Sample records for visual function improved

  1. Functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški

    2014-09-01

    Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.

  2. PERSPECTIVE: Is acuity enough? Other considerations in clinical investigations of visual prostheses

    NASA Astrophysics Data System (ADS)

    Lepri, Bernard P.

    2009-06-01

    Visual impairing eye diseases are the major frontier facing ophthalmic research today in light of our rapidly aging population. The visual skills necessary for improving the quality of daily function and life are inextricably linked to these impairing diseases. Both research and reimbursement programs are emphasizing outcome-based results. Is improvement in visual acuity alone enough to improve the function and quality of life of visually impaired persons? This perspective summarizes the types of effectiveness endpoints for clinical investigations of visual prostheses that go beyond visual acuity. The clinical investigation of visual prostheses should include visual function, functional vision and quality of life measures. Specifically, they encompass contrast sensitivity, orientation and mobility, activities of daily living and quality of life assessments. The perspective focuses on the design of clinical trials for visual prostheses and the methods of determining effectiveness above and beyond visual acuity that will yield outcomes that are measured by improved function in the visual world and quality of life. The visually impaired population is the primary consideration in this presentation with particular emphases on retinitis pigmentosa and age-related macular degeneration. Clinical trials for visual prostheses cannot be isolated from the need for medical rehabilitation in order to obtain measurements of effectiveness that produce outcomes/evidence-based success. This approach will facilitate improvement in daily function and quality of life of patients with diseases that cause chronic vision impairment. The views and opinions are those of the author and do not necessarily reflect those of the US Food and Drug Administration, the US Department of Health and Human Services or the Public Health Service.

  3. Supplementation with macular carotenoids improves visual performance of transgenic mice.

    PubMed

    Li, Binxing; Rognon, Gregory T; Mattinson, Ty; Vachali, Preejith P; Gorusupudi, Aruna; Chang, Fu-Yen; Ranganathan, Arunkumar; Nelson, Kelly; George, Evan W; Frederick, Jeanne M; Bernstein, Paul S

    2018-07-01

    Carotenoid supplementation can improve human visual performance, but there is still no validated rodent model to test their effects on visual function in laboratory animals. We recently showed that mice deficient in β-carotene oxygenase 2 (BCO2) and/or β-carotene oxygenase 1 (BCO1) enzymes can accumulate carotenoids in their retinas, allowing us to investigate the effects of carotenoids on the visual performance of mice. Using OptoMotry, a device to measure visual function in rodents, we examined the effect of zeaxanthin, lutein, and β-carotene on visual performance of various BCO knockout mice. We then transgenically expressed the human zeaxanthin-binding protein GSTP1 (hGSTP1) in the rods of bco2 -/- mice to examine if delivering more zeaxanthin to retina will improve their visual function further. The visual performance of bco2 -/- mice fed with zeaxanthin or lutein was significantly improved relative to control mice fed with placebo beadlets. β-Carotene had no significant effect in bco2 -/- mice but modestly improved cone visual function of bco1 -/- mice. Expression of hGSTP1 in the rods of bco2 -/- mice resulted in a 40% increase of retinal zeaxanthin and further improvement of visual performance. This work demonstrates that these "macular pigment mice" may serve as animal models to study carotenoid function in the retina. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Functional and visual acuity outcomes of cataract surgery in Timor-Leste (East Timor).

    PubMed

    Naidu, Girish; Correia, Marcelino; Nirmalan, Praveen; Verma, Nitin; Thomas, Ravi

    2014-12-01

    To report functional outcomes following cataract surgery in Timor-Leste. Pre- and post-intervention study measuring visual function improvement following cataract surgery. Presenting visual acuity (VA) was measured and visual function documented using the Indian vision function questionnaire (IND-VFQ). All 174 persons undergoing cataract surgery from November 2009 to January 2011 in Timor-Leste were included. Mean age was 65.4 years; 113 (64.9%) were male, 143 (82.1%) were from a rural background and 151 (86.8%) were illiterate. Pre-operatively, 77 of 174 patients (44.3%, 95% confidence interval, CI, 37.0-51.7%) were blind (VA ≤3/60), 77 (44.3%, 95% CI 37.0-51.7%) were visually impaired (VA <6/18->3/60), while 20 (11.5%, 95% CI 7.4-16.9%) had presenting acuity ≥6/18 in the better eye. Following surgery, significant improvement in visual function was demonstrated by an effect size of 2.8, 3.7 and 3.9 in the domains of general functioning, psychosocial impact and visual symptoms, respectively. Four weeks following surgery, 85 patients (48.9%, 95% CI 41.5-66.3%) had a presenting VA ≥6/18, 74 (42.5%, 95% CI 35.3-45.9%) were visually impaired and 15 (8.6%, 95% CI 5.0-13.6%) were blind. IND-VFQ improvement occurred even in patients remaining visually impaired or blind following surgery. In this setting, cataract surgery led to a significant improvement in visual function but the VA results did not meet World Health Organization quality criteria. IND-VFQ results, although complementary to clinical VA outcomes did not, in isolation, reflect the need to improve program quality.

