicopter...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Applicability. This appendix prescribes operating rules for airplane and helicopter visual flight rules air tour... any sightseeing flight conducted under visual flight rules in an airplane or helicopter for compensation or hire. “Air tour operator” means any person who conducts an air tour. Section 3. Helicopter...
Background: Preflight Screening, In-flight Capabilities, and Postflight Testing
NASA Technical Reports Server (NTRS)
Gibson, Charles Robert; Duncan, James
2009-01-01
Recommendations for minimal in-flight capabilities: Retinal Imaging - provide in-flight capability for the visual monitoring of ocular health (specifically, imaging of the retina and optic nerve head) with the capability of downlinking video/still images. Tonometry - provide more accurate and reliable in-flight capability for measuring intraocular pressure. Ultrasound - explore capabilities of current on-board system for monitoring ocular health. We currently have limited in-flight capabilities on board the International Space Station for performing an internal ocular health assessment. Visual Acuity, Direct Ophthalmoscope, Ultrasound, Tonometry(Tonopen):
A Model for the Detection of Moving Targets in Visual Clutter Inspired by Insect Physiology
2008-07-01
paper: SDW PS DCO. References 1. Wagner H (1986) Flight performance and visual control of flight of the free- flying housefly (Musca domestica L) 3...differences in the chasing behaviour of houseflies (musca). Biol Cybern 32: 239–241. 3. Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42: 147
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Investigations for the improvement of flight simulators are reported. Topics include: visual cues in landing, comparison of linear and nonlinear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). An abstract is given for a thesis on the applications of human dynamic orientation models to motion simulation.
The Role of Visual Occlusion in Altitude Maintenance during Simulated Flight
ERIC Educational Resources Information Center
Gray, R.; Geri, G. A.; Akhtar, S. C.; Covas, C. M.
2008-01-01
The use of visual occlusion as a cue to altitude maintenance in low-altitude flight (LAF) was investigated. The extent to which the ground surface is occluded by 3-D objects varies with altitude and depends on the height, radius, and density of the objects. Participants attempted to maintain a constant altitude during simulated flight over an…
Effect of microgravity on several visual functions during STS shuttle missions
NASA Technical Reports Server (NTRS)
Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.
1992-01-01
Changes in the acuity of astronaut vision during flight are discussed. Parameters such as critical flicker vision, stereopsis to 10 seconds of arc, visual acuity in small steps to 20/7.7, cyclophoria, lateral and vertical phoria and retinal rivalry were tested using a visual function tester. Twenty-three Space Transportation System (STS) astronauts participated in the experiments. Their vision was assessed twice before launch and after landing, and three to four times while on-orbit and landing. No significant differences during space flight were observed for any of the visual parameters tested. In some cases, slight changes in acuity and stereopsis were observed with a subsequent return to normal vision after flight.
Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.; Long, Kurtis R.
2005-01-01
Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.
Perception and control of rotorcraft flight
NASA Technical Reports Server (NTRS)
Owen, Dean H.
1991-01-01
Three topics which can be applied to rotorcraft flight are examined: (1) the nature of visual information; (2) what visual information is informative about; and (3) the control of visual information. The anchorage of visual perception is defined as the distribution of structure in the surrounding optical array or the distribution of optical structure over the retinal surface. A debate was provoked about whether the referent of visual event perception, and in turn control, is optical motion, kinetics, or dynamics. The interface of control theory and visual perception is also considered. The relationships among these problems is the basis of this article.
The role of experience in flight behaviour of Drosophila.
Hesselberg, Thomas; Lehmann, Fritz-Olaf
2009-10-01
Experience plays a key role in the acquisition of complex motor skills in running and flight of many vertebrates. To evaluate the significance of previous experience for the efficiency of motor behaviour in an insect, we investigated the flight behaviour of the fruit fly Drosophila. We reared flies in chambers in which the animals could freely walk and extend their wings, but could not gain any flight experience. These naive animals were compared with control flies under both open- and closed-loop tethered flight conditions in a flight simulator as well as in a free-flight arena. The data suggest that the overall flight behaviour in Drosophila seems to be predetermined because both groups exhibited similar mean stroke amplitude and stroke frequency, similar open-loop responses to visual stimulation and the immediate ability to track visual objects under closed-loop feedback conditions. In short free flight bouts, peak saccadic turning rate, angular acceleration, peak horizontal speed and flight altitude were also similar in naive and control flies. However, we found significant changes in other key parameters in naive animals such as a reduction in mean horizontal speed (-23%) and subtle changes in mean turning rate (-48%). Naive flies produced 25% less yaw torque-equivalent stroke amplitudes than the controls in response to a visual stripe rotating in open loop around the tethered animal, potentially suggesting a flight-dependent adaptation of the visuo-motor gain in the control group. This change ceased after the animals experienced visual closed-loop feedback. During closed-loop flight conditions, naive flies had 53% larger differences in left and right stroke amplitude when fixating a visual object, thus steering control was less precise. We discuss two alternative hypotheses to explain our results: the ;neuronal experience' hypothesis, suggesting that there are some elements of learning and fine-tuning involved during the first flight experiences in Drosophila and the ;muscular exercise' hypothesis. Our experiments support the first hypothesis because maximum locomotor capacity seems not to be significantly impaired in the naive group. Although this study primarily confirms the genetic pre-disposition for flight in Drosophila, previous experience may apparently adjust locomotor fine control and aerial performance, although this effect seems to be small compared with vertebrates.
NASA Technical Reports Server (NTRS)
Sitterley, T. E.; Zaitzeff, L. P.; Berge, W. A.
1972-01-01
Flight control and procedural task skill degradation, and the effectiveness of retraining methods were evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Fifteen experienced pilots were trained and then tested after 4 months either without the benefits of practice or with static rehearsal, dynamic rehearsal or with dynamic warmup practice. Performance on both the flight control and procedure tasks degraded significantly after 4 months. The rehearsal methods effectively countered procedure task skill degradation, while dynamic rehearsal or a combination of static rehearsal and dynamic warmup practice was required for the flight control tasks. The quality of the retraining methods appeared to be primarily dependent on the efficiency of visual cue reinforcement.
Vestibular-visual interactions in flight simulators
NASA Technical Reports Server (NTRS)
Clark, B.
1977-01-01
All 139 research papers published under this ten-year program are listed. Experimental work was carried out at the Ames Research Center involving man's sensitivity to rotational acceleration, and psychophysical functioning of the semicircular canals; vestibular-visual interactions and effects of other sensory systems were studied in flight simulator environments. Experiments also dealt with the neurophysiological vestibular functions of animals, and flight management investigations of man-vehicle interactions.
Research on flight stability performance of rotor aircraft based on visual servo control method
NASA Astrophysics Data System (ADS)
Yu, Yanan; Chen, Jing
2016-11-01
control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.
Through the eyes of a bird: modelling visually guided obstacle flight
Lin, Huai-Ti; Ros, Ivo G.; Biewener, Andrew A.
2014-01-01
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional–derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated. PMID:24812052
Through the eyes of a bird: modelling visually guided obstacle flight.
Lin, Huai-Ti; Ros, Ivo G; Biewener, Andrew A
2014-07-06
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional-derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated.
Functional divisions for visual processing in the central brain of flying Drosophila
Weir, Peter T.; Dickinson, Michael H.
2015-01-01
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit. PMID:26324910
Functional divisions for visual processing in the central brain of flying Drosophila.
Weir, Peter T; Dickinson, Michael H
2015-10-06
Although anatomy is often the first step in assigning functions to neural structures, it is not always clear whether architecturally distinct regions of the brain correspond to operational units. Whereas neuroarchitecture remains relatively static, functional connectivity may change almost instantaneously according to behavioral context. We imaged panneuronal responses to visual stimuli in a highly conserved central brain region in the fruit fly, Drosophila, during flight. In one substructure, the fan-shaped body, automated analysis revealed three layers that were unresponsive in quiescent flies but became responsive to visual stimuli when the animal was flying. The responses of these regions to a broad suite of visual stimuli suggest that they are involved in the regulation of flight heading. To identify the cell types that underlie these responses, we imaged activity in sets of genetically defined neurons with arborizations in the targeted layers. The responses of this collection during flight also segregated into three sets, confirming the existence of three layers, and they collectively accounted for the panneuronal activity. Our results provide an atlas of flight-gated visual responses in a central brain circuit.
Ros, Ivo G; Biewener, Andrew A
2017-01-01
Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles.
Ros, Ivo G.; Biewener, Andrew A.
2017-01-01
Similar flight control principles operate across insect and vertebrate fliers. These principles indicate that robust solutions have evolved to meet complex behavioral challenges. Following from studies of visual and cervical feedback control of flight in insects, we investigate the role of head stabilization in providing feedback cues for controlling turning flight in pigeons. Based on previous observations that the eyes of pigeons remain at relatively fixed orientations within the head during flight, we test potential sensory control inputs derived from head and body movements during 90° aerial turns. We observe that periods of angular head stabilization alternate with rapid head repositioning movements (head saccades), and confirm that control of head motion is decoupled from aerodynamic and inertial forces acting on the bird's continuously rotating body during turning flapping flight. Visual cues inferred from head saccades correlate with changes in flight trajectory; whereas the magnitude of neck bending predicts angular changes in body position. The control of head motion to stabilize a pigeon's gaze may therefore facilitate extraction of important motion cues, in addition to offering mechanisms for controlling body and wing movements. Strong similarities between the sensory flight control of birds and insects may also inspire novel designs of robust controllers for human-engineered autonomous aerial vehicles. PMID:29249929
Visual Spatial Disorientation: Re-Visiting the Black Hole Illusion
2007-01-24
National Transportation Safety Board. Controlled Flight into Terrain, Korean Air Flight 801 , Nimitz Hill, Guam; 1997. 50. National Transportation Safety...According to a Boeing study of worldwide commercial airline accidents, the approach and landing phase of flying, although only accounting for 4% of the...VISUAL SPATIAL DISORIENTATION Kraft (31) described four night visual, landing airline accidents. Black Hole Illusion 5 1. In 1965, a United Airlines
Pilot/vehicle model analysis of visually guided flight
NASA Technical Reports Server (NTRS)
Zacharias, Greg L.
1991-01-01
Information is given in graphical and outline form on a pilot/vehicle model description, control of altitude with simple terrain clues, simulated flight with visual scene delays, model-based in-cockpit display design, and some thoughts on the role of pilot/vehicle modeling.
Baird, Emily; Fernandez, Diana C; Wcislo, William T; Warrant, Eric J
2015-01-01
Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion-a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus.
Baird, Emily; Fernandez, Diana C.; Wcislo, William T.; Warrant, Eric J.
2015-01-01
Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion—a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus. PMID:26578977
Pre-flight sensorimotor adaptation protocols for suborbital flight.
Shelhamer, Mark; Beaton, Kara
2012-01-01
Commercial suborbital flights, which include 3-5 minutes of 0 g between hyper-g launch and landing phases, will present suborbital passengers with a challenging sensorimotor experience. Based on the results of neurovestibular research in parabolic and orbital flight, and the anticipated wide range of fitness and experience levels of suborbital passengers, neurovestibular disturbances are likely to be problematic in this environment. Pre-flight adaptation protocols might alleviate some of these issues. Therefore, we describe a set of sensorimotor tests to evaluate passengers before suborbital flight, including assessment of the angular vestibulo-ocular reflex (VOR), ocular skew and disconjugate torsion, subjective visual vertical, and roll vection. Performance on these tests can be examined for correlations with in-flight experience, such as motion sickness, disorientation, and visual disturbances, based on questionnaires and cabin video recordings. Through an understanding of sensorimotor adaptation to parabolic and orbital flight, obtained from many previous studies, we can then suggest appropriate pre-flight adaptation procedures.
A review of flight simulation techniques
NASA Astrophysics Data System (ADS)
Baarspul, Max
After a brief historical review of the evolution of flight simulation techniques, this paper first deals with the main areas of flight simulator applications. Next, it describes the main components of a piloted flight simulator. Because of the presence of the pilot-in-the-loop, the digital computer driving the simulator must solve the aircraft equations of motion in ‘real-time’. Solutions to meet the high required computer power of todays modern flight simulator are elaborated. The physical similarity between aircraft and simulator in cockpit layout, flight instruments, flying controls etc., is discussed, based on the equipment and environmental cue fidelity required for training and research simulators. Visual systems play an increasingly important role in piloted flight simulation. The visual systems now available and most widely used are described, where image generators and display devices will be distinguished. The characteristics of out-of-the-window visual simulation systems pertaining to the perceptual capabilities of human vision are discussed. Faithful reproduction of aircraft motion requires large travel, velocity and acceleration capabilities of the motion system. Different types and applications of motion systems in e.g. airline training and research are described. The principles of motion cue generation, based on the characteristics of the non-visual human motion sensors, are described. The complete motion system, consisting of the hardware and the motion drive software, is discussed. The principles of mathematical modelling of the aerodynamic, flight control, propulsion, landing gear and environmental characteristics of the aircraft are reviewed. An example of the identification of an aircraft mathematical model, based on flight and taxi tests, is presented. Finally, the paper deals with the hardware and software integration of the flight simulator components and the testing and acceptance of the complete flight simulator. Examples of the so-called ‘Computer Generated Checkout’ and ‘Proof of Match’ are presented. The concluding remarks briefly summarize the status of flight simulator technology and consider possibilities for future research.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.
2011-01-01
A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.
Performance, physiological, and oculometer evaluation of VTOL landing displays
NASA Technical Reports Server (NTRS)
North, R. A.; Stackhouse, S. P.; Graffunder, K.
1979-01-01
A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Physiological, visual response, and conventional flight performance measures were recorded for landing approaches performed in the NASA Visual Motion Simulator (VMS). Three displays (two computer graphic and a conventional flight director), three crosswind amplitudes, and two motion base conditions (fixed vs. moving base) were tested in a factorial design. Multivariate discriminant functions were formed from flight performance and/or visual response variables. The flight performance variable discriminant showed maximum differentation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus represent higher workload levels.
Research and analysis of head-directed area-of-interest visual system concepts
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1983-01-01
An analysis and survey with conjecture supporting a preliminary data base design is presented. The data base is intended for use in a Computer Image Generator visual subsystem for a rotorcraft flight simulator that is used for rotorcraft systems development, not training. The approach taken was to attempt to identify the visual perception strategies used during terrain flight, survey environmental and image generation factors, and meld these into a preliminary data base design. This design is directed at Data Base developers, and hopefully will stimulate and aid their efforts to evolve such a Base that will support simulation of terrain flight operations.
General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.
2014-01-01
A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.
B-1 AFT Nacelle Flow Visualization Study
NASA Technical Reports Server (NTRS)
Celniker, Robert
1975-01-01
A 2-month program was conducted to perform engineering evaluation and design tasks to prepare for visualization and photography of the airflow along the aft portion of the B-1 nacelles and nozzles during flight test. Several methods of visualizing the flow were investigated and compared with respect to cost, impact of the device on the flow patterns, suitability for use in the flight environment, and operability throughout the flight. Data were based on a literature search and discussions with the test personnel. Tufts were selected as the flow visualization device in preference to several other devices studied. A tuft installation pattern has been prepared for the right-hand aft nacelle area of B-1 air vehicle No.2. Flight research programs to develop flow visualization devices other than tufts for use in future testing are recommended. A design study was conducted to select a suitable motion picture camera, to select the camera location, and to prepare engineering drawings sufficient to permit installation of the camera. Ten locations on the air vehicle were evaluated before the selection of the location in the horizontal stabilizer actuator fairing. The considerations included cost, camera angle, available volume, environmental control, flutter impact, and interference with antennas or other instrumentation.
NASA Technical Reports Server (NTRS)
Young, L. R.
1975-01-01
Preliminary tests and evaluation are presented of pilot performance during landing (flight paths) using computer generated images (video tapes). Psychophysiological factors affecting pilot visual perception were measured. A turning flight maneuver (pitch and roll) was specifically studied using a training device, and the scaling laws involved were determined. Also presented are medical studies (abstracts) on human response to gravity variations without visual cues, acceleration stimuli effects on the semicircular canals, and neurons affecting eye movements, and vestibular tests.
Flight crew exposure to ozone concentrations affecting the visual system.
Daubs, J
1980-02-01
To estimate the potential for ozone (O3) effects on the human visual system in flight, O3 concentrations in Boeing 747-100 cockpits were measured during routine flights between London and the United States. From a review of previous reports, it appears that O3 may have both beneficial and harmful effects but that further studies of the visual system responses to O3 are needed before the present findings of 0.030 parts per million (ppm) mean O3, 0.200 ppm maximum O3, and 0.261 ppm-hours average cumulative O3 exposure can be effectively evaluated. Unexpectedly high O3 concentrations were encountered at altitudes below 18,000 feet and, at times, the O3 concentration was observed to decrease as flight level was increased. The clinical, operational, and policy implications of these findings are discussed.
An Analysis of Helicopter Pilot Scan Techniques While Flying at Low Altitudes and High Speed
2012-09-01
Manager SV Synthetic Vision TFH Total Flight Hours TOFT Tactical Operational Flight Trainer VFR Visual Flight Rules VMC Visual Meteorological...Crognale, 2008). Recently, the use of synthetic vision (SV) and a heads-up- display (HUD) have been a topic of discussion in the aviation community... Synthetic vision uses external cameras to provide the pilot with an enhanced view of the outside world, usually with the assistance of night vision
Characteristics of Flight Simulator Visual Systems
1981-05-01
0 . C,...)l .l.Li J ; I a= c I 0 a= c ~ LEVEL1r AGARD ADVISORY REPORT No.164 Characteristics of Flight Simulator Visual Systems...OT\\g . E L E C l ·: .. ;. . . . . , .. , • I ,t l• • ’f) . JIJL 1 6 \\98\\ .. ~ DISTRIBUTION AND AVAILABILITY ON BACK COVER 1 NORTH ATLANTIC...Printed by Technical Editing and Reproduchton Ltd Harford House, 7-9 Charlotte St. London, WIP )HD I PREFACE The Flight Mechanics Panel (FMP) of the
An evaluation of unisensory and multisensory adaptive flight-path navigation displays
NASA Astrophysics Data System (ADS)
Moroney, Brian W.
1999-11-01
The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added benefit of the adaptive interfaces. In the return-to-course scenario, the relative advantages of the three adaptive interfaces were dependent upon the nature of the CT in a complex way. In the absence of a CT, recovery heading performance was superior with the adaptive visual and adaptive composite interfaces compared to the adaptive auditory interface. In the context of a visual CT, recovery when using the adaptive composite interface was superior to that when using the adaptive visual interface. Post-experimental inquiry indicated that when faced with a visual CT, the pilots used the auditory component of the multimodal guidance display to detect gross heading errors and the visual component to make more fine-grained heading adjustments. In the context of the auditory CT, navigation performance using the adaptive visual interface tended to be superior to that when using the adaptive auditory interface. Neither CT performance nor NASA-TLX workload level was influenced differentially by the interface configurations. Thus, the potential benefits associated with the proposed interfaces appear to be unaccompanied by negative side effects involving CT interference and workload. The adaptive interface configurations were altered without any direct input from the pilot. Thus, it was feared that pilots might reject the activation of interfaces independent of their control. However, pilots' debriefing comments about the efficacy of the adaptive interface approach were very positive. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Delene, D. J.
2014-12-01
Research aircraft that conduct atmospheric measurements carry an increasing array of instrumentation. While on-board personnel constantly review instrument parameters and time series plots, there are an overwhelming number of items. Furthermore, directing the aircraft flight takes up much of the flight scientist time. Typically, a flight engineer is given the responsibility of reviewing the status of on-board instruments. While major issues like not receiving data are quickly identified during a flight, subtle issues like low but believable concentration measurements may go unnoticed. Therefore, it is critical to review data after a flight in near real time. The Airborne Data Processing and Analysis (ADPAA) software package used by the University of North Dakota automates the post-processing of aircraft flight data. Utilizing scripts to process the measurements recorded by data acquisition systems enables the generation of data files within an hour of flight completion. The ADPAA Cplot visualization program enables plots to be quickly generated that enable timely review of all recorded and processed parameters. Near real time review of aircraft flight data enables instrument problems to be identified, investigated and fixed before conducting another flight. On one flight, near real time data review resulted in the identification of unusually low measurements of cloud condensation nuclei, and rapid data visualization enabled the timely investigation of the cause. As a result, a leak was found and fixed before the next flight. Hence, with the high cost of aircraft flights, it is critical to find and fix instrument problems in a timely matter. The use of a automated processing scripts and quick visualization software enables scientists to review aircraft flight data in near real time to identify potential problems.
Characteristics of flight simulator visual systems
NASA Technical Reports Server (NTRS)
Statler, I. C. (Editor)
1981-01-01
The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality.
Dissociation of visual associative and motor learning in Drosophila at the flight simulator.
Wang, Shunpeng; Li, Yan; Feng, Chunhua; Guo, Aike
2003-08-29
Ever since operant conditioning was studied experimentally, the relationship between associative learning and possible motor learning has become controversial. Although motor learning and its underlying neural substrates have been extensively studied in mammals, it is still poorly understood in invertebrates. The visual discriminative avoidance paradigm of Drosophila at the flight simulator has been widely used to study the flies' visual associative learning and related functions, but it has not been used to study the motor learning process. In this study, newly-designed data analysis was employed to examine the flies' solitary behavioural variable that was recorded at the flight simulator-yaw torque. Analysis was conducted to explore torque distributions of both wild-type and mutant flies in conditioning, with the following results: (1) Wild-type Canton-S flies had motor learning performance in conditioning, which was proved by modifications of the animal's behavioural mode in conditioning. (2) Repetition of training improved the motor learning performance of wild-type Canton-S flies. (3) Although mutant dunce(1) flies were defective in visual associative learning, they showed essentially normal motor learning performance in terms of yaw torque distribution in conditioning. Finally, we tentatively proposed that both visual associative learning and motor learning were involved in the visual operant conditioning of Drosophila at the flight simulator, that the two learning forms could be dissociated and they might have different neural bases.
The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster.
Budick, Seth A; Reiser, Michael B; Dickinson, Michael H
2007-12-01
It has long been known that many flying insects use visual cues to orient with respect to the wind and to control their groundspeed in the face of varying wind conditions. Much less explored has been the role of mechanosensory cues in orienting insects relative to the ambient air. Here we show that Drosophila melanogaster, magnetically tethered so as to be able to rotate about their yaw axis, are able to detect and orient into a wind, as would be experienced during forward flight. Further, this behavior is velocity dependent and is likely subserved, at least in part, by the Johnston's organs, chordotonal organs in the antennae also involved in near-field sound detection. These wind-mediated responses may help to explain how flies are able to fly forward despite visual responses that might otherwise inhibit this behavior. Expanding visual stimuli, such as are encountered during forward flight, are the most potent aversive visual cues known for D. melanogaster flying in a tethered paradigm. Accordingly, tethered flies strongly orient towards a focus of contraction, a problematic situation for any animal attempting to fly forward. We show in this study that wind stimuli, transduced via mechanosensory means, can compensate for the aversion to visual expansion and thus may help to explain how these animals are indeed able to maintain forward flight.
1997-08-01
have difficulties dealing with the stress of the flight training environment. The DMT presents subjects with repeated subliminal exposure to a...ability (i.e., visual and auditory ) and flight training performance. Also, there have been some reports of success for using a variety of tests (e.g...has reported moderate correlations (.22 to .54) between a measure of dual-tasking ability (i.e., visual and auditory ) and flight training performance
Zhang, Sheng; Sunami, Yuta; Hashimoto, Hiromu
2018-04-10
Dragonfly has excellent flight performance and maneuverability due to the complex vein structure of wing. In this research, nodus as an important structural element of the dragonfly wing is investigated through an experimental visualization approach. Three vein structures were fabricated as, open-nodus structure, closed-nodus structure (with a flex-limiter) and rigid wing. The samples were conducted in a wind tunnel with a high speed camera to visualize the deformation of wing structure in order to study the function of nodus structured wing in gliding flight. According to the experimental results, nodus has a great influence on the flexibility of the wing structure. Moreover, the closed-nodus wing (with a flex-limiter) enables the vein structure to be flexible without losing the strength and rigidity of the joint. These findings enhance the knowledge of insect-inspired nodus structured wing and facilitate the application of Micro Air Vehicle (MAV) in gliding flight.
Space flight visual simulation.
Xu, L
1985-01-01
In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed.
Sensor-enhanced 3D conformal cueing for safe and reliable HC operation in DVE in all flight phases
NASA Astrophysics Data System (ADS)
Münsterer, Thomas; Schafhitzel, Tobias; Strobel, Michael; Völschow, Philipp; Klasen, Stephanus; Eisenkeil, Ferdinand
2014-06-01
Low level helicopter operations in Degraded Visual Environment (DVE) still are a major challenge and bear the risk of potentially fatal accidents. DVE generally encompasses all degradations to the visual perception of the pilot ranging from night conditions via rain and snowfall to fog and maybe even blinding sunlight or unstructured outside scenery. Each of these conditions reduce the pilots' ability to perceive visual cues in the outside world reducing his performance and finally increasing risk of mission failure and accidents, like for example Controlled Flight Into Terrain (CFIT). The basis for the presented solution is a fusion of processed and classified high resolution ladar data with database information having a potential to also include other sensor data like forward looking or 360° radar data. This paper reports on a pilot assistance system aiming at giving back the essential visual cues to the pilot by means of displaying 3D conformal cues and symbols in a head-tracked Helmet Mounted Display (HMD) and a combination with synthetic view on a head-down Multi-Function Display (MFD). Each flight phase and each flight envelope requires different symbology sets and different possibilities for the pilots to select specific support functions. Several functionalities have been implemented and tested in a simulator as well as in flight. The symbology ranges from obstacle warning symbology via terrain enhancements through grids or ridge lines to different waypoint symbols supporting navigation. While some adaptations can be automated it emerged as essential that symbology characteristics and completeness can be selected by the pilot to match the relevant flight envelope and outside visual conditions.
1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)
NASA Technical Reports Server (NTRS)
1985-01-01
This image shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.
1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)
NASA Technical Reports Server (NTRS)
1980-01-01
This short movie clip shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow visualization.
How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization
Kress, Daniel; van Bokhorst, Evelien; Lentink, David
2015-01-01
Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow) that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones. PMID:26107413
Visual suppression of the vestibulo-ocular reflex during space flight
NASA Technical Reports Server (NTRS)
Uri, John J.; Thornton, William E.; Moore, Thomas P.; Pool, Sam L.
1989-01-01
Visual suppression of the vestibulo-ocular reflex was studied in 16 subjects on 4 Space Shuttle missions. Eye movements were recorded by electro-oculography while subjects fixated a head mounted target during active sinusoidal head oscillation at 0.3 Hz. Adequacy of suppression was evaluated by the number of nystagmus beats, the mean amplitude of each beat, and the cumulative amplitude of nystagmus during two head oscillation cycles. Vestibulo-ocular reflex suppression was unaffected by space flight. Subjects with space motion sickness during flight had significantly more nystagmus beats than unaffected individuals. These susceptible subjects also tended to have more nystagmus beats before flight.
Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions
NASA Technical Reports Server (NTRS)
Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.
2012-01-01
Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.
Stanton, Neville A; Plant, Katherine L; Roberts, Aaron P; Allison, Craig K
2017-12-15
Flight within degraded visual conditions is a great challenge to pilots of rotary-wing craft. Environmental cues typically used to guide interpretation of speed, location and approach can become obscured, forcing the pilots to rely on data available from in-cockpit instrumentation. To ease the task of flight during degraded visual conditions, pilots require easy access to flight critical information. The current study examined the effect of 'Highways in the Sky' symbology and a conformal virtual pad for landing presented using a Head Up Display (HUD) on pilots' workload and situation awareness for both clear and degraded conditions across a series of simulated rotary-wing approach and landings. Results suggest that access to the HUD lead to significant improvements to pilots' situation awareness, especially within degraded visual conditions. Importantly, access to the HUD facilitated pilot awareness in all conditions. Results are discussed in terms of future HUD development. Practitioner Summary: This paper explores the use of a novel Heads Up Display, to facilitate rotary-wing pilots' situation awareness and workload for simulated flights in both clear and degraded visual conditions. Results suggest that access to HUD facilitated pilots' situation awareness, especially when flying in degraded conditions.
Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor
NASA Technical Reports Server (NTRS)
Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn
2009-01-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.
NASA Technical Reports Server (NTRS)
Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.
1984-01-01
Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization.
32 CFR 766.5 - Conditions governing use of aviation facilities by civil aircraft.
Code of Federal Regulations, 2011 CFR
2011-07-01
... weather minimums as follows: (1) Visual Flight Operations shall be conducted in accordance with Federal Aviation Regulations (FAR), § 91.105 of this title. If more stringent visual flight rules minimums have... must be noted in § 766.5 of the license application. If a narrative report from the pilot is available...
32 CFR 766.5 - Conditions governing use of aviation facilities by civil aircraft.
Code of Federal Regulations, 2010 CFR
2010-07-01
... weather minimums as follows: (1) Visual Flight Operations shall be conducted in accordance with Federal Aviation Regulations (FAR), § 91.105 of this title. If more stringent visual flight rules minimums have... must be noted in § 766.5 of the license application. If a narrative report from the pilot is available...
Development of a Flight Simulation Data Visualization Workstation
NASA Technical Reports Server (NTRS)
Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.
1996-01-01
Today's moderm flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format . Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper traces the design, development and implementation of the SimGraph program, and is intended to be a programmer's reference guide.
NASA Technical Reports Server (NTRS)
Murphy, M. R.; Randle, R. J.; Williams, B. A.
1977-01-01
Possible 24-h variations in accommodation responses were investigated. A recently developed servo-controlled optometer and focus stimulator were used to obtain monocular accommodation response data on four college-age subjects. No 24-h rhythm in accommodation was shown. Heart rate and blink rate also were measured and periodicity analysis showed a mean 24-h rhythm for both; however, blink rate periodograms were significant for only two of the four subjects. Thus, with the qualifications that college students were tested instead of pilots and that they performed monocular laboratory tasks instead of binocular flight-deck tasks, it is concluded that 24-h rhythms in accommodation responses need not be considered in setting visual standards for flight-deck tasks.
Haltere mechanosensory influence on tethered flight behavior in Drosophila.
Mureli, Shwetha; Fox, Jessica L
2015-08-01
In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli. Haltere input was altered by surgically decreasing its mass, or by removing it entirely. Haltere removal does not affect the flies' ability to flap or steer their wings, but it does increase the temporal frequency at which they modify their wingbeat amplitude. Reducing the haltere mass decreases the optomotor reflex response to wide-field motion, and removing the haltere entirely does not further decrease the response. Decreasing the mass does not attenuate the response to figure motion, but removing the entire haltere does attenuate the response. When flies are allowed to control a visual stimulus in closed-loop conditions, haltereless flies fixate figures with the same acuity as intact flies, but cannot stabilize a wide-field stimulus as accurately as intact flies can. These manipulations suggest that the haltere mass is influential in wide-field stabilization, but less so in figure tracking. In both figure and wide-field experiments, we observe responses to visual motion with and without halteres, indicating that during tethered flight, intact halteres are not strictly necessary for visually guided wing-steering responses. However, the haltere feedback loop may operate in a context-dependent way to modulate responses to visual motion. © 2015. Published by The Company of Biologists Ltd.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-flight rules (day). For VFR flight during the day, the following instruments and equipment are required... chapter in effect on September 16, 1991. (c) Visual flight rules (night). For VFR flight at night, the... paragraph (b) of this section, and, for night flight, instruments and equipment specified in paragraph (c...
Visual control of prey-capture flight in dragonflies.
Olberg, Robert M
2012-04-01
Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects. Copyright © 2011 Elsevier Ltd. All rights reserved.
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
Visual Elements in Flight Simulation
1975-07-01
control. In consequence, current efforts tc create appropriate visual simulations run the gamut from efforts toward almost complete replication of the...create appropriate visual simulations run the gamut from efforts to create appropriate visual simulations run the gamut from efforts toward almost
Wiegmann, Douglas A; Goh, Juliana; O'Hare, David
2002-01-01
Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.
Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight.
Wylie, Douglas R; Gutiérrez-Ibáñez, Cristián; Gaede, Andrea H; Altshuler, Douglas L; Iwaniuk, Andrew N
2018-01-01
In this paper, we review the connections and physiology of visual pathways to the cerebellum in birds and consider their role in flight. We emphasize that there are two visual pathways to the cerebellum. One is to the vestibulocerebellum (folia IXcd and X) that originates from two retinal-recipient nuclei that process optic flow: the nucleus of the basal optic root (nBOR) and the pretectal nucleus lentiformis mesencephali (LM). The second is to the oculomotor cerebellum (folia VI-VIII), which receives optic flow information, mainly from LM, but also local visual motion information from the optic tectum, and other visual information from the ventral lateral geniculate nucleus (Glv). The tectum, LM and Glv are all intimately connected with the pontine nuclei, which also project to the oculomotor cerebellum. We believe this rich integration of visual information in the cerebellum is important for analyzing motion parallax that occurs during flight. Finally, we extend upon a suggestion by Ibbotson (2017) that the hypertrophy that is observed in LM in hummingbirds might be due to an increase in the processing demands associated with the pathway to the oculomotor cerebellum as they fly through a cluttered environment while feeding.
Computer graphic visualization of orbiter lower surface boundary-layer transition
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.; Hartung, L. C.
1984-01-01
Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.
Nocturnal insects use optic flow for flight control
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-01-01
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta—like their day-active relatives—rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. PMID:21307047
Helicopter pilot scan techniques during low-altitude high-speed flight.
Kirby, Christopher E; Kennedy, Quinn; Yang, Ji Hyun
2014-07-01
This study examined pilots' visual scan patterns during a simulated high-speed, low-level flight and how their scan rates related to flight performance. As helicopters become faster and more agile, pilots are expected to navigate at low altitudes while traveling at high speeds. A pilot's ability to interpret information from a combination of visual sources determines not only mission success, but also aircraft and crew survival. In a fixed-base helicopter simulator modeled after the U.S. Navy's MH-60S, 17 active-duty Navy helicopter pilots with varying total flight times flew and navigated through a simulated southern Californian desert course. Pilots' scan rate and fixation locations were monitored using an eye-tracking system while they flew through the course. Flight parameters, including altitude, were recorded using the simulator's recording system. Experienced pilots with more than 1000 total flight hours better maintained a constant altitude (mean altitude deviation = 48.52 ft, SD = 31.78) than less experienced pilots (mean altitude deviation = 73.03 ft, SD = 10.61) and differed in some aspects of their visual scans. They spent more time looking at the instrument display and less time looking out the window (OTW) than less experienced pilots. Looking OTW was associated with less consistency in maintaining altitude. Results may aid training effectiveness specific to helicopter aviation, particularly in high-speed low-level flight conditions.
SimGraph: A Flight Simulation Data Visualization Workstation
NASA Technical Reports Server (NTRS)
Kaplan, Joseph A.; Kenney, Patrick S.
1997-01-01
Today's modern flight simulation research produces vast amounts of time sensitive data, making a qualitative analysis of the data difficult while it remains in a numerical representation. Therefore, a method of merging related data together and presenting it to the user in a more comprehensible format is necessary. Simulation Graphics (SimGraph) is an object-oriented data visualization software package that presents simulation data in animated graphical displays for easy interpretation. Data produced from a flight simulation is presented by SimGraph in several different formats, including: 3-Dimensional Views, Cockpit Control Views, Heads-Up Displays, Strip Charts, and Status Indicators. SimGraph can accommodate the addition of new graphical displays to allow the software to be customized to each user s particular environment. A new display can be developed and added to SimGraph without having to design a new application, allowing the graphics programmer to focus on the development of the graphical display. The SimGraph framework can be reused for a wide variety of visualization tasks. Although it was created for the flight simulation facilities at NASA Langley Research Center, SimGraph can be reconfigured to almost any data visualization environment. This paper describes the capabilities and operations of SimGraph.
Visual and motion cueing in helicopter simulation
NASA Technical Reports Server (NTRS)
Bray, R. S.
1985-01-01
Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.
Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.
2014-01-01
Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.
AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research
NASA Technical Reports Server (NTRS)
Laughter, Sean; Cox, David
2016-01-01
The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.
Barron, Andrew; Srinivasan, Mandyam V
2006-03-01
There is now increasing evidence that honey bees regulate their ground speed in flight by holding constant the speed at which the image of the environment moves across the eye (optic flow). We have investigated the extent to which ground speed is affected by headwinds. Honey bees were trained to enter a tunnel to forage at a sucrose feeder placed at its far end. Ground speeds in the tunnel were recorded while systematically varying the visual texture of the tunnel, and the strength of headwinds experienced by the flying bees. We found that in a flight tunnel bees used visual cues to maintain their ground speed, and adjusted their air speed to maintain a constant rate of optic flow, even against headwinds which were, at their strongest, 50% of a bee's maximum recorded forward velocity. Manipulation of the visual texture revealed that headwind is compensated almost fully even when the optic flow cues are very sparse and subtle, demonstrating the robustness of this visual flight control system. We discuss these findings in the context of field observations of flying bees.
Behavioural system identification of visual flight speed control in Drosophila melanogaster
Rohrseitz, Nicola; Fry, Steven N.
2011-01-01
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
Rohrseitz, Nicola; Fry, Steven N
2011-02-06
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.
When the Wheels Touch Earth and the Flight is Through, Pilots Find One Eye is Better Than Two?
NASA Technical Reports Server (NTRS)
Valimont, Brian; Wise, John A.; Nichols, Troy; Best, Carl; Suddreth, John; Cupero, Frank
2009-01-01
This study investigated the impact of near to eye displays on both operational and visual performance by employing a human-in-the-loop simulation of straight-in ILS approaches while using a near to eye (NTE) display. The approaches were flown in simulated visual and instrument conditions while using either a biocular NTE or a monocular NTE display on either the dominant or non dominant eye. The pilot s flight performance, visual acuity, and ability to detect unsafe conditions on the runway were tested.
Human Factors Assessment of Vibration Effects on Visual Performance During Launch
NASA Technical Reports Server (NTRS)
Holden, Kritina
2009-01-01
The Human Factors Assessment of Vibration Effects on Visual Performance During Launch (Visual Performance) investigation will determine visual performance limits during operational vibration and g-loads on the Space Shuttle, specifically through the determination of minimum readable font size during ascent using planned Orion display formats. Research Summary: The aim of the Human Factors Assessment of Vibration Effects on Visual Performance during Launch (Visual Performance) investigation is to provide supplementary data to that collected by the Thrust Oscillation Seat Detailed Technical Objective (DTO) 695 (Crew Seat DTO) which will measure seat acceleration and vibration from one flight deck and two middeck seats during ascent. While the Crew Seat DTO data alone are important in terms of providing a measure of vibration and g-loading, human performance data are required to fully interpret the operational consequences of the vibration values collected during Space Shuttle ascent. During launch, crewmembers will be requested to view placards with varying font sizes and indicate the minimum readable size. In combination with the Crew Seat DTO, the Visual Performance investigation will: Provide flight-validated evidence that will be used to establish vibration limits for visual performance during combined vibration and linear g-loading. o Provide flight data as inputs to ongoing ground-based simulations, which will further validate crew visual performance under vibration loading in a controlled environment. o Provide vibration and performance metrics to help validate procedures for ground tests and analyses of seats, suits, displays and controls, and human-in-the-loop performance.
Toward Head-Up and Head-Worn Displays for Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Arthur, Jarvis J.; Bailey, Randall E.; Shelton, Kevin J.; Kramer, Lynda J.; Jones, Denise R.; Williams, Steven P.; Harrison, Stephanie J.; Ellis, Kyle K.
2015-01-01
A key capability envisioned for the future air transportation system is the concept of equivalent visual operations (EVO). EVO is the capability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. Enhanced Flight Vision Systems (EFVS) offer a path to achieve EVO. NASA has successfully tested EFVS for commercial flight operations that has helped establish the technical merits of EFVS, without reliance on natural vision, to runways without category II/III ground-based navigation and lighting requirements. The research has tested EFVS for operations with both Head-Up Displays (HUDs) and "HUD equivalent" Head-Worn Displays (HWDs). The paper describes the EVO concept and representative NASA EFVS research that demonstrate the potential of these technologies to safely conduct operations in visibilities as low as 1000 feet Runway Visual Range (RVR). Future directions are described including efforts to enable low-visibility approach, landing, and roll-outs using EFVS under conditions as low as 300 feet RVR.
Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.
Reber, Therese; Vähäkainu, Antti; Baird, Emily; Weckström, Matti; Warrant, Eric; Dacke, Marie
2015-05-01
To control flight, insects rely on the pattern of visual motion generated on the retina as they move through the environment. When light levels fall, vision becomes less reliable and flight control thus becomes more challenging. Here, we investigated the effect of light intensity on flight control by filming the trajectories of free-flying bumblebees (Bombus terrestris, Linnaeus 1758) in an experimental tunnel at different light levels. As light levels fell, flight speed decreased and the flight trajectories became more tortuous but the bees were still remarkably good at centring their flight about the tunnel's midline. To investigate whether this robust flight performance can be explained by visual adaptations in the bumblebee retina, we also examined the response speed of the green-sensitive photoreceptors at the same light intensities. We found that the response speed of the photoreceptors significantly decreased as light levels fell. This indicates that bumblebees have both behavioural (reduction in flight speed) and retinal (reduction in response speed of the photoreceptors) adaptations to allow them to fly in dim light. However, the more tortuous flight paths recorded in dim light suggest that these adaptations do not support flight with the same precision during the twilight hours of the day. © 2015. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Hill, Michael A.; Haering, Edward A., Jr.
2017-01-01
The Background Oriented Schlieren using Celestial Objects series of flights was undertaken in the spring of 2016 at National Aeronautics and Space Administration Armstrong Flight Research Center to further develop and improve a flow visualization technique which can be performed from the ground upon flying aircraft. Improved hardware and imaging techniques from previous schlieren tests were investigated. A United States Air Force T-38C and NASA B200 King Air aircraft were imaged eclipsing the sun at ranges varying from 2 to 6 nautical miles, at subsonic and supersonic speeds.
Philippides, Andrew; de Ibarra, Natalie Hempel; Riabinina, Olena; Collett, Thomas S
2013-03-15
Many wasps and bees learn the position of their nest relative to nearby visual features during elaborate 'learning' flights that they perform on leaving the nest. Return flights to the nest are thought to be patterned so that insects can reach their nest by matching their current view to views of their surroundings stored during learning flights. To understand how ground-nesting bumblebees might implement such a matching process, we have video-recorded the bees' learning and return flights and analysed the similarities and differences between the principal motifs of their flights. Loops that take bees away from and bring them back towards the nest are common during learning flights and less so in return flights. Zigzags are more prominent on return flights. Both motifs tend to be nest based. Bees often both fly towards and face the nest in the middle of loops and at the turns of zigzags. Before and after flight direction and body orientation are aligned, the two diverge from each other so that the nest is held within the bees' fronto-lateral visual field while flight direction relative to the nest can fluctuate more widely. These and other parallels between loops and zigzags suggest that they are stable variations of an underlying pattern, which enable bees to store and reacquire similar nest-focused views during learning and return flights.
Helmet-mounted display systems for flight simulation
NASA Technical Reports Server (NTRS)
Haworth, Loren A.; Bucher, Nancy M.
1989-01-01
Simulation scientists are continually improving simulation technology with the goal of more closely replicating the physical environment of the real world. The presentation or display of visual information is one area in which recent technical improvements have been made that are fundamental to conducting simulated operations close to the terrain. Detailed and appropriate visual information is especially critical for nap-of-the-earth helicopter flight simulation where the pilot maintains an 'eyes-out' orientation to avoid obstructions and terrain. This paper describes visually coupled wide field of view helmet-mounted display (WFOVHMD) system technology as a viable visual presentation system for helicopter simulation. Tradeoffs associated with this mode of presentation as well as research and training applications are discussed.
In-flight response to a new non-gyroscopic blind flight instrument.
DOT National Transportation Integrated Search
1966-09-01
A new device which is small, completely self-contained, and which is not susceptible to tumbling, is evaluated. The results indicate that it will enable controlled flight under complete loss of outside visual reference (IFR) conditions. Since no elec...
DOT National Transportation Integrated Search
2009-04-27
Access to affordable and effective flight-simulation training devices (FSTDs) is critical to safely train airline crews in aviating, navigating, communicating, making decisions, and managing flight-deck and crew resources. This paper provides an over...
Cha, Dong H; Hesler, Stephen P; Linn, Charles E; Zhang, Aijun; Teal, Peter E A; Knight, Alan L; Roelofs, Wendell L; Loeb, Gregory M
2013-02-01
Oil-coated clear panel traps baited with a host plant-based kairomone lure have successfully been used for monitoring female grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), but low capture rates as well as difficulty in servicing these traps makes them unsuitable for commercial use. We compared the performance of different trap designs in a flight tunnel and in a vineyard by using a 7-component synthetic kairomone blend, with a focus on trap visual cues. In flight tunnel experiments, a clear delta trap performed better than other traps. When we tested clear delta, green delta, or clear wing traps baited with a cut grape shoot, >50% of female grape berry moths made complete upwind flights. However, the clear delta trap was the only design that resulted in female moths entering the trap. Similar results were observed when females were tested with different traps (clear delta, green delta, white delta, clear wing, or green wing traps) baited with the kairomone lure. Adding a visual pattern that mimicked grape shoots to the outside surface of the clear delta trap resulted in 66% of the females that made upwind flights entering the trap. However, the positive effect of adding a visual pattern to the trap was not observed in a vineyard setting, where clear delta traps with or without a visual pattern caught similar numbers of females. Still, the number of male and female grape berry moths captured in clear delta traps with or without a visual pattern was not significantly different from the number of male and female grape berry moths captured in panel traps, suggesting that the use of these delta traps could be a less cumbersome alternative to oil-coated panel traps for monitoring female grape berry moth.
Hawkes, Frances; Gibson, Gabriella
2016-06-03
The immediate aim of our study was to analyse the behaviour of the malarial mosquito Anopheles coluzzii (An. gambiae species complex) near a human host with the ultimate aim of contributing to our fundamental understanding of mosquito host-seeking behaviour and the overall aim of identifying behaviours that could be exploited to enhance sampling and control strategies. Based on 3D video recordings of individual host-seeking females in a laboratory wind-tunnel, we found that despite being a nocturnal species, An. coluzzii is highly responsive to a visually conspicuous object, but only in the presence of host-odour. Female mosquitoes approached and abruptly veered away from a dark object, which suggests attraction to visual cues plays a role in bringing mosquitoes to the source of host odour. It is worth noting that the majority of our recorded flight tracks consisted of highly stereotyped 'dipping' sequences near the ground, which have been mentioned in the literature, but never before quantified. Our quantitative analysis of female mosquito flight patterns within ~1.5 m of a host has revealed highly relevant information about responsiveness to visual objects and flight height that could revolutionise the efficacy of sampling traps; the capturing device of a trap should be visually conspicuous and positioned near the ground where the density of host-seeking mosquitoes would be greatest. These characteristics are not universally present in current traps for malarial mosquitoes. The characterisation of a new type of flight pattern that is prevalent in mosquitoes suggests that there is still much that is not fully understood about mosquito flight behaviour.
Nocturnal insects use optic flow for flight control.
Baird, Emily; Kreiss, Eva; Wcislo, William; Warrant, Eric; Dacke, Marie
2011-08-23
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects. This journal is © 2011 The Royal Society
Design Considerations for Attitude State Awareness and Prevention of Entry into Unusual Attitudes
NASA Technical Reports Server (NTRS)
Ellis, Kyle K. E.; Prinzel, Lawrence J., III; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel; Verstynen, Harry; Hubbs, Clay; Wilkerson, James
2017-01-01
Loss of control - inflight (LOC-I) has historically represented the largest category of commercial aviation fatal accidents. A review of the worldwide transport airplane accidents (2001-2010) evinced that loss of attitude or energy state awareness was responsible for a large majority of the LOC-I events. A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that flight crew loss of attitude awareness or energy state awareness due to lack of external visual reference cues was a significant causal factor in 17 of the 18 reviewed flights. CAST recommended that "Virtual Day-Visual Meteorological Condition" (Virtual Day-VMC) displays be developed to provide the visual cues necessary to prevent loss-of-control resulting from flight crew spatial disorientation and loss of energy state awareness. Synthetic vision or equivalent systems (SVS) were identified for a design "safety enhancement" (SE-200). Part of this SE involves the conduct of research for developing minimum aviation system performance standards (MASPS) for these flight deck display technologies to aid flight crew attitude and energy state awareness similar to that of a virtual day-VMC-like environment. This paper will describe a novel experimental approach to evaluating a flight crew's ability to maintain attitude awareness and to prevent entry into unusual attitudes across several SVS optical flow design considerations. Flight crews were subjected to compound-event scenarios designed to elicit channelized attention and startle/surprise within the crew. These high-fidelity scenarios, designed from real-world events, enable evaluation of the efficacy of SVS at improving flight crew attitude awareness to reduce the occurrence of LOC-I incidents in commercial flight operations.
NASA Technical Reports Server (NTRS)
Mendez, C. M.; Foy, M.; Mason, S.; Wear, M. L.; Meyers, V.; Law, J.; Alexander, D.; Van Baalen, M.
2014-01-01
Understanding the nuances in clinical data is critical in developing a successful data analysis plan. Carbon dioxide (CO2) data are collected on board the International Space Station (ISS) in a continuous stream. Clinical data on ISS are primarily collected via conversations between individual crewmembers and NASA Flight Surgeons during weekly Private Medical Conferences (PMC). Law, et.al, 20141 demonstrated a statistically significant association between weekly average CO2 levels on ISS and self-reported headaches over the reporting period from March 14, 2001 to May 31, 2012. The purpose of this analysis is to describe the evaluation of a possible association between visual changes and CO2 levels on ISS and to discuss challenges in developing an appropriate analysis plan. METHODS & PRELIMINARY RESULTS: A first analysis was conducted following the same study design as the published work on CO2 and self-reported headaches1; substituting self-reported changes in visual acuity in place of self-reported headaches. The analysis demonstrated no statistically significant association between visual impairment characterized by vision symptoms self-reported during PMCs and ISS average CO2 levels over ISS missions. Closer review of the PMC records showed that vision outcomes are not well-documented in terms of clinical severity, timing of onset, or timing of resolution, perhaps due to the incipient nature of vision changes. Vision has been monitored in ISS crewmembers, pre- and post-flight, using standard optometry evaluations. In-flight visual assessments were limited early in the ISS program, primarily consisting of self-perceived changes reported by crewmembers. Recently, on-orbit capabilities have greatly improved. Vision data ranges from self-reported post-flight changes in visual acuity, pre- to postflight changes identified during fundoscopic examination, and in-flight progression measured by advanced on-orbit clinical imaging capabilities at predetermined testing intervals. In contrast, CO2 data are recorded in a continuous stream over time; however, for the initial analysis this data was categorized into weekly averages.
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...
Helicopter pilot estimation of self-altitude in a degraded visual environment
NASA Astrophysics Data System (ADS)
Crowley, John S.; Haworth, Loran A.; Szoboszlay, Zoltan P.; Lee, Alan G.
2000-06-01
The effect of night vision devices and degraded visual imagery on self-attitude perception is unknown. Thirteen Army aviators with normal vision flew five flights under various visual conditions in a modified AH-1 (Cobra) helicopter. Subjects estimated their altitude or flew to specified altitudes while flying a series of maneuvers. The results showed that subjects were better at detecting and controlling changes in altitude than they were at flying to or naming a specific altitude. In cruise flight and descent, the subjects tended to fly above the desired altitude, an error in the safe direction. While hovering, the direction of error was less predictable. In the low-level cruise flight scenario tested in this study, altitude perception was affected more by changes in image resolution than by changes in FOV or ocularity.
Patterns in the sky: Natural visualization of aircraft flow fields
NASA Technical Reports Server (NTRS)
Campbell, James F.; Chambers, Joseph R.
1994-01-01
The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.
Linander, Nellie; Dacke, Marie; Baird, Emily
2015-04-01
When flying through narrow spaces, insects control their position by balancing the magnitude of apparent image motion (optic flow) experienced in each eye and their speed by holding this value about a desired set point. Previously, it has been shown that when bumblebees encounter sudden changes in the proximity to nearby surfaces - as indicated by a change in the magnitude of optic flow on each side of the visual field - they adjust their flight speed well before the change, suggesting that they measure optic flow for speed control at low visual angles in the frontal visual field. Here, we investigated the effect that sudden changes in the magnitude of translational optic flow have on both position and speed control in bumblebees if these changes are asymmetrical; that is, if they occur only on one side of the visual field. Our results reveal that the visual region over which bumblebees respond to optic flow cues for flight control is not dictated by a set viewing angle. Instead, bumblebees appear to use the maximum magnitude of translational optic flow experienced in the frontal visual field. This strategy ensures that bumblebees use the translational optic flow generated by the nearest obstacles - that is, those with which they have the highest risk of colliding - to control flight. © 2015. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Kiteley, G. W.; Harris, R. L., Sr.
1978-01-01
Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.
Assessing Dual Sensor Enhanced Flight Vision Systems to Enable Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.
2016-01-01
Flight deck-based vision system technologies, such as Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS), may serve as a revolutionary crew/vehicle interface enabling technologies to meet the challenges of the Next Generation Air Transportation System Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility, pilot workload and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 ft runway visual range by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs as they made approaches to runways with and without touchdown zone and centerline lights. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance, workload, and situation awareness during extremely low visibility approach and landing operations was assessed. Results indicate that all EFVS concepts flown resulted in excellent approach path tracking and touchdown performance without any workload penalty. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.
Pilots' visual scan patterns and situation awareness in flight operations.
Yu, Chung-San; Wang, Eric Min-Yang; Li, Wen-Chin; Braithwaite, Graham
2014-07-01
Situation awareness (SA) is considered an essential prerequisite for safe flying. If the impact of visual scanning patterns on a pilot's situation awareness could be identified in flight operations, then eye-tracking tools could be integrated with flight simulators to improve training efficiency. Participating in this research were 18 qualified, mission-ready fighter pilots. The equipment included high-fidelity and fixed-base type flight simulators and mobile head-mounted eye-tracking devices to record a subject's eye movements and SA while performing air-to-surface tasks. There were significant differences in pilots' percentage of fixation in three operating phases: preparation (M = 46.09, SD = 14.79), aiming (M = 24.24, SD = 11.03), and release and break-away (M = 33.98, SD = 14.46). Also, there were significant differences in pilots' pupil sizes, which were largest in the aiming phase (M = 27,621, SD = 6390.8), followed by release and break-away (M = 27,173, SD = 5830.46), then preparation (M = 25,710, SD = 6078.79), which was the smallest. Furthermore, pilots with better SA performance showed lower perceived workload (M = 30.60, SD = 17.86), and pilots with poor SA performance showed higher perceived workload (M = 60.77, SD = 12.72). Pilots' percentage of fixation and average fixation duration among five different areas of interest showed significant differences as well. Eye-tracking devices can aid in capturing pilots' visual scan patterns and SA performance, unlike traditional flight simulators. Therefore, integrating eye-tracking devices into the simulator may be a useful method for promoting SA training in flight operations, and can provide in-depth understanding of the mechanism of visual scan patterns and information processing to improve training effectiveness in aviation.
NASA Astrophysics Data System (ADS)
Maskey, M.; Conover, H.; Ramachandran, R.; Kulkarni, A.; Mceniry, M.; Stone, B.
2015-12-01
The Global Hydrology Resource Center (GHRC) is developing an enterprise information system to manage and better serve data for Hurricane and Severe Storm Sentinel (HS3), a NASA airborne field campaign. HS3 is a multiyear campaign aimed at helping scientists understand the physical processes that contribute to hurricane intensification. For in-depth analysis, HS3 encompasses not only airborne data but also variety of in-situ, satellite, simulation, and flight report data. Thus, HS3 provides a unique challenge in information system design. The GHRC team is experienced with previous airborne campaigns to handle such challenge. Many supplementary information and reports collected during the mission include information rich contents that provide mission snapshots. In particular, flight information, instrument status, weather reports, and summary statistics offer vital knowledge about the corresponding science data. Furthermore, such information help narrow the science data of interest. Therefore, the GHRC team is building HS3 information system that augments the current GHRC data management framework to support search and discover of airborne science data with interactive visual exploration. Specifically, the HS3 information system is developing a tool to visually playback mission flights along with other traditional search and discover interfaces. This playback capability allows the users to follow the flight in time and visualize collected data. The flight summary and analyzed information are also presented during the playback. If the observed data is of interest, then they can order the data from GHRC using the interface. The users will be able to order just the data for the part of the flight that they are interested in. This presentation will demonstrate use of visual exploration to data download along with other components that comprise the HS3 information system.
NASA Technical Reports Server (NTRS)
Sitterley, T. E.
1974-01-01
The effectivess of an improved static retraining method was evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Experienced pilots were trained and then tested after 4 months without flying to compare their performance using the improved method with three methods previously evaluated. Use of the improved static retraining method resulted in no practical or significant skill degradation and was found to be even more effective than methods using a dynamic presentation of visual cues. The results suggested that properly structured open loop methods of flight control task retraining are feasible.
Visual Impairment/Increased Intracranial Pressure (VIIP): Layman's Summary
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer
2011-01-01
To date NASA has documented that seven long duration astronauts have experienced in-flight and post-flight changes in vision and eye anatomy including degraded distant vision, swelling of the back of the eye, and changes in the shape of the globe. We have also documented in a few of these astronauts post-flight, increases in the pressure of the fluid that surrounds the brain and spinal cord. This is referred to as increased intracranial pressure (ICP). The functional and anatomical changes have varied in severity and duration. In the post-flight time period, some individuals have experienced a return to a pre-flight level of visual function while others have experienced changes that remain significantly altered compared to pre-flight. In addition, the increased ICP also persists in the post-flight time period. Currently, the underlying cause or causes of these changes is/are unknown but the spaceflight community at NASA suspects that the shift of blood toward the head and the changes in physiology that accompany it, such as increased intracranial pressure, play a significant role.
Kastberger, G; Kranner, G
2000-02-01
Viscovery SOMine is a software tool for advanced analysis and monitoring of numerical data sets. It was developed for professional use in business, industry, and science and to support dependency analysis, deviation detection, unsupervised clustering, nonlinear regression, data association, pattern recognition, and animated monitoring. Based on the concept of self-organizing maps (SOMs), it employs a robust variant of unsupervised neural networks--namely, Kohonen's Batch-SOM, which is further enhanced with a new scaling technique for speeding up the learning process. This tool provides a powerful means by which to analyze complex data sets without prior statistical knowledge. The data representation contained in the trained SOM is systematically converted to be used in a spectrum of visualization techniques, such as evaluating dependencies between components, investigating geometric properties of the data distribution, searching for clusters, or monitoring new data. We have used this software tool to analyze and visualize multiple influences of the ocellar system on free-flight behavior in giant honeybees. Occlusion of ocelli will affect orienting reactivities in relation to flight target, level of disturbance, and position of the bee in the flight chamber; it will induce phototaxis and make orienting imprecise and dependent on motivational settings. Ocelli permit the adjustment of orienting strategies to environmental demands by enforcing abilities such as centering or flight kinetics and by providing independent control of posture and flight course.
Flow-visualization study of the X-29A aircraft at high angles of attack using a 1/48-scale model
NASA Technical Reports Server (NTRS)
Cotton, Stacey J.; Bjarke, Lisa J.
1994-01-01
A water-tunnel study on a 1/48-scale model of the X-29A aircraft was performed at the NASA Dryden Flow Visualization Facility. The water-tunnel test enhanced the results of the X-29A flight tests by providing flow-visualization data for comparison and insights into the aerodynamic characteristics of the aircraft. The model was placed in the water tunnel at angles of attack of 20 to 55 deg. and with angles of sideslip from 0 to 5 deg. In general, flow-visualization techniques provided useful information on vortex formation, separation, and breakdown and their role in yaw asymmetries and tail buffeting. Asymmetric forebody vortices were observed at angles of attack greater than 30 deg. with 0 deg. sideslip and greater than 20 deg. with 5 deg. sideslip. While the asymmetric flows observed in the water tunnel did not agree fully with the flight data, they did show some of the same trends. In addition, the flow visualization indicated that the interaction of forebody vortices and the wing wake at angles of attack between 20 and 35 deg. may cause vertical-tail buffeting observed in flight.
Oculo-vestibular recoupling using galvanic vestibular stimulation to mitigate simulator sickness.
Cevette, Michael J; Stepanek, Jan; Cocco, Daniela; Galea, Anna M; Pradhan, Gaurav N; Wagner, Linsey S; Oakley, Sarah R; Smith, Benn E; Zapala, David A; Brookler, Kenneth H
2012-06-01
Despite improvement in the computational capabilities of visual displays in flight simulators, intersensory visual-vestibular conflict remains the leading cause of simulator sickness (SS). By using galvanic vestibular stimulation (GVS), the vestibular system can be synchronized with a moving visual field in order to lessen the mismatch of sensory inputs thought to result in SS. A multisite electrode array was used to deliver combinations of GVS in 21 normal subjects. Optimal electrode combinations were identified and used to establish GVS dose-response predictions for the perception of roll, pitch, and yaw. Based on these data, an algorithm was then implemented in flight simulator hardware in order to synchronize visual and GVS-induced vestibular sensations (oculo-vestibular-recoupled or OVR simulation). Subjects were then randomly exposed to flight simulation either with or without OVR simulation. A self-report SS checklist was administered to all subjects after each session. An overall SS score was calculated for each category of symptoms for both groups. The analysis of GVS stimulation data yielded six unique combinations of electrode positions inducing motion perceptions in the three rotational axes. This provided the algorithm used for OVR simulation. The overall SS scores for gastrointestinal, central, and peripheral categories were 17%, 22.4%, and 20% for the Control group and 6.3%, 20%, and 8% for the OVR group, respectively. When virtual head signals produced by GVS are synchronized to the speed and direction of a moving visual field, manifestations of induced SS in a cockpit flight simulator are significantly reduced.
Use of an adjustable hand plate in studying the perceived horizontal plane during simulated flight.
Tribukait, Arne; Eiken, Ola; Lemming, Dag; Levin, Britta
2013-07-01
Quantitative data on spatial orientation would be valuable not only in assessing the fidelity of flight simulators, but also in evaluation of spatial orientation training. In this study a manual indicator was used for recording the subjective horizontal plane during simulated flight. In a six-degrees-of-freedom hexapod hydraulic motion platform simulator, simulating an F-16 aircraft, seven fixed-wing student pilots were passively exposed to two flight sequences. The first consisted in a number of coordinated turns with visual contact with the landscape below. The visually presented roll tilt was up to a maximum 670. The second was a takeoff with a cabin pitch up of 100, whereupon external visual references were lost. The subjects continuously indicated, with the left hand on an adjustable plate, what they perceived as horizontal in roll and pitch. There were two test occasions separated by a 3-d course on spatial disorientation. Responses to changes in simulated roll were, in general, instantaneous. The indicated roll tilt was approximately 30% of the visually presented roll. There was a considerable interindividual variability. However, for the roll response there was a correlation between the two occasions. The amplitude of the response to the pitch up of the cabin was approximately 75%; the response decayed much more slowly than the stimulus. With a manual indicator for recording the subjective horizontal plane, individual characteristics in the response to visual tilt stimuli may be detected, suggesting a potential for evaluation of simulation algorithms or training programs.
Aviation spatial orientation in relationship to head position and attitude interpretation.
Patterson, F R; Cacioppo, A J; Gallimore, J J; Hinman, G E; Nalepka, J P
1997-06-01
Conventional wisdom describing aviation spatial awareness assumes that pilots view a moving horizon through the windscreen. This assumption presupposes head alignment with the cockpit "Z" axis during both visual (VMC) and instrument (IMC) maneuvers. Even though this visual paradigm is widely accepted, its accuracy has not been verified. The purpose of this research was to determine if a visually induced neck reflex causes pilots to align their heads toward the horizon, rather than the cockpit vertical axis. Based on literature describing reflexive head orientation in terrestrial environments it was hypothesized that during simulated VMC aircraft maneuvers, pilots would align their heads toward the horizon. Some 14 military pilots completed two simulated flights in a stationary dome simulator. The flight profile consisted of five separate tasks, four of which evaluated head tilt during exposure to unique visual conditions and one examined occurrences of disorientation during unusual attitude recovery. During simulated visual flight maneuvers, pilots tilted their heads toward the horizon (p < 0.0001). Under IMC, pilots maintained head alignment with the vertical axis of the aircraft. During VMC maneuvers pilots reflexively tilt their heads toward the horizon, away from the Gz axis of the cockpit. Presumably, this behavior stabilizes the retinal image of the horizon (1 degree visual-spatial cue), against which peripheral images of the cockpit (2 degrees visual-spatial cue) appear to move. Spatial disorientation, airsickness, and control reversal error may be related to shifts in visual-vestibular sensory alignment during visual transitions between VMC (head tilt) and IMC (Gz head stabilized) conditions.
NASA Technical Reports Server (NTRS)
Khan, M. Javed; Rossi, Marcia; Heath, Bruce; Ali, Syed F.; Ward, Marcus
2006-01-01
The effects of out-of-the-window cues on learning a straight-in landing approach and a level 360deg turn by novice pilots on a flight simulator have been investigated. The treatments consisted of training with and without visual cues as well as density of visual cues. The performance of the participants was then evaluated through similar but more challenging tasks. It was observed that the participants in the landing study who trained with visual cues performed poorly than those who trained without the cues. However the performance of those who trained with a faded-cues sequence performed slightly better than those who trained without visual cues. In the level turn study it was observed that those who trained with the visual cues performed better than those who trained without visual cues. The study also showed that those participants who trained with a lower density of cues performed better than those who trained with a higher density of visual cues.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.
Horowitz, Seth S; Cheney, Cheryl A; Simmons, James A
2004-01-01
The big brown bat (Eptesicus fuscus) is an aerial-feeding insectivorous species that relies on echolocation to avoid obstacles and to detect flying insects. Spatial perception in the dark using echolocation challenges the vestibular system to function without substantial visual input for orientation. IR thermal video recordings show the complexity of bat flights in the field and suggest a highly dynamic role for the vestibular system in orientation and flight control. To examine this role, we carried out laboratory studies of flight behavior under illuminated and dark conditions in both static and rotating obstacle tests while administering heavy water (D2O) to impair vestibular inputs. Eptesicus carried out complex maneuvers through both fixed arrays of wires and a rotating obstacle array using both vision and echolocation, or when guided by echolocation alone. When treated with D2O in combination with lack of visual cues, bats showed considerable decrements in performance. These data indicate that big brown bats use both vision and echolocation to provide spatial registration for head position information generated by the vestibular system.
Camachon, Cyril; Montagne, Gilles
2018-01-01
The present study addresses the effect of the eye position in the cockpit on the flight altitude during the final approach to landing. Three groups of participants with different levels of expertise (novices, trainees, and certified pilots) were given a laptop with a flight simulator and they were asked to maintain a 3.71° glide slope while landing. Each participant performed 40 approaches to the runway. During 8 of the approaches, the point of view that the flight simulator used to compute the visual scene was slowly raised or lowered with 4 cm with respect to the cockpit, hence moving the projection of the visible part of the cockpit down or up in the visible scene in a hardly noticeable manner. The increases and decreases in the simulated eye height led to increases and decreases in the altitude of the approach trajectories, for all three groups of participants. On the basis of these results, it is argued that the eye position of pilots during visual approaches is a factor that contributes to the risk of black hole accidents. PMID:29795618
NASA Technical Reports Server (NTRS)
Groce, J. L.; Boucek, G. P.
1988-01-01
This study is a continuation of an FAA effort to alleviate the growing problems of assimilating and managing the flow of data and flight related information in the air transport flight deck. The nature and extent of known pilot interface problems arising from new NAS data management programs were determined by a comparative timeline analysis of crew tasking requirements. A baseline of crew tasking requirements was established for conventional and advanced flight decks operating in the current NAS environment and then compared to the requirements for operation in a future NAS environment emphasizing Mode-S data link and TCAS. Results showed that a CDU-based pilot interface for Mode-S data link substantially increased crew visual activity as compared to the baseline. It was concluded that alternative means of crew interface should be available during high visual workload phases of flight. Results for TCAS implementation showed substantial visual and motor tasking increases, and that there was little available time between crew tasks during a TCAS encounter. It was concluded that additional research should be undertaken to address issues of ATC coordination and the relative benefit of high workload TCAS features.
Live Aircraft Encounter Visualization at FutureFlight Central
NASA Technical Reports Server (NTRS)
Murphy, James R.; Chinn, Fay; Monheim, Spencer; Otto, Neil; Kato, Kenji; Archdeacon, John
2018-01-01
Researchers at the National Aeronautics and Space Administration (NASA) have developed an aircraft data streaming capability that can be used to visualize live aircraft in near real-time. During a joint Federal Aviation Administration (FAA)/NASA Airborne Collision Avoidance System flight series, test sorties between unmanned aircraft and manned intruder aircraft were shown in real-time at NASA Ames' FutureFlight Central tower facility as a virtual representation of the encounter. This capability leveraged existing live surveillance, video, and audio data streams distributed through a Live, Virtual, Constructive test environment, then depicted the encounter from the point of view of any aircraft in the system showing the proximity of the other aircraft. For the demonstration, position report data were sent to the ground from on-board sensors on the unmanned aircraft. The point of view can be change dynamically, allowing encounters from all angles to be observed. Visualizing the encounters in real-time provides a safe and effective method for observation of live flight testing and a strong alternative to travel to the remote test range.
Experiments using electronic display information in the NASA terminal configured vehicle
NASA Technical Reports Server (NTRS)
Morello, S. A.
1980-01-01
The results of research experiments concerning pilot display information requirements and visualization techniques for electronic display systems are presented. Topics deal with display related piloting tasks in flight controls for approach-to-landing, flight management for the descent from cruise, and flight operational procedures considering the display of surrounding air traffic. Planned research of advanced integrated display formats for primary flight control throughout the various phases of flight is also discussed.
NASA Technical Reports Server (NTRS)
Carr, Peter C.; Mckissick, Burnell T.
1988-01-01
A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.
Insect vision: a few tricks to regulate flight altitude.
Floreano, Dario; Zufferey, Jean-Christophe
2010-10-12
A recent study sheds new light on the visual cues used by Drosophila to regulate flight altitude. The striking similarity with previously identified steering mechanisms provides a coherent basis for novel models of vision-based flight control in insects and robots. Copyright © 2010 Elsevier Ltd. All rights reserved.
78 FR 15876 - Activation of Ice Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... procedures in the Airplane Flight Manual for operating in icing conditions must be initiated. (2) Visual cues... procedures in the Airplane Flight Manual for operating in icing conditions must be initiated. (3) If the... operating rules for flight in icing conditions. This document corrects an error in the amendatory language...
Visual evaluation of smoke-protective devices.
DOT National Transportation Integrated Search
1976-05-01
This study was designed to determine the visual characteristics of smoke-protective devices for flight deck crews. Visual measurements were made on five male subjects, who ranged in age from 35 to 54, while they were wearing each of the 26 devices te...
NASA Astrophysics Data System (ADS)
Cross, Jack; Schneider, John; Cariani, Pete
2013-05-01
Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.
Flow visualization of mast-mounted-sight/main rotor aerodynamic interactions
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Kelley, Henry L.
1993-01-01
Flow visualization tests were conducted on a 27 percent-scale AH-64 attack helicopter model fitted with various mast-mounted-sight configurations in an attempt to identify the cause of adverse vibration encountered during full-scale flight tests of an Apache/Longbow configuration. The tests were conducted at the NASA Langley Research Center in the 14- by 22-Foot Subsonic Tunnel. A symmetric and an asymmetric mast-mounted-sight oriented at several skew angles were tested at forward and rearward flight speeds of 30 and 45 knots. A laser light sheet seeded with vaporized propylene glycol was used to visualize the wake of the sight in planes parallel and perpendicular to the freestream flow. Analysis of the flow visualization data identified the frequency of the wake shed from the sight, the angle-of-attack at the sight, and the location where the sight wake crossed the rotor plane. Differences in wake structure were observed between the various sight configurations and slew angles. Postulations into the cause of the adverse vibration found in flight test are given along with considerations for future tests.
AWE: Aviation Weather Data Visualization
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.
2001-01-01
The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.
High contrast sensitivity for visually guided flight control in bumblebees.
Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie
2017-12-01
Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.
NASA Dryden flow visualization facility
NASA Technical Reports Server (NTRS)
Delfrate, John H.
1995-01-01
This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.
G-Induced Visual Symptoms in a Military Helicopter Pilot.