  5. Visual function in anterior ischemic optic neuropathy: effect of Vision Restoration Therapy--a pilot study.

    PubMed

    Jung, Cecilia S; Bruce, Beau; Newman, Nancy J; Biousse, Valérie

    2008-05-15

    To evaluate the effects of Vision Restoration Therapy (VRT) on the visual function of patients with anterior ischemic optic neuropathy. Randomized controlled double-blind pilot trial. 10 patients with stable anterior ischemic optic neuropathy (AION). All patients were evaluated before VRT and after 3 and 6 months of treatment by Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity, contrast sensitivity, reading speed, 24-2 SITA-standard Humphrey visual field (HVF), High Resolution Perimetry (HRP) (perimetry obtained during VRT), and vision-based quality of life questionnaire. Patients were randomized between two VRT strategies (5 in each group): I) VRT in which stimulation was performed in the seeing VF of the affected eye ("seeing field-VRT"); II) VRT in which stimulation was performed along the area of central fixation and in the ARV (areas of residual vision) of the affected eye ("ARV-VRT"). The results of the HRP, HVF, and clinical assessment of visual function were compared for each patient and between the two groups at each evaluation. Visual acuity qualitatively improved in the ARV-VRT group, however the change was not statistically significant (p=0.28). Binocular reading speed significantly improved in the ARV-VRT group (p=0.03). HVF foveal sensitivity increased mildly in both groups (p=0.059). HRP analysis showed a similar increase in stimulus accuracy in both groups (mean improvement of about 15%). All patients reported functional improvement after VRT. Despite a small sample, the study showed a trend toward improvement of visual function in the ARV-VRT group. Improvement of HRP in both groups may reflect diffusely increased visual attention (neuronal activation), or improvement of an underlying sub-clinical abnormality in the "seeing" visual field of patients with optic neuropathies.

  6. [Efficacy of topical ketorolac for improving visual function after photocoagulation in diabetic patients with focal macular edema].

    PubMed

    Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio; Asbun-Bojalil, Juan

    2014-01-01

    Photocoagulation reduces the incidence of visual loss in diabetic patients with focal macular edema, but it can induce it for Efficacy of topical ketorolac for improving visual function after photocoagulation in diabetic patients with focal macular edema 6 weeks after treatment and produces visual improvement in some cases. Topical ketorolac may reduce the inflammation caused by photocoagulation and improve visual outcome. To determine the efficacy of topical ketorolac for improving visual function after photocoagulation in diabetic patients with focal macular edema. An experimental, comparative, prospective, longitudinal study in diabetic patients with focal macular edema was conducted. Eyes were randomized into two groups of topical treatment for 3 weeks after photocoagulation (A: ketorolac, B: placebo). Best corrected visual acuity before and after treatment was compared in each group (paired t test), and the proportion of eyes with visual improvement was compared between groups (χ(2)). The evaluation was repeated after stratifying for initial visual acuity (≥ 0.5, < 0.5). There were 105 eyes included. In group A (n= 46) mean visual acuity changed from 0.50 to 0.58 (p= 0.003), and from 0.55 to 0.55 in group B (n= 59, p= 0.83); mean percent change was 22.3% in group A and 3.5% in group B (p= 0.03). Visual improvement was identified in 25 eyes from group A (54.3%) and 19 from group B (32.2%, p= 0.019, RR 1.65); the difference only persisted when initial visual acuity was ≥ 0.5 (10 [40%], group A, 5 [14.7%], group B, p= 0.02, RR 2.72). Topical ketorolac was more effective than placebo to improve best corrected visual acuity in diabetic patients with focal macular edema.