McMahon, Terry W; Newman, David G
2016-11-01
Military helicopters are increasingly agile and capable of producing significant G forces experienced in the longitudinal (z) axis of the body in a head-to-foot direction (+Gz). Dehydration and fatigue can adversely affect a pilot's +Gz tolerance, leading to +Gz-induced symptomatology occurring at lower +Gz levels than expected. The potential for adverse consequences of +Gz exposure to affect flight safety in military helicopter operations needs to be recognized. This case report describes a helicopter pilot who experienced +Gz-induced visual impairment during low-level flight. The incident occurred during a tropical training exercise, with an ambient temperature of around 35°C (95°F). As a result of the operational tempo and the environmental conditions, aircrew were generally fatigued and dehydrated. During a low-level steep turn, a Blackhawk pilot experienced significant visual deterioration. The +Gz level was estimated at +2.5 Gz. After completing the turn, the pilot's vision returned to normal, and the flight concluded without further incident. This case highlights the potential dangers of +Gz exposure in tactical helicopters. Although the +Gz level was moderate, the pilot's +Gz tolerance was reduced by the combined effects of dehydration and fatigue. The dangers of such +Gz-induced visual impairment during low-level flight are clear. More awareness of +Gz physiology and +Gz tolerance-reducing factors in helicopter operations is needed. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Exploratory flow visualization investigation of mast-mounted sights in presence of a rotor
NASA Technical Reports Server (NTRS)
Ghee, Terence A.; Kelley, Henry L.
1995-01-01
A flow visualization investigation with a laser light sheet system was conducted on a 27-percent-scale AH-64 attack helicopter model fitted with two mast-mounted sights in the langley 14- by 22-foot subsonic tunnel. The investigation was conducted to identify aerodynamic phenomena that may have contributed to adverse vibration encountered during full-scale flight of the AH-64D apache/longbow helicopter with an asymmetric mast-mounted sight. Symmetric and asymmetric mast-mounted sights oriented at several skew angles were tested at simulated forward and rearward flight speeds of 30 and 45 knots. A laser light sheet system was used to visualize the flow in planes parallel to and perpendicular to the free-stream flow. Analysis of these flow visualization data identified frequencies of flow patterns in the wake shed from the sight, the streamline angle at the sight, and the location where the shed wake crossed the rotor plane. Differences in wake structure were observed between the sight configurations and various skew angles. Analysis of lateral light sheet plane data implied significant vortex structure in the wake of the asymmetric mast-mounted sight in the configuration that produced maximum in-flight vibration. The data showed no significant vortex structure in the wake of the asymmetric and symmetric configurations that produced no increase in in-flight adverse vibration.
Animal behavior: fly flight moves forward.
Fox, Jessica L; Frye, Mark
2013-04-08
A new study has resolved the paradox of how flies maintain reflexive aversion to your approaching swatter, whilst tolerating similar visual signals during normal forward flight. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aircrew laser eye protection: visual consequences and mission performance.
Thomas, S R
1994-05-01
Battlefield laser proliferation poses a mounting risk to aircrew and ground personnel. Laser eye protection (LEP) based on current mature, mass-producible technologies absorbs visible light and can impact visual performance and color identification. These visual consequences account for many of the mission incompatibilities associated with LEP. Laboratory experiments and field investigations that examined the effects of LEP on visual performance and mission compatibility are reviewed. Laboratory experiments assessed the ability of subjects to correctly read and identify the color of head-down display symbology and tactical pilotage charts (TPC's) with three prototype LEP visors. Field investigations included Weapons Systems Trainer (WST), ground, and flight tests of the LEP visors. Recommendations for modifying aviation lighting systems to improve LEP compatibility are proposed. Issues concerning flight safety when using LEP during air operation are discussed.
Visual field information in Nap-of-the-Earth flight by teleoperated Helmet-Mounted displays
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.; Merhav, S. J.
1991-01-01
The human ability to derive Control-Oriented Visual Field Information from teleoperated Helmet-Mounted displays in Nap-of-the-Earth flight, is investigated. The visual field with these types of displays originates from a Forward Looking Infrared Radiation Camera, gimbal-mounted at the front of the aircraft and slaved to the pilot's line-of-sight, to obtain wide-angle visual coverage. Although these displays are proved to be effective in Apache and Cobra helicopter night operations, they demand very high pilot proficiency and work load. Experimental work presented in the paper has shown that part of the difficulties encountered in vehicular control by means of these displays can be attributed to the narrow viewing aperture and head/camera slaving system phase lags. Both these shortcomings will impair visuo-vestibular coordination, when voluntary head rotation is present. This might result in errors in estimating the Control-Oriented Visual Field Information vital in vehicular control, such as the vehicle yaw rate or the anticipated flight path, or might even lead to visuo-vestibular conflicts (motion sickness). Since, under these conditions, the pilot will tend to minimize head rotation, the full wide-angle coverage of the Helmet-Mounted Display, provided by the line-of-sight slaving system, is not always fully utilized.
Helicopter human factors research
NASA Technical Reports Server (NTRS)
Nagel, David C.; Hart, Sandra G.
1988-01-01
Helicopter flight is among the most demanding of all human-machine integrations. The inherent manual control complexities of rotorcraft are made even more challenging by the small margin for error created in certain operations, such as nap-of-the-Earth (NOE) flight, by the proximity of the terrain. Accident data recount numerous examples of unintended conflict between helicopters and terrain and attest to the perceptual and control difficulties associated with low altitude flight tasks. Ames Research Center, in cooperation with the U.S. Army Aeroflightdynamics Directorate, has initiated an ambitious research program aimed at increasing safety margins for both civilian and military rotorcraft operations. The program is broad, fundamental, and focused on the development of scientific understandings and technological countermeasures. Research being conducted in several areas is reviewed: workload assessment, prediction, and measure validation; development of advanced displays and effective pilot/automation interfaces; identification of visual cues necessary for low-level, low-visibility flight and modeling of visual flight-path control; and pilot training.
Srinivasan, Mandyam V
2011-04-01
Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.
2017-08-30
as being three-fold: 1) a measurement of the integrity of both the central and peripheral visual processing centers; 2) an indicator of detail...visual assessment task 12 integral to the Army’s Class 1 Flight Physical (Ginsburg, 1981 and 1984; Bachman & Behar, 1986). During a Class 1 flight...systems. Meta-analysis has been defined as the statistical analysis of a collection of analytical results for the purpose of integrating the findings
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).
User's Guide for Flight Simulation Data Visualization Workstation
NASA Technical Reports Server (NTRS)
Kaplan, Joseph A.; Chen, Ronnie; Kenney, Patrick S.; Koval, Christopher M.; Hutchinson, Brian K.
1996-01-01
Today's modern flight simulation research produces vast amounts of time sensitive data. The meaning of this data can be difficult to assess while in its raw format. Therefore, a method of breaking the data down and presenting it to the user in a graphical format is necessary. Simulation Graphics (SimGraph) is intended as a data visualization software package that will incorporate simulation data into a variety of animated graphical displays for easy interpretation by the simulation researcher. This document is intended as an end user's guide.
1985-12-19
This image shows a plastic 1/48-scale model of an F-18 aircraft inside the "Water Tunnel" more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow vi
NASA Astrophysics Data System (ADS)
Rattenborg, Niels C.
2006-09-01
The following review examines the evidence for sleep in flying birds. The daily need to sleep in most animals has led to the common belief that birds, such as the common swift ( Apus apus), which spend the night on the wing, sleep in flight. The electroencephalogram (EEG) recordings required to detect sleep in flight have not been performed, however, rendering the evidence for sleep in flight circumstantial. The neurophysiology of sleep and flight suggests that some types of sleep might be compatible with flight. As in mammals, birds exhibit two types of sleep, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep. Whereas, SWS can occur in one or both brain hemispheres at a time, REM sleep only occurs bihemispherically. During unihemispheric SWS, the eye connected to the awake hemisphere remains open, a state that may allow birds to visually navigate during sleep in flight. Bihemispheric SWS may also be possible during flight when constant visual monitoring of the environment is unnecessary. Nevertheless, the reduction in muscle tone that usually accompanies REM sleep makes it unlikely that birds enter this state in flight. Upon landing, birds may need to recover the components of sleep that are incompatible with flight. Periods of undisturbed postflight recovery sleep may be essential for maintaining adaptive brain function during wakefulness. The recent miniaturization of EEG recording devices now makes it possible to measure brain activity in flight. Determining if and how birds sleep in flight will contribute to our understanding of a largely unexplored aspect of avian behavior and may also provide insight into the function of sleep.
Data systems and computer science programs: Overview
NASA Technical Reports Server (NTRS)
Smith, Paul H.; Hunter, Paul
1991-01-01
An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.
NASA Technical Reports Server (NTRS)
Bourquin, K.; Palmer, E. A.; Cooper, G.; Gerdes, R. M.
1973-01-01
A preliminary assessment was made of the adequacy of a simple head up display (HUD) for providing vertical guidance for flying noise abatement and standard visual approaches in a jet transport. The HUD featured gyro-stabilized approach angle scales which display the angle of declination to any point on the ground and a horizontal flight path bar which aids the pilot in his control of the aircraft flight path angle. Thirty-three standard and noise abatement approaches were flown in a Boeing 747 aircraft equipped with a head up display. The HUD was also simulated in a research simulator. The simulator was used to familiarize the pilots with the display and to determine the most suitable way to use the HUD for making high capture noise abatement approaches. Preliminary flight and simulator data are presented and problem areas that require further investigation are identified.
Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.
Ibbotson, M R
2017-01-23
The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bridgman, William T.; Shirah, Greg W.; Mitchell, Horace G.
2008-01-01
Today, scientific data and models can combine with modern animation tools to produce compelling visualizations to inform and educate. The Scientific Visualization Studio at Goddard Space Flight Center merges these techniques from the very different worlds of entertainment and science to enable scientists and the general public to 'see the unseeable' in new ways.
Single pilot scanning behavior in simulated instrument flight
NASA Technical Reports Server (NTRS)
Pennington, J. E.
1979-01-01
A simulation of tasks associated with single pilot general aviation flight under instrument flight rules was conducted as a baseline for future research studies on advanced flight controls and avionics. The tasks, ranging from simple climbs and turns to an instrument landing systems approach, were flown on a fixed base simulator. During the simulation the control inputs, state variables, and the pilots visual scan pattern including point of regard were measured and recorded.
2014-12-01
Local Economic Impact of UH-72A Manufacture ................42 viii e. EADS’ (Now Airbus Group’s) Suppliers and Subcontractors...Headquarters, Department of the Army IFR instrument flight rules IOTE initial operational test and evaluation IR infrared KO contracting officer kt...instrument flight rules ( IFR ) and visual flight rules (VFR) capabilities, thereby allowing flight at night and under low visibility weather
Flexible strategies for flight control: an active role for the abdomen.
Dyhr, Jonathan P; Morgansen, Kristi A; Daniel, Thomas L; Cowan, Noah J
2013-05-01
Moving animals orchestrate myriad motor systems in response to multimodal sensory inputs. Coordinating movement is particularly challenging in flight control, where animals deal with potential instability and multiple degrees of freedom of movement. Prior studies have focused on wings as the primary flight control structures, for which changes in angle of attack or shape are used to modulate lift and drag forces. However, other actuators that may impact flight performance are reflexively activated during flight. We investigated the visual-abdominal reflex displayed by the hawkmoth Manduca sexta to determine its role in flight control. We measured the open-loop stimulus-response characteristics (measured as a transfer function) between the visual stimulus and abdominal response in tethered moths. The transfer function reveals a 41 ms delay and a high-pass filter behavior with a pass band starting at ~0.5 Hz. We also developed a simplified mathematical model of hovering flight wherein articulation of the thoracic-abdominal joint redirects an average lift force provided by the wings. We show that control of the joint, subject to a high-pass filter, is sufficient to maintain stable hovering, but with a slim stability margin. Our experiments and models suggest a novel mechanism by which articulation of the body or 'airframe' of an animal can be used to redirect lift forces for effective flight control. Furthermore, the small stability margin may increase flight agility by easing the transition from stable flight to a more maneuverable, unstable regime.
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, Silvia
1993-01-01
The pilot's ability to derive Control-Oriented Visual Field Information from teleoperated Helmet-Mounted displays in Nap-of-the-Earth flight, is investigated. The visual field with these types of displays, commonly used in Apache and Cobra helicopter night operations, originates from a relatively narrow field-of-view Forward Looking Infrared Radiation Camera, gimbal-mounted at the nose of the aircraft and slaved to the pilot's line-of-sight, in order to obtain a wide-angle field-of-regard. Pilots have encountered considerable difficulties in controlling the aircraft by these devices. Experimental simulator results presented here indicate that part of these difficulties can be attributed to head/camera slaving system phase lags and errors. In the presence of voluntary head rotation, these slaving system imperfections are shown to impair the Control-Oriented Visual Field Information vital in vehicular control, such as the perception of the anticipated flight path or the vehicle yaw rate. Since, in the presence of slaving system imperfections, the pilot will tend to minimize head rotation, the full wide-angle field-of-regard of the line-of-sight slaved Helmet-Mounted Display, is not always fully utilized.
[Clarity of flight information in the cockpit of the new aircraft generation].
Stern, C; Schwartz, R; Groenhoff, S; Draeger, J; Hüttig, G; Bernhard, H
1994-08-01
Fundamental changes of cockpit design in recent years, especially the transition from analogue to digital flight information systems and the use of colour-coded displays, lead to new demands on the visual system of the pilot. Twenty experienced pilots each participated in four 15-min sessions with a simulator program in the new Airbus 340 Simulator of the Technical University of Berlin. The pilots were confronted with various flight situations and events. The simulation program was carried out with visual acuity of 1.0 or better, with acuity reduced to 0.5 and with red and green filters. The time between the display of information and the pilot's reaction was determined. The probands were classified into two groups according to their age (< or = 45 years, > or = 45 years). In both age groups a significant difference was found only with green filters. There was no difference with reduced visual acuity or with red filters, and no differences were seen between the two age groups.
Optic flow-based collision-free strategies: From insects to robots.
Serres, Julien R; Ruffier, Franck
2017-09-01
Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
Hesselberg, Thomas; Lehmann, Fritz-Olaf
2007-12-01
Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre.
NASA Astrophysics Data System (ADS)
Viertler, Franz; Hajek, Manfred
2015-05-01
To overcome the challenge of helicopter flight in degraded visual environments, current research considers headmounted displays with 3D-conformal (scene-linked) visual cues as most promising display technology. For pilot-in-theloop simulations with HMDs, a highly accurate registration of the augmented visual system is required. In rotorcraft flight simulators the outside visual cues are usually provided by a dome projection system, since a wide field-of-view (e.g. horizontally > 200° and vertically > 80°) is required, which can hardly be achieved with collimated viewing systems. But optical see-through HMDs do mostly not have an equivalent focus compared to the distance of the pilot's eye-point position to the curved screen, which is also dependant on head motion. Hence, a dynamic vergence correction has been implemented to avoid binocular disparity. In addition, the parallax error induced by even small translational head motions is corrected with a head-tracking system to be adjusted onto the projected screen. For this purpose, two options are presented. The correction can be achieved by rendering the view with yaw and pitch offset angles dependent on the deviating head position from the design eye-point of the spherical projection system. Furthermore, it can be solved by implementing a dynamic eye-point in the multi-channel projection system for the outside visual cues. Both options have been investigated for the integration of a binocular HMD into the Rotorcraft Simulation Environment (ROSIE) at the Technische Universitaet Muenchen. Pros and cons of both possibilities with regard on integration issues and usability in flight simulations will be discussed.
NASA Technical Reports Server (NTRS)
Stenger, M.; Lee, S.; Platts, S.; Macias, B.; Lui, J.; Ebert, D.; Sargsyan, A.; Dulchavsky, S.; Alferova, I.; Yarmanova, E.;
2013-01-01
With the conclusion of the Space Shuttle program, NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed in Space Shuttle crewmembers after their short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound changes in vision, some with objective structural and functional findings such as papilledema and choroidal folds on ophthalmologic examination. Globe flattening, optic nerve sheath dilatation, optic nerve tortuosity, and other findings have been noted in imaging studies. This pattern is referred to as visual impairment and intracranial pressure (VIIP) syndrome. The VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) is associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been systematically tested. The purpose of this study is to objectively characterize the fluid distribution and compartmentalization associated with long-duration space flight, and to correlate the findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, can be predicted by crewmember baseline data and responses to acute hemodynamic manipulations (such as head-down tilt tests) obtained before flight. Lastly, we will evaluate the patterns of fluid distribution in astronaut subjects on the ISS during the use of lower body negative pressure (LBNP) and respiratory maneuvers to characterize and explain general and individual responses during space flight.
Aviation medicine translations : annotated bibliography of recently translated material, V .
DOT National Transportation Integrated Search
1968-04-01
An annotated bibliography of translations of foreign-language articles is presented. The 24 entries are concerned with studies in aviation medicine, vestibular function, hearing, intercontinental flight, visual illusions, aviation visual aids, body t...
Effects of vibration on the readability of an electronic flight instrument display
NASA Astrophysics Data System (ADS)
Viveash, Jacqueline P.; Cable, A. N.; King, S. K.; Stott, J. R.; Wright, R.
1993-12-01
An in-flight icing incident involving a BAe advanced turboprop (ATP) aircraft led to severe vibration of the airframe and a loss of aerodynamic control. During the period of vibration the pilot reported a specific pattern of image break up on the electronic flight instrument system (EFIS). Three experiments to investigate this visual effect are reported.
14 CFR 141.41 - Flight simulators, flight training devices, and training aids.
Code of Federal Regulations, 2010 CFR
2010-01-01
... freedom of motion system; (4) Use a visual system that provides at least a 45-degree horizontal field of view and a 30-degree vertical field of view simultaneously for each pilot; and (5) Have been evaluated... aircraft, or set of aircraft, in an open flight deck area or in an enclosed cockpit, including the hardware...
Advanced boundary layer transition measurement methods for flight applications
NASA Technical Reports Server (NTRS)
Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.
1986-01-01
In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.
FlyAR: augmented reality supported micro aerial vehicle navigation.
Zollmann, Stefanie; Hoppe, Christof; Langlotz, Tobias; Reitmayr, Gerhard
2014-04-01
Micro aerial vehicles equipped with high-resolution cameras can be used to create aerial reconstructions of an area of interest. In that context automatic flight path planning and autonomous flying is often applied but so far cannot fully replace the human in the loop, supervising the flight on-site to assure that there are no collisions with obstacles. Unfortunately, this workflow yields several issues, such as the need to mentally transfer the aerial vehicles position between 2D map positions and the physical environment, and the complicated depth perception of objects flying in the distance. Augmented Reality can address these issues by bringing the flight planning process on-site and visualizing the spatial relationship between the planned or current positions of the vehicle and the physical environment. In this paper, we present Augmented Reality supported navigation and flight planning of micro aerial vehicles by augmenting the users view with relevant information for flight planning and live feedback for flight supervision. Furthermore, we introduce additional depth hints supporting the user in understanding the spatial relationship of virtual waypoints in the physical world and investigate the effect of these visualization techniques on the spatial understanding.
Advanced Video Data-Acquisition System For Flight Research
NASA Technical Reports Server (NTRS)
Miller, Geoffrey; Richwine, David M.; Hass, Neal E.
1996-01-01
Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Fisher, David F.; Zuniga, Fanny A.
1990-01-01
In-flight results from surface and off-surface flow visualizations and from extensive pressure distributions document the vortical flow on the leading edge extensions (LEX) and forebody of the NASA F-18 high alpha research vehicle for low speeds and angles of attack up to 50 degs. Surface flow visualization data, obtained using the emitted fluid technique, were used to define separation lines and laminar separation bubbles. Off-surface flow visualization data, obtained by smoke injection, were used to document both the path of the vortex cores and the location of vortex core breakdown. The location of vortex core breakdown correlated well with the loss of suction pressure on the LEX and with the flow visualization results from ground facilities. Surface flow separation lines on the LEX and forebody corresponded well with the end of pressure recovery under the vortical flows. Correlation of the pressures with wind tunnel results show fair to good correlation.
Asymmetries in the Control of Saccadic Eye Movements to Bifurcating Targets.
ERIC Educational Resources Information Center
Zeevi, Yehoshua Y.; And Others
The examination of saccadic eye movements--rapid shifts in gaze from one visual area of interest to another--is useful in studying pilot's visual learning in flight simulator training. Saccadic eye movements are the basic oculomotor response associated with the acquisition of visual information and provide an objective measure of higher perceptual…
NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II
DOT National Transportation Integrated Search
2015-07-01
Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...
Rotary-wing flight test methods used for the evaluation of night vision devices
NASA Astrophysics Data System (ADS)
Haworth, Loran A.; Blanken, Christopher J.; Szoboszlay, Zoltan P.
2001-08-01
The U.S. Army Aviation mission includes flying helicopters at low altitude, at night, and in adverse weather. Night Vision Devices (NVDs) are used to supplement the pilot's visual cues for night flying. As the military requirement to conduct night helicopter operations has increased, the impact of helicopter flight operations with NVD technology in the Degraded Visual Environment (DVE) became increasingly important to quantify. Aeronautical Design Standard-33 (ADS- 33) was introduced to update rotorcraft handling qualities requirements and to quantify the impact of the NVDs in the DVE. As reported in this paper, flight test methodology in ADS-33 has been used by the handling qualities community to measure the impact of NVDs on task performance in the DVE. This paper provides the background and rationale behind the development of ADS-33 flight test methodology for handling qualities in the DVE, as well as the test methodology developed for human factor assessment of NVDs in the DVE. Lessons learned, shortcomings and recommendations for NVD flight test methodology are provided in this paper.
Visual control of navigation in insects and its relevance for robotics.
Srinivasan, Mandyam V
2011-08-01
Flying insects display remarkable agility, despite their diminutive eyes and brains. This review describes our growing understanding of how these creatures use visual information to stabilize flight, avoid collisions with objects, regulate flight speed, detect and intercept other flying insects such as mates or prey, navigate to a distant food source, and orchestrate flawless landings. It also outlines the ways in which these insights are now being used to develop novel, biologically inspired strategies for the guidance of autonomous, airborne vehicles. Copyright © 2011 Elsevier Ltd. All rights reserved.
The determination of some requirements for a helicopter flight research simulation facility
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1977-01-01
Important requirements were defined for a flight simulation facility to support Army helicopter development. In particular requirements associated with the visual and motion subsystems of the planned simulator were studied. The method used in the motion requirements study is presented together with the underlying assumptions and a description of the supporting data. Results are given in a form suitable for use in a preliminary design. Visual requirements associated with a television camera/model concept are related. The important parameters are described together with substantiating data and assumptions. Research recommendations are given.
An airborne system for vortex flow visualization on the F-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Curry, Robert E.; Richwine, David M.
1988-01-01
A flow visualization system for the F-18 high-alpha research vehicle is described which allows direct observation of the separated vortex flows over a wide range of flight conditions. The system consists of a smoke generator system, on-board photographic and video systems, and instrumentation. In the present concept, smoke is entrained into the low-pressure vortex core, and vortice breakdown is indicated by a rapid diffusion of the smoke. The resulting pattern is observed using photographic and video images and is correlated with measured flight conditions.
Investigation of outside visual cues required for low speed and hover
NASA Technical Reports Server (NTRS)
Hoh, R. H.
1985-01-01
Knowledge of the visual cues required in the performance of stabilized hover in VTOL aircraft is a prerequisite for the development of both cockpit displays and ground-based simulation systems. Attention is presently given to the viability of experimental test flight techniques as the bases for the identification of essential external cues in aggressive and precise low speed and hovering tasks. The analysis and flight test program conducted employed a helicopter and a pilot wearing lenses that could be electronically fogged, where the primary variables were field-of-view, large object 'macrotexture', and fine detail 'microtexture', in six different fields-of-view. Fundamental metrics are proposed for the quantification of the visual field, to allow comparisons between tests, simulations, and aircraft displays.
RICA: a reliable and image configurable arena for cyborg bumblebee based on CAN bus.
Gong, Fan; Zheng, Nenggan; Xue, Lei; Xu, Kedi; Zheng, Xiaoxiang
2014-01-01
In this paper, we designed a reliable and image configurable flight arena, RICA, for developing cyborg bumblebees. To meet the spatial and temporal requirements of bumblebees, the Controller Area Network (CAN) bus is adopted to interconnect the LED display modules to ensure the reliability and real-time performance of the arena system. Easily-configurable interfaces on a desktop computer implemented by python scripts are provided to transmit the visual patterns to the LED distributor online and configure RICA dynamically. The new arena system will be a power tool to investigate the quantitative relationship between the visual inputs and induced flight behaviors and also will be helpful to the visual-motor research in other related fields.
Perceived orientation in free-fall dependson visual, postural, and architectural factors
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1983-01-01
In orbital flight and in the free-fall phase of parabolic flight, feelings of inversion of self and spacecraft, or aircraft, are often experienced. It is shown here that perceived orientation in free-fall is dependent on the position of one's body in relation to the aircraft, the architectural features of the aircraft, and one's visual appreciation of the relative configurations of his body and the aircraft. Compelling changes in the apparent orientation of one's body and of the aircraft can be reliably and systematically induced by manipulating this relationship. Moreover, while free-floating in the absence of visual, touch, and pressure stimulation, all sense of orientation to the surroundings may be lost with only an awareness of the relative configuration of the body preserved. The absences of falling sensations during weightlessness points to the importance of visual and cognitive factors in eliciting such sensations.
Quantifying Pilot Visual Attention in Low Visibility Terminal Operations
NASA Technical Reports Server (NTRS)
Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.
2012-01-01
Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation
Assessing Impact of Dual Sensor Enhanced Flight Vision Systems on Departure Performance
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.
2016-01-01
Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS) may serve as game-changing technologies to meet the challenges of the Next Generation Air Transportation System and the envisioned Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety and operational tempos of current-day Visual Flight Rules operations irrespective of the weather and visibility conditions. One significant obstacle lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility and pilot workload of conducting departures and approaches on runways without centerline lighting in visibility as low as 300 feet runway visual range (RVR) by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance and workload was assessed. Using EFVS concepts during 300 RVR terminal operations on runways without centerline lighting appears feasible as all EFVS concepts had equivalent (or better) departure performance and landing rollout performance, without any workload penalty, than those flown with a conventional HUD to runways having centerline lighting. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.
Visual cues to geographical orientation during low-level flight
NASA Technical Reports Server (NTRS)
Battiste, Vernol; Delzell, Suzanne
1991-01-01
A field study of an operational Emergency Medical Service (EMS) unit was conducted to investigate the relationships among geographical orientation, pilot decision making, and workload in EMS flights. The map data collected during this study were compared to protocols gathered in the laboratory, where pilots viewed a simulated flight over different types of unfamiliar terrain and verbally identified the features utilized to maintain geographical orientation. The EMS pilot's questionnaire data were compared with data from non-EMS helicopter pilots with comparable flight experience.
Navigation Operational Concept,
1991-08-01
Area Control Facility AFSS Automated Flight Service Station AGL Above Ground Level ALSF-2 Approach Light System with Sequence Flasher Model 2 ATC Air...equipment contributes less than 0.30 NM error at the missed approach point. This total system use accuracy allows for flight technical error of up to...means for transition from instrument to visual flight . This function is provided by a series of standard lighting systems : the Approach Lighting
1986-09-01
TECHNICAL EVALUATION REPORT OF THE SYMPOSIUM ON "FLIGHT SIMULATION" A. M. Cook. NASA -Ames Research Center 1. INTRODUCILN This report evaluates the 67th...John C. Ousterberry* NASA Ames Research Center Moffett Field, California 94035, U.S.A. SUMMARY Early AGARD papers on manned flight simulation...and developffent simulators. VISUAL AND MOTION CUEING IN HELICOPTER SIMULATION Nichard S. Bray NASA Ames Research Center Moffett Field, California
NASA Technical Reports Server (NTRS)
Foyle, David C.; Kaiser, Mary K.; Johnson, Walter W.
1992-01-01
This paper reviews some of the sources of visual information that are available in the out-the-window scene and describes how these visual cues are important for routine pilotage and training, as well as the development of simulator visual systems and enhanced or synthetic vision systems for aircraft cockpits. It is shown how these visual cues may change or disappear under environmental or sensor conditions, and how the visual scene can be augmented by advanced displays to capitalize on the pilot's excellent ability to extract visual information from the visual scene.
The Mission Planning Lab: A Visualization and Analysis Tool
NASA Technical Reports Server (NTRS)
Daugherty, Sarah C.; Cervantes, Benjamin W.
2009-01-01
Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).
NextGen flight deck data comm: auxiliary synthetic speech - phase I
DOT National Transportation Integrated Search
2012-10-22
Data Comma digital, text-based controller-pilot communication systemis critical to many NextGen improvements. With Data Comm, communication becomes a visual task. Although Data Comm brings many advantages, interacting with a visual display may ...
14 CFR 15.101 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES... (b) Aeronautical data that— (1) Is visually displayed in the cockpit of an aircraft; and (2) When visually displayed, accurately depicts a defective or deficient flight procedure or airway promulgated by...
ERIC Educational Resources Information Center
Pan, Yufeng; Zhou, Yanqiong; Guo, Chao; Gong, Haiyun; Gong, Zhefeng; Liu, Li
2009-01-01
The central complex is a prominent structure in the "Drosophila" brain. Visual learning experiments in the flight simulator, with flies with genetically altered brains, revealed that two groups of horizontal neurons in one of its substructures, the fan-shaped body, were required for "Drosophila" visual pattern memory. However,…
Wiggins, Mark; O'Hare, David
2003-01-01
Inappropriate and ineffective weather-related decision making continues to account for a significant proportion of general aviation fatalities in the United States and elsewhere. This study details the evaluation of a computer-based training system that was developed to provide visual pilots with the skills necessary to recognize and respond to the cues associated with deteriorating weather conditions during flight. A total of 66 pilots were assigned to one of two groups, and the evaluation process was undertaken at both a self-report and performance level. At the self-report level, the results suggested that pilots were more likely to use the cues following exposure to the training program. From a performance perspective, there is evidence to suggest that cue-based training can improve the timeliness of weather-related decision making during visual flight rules flight. Actual or potential applications of this research include the development of computer-based training systems for fault diagnosis in complex industrial environments.
NASA Technical Reports Server (NTRS)
Whelan, Todd Michael
1996-01-01
In a real-time or batch mode simulation that is designed to model aircraft dynamics over a wide range of flight conditions, a table look- up scheme is implemented to determine the forces and moments on the vehicle based upon the values of parameters such as angle of attack, altitude, Mach number, and control surface deflections. Simulation Aerodynamic Variable Interface (SAVI) is a graphical user interface to the flight simulation input data, designed to operate on workstations that support X Windows. The purpose of the application is to provide two and three dimensional visualization of the data, to allow an intuitive sense of the data set. SAVI also allows the user to manipulate the data, either to conduct an interactive study of the influence of changes on the vehicle dynamics, or to make revisions to data set based on new information such as flight test. This paper discusses the reasons for developing the application, provides an overview of its capabilities, and outlines the software architecture and operating environment.
A rotorcraft flight database for validation of vision-based ranging algorithms
NASA Technical Reports Server (NTRS)
Smith, Phillip N.
1992-01-01
A helicopter flight test experiment was conducted at the NASA Ames Research Center to obtain a database consisting of video imagery and accurate measurements of camera motion, camera calibration parameters, and true range information. The database was developed to allow verification of monocular passive range estimation algorithms for use in the autonomous navigation of rotorcraft during low altitude flight. The helicopter flight experiment is briefly described. Four data sets representative of the different helicopter maneuvers and the visual scenery encountered during the flight test are presented. These data sets will be made available to researchers in the computer vision community.
Simulator-induced spatial disorientation: effects of age, sleep deprivation, and type of conflict.
Previc, Fred H; Ercoline, William R; Evans, Richard H; Dillon, Nathan; Lopez, Nadia; Daluz, Christina M; Workman, Andrew
2007-05-01
Spatial disorientation mishaps are greater at night and with greater time on task, and sleep deprivation is known to decrease cognitive and overall flight performance. However, the ability to perceive and to be influenced by physiologically appropriate simulated SD conflicts has not previously been studied in an automated simulator flight profile. A set of 10 flight profiles were flown by 10 U.S. Air Force (USAF) pilots over a period of 28 h in a specially designed flight simulator for spatial disorientation research and training. Of the 10 flights, 4 had a total of 7 spatial disorientation (SD) conflicts inserted into each of them, 5 simulating motion illusions and 2 involving visual illusions. The percentage of conflict reports was measured along with the effects of four conflicts on flight performance. The results showed that, with one exception, all motion conflicts were reported over 60% of the time, whereas the two visual illusions were reported on average only 25% of the time, although they both significantly affected flight performance. Pilots older than 35 yr of age were more likely to report conflicts than were those under 30 yr of age (63% vs. 38%), whereas fatigue had little effect overall on either recognized or unrecognized SD. The overall effects of these conflicts on perception and performance were generally not altered by sleep deprivation, despite clear indications of fatigue in our pilots.
NextGen flight deck Data Comm : auxiliary synthetic speech phase I
DOT National Transportation Integrated Search
2012-12-31
Data Comma text-based controller-pilot communication systemis critical to many NextGen improvements. With Data Comm, communication becomes a visual task. Interacting with a visual Data Comm display may yield an unsafe increase in head-down time...
Improving Aviation Safety with information Visualization: A Flight Simulation Study
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.; Hearst, Marti
2005-01-01
Many aircraft accidents each year are caused by encounters with invisible airflow hazards. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real-time. With this influx of data comes the need to study how best to present it to the pilot - a cognitively overloaded user focused on a primary task other than that of information visualization. In this paper, we present the results of a usability study of an airflow hazard visualization system that significantly reduced the crash rate among experienced helicopter pilots flying a high fidelity, aerodynamically realistic fixed-base rotorcraft flight simulator into hazardous conditions. We focus on one particular aviation application, but the results may be relevant to user interfaces in other operationally stressful environments.
Using flight simulators aboard ships: human side effects of an optimal scenario with smooth seas.
Muth, Eric R; Lawson, Ben
2003-05-01
The U.S. Navy is considering placing flight simulators aboard ships. It is known that certain types of flight simulators can elicit motion adaptation syndrome (MAS), and also that certain types of ship motion can cause MAS. The goal of this study was to determine if using a flight simulator during ship motion would cause MAS, even when the simulator stimulus and the ship motion were both very mild. All participants in this study completed three conditions. Condition 1 (Sim) entailed "flying" a personal computer-based flight simulator situated on land. Condition 2 (Ship) involved riding aboard a U.S. Navy Yard Patrol boat. Condition 3 (ShipSim) entailed "flying" a personal computer-based flight simulator while riding aboard a Yard Patrol boat. Before and after each condition, participants' balance and dynamic visual acuity were assessed. After each condition, participants filled out the Nausea Profile and the Simulator Sickness Questionnaire. Following exposure to a flight simulator aboard a ship, participants reported negligible symptoms of nausea and simulator sickness. However, participants exhibited a decrease in dynamic visual acuity after exposure to the flight simulator aboard ship (T[25] = 3.61, p < 0.05). Balance results were confounded by significant learning and, therefore, not interpretable. This study suggests that flight simulators can be used aboard ship. As a minimal safety precaution, these simulators should be used according to current safety practices for land-based simulators. Optimally, these simulators should be designed to minimize MAS, located near the ship's center of rotation and used when ship motion is not provocative.
NASA Technical Reports Server (NTRS)
Bigler, W. B., II
1977-01-01
The NASA passenger ride quality apparatus (PRQA), a ground based motion simulator, was compared to the total in flight simulator (TIFS). Tests were made on PRQA with varying stimuli: motions only; motions and noise; motions, noise, and visual; and motions and visual. Regression equations for the tests were obtained and subsequent t-testing of the slopes indicated that ground based simulator tests produced comfort change rates similar to actual flight data. It was recommended that PRQA be used in the ride quality program for aircraft and that it be validated for other transportation modes.
Open Source and Design Thinking at NASA: A Vision for Future Software
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.
Interfaces Visualize Data for Airline Safety, Efficiency
NASA Technical Reports Server (NTRS)
2014-01-01
As the A-Train Constellation orbits Earth to gather data, NASA scientists and partners visualize, analyze, and communicate the information. To this end, Langley Research Center awarded SBIR funding to Fairfax, Virginia-based WxAnalyst Ltd. to refine the company's existing user interface for Google Earth to visualize data. Hawaiian Airlines is now using the technology to help manage its flights.
Visualizing Volcanic Clouds in the Atmosphere and Their Impact on Air Traffic.