  7. Reading ability and retinal sensitivity after surgery for macular hole and macular pucker.

    PubMed

    Cappello, Ezio; Virgili, Gianni; Tollot, Luigina; Del Borrello, Michele; Menchini, Ugo; Zemella, Marco

    2009-09-01

    To assess whether reading ability and microperimetry improve as demonstrated for visual acuity after surgery for macular hole and macular pucker. Fifty-nine consecutive patients underwent pars plana vitrectomy for macular pucker (n = 41) or full-thickness macular holes (n = 18). Functional assessment was made at 3, 6, and 12 months after surgery and included far visual acuity (Early Treatment Diabetic Retinopathy Study charts), retinal sensitivity using the microperimeter (MP1, Nidek Technologies, Padova, Italy), and reading ability (MNRead charts). An improvement was recorded both for macular holes and puckers not only for visual acuity, but also for reading acuity and mean central retinal sensitivity (P < 0.01 for the overall comparisons between baseline and follow-up values). Maximum reading speed was already good at baseline both for puckers and holes overall, and a significant mean improvement was recorded only in patients with macular hole at 6 and 12 months (P < 0.01). Although eyes with macular holes had worse baseline visual function compared with puckers (P < 0.01 for all measures of visual function except for reading speed), they recovered to similar levels thanks to greater improvement (P < 0.05 for the difference in improvement during follow-up between puckers and holes for all measures of visual function). No differences were found among indocyanine green or trypan blue staining compared with no staining for internal limiting membrane removal based on all outcome measures (P > 0.05 for the overall difference of visual function improvement during follow-up). The improvement found for visual acuity after vitrectomy for macular hole and pucker also regards retinal sensitivity and reading ability for up to 12 months. This is reassuring concerning the benefits for the patients, and this shows that visual acuity is a valid functional measure for investigating the efficacy of macular surgery.

  8. Functional Visual Improvement After Cataract Surgery in Eyes With Age-Related Macular Degeneration: Results of the Ophthalmic Surgical Outcomes Data Project.

    PubMed

    Stock, Michael V; Vollman, David E; Baze, Elizabeth F; Chomsky, Amy S; Daly, Mary K; Lawrence, Mary G

    2015-04-01

    To determine if cataract surgery on eyes with AMD confers as much functional visual improvement as surgery on eyes without retinal pathology. This is a retrospective analysis of 4924 cataract surgeries from the Veterans Healthcare Administration Ophthalmic Surgical Outcomes Data Project (OSOD). We included cases of eyes with AMD that had both preoperative and postoperative NEI-VFQ-25 questionnaires submitted and compared their outcomes with controls without retinal pathology. We excluded patients with other retinal pathologies (740 patients). The analyses compared changes in visual acuity and overall functional visual improvement and its subscales using t-tests, multivariate logistic regressions, and linear regression modeling. Preoperative and postoperative questionnaires were submitted by 58.3% of AMD and 63.8% of no retinal pathology cases (controls). Analysis of overall score showed that cataract surgery on eyes with AMD led to increased visual function (13.8 ± 2.4 NEI-VFQ units, P < 0.0001); however, increases were significantly less when compared with controls (-6.4 ± 2.9 NEI-VFQ units, P < 0.0001). Preoperative best-corrected visual acuity (preBCVA) in AMD was predictive of postoperative visual function (r = -0.38, P < 0.0001). In controls, postoperative visual function was only weakly associated with preBCVA (r = -0.075, P = 0.0002). Patients with AMD with vision of 20/40 or better had overall outcomes similar to controls (-2.2 ± 4.7 NEI-VFQ units, P = 0.37). Cataract surgery on eyes with AMD offers an increase in functional visual improvement; however, the amount of benefit is associated with the eye's preBCVA. For eyes with preBCVA of 20/40 or greater, the improvement is similar to that of patients without retinal pathology. However, if preBCVA is less than 20/40, the amount of improvement was shown to be significantly less and decreased with decreasing preBCVA.