Gunther, Tobias; Schulze, Maik; Friederici, Anke; Theisel, Holger
2016-01-01
Volcanic eruptions are not only hazardous in the direct vicinity of a volcano, but they also affect the climate and air travel for great distances. This article sheds light on the Grímsvötn, Puyehue-Cordón Caulle, and Nabro eruptions in 2011. The authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of Nabro's sulfate aerosol into the stratosphere. The results here were developed for the 2014 IEEE Scientific Visualization Contest, which centers around the fusion of multiple satellite data modalities to reconstruct and assess the movement of volcanic ash and sulfate aerosol emissions. Using data from three volcanic eruptions that occurred in the span of approximately three weeks, the authors study the agreement of the complementary satellite data, reconstruct sulfate aerosol and volcanic ash clouds, visualize endangered flight routes, minimize occlusion in particle trajectory visualizations, and focus on the main pathways of sulfate aerosol into the stratosphere. This video provides animations of the reconstructed ash clouds. https://youtu.be/D9DvJ5AvZAs.
AWE: Aviation Weather Data Visualization Environment
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)
2000-01-01
Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.
Oculometer Measurement of Air Traffic Controller Visual Attention
1975-02-01
AD/A-006 965 OCULOMETER MEASUREMENT OF AIR TRAFFIC CONTR OLLER VISUAL ATTENTION Gloria Karsten, et al National Aviation Facilities Experimental Cente...Radiation Center, Lexington, Mass., July 1971. 2. Stell, Kenneth J ., Avionics: Optical Device Studies Flight Displays, Aviation Week and Space Technology
Astronaut Charles Conrad during visual acuity experiments over Laredo
NASA Technical Reports Server (NTRS)
1965-01-01
Astronaut Charles Conrad Jr., pilot for the prime crew on the Gemini 5 space flight, takes pictures of predetermined land areas during visual acuity experiments over Laredo, Texas. The experiments will aid in learning to identify known terrestrial features under controlled conditions.
Safety recommendation : visual meteorological conditions (VMC)
DOT National Transportation Integrated Search
1999-06-01
On April 4, 1998 at 1034 eastern standard time, N111LR, a Cessna 525 CitiationJEt, and N737Wd, a Cessna 172 Skyhawk, collided in flight over Marietta, Georgia. Visual meteorological conditions (VMC) prevailed at the time of the accident. The Citation...
Effectively Transforming IMC Flight into VMC Flight: An SVS Case Study
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Hughes, Monic F.; Parrish, Russell V.; Takallu, Mohammad A.
2006-01-01
A flight-test experiment was conducted using the NASA LaRC Cessna 206 aircraft. Four primary flight and navigation display concepts, including baseline and Synthetic Vision System (SVS) concepts, were evaluated in the local area of Roanoke Virginia Airport, flying visual and instrument approach procedures. A total of 19 pilots, from 3 pilot groups reflecting the diverse piloting skills of the GA population, served as evaluation pilots. Multi-variable Discriminant Analysis was applied to three carefully selected and markedly different operating conditions with conventional instrumentation to provide an extension of traditional analysis methods as well as provide an assessment of the effectiveness of SVS displays to effectively transform IMC flight into VMC flight.
Effects of Retinal Eccentricity on Human Manual Control
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.
2017-01-01
This study investigated the effects of viewing a primary flight display at different retinal eccentricities on human manual control behavior and performance. Ten participants performed a pitch tracking task while looking at a simplified primary flight display at different horizontal and vertical retinal eccentricities, and with two different controlled dynamics. Tracking performance declined at higher eccentricity angles and participants behaved more nonlinearly. The visual error rate gain increased with eccentricity for single-integrator-like controlled dynamics, but decreased for double-integrator-like dynamics. Participants' visual time delay was up to 100 ms higher at the highest horizontal eccentricity compared to foveal viewing. Overall, vertical eccentricity had a larger impact than horizontal eccentricity on most of the human manual control parameters and performance. Results might be useful in the design of displays and procedures for critical flight conditions such as in an aerodynamic stall.
Embodied linearity of speed control in Drosophila melanogaster.
Medici, V; Fry, S N
2012-12-07
Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles.
Embodied linearity of speed control in Drosophila melanogaster
Medici, V.; Fry, S. N.
2012-01-01
Fruitflies regulate flight speed by adjusting their body angle. To understand how low-level posture control serves an overall linear visual speed control strategy, we visually induced free-flight acceleration responses in a wind tunnel and measured the body kinematics using high-speed videography. Subsequently, we reverse engineered the transfer function mapping body pitch angle onto flight speed. A linear model is able to reproduce the behavioural data with good accuracy. Our results show that linearity in speed control is realized already at the level of body posture-mediated speed control and is therefore embodied at the level of the complex aerodynamic mechanisms of body and wings. Together with previous results, this study reveals the existence of a linear hierarchical control strategy, which can provide relevant control principles for biomimetic implementations, such as autonomous flying micro air vehicles. PMID:22933185
Auditory, visual, and bimodal data link displays and how they support pilot performance.
Steelman, Kelly S; Talleur, Donald; Carbonari, Ronald; Yamani, Yusuke; Nunes, Ashley; McCarley, Jason S
2013-06-01
The design of data link messaging systems to ensure optimal pilot performance requires empirical guidance. The current study examined the effects of display format (auditory, visual, or bimodal) and visual display position (adjacent to instrument panel or mounted on console) on pilot performance. Subjects performed five 20-min simulated single-pilot flights. During each flight, subjects received messages from a simulated air traffic controller. Messages were delivered visually, auditorily, or bimodally. Subjects were asked to read back each message aloud and then perform the instructed maneuver. Visual and bimodal displays engendered lower subjective workload and better altitude tracking than auditory displays. Readback times were shorter with the two unimodal visual formats than with any of the other three formats. Advantages for the unimodal visual format ranged in size from 2.8 s to 3.8 s relative to the bimodal upper left and auditory formats, respectively. Auditory displays allowed slightly more head-up time (3 to 3.5 seconds per minute) than either visual or bimodal displays. Position of the visual display had only modest effects on any measure. Combined with the results from previous studies by Helleberg and Wickens and Lancaster and Casali the current data favor visual and bimodal displays over auditory displays; unimodal auditory displays were favored by only one measure, head-up time, and only very modestly. Data evinced no statistically significant effects of visual display position on performance, suggesting that, contrary to expectations, the placement of a visual data link display may be of relatively little consequence to performance.
Optic flow cues guide flight in birds.
Bhagavatula, Partha S; Claudianos, Charles; Ibbotson, Michael R; Srinivasan, Mandyam V
2011-11-08
Although considerable effort has been devoted to investigating how birds migrate over large distances, surprisingly little is known about how they tackle so successfully the moment-to-moment challenges of rapid flight through cluttered environments [1]. It has been suggested that birds detect and avoid obstacles [2] and control landing maneuvers [3-5] by using cues derived from the image motion that is generated in the eyes during flight. Here we investigate the ability of budgerigars to fly through narrow passages in a collision-free manner, by filming their trajectories during flight in a corridor where the walls are decorated with various visual patterns. The results demonstrate, unequivocally and for the first time, that birds negotiate narrow gaps safely by balancing the speeds of image motion that are experienced by the two eyes and that the speed of flight is regulated by monitoring the speed of image motion that is experienced by the two eyes. These findings have close parallels with those previously reported for flying insects [6-13], suggesting that some principles of visual guidance may be shared by all diurnal, flying animals. Copyright © 2011 Elsevier Ltd. All rights reserved.
Honeybee Odometry: Performance in Varying Natural Terrain
Tautz, Juergen; Zhang, Shaowu; Spaethe, Johannes; Brockmann, Axel; Si, Aung
2004-01-01
Recent studies have shown that honeybees flying through short, narrow tunnels with visually textured walls perform waggle dances that indicate a much greater flight distance than that actually flown. These studies suggest that the bee's “odometer” is driven by the optic flow (image motion) that is experienced during flight. One might therefore expect that, when bees fly to a food source through a varying outdoor landscape, their waggle dances would depend upon the nature of the terrain experienced en route. We trained honeybees to visit feeders positioned along two routes, each 580 m long. One route was exclusively over land. The other was initially over land, then over water and, finally, again over land. Flight over water resulted in a significantly flatter slope of the waggle-duration versus distance regression, compared to flight over land. The mean visual contrast of the scenes was significantly greater over land than over water. The results reveal that, in outdoor flight, the honeybee's odometer does not run at a constant rate; rather, the rate depends upon the properties of the terrain. The bee's perception of distance flown is therefore not absolute, but scene-dependent. These findings raise important and interesting questions about how these animals navigate reliably. PMID:15252454
Minimum viewing angle for visually guided ground speed control in bumblebees.
Baird, Emily; Kornfeldt, Torill; Dacke, Marie
2010-05-01
To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-12-22
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.
Code of Federal Regulations, 2013 CFR
2013-01-01
... not less than once every 4 hours, if the cargo space is accessible during flight. If the animal cargo space is not accessible during flight, the carrier shall visually observe the live rabbits whenever loaded and unloaded and whenever the animal cargo space is otherwise accessible to assure that they are...
Code of Federal Regulations, 2012 CFR
2012-01-01
... not less than once every 4 hours, if the cargo space is accessible during flight. If the animal cargo space is not accessible during flight, the carrier shall visually observe the live rabbits whenever loaded and unloaded and whenever the animal cargo space is otherwise accessible to assure that they are...
Code of Federal Regulations, 2014 CFR
2014-01-01
... not less than once every 4 hours, if the cargo space is accessible during flight. If the animal cargo space is not accessible during flight, the carrier shall visually observe the live rabbits whenever loaded and unloaded and whenever the animal cargo space is otherwise accessible to assure that they are...
SABER: Airland Combat Training Model Credibility Assessment and Methodology
1992-03-01
The three types of weather are good, VFR conditions (visual flight rules); fair , MVFR (marginal VFR), and; poor, IFR conditions (instrument flight rules...categories good, fair and poor represent VFR, MVFR and IFR flight conditions respectively. Darkness can be thought of as an attribute of weather, that... fair , poor, or very poor (VP). The meaning of these values were explained in section 4.3.5. Another value , called impassible (IMP), should be added to
NASA Technical Reports Server (NTRS)
Rising, J. J.
1982-01-01
The L-1011 has been flight tested to demonstrate the relaxed static stability concept as a means of obtaining significant drag benefits to achieve a more energy efficient transport. Satisfactory handling qualities were maintained with the design of an active control horizontal tail for stability and control augmentation to allow operation of the L-1011 at centers of gravity close to the neutral point. Prior to flight test, a motion base visual flight simulator program was performed to optimize the augmentation system. The system was successfully demonstrated in a test program totaling forty-eight actual flight hours.
Simulation of nap-of-the-Earth flight in helicopters
NASA Technical Reports Server (NTRS)
Condon, Gregory W.
1991-01-01
NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.
Lemeshchenko, N A; Ivanov, A I; Lapa, V V; Davydov, V V; Zhelonkin, V I; Riabinin, V A; Golosov, S Iu
2014-01-01
The article deals with results of experimental studies conducted on flight testing desk and covering peculiarities of pilot's perception of flight information presented on on-board liquid crystal display in dependence on changes speed and update rate of the screen. The authors determine frequency characteristics of information update rate, that achieve acceptable quality of the flight parameters perception in accordance with the changes speed. Vigorous maneuvering with high angular velocities of changed parameters of roll and pitch causes visual distortions that are connected with poor frequency of information update rate, deteriorate piloting quality and can cause flight unsafety.
Visual Odometry for Autonomous Deep-Space Navigation Project
NASA Technical Reports Server (NTRS)
Robinson, Shane; Pedrotty, Sam
2016-01-01
Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory’s considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm’s performance and ability to process ‘flight-like’ imagery formats with a ‘flight-like’ trajectory, positioning ourselves to easily process flight data from the upcoming ‘ISS Selfie’ activity and then compare the algorithm’s quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system.Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.
Visual Odometry for Autonomous Deep-Space Navigation Project
NASA Technical Reports Server (NTRS)
Robinson, Shane; Pedrotty, Sam
2016-01-01
Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory's considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm's performance and ability to process 'flight-like' imagery formats with a 'flight-like' trajectory, positioning ourselves to easily process flight data from the upcoming 'ISS Selfie' activity and then compare the algorithm's quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system. Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.
Helicopter flight simulation motion platform requirements
NASA Astrophysics Data System (ADS)
Schroeder, Jeffery Allyn
Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.
Hummingbirds control hovering flight by stabilizing visual motion.
Goller, Benjamin; Altshuler, Douglas L
2014-12-23
Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.
Dark focus of accommodation as dependent and independent variables in visual display technology
NASA Technical Reports Server (NTRS)
Jones, Sherrie; Kennedy, Robert; Harm, Deborah
1992-01-01
When independent stimuli are available for accommodation, as in the dark or under low contrast conditions, the lens seeks its resting position. Individual differences in resting positions are reliable, under autonomic control, and can change with visual task demands. We hypothesized that motion sickness in a flight simulator might result in dark focus changes. Method: Subjects received training flights in three different Navy flight simulators. Two were helicopter simulators entailed CRT presentation using infinity optics, one involved a dome presentation of a computer graphic visual projection system. Results: In all three experiments there were significant differences between dark focus activity before and after simulator exposure when comparisons were made between sick and not-sick pilot subjects. In two of these experiments, the average shift in dark focus for the sick subjects was toward increased myopia when each subject was compared to his own baseline. In the third experiment, the group showed an average shift outward of small amount and the subjects who were sick showed significantly less outward movement than those who were symptom free. Conclusions: Although the relationship is not a simple one, dark focus changes in simulator sickness imply parasympathetic activity. Because changes can occur in relation to endogenous and exogenous events, such measurement may have useful applications as dependent measures in studies of visually coupled systems, virtual reality systems, and space adaptation syndrome.
Off-surface infrared flow visualization
NASA Technical Reports Server (NTRS)
Manuel, Gregory S. (Inventor); Obara, Clifford J. (Inventor); Daryabeigi, Kamran (Inventor); Alderfer, David W. (Inventor)
1993-01-01
A method for visualizing off-surface flows is provided. The method consists of releasing a gas with infrared absorbing and emitting characteristics into a fluid flow and imaging the flow with an infrared imaging system. This method allows for visualization of off-surface fluid flow in-flight. The novelty of this method is found in providing an apparatus for flow visualization which is contained within the aircraft so as not to disrupt the airflow around the aircraft, is effective at various speeds and altitudes, and is longer-lasting than previous methods of flow visualization.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-12
... eddy current and visual inspections of the upper wing strut fitting for evidence of cracks, wear and/or... permitted extending the intervals for the repetitive eddy current and visual inspections from 100 Flight... the applicability and to require repetitive eddy current and visual inspections of the upper wing...
NASA Astrophysics Data System (ADS)
Kammel, H.; Haase, H.
An experimental psycho-physiological method is presented for the evaluation of visual-cognitive performance preconditions and operational reliability of pilots and cosmonauts. As visual-cognitive stress are used tachistoscopically presented instrument symbols under conditions of individual speed of work and time pressure. The results of the compared extreme groups consisting of pilots with good and insufficient flight performance showed that the pilots with impairments to the quality of flight activity differ already before the test in their individual habitual characteristics and actual motivation, during the stress in their operational parameters, in the dimensions of their cardiorespiratory activation as well as in their efficiency and after the stress in their subjective experience of the stress. Conclusions are drawn for the evaluation of the aptitude of pilots and cosmonauts.
DOT National Transportation Integrated Search
2013-10-04
Performance based navigation supports the design of more precise flight procedures. However, these new procedures can be visually complex, which may impact the usability of charts that depict the procedures. The purpose of the study was to evaluate w...
Ground-Based Studies of Headward Fluid Shifts Related to Space Flight
NASA Technical Reports Server (NTRS)
Petersen, L. G.; Watkins, W.; Hargens, A. R.; Macias, B. R.
2017-01-01
Long-term space flight decreases visual acuity in more than 50% of astronauts with some reports of post-flight lumbar opening pressures up to 21 mmHg1. Loss of hydrostatic (gravitational) pressures in microgravity shifts blood, spinal fluid and tissue fluids towards the head, probably causing venous congestion and leading to symptoms compatible with chronically increased intracranial pressure (ICP). This is characterized as the Visual Impairment and Intracranial Pressure (VIIP) syndrome. Simulation of gravitational stress by application of Lower Body Negative Pressure (LBNP) is proposed as a means to reduce ICP and reestablish cerebral health in astronauts during long mission stay in space. We hypothesize that 50 mmHg of lower body negative pressure (LBNP) during supine and simulated intracranial hypertension by 15 deg head-down tilt (HDT) counteracts elevations in ICP and internal jugular vein crosssectional area (IJV CSA).
Comparison of Flight Simulators Based on Human Motion Perception Metrics
NASA Technical Reports Server (NTRS)
Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.
2015-01-01
In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Bloomberg, J. J.; Layne, C. S.
1997-01-01
We present a review of converging sources of evidence which suggest that the differences between loading histories experienced in 1-g and weightlessness are sufficient to stimulate adaptation in mechanical impedance of the musculoskeletal system. As a consequence of this adaptive change we argue that we should observe changes in the ability to attenuate force transmission through the musculoskeletal system both during and after space flight. By focusing attention on the relation between human sensorimotor activity and support surfaces, the importance of controlling mechanical energy flow through the musculoskeletal system is demonstrated. The implications of such control are discussed in light of visual-vestibular function in the specific context of head and gaze control during postflight locomotion. Evidence from locomotory biomechanics, visual-vestibular function, ergonomic evaluations of human vibration, and specific investigations of locomotion and head and gaze control after space flight, is considered.
Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations
NASA Astrophysics Data System (ADS)
Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.
2013-05-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray
2013-01-01
NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Deal, P. L.
1975-01-01
The simulation employed all six rigid-body degrees of freedom and incorporated aerodynamic characteristics based on wind-tunnel data. The flight instrumentation included a localizer and a flight director which was used to capture and to maintain a two-segment glide slope. A closed-circuit television display of a STOLport provided visual cues during simulations of the approach and landing. The decoupled longitudinal controls used constant prefilter and feedback gains to provide steady-state decoupling of flight-path angle, pitch angle, and forward velocity. The pilots were enthusiastic about the decoupled longitudinal controls and believed that the simulator motion was an aid in evaluating the decoupled controls, although a minimum turbulence level with root-mean-square gust intensity of 0.3 m/sec (1 ft/sec) was required to mask undesirable characteristics of the moving-base simulator.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel
2017-01-01
A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.
NASA Technical Reports Server (NTRS)
Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.
1971-01-01
The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.
Three-Dimensional Displays In The Future Flight Station
NASA Astrophysics Data System (ADS)
Bridges, Alan L.
1984-10-01
This review paper summarizes the development and applications of computer techniques for the representation of three-dimensional data in the future flight station. It covers the development of the Lockheed-NASA Advanced Concepts Flight Station (ACFS) research simulators. These simulators contain: A Pilot's Desk Flight Station (PDFS) with five 13- inch diagonal, color, cathode ray tubes on the main instrument panel; a computer-generated day and night visual system; a six-degree-of-freedom motion base; and a computer complex. This paper reviews current research, development, and evaluation of easily modifiable display systems and software requirements for three-dimensional displays that may be developed for the PDFS. This includes the analysis and development of a 3-D representation of the entire flight profile. This 3-D flight path, or "Highway-in-the-Sky", will utilize motion and perspective cues to tightly couple the human responses of the pilot to the aircraft control systems. The use of custom logic, e.g., graphics engines, may provide the processing power and architecture required for 3-D computer-generated imagery (CGI) or visual scene simulation (VSS). Diffraction or holographic head-up displays (HUDs) will also be integrated into the ACFS simulator to permit research on the requirements and use of these "out-the-window" projection systems. Future research may include the retrieval of high-resolution, perspective view terrain maps which could then be overlaid with current weather information or other selectable cultural features.
Local motion adaptation enhances the representation of spatial structure at EMD arrays
Lindemann, Jens P.; Egelhaaf, Martin
2017-01-01
Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distance-dependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects. PMID:29281631
Material inspection of EURECA first findings and recommendations
NASA Technical Reports Server (NTRS)
Vaneesbeek, Marc; Froggatt, Michael; Gourmelon, Georges
1995-01-01
This paper gives the first results of the Post flight materials investigation on the European Retrievable Carrier (EURECA) after a stay of 11 months in LEO. The paper will concentrate on the first findings after the visual inspection performed at KSC and Astrotech and give some general design recommendations for potential future Carrier flights.
14 CFR Appendix A to Part 129 - Application for Operations Specifications by Foreign Air Carriers
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Operations. State whether the operation proposed is day or night, visual flight rules, instrument flight...). Sec. IV. Communications facilities. List all communication facilities to be used by the applicant in... English language to a degree necessary to enable them to properly communicate with Airport Traffic Control...
Flow structures around a beetle in a tethered flight
NASA Astrophysics Data System (ADS)
Lee, Boogeon; Oh, Sehyeong; Park, Hyungmin; Choi, Haecheon
2017-11-01
In the present study, through a wind-tunnel experiment, we visualize the flow in a tethered flight of a rhinoceros beetle using a smoke-wire visualization technique. Measurements are done at five side planes along the wind span while varying the body angle (angle between the horizontal and the body axis) to investigate the influence of the stroke plane angle that was observed to change depending on the flight mode such as hovering, forward and takeoff flights so on. Observing that a large attached leading-edge vortex is only found on the hindwing, it is inferred that most of the aerodynamic forces would be generated by hindwings (flexible inner wings) compared to the elytra (hard outer wings). In addition, it is observed to use unsteady lift-generating mechanisms such as clap-and-fling, wing-wing interaction and wake capture. Finally, we discuss the relation between the advance ratio and Strouhal number by adjusting free-stream velocity and the body angle (i.e., angle of wake-induced flow). Supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by ADD, Korea (UD130070ID).
ANOPP/VMS HSCT ground contour system
NASA Technical Reports Server (NTRS)
Rawls, John, Jr.; Glaab, Lou
1992-01-01
This viewgraph shows the integration of the Visual Motion Simulator with ANOPP. ANOPP is an acronym for the Aircraft NOise Prediction Program. It is a computer code consisting of dedicated noise prediction modules for jet, propeller, and rotor powered aircraft along with flight support and noise propagation modules, all executed under the control of an executive system. The Visual Motion Simulator (VMS) is a ground based motion simulator with six degrees of freedom. The transport-type cockpit is equipped with conventional flight and engine-thrust controls and with flight instrument displays. Control forces on the wheel, column, and rudder pedals are provided by a hydraulic system coupled with an analog computer. The simulator provides variable-feel characteristics of stiffness, damping, coulomb friction, breakout forces, and inertia. The VMS provides a wide range of realistic flight trajectories necessary for computing accurate ground contours. The NASA VMS will be discussed in detail later in this presentation. An equally important part of the system for both ANOPP and VMS is the engine performance. This will also be discussed in the presentation.
Abolishment of Spontaneous Flight Turns in Visually Responsive Drosophila.
Ferris, Bennett Drew; Green, Jonathan; Maimon, Gaby
2018-01-22
Animals react rapidly to external stimuli, such as an approaching predator, but in other circumstances, they seem to act spontaneously, without any obvious external trigger. How do the neural processes mediating the execution of reflexive and spontaneous actions differ? We studied this question in tethered, flying Drosophila. We found that silencing a large but genetically defined set of non-motor neurons virtually eliminates spontaneous flight turns while preserving the tethered flies' ability to perform two types of visually evoked turns, demonstrating that, at least in flies, these two modes of action are almost completely dissociable. Copyright © 2017 Elsevier Ltd. All rights reserved.
LAPR: An experimental aircraft pushbroom scanner
NASA Technical Reports Server (NTRS)
Wharton, S. W.; Irons, J. I.; Heugel, F.
1980-01-01
A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery.
a Three-Dimensional Simulation and Visualization System for Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Liang, Y.; Qu, Y.; Cui, T.
2017-08-01
Nowadays UAVs has been widely used for large-scale surveying and mapping. Compared with manned aircraft, UAVs are more cost-effective and responsive. However, UAVs are usually more sensitive to wind condition, which greatly influences their positions and orientations. The flight height of a UAV is relative low, and the relief of the terrain may result in serious occlusions. Moreover, the observations acquired by the Position and Orientation System (POS) are usually less accurate than those acquired in manned aerial photogrammetry. All of these factors bring in uncertainties to UAV photogrammetry. To investigate these uncertainties, a three-dimensional simulation and visualization system has been developed. The system is demonstrated with flight plan evaluation, image matching, POS-supported direct georeferencing, and ortho-mosaicing. Experimental results show that the presented system is effective for flight plan evaluation. The generated image pairs are accurate and false matches can be effectively filtered. The presented system dynamically visualizes the results of direct georeferencing in three-dimensions, which is informative and effective for real-time target tracking and positioning. The dynamically generated orthomosaic can be used in emergency applications. The presented system has also been used for teaching theories and applications of UAV photogrammetry.
Orientation and disorientation in aviation
2013-01-01
On the ground, the essential requirement to remain orientated is a largely unconscious activity. In flight, orientation requires a conscious effort by the pilot particularly when the visual environment becomes degraded and a deceptive force environment becomes the frame of reference. Furthermore, an unusual force environment can determine the apparent location of objects within a limited visual scene, sometimes with disastrous consequences. This review outlines the sources of pilot disorientation that arise from the visual and force environment of flight and their interaction. It challenges the value of the traditional illusion-based approach to the subject both to aircrew and to surveys of disorientation. Also, it questions the emphasis on the shortcomings of vestibular function as the physiological basis for disorientation. While military accidents from all causes have shown a decline, there has been no corresponding reduction in accidents involving disorientation, 85% of which are the results of unrecognised disorientation. This finding has implications for the way in which pilots are taught about disorientation in the interest of enhanced flight safety. It argues for a greater use of conventional fixed base simulators to create disorientating scenarios rather than complex motion devices to create unusual sensations. PMID:23849216
NASA Technical Reports Server (NTRS)
Crane, D. F.
1984-01-01
When human operators are performing precision tracking tasks, their dynamic response can often be modeled by quasilinear describing functions. That fact permits analysis of the effects of delay in certain man machine control systems using linear control system analysis techniques. The analysis indicates that a reduction in system stability is the immediate effect of additional control system delay, and that system characteristics moderate or exaggerate the importance of the delay. A selection of data (simulator and flight test) consistent with the analysis is reviewed. Flight simulator visual-display delay compensation, designed to restore pilot aircraft system stability, was evaluated in several studies which are reviewed here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish the statistical significance of the results) to a brief evaluation of compensation of a computer generated imagery (CGI) visual display system in a full six degree of freedom simulation. The compensation was effective, improvements in pilot performance and workload or aircraft handling qualities rating (HQR) were observed. Results from recent aircraft handling qualities research literature, which support the compensation design approach, are also reviewed.
NASA Astrophysics Data System (ADS)
Chen, Goong; Wang, Yi-Ching; Perronnet, Alain; Gu, Cong; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O.
2017-03-01
Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics. This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not likely to be correct. We discuss the effects of terrain on pulverization using the information from the recovered flight-data-recorder and show our forensics and assessments of what may have happened during the final moments of the crash. Finally, we point out that our study has potential for being made into real-time flight crash simulators to help the study of crashworthiness and survivability for future aviation safety. Some forward-looking statements are also made.
Code of Federal Regulations, 2010 CFR
2010-01-01
... any of the live guinea pigs or hamsters are in obvious physical distress and to provide any needed veterinary care as soon as possible. When transported by air, live guinea pigs and hamsters shall be visually... during flight, the carrier shall visually observe the live guinea pigs or hamsters whenever loaded and...
The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral
NASA Technical Reports Server (NTRS)
Wood, Bill; Pate, Dennis; Thelen, David
2010-01-01
This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-01-01
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight. PMID:28025524
Sensor supported pilot assistance for helicopter flight in DVE
NASA Astrophysics Data System (ADS)
Waanders, Tim; Münsterer, T.; Kress, M.
2013-05-01
Helicopter operations at low altitude are to this day only performed under VFR conditions in which safe piloting of the aircraft relies on the pilot's visual perception of the outside environment. However, there are situations in which a deterioration of visibility conditions may cause the pilot to lose important visual cues thereby increasing workload and compromising flight safety and mission effectiveness. This paper reports on a pilot assistance system for all phases of flight which is intended to: • Provide navigational support and mission management • Support landings/take-offs in unknown environment and in DVE • Enhance situational awareness in DVE • Provide obstacle and terrain surface detection and warning • Provide upload, sensor based update and download of database information for debriefing and later missions. The system comprises a digital terrain and obstacle database, tactical information, flight plan management combined with an active 3D sensor enabling the above mentioned functionalities. To support pilots during operations in DVE, an intuitive 3D/2D cueing through both head-up and head-down means is proposed to retain situational awareness. This paper further describes the system concept and will elaborate on results of simulator trials in which the functionality was evaluated by operational pilots in realistic and demanding scenarios such as a SAR mission to be performed in mountainous area under different visual conditions. The objective of the simulator trials was to evaluate the functional integration and HMI definition for the NH90 Tactical Transport Helicopter.
Flight Test of GL-1 Glider Half Scale Prototype
NASA Astrophysics Data System (ADS)
Fikri Zulkarnain, Muhammad; Fazlur Rahman, Muhammad; Luthfi Imam Nurhakim, Muhammad; Arifianto, Ony; Mulyanto, Taufiq
2018-04-01
GL-1 is a single-seat mid-performance glider, designed to be Indonesian National Glider. The Glider have been developing since 2014. The development produced a half scale prototype called BL-1, which had accomplished static test in 2016, then followed by first flight test at April 20th 2017, and second flight test at May 21st 2017. The purpose of the flight test was to obtain familiarization of the aircraft, aerodynamics characteristics and flow visualization, with data from flight recorded in FDR. The flight test resulted in two flights with total length of 21 minutes. The data from FDR and flight test documents extracted to analyze the characteristics and behavior of the aircraft during flight test. The aerodynamics characteristic was close to analytical results. The control was good; however, the effectiveness of control surface may need to be further analyzed. The result of the flight test will be used as a reference for further improvements and may need further testing.
Earth Adventure: Virtual Globe-based Suborbital Atmospheric Greenhouse Gases Exploration
NASA Astrophysics Data System (ADS)
Wei, Y.; Landolt, K.; Boyer, A.; Santhana Vannan, S. K.; Wei, Z.; Wang, E.
2016-12-01
The Earth Venture Suborbital (EVS) mission is an important component of NASA's Earth System Science Pathfinder program that aims at making substantial advances in Earth system science through measurements from suborbital platforms and modeling researches. For example, the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) project of EVS-1 collected measurements of greenhouse gases (GHG) on local to regional scales in the Alaskan Arctic. The Atmospheric Carbon and Transport - America (ACT-America) project of EVS-2 will provide advanced, high-resolution measurements of atmospheric profiles and horizontal gradients of CO2 and CH4.As the long-term archival center for CARVE and the future ACT-America data, the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) has been developing a versatile data management system for CARVE data to maximize their usability. One of these efforts is the virtual globe-based Suborbital Atmospheric GHG Exploration application. It leverages Google Earth to simulate the 185 flights flew by the C-23 Sherpa aircraft in 2012-2015 for the CARVE project. Based on Google Earth's 3D modeling capability and the precise coordinates, altitude, pitch, roll, and heading info of the aircraft recorded in every second during each flight, the application provides users accurate and vivid simulation of flight experiences, with an active 3D visualization of a C-23 Sherpa aircraft in view. This application provides dynamic visualization of GHG, including CO2, CO, H2O, and CH4 captured during the flights, at the same pace of the flight simulation in Google Earth. Photos taken during those flights are also properly displayed along the flight paths. In the future, this application will be extended to incorporate more complicated GHG measurements (e.g. vertical profiles) from the ACT-America project. This application leverages virtual globe technology to provide users an integrated framework to interactively explore information about GHG measurements and to link scientific measurements to the rich virtual planet environment provided by Google Earth. Positive feedbacks have been received from users. It provides a good example of extending basic data visualization into a knowledge discovery experience and maximizing the usability of Earth science observations.
Turlure, Camille; Schtickzelle, Nicolas; Van Dyck, Hans; Seymoure, Brett; Rutowski, Ronald
2016-01-01
Understanding dispersal is of prime importance in conservation and population biology. Individual traits related to motion and navigation during dispersal may differ: (1) among species differing in habitat distribution, which in turn, may lead to interspecific differences in the potential for and costs of dispersal, (2) among populations of a species that experiences different levels of habitat fragmentation; (3) among individuals differing in their dispersal strategy and (4) between the sexes due to sexual differences in behaviour and dispersal tendencies. In butterflies, the visual system plays a central role in dispersal, but exactly how the visual system is related to dispersal has received far less attention than flight morphology. We studied two butterfly species to explore the relationships between flight and eye morphology, and dispersal. We predicted interspecific, intraspecific and intersexual differences for both flight and eye morphology relative to i) species-specific habitat distribution, ii) variation in dispersal strategy within each species and iii) behavioural differences between sexes. However, we did not investigate for potential population differences. We found: (1) sexual differences that presumably reflect different demands on both male and female visual and flight systems, (2) a higher wing loading (i.e. a proxy for flight performance), larger eyes and larger facet sizes in the frontal and lateral region of the eye (i.e. better navigation capacities) in the species inhabiting naturally fragmented habitat compared to the species inhabiting rather continuous habitat, and (3) larger facets in the frontal region in dispersers compared to residents within a species. Hence, dispersers may have similar locomotory capacity but potentially better navigation capacity. Dispersal ecology and evolution have attracted much attention, but there are still significant gaps in our understanding of the mechanisms of dispersal. Unfortunately, for many species we lack detailed information on the role of behavioural, morphological and physiological traits for dispersal. Our novel study supports the existence of inter- and intra-specific evolutionary responses in both motion and navigation capacities (i.e. flight and eye morphology) linked to dispersal.
[Personnel with poor vision at fighter pilot school].
Corbé, C; Menu, J P
1997-10-01
The piloting of fighting aircraft, the navigation of space-shuttle, the piloting of an helicopter in tactical flight at an altitude of 50 metres require the use of all sensorial, ocular, vestibular, proprioceptive ... sensors. So, the selection and the follow-up of these aerial engines' pilots need a very complete study of medical parameters, in particular sensorial and notably visual system. The doctors and the expert researchers in Aeronautical and spatial Medicine of the Army Health Department, which have in charge the medical supervision of flight crew, should study, create, and improve tests of visual sensorial exploration developed from fundamental and applied research. These authenticated tests with military pilots were applied in ophthalmology for the estimation of normal and deficient vision. A proposition to change norms of World Health Organisation applied to the vision has been following these to low visual persons was equally introduced.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight controller Granvil A. Pennington, leaning on console, listens to communications during the STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS). MCC FCR visual displays are seen in background. Five veteran astronauts were in the FB-SMS rehearsing their roles for the scheduled June 1988 flight aboard Discovery, Orbiter Vehicle (OV) 103.
1982-07-01
was scheduled for an end-of-phase assessment ( equivalent to the stage check for the control group on the sixth flight). If performance was to NATOPS...proficiency was demonstrated. The same procedure was used for B stage flight except that the phase check (fourth flight) was equivalent to the control ...experimental grouo did not differ from the control qroup on tasks requirinq visual cues as a primary reference for successful completion (e.g
Visual-Vestibular Responses During Space Flight
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Paloski, W. H.
1999-01-01
Given the documented disruptions that occur in spatial orientation during space flight and the putative sensory-motor information underlying eye and head spatial coding, the primary purpose of this paper is to examine components of the target acquisition system in subjects free to make head and eye movements in three dimensional space both during and following adaptation to long duration space flight. It is also our intention to suggest a simple model of adaptation that has components in common with cerebellar disorders whose neurobiological substrate has been identified.
The 737 graphite composite flight spoiler flight service evaluation
NASA Technical Reports Server (NTRS)
Stoecklin, R. L.
1976-01-01
The flight-service experience of 110 graphite-epoxy spoilers on 737 transport aircraft and related ground-based environmental exposure of graphite-epoxy material specimens is reported. Spoilers were installed on each of 27 aircraft representing seven major airlines operating throughout the world. Based on visual, ultrasonic, and destructive testing, there is no evidence of moisture migration into the honeycomb core and no core corrosion. Tests of removed spoilers and of ground-based exposure specimens after the second year of service indicate modest changes in composite strength.
Preparing Specialized Undergraduate Pilot Training Graduates for F-35A Training
2010-06-11
the two sides of this argument and analyze the new data acquired from an F-22A lead-in program and the fact that the F-35A has started flying with...flight operations under Instrument or Visual Flight Rules to include day / night IFR operations in the terminal and enroute environment. Have limited
Vision Research for Flight Simulation. Final Report.
ERIC Educational Resources Information Center
Richards, Whitman, Ed.; Dismukes, Key, Ed.
Based on a workshop on vision research issues in flight-training simulators held in June 1980, this report focuses on approaches for the conduct of research on what visual information is needed for simulation and how it can best be presented. An introduction gives an overview of the workshop and describes the contents of the report. Section 1…
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight directors (FDs) Lee Briscoe (left) and Charles W. Shaw, seated at FD console, view front visual display monitors during STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team in MCC Bldg 30 FCR
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team with Flight Director (FD) James M. Heflin, Jr (front right next to ship model) poses in JSC's Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). The group stands in front of visual displays projecting STS-49 data and ground track map.
Ros, Ivo G; Bhagavatula, Partha S; Lin, Huai-Ti; Biewener, Andrew A
2017-02-06
Flying animals must successfully contend with obstacles in their natural environments. Inspired by the robust manoeuvring abilities of flying animals, unmanned aerial systems are being developed and tested to improve flight control through cluttered environments. We previously examined steering strategies that pigeons adopt to fly through an array of vertical obstacles (VOs). Modelling VO flight guidance revealed that pigeons steer towards larger visual gaps when making fast steering decisions. In the present experiments, we recorded three-dimensional flight kinematics of pigeons as they flew through randomized arrays of horizontal obstacles (HOs). We found that pigeons still decelerated upon approach but flew faster through a denser array of HOs compared with the VO array previously tested. Pigeons exhibited limited steering and chose gaps between obstacles most aligned to their immediate flight direction, in contrast to VO navigation that favoured widest gap steering. In addition, pigeons navigated past the HOs with more variable and decreased wing stroke span and adjusted their wing stroke plane to reduce contact with the obstacles. Variability in wing extension, stroke plane and wing stroke path was greater during HO flight. Pigeons also exhibited pronounced head movements when negotiating HOs, which potentially serve a visual function. These head-bobbing-like movements were most pronounced in the horizontal (flight direction) and vertical directions, consistent with engaging motion vision mechanisms for obstacle detection. These results show that pigeons exhibit a keen kinesthetic sense of their body and wings in relation to obstacles. Together with aerodynamic flapping flight mechanics that favours vertical manoeuvring, pigeons are able to navigate HOs using simple rules, with remarkable success.
Ros, Ivo G.; Bhagavatula, Partha S.; Lin, Huai-Ti
2017-01-01
Flying animals must successfully contend with obstacles in their natural environments. Inspired by the robust manoeuvring abilities of flying animals, unmanned aerial systems are being developed and tested to improve flight control through cluttered environments. We previously examined steering strategies that pigeons adopt to fly through an array of vertical obstacles (VOs). Modelling VO flight guidance revealed that pigeons steer towards larger visual gaps when making fast steering decisions. In the present experiments, we recorded three-dimensional flight kinematics of pigeons as they flew through randomized arrays of horizontal obstacles (HOs). We found that pigeons still decelerated upon approach but flew faster through a denser array of HOs compared with the VO array previously tested. Pigeons exhibited limited steering and chose gaps between obstacles most aligned to their immediate flight direction, in contrast to VO navigation that favoured widest gap steering. In addition, pigeons navigated past the HOs with more variable and decreased wing stroke span and adjusted their wing stroke plane to reduce contact with the obstacles. Variability in wing extension, stroke plane and wing stroke path was greater during HO flight. Pigeons also exhibited pronounced head movements when negotiating HOs, which potentially serve a visual function. These head-bobbing-like movements were most pronounced in the horizontal (flight direction) and vertical directions, consistent with engaging motion vision mechanisms for obstacle detection. These results show that pigeons exhibit a keen kinesthetic sense of their body and wings in relation to obstacles. Together with aerodynamic flapping flight mechanics that favours vertical manoeuvring, pigeons are able to navigate HOs using simple rules, with remarkable success. PMID:28163883
Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation
Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang
2014-01-01
The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523
Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.
Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang
2014-01-01
The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Ruttley, Tara; Cohen, Helen; Peters, Brian; Miller, Chris; Brady, Rachel; Merkle, Lauren; Bloomberg, Jacob
2010-01-01
Exposure to the microgravity conditions of space flight induces adaptive modification in the control of vestibular-mediated reflexive head movement during locomotion after space flight. Space flight causes astronauts to be exposed to somatosensory adaptation in both the vestibular and body load-sensing (BLS) systems. The goal of these studies was to examine the contributions of vestibular and BLS-mediated somatosensory influences on head movement control during locomotion after long-duration space flight. Subjects were asked to walk on a treadmill driven at 1.8 m/s while performing a visual acuity task. Data were collected using the same testing protocol from three independent subject groups; 1) normal subjects before and after exposure to 30 minutes of 40% bodyweight unloaded treadmill walking, 2) bilateral labyrinthine deficient (LD) patients and 3) astronauts who performed the protocol before and after long duration space flight. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the LD patients the HP movements were significantly decreased. Astronaut subjects results showed a heterogeneous response of both increases and decreases in the amplitude of HP movement. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation mediated by the converging vestibular and body load-sensing somatosensory systems.
Vision based flight procedure stereo display system
NASA Astrophysics Data System (ADS)
Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng
2008-03-01
A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.
Toward Head-Worn Displays for Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis J. (Trey); Bailey, Randall E.; Jones, Denise R.; Williams, Steven P.; Harrison, Stephanie J.
2015-01-01
The Next Generation Air Transportation System represents an envisioned transformation to the U.S. air transportation system that includes an "equivalent visual operations" (EVO) concept, intended to achieve the safety and operational tempos of Visual Flight Rules (VFR) operations independent of visibility conditions. Today, Federal Aviation Administration regulations provide for the use of an Enhanced Flight Visual System (EFVS) as "operational credit" to conduct approach operations below traditional minima otherwise prohibited. An essential element of an EFVS is the Head-Up Display (HUD). NASA has conducted a substantial amount of research investigating the use of HUDs for operational landing "credit", and current efforts are underway to enable manually flown operations as low as 1000 feet Runway Visual Range (RVR). Title 14 CFR 91.175 describes the use of EFVS and the operational credit that may be obtained with airplane equipage of a HUD combined with Enhanced Vision (EV) while also offering the potential use of an “equivalent” display in lieu of the HUD. A Head-Worn Display (HWD) is postulated to provide the same, or better, safety and operational benefits as current HUD-equipped aircraft but for potentially more aircraft and for lower cost. A high-fidelity simulation was conducted that examined the efficacy of HWDs as "equivalent" displays. Twelve airline flight crews conducted 1000 feet RVR approach and 300 feet RVR departure operations using either a HUD or HWD, both with simulated Forward Looking Infra-Red cameras. The paper shall describe (a) quantitative and qualitative results, (b) a comparative evaluation of these findings with prior NASA HUD studies, and (c) describe current research efforts for EFVS to provide for a comprehensive EVO capability.
NASA Technical Reports Server (NTRS)
Baron, S.; Lancraft, R.; Zacharias, G.
1980-01-01
The optimal control model (OCM) of the human operator is used to predict the effect of simulator characteristics on pilot performance and workload. The piloting task studied is helicopter hover. Among the simulator characteristics considered were (computer generated) visual display resolution, field of view and time delay.
Alperin, Noam; Bagci, Ahmet M; Oliu, Carlos J; Lee, Sang H; Lam, Byron L
2017-10-16
Notice of retraction: the article "Role of Cerebral Spinal Fluid in Space Flight Induced Ocular Changes and Visual Impairment in Astronauts" by Alperin et al This article has been retracted due to security concerns raised by NASA, the sponsoring agency. © RSNA, 2017.
NASA Technical Reports Server (NTRS)
Mizukaki, Toshiharu; Borg, Stephen E.; Danehy, Paul M.; Murman, Scott M.
2014-01-01
This paper presents the results of visualization of separated flow around a generic entry capsule that resembles the Apollo Command Module (CM) and the Orion Multi-Purpose Crew Vehicle (MPCV). The model was tested at flow speeds up to Mach 0.4 at a single angle of attack of 28 degrees. For manned spacecraft using capsule-shaped vehicles, certain flight operations such as emergency abort maneuvers soon after launch and flight just prior to parachute deployment during the final stages of entry, the command module may fly at low Mach number. Under these flow conditions, the separated flow generated from the heat-shield surface on both windward and leeward sides of the capsule dominates the wake flow downstream of the capsule. In this paper, flow visualization of the separated flow was conducted using the background-oriented schlieren (BOS) method, which has the capability of visualizing significantly separated wake flows without the particle seeding required by other techniques. Experimental results herein show that BOS has detection capability of density changes on the order of 10(sup-5).
2017-12-08
Release Date: March 10, 2010 - Distant galaxy clusters mysteriously stream at a million miles per hour along a path roughly centered on the southern constellations Centaurus and Hydra. A new study led by Alexander Kashlinsky at NASA's Goddard Space Flight Center in Greenbelt, Md., tracks this collective motion -- dubbed the "dark flow" -- to twice the distance originally reported, out to more than 2.5 billion light-years. Abell 1689, redshift 0.181. Credit: NASA/Goddard Space Flight Center/Scientific Visualization Studio/ESA/L. Bradley/JHU To learn more go to: www.nasa.gov/centers/goddard/news/releases/2010/10-023.html To see other visualizations related to this story go to: svs.gsfc.nasa.gov/goto?10580
A parametric analysis of visual approaches for helicopters
NASA Technical Reports Server (NTRS)
Moen, G. C.; Dicarlo, D. J.; Yenni, K. R.
1976-01-01
A flight investigation was conducted to determine the characteristic shapes of the altitude, ground speed, and deceleration profiles of visual approaches for helicopters. Two hundred thirty-six visual approaches were flown from nine sets of initial conditions with four types of helicopters. Mathematical relationships were developed that describe the characteristic visual deceleration profiles. These mathematical relationships were expanded to develop equations which define the corresponding nominal ground speed, pitch attitude, pitch rate, and pitch acceleration profiles. Results are applicable to improved helicopter handling qualities in terminal area operations.
The 737 graphite composite flight spoiler flight service evaluation
NASA Technical Reports Server (NTRS)
Stoecklin, R. L.
1975-01-01
The flight service experience of 108 graphite-epoxy spoilers on 737 transport aircraft, and related ground-based environmental exposure of graphite-epoxy material specimens were evaluated. Four spoilers were installed on each of 27 aircraft for a 5-year study. As of February 28, 1975, a total of 294,280 spoiler flight-hours and 460,686 spoiler landings were accumulated. Based on visual, ultrasonic, and destructive testing, no moisture migration into the honeycomb core and no core corrosion has occurred. Tests of removed spoilers and of ground-based exposure specimens after the first year of service indicate no significant changes in composite strength.
An avionics sensitivity study. Volume 1: Operational considerations
NASA Technical Reports Server (NTRS)
Scott, R. W.; Mcconkey, E. D.
1976-01-01
Equipment and operational concepts affecting aircraft in the terminal area are reported. Curved approach applications and modified climb and descent procedures for minimum fuel consumption are considered. The curved approach study involves the application of MLS guidance to enable execution of the current visual approach to Washington National Airport under instrument flight conditions. The operational significance and the flight path control requirements involved in the application of curved approach paths to this situation are considered. Alternative flight path control regimes are considered to achieve minimum fuel consumption subject to constraints related to air traffic control requirements, flight crew and passenger reactions, and airframe and powerplant limitations.
A smoke generator system for aerodynamic flight research
NASA Technical Reports Server (NTRS)
Richwine, David M.; Curry, Robert E.; Tracy, Gene V.
1989-01-01
A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.
A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators
NASA Technical Reports Server (NTRS)
Zeyada, Y.; Hess, R. A.
1999-01-01
An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations i The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzyinference identification can be used to reflect changes in simulator fidelity for the task examined.
A Methodology for Evaluating the Fidelity of Ground-Based Flight Simulators
NASA Technical Reports Server (NTRS)
Zeyada, Y.; Hess, R. A.
1999-01-01
An analytical and experimental investigation was undertaken to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator. The study was part of a larger research effort which has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system which included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle and the motion system. With the exception of time delays which accrued in visual scene production in the simulator, visual scene effects were not included in this study. The NASA Ames Vertical Motion Simulator was used in a simple, single-degree of freedom rotorcraft bob-up/down maneuver. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity which occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots that participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to reflect changes in simulator fidelity for the task examined.
Gravitational Effects on Brain and Behavior
NASA Technical Reports Server (NTRS)
Young, Laurence R.
1991-01-01
Visual, vestibular, tactile, proprioceptive, and perhaps auditory clues are combined with knowledge of commanded voluntary movement to produce a single, usually consistent, perception of spatial orientation. The recent Spacelab flights have provided especially valuable observations on the effects of weightlessness and space flight. The response of the otolith organs to weightlessness and readapting to Earth's gravitation is described. Reference frames for orientation are briefly discussed.
NASA Astrophysics Data System (ADS)
Matthews, Megan; Sponberg, Simon
2017-11-01
Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.
A Prototype Flight-Deck Airflow Hazard Visualization System
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2004-01-01
Airflow hazards such as turbulence, vortices, or low-level wind shear can pose a threat to landing aircraft and are especially dangerous to helicopters. Because pilots usually cannot see airflow, they may be unaware of the extent of the hazard. We have developed a prototype airflow hazard visual display for use in helicopter cockpits to alleviate this problem. We report on the results of a preliminary usability study of our airflow hazard visualization system in helicopter-shipboard operations.
On-board computer progress in development of A 310 flight testing program
NASA Technical Reports Server (NTRS)
Reau, P.
1981-01-01
Onboard computer progress in development of an Airbus A 310 flight testing program is described. Minicomputers were installed onboard three A 310 airplanes in 1979 in order to: (1) assure the flight safety by exercising a limit check of a given set of parameters; (2) improve the efficiency of flight tests and allow cost reduction; and (3) perform test analysis on an external basis by utilizing onboard flight types. The following program considerations are discussed: (1) conclusions based on simulation of an onboard computer system; (2) brief descriptions of A 310 airborne computer equipment, specifically the onboard universal calculator (CUB) consisting of a ROLM 1666 system and visualization system using an AFIGRAF CRT; (3) the ground system and flight information inputs; and (4) specifications and execution priorities for temporary and permanent programs.
NASA Technical Reports Server (NTRS)
Prinzel, III, Lawrence J. (Inventor); Pope, Alan T. (Inventor); Williams, Steven P. (Inventor); Bailey, Randall E. (Inventor); Arthur, Jarvis J. (Inventor); Kramer, Lynda J. (Inventor); Schutte, Paul C. (Inventor)
2012-01-01
Embodiments of the invention permit flight paths (current and planned) to be viewed from various orientations to provide improved path and terrain awareness via graphical two-dimensional or three-dimensional perspective display formats. By coupling the flight path information with a terrain database, uncompromising terrain awareness relative to the path and ownship is provided. In addition, missed approaches, path deviations, and any navigational path can be reviewed and rehearsed before performing the actual task. By rehearsing a particular mission, check list items can be reviewed, terrain awareness can be highlighted, and missed approach procedures can be discussed by the flight crew. Further, the use of Controller Pilot Datalink Communications enables data-linked path, flight plan changes, and Air Traffic Control requests to be integrated into the flight display of the present invention.
Context-dependent olfactory enhancement of optomotor flight control in Drosophila.
Chow, Dawnis M; Frye, Mark A
2008-08-01
Sensing and following the chemical plume of food odors is a fundamental challenge faced by many organisms. For flying insects, the task is complicated by wind that distorts the plume and buffets the fly. To maintain an upwind heading, and thus stabilize their orientation in a plume, insects such as flies and moths make use of strong context-specific visual equilibrium reflexes. For example, flying straight requires the regulation of image rotation across the eye, whereas minimizing side-slip and avoiding a collision require regulation of image expansion. In flies, visual rotation stabilizes plume tracking, but rotation and expansion optomotor responses are controlled by separate visual pathways. Are olfactory signals integrated with optomotor responses in a manner dependent upon visual context? We addressed this question by investigating the effect of an attractive food odor on active optomotor flight control. Odorant caused flies both to increase aerodynamic power output and to steer straighter. However, when challenged with wide-field optic flow, odor resulted in enhanced amplitude rotation responses but reduced amplitude expansion responses. For both visual conditions, flies tracked motion signals more closely in odor, an indication of increased saliency. These results suggest a simple search algorithm by which olfactory signals improve the salience of visual stimuli and modify optomotor control in a context-dependent manner, thereby enabling an animal to fly straight up a plume and approach odiferous objects.
The effects of visual scenes on roll and pitch thresholds in pilots versus nonpilots.
Otakeno, Shinji; Matthews, Roger S J; Folio, Les; Previc, Fred H; Lessard, Charles S
2002-02-01
Previous studies have indicated that, compared with nonpilots, pilots rely more on vision than "seat-of-the-pants" sensations when presented with visual-vestibular conflict. The objective of this study was to evaluate whether pilots and nonpilots differ in their thresholds for tilt perception while viewing visual scenes depicting simulated flight. This study was conducted in the Advanced Spatial Disorientation Demonstrator (ASDD) at Brooks AFB, TX. There were 14 subjects (7 pilots and 7 nonpilots) who recorded tilt detection thresholds in pitch and roll while exposed to sub-threshold movement in each axis. During each test run, subjects were presented with computer-generated visual scenes depicting accelerating forward flight by day or night, and a blank (control) condition. The only significant effect detected by an analysis of variance (ANOVA) was that all subjects were more sensitive to tilt in roll than in pitch [F (2,24) = 18.96, p < 0.001]. Overall, pilots had marginally higher tilt detection thresholds compared with nonpilots (p = 0.055), but the type of visual scene had no significant effect on thresholds. In this study, pilots did not demonstrate greater visual dominance over vestibular and proprioceptive cues than nonpilots, but appeared to have higher pitch and roll thresholds overall. The finding of significantly lower detection thresholds in the roll axis vs. the pitch axis was an incidental finding for both subject groups.
NASA Technical Reports Server (NTRS)
Westby, Christian M.; Stein, Sydney P.; Platts, Steven H.
2011-01-01
Many of the cardiovascular-related adaptations that occur in the microgravity environment are due, in part, to a well-characterized cephalad-fluid shift that is evidenced by facial edema and decreased lower limb circumference. It is believed that most of these alterations occur as a compensatory response necessary to maintain a "normal" blood pressure and cardiac output while in space. However, data from both flight and analog research suggest that in some instances these microgravity-induced alterations may contribute to cardiovascular-related pathologies. Most concerning is the potential relation between the vision disturbances experienced by some long duration crewmembers and changes in cerebral blood flow and intra-ocular pressure. The purpose of this project was to identify cardiovascular measures that may potentially distinguish individuals at risk for visual disturbances after long duration space flight. Toward this goal, we constructed a dataset from Medical Operation tilt/stand test evaluations pre- (days L-15-L-5) and immediate post-flight (day R+0) on 20 (3 females, 17 males). We restricted our evaluation to only crewmembers who participated in both shuttle and space station missions. Data analysis was performed using both descriptive and analytical methods (Stata 11.2, College Station, TX) and are presented as means +/- 95% CI. Crewmembers averaged 5207 (3447 - 8934) flight hours across both long (MIR-23 through Expedition16) and short (STS-27 through STS-101) duration missions between 1988 and 2008. The mean age of the crew at the time of their most recent shuttle flight was 41 (34-44) compared to 47 (40-54) years during their time on station. In order to focus our analysis (we did not have codes to separate out subjects by symptomotology) , we performed a visual inspection of each cardiovascular measures captured during testing and plotted them against stand time, pre- to post-flight, and between mission duration. It was found that pulse pressure most clearly differentiated the two mission types. Statistical analysis confirmed that pulse pressure was significantly higher before [45.6; (42.1 to 49.1)] and after [50.7; (46.9 to 54.6)] time on station compared with their most recent shuttle flight [31.6 (27.8 to 35.4), and 32.2 (28.3 to 36.0) respectively] even after correcting differences in age and cumulative number of mission hours. Without knowing the identity of which long duration crewmembers demonstrated visual changes, we were limited to examining whether certain crew regulate components of pulse pressure, systolic and diastolic blood pressure, differently due to microgravity exposure. To that end, we stratified crew into tertiles based on either their pre-flight measure of systolic or diastolic blood pressure. Those crew in the highest tertile for both systolic (lower tertile (n=8; 103-111), middle tertile (n=7; 113-121), and upper tertile (n=5; 125-136) and diastolic blood pressure (lower tertile (n=8; 58-64), middle tertile (n=7; 67-73), and upper tertile (n=5; 75-81) demonstrated less variability in pulse pressure between R+0 and L-10 (Figure 2). Interestingly, those crewmembers with the highest resting systolic blood pressure demonstrated either no change or in some instances an increase in total peripheral resistance, where those in the lower tertiles had lower values of total peripheral resistance compared to pre-flight levels. In this study, it was found that crewmembers in the highest tertile for both systolic and diastolic blood pressure demonstrated less variability in pulse pressure and that the decrease in variability was due in part to lower levels of compliance as indicated by similar or higher levels of total peripheral resistance after compared with before flight levels. Whether there is a relation between blood pressure regulation and total peripheral resistance in crew presenting with negative changes in visual acuity remains unknown.
NASA Astrophysics Data System (ADS)
Brady, J. J.; Tweedie, C. E.; Escapita, I. J.
2009-12-01
There is a fundamental need to improve capacities for monitoring environmental change using remote sensing technologies. Recently, researchers have begun using Unmanned Aerial Vehicles (UAVs) to expand and improve upon remote sensing capabilities. Limitations to most non-military and relatively small-scale Unmanned Aircraft Systems (UASs) include a need to develop more reliable communications between ground and aircraft, tools to optimize flight control, real time data processing, and visually ascertaining the quantity of data collected while in air. Here we present a prototype software system that has enhanced communication between ground and the vehicle, can synthesize near real time data acquired from sensors on board, can log operation data during flights, and can visually demonstrate the amount and quality of data for a sampling area. This software has the capacity to greatly improve the utilization of UAS in the environmental sciences. The software system is being designed for use on a paraglider UAV that has a suite of sensors suitable for characterizing the footprints of eddy covariance towers situated in the Chihuahuan Desert and in the Arctic. Sensors on board relay operational flight data (airspeed, ground speed, latitude, longitude, pitch, yaw, roll, acceleration, and video) as well as a suite of customized sensors. Additional sensors can be added to an on board laptop or a CR1000 data logger thereby allowing data from these sensors to be visualized in the prototype software. This poster will describe the development, use and customization of our UAS and multimedia will be available during AGU to illustrate the system in use. UAV on workbench in the lab UAV in flight
Nascimento, Felipe A C; Majumdar, Arnab; Jarvis, Steve
2012-07-01
Accident rates for night sorties by helicopters traveling to offshore oil and gas platforms are at least five times higher than those during the daytime. Because pilots need to transition from automated flight to a manually flown night visual segment during arrival, the approach and landing phases cause great concern. Despite this, in Brazil, regulatory changes have been sought to allow for the execution of offshore night flights because of the rapid expansion of the petroleum industry. This study explores the factors that affect safety during night visual segments in Brazil using 28 semi-structured interviews with offshore helicopter pilots, followed by a template analysis of the narratives. The relationships among the factors suggest that flawed safety oversights, caused by a combination of lack of infrastructure for night flights offshore and declining training, currently favor spatial disorientation on the approach and near misses when close to the destination. Safety initiatives can be derived on the basis of these results. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bergeron, H. P.; Haynie, A. T.; Mcdede, J. B.
1980-01-01
A general aviation single pilot instrument flight rule simulation capability was developed. Problems experienced by single pilots flying in IFR conditions were investigated. The simulation required a three dimensional spatial navaid environment of a flight navigational area. A computer simulation of all the navigational aids plus 12 selected airports located in the Washington/Norfolk area was developed. All programmed locations in the list were referenced to a Cartesian coordinate system with the origin located at a specified airport's reference point. All navigational aids with their associated frequencies, call letters, locations, and orientations plus runways and true headings are included in the data base. The simulation included a TV displayed out-the-window visual scene of country and suburban terrain and a scaled model runway complex. Any of the programmed runways, with all its associated navaids, can be referenced to a runway on the airport in this visual scene. This allows a simulation of a full mission scenario including breakout and landing.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
Many applications of small Unmanned Aircraft System (UAS) have been envisioned. These include surveillance of key assets such as pipelines, rail, or electric wires, deliveries, search and rescue, traffic monitoring, videography, and precision agriculture. These operations are likely to occur in the same airspace in the presence of many static and dynamic constraints such as airports, and high wind areas. Therefore, operations of small UAS need to be managed to ensure safety and operation efficiency is maintained. NASA has advanced a concept for UAS Traffic Management (UTM) and has initiated a research effort to refine that concept and develop operational and system requirements. A UTM research platform is in development and flight test activities to evaluate core functions and key assumptions focusing exclusively on UAS operations in different environments are underway. This seminar will present lessons learned from a recent flight test focused on enabling operations of multiple UAS in lower-risk environments within and beyond visual line of sight (BVLOS).
NASA Technical Reports Server (NTRS)
McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)
2015-01-01
A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.
Application of the wide-field shadowgraph technique to rotor wake visualization
NASA Technical Reports Server (NTRS)
Norman, Thomas R.; Light, Jeffrey S.
1989-01-01
The wide field shadowgraph technique is reviewed along with its application to the visualization of rotor wakes. In particular, current experimental methods and data reduction requirements are discussed. Sample shadowgraphs are presented. These include shadowgraphs of model-scale helicopter main rotors and tilt rotors, and full scale tail rotors, both in hover and in forward flight.
Integration of visual and motion cues for simulator requirements and ride quality investigation
NASA Technical Reports Server (NTRS)
Young, L. R.
1976-01-01
Practical tools which can extend the state of the art of moving base flight simulation for research and training are developed. Main approaches to this research effort include: (1) application of the vestibular model for perception of orientation based on motion cues: optimum simulator motion controls; and (2) visual cues in landing.
Synthetic Flight Training System Study
1983-12-23
Distribution unlimited IC. SUPPLEMENTARY NOTiS - 19. KEY WORDS (Continue on reveree side if necoeeary and Identify by block nunber) Visual Systems Computer ...platforms, instructional features, computer hardware and software, student stations, etc. DOR 1473 EDITON OF INMOV6S ISOSOLETE Unclassified SECURITY... Computational Systems .................................... 4-I I 4.5.3 Visual Processing Systems .......................... 4-13 4.5.4 Instructor Stations
2012-10-24
has been tested in a clinical environment and has proven capable of improving vestibular symptoms (e.g., dizziness, spinning, vertigo ) and...vestibular problems (e.g., dizziness, vertigo ). They also had no history of visual deficits and all possessed a Snellen visual acuity of 20/20 or
Enhancements and Evolution of the Real Time Mission Monitor
NASA Technical Reports Server (NTRS)
Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn
2008-01-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and then compare it to the actual real time flight progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Ivey, Christoper B.; Barthel, Brett F.; Inman, Jennifer A.; Jones, Stephen B.; Watkins, Anthony N.; Goodman, Kyle Z.; McCrea, Andrew C.; Leighty, Bradley D.; Lipford, William K.;
2010-01-01
This paper reports a series of wind tunnel tests simulating the near-field behavior of the Space Shuttle Orbiter Boundary Layer Transition Detailed Test Objective (BLT DTO) flight experiment. Hypersonic flow over a flat plate with an attached BLT DTO-shaped trip was tested in a Mach 10 wind tunnel. The sharp-leading-edge flat plate was oriented at an angle of 20 degrees with respect to the freestream flow, resulting in post-shock edge Mach number of approximately 4. The flowfield was visualized using nitric oxide (NO) planar laser-induced fluorescence (PLIF). Flow visualizations were performed at 10 Hz using a wide-field of view and high-resolution NO PLIF system. A lower spatial resolution and smaller field of view NO PLIF system visualized the flow at 500 kHz, which was fast enough to resolve unsteady flow features. At the lowest Reynolds number studied, the flow was observed to be laminar and mostly steady. At the highest Reynolds number, flow visualizations showed streak instabilities generated immediately downstream of the trip. These instabilities transitioned to unsteady periodic and spatially irregular structures downstream. Quantitative surface heating imagery was obtained using the Temperature Sensitive Paint (TSP) technique. Comparisons between the PLIF flow visualizations and TSP heating measurements show a strong correlation between flow patterns and surface heating trends.
NASA Technical Reports Server (NTRS)
Smith, S. M.; Gregory, J. F.; Zeisel, G. H.; Gibson, C. R.; Mader, T. H.; Kinchen, J.; Ueland, P.; Ploutz-Snyder, R.; Heer, M.; Zwart, S. R.
2016-01-01
Data from the Nutritional Status Assessment protocol provided biochemical evidence that the one-carbon metabolic pathway may be altered in individuals experiencing vision-related issues during and after space flight (1, 2). Briefly, serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were significantly (P<0.001) higher (25-45%) in astronauts with ophthalmic changes than in those without such changes (1). These differences existed before, during, and after flight. Serum folate was lower (P<0.01) during flight in individuals with ophthalmic changes. Preflight serum concentrations of cystathionine and 2-methylcitric acid, and mean in-flight serum folate, were significantly (P<0.05) correlated with postflight changes in refraction (1). A follow-up study was conducted to evaluate a small number of known polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other medical aspects of the eye. Specifically, we investigated 5 polymorphisms in MTRR, MTHFR, SHMT, and CBS genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances (3). Block regression showed that B-vitamin status at landing and genetics were significant predictors for many of the ophthalmic outcomes studied (3). In conclusion, we document an association between MTRR 66 and SHMT1 1420 polymorphisms and space flightinduced vision changes. These data document that individuals with an altered 1-carbon metabolic pathway may be predisposed to anatomic and/or physiologic changes that render them susceptible to ophthalmic damage during space flight.
Evaluation of tactual displays for flight control
NASA Technical Reports Server (NTRS)
Levison, W. H.; Tanner, R. B.; Triggs, T. J.
1973-01-01
Manual tracking experiments were conducted to determine the suitability of tactual displays for presenting flight-control information in multitask situations. Although tracking error scores are considerably greater than scores obtained with a continuous visual display, preliminary results indicate that inter-task interference effects are substantially less with the tactual display in situations that impose high visual scanning workloads. The single-task performance degradation found with the tactual display appears to be a result of the coding scheme rather than the use of the tactual sensory mode per se. Analysis with the state-variable pilot/vehicle model shows that reliable predictions of tracking errors can be obtained for wide-band tracking systems once the pilot-related model parameters have been adjusted to reflect the pilot-display interaction.
Evaluation of a pilot workload metric for simulated VTOL landing tasks
NASA Technical Reports Server (NTRS)
North, R. A.; Graffunder, K.
1979-01-01
A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Multivariate discriminant functions were formed from conventional flight performance and/or visual response variables to maximize detection of experimental differences. The flight performance variable discriminant showed maximum differentiation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition/trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus, represented higher workload levels.
Flight Demonstration of Integrated Airport Surface Movement Technologies
NASA Technical Reports Server (NTRS)
Young, Steven D.; Jones, Denise R.
1998-01-01
This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Atlanta Hartsfield International Airport in Atlanta, GA. The test aircraft was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. Qualitative and quantitative results are discussed.
NASA Technical Reports Server (NTRS)
Clark, Carl C.; Woodling, C. H.
1959-01-01
With the ever increasing complexity of airplanes and the nearness to reality of manned space vehicles the use of pilot-controlled flight simulators has become imperative. The state of the art in flight simulation has progressed well with the demand. Pilot-controlled flight simulators are finding increasing uses in aeromedical research, airplane and airplane systems design, and preflight training. At the present many flight simulators are in existence with various degrees of sophistication and sundry purposes. These vary from fixed base simulators where the pilot applies control inputs according to visual cues presented to him on an instrument display to moving base simulators where various combinations of angular and linear motions are added in an attempt to improve the flight simulation.
NASA Technical Reports Server (NTRS)
Beach, B. E.
1980-01-01
Some of the concepts related to a line-oriented flight training program are discussed. The need to shift from training in manipulative skills to something closer to management skills is emphasized. The program is evaluated in terms of its realistic approaches which include the simulator's optimized motion and visual capabilities. The value of standard operating procedures as they affect the line pilot in everyday operations are also illustrated.
Sensory Coordination of Insect Flight
2011-09-30
us to behaviorally alter the speed of the honey bees using their natural behavioral responses to visual patterns. These results reiterate our... honey bee flight. (9th International Congress of Neuroethology, Salamanca, Spain, August 2010). Sane, SP*. The tale of two mechanosensors: antennal...on the following main projects with reference to our work plan: Antennal positioning in moths and freely flying bees : 1. Latency studies: We had
Garbage Patch Visualization Experiment
2015-08-20
Goddard visualizers show us how five garbage patches formed in the world's oceans using 35 years of data. Read more: 1.usa.gov/1Lnj7xV Credit: NASA's Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows
NASA Technical Reports Server (NTRS)
Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.
2015-01-01
This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.
Images of Earth and Space: The Role of Visualization in NASA Science
NASA Technical Reports Server (NTRS)
1996-01-01
Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.
Cleared for the visual approach: Human factor problems in air carrier operations
NASA Technical Reports Server (NTRS)
Monan, W. P.
1983-01-01
The study described herein, a set of 353 ASRS reports of unique aviation occurrences significantly involving visual approaches was examined to identify hazards and pitfalls embedded in the visual approach procedure and to consider operational practices that might help avoid future mishaps. Analysis of the report set identified nine aspects of the visual approach procedure that appeared to be predisposing conditions for inducing or exacerbating the effects of operational errors by flight crew members or controllers. Predisposing conditions, errors, and operational consequences of the errors are discussed. In a summary, operational policies that might mitigate the problems are examined.
NASA Technical Reports Server (NTRS)
Landis, K. H.; Aiken, E. W.
1982-01-01
Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions.
The 737 graphite composite flight spoiler flight service evaluation
NASA Technical Reports Server (NTRS)
Hoffman, D. J.; Stoecklin, R. L.
1980-01-01
The flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground based enviromental exposure of graphite-epoxy material specimens is reported. Spoilers were installed on 28 aircraft representing seven major airlines operating throughout the world. Over 1,188,367 spoiler flight hours and 1,786,837 spoiler landings were accumulated by this fleet. Tests of removed spoilers and ground-based exposure specimens after the fifth year of service indicate modest changes in composite strength properties. Two incidents of trailing edge delamination with subsequent core corrosion were observed. Based on visual, ultrasonic, and destructive testing, there has been no evidence of moisture migration into the honeycomb core and no core corrosion.
Flight investigation of a vertical-velocity command system for VTOL aircraft
NASA Technical Reports Server (NTRS)
Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.
1977-01-01
A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.
Three Dimensional Lightning Launch Commit Criteria Visualization Tool
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2014-01-01
Lightning occurrence too close to a NASA LSP or future SLS program launch vehicle in flight would have disastrous results. The sensitive electronics on the vehicle could be damaged to the point of causing an anomalous flight path and ultimate destruction of the vehicle and payload.According to 45th Weather Squadron (45 WS) Lightning Launch Commit Criteria (LLCC), a vehicle cannot launch if lightning is within 10 NM of its pre-determined flight path. The 45 WS Launch Weather Officers (LWOs) evaluate this LLCC for their launch customers to ensure the safety of the vehicle in flight. Currently, the LWOs conduct a subjective analysis of the distance between lightning and the flight path using data from different display systems. A 3-D display in which the lightning data and flight path are together would greatly reduce the ambiguity in evaluating this LLCC. It would give the LWOs and launch directors more confidence in whether a GO or NO GO for launch should be issued. When lightning appears close to the path, the LWOs likely err on the side of conservatism and deem the lightning to be within 10 NM. This would cause a costly delay or scrub. If the LWOs can determine with a strong level of certainty that the lightning is beyond 10 NM, launch availability would increase without compromising safety of the vehicle, payload or, in the future, astronauts.The AMU was tasked to conduct a market research of commercial, government, and open source software that might be able to ingest and display the 3-D lightning data from the KSC Lightning Mapping Array (LMA), the 45th Space Wing Weather Surveillance Radar (WSR), the National Weather Service in Melbourne Weather Surveillance Radar 1988 Doppler (WSR-88D), and the vehicle flight path data so that all can be visualized together. To accomplish this, the AMU conducted Internet searches for potential software candidates and interviewed software developers.None of the available off-the-shelf software had a 3-D capability that could display all of the data in a single visualization. The AMU determined there are two viable software packages that could satisfy the 45 WS requirement with further development and recommends the KSC Weather Office follow-up with both organizations to request development costs.
NASA Technical Reports Server (NTRS)
Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.
2003-01-01
The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall handling qualities of the aircraft.
Relationship of CogScreen-AE to flight simulator performance and pilot age.