  9. Change in vision, visual disability, and health after cataract surgery.

    PubMed

    Helbostad, Jorunn L; Oedegaard, Maria; Lamb, Sarah E; Delbaere, Kim; Lord, Stephen R; Sletvold, Olav

    2013-04-01

    Cataract surgery improves vision and visual functioning; the effect on general health is not established. We investigated if vision, visual functioning, and general health follow the same trajectory of change the year after cataract surgery and if changes in vision explain changes in visual disability and general health. One-hundred forty-eight persons, with a mean (SD) age of 78.9 (5.0) years (70% bilateral surgery), were assessed before and 6 weeks and 12 months after surgery. Visual disability and general health were assessed by the CatQuest-9SF and the Short Formular-36. Corrected binocular visual acuity, visual field, stereo acuity, and contrast vision improved (P < 0.001) from before to 6 weeks after surgery, with further improvements of visual acuity evident up to 12 months (P = 0.034). Cataract surgery had an effect on visual disability 1 year later (P < 0.001). Physical and mental health improved after surgery (P < 0.01) but had returned to presurgery level after 12 months. Vision changes did not explain visual disability and general health 6 weeks after surgery. Vision improved and visual disability decreased in the year after surgery, whereas changes in general health and visual functioning were short-term effects. Lack of associations between changes in vision and self-reported disability and general health suggests that the degree of vision changes and self-reported health do not have a linear relationship.

  10. Impact of low vision rehabilitation on functional vision performance of children with visual impairment.

    PubMed

    Ganesh, Suma; Sethi, Sumita; Srivastav, Sonia; Chaudhary, Amrita; Arora, Priyanka

    2013-09-01

    To evaluate the impact of low vision rehabilitation on functional vision of children with visual impairment. The LV Prasad-Functional Vision Questionnaire, designed specifically to measure functional performance of visually impaired children of developing countries, was used to assess the level of difficulty in performing various tasks pre and post visual rehabilitation in children with documented visual impairment. Chi-square test was used to assess the impact of rehabilitation intervention on functional vision performance; a P < 0.05 was considered significant. LogMAR visual acuity prior to the introduction of low vision devices (LVDs) was 0.90 ± 0.05 for distance and for near it was 0.61 ± 0.05. After the intervention, the acuities improved significantly for distance (0.2 ± 0.27; P < 0.0001) and near (0.42 ± 0.17; P = 0.001). The most common reported difficulties were related to their academic activities like copying from the blackboard (80%), reading textbook at arm's length (77.2%), and writing along a straight line (77.2%). Absolute raw score of disability pre-LVD was 15.05 which improved to 7.58 post-LVD. An improvement in functional vision post visual rehabilitation was especially found in those activities related to their studying lifestyle like copying from the blackboard (P < 0.0001), reading textbook at arm's length (P < 0.0001), and writing along a straight line (P = 0.003). In our study group, there was a significant improvement in functional vision post visual rehabilitation, especially with those activities which are related to their academic output. It is important for these children to have an early visual rehabilitation to decrease the impairment associated with these decreased visual output and to enhance their learning abilities.

  11. The impact of cataract surgery on visual functioning, vision-related disability and psychological distress: a randomized controlled trial.

    PubMed

    Walker, Janine G; Anstey, Kaarin J; Hennessy, Michael P; Lord, Stephen R; von Sanden, Chwee

    2006-11-01

    Determine whether there are changes in visual functioning, vision-related disability, health status and mood after cataract surgery. 45 adults (mean age = 73.7 years) with bilateral cataract needing surgery for the first eye were recruited from public ophthalmology clinics. The Visual Functioning-14 survey assessed visual disability. Minimal angle of resolution tested visual acuity, and the Melbourne Edge Test examined contrast sensitivity. Demographic, psychological, health and medication use variables were examined. Participants were randomized to either an intervention or control arm. Controls were assessed on two occasions at a 3-month interval before having surgery. The intervention group was assessed 1-2 weeks before surgery and then reassessed 3 months after surgery. Visual functioning improved for those who had cataract surgery with better visual acuity in the better (P = 0.010) and worse (P = 0.028) eye compared with controls. The intervention group reported fewer difficulties with overall vision-related disability (P = 0.0001), reading (P = 0.004) and instrumental activities of daily living (P = 0.010) post-surgery compared with controls. People with improved depression scores (P = 0.048) after surgery had less difficulty with reading compared with those with unchanged or worsened depression scores. Cataract surgery did not improve health status. First eye cataract surgery is effective in improving outcomes in visual functioning and disability. Improved mood after surgery was related to less vision-related disability compared with unchanged or worse depression.