Taylor, J L; O'Hara, R; Mumenthaler, M S; Yesavage, J A
2000-04-01
We report on the relationship between CogScreen-Aeromedical Edition (AE) factor scores and flight simulator performance in aircraft pilots aged 50-69. Some 100 licensed, civilian aviators (average age 58+/-5.3 yr) performed aviation tasks in a Frasca model 141 flight simulator and the CogScreen-AE battery. The aviation performance indices were: a) staying on course; b) dialing in communication frequencies; c) avoiding conflicting traffic; d) monitoring cockpit instruments; e) executing the approach; and f) a summary score, which was the mean of these scores. The CogScreen predictors were based on a factor structure reported by Kay (11), which comprised 28 CogScreen scores. Through principal components analysis of Kay's nine factors, we reduced the number of predictors to five composite CogScreen scores: Speed/Working Memory (WM), Visual Associative Memory, Motor Coordination, Tracking, and Attribute Identification. Speed/WM scores had the highest correlation with the flight summary score, Spearman r(rho) = 0.57. A stepwise-forward multiple regression analysis indicated that four CogScreen variables could explain 45% of the variance in flight summary scores. Significant predictors, in order of entry, were: Speed/WM, Visual Associative Memory, Motor Coordination, and Tracking (p<0.05). Pilot age was found to significantly improve prediction beyond that which could be predicted by the four cognitive variables. In addition, there was some evidence for specific ability relationships between certain flight component scores and CogScreen scores, such as approach performance and tracking errors. These data support the validity of CogScreen-AE as a cognitive battery that taps skills relevant to piloting.
NASA Technical Reports Server (NTRS)
Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.
1979-01-01
An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.
Astronauts Cooper and Conrad prepare cameras during visual acuity tests
NASA Technical Reports Server (NTRS)
1965-01-01
Astronauts L. Gordon Cooper Jr. (left), command pilot, and Charles Conrad Jr., pilot, the prime crew of the Gemini 5 space flight, prepare their cameras while aboard a C-130 aircraft flying near Laredo. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions.
Dynamic wake prediction and visualization with uncertainty analysis
NASA Technical Reports Server (NTRS)
Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)
2005-01-01
A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.
Enhancements and Evolution of the Real Time Mission Monitor
NASA Astrophysics Data System (ADS)
Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.
2008-12-01
The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for planning discussions, as well as comparisons to real time flight tracks in progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.
Real-Time Performance Feedback for the Manual Control of Spacecraft
NASA Astrophysics Data System (ADS)
Karasinski, John Austin
Real-time performance metrics were developed to quantify workload, situational awareness, and manual task performance for use as visual feedback to pilots of aerospace vehicles. Results from prior lunar lander experiments with variable levels of automation were replicated and extended to provide insights for the development of real-time metrics. Increased levels of automation resulted in increased flight performance, lower workload, and increased situational awareness. Automated Speech Recognition (ASR) was employed to detect verbal callouts as a limited measure of subjects' situational awareness. A one-dimensional manual tracking task and simple instructor-model visual feedback scheme was developed. This feedback was indicated to the operator by changing the color of a guidance element on the primary flight display, similar to how a flight instructor points out elements of a display to a student pilot. Experiments showed that for this low-complexity task, visual feedback did not change subject performance, but did increase the subjects' measured workload. Insights gained from these experiments were applied to a Simplified Aid for EVA Rescue (SAFER) inspection task. The effects of variations of an instructor-model performance-feedback strategy on human performance in a novel SAFER inspection task were investigated. Real-time feedback was found to have a statistically significant effect of improving subject performance and decreasing workload in this complicated four degree of freedom manual control task with two secondary tasks.
Giant honeybees ( Apis dorsata) mob wasps away from the nest by directed visual patterns
NASA Astrophysics Data System (ADS)
Kastberger, Gerald; Weihmann, Frank; Zierler, Martina; Hötzl, Thomas
2014-11-01
The open nesting behaviour of giant honeybees ( Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees' nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey-predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they "follow" the wasps more persistently (up to 100 ms) than the wasps "follow" the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps' flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.
Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.
2014-01-01
The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267
1992-01-01
Astronaut Ulf Merbold on the stationary seat of the mini-sled, stares into an umbrella-shaped rotating dome with colored dots. Astronaut Merbold, assisted by astronaut David Hilmer, are conducting the Visual Simulator Experiment, a space physiology experiment. The Visual Stimulator Experiment measures the relative importance of visual and vestibular information in determining body orientation. When a person looks at a rotating visual field, a false sensation of self-rotation, called circularvection, results. In weightlessness, circularvection should increase immediately and may continue to increase as the nervous system comes to rely more on visual than vestibular cues. As Astronaut Merbold stares into the rotating dome with a pattern of colored dots and its interior, he turns a knob to indicate his perception of body rotation. The strength of circularvection is calculated by comparing signals from the dome and the knob. The greater the false sense of circularvection, the more the subject is relying on visual information instead of otolith information. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).
In-Flight Flow Visualization Using Infrared Thermography
NASA Technical Reports Server (NTRS)
vanDam, C. P.; Shiu, H. J.; Banks D. W.
1997-01-01
The feasibility of remote infrared thermography of aircraft surfaces during flight to visualize the extent of laminar flow on a target aircraft has been examined. In general, it was determined that such thermograms can be taken successfully using an existing airplane/thermography system (NASA Dryden's F-18 with infrared imaging pod) and that the transition pattern and, thus, the extent of laminar flow can be extracted from these thermograms. Depending on the in-flight distance between the F-18 and the target aircraft, the thermograms can have a spatial resolution of as little as 0.1 inches. The field of view provided by the present remote system is superior to that of prior stationary infrared thermography systems mounted in the fuselage or vertical tail of a subject aircraft. An additional advantage of the present experimental technique is that the target aircraft requires no or minimal modifications. An image processing procedure was developed which improves the signal-to-noise ratio of the thermograms. Problems encountered during the analog recording of the thermograms (banding of video images) made it impossible to evaluate the adequacy of the present imaging system and image processing procedure to detect transition on untreated metal surfaces. The high reflectance, high thermal difussivity, and low emittance of metal surfaces tend to degrade the images to an extent that it is very difficult to extract transition information from them. The application of a thin (0.005 inches) self-adhesive insulating film to the surface is shown to solve this problem satisfactorily. In addition to the problem of infrared based transition detection on untreated metal surfaces, future flight tests will also concentrate on the visualization of other flow phenomena such as flow separation and reattachment.
DOT National Transportation Integrated Search
1962-05-01
Tactile communication presents a relatively unexploited channel of information transmission in the field of aviation. Visual and auditory input channels frequently reach an information saturation point during various flight operations. A cutaneous co...
Cooperative Physics of Fly Swarms: An Emergent Behavior.
1994-12-01
Report, volume 6, pages 161-178, Berlin, 1977. Dahlem Konferenzen. [10] M. F. Land and T.S. Collett. Chasing behaviour of houseflies (Fannia...Flight control and visual control of flight of the free-flying housefly (Musca domestica). Part III. Philosoph. Trans. Royal Soc. London, B(312):581-595...1986. ] C. Wehrhahn. Sex specific differences in the ori- entation behaviour of houseflies . Biol. Cybernetics, 29:237-247, 1978. [20] C
2015-09-30
winds. In addition, overcast conditions typically reduce or eliminate the presence of thermals that are used by soaring raptors such as hawks...Title 40, 1508.27. Protection of Environment Council on Environmental Quality. January 1979 . Code of Federal Regulations (C.F.R.), Title 40, Part 50
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team in MCC Bldg 30 FCR
1992-05-15
S92-36606 (20 May 1992) --- STS-49 Endeavour, Orbiter Vehicle (OV) 105, Planning Team with Flight Director (FD) James M. Heflin, Jr. (front right next to ship model) poses in Johnson Space Center?s (JSC) Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). The group stands in front of visual displays projecting STS-49 data and ground track map.
Chromatically corrected virtual image visual display. [reducing eye strain in flight simulators
NASA Technical Reports Server (NTRS)
Kahlbaum, W. M., Jr. (Inventor)
1980-01-01
An in-line, three element, large diameter, optical display lens is disclosed which has a front convex-convex element, a central convex-concave element, and a rear convex-convex element. The lens, used in flight simulators, magnifies an image presented on a television monitor and, by causing light rays leaving the lens to be in essentially parallel paths, reduces eye strain of the simulator operator.
Development of Cloud-Based UAV Monitoring and Management System
Itkin, Mason; Kim, Mihui; Park, Younghee
2016-01-01
Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation. PMID:27854267
2004-02-04
KENNEDY SPACE CENTER, FLA. - One of the world’s highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data (shown here) in preparation for the shuttle fleet’s return to flight, is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. The system, developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI
Control of moth flight posture is mediated by wing mechanosensory feedback.
Dickerson, Bradley H; Aldworth, Zane N; Daniel, Thomas L
2014-07-01
Flying insects rapidly stabilize after perturbations using both visual and mechanosensory inputs for active control. Insect halteres are mechanosensory organs that encode inertial forces to aid rapid course correction during flight but serve no aerodynamic role and are specific to two orders of insects (Diptera and Strepsiptera). Aside from the literature on halteres and recent work on the antennae of the hawkmoth Manduca sexta, it is unclear how other flying insects use mechanosensory information to control body dynamics. The mechanosensory structures found on the halteres, campaniform sensilla, are also present on wings, suggesting that the wings can encode information about flight dynamics. We show that the neurons innervating these sensilla on the forewings of M. sexta exhibit spike-timing precision comparable to that seen in previous reports of campaniform sensilla, including haltere neurons. In addition, by attaching magnets to the wings of moths and subjecting these animals to a simulated pitch stimulus via a rotating magnetic field during tethered flight, we elicited the same vertical abdominal flexion reflex these animals exhibit in response to visual or inertial pitch stimuli. Our results indicate that, in addition to their role as actuators during locomotion, insect wings serve as sensors that initiate reflexes that control body dynamics. © 2014. Published by The Company of Biologists Ltd.
Development of Cloud-Based UAV Monitoring and Management System.
Itkin, Mason; Kim, Mihui; Park, Younghee
2016-11-15
Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation.
Flight validation of a pulsed smoke flow visualization system
NASA Technical Reports Server (NTRS)
Ward, Donald T.; Dorsett, Kenneth M.
1993-01-01
A flow visualization scheme, designed to measure vortex fluid dynamics on research aircraft, was validated in flight. Strake vortex trajectories and axial core velocities were determined using pulsed smoke, high-speed video images, and semiautomated image edge detection hardware and software. Smoke was pulsed by using a fast-acting three-way valve. After being redesigned because of repeatedly jamming in flight, the valve shuttle operated flawlessly during the last two tests. A 25-percent scale, Gothic strake was used to generate vortex over the wing of a GA-7 Cougar and was operated at a local angle of attack of 22 degrees and Reynolds number of approximately 7.8 x 10(exp 5)/ft. Maximum axial velocities measured in the vortex core were between 1.75 and 1.95 times the freestream velocity. Analysis of the pulsed smoke system's affect on forebody vortices indicates that the system may reorient the forebody vortex system; however, blowing momentum coefficients normally used will have no appreciable affect on the leading-edge extension vortex system. It is recommended that a similar pulsed smoke system be installed on the F/A-18 High Angle Research Vehicle and that this approach be used to analyze vortex core dynamics during the remainder of its high-angle-of-attack research flights.
The 737 graphite composite flight spoiler flight service evaluation
NASA Technical Reports Server (NTRS)
Stoecklin, R. L.
1977-01-01
The flight service experience of 110 graphite epoxy spoilers on 737 transport aircraft was reviewed as well as ground based environmental exposure of graphite epoxy material specimens for the period from April 1976 through April 1977. Several spoilers were installed on each of 27 aircraft representing seven major airlines operating throughout the world. A flight service evaluation program of at least 5 years is under way. As of April 30, 1977, a total of 766,938 spoiler flight hours and 1,168,090 spoiler landings were accumulated by the fleet. Based on visual ultrasonic, and destructive testing, there was no evidence of moisture migration into the honeycomb core and no core corrosion. Tests of removed spoilers and of ground based exposure specimens after the third year of service continue to indicate modest changes in composite strength properties.
Visually guided control of movement in the context of multimodal stimulation
NASA Technical Reports Server (NTRS)
Riccio, Gary E.
1991-01-01
Flight simulation has been almost exclusively concerned with simulating the motions of the aircraft. Physically distinct subsystems are often combined to simulate the varieties of aircraft motion. Visual display systems simulate the motion of the aircraft relative to remote objects and surfaces (e.g., other aircraft and the terrain). 'Motion platform' simulators recreate aircraft motion relative to the gravitoinertial vector (i.e., correlated rotation and tilt as opposed to the 'coordinated turn' in flight). 'Control loaders' attempt to simulate the resistance of the aerodynamic medium to aircraft motion. However, there are few operational systems that attempt to simulate the motion of the pilot relative to the aircraft and the gravitoinertial vector. The design and use of all simulators is limited by poor understanding of postural control in the aircraft and its effect on the perception and control of flight. Analysis of the perception and control of flight (real or simulated) must consider that: (1) the pilot is not rigidly attached to the aircraft; and (2) the pilot actively monitors and adjusts body orientation and configuration in the aircraft. It is argued that this more complete approach to flight simulation requires that multimodal perception be considered as the rule rather than the exception. Moreover, the necessity of multimodal perception is revealed by emphasizing the complementarity rather than the redundancy among perceptual systems. Finally, an outline is presented for an experiment to be conducted at NASA ARC. The experiment explicitly considers possible consequences of coordination between postural and vehicular control.
NASA Technical Reports Server (NTRS)
Otto, Christian; Fogarty, J.; Grounds, D.; Davis, J.
2010-01-01
To date six long duration astronauts have experienced in flight visual changes and post flight signs of optic disc edema, globe flattening, choroidal folds, hyperoptic shifts and or raised intracranial pressure. In some cases the changes were transient while in others they are persistent with varying degrees of visual impairment. Given that all astronauts exposed to microgravity experience a cephalad fluid shift, and that both symptomatic and asymptomatic patients have exhibited optic nerve sheath edema on MRI, there is a high probability that all astronauts develop in-flight idiopathic intracranial hypertension to some degree. Those who are susceptible, have an increased likelihood of developing treatment resistant papilledema resulting in visual impairment and possible long-term vision loss. Such an acquired disability would have a profound mission impact and would be detrimental to the long term health of the astronaut. The visual impairment and increased intracranial pressure phenomenon appears to have multiple contributing factors. Consequently, the working "physiological fault bush" with elevated intracranial pressure at its center, is divided into ocular effects, and CNS and other effects. Some of these variables have been documented and or measured through operational data gathering, while others are unknown, undocumented and or hypothetical. Both the complexity of the problem and the urgency to find a solution require that a unique, non-traditional research model be employed such as the Accelerated Research Collaboration(TM) (ARC) model that has been pioneered by the Myelin Repair Foundation. In the ARC model a single entity facilitates and manages all aspects of the basic, translational, and clinical research, providing expert oversight for both scientific and managerial efforts. The result is a comprehensive research plan executed by a multidisciplinary team and the elimination of stove-piped research. The ARC model emphasizes efficient and effective communication between management and investigators; and real-time sharing of scientific discoveries in an effort to solve complex problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakumar, B J; Chavez - Alarcon, Ramiro; Shu, Fangjun
The aerodynamics of a flight-worthy, radio controlled ornithopter is investigated using a combination of Particle-Image Velocimetry (PIV), load cell measurements, and high-speed photography of smoke visualizations. The lift and thrust forces of the ornithopter are measured at various flow speeds, flapping frequencies and angles of attack to characterize the flight performance. These direct force measurements are then compared with forces estimated using control volume analysis on PIV data. High-speed photography of smoke streaks is used to visualize the evolution of leading edge vortices, and to qualitatively infer the effect of wing deformation on the net downwash. Vortical structures in themore » wake are compared to previous studies on root flapping, and direct measurements of flapping efficiency are used to argue that the current ornithopter operates sub-optimally in converting the input energy into propulsive work.« less
Full scale visualization of the wing tip vortices generated by a typical agricultural aircraft
NASA Technical Reports Server (NTRS)
Cross, E. J., Jr.; Bridges, P.; Brownlee, J. A.; Liningston, W. W.
1980-01-01
The trajectories of the wing tip vortices of a typical agricultural aircraft were experimentally determined by flight test. A flow visualization method, similar to the vapor screen method used in wind tunnels, was used to obtain trajectory data for a range of flight speeds, airplane configurations, and wing loadings. Detailed measurements of the spanwise surface pressure distribution were made for all test points. Further, a powered 1/8 scale model of the aircraft was designed, built, and used to obtain tip vortex trajectory data under conditions similar to that of the full-scale test. The effects of light wind on the vortices were demonstrated, and the interaction of the flap vortex and the tip vortex was clearly shown in photographs and plotted trajectory data.
Perception of Affordance during Short-Term Exposure to Weightlessness in Parabolic Flight
Bourrelly, Aurore; McIntyre, Joseph; Morio, Cédric; Despretz, Pascal; Luyat, Marion
2016-01-01
We investigated the role of the visual eye-height (VEH) in the perception of affordance during short-term exposure to weightlessness. Sixteen participants were tested during parabolic flight (0g) and on the ground (1g). Participants looked at a laptop showing a room in which a doorway-like aperture was presented. They were asked to adjust the opening of the virtual doorway until it was perceived to be just wide enough to pass through (i.e., the critical aperture). We manipulated VEH by raising the level of the floor in the visual room by 25 cm. The results showed effects of VEH and of gravity on the perceived critical aperture. When VEH was reduced (i.e., when the floor was raised), the critical aperture diminished, suggesting that widths relative to the body were perceived to be larger. The critical aperture was also lower in 0g, for a given VEH, suggesting that participants perceived apertures to be wider or themselves to be smaller in weightlessness, as compared to normal gravity. However, weightlessness also had an effect on the subjective level of the eyes projected into the visual scene. Thus, setting the critical aperture as a fixed percentage of the subjective visual eye-height remains a viable hypothesis to explain how human observers judge visual scenes in terms of potential for action or “affordances”. PMID:27097218
NASA Technical Reports Server (NTRS)
Otto, C. A.; Norsk, P.; Shelhamer, M. J.; Davis, J. R.
2015-01-01
The Visual Impairment Intracranial Pressure (VIIP) syndrome is currently NASA's number one human space flight risk. The syndrome, which is related to microgravity exposure, manifests with changes in visual acuity (hyperopic shifts, scotomas), changes in eye structure (optic disc edema, choroidal folds, cotton wool spots, globe flattening, and distended optic nerve sheaths). In some cases, elevated cerebrospinal fluid pressure has been documented postflight reflecting increased intracranial pressure (ICP). While the eye appears to be the main affected end organ of this syndrome, the ocular affects are thought to be related to the effect of cephalad fluid shift on the vascular system and the central nervous system. The leading hypotheses for the development of VIIP involve microgravity induced head-ward fluid shifts along with a loss of gravity-assisted drainage of venous blood from the brain, both leading to cephalic congestion and increased ICP. Although not all crewmembers have manifested clinical signs or symptoms of the VIIP syndrome, it is assumed that all astronauts exposed to microgravity have some degree of ICP elevation in-flight. Prolonged elevations of ICP can cause long-term reduced visual acuity and loss of peripheral visual fields, and has been reported to cause mild cognitive impairment in the analog terrestrial population of Idiopathic Intracranial Hypertension (IIH). These potentially irreversible health consequences underscore the importance of identifying the factors that lead to this syndrome and mitigating them.
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni; González, Daniel Ventura; López, David
2016-12-01
We report on different research and educational activities related to parabolic flights conducted in Barcelona since 2008. We use a CAP10B single-engine aerobatic aircraft flying out of Sabadell Airport and operating in visual flight conditions providing up to 8 seconds of hypogravity for each parabola. Aside from biomedical experiments being conducted, different student teams have flown in parabolic flights in the framework of the international contest `Barcelona Zero-G Challenge', and have published their results in relevant symposiums and scientific journals. The platform can certainly be a good testbed for a proof-of-concept before accessing other microgravity platforms, and has proved to be excellent for motivational student campaigns.
Study of Flapping Flight Using Discrete Vortex Method Based Simulations
NASA Astrophysics Data System (ADS)
Devranjan, S.; Jalikop, Shreyas V.; Sreenivas, K. R.
2013-12-01
In recent times, research in the area of flapping flight has attracted renewed interest with an endeavor to use this mechanism in Micro Air vehicles (MAVs). For a sustained and high-endurance flight, having larger payload carrying capacity we need to identify a simple and efficient flapping-kinematics. In this paper, we have used flow visualizations and Discrete Vortex Method (DVM) based simulations for the study of flapping flight. Our results highlight that simple flapping kinematics with down-stroke period (tD) shorter than the upstroke period (tU) would produce a sustained lift. We have identified optimal asymmetry ratio (Ar = tD/tU), for which flapping-wings will produce maximum lift and find that introducing optimal wing flexibility will further enhances the lift.
Human Factors Engineering #3 Crewstation Assessment for the OH-58F Helicopter
2014-03-01
Additionally, workload was assessed for level of interoperability 2 (LOI 2) tasks that the aircrew performed with an unmanned aircraft system (UAS...TTP tactics, techniques, and procedures UAS unmanned aircraft system 47 VFR visual flight rules VMC visual meteorological conditions VTR...For example, pilots often perform navigation tasks, communicate via multiple radios, monitor aircraft systems , and assist the pilot on the controls
Audio-Visual Situational Awareness for General Aviation Pilots
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Lodha, Suresh K.; Clancy, Daniel (Technical Monitor)
2001-01-01
Weather is one of the major causes of general aviation accidents. Researchers are addressing this problem from various perspectives including improving meteorological forecasting techniques, collecting additional weather data automatically via on-board sensors and "flight" modems, and improving weather data dissemination and presentation. We approach the problem from the improved presentation perspective and propose weather visualization and interaction methods tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment (AWE), utilizes information visualization techniques, a direct manipulation graphical interface, and a speech-based interface to improve a pilot's situational awareness of relevant weather data. The system design is based on a user study and feedback from pilots.
Pilot Task Profiles, Human Factors, And Image Realism
NASA Astrophysics Data System (ADS)
McCormick, Dennis
1982-06-01
Computer Image Generation (CIG) visual systems provide real time scenes for state-of-the-art flight training simulators. The visual system reauires a greater understanding of training tasks, human factors, and the concept of image realism to produce an effective and efficient training scene than is required by other types of visual systems. Image realism must be defined in terms of pilot visual information reauirements. Human factors analysis of training and perception is necessary to determine the pilot's information requirements. System analysis then determines how the CIG and display device can best provide essential information to the pilot. This analysis procedure ensures optimum training effectiveness and system performance.
Design of an Eye Limiting Resolution Visual System Using Commercial-Off-the-Shelf Equipment
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.; Giovannetti, Dean P.
2008-01-01
A feasibility study was conducted to determine if a flight simulator with an eye-limiting resolution out-the-window (OTW) visual system could be built using commercial off-the-shelf (COTS) technology and used to evaluate the visual performance of Air Force pilots in an operations context. Results of this study demonstrate that an eye limiting OTW visual system can be built using COTS technology. Further, a series of operationally-based tasks linked to clinical vision tests can be used within the synthetic environment to demonstrate a correlation and quantify the level of correlation between vision and operational aviation performance.
Visual search in complex displays: factors affecting conflict detection by air traffic controllers.
Remington, R W; Johnston, J C; Ruthruff, E; Gold, M; Romera, M
2000-01-01
Recent free flight proposals to relax airspace constraints and give greater autonomy to aircraft have raised concerns about their impact on controller performance. Relaxing route and altitude restrictions would reduce the regularity of traffic through individual sectors, possibly impairing controller situation awareness. We examined the impact of this reduced regularity in four visual search experiments that tested controllers' detection of traffic conflicts in the four conditions created by factorial manipulation of fixed routes (present vs. absent) and altitude restrictions (present vs. absent). These four conditions were tested under varying levels of traffic load and conflict geometry (conflict time and conflict angle). Traffic load and conflict geometry showed strong and consistent effects in all experiments. Color coding altitude also substantially improved detection times. In contrast, removing altitude restrictions had only a small negative impact, and removing route restrictions had virtually no negative impact. In some cases conflict detection was actually better without fixed routes. The implications and limitations of these results for the feasibility of free flight are discussed. Actual or potential applications include providing guidance in the selection of free flight operational concepts.
Eye-Head Coordination in 31 Space Shuttle Astronauts during Visual Target Acquisition.
Reschke, Millard F; Kolev, Ognyan I; Clément, Gilles
2017-10-27
Between 1989 and 1995, NASA evaluated how increases in flight duration of up to 17 days affected the health and performance of Space Shuttle astronauts. Thirty-one Space Shuttle pilots participating in 17 space missions were tested at 3 different times before flight and 3 different times after flight, starting within a few hours of return to Earth. The astronauts moved their head and eyes as quickly as possible from the central fixation point to a specified target located 20°, 30°, or 60° off center. Eye movements were measured with electro-oculography (EOG). Head movements were measured with a triaxial rate sensor system mounted on a headband. The mean time to visually acquire the targets immediately after landing was 7-10% (30-34 ms) slower than mean preflight values, but results returned to baseline after 48 hours. This increase in gaze latency was due to a decrease in velocity and amplitude of both the eye saccade and head movement toward the target. Results were similar after all space missions, regardless of length.
In-flight automatic detection of vigilance states using a single EEG channel.
Sauvet, F; Bougard, C; Coroenne, M; Lely, L; Van Beers, P; Elbaz, M; Guillard, M; Leger, D; Chennaoui, M
2014-12-01
Sleepiness and fatigue can reach particularly high levels during long-haul overnight flights. Under these conditions, voluntary or even involuntary sleep periods may occur, increasing the risk of accidents. The aim of this study was to assess the performance of an in-flight automatic detection system of low-vigilance states using a single electroencephalogram channel. Fourteen healthy pilots voluntarily wore a miniaturized brain electrical activity recording device during long-haul flights ( 10 ±2.0 h, Atlantic 2 and Falcon 50 M, French naval aviation). No subject was disturbed by the equipment. Seven pilots experienced at least a period of voluntary ( 26.8 ±8.0 min, n = 4) or involuntary sleep (N1 sleep stage, 26.6 ±18.7 s, n = 7) during the flight. Automatic classification (wake/sleep) by the algorithm was made for 10-s epochs (O1-M2 or C3-M2 channel), based on comparison of means to detect changes in α, β, and θ relative power, or ratio [( α+θ)/β], or fuzzy logic fusion (α, β). Pertinence and prognostic of the algorithm were determined using epoch-by-epoch comparison with visual-scoring (two blinded readers, AASM rules). The best concordance between automatic detection and visual-scoring was observed within the O1-M2 channel, using the ratio [( α+θ )/β] ( 98.3 ±4.1% of good detection, K = 0.94 ±0.07, with a 0.04 ±0.04 false positive rate and a 0.87 ±0.10 true positive rate). Our results confirm the efficiency of a miniaturized single electroencephalographic channel recording device, associated with an automatic detection algorithm, in order to detect low-vigilance states during real flights.
Motion Cues in Flight Simulation and Simulator Induced Sickness
1988-06-01
asseusod in a driving simulator by means of a response surface methodology central-composite design . The most salient finding of the study was that visual...across treatment conditions. For an orthogonal response surface methodology (IBM) design with only tro independent variables. it can be readily shown that...J.E.Fowikes 8 SESSION III - ETIOLOGICAL FACTORS IN SIMULATOR-INDUCED AFTER EFFETS THE USE OF VE& IIBULAR MODELS FOR DESIGN AND EVALUATION OF FLIGHT
Annotated Bibliography of USAARL Technical and Letter Reports. Volume 2. October 1988 - April 1991
1991-05-01
G. Lilienthal, Robert S. Kennedy, Jennifer E. Fowlkes, and Dennis R. Baltzley. As technelogy has been developed to provide improved visual and motion...Gower, Jr., and Jennifer Fowlkes. The U.S. Army Aeromedical Research Laboratory conducted field studies of operational flight simulators to assess the...Daniel W. Gower, Jr., and Jennifer Fowlkes. The U.S. Army Aeromedical Research Laboratory conducted field studies of operational flight simulators to
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Parker, D. E.; Arrott, A. P.
1986-01-01
Report discusses physiological and physical concepts of proposed training system to precondition astronauts to weightless environment. System prevents motion sickness, often experienced during early part of orbital flight. Also helps prevent seasickness and other forms of terrestrial motion sickness, often experienced during early part of orbital flight. Training affects subject's perception of inner-ear signals, visual signals, and kinesthetic motion perception. Changed perception resembles that of astronauts who spent many days in space and adapted to weightlessness.
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineer Joey Mercer reviews flight paths using the UAS traffic management research platform UTM coordinator app to verify and validate flight paths.
NASA Technical Reports Server (NTRS)
Huang, Alex S.; Balasubramanian, Siva; Tepelus, Tudor; Sadda, Jaya; Sadda, Srinivas; Stenger, Michael B.; Lee, Stuart M. C.; Laurie, Steve S.; Liu, John; Macias, Brandon R.
2017-01-01
Changes in vision have been well documented among astronauts during and after long-duration space flight. One hypothesis is that the space flight induced headward fluid alters posterior ocular pressure and volume and may contribute to visual acuity decrements. Therefore, we evaluated venoconstrictive thigh cuffs as a potential countermeasure to the headward fluid shift-induced effects on intraocular pressure (IOP) and cephalic vascular pressure and volumes.
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
2011-08-01
context of flight simulators . ................................................................................................................... 14...particular area? Suppose a commander at CFB Shearwater wanted to find out more about how he/she can best deal with issues of pilots’ motion sickness...in the flight simulator on base. As a first step, one would enter, “motion sickness” as a query in HanDles, and get the relevant documents returned
Ocular Problems of the Aging Military Aviator
2000-08-01
disposition. This might be grounding, further treatment , a waiver to return to flight status or change in flight status. (1) TABLE 2. DIAGNOSES AND...advancements in medicine and science since 1959, when Uveitis iritis 3 The Age 60 (2) rule came into being, had any effect on Optic neuritis/ischemnic...glaucoma with visual a diagnosis of glaucoma was a reason for commencing field defects 1 drug treatment of the disease. This was usually with Trauma
2007-09-01
Aircrew Training Research Division, Human Resources Directorate. Smart, L. J ., Stoffregen, T. A ., & Bardy , B. G. (2002). Visually induced motion sickness...Aviation, Space, and Environmental Medicine, 60, 1043-1048. Benson, A . J . (1978). Motion sickness. In G. Dhenin & J . Ernsting (Eds.), Aviation Medicine...pp. 468-493). London: Tri-Med Books. Benson, A . J . (1988). Aetiological factors in simulator sickness. In AGARD, Motion cues in flight simulation and
Instrumentation and telemetry systems for free-flight drop model testing
NASA Technical Reports Server (NTRS)
Hyde, Charles R.; Massie, Jeffrey J.
1993-01-01
This paper presents instrumentation and telemetry system techniques used in free-flight research drop model testing at the NASA Langley Research Center. The free-flight drop model test technique is used to conduct flight dynamics research of high performance aircraft using dynamically scaled models. The free-flight drop model flight testing supplements research using computer analysis and wind tunnel testing. The drop models are scaled to approximately 20 percent of the size of the actual aircraft. This paper presents an introduction to the Free-Flight Drop Model Program which is followed by a description of the current instrumentation and telemetry systems used at the NASA Langley Research Center, Plum Tree Test Site. The paper describes three telemetry downlinks used to acquire the data, video, and radar tracking information from the model. Also described are two telemetry uplinks, one used to fly the model employing a ground-based flight control computer and a second to activate commands for visual tracking and parachute recovery of the model. The paper concludes with a discussion of free-flight drop model instrumentation and telemetry system development currently in progress for future drop model projects at the NASA Langley Research Center.
Ravi, Sridhar; Garcia, Jair E; Wang, Chun; Dyer, Adrian G
2016-11-01
Bees navigate in complex environments using visual, olfactory and mechano-sensorial cues. In the lowest region of the atmosphere, the wind environment can be highly unsteady and bees employ fine motor-skills to enhance flight control. Recent work reveals sophisticated multi-modal processing of visual and olfactory channels by the bee brain to enhance foraging efficiency, but it currently remains unclear whether wind-induced mechano-sensory inputs are also integrated with visual information to facilitate decision making. Individual honeybees were trained in a linear flight arena with appetitive-aversive differential conditioning to use a context-setting cue of 3 m s -1 cross-wind direction to enable decisions about either a 'blue' or 'yellow' star stimulus being the correct alternative. Colour stimuli properties were mapped in bee-specific opponent-colour spaces to validate saliency, and to thus enable rapid reverse learning. Bees were able to integrate mechano-sensory and visual information to facilitate decisions that were significantly different to chance expectation after 35 learning trials. An independent group of bees were trained to find a single rewarding colour that was unrelated to the wind direction. In these trials, wind was not used as a context-setting cue and served only as a potential distracter in identifying the relevant rewarding visual stimuli. Comparison between respective groups shows that bees can learn to integrate visual and mechano-sensory information in a non-elemental fashion, revealing an unsuspected level of sensory processing in honeybees, and adding to the growing body of knowledge on the capacity of insect brains to use multi-modal sensory inputs in mediating foraging behaviour. © 2016. Published by The Company of Biologists Ltd.
Terminal configured vehicle program: Test facilities guide
NASA Technical Reports Server (NTRS)
1980-01-01
The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.
The role of flight planning in aircrew decision performance
NASA Technical Reports Server (NTRS)
Pepitone, Dave; King, Teresa; Murphy, Miles
1989-01-01
The role of flight planning in increasing the safety and decision-making performance of the air transport crews was investigated in a study that involved 48 rated airline crewmembers on a B720 simulator with a model-board-based visual scene and motion cues with three degrees of freedom. The safety performance of the crews was evaluated using videotaped replays of the flight. Based on these evaluations, the crews could be divided into high- and low-safety groups. It was found that, while collecting information before flights, the high-safety crews were more concerned with information about alternative airports, especially the fuel required to get there, and were characterized by making rapid and appropriate decisions during the emergency part of the flight scenario, allowing these crews to make an early diversion to other airports. These results suggest that contingency planning that takes into account alternative courses of action enhances rapid and accurate decision-making under time pressure.
Prediction and Warning of Transported Turbulence in Long-Haul Aircraft Operations
NASA Technical Reports Server (NTRS)
Ellrod, Gary P. (Inventor); Spence, Mark D. (Inventor); Shipley, Scott T. (Inventor)
2017-01-01
An aviation flight planning system is used for predicting and warning for intersection of flight paths with transported meteorological disturbances, such as transported turbulence and related phenomena. Sensed data and transmitted data provide real time and forecast data related to meteorological conditions. Data modelling transported meteorological disturbances are applied to the received transmitted data and the sensed data to use the data modelling transported meteorological disturbances to correlate the sensed data and received transmitted data. The correlation is used to identify transported meteorological disturbances source characteristics, and identify predicted transported meteorological disturbances trajectories from source to intersection with flight path in space and time. The correlated data are provided to a visualization system that projects coordinates of a point of interest (POI) in a selected point of view (POV) to displays the flight track and the predicted transported meteorological disturbances warnings for the flight crew.
NASA Technical Reports Server (NTRS)
Kizer, J. A.
1981-01-01
Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.
Methods and apparatus for graphical display and editing of flight plans
NASA Technical Reports Server (NTRS)
Gibbs, Michael J. (Inventor); Adams, Jr., Mike B. (Inventor); Chase, Karl L. (Inventor); Lewis, Daniel E. (Inventor); McCrobie, Daniel E. (Inventor); Omen, Debi Van (Inventor)
2002-01-01
Systems and methods are provided for an integrated graphical user interface which facilitates the display and editing of aircraft flight-plan data. A user (e.g., a pilot) located within the aircraft provides input to a processor through a cursor control device and receives visual feedback via a display produced by a monitor. The display includes various graphical elements associated with the lateral position, vertical position, flight-plan and/or other indicia of the aircraft's operational state as determined from avionics data and/or various data sources. Through use of the cursor control device, the user may modify the flight-plan and/or other such indicia graphically in accordance with feedback provided by the display. In one embodiment, the display includes a lateral view, a vertical profile view, and a hot-map view configured to simplify the display and editing of the aircraft's flight-plan data.
Air STAR Beyond Visual Range UAS Description and Preliminary Test Results
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Cox, David E.; Foster, John V.; Riddick, Stephen E.; Laughter, Sean A.
2016-01-01
The NASA Airborne Subscale Transport Aircraft Research Unmanned Aerial System project's capabilities were expanded by updating the system design and concept of operations. The new remotely piloted airplane system design was flight tested to assess integrity and operational readiness of the design to perform flight research. The purpose of the system design is to improve aviation safety by providing a capability to validate, in high-risk conditions, technologies to prevent airplane loss of control. Two principal design requirements were to provide a high degree of reliability and that the new design provide a significant increase in test volume (relative to operations using the previous design). The motivation for increased test volume is to improve test efficiency and allow new test capabilities that were not possible with the previous design and concept of operations. Three successful test flights were conducted from runway 4-22 at NASA Goddard Space Flight Center's Wallops Flight Facility.
Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station
NASA Technical Reports Server (NTRS)
Bendrick, Gregg A.; Kamine, Tovy Haber
2008-01-01
Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.
Heart rate and performance during combat missions in a flight simulator.
Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K
2007-04-01
The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.
Haslbeck, Andreas; Zhang, Bo
2017-09-01
The aim of this study was to analyze pilots' visual scanning in a manual approach and landing scenario. Manual flying skills suffer from increasing use of automation. In addition, predominantly long-haul pilots with only a few opportunities to practice these skills experience this decline. Airline pilots representing different levels of practice (short-haul vs. long-haul) had to perform a manual raw data precision approach while their visual scanning was recorded by an eye-tracking device. The analysis of gaze patterns, which are based on predominant saccades, revealed one main group of saccades among long-haul pilots. In contrast, short-haul pilots showed more balanced scanning using two different groups of saccades. Short-haul pilots generally demonstrated better manual flight performance and within this group, one type of scan pattern was found to facilitate the manual landing task more. Long-haul pilots tend to utilize visual scanning behaviors that are inappropriate for the manual ILS landing task. This lack of skills needs to be addressed by providing specific training and more practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; McCrea, Andrew C.
2009-01-01
The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.
Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; McCrea, Andrew C.
2010-01-01
The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.
Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0
NASA Technical Reports Server (NTRS)
Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.
2001-01-01
A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.
Proprioceptive feedback determines visuomotor gain in Drosophila
Bartussek, Jan; Lehmann, Fritz-Olaf
2016-01-01
Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184
Assessment of simulation fidelity using measurements of piloting technique in flight. II
NASA Technical Reports Server (NTRS)
Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.
1985-01-01
Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.
Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.
2009-01-01
NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.
NASA Technical Reports Server (NTRS)
Van Baalen, Mary; Mason, Sara; Foy, Millennia; Wear, Mary; Taiym, Wafa; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William
2015-01-01
Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad mission-related vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate in-flight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, on-orbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.
NASA Technical Reports Server (NTRS)
Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.
2013-01-01
The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.
Helicopter simulation validation using flight data
NASA Technical Reports Server (NTRS)
Key, D. L.; Hansen, R. S.; Cleveland, W. B.; Abbott, W. Y.
1982-01-01
A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator.
An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar
NASA Technical Reports Server (NTRS)
Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi
1998-01-01
NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.
Flight-service program for advanced composite rudders on transport aircraft
NASA Technical Reports Server (NTRS)
1979-01-01
Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.
Actuated forebody strake controls for the F-18 high alpha research vehicle
NASA Technical Reports Server (NTRS)
Murri, Daniel G.; Shah, Gautam H.; Dicarlo, Daniel J.; Trilling, Todd W.
1993-01-01
A series of ground-based studies have been conducted to develop actuated forebody strake controls for flight test evaluations using the NASA F-18 High-Alpha Research Vehicle. The actuated forebody strake concept has been designed to provide increased levels of yaw control at high angles of attack where conventional rudders become ineffective. Results are presented from tests conducted with the flight-test strake design, including static and dynamic wind-tunnel tests, transonic wind-tunnel tests, full-scale wind-tunnel tests, pressure surveys, and flow visualization tests. Results from these studies show that a pair of conformal actuated forebody strakes applied to the F-18 HARV can provide a powerful and precise yaw control device at high angles of attack. The preparations for flight testing are described, including the fabrication of flight hardware and the development of aircraft flight control laws. The primary objectives of the flight tests are to provide flight validation of the groundbased studies and to evaluate the use of this type of control to enhance fighter aircraft maneuverability.
1971-03-19
Visual Flgiht Attachment 2 (REDIFON) is a terrain model that is video-coupled with a simulator cockpit to integrate the pilot with the machine for actual STOL operations of the future N-210 Flight Simulation Laboratory
ERIC Educational Resources Information Center
Journal of Aerospace Education, 1975
1975-01-01
Presents directions for constructing a hair hygrometer for detecting moisture in the air, outlines factors related to human space flight and reaction time, and explains the construction and use of a visual aid for map work. (GS)
Flight of the dragonflies and damselflies.
Bomphrey, Richard J; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti
2016-09-26
This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Authors.
The 737 graphite composite flight spoiler flight service evaluation
NASA Technical Reports Server (NTRS)
Coggeshall, R. L.
1982-01-01
A flight service report was prepared which covers the flight service experience of 111 graphite epoxy spoilers on 737 transport aircraft and related ground based environmental exposure of graphite epoxy material specimens. Spoilers were installed on 28 aircraft representing seven major airlines operating throughout the world. Tests of removed spoilers after the seventh year of service continue to indicate modest changes in composite strength properties. Two spoilers were tested, one with 6 and one with 7 years of service, and both had residual strengths that fall within the original static strength scatter band. Both these units had typical service included discrepancies when tested. Based on visual, ultrasonic, and destructive inspection there continues to be no evidence of moisture migration into the honeycomb core and no core corrosion in the deployed units.
Vision Aspects of Space Flight
NASA Technical Reports Server (NTRS)
Manuel, Keith; Billica, Roger (Technical Monitor)
2000-01-01
Vision, being one of our most important senses, is critically important in the unique working environment of space flight. Critical evaluation of the astronauts visual system begins with pre-selection examinations resulting in an average of 65% of all medical disqualification's caused by ocular findings. With an average age of 42, approximately 60% of the astronaut corps requires vision correction. Further demands of the unique training and working environment of microgravity, variable lighting from very poor to extreme brightness of sunlight and exposure to extremes of electromagnetic energy results in unique eyewear and contact lens applications. This presentation will describe some of those unique eyewear and contact lens applications used in space flight and training environments. Additionally, ocular findings from 26 shuttle and 5 MIR mission post-flight examinations will be presented.
Sensitivity of F-106B Leading-Edge-Vortex Images to Flight and Vapor-Screen Parameters
NASA Technical Reports Server (NTRS)
Lamar, John E.; Johnson, Thomas D., Jr.
1988-01-01
A flight test was undertaken at NASA Langley Research Center with vapor-screen and image-enhancement techniques to obtain qualitative and quantitative information about near-field vortex flows above the wings of fighter aircraft. In particular, the effects of Reynolds and Mach numbers on the vortex system over an angle-of-attack range were sought. The relevance of these flows stems from their present and future use at many points in the flight envelope, especially during transonic maneuvers. The aircraft used in this flight program was the F-106B because it was available and had sufficient wing sweep (60 deg) to generate a significant leading-edge vortex system. The sensitivity of the visual results to vapor screen hardware and to onset flow changes is discussed.
Ambiguous Tilt and Translation Motion Cues in Astronauts After Space Flight (ZAG)
NASA Astrophysics Data System (ADS)
Clement, Guilles; Harm, Deborah; Rupert, Angus; Beaton, Kara; Wood, Scott
2008-06-01
Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. Specifically, this study addresses three questions: (1) What adaptive changes occur in eye movements and motion perception in response to different combinations of tilt and translation motion? (2) Do adaptive changes in tilt-translation responses impair ability to manually control vehicle orientation? (3) Can sensory substitution aids (e.g., tactile) mitigate risks associated with manual control of vehicle orientation?
A tactual display aid for primary flight training
NASA Technical Reports Server (NTRS)
Gilson, R. D.
1979-01-01
A means of flight instruction is discussed. In addition to verbal assistance, control feedback was continously presented via a nonvisual means utilizing touch. A kinesthetic-tactile (KT) display was used as a readout and tracking device for a computer generated signal of desired angle of attack during the approach and landing. Airspeed and glide path information was presented via KT or visual heads up display techniques. Performance with the heads up display of pitch information was shown to be significantly better than performance with the KT pitch display. Testing without the displays showed that novice pilots who had received tactile pitch error information performed both pitch and throttle control tasks significantly better than those who had received the same information from the visual heads up display of pitch during the test series of approaches to landing.
Flight set 360L007 (STS-33) insulation component. Volume 3: Final release
NASA Technical Reports Server (NTRS)
Hicken, Steve
1990-01-01
Volume 3 of this postfire report deals with the insulation component of the RSRM. The report is released twice for each flight set. The interim release contract date is on or before 60 days after the last field joint or nozzle to case joint is disassembled at KSC and contain the results of the KSC visual evaluation. The data contained in Volume 3 interim release supersedes the insulation data presented in the KSC 10 day report. The final release contract data is on or before 60 days after the last factory joint is disassembled at the Clearfield H-7 facility and contains the results of all visual evaluations and a thermal safety factor analysis. The data contained in the Volume 3 final release supersedes the interim release and the insulation data presented in the Clearfield 10 day report.
Occupant Injury Severity and Accident Causes in Helicopter Emergency Medical Services (1983-2014).
Boyd, Douglas D; Macchiarella, Nickolas D
2016-01-01
Helicopter emergency medical services (HEMS) transport critically ill patients to/between emergency care facilities and operate in a hazardous environment: the destination site is often encumbered with obstacles, difficult to visualize at night, and lack instrument approaches for degraded visibility. The study objectives were to determine 1) HEMS accident rates and causes; 2) occupant injury severity profiles; and 3) whether accident aircraft were certified to the more stringent crashworthiness standards implemented two decades ago. The National Transportation Safety Board (NTSB) aviation accident database was used to identify HEMS mishaps for the years spanning 1983-2014. Contingency tables (Pearson Chi-square or Fisher's exact test) were used to determine differences in proportions. A generalized linear model (Poisson distribution) was used to determine if accident rates differed over time. While the HEMS accident rate decreased by 71% across the study period, the fraction of fatal accidents (36-50%) and the injury severity profiles were unchanged. None of the accident aircraft fully satisfied the current crashworthiness standards. Failure to clear obstacles and visual-to-instrument flight, the most frequent accident causes (37 and 26%, respectively), showed a downward trend, whereas accidents ascribed to aircraft malfunction showed an upward trend over time. HEMS operators should consider updating their fleet to the current, more stringent crashworthiness standards in an attempt to reduce injury severity. Additionally, toward further mitigating accidents ascribed to inadvertent visual-to-instrument conditions, HEMS aircraft should be avionics-equipped for instrument flight rules flight.
Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L
2016-08-02
Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.
Dynamic Echo Information Guides Flight in the Big Brown Bat
Warnecke, Michaela; Lee, Wu-Jung; Krishnan, Anand; Moss, Cynthia F.
2016-01-01
Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g., Srinivasan et al., 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments. PMID:27199690
Cognitive mapping based on synthetic vision?
NASA Astrophysics Data System (ADS)
Helmetag, Arnd; Halbig, Christian; Kubbat, Wolfgang; Schmidt, Rainer
1999-07-01
The analysis of accidents focused our work on the avoidance of 'Controlled Flight Into Terrain' caused by insufficient situation awareness. Analysis of safety concepts led us to the design of the proposed synthetic vision system that will be described. Since most information on these 3D-Displays is shown in a graphical way, it can intuitively be understood by the pilot. What are the new possibilities using SVS enhancing situation awareness? First, detection of ground collision hazard is possible by monitoring a perspective Primary Flight Display. Under the psychological point of view it is based on the perception of expanding objects in the visual flow field. Supported by a Navigation Display a local conflict resolution can be mentally worked out very fast. Secondly, it is possible to follow a 3D flight path visualized as a 'Tunnel in the sky.' This can further be improved by using a flight path prediction. These are the prerequisites for a safe and adequate movement in any kind of spatial environment. However situation awareness requires the ability of navigation and spatial problem solving. Both abilities are based on higher cognitive functions in real as well as in a synthetic environment. In this paper the current training concept will be analyzed. Advantages resulting from the integration of a SVS concerning pilot training will be discussed and necessary requirements in terrain depiction will be pinpointed. Finally a modified Computer Based Training for the familiarization with Salzburg Airport for a SVS equipped aircraft will be presented. It is developed by Darmstadt University of Technology in co-operation with Lufthansa Flight Training.
Hubel, Tatjana Y; Tropea, Cameron
2010-06-01
Over the last decade, interest in animal flight has grown, in part due to the possible use of flapping propulsion for micro air vehicles. The importance of unsteady lift-enhancing mechanisms in insect flight has been recognized, but unsteady effects were generally thought to be absent for the flapping flight of larger animals. Only recently has the existence of LEVs (leading edge vortices) in small vertebrates such as swifts, small bats and hummingbirds been confirmed. To study the relevance of unsteady effects at the scale of large birds [reduced frequency k between 0.05 and 0.3, k=(pifc)/U(infinity); f is wingbeat frequency, U(infinity) is free-stream velocity, and c is the average wing chord], and the consequences of the lack of kinematic and morphological refinements, we have designed a simplified goose-sized flapping model for wind tunnel testing. The 2-D flow patterns along the wing span were quantitatively visualized using particle image velocimetry (PIV), and a three-component balance was used to measure the forces generated by the wings. The flow visualization on the wing showed the appearance of LEVs, which is typically associated with a delayed stall effect, and the transition into flow separation. Also, the influence of the delayed stall and flow separation was clearly visible in measurements of instantaneous net force over the wingbeat cycle. Here, we show that, even at reduced frequencies as low as those of large bird flight, unsteady effects are present and non-negligible and have to be addressed by kinematic and morphological adaptations.
Characterization of Metals Melting Discs: Skylab Experiment M551
NASA Technical Reports Server (NTRS)
Monroe, R. E.
1973-01-01
Information developed to characterize flight and ground based samples from the metals melting experiment is detailed in this report. Included are the characteristics determined by nondestructive examination, visual observation, metallographic examination and posttest measurements. Comparisons of the flight and ground based discs showed that an electron beam heat source can be used successfully in zero gravity for cutting, welding, or melting. Few differences were observed that could be attributed to the absence of gravity in these operations.
1989-12-24
training; 16 . PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF...to be leased is 205. One hundred aircraft will be VFR aircraft only. One hundred and five aircraft will be instrument flight rules ( IFR ) certified, 55...of which will be IFR equipped. The other IFR -certified aircraft will be visual flight rules equipped. c. The total lease cost is based on an assumed
A Limited Rotary-Wing Flight Investigation of Hyperstereo in Helmet-Mounted Display Designs
2009-07-01
when compared to current and near-term I2 systems with a direct optical linkage. In summary, the current binocular I2 HMD design of ANVIS, which...terms of visual and optical performance. This assessment was performed by measuring a number of system parameters and by comparing the obtained...to subject #2 who had 800 NVG flight hours. Interestingly, across all maneuvers for which the hyperstereo HMD was asked to be compared to ANVIS
Apollo 17 preliminary science report. [Apollo 17 investigation of Taurus-Littrow lunar region
NASA Technical Reports Server (NTRS)
1973-01-01
An analysis of the Apollo 17 flight is presented in the form of a preliminary science report. The subjects discussed are: (1) Apollo 17 site selection, (2) mission description, (3) geological investigation of landing site, (4) lunar experiments, (5) visual flight flash phenomenon, (6) volcanic studies, (7) mare ridges and related studies, (8) remote sensing and photogrammetric studies, and (9) astronomical photography. Extensive photographic data are included for all phases of the mission.
2004-02-04
KENNEDY SPACE CENTER, FLA. - These towers are part of one of the world’s highest performing visual film analysis systems, developed to review and analyze previous shuttle flight data in preparation for the shuttle fleet’s return to flight. The system is being used today for another purpose. NASA has permitted its use in helping to analyze a film that shows a recent kidnapping in progress in Florida. Developed by NASA, United Space Alliance (USA) and Silicon Graphics Inc., the system allows multiple-person collaboration, highly detailed manipulation and evaluation of specific imagery. The system is housed in the Image Analysis Facility inside the Vehicle Assembly Building. [Photo taken Aug. 15, 2003, courtesy of Terry Wallace, SGI
Surveillance of Ocular Parameters and Visual Function in Bed Rest Subjects
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.
2011-01-01
Recent visual changes in astronauts have raised concern about ocular health during long duration spaceflight. Seven cases have been documented in astronauts who spent 6 months aboard the International Space Station. These astronauts were male ranging in age from 45 to 55 years old. All astronauts exhibited pre- to post flight refractive changes. Decreased intraocular pressure (IOP) post flight was observed in 3 cases. Fundoscopic exams revealed post flight findings of choroidal folds in 4 cases, optic disc edema in 5 cases and the presence of cotton wool spots in 3 cases. Optical coherence tomography (OCT) confirmed findings of choroidal folds and disc edema, and also documented retinal nerve fiber layer thickening (5 cases). Findings from MRI examinations showed posterior globe flattening (5 cases), optic nerve sheath distention (6 cases) and torturous optic nerves (2 cases). Of the 7 cases, intracranial pressure was measured on 4 astronauts. These 4 showed elevated ICP post-flight that remained elevated for as long as 19 months in one case. While the etiology remains unknown, hypotheses speculate that venous insufficiency or hypertension in the brain caused by cephalad fluid shifts during spaceflight are possible mechanisms for ocular changes seen in astronauts. Head-down tilt bed rest is a spaceflight analog that induces cephalad fluid shifts. This study is designed to provide ocular monitoring of bed rest subjects and determine whether clinically relevant changes are found. Ocular Changes
Gorresen, Paulo Marcos; Cryan, Paul; Montoya-Aiona, Kristina; Bonaccorso, Frank
2017-01-01
Bats vocalize during flight as part of the sensory modality called echolocation, but very little is known about whether flying bats consistently call. Occasional vocal silence during flight when bats approach prey or conspecifics has been documented for relatively few species and situations. Bats flying alone in clutter-free airspace are not known to forgo vocalization, yet prior observations suggested possible silent behavior in certain, unexpected situations. Determining when, why, and where silent behavior occurs in bats will help evaluate major assumptions of a primary monitoring method for bats used in ecological research, management, and conservation. In this study, we recorded flight activity of Hawaiian hoary bats (Lasiurus cinereus semotus) under seminatural conditions using both thermal video cameras and acoustic detectors. Simultaneous video and audio recordings from 20 nights of observation at 10 sites were analyzed for correspondence between detection methods, with a focus on video observations in three distance categories for which accompanying vocalizations were detected. Comparison of video and audio detections revealed that a high proportion of Hawaiian hoary bats “seen” on video were not simultaneously “heard.” On average, only about one in three visual detections within a night had an accompanying call detection, but this varied greatly among nights. Bats flying on curved flight paths and individuals nearer the cameras were more likely to be detected by both methods. Feeding and social calls were detected, but no clear pattern emerged from the small number of observations involving closely interacting bats. These results may indicate that flying Hawaiian hoary bats often forgo echolocation, or do not always vocalize in a way that is detectable with common sampling and monitoring methods. Possible reasons for the low correspondence between visual and acoustic detections range from methodological to biological and include a number of biases associated with the propagation and detection of sound, cryptic foraging strategies, or conspecific presence. Silent flight behavior may be more prevalent in echolocating bats than previously appreciated, has profound implications for ecological research, and deserves further characterization and study.
NASA Astrophysics Data System (ADS)
Rahman, Mir Mustafizur
In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic variability within a thermal flight line based on varying road temperatures; (b) Automated Polynomial Relative Radiometric Normalization (RRN)---which mitigates the between flight line radiometric variability; and (c) Object Based Mosaicking (OBM)---which minimizes the geometric distortion along the mosaic edge between each flight line. A modified Emissivity Modulation technique is also described to correct H-res TIR images for emissivity. This combined radiometric and geometric post-processing protocol (i) increases the visual agreement between TABI-1800 flight lines, (ii) improves radiometric agreement within/between flight lines, (iii) produces a visually seamless mosaic, (iv) improves hot-spot detection and landcover classification accuracy, and (v) provides accurate data for thermal-based HEAT energy models. Keywords: Thermal Infrared, Post-Processing, High Spatial Resolution, Airborne, Thermal Urban Road Normalization (TURN), Relative Radiometric Normalization (RRN), Object Based Mosaicking (OBM), TABI-1800, HEAT, and Automation.
Stability of simulated flight path control at +3 Gz in a human centrifuge.
Guardiera, Simon; Dalecki, Marc; Bock, Otmar
2010-04-01
Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.
An experimental evaluation of head-up display formats
NASA Technical Reports Server (NTRS)
Naish, J. M.; Miller, D. L.
1980-01-01
Three types of head-up display format are investigated. Type 1 is an unreferenced (conventional) flight director, type 2 is a ground referenced flight path display, and type 3 is a ground referenced director. Formats are generated by computer and presented by reflecting collimation against a simulated forward view in flight. Pilots, holding commercial licenses, fly approaches in the instrument flight mode and in a combined instrument and visual flight mode. The approaches are in wind shear with varied conditions of visibility, offset, and turbulence. The displays are equivalent in pure tracking but there is a slight advantage for the unreferenced director in poor conditions. Flight path displays are better for tracking in the combined flight mode, possibly because of poor director control laws and the division of attention between superimposed fields. Workloads is better for the type 2 displays. The flight path and referenced director displays are criticized for effects of symbol motion and field limiting. In the subjective judgment of pilots familiar with the director displays, they are rated clearly better than path displays, with a preference for the unreferenced director. There is a fair division of attention between superimposed fields.
Goulard, Roman; Julien-Laferriere, Alice; Fleuriet, Jérome; Vercher, Jean-Louis; Viollet, Stéphane
2015-12-01
The ability of hoverflies to control their head orientation with respect to their body contributes importantly to their agility and their autonomous navigation abilities. Many tasks performed by this insect during flight, especially while hovering, involve a head stabilization reflex. This reflex, which is mediated by multisensory channels, prevents the visual processing from being disturbed by motion blur and maintains a consistent perception of the visual environment. The so-called dorsal light response (DLR) is another head control reflex, which makes insects sensitive to the brightest part of the visual field. In this study, we experimentally validate and quantify the control loop driving the head roll with respect to the horizon in hoverflies. The new approach developed here consisted of using an upside-down horizon in a body roll paradigm. In this unusual configuration, tethered flying hoverflies surprisingly no longer use purely vision-based control for head stabilization. These results shed new light on the role of neck proprioceptor organs in head and body stabilization with respect to the horizon. Based on the responses obtained with male and female hoverflies, an improved model was then developed in which the output signals delivered by the neck proprioceptor organs are combined with the visual error in the estimated position of the body roll. An internal estimation of the body roll angle with respect to the horizon might explain the extremely accurate flight performances achieved by some hovering insects. © 2015. Published by The Company of Biologists Ltd.
SDBI 1904: Human Factors Assessment of Vibration Effects on Visual Performance during Launch
NASA Technical Reports Server (NTRS)
Thompson, Shelby G.; Holden, Kritina; Root, Phillip; Ebert, Douglas; Jones, Jeffery; Adelstein, Bernard
2009-01-01
The primary objective of the of Human Factors Short Duration Bioastronautics Investigation (SDBI) 1904 is to determine visual performance limits during operational vibration and g-loads, specifically through the determination of minimal usable font sized using Orion-type display formats. Currently there is little to no data available to quantify human visual performance under these extreme conditions. Existing data on shuttle vibration magnitude and frequency is incomplete, does not address sear and crew vibration in the current configuration, and does not address human visual performance. There have been anecdotal reports of performance decrements from shuttle crews, but no structured data has been collected. The SDBI is a companion effort to the Detailed Test Objective (DTO) 695, which will measure shuttle seat accelerations (vibration) during ascent. Data fro the SDBI will serve an important role in interpreting the DTO vibration data. This data will be collected during the ascent phase of three shuttle missions (STS-119, 127, and 128). Both SDBI1904 and DTO 695 are low impact with respect to flight resources, and combined they represent an efficient and focused problem solving approach. The SDBI and DTO data will be correlated to determine the nature of perceived visual performance under varying vibrations and g-loads. This project will provide: 1) Immediate data for developing preliminary human performance vibration requirements; 2) Flight validated inputs for ongoing and future ground-based research; and 3) Information of functional needs that will drive Orion display format design decisions.
McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S
2015-09-30
Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.
McClay, Wilbert A.; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T.; Nagarajan, Srikantan S.
2015-01-01
Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. PMID:26437432
Prentiss, Emily K; Schneider, Colleen L; Williams, Zoë R; Sahin, Bogachan; Mahon, Bradford Z
2018-03-15
The division of labour between the dorsal and ventral visual pathways is well established. The ventral stream supports object identification, while the dorsal stream supports online processing of visual information in the service of visually guided actions. Here, we report a case of an individual with a right inferior quadrantanopia who exhibited accurate spontaneous rotation of his wrist when grasping a target object in his blind visual field. His accurate wrist orientation was observed despite the fact that he exhibited no sensitivity to the orientation of the handle in a perceptual matching task. These findings indicate that non-geniculostriate visual pathways process basic volumetric information relevant to grasping, and reinforce the observation that phenomenal awareness is not necessary for an object's volumetric properties to influence visuomotor performance.
Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.
2007-01-01
Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001; Cohen et al. 2005). Importantly, this increased adaptability is retained even one month after completion of the training period. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program, using variations of visual flow, subject loading, and treadmill speed; during regular in-flight treadmill operations.
14 CFR 61.67 - Category II pilot authorization requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... attitude guidance displays; (iv) Use and limitations of RVR; (v) Use of visual clues, their availability or... be made with the use of an approved flight control guidance system, except if an approved auto...
14 CFR 61.67 - Category II pilot authorization requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... attitude guidance displays; (iv) Use and limitations of RVR; (v) Use of visual clues, their availability or... be made with the use of an approved flight control guidance system, except if an approved auto...
14 CFR 61.67 - Category II pilot authorization requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... attitude guidance displays; (iv) Use and limitations of RVR; (v) Use of visual clues, their availability or... be made with the use of an approved flight control guidance system, except if an approved auto...
Effects of Stereoscopic 3D Digital Radar Displays on Air Traffic Controller Performance
2013-03-01
between men and women , but no significant influence was found. Experience in ATC was considered as a potential covariate that would be presumed to have...depicts altitude through the use of stereoscopic disparity, permitting vertical separation to be visually represented as differences in disparity...handling information via different sources (e.g., radar screen with a series of automated visual cues, paper or electronic flight progress strips, radio
Habituation to novel visual vestibular environments with special reference to space flight
NASA Technical Reports Server (NTRS)
Young, L. R.; Kenyon, R. V.; Oman, C. M.
1981-01-01
The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed.
Flight of the dragonflies and damselflies
Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti
2016-01-01
This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528779
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung
2017-05-17
In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.
Water tunnel flow visualization study of a 4.4 percent scale X-31 forebody
NASA Technical Reports Server (NTRS)
Cobleigh, Brent R.; Delfrate, John
1994-01-01
A water-tunnel test of a 4.4 percent-scale, forebody-only model of the X-31 aircraft with different forebody strakes and nosebooms has been performed in the Flow Visualization Facility at the NASA Dryden Flight Research Center. The focus of the study was to determine the relative effects of the different configurations on the stability and symmetry of the high-angle-of-attack forebody vortex flow field. The clean, noseboom-off configuration resisted the development of asymmetries in the primary vortices through 70 deg angle of attack. The wake of the X-31 flight test noseboom configuration significantly degraded the steadiness of the primary vortex cores and promoted asymmetries. An alternate L-shaped noseboom mounted underneath the forebody had results similar to those seen with the configuration, enabling stable, symmetrical vortices up to 70 deg angle of attack. The addition of strakes near the radome tip along the waterline increased the primary vortex strength while it simultaneously caused the vortex breakdown location co move forward. Forebody strakes did not appear to significantly reduce the asymmetries in the forebody vortex field in the presence of the flight test noseboom.
NASA Astrophysics Data System (ADS)
Longman, Peter J.; How, Thomas C.; Hudson, Craig; Clarkson, Geoffrey J. N.
2001-08-01
The Defence Evaluation Research Agency carried out an airborne demonstration and evaluation of a fast-jet Visually Coupled System (VCS) installed in ZD902, the Tornado Integrated Avionics Research Aircraft for the UK MOD. The installed VCS used a Head Steered Forward Looking Infra-Red (HSFLIR) sensor and a Head Tracking system to provide the pilot with an image of the outside world projected onto a Binocular Helmet Mounted Display. In addition to the sensor image, information such as aircraft altitude, attitude, and airspeed were also presented to the pilot through the HMD to eliminate the need to look inside the cockpit for critical flight data. The aim of the VIVIAN trial was to demonstrate by day and night the benefits of a fast-jet integrated HSFLIR and HMD as an aid to low level flight, navigation, target acquisition, take-off and landing. The outcome of this flight test program was very encouraging and, although testing has identified that improvements are necessary, in particular to HSFLIR image quality, Auto Gain Control performance, helmet fit and symbology design, test aircrew endorse the acceptability of a VCS.
NASA Technical Reports Server (NTRS)
Fisher, David F.; Richwine, David M.; Banks, Daniel W.
1988-01-01
A method of in-flight surface flow visualization similar to wind-tunnel-model oil flows is described for cases where photo-chase planes or onboard photography are not practical. This method, used on an F-18 aircraft in flight at high angles of attack, clearly showed surface flow streamlines in the fuselage forebody. Vortex separation and reattachment lines were identified with this method and documented using postflight photography. Surface flow angles measured at the 90 and 270 degrees meridians show excellent agreement with the wind tunnel data for a pointed tangent ogive with an aspect ratio of 3.5. The separation and reattachment line locations were qualitatively similar to the F-18 wind-tunnel-model oil flows but neither the laminar separation bubble nor the boundary-layer transition on the wind tunnel model were evident in the flight surface flows. The separation and reattachment line locations were in fair agreement with the wind tunnel data for the 3.5 ogive. The elliptical forebody shape of the F-18 caused the primary separation lines to move toward the leeward meridian. Little effect of angle of attack on the separation locations was noted for the range reported.
Schwegmann, Alexander; Lindemann, Jens Peter; Egelhaaf, Martin
2014-01-01
Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational efforts to extract information about the environment from the retinal image flow. Because of the distinguishing dynamic features of this active flight and gaze strategy of insects, the present study analyzes systematically the spatiotemporal statistics of image sequences generated during saccades and intersaccadic intervals in cluttered natural environments. We show that, in general, rotational movements with saccade-like dynamics elicit fluctuations and overall changes in brightness, contrast and spatial frequency of up to two orders of magnitude larger than translational movements at velocities that are characteristic of insects. Distinct changes in image parameters during translations are only caused by nearby objects. Image analysis based on larger patches in the visual field reveals smaller fluctuations in brightness and spatial frequency composition compared to small patches. The temporal structure and extent of these changes in image parameters define the temporal constraints imposed on signal processing performed by the insect visual system under behavioral conditions in natural environments. PMID:25340761
NASA Astrophysics Data System (ADS)
Wilson, Lee Alexander
Vertical Takeoff-and-Landing (VTOL) Micro Air Vehicles (MAVs) provide a versatile operational platform which combines the capabilities of fixed wing and rotary wing MAVs. In order to improve performance of these vehicles, a better understanding of the rapid transition between horizontal and vertical flight is required. This study examines the flow structures around the Mini-Vertigo VTOL MAV using flow visualization techniques. This will gives an understanding of the flow structures which dominate the flight dynamics of rapid pitching maneuvers. This study consists of three objectives: develop an experimental facility, use flow visualization to investigate the flow around the experimental subject during pitching, and analyze the results. The flow around the Mini-Vertigo VTOL MAV is dominated by the slipstream from its propellers. The slipstream delays LE separation and causes drastic deflection in the flow. While the frequency of the vortices shed from the LE and TE varies with flow speed, the non-dimensional frequency does not. It does, however, vary slightly with the pitching rate. These results are applicable across a wide range of flight conditions. The results correlate to previous research done to examine the aerodynamic forces on the MAV.
An Evaluation of Performance-Based Tests Designed to Improve Naval Aviation Selection.
1991-08-01
Qualification Test AQT/FAR 8z Flight Aptitude Rating 3 Complex Visual CVT Information Processing 3 Risk RISK 3 Absolute Difference ADHT & Horizontal...01329* .01852 1077 6 CVT .03752* .05064 557 3 ADHT .03432* .03289 499 8 RISK .03369* .05028 337 2 MB .01814 .02479 544 5 PMT/DLT .00987 .01037 641 7 *p...to differences in age, sex, accession source, college major, prior flight hours, or intelligence. From Table 2 we see that the CVT, ADHT , and the RISK
UTM Technical Capabilities Level 2 (TLC2) Test at Reno-Stead Airport.
2016-10-06
Test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada. During the test, five drones simultaneously crossed paths, separated by altitude. Two drones flew beyond visual line-of-sight and three flew within line-of-sight of their operators. Engineers Priya Venkatesan and Joey Mercer review flight paths using the UAS traffic management research platform at flight operations mission control at NASA’s UTM TCL2 test.
2011-03-12
determine (1) the ability of Megalopta to approach and land on its nest entrance at night (using high-speed filming in bright infrared light), (2...lined with black-and-white patterns and filming their flight trajectories from below in infrared light), and (3) whether Megalopta uses...at the end of a flight tunnel so that we could record both the approach and the final landing phase (Figure 1). The approach was filmed over a
Lonely Skies: Air-to-Air Training for a 5th Generation Fighter Force
2015-06-01
Missing Attitude Indicator….…………………14 4 Lt James Doolittle during Blind Flight Test…..……………………...15 5 An Early Link Trainer Cockpit...during visual flight because it deceived pilots about the actual aircraft attitude and acceleration. 1st Lt James Doolittle used Doctor David Meyers...flying pioneer and leader, Doolittle believed that pilots should learn to ignore their physical sense of motion while flying blind and to trust their
Advanced IR System For Supersonic Boundary Layer Transition Flight Experiment
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a preferred method investigating transition in flight: a) Global and non-intrusive; b) Can also be used to visualize and characterize other fluid mechanic phenomena such as shock impingement, separation etc. F-15 based system was updated with new camera and digital video recorder to support high Reynolds number transition tests. Digital Recording improves image quality and analysis capability and allows for accurate quantitative (temperature) measurements and greater enhancement through image processing allows analysis of smaller scale phenomena.
Cobra communications switch integration program
NASA Technical Reports Server (NTRS)
Shively, Robert J.; Haworth, Loran A.; Szoboszlay, Zoltan; Murray, F. Gerald
1989-01-01
The paper describes a design modification to reduce the visual and manual workload associated with the radio selection and communications tasks in the U.S. Army AH-1 Cobra helicopter. The modification involves the integration of the radio selection and microphone actuating tasks into a single operation controlled by the transmit-intercom switch. Ground-based and flight tests were conducted to evaluate the modified configuration during twelve flight tasks. The results show that the proposed configuration performs twice as fast as the original configuration.
Validation of vision-based obstacle detection algorithms for low-altitude helicopter flight
NASA Technical Reports Server (NTRS)
Suorsa, Raymond; Sridhar, Banavar
1991-01-01
A validation facility being used at the NASA Ames Research Center is described which is aimed at testing vision based obstacle detection and range estimation algorithms suitable for low level helicopter flight. The facility is capable of processing hundreds of frames of calibrated multicamera 6 degree-of-freedom motion image sequencies, generating calibrated multicamera laboratory images using convenient window-based software, and viewing range estimation results from different algorithms along with truth data using powerful window-based visualization software.
Fernandez, Nicolas F.; Gundersen, Gregory W.; Rahman, Adeeb; Grimes, Mark L.; Rikova, Klarisa; Hornbeck, Peter; Ma’ayan, Avi
2017-01-01
Most tools developed to visualize hierarchically clustered heatmaps generate static images. Clustergrammer is a web-based visualization tool with interactive features such as: zooming, panning, filtering, reordering, sharing, performing enrichment analysis, and providing dynamic gene annotations. Clustergrammer can be used to generate shareable interactive visualizations by uploading a data table to a web-site, or by embedding Clustergrammer in Jupyter Notebooks. The Clustergrammer core libraries can also be used as a toolkit by developers to generate visualizations within their own applications. Clustergrammer is demonstrated using gene expression data from the cancer cell line encyclopedia (CCLE), original post-translational modification data collected from lung cancer cells lines by a mass spectrometry approach, and original cytometry by time of flight (CyTOF) single-cell proteomics data from blood. Clustergrammer enables producing interactive web based visualizations for the analysis of diverse biological data. PMID:28994825
Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment
NASA Technical Reports Server (NTRS)
Frische, F.; Osterloh, J.-P.; Luedtke, A.
2011-01-01
This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.