  12. Biochemical, histological and behavioural aspects of visual function during early development of rainbow trout

    USGS Publications Warehouse

    Carvalho, Paulo S. M.; Noltie, Douglas B.; Tillitt, D.E.

    2004-01-01

    Retinal structure and concentration of retinoids involved in phototransduction changed during early development of rainbow trout Oncorhynchus mykiss, correlating with improvements in visual function. A test chamber was used to evaluate the presence of optokinetic or optomotor responses and to assess the functionality of the integrated cellular, physiological and biochemical components of the visual system. The results indicated that in rainbow trout optomotor responses start at 10 days post-hatch, and demonstrated for the first time that increases in acuity, sensitivity to low light as well as in motion detection abilities occur from this stage until exogenous feeding starts. The structure of retinal cells such as cone ellipsoids increased in length as photopic visual acuity improved, and rod densities increased concurrently with improvements in scotopic thresholds (2.2 log10 units). An increase in the concentrations of the chromophore all-trans-retinal correlated with improvements of all behavioural measures of visual function during the same developmental phase. ?? 2004 The Fisheries Society of the British Isles.

  13. Training-induced recovery of low-level vision followed by mid-level perceptual improvements in developmental object and face agnosia

    PubMed Central

    Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri

    2015-01-01

    Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5–6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. PMID:24698161

  14. Training-induced recovery of low-level vision followed by mid-level perceptual improvements in developmental object and face agnosia.

    PubMed

    Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri

    2015-01-01

    Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5-6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  15. Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game.

    PubMed

    Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M

    2015-02-26

    Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults.

  16. Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game

    PubMed Central

    Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M.

    2015-01-01

    Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults. PMID:25719537

  17. Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning

    PubMed Central

    Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka

    2012-01-01

    Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849

  18. Making perceptual learning practical to improve visual functions.

    PubMed

    Polat, Uri

    2009-10-01

    Task-specific improvement in performance after training is well established. The finding that learning is stimulus-specific and does not transfer well between different stimuli, between stimulus locations in the visual field, or between the two eyes has been used to support the notion that neurons or assemblies of neurons are modified at the earliest stage of cortical processing. However, a debate regarding the proposed mechanism underlying perceptual learning is an ongoing issue. Nevertheless, generalization of a trained task to other functions is an important key, for both understanding the neural mechanisms and the practical value of the training. This manuscript describes a structured perceptual learning method that previously used (amblyopia, myopia) and a novel technique and results that were applied for presbyopia. In general, subjects were trained for contrast detection of Gabor targets under lateral masking conditions. Training improved contrast sensitivity and diminished the lateral suppression when it existed (amblyopia). The improvement was transferred to unrelated functions such as visual acuity. The new results of presbyopia show substantial improvement of the spatial and temporal contrast sensitivity, leading to improved processing speed of target detection as well as reaction time. Consequently, the subjects, who were able to eliminate the need for reading glasses, benefited. Thus, here we show that the transfer of functions indicates that the specificity of improvement in the trained task can be generalized by repetitive practice of target detection, covering a sufficient range of spatial frequencies and orientations, leading to an improvement in unrelated visual functions. Thus, perceptual learning can be a practical method to improve visual functions in people with impaired or blurred vision.

  19. Quality of Vision in Eyes With Epiphora Undergoing Lacrimal Passage Intubation.

    PubMed

    Koh, Shizuka; Inoue, Yasushi; Ochi, Shintaro; Takai, Yoshihiro; Maeda, Naoyuki; Nishida, Kohji

    2017-09-01

    To investigate visual function and optical quality in eyes with epiphora undergoing lacrimal passage intubation. Prospective case series. Thirty-four eyes of 30 patients with lacrimal passage obstruction were enrolled. Before and 1 month after lacrimal passage intubation, functional visual acuity (FVA), higher-order aberrations (HOAs), lower tear meniscus, and tear clearance were assessed. An FVA measurement system was used to examine changes in continuous visual acuity (VA) over time, and visual function parameters such as FVA, visual maintenance ratio, and blink frequency were obtained. Sequential ocular HOAs were measured for 10 seconds after the blink using a wavefront sensor. Aberration data were analyzed in the central 4 mm for coma-like, spherical-like, and total HOAs. Fluctuation and stability indices of the total HOAs over time were calculated. Lower tear meniscus was assessed by anterior segment optical coherence tomography. After lacrimal passage intubation, visual function significantly improved, as indicated by improved FVA (P = .003) and visual maintenance ratio (P < .001). Blink frequency decreased significantly after treatment (P = .01). Optical quality significantly improved, as indicated by a decrease in coma-like aberrations (P = .003), spherical-like aberrations (P = .018), and total HOAs (P = .001). Stability index increased (P < .001) and fluctuation index decreased (P = .019), and tear meniscus dimension decreased (P < .001). Lacrimal passage intubation for eyes with epiphora significantly improved visual function and optical quality via patency of the lacrimal passage. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Intensive video gaming improves encoding speed to visual short-term memory in young male adults.