The importance of being top-heavy: Intrinsic stability of flapping flight
NASA Astrophysics Data System (ADS)
Ristroph, Leif; Liu, Bin; Zhang, Jun
2011-11-01
We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object that freely hovers in a vertically oscillating airflow. Such a ``bug'' not only generates sufficient aerodynamic force to keep aloft but also robustly maintains balance during free-flight. Flow visualization reveals that both weight support and intrinsic stability result from the periodic shedding of dipolar vortices. Counter-intuitively, the observed pattern of vortex shedding suggests that stability requires a high center-of-mass, which we verify by comparing the performance of top- and bottom-heavy bugs. Finally, we visit a zoo of other flapping flyers, including Mary Poppins' umbrella, a flying saucer or UFO, and Da Vinci's helicopter.
NASA Technical Reports Server (NTRS)
Vernalis, Marina N.; Latham, Ricky D.; Fanton, John W.; Geffney, F. Andrew
1993-01-01
Transthoracic echocardiography (TTE) is a feasible method to noninvasively examine cardiac anatomy during parabolic flight. However, transducer placement on the chest wall is very difficult to maintain during transition to microgravity. In addition, TTE requires the use of low frequency transponders which limit resolution. Transesophical echocardiography (TEE) is an established imaging technique which obtains echocardiographic information from the esophagus. It is a safe procedure and provides higher quality images of cardiac structure than obtained with TTE. This study is designed to determine whether TEE was feasible to perform during parabolic flight and to determine whether acute central volume responses occur in acute transition to zero gravity by direct visualization of the cardiac chambers.
Development of Training Programs to Optimize Planetary Ambulation
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Miller, C. A.; Brady, R.; Warren, L. E.; Rutley, T. M.; Kozlovskaya, I. B.
2007-01-01
Astronauts experience disturbances in functional mobility following their return to Earth due to adaptive responses that occur during exposure to the microgravity conditions of space flight. Despite significant time spent performing in-flight exercise routines, these training programs have not been able to mitigate postflight alterations in postural and locomotor function. Therefore, the goal of our two inter-related projects (NSBRI-ground based and ISS flight study, "Mobility") is to develop and test gait training programs that will serve to optimize functional mobility during the adaptation period immediately following space flight, thereby improving the safety and efficiency of planetary ambulation. The gait training program entails manipulating the sensory conditions of treadmill exercise to systematically challenge the balance and gait control system. This enhances the overall adaptability of locomotor function enabling rapid reorganization of gait control to respond to ambulation in different gravitational environments. To develop the training program, we are conducting a series of ground-based studies evaluating the training efficacy associated with variation in visual flow, body loading, and support surface stability during treadmill walking. We will also determine the optimal method to present training stimuli within and across training sessions to maximize both the efficacy and efficiency of the training procedure. Results indicate that variations in both visual flow and body unloading during treadmill walking leads to modification in locomotor control and can be used as effective training modalities. Additionally, the composition and timing of sensory challenges experienced during each training session has significant impact on the ability to rapidly reorganize locomotor function when exposed to a novel sensory environment. We have developed the capability of producing support surface variation during gait training by mounting a treadmill on a six-degree-of-freedom motion device. This hardware development will allow us to evaluate the efficacy of this type of training in conjunction with variation in visual flow and body unloading.
NASA Technical Reports Server (NTRS)
1990-01-01
Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.
Airflow and optic flow mediate antennal positioning in flying honeybees
Roy Khurana, Taruni; Sane, Sanjay P
2016-01-01
To maintain their speeds during navigation, insects rely on feedback from their visual and mechanosensory modalities. Although optic flow plays an essential role in speed determination, it is less reliable under conditions of low light or sparse landmarks. Under such conditions, insects rely on feedback from antennal mechanosensors but it is not clear how these inputs combine to elicit flight-related antennal behaviours. We here show that antennal movements of the honeybee, Apis mellifera, are governed by combined visual and antennal mechanosensory inputs. Frontal airflow, as experienced during forward flight, causes antennae to actively move forward as a sigmoidal function of absolute airspeed values. However, corresponding front-to-back optic flow causes antennae to move backward, as a linear function of relative optic flow, opposite the airspeed response. When combined, these inputs maintain antennal position in a state of dynamic equilibrium. DOI: http://dx.doi.org/10.7554/eLife.14449.001 PMID:27097104
NASA Technical Reports Server (NTRS)
Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.;
2017-01-01
Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.
Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.
Davis, W L; Warnock, S H; Harnsberger, H R; Parker, D L; Chen, C X
1993-01-01
Single volume three-dimensional (3D) time-of-flight (TOF) MR angiography is the most commonly used noninvasive method for evaluating the intracranial vasculature. The sensitivity of this technique to signal loss from flow saturation limits its utility. A recently developed multislab 3D TOF technique, MOTSA, is less affected by flow saturation and would therefore be expected to yield improved vessel visualization. To study this hypothesis, intracranial MR angiograms were obtained on 10 volunteers using three techniques: MOTSA, single volume 3D TOF using a standard 4.9 ms TE (3D TOFA), and single volume 3D TOF using a 6.8 ms TE (3D TOFB). All three sets of axial source images and maximum intensity projection (MIP) images were reviewed. Each exam was evaluated for the number of intracranial vessels visualized. A total of 502 vessel segments were studied with each technique. With use of the MIP images, 86% of selected vessels were visualized with MOTSA, 64% with 3D TOFA (TE = 4.9 ms), and 67% with TOFB (TE = 6.8 ms). Similarly, with the axial source images, 91% of selected vessels were visualized with MOTSA, 77% with 3D TOFA (TE = 4.9 ms), and 82% with 3D TOFB (TE = 6.8 ms). There is improved visualization of selected intracranial vessels in normal volunteers with MOTSA as compared with single volume 3D TOF. These improvements are believed to be primarily a result of decreased sensitivity to flow saturation seen with the MOTSA technique. No difference in overall vessel visualization was noted for the two single volume 3D TOF techniques.
Increased Intracranial Pressure and Visual Impairment Associated with Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Marshall-Bowman, Karina
2011-01-01
Although humans have been flying in space since the 1960s, more recent missions have revealed a new suite of physiological adaptations and consequences of space flight. Notably, 60% of long-duration crewmembers (ISS/MIR) and >25% of short-duration (Shuttle) crewmembers have reported subjective degradation in vision (based on debrief comments) (Gibson 2011). Decreased near-visual acuity was demonstrated in 46% of ISS/Mir and 21% of Shuttle crewmembers, resulting in a shift of up to 1-2 diopters in their refractive correction. It is likely that the recently revealed ophthalmic changes have been present since the first days of human space flight, but have been overlooked or attributed to other causations. The reported changes in vision have occurred at various time points throughout missions, with ranging degrees of visual degradation. Although some cases resolved upon return to Earth, several astronauts have not regained preflight visual acuity, indicating that the damage may be permanent. While observing these changes over the years, without other overt symptomology and with the given age range of the flying population, this has largely been attributed to an expected hyperopic shift due to aging. However, the availability of onboard analysis techniques, including visual acuity assessments, retinal imagery, and ultrasounds of the eye and optic nerve tracts, along with more detailed post-flight techniques, has led to the recent recognition of a wider syndrome. Along with vision changes, findings include flattening of the globe, swelling of the optic disc (papilledema), choroidal folds in the retina, swelling of the optic nerve sheath, and visual field defects. It is widely hypothesized that this constellation of findings may be explained by an elevation of intracranial pressure (ICP). Out of the 60% of long-duration astronauts that have reported a subjective degradation in vision, a subset (currently 10 astronauts) have developed this syndrome. The National Aeronautics and Space Administration (NASA) has made it a high priority to understand this syndrome and provide mitigation techniques to protect crewmembers from visual impairment. While there are many possible factors that could contribute to intracranial hypertension associated with spaceflight, the relative contribution of these, as well as the processes by which eye damage occurs as a result of intracranial hypertension, are not fully understood. The observed pathophysiological phenomena are extremely complex and it is likely that multiple factors contribute to their incidence, rather than one simple mechanism. This paper will define and examine the findings in detail, and expound upon the potential contributing factors and their relative contribution to this syndrome.
Simulation and flight test evaluation of head-up-display guidance for harrier approach transitions
NASA Technical Reports Server (NTRS)
Dorr, D. W.; Moralez, E., III; Merrick, V. K.
1994-01-01
Position and speed guidance displays for STOVL aircraft curved, decelerating approaches to hover and vertical landing have been evaluated for their effectiveness in reducing pilot workload and improving performance. The NASA V/STOL Systems Research Aircraft, a modified YAV-8B Harrier prototype, was used to evaluate the displays in flight, whereas the NASA Ames Vertical Motion Simulator was used to extend the flight test results to instrument meteorological conditions (IMC) and to examine performance in various conditions of wind and turbulence. The simulation data showed close correlation with the flight test data, and both demonstrated the feasibility of the displays. With the exception of the hover task in zero visibility, which was level-3, averaged Copper-Harper handling qualities ratings given during simulation were level-2 for both the approach task and the hover task in all conditions. During flight tests in calm and clear conditions, the displays also gave rise to level-2 handling qualities ratings. Pilot opinion showed that the guidance displays would be useful in visual flight, especially at night, as well as in IMC.
Enhanced flight symbology for wide-field-of-view helmet-mounted displays
NASA Astrophysics Data System (ADS)
Rogers, Steven P.; Asbury, Charles N.; Szoboszlay, Zoltan P.
2003-09-01
A series of studies was conducted to improve the Army aviator's ability to perform night missions by developing innovative symbols that capitalize on the advantages of new wide field-of-view (WFOV) helmet-mounted displays (HMDs). The most important outcomes of the research were two new symbol types called the Cylinder and the Flight Path Predictor. The Cylinder provides a large symbolic representation of real-world orientation that enables pilots to maintain the world frame of reference even if the visibility of the world is lost due to dust, smoke, snow, or inadvertent instrument meteorological conditions (IMC). Furthermore, the Cylinder is peripherally presented, supporting the "ambient" visual mode so that it does not require the conscious attention of the viewer. The Flight Path Predictor was developed to show the predicted flight path of a maneuvering aircraft using earth-referenced HMD symbology. The experimental evidence and the pilot interview results show that the new HMD symbology sets are capable of preventing spatial disorientation, improving flight safety, enhancing flight maneuver precision, and reducing workload so that the pilot can more effectively perform the critical mission tasks.
Incorporation of Half-Cycle Theory Into Ko Aging Theory for Aerostructural Flight-Life Predictions
NASA Technical Reports Server (NTRS)
Ko, William L.; Tran, Van T.; Chen, Tony
2007-01-01
The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory to improve accuracy in the predictions of operational flight life of failure-critical aerostructural components. A new crack growth computer program was written for reading the maximum and minimum loads of each half-cycle from the random loading spectra for crack growth calculations and generation of in-flight crack growth curves. The unified theories were then applied to calculate the number of flights (operational life) permitted for B-52B pylon hooks and Pegasus adapter pylon hooks to carry the Hyper-X launching vehicle that air launches the X-43 Hyper-X research vehicle. A crack growth curve for each hook was generated for visual observation of the crack growth behavior during the entire air-launching or captive flight. It was found that taxiing and the takeoff run induced a major portion of the total crack growth per flight. The operational life theory presented can be applied to estimate the service life of any failure-critical structural components.
In Flight Evaluation of Active Inceptor Force-Feel Characteristics and Handling Qualities
2012-05-01
DEGRADED ACCEPTABLE Mitchell Aponso (1995) Watson Schroeder (1990) 0.75 lb/in 2.3 lb/in2.9 lb/in5.9 lb/in Side Stk - lon Side Stk - lat Center Stk Figure...vestibular feedback ( and respectively), and the visual error compensation ( ). A key feature of this approach is the modeling of proprioceptive...and vestibular feedback, and is the proportional component of the visual compensation strategy. At its core the fundamental concept of the HQSF
2005-01-01
absolute emmetropia. Up to a substantial 25% of the aviation population develops ametropia requiring the use of spectacles or other refractive correction...to determine statistical differences in visual performance. The types of contact lenses were compared in general to determine whether there was any...Lomb multi- focal, and 187 (sd=25) for the Ciba progressive. There was not a statistically significant difference for high luminance contrast
Guidance for Development of a Flight Simulator Specification
2007-05-01
the simulated line of sight to the moon is less than one degree, and that the moon appears to move smoothly across the visual scene. The phase of the...Agencies have adopted the definition used by Optics Companies (this definition has also been adopted in this revision of the Air Force Guide...simulators that require tracking the target as it slues across the displayed scene, such as with air -to-ground or air -to- air combat tasks. Visual systems
Prospective Observational Study of Ocular Health in ISS Crews - The Ocular Health Study
NASA Technical Reports Server (NTRS)
Otto, C.; Barr, Y.; Platts, S.; Ploutz-Snyder, R.; Sargsyan, A.; Alexander, D.; Riascos, R.; Gibson, C.; Patel, N.
2015-01-01
The Visual Impairment Intracranial Pressure (VIIP) syndrome is currently NASA's number one human space flight risk. The syndrome, which is related to microgravity exposure, manifests with changes in visual acuity (hyperopic shifts, scotomas), changes in eye structure (optic disc edema, choroidal folds, cotton wool spots, globe flattening, and dilated optic nerve sheaths), and in some cases with documented increased intracranial pressure (ICP) postflight. While the eye appears to be the main affected end organ of this syndrome, the ocular effects are thought to be related to underlying changes in the vascular system and the central nervous system. The leading hypotheses for the development of VIIP involve microgravity-induced head-ward fluid shifts along with a loss of gravity-assisted drainage of venous blood from the brain, leading to cephalic congestion, decreased CSF resorption and increased ICP. Since 70% of ISS crewmembers have manifested clinical signs or symptoms of the VIIP syndrome, it is assumed that the majority have some degree of ICP elevation in-flight compared to the ground. Prolonged elevations of ICP can cause long-term reduced visual acuity and loss of peripheral visual fields, and have been reported to cause mild cognitive impairment in the analog terrestrial population of Idiopathic Intracranial Hypertension (IIH). These potentially irreversible health consequences underscore the importance of identifying the factors that lead to this syndrome and mitigating them.
A Hybrid Synthetic Vision System for the Tele-operation of Unmanned Vehicles
NASA Technical Reports Server (NTRS)
Delgado, Frank; Abernathy, Mike
2004-01-01
A system called SmartCam3D (SC3D) has been developed to provide enhanced situational awareness for operators of a remotely piloted vehicle. SC3D is a Hybrid Synthetic Vision System (HSVS) that combines live sensor data with information from a Synthetic Vision System (SVS). By combining the dual information sources, the operators are afforded the advantages of each approach. The live sensor system provides real-time information for the region of interest. The SVS provides information rich visuals that will function under all weather and visibility conditions. Additionally, the combination of technologies allows the system to circumvent some of the limitations from each approach. Video sensor systems are not very useful when visibility conditions are hampered by rain, snow, sand, fog, and smoke, while a SVS can suffer from data freshness problems. Typically, an aircraft or satellite flying overhead collects the data used to create the SVS visuals. The SVS data could have been collected weeks, months, or even years ago. To that extent, the information from an SVS visual could be outdated and possibly inaccurate. SC3D was used in the remote cockpit during flight tests of the X-38 132 and 131R vehicles at the NASA Dryden Flight Research Center. SC3D was also used during the operation of military Unmanned Aerial Vehicles. This presentation will provide an overview of the system, the evolution of the system, the results of flight tests, and future plans. Furthermore, the safety benefits of the SC3D over traditional and pure synthetic vision systems will be discussed.
Symbology requirements in head-up and head-down displays for helicopters in NOE flight
NASA Astrophysics Data System (ADS)
Haidn, Hermann; Odendahl, Goetz
1993-12-01
In modern warfare scenarios military helicopters have to be able to operate in NoE envelopes under all meteorological conditions. Under daytime good weather conditions this poses no problem for well-trained aircrews. In nighttime or bad weather conditions however the use of electronic sensors like IIT or TI is necessary. The aircrew use these devices for obstacle detection and avoidance and flight attitude perception. Flight below tree top level is only feasible when both of these tasks can be accomplished safely throughout the whole flight. For this reason the pilots must fly visual at all times. Relying on instruments for flight attitude control when flying between the trees would surely result in the striking of obstacles. These facts and the necessity for the aircrew to view greater azimuth angles than fixed wing pilots imply differing equipment and symbology packages for the two aircraft species. As a matter of fact only helmet mounted displays are really useful for helicopter flight control symbology. The following are results of experience from a number of trials with symbology in helicopters in low level flight down to 10 feet at night with IITs.
Fused Reality for Enhanced Flight Test Capabilities
NASA Technical Reports Server (NTRS)
Bachelder, Ed; Klyde, David
2011-01-01
The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.
NASA Technical Reports Server (NTRS)
Hindson, W. S.; Hardy, G. H.; Innis, R. C.
1981-01-01
Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.
NASA Technical Reports Server (NTRS)
Erickson, G. E.
1982-01-01
Six degree of freedom studies were utilized to extract a band of yawing and rolling moment coefficients from the F/A-18 aircraft flight records. These were compared with 0.06 scale model data obtained in a 16T wind tunnel facility. The results, indicate the flight test yawing moment data exhibit an improvement over the wind tunnel data to near neutral stability and a significant reduction in lateral stability (again to anear neutral level). These data are consistent with the flight test results since the motion was characterized by a relatively slo departure. Flight tests repeated the slow yaw departure at M 0.3. Only 0.16 scale model wind tunnel data showed levels of lateral stability similar to the flight test results. Accordingly, geometric modifications were investigated on the 0.16 scale model in the 30x60 foot wind tunnel to improve high angle of attack lateral stability.
Zone-forming fungi experiment MA-147
NASA Technical Reports Server (NTRS)
Rogers, T. D.; Taylor, G. R.; Brower, M. E.
1976-01-01
Streptomyces levoris was used as an experimental microorganism during the Apollo Soyuz Test Project to study specific biological considerations that may be influenced by space flight factors. Preflight, inflight, and postflight growth rates of the cultures were compared by photographing the specimens at regular intervals. Preliminary results based on visual comparison of the photographic data indicate that an increased growth rate occurred during space flight in two of eight flight specimens. The increased growth rate continued in the two specimens during the postflight period until termination of the experiment. Radiation effects may be responsible for the absence of spores in two areas of the last spore ring that was formed during the inflight period in one of the flight cultures; however, the radiation studies related to this experiment have not been completed. Distinct morphological differences in spore rings were observed when postflight spore rings were compared with inflight spore rings. Factors that are related to space flight recovery and reentry into earth gravity may have effected these alterations.
HUD Guidance for the ASKA Experimental STOL Aircraft using Radar Position Information
NASA Technical Reports Server (NTRS)
Yazawa, Kenji; Terui, Yushi; Hardy, Gordon H.
1992-01-01
The paper describes a high performance HUD guidance system installed on the experimental powered-lift STOL aircraft Aska. Since the maiden flight in October 1985, the HUD system has been used in all the flight tests. The HUD has an accurate flight path symbol generated by inertial velocity from the IRS which is updated by up-linked precision radar position data. The flight path symbol is very useful for precise approach and flare control for Aska which has large ground effects. A synthetic runway is also presented, which is conformal with the real runway, using the position data from the ground tracking radar system. Under instrument meteorological conditions, the pilot can approach and land using the HUD synthetic runway as well as in visual meteorological conditions. The HUD system proved to be a valuable aid to the pilot for all the Aska flight tests. A NASA Ames Research Center test pilot demonstrated touch down accuracy of less than 8 meters (peak to peak) for a series of three landings.
Concept of Operations Visualization for Ares I Production
NASA Technical Reports Server (NTRS)
Chilton, Jim; Smith, David Alan
2008-01-01
Establishing Computer Aided Design models of the Ares I production facility, tooling and vehicle components and integrating them into manufacturing visualizations/simulations allows Boeing and NASA to collaborate real time early in the design/development cycle. This collaboration identifies cost effective and lean solutions that can be easily shared with Ares stakeholders (e.g., other NASA Centers and potential science users). These Ares I production visualizations and analyses by their nature serve as early manufacturing improvement precursors for other Constellation elements to be built at the Michoud Assembly Facility such as Ares V and the Altair Lander. Key to this Boeing and Marshall Space Flight Center collaboration has been the use of advanced virtual manufacturing tools to understand the existing Shuttle era infrastructure and trade potential modifications to support Ares I production. These approaches are then used to determine an optimal manufacturing configuration in terms of labor efficiency, safety and facility enhancements. These same models and tools can be used in an interactive simulation of Ares I and V flight to the Space Station or moon to educate the human space constituency (e.g., government, academia, media and the public) in order to increase national and international understanding of Constellation goals and benefits.
Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.
Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre
2016-01-01
We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance.
Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight
Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre
2016-01-01
We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5–6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance. PMID:27463106
Attentional models of multitask pilot performance using advanced display technology.
Wickens, Christopher D; Goh, Juliana; Helleberg, John; Horrey, William J; Talleur, Donald A
2003-01-01
In the first part of the reported research, 12 instrument-rated pilots flew a high-fidelity simulation, in which air traffic control presentation of auditory (voice) information regarding traffic and flight parameters was compared with advanced display technology presentation of equivalent information regarding traffic (cockpit display of traffic information) and flight parameters (data link display). Redundant combinations were also examined while pilots flew the aircraft simulation, monitored for outside traffic, and read back communications messages. The data suggested a modest cost for visual presentation over auditory presentation, a cost mediated by head-down visual scanning, and no benefit for redundant presentation. The effects in Part 1 were modeled by multiple-resource and preemption models of divided attention. In the second part of the research, visual scanning in all conditions was fit by an expected value model of selective attention derived from a previous experiment. This model accounted for 94% of the variance in the scanning data and 90% of the variance in a second validation experiment. Actual or potential applications of this research include guidance on choosing the appropriate modality for presenting in-cockpit information and understanding task strategies induced by introducing new aviation technology.
In-flight flow visualization results from the X-29A aircraft at high angles of attack
NASA Technical Reports Server (NTRS)
Delfrate, John H.; Saltzman, John A.
1992-01-01
Flow visualization techniques were used on the X-29A aircraft at high angles of attack to study the vortical flow off the forebody and the surface flow on the wing and tail. The forebody vortex system was studied because asymmetries in the vortex system were suspected of inducing uncommanded yawing moments at zero sideslip. Smoke enabled visualization of the vortex system and correlation of its orientation with flight yawing moment data. Good agreement was found between vortex system asymmetries and the occurrence of yawing moments. Surface flow on the forward-swept wing of the X-29A was studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread outboard encompassing the full wing by 30 deg angle of attack. In general, the progression of the separated flow correlated well with subscale model lift data. Surface flow on the vertical tail was also studied using tufts and flow cones. As angle of attack increased, separated flow initiated at the root and spread upward. The area of separated flow on the vertical tail at angles of attack greater than 20 deg correlated well with the marked decrease in aircraft directional stability.
Stroboscopic Vision as a Treatment for Retinal Slip Induced Motion Sickness
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Somers, J. T.; Ford, G.; Krnavek, J. M.; Hwang, E. J.; Leigh, R. J.; Estrada, A.
2007-01-01
Motion sickness in the general population is a significant problem driven by the increasingly more sophisticated modes of transportation, visual displays, and virtual reality environments. It is important to investigate non-pharmacological alternatives for the prevention of motion sickness for individuals who cannot tolerate the available anti-motion sickness drugs, or who are precluded from medication because of different operational environments. Based on the initial work of Melvill Jones, in which post hoc results indicated that motion sickness symptoms were prevented during visual reversal testing when stroboscopic vision was used to prevent retinal slip, we have evaluated stroboscopic vision as a method of preventing motion sickness in a number of different environments. Specifically, we have undertaken a five part study that was designed to investigate the effect of stroboscopic vision (either with a strobe light or LCD shutter glasses) on motion sickness while: (1) using visual field reversal, (2) reading while riding in a car (with or without external vision present), (3) making large pitch head movements during parabolic flight, (4) during exposure to rough seas in a small boat, and (5) seated and reading in the cabin area of a UH60 Black Hawk Helicopter during 20 min of provocative flight patterns.
Bird Radar Validation in the Field by Time-Referencing Line-Transect Surveys
Dokter, Adriaan M.; Baptist, Martin J.; Ens, Bruno J.; Krijgsveld, Karen L.; van Loon, E. Emiel
2013-01-01
Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar’s detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer’s accuracy in determining a bird’s transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ∼1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50±0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms. PMID:24066103
Visualization Component of Vehicle Health Decision Support System
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Turmon, Michael; Stough, Timothy; Siegel, Herbert; Walter, patrick; Kurt, Cindy
2008-01-01
The visualization front-end of a Decision Support System (DSS) also includes an analysis engine linked to vehicle telemetry, and a database of learned models for known behaviors. Because the display is graphical rather than text-based, the summarization it provides has a greater information density on one screen for evaluation by a flight controller.This tool provides a system-level visualization of the state of a vehicle, and drill-down capability for more details and interfaces to separate analysis algorithms and sensor data streams. The system-level view is a 3D rendering of the vehicle, with sensors represented as icons, tied to appropriate positions within the vehicle body and colored to indicate sensor state (e.g., normal, warning, anomalous state, etc.). The sensor data is received via an Information Sharing Protocol (ISP) client that connects to an external server for real-time telemetry. Users can interactively pan, zoom, and rotate this 3D view, as well as select sensors for a detail plot of the associated time series data. Subsets of the plotted data can be selected and sent to an external analysis engine to either search for a similar time series in an historical database, or to detect anomalous events. The system overview and plotting capabilities are completely general in that they can be applied to any vehicle instrumented with a collection of sensors. This visualization component can interface with the ISP for data streams used by NASA s Mission Control Center at Johnson Space Center. In addition, it can connect to, and display results from, separate analysis engine components that identify anomalies or that search for past instances of similar behavior. This software supports NASA's Software, Intelligent Systems, and Modeling element in the Exploration Systems Research and Technology Program by augmenting the capability of human flight controllers to make correct decisions, thus increasing safety and reliability. It was designed specifically as a tool for NASA's flight controllers to monitor the International Space Station and a future Crew Exploration Vehicle.
Bird radar validation in the field by time-referencing line-transect surveys.
Dokter, Adriaan M; Baptist, Martin J; Ens, Bruno J; Krijgsveld, Karen L; van Loon, E Emiel
2013-01-01
Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar's detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer's accuracy in determining a bird's transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ~1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50 ± 0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms.
Enhanced Flight Vision Systems Operational Feasibility Study Using Radar and Infrared Sensors
NASA Technical Reports Server (NTRS)
Etherington, Timothy J.; Kramer, Lynda J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.
2015-01-01
Approach and landing operations during periods of reduced visibility have plagued aircraft pilots since the beginning of aviation. Although techniques are currently available to mitigate some of the visibility conditions, these operations are still ultimately limited by the pilot's ability to "see" required visual landing references (e.g., markings and/or lights of threshold and touchdown zone) and require significant and costly ground infrastructure. Certified Enhanced Flight Vision Systems (EFVS) have shown promise to lift the obscuration veil. They allow the pilot to operate with enhanced vision, in lieu of natural vision, in the visual segment to enable equivalent visual operations (EVO). An aviation standards document was developed with industry and government consensus for using an EFVS for approach, landing, and rollout to a safe taxi speed in visibilities as low as 300 feet runway visual range (RVR). These new standards establish performance, integrity, availability, and safety requirements to operate in this regime without reliance on a pilot's or flight crew's natural vision by use of a fail-operational EFVS. A pilot-in-the-loop high-fidelity motion simulation study was conducted at NASA Langley Research Center to evaluate the operational feasibility, pilot workload, and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 feet RVR by use of vision system technologies on a head-up display (HUD) without need or reliance on natural vision. Twelve crews flew various landing and departure scenarios in 1800, 1000, 700, and 300 RVR. This paper details the non-normal results of the study including objective and subjective measures of performance and acceptability. The study validated the operational feasibility of approach and departure operations and success was independent of visibility conditions. Failures were handled within the lateral confines of the runway for all conditions tested. The fail-operational concept with pilot in the loop needs further study.
Evaluation of a technique to simplify area navigation and required navigation performance charts
DOT National Transportation Integrated Search
2013-06-30
Performance based navigation (PBN), an enabler for the Federal Aviation Administration's Next Generation Air Transportation System (NextGEN), supports the design of more precise flight procedures. However, these new procedures can be visually complex...
Direct Visualization of Shock Waves in Supersonic Space Shuttle Flight
NASA Technical Reports Server (NTRS)
OFarrell, J. M.; Rieckhoff, T. J.
2011-01-01
Direct observation of shock boundaries is rare. This Technical Memorandum describes direct observation of shock waves produced by the space shuttle vehicle during STS-114 and STS-110 in imagery provided by NASA s tracking cameras.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Parrish, Russell V.; Williams, Steven P.; Lavell, Jeffrey S.
1999-01-01
A flight test was conducted aboard Calspan's Total In-Flight Simulator (TIFS) aircraft by researchers within the External Visibility System (XVS) element of the High-Speed Research program. The purpose was to investigate the effects of inboard horizontal field of view (FOV) display limitations on pilot path control and to learn about the TIFS capabilities and limitations for possible use in future XVS flight tests. The TIFS cockpit windows were masked to represent the front XVS display area and the High-Speed Civil Transport side windows, as viewed by the pilot. Masking limited the forward FOV to 40 deg. horizontal and 50 deg. vertical for the basic flight condition, With an increase of 10 deg. horizontal in the inboard direction for the increased FOV flight condition. Two right-hand approach tasks (base-downwind-final) with a left crosswind on final were performed by three pilots using visual flight rules at Niagara Falls Airport. Each of the two tasks had three replicates for both horizontal FOV conditions, resulting in twelve approaches per test subject. Limited objective data showed that an increase of inboard FOV had no effect (deficiences in objective data measurement capabilities were noted). However, subjective results showed that a 50 deg. FOV was preferred over the 40 deg. FOV.
Effects of Spaceflight on Venous and Arterial Compliance
NASA Technical Reports Server (NTRS)
Platts, S. H.; Pibeiro, L. C.; Laurie, S. S.; Lee, S. M. C.; Martin, D. S.; Ploutz-Snyder, R.; Stenger, M. B.
2016-01-01
The visual impairment and intracranial pressure (VIIP) syndrome is a spaceflight-associated medical condition consisting of a constellation of symptoms affecting less than 70% of American astronauts who have flown International Space Station (ISS) missions. VIIP is defined primarily by visual acuity deficits and anatomical changes to eye structures and is hypothesized to be related to elevated intracranial pressure secondary to spaceflight-induced cephalad fluid shifts, although other space flight factors (e.g., diet, environmental factors) may contribute. Loss of visual acuity could be a significant threat to crew health and performance during and after an exploration mission and may have implications for years postflight.
High-power graphic computers for visual simulation: a real-time--rendering revolution
NASA Technical Reports Server (NTRS)
Kaiser, M. K.
1996-01-01
Advances in high-end graphics computers in the past decade have made it possible to render visual scenes of incredible complexity and realism in real time. These new capabilities make it possible to manipulate and investigate the interactions of observers with their visual world in ways once only dreamed of. This paper reviews how these developments have affected two preexisting domains of behavioral research (flight simulation and motion perception) and have created a new domain (virtual environment research) which provides tools and challenges for the perceptual psychologist. Finally, the current limitations of these technologies are considered, with an eye toward how perceptual psychologist might shape future developments.
Experience improves feature extraction in Drosophila.
Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike
2007-05-09
Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.
2007-09-26
NASA Dryden Flight Research Center's two T-38A Talon mission support aircraft flew together for the first time on Sept. 26, 2007 while conducting pitot-static airspeed calibration checks during routine pilot proficiency flights. The two aircraft, flown by NASA research pilots Kelly Latimer and Frank Batteas, joined up with a NASA Dryden F/A-18 flown by NASA research pilot Dick Ewers to fly the airspeed calibrations at several speeds and altitudes that would be flown by the Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP during its initial flight test phase. The T-38s, along with F/A-18s, serve in a safety chase role during those test missions, providing critical instrument and visual monitoring for the flight test series.
Clément, Gilles; Ngo-Anh, Jennifer Thu
2013-07-01
Experiments performed in orbit on the central nervous system have focused on the control of posture, eye movements, spatial orientation, as well as cognitive processes, such as three-dimensional visual perception and mental representation of space. Brain activity has also been recorded during and immediately after space flight for evaluating the changes in brain structure activation during tasks involving perception, attention, memory, decision, and action. Recent ground-based studies brought evidence that the inputs from the neurovestibular system also participate in orthostatic intolerance. It is, therefore, important to revisit the flight data of neuroscience studies in the light of new models of integrative physiology. The outcomes of this exercise will increase our knowledge on the adaptation of body functions to changing gravitational environment, vestibular disorders, aging, and our approach towards more effective countermeasures during human space flight and planetary exploration.
Analysis of rocket flight stability based on optical image measurement
NASA Astrophysics Data System (ADS)
Cui, Shuhua; Liu, Junhu; Shen, Si; Wang, Min; Liu, Jun
2018-02-01
Based on the abundant optical image measurement data from the optical measurement information, this paper puts forward the method of evaluating the rocket flight stability performance by using the measurement data of the characteristics of the carrier rocket in imaging. On the basis of the method of measuring the characteristics of the carrier rocket, the attitude parameters of the rocket body in the coordinate system are calculated by using the measurements data of multiple high-speed television sets, and then the parameters are transferred to the rocket body attack angle and it is assessed whether the rocket has a good flight stability flying with a small attack angle. The measurement method and the mathematical algorithm steps through the data processing test, where you can intuitively observe the rocket flight stability state, and also can visually identify the guidance system or failure analysis.
NASA Astrophysics Data System (ADS)
Reidenbach, Hans-Dieter
2011-06-01
Up to now the knowledge is limited as far as adverse effects are concerned which are the result of temporary blinding from high brightness optical products, like laser pointers, but it is mandatory to be aware of the degree and influence on various visual functions of persons performing challenging activities, especially under mesopic or even scotopic conditions. Therefore various test scenarios have been designed in the laboratory and bright optical radiation from highbrightness LEDs and laser products applied as light sources in order to simulate the temporary blinding of pilots during a night-flight, especially during landing. As an important realistic test object the primary flight display (PFD) of a commercial aircraft has been integrated in the respective test set-up and various alignments on the PFD could be adjusted in order to measure the time duration which is needed to regain the ability to read the respective data on the PFD after an exposure. The pilot's flight deck lighting situation from a full flight simulator A 320 has been incorporated in the test scenarios. The level of exposure of the subjects has been limited well below the maximum permissible exposure (MPE) and the exposure duration was chosen up to a maximum of 10 s. A total of 28 subjects have been included in various tests. As a critical value especially the visual search time (VST) was determined. A significant increase of VST between 2.5 s and 8 s after foveal irradiation has been determined in a specially designed test with a primary flight display (PFD) whereas an increase of 9.1 s for peripheral and 9.9 s for frontal irradiation resulted in an exercise (flight maneuver) with a Microsoft flight-simulator. Various pupil diameters and aversion responses of the subjects during the irradiation might be responsible for the relatively large spread of data, but on the other hand a simple mean value would not comply with the spectrum of functional relationships and possible individual inherent physiological and voluntary active reactions of the irradiated persons, respectively.
Usability Evaluation of a Flight-Deck Airflow Hazard Visualization System
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2004-01-01
Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground, such as vortices, downdrafts, low level wind shear, microbursts, or turbulence from surrounding vegetation or structures near the landing site. These hazards can be dangerous even to airliners; there have been hundreds of fatalities in the United States in the last two decades attributable to airliner encounters with microbursts and low level wind shear alone. However, helicopters are especially vulnerable to airflow hazards because they often have to operate in confined spaces and under operationally stressful conditions (such as emergency search and rescue, military or shipboard operations). Providing helicopter pilots with an augmented-reality display visualizing local airflow hazards may be of significant benefit. However, the form such a visualization might take, and whether it does indeed provide a benefit, had not been studied before our experiment. We recruited experienced military and civilian helicopter pilots for a preliminary usability study to evaluate a prototype augmented-reality visualization system. The study had two goals: first, to assess the efficacy of presenting airflow data in flight; and second, to obtain expert feedback on sample presentations of hazard indicators to refine our design choices. The study addressed the optimal way to provide critical safety information to the pilot, what level of detail to provide, whether to display specific aerodynamic causes or potential effects only, and how to safely and effectively shift the locus of attention during a high-workload task. Three-dimensional visual cues, with varying shape, color, transparency, texture, depth cueing, and use of motion, depicting regions of hazardous airflow, were developed and presented to the pilots. The study results indicated that such a visualization system could be of significant value in improving safety during critical takeoff and landing operations, and also gave clear indications of the best design choices in producing the hazard visual cues.
Muijres, Florian T.; Johansson, L. Christoffer; Winter, York; Hedenström, Anders
2011-01-01
Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology. PMID:21367776