    PubMed

    Wilms, Inge L; Petersen, Anders; Vangkilde, Signe

    2013-01-01

    The purpose of this study was to measure the effect of action video gaming on central elements of visual attention using Bundesen's (1990) Theory of Visual Attention. To examine the cognitive impact of action video gaming, we tested basic functions of visual attention in 42 young male adults. Participants were divided into three groups depending on the amount of time spent playing action video games: non-players (<2h/month, N=12), casual players (4-8h/month, N=10), and experienced players (>15h/month, N=20). All participants were tested in three tasks which tap central functions of visual attention and short-term memory: a test based on the Theory of Visual Attention (TVA), an enumeration test and finally the Attentional Network Test (ANT). The results show that action video gaming does not seem to impact the capacity of visual short-term memory. However, playing action video games does seem to improve the encoding speed of visual information into visual short-term memory and the improvement does seem to depend on the time devoted to gaming. This suggests that intense action video gaming improves basic attentional functioning and that this improvement generalizes into other activities. The implications of these findings for cognitive rehabilitation training are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity.

    PubMed

    Kaido, Minako; Toda, Ikuko; Oobayashi, Tomoo; Kawashima, Motoko; Katada, Yusaku; Tsubota, Kazuo

    2016-01-01

    To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23-43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20-49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P < 0.05), while no significant difference was observed in the baseline starting VA (P > 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P < 0.05), while there were no significant changes with and without the glasses in the control group (P > 0.05). Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE.

  2. Reducing Short-Wavelength Blue Light in Dry Eye Patients with Unstable Tear Film Improves Performance on Tests of Visual Acuity

    PubMed Central

    Kaido, Minako

    2016-01-01

    Purpose To investigate whether suppression of blue light can improve visual function in patients with short tear break up time (BUT) dry eye (DE). Methods Twenty-two patients with short BUT DE (10 men, 12 women; mean age, 32.4 ± 6.4 years; age range, 23–43 years) and 18 healthy controls (10 men, 8 women; mean age, 30.1 ± 7.4 years; age range, 20–49 years) underwent functional visual acuity (VA) examinations with and without wearing eyeglasses with 50% blue light blocked lenses. The functional VA parameters were starting VA, functional VA, and visual maintenance ratio. Results The baseline mean values (logarithm of the minimum angle of resolution, logMAR) of functional VA and the visual maintenance ratio were significantly worse in the DE patients than in the controls (P < 0.05), while no significant difference was observed in the baseline starting VA (P > 0.05). The DE patients had significant improvement in mean functional VA and visual maintenance ratio while wearing the glasses (P < 0.05), while there were no significant changes with and without the glasses in the control group (P > 0.05), Conclusions Protecting the eyes from short-wavelength blue light may help to ameliorate visual impairment associated with tear instability in patients with DE. This finding represents a new concept, which is that the blue light exposure might be harmful to visual function in patients with short BUT DE. PMID:27045760

  3. Visual function of children with visual and other disabilities in Oman: A case series.

    PubMed

    Gogri, Urmi; Khandekar, Rajiv; Al Harby, Salah

    2016-12-01

    We assessed the visual functioning of the children with special needs in Oman between 2009 and 2012. We present the methods of assessing different visual functions, outcomes, and interventions carried out to improve their functioning. Optometrists assessed visual functions of children of "Day care centres" in Oman. Experts further assessed them and provided low vision care. Ocular movements, refractive corrections, near, distance, contrast color, motion, field of vision, and cognitive visual function test results were noted. Feedback to caregivers was given to improve visual functioning of these children. We grouped 321 participants, (196 [61.1%] boys, age range of 3-18 years) into 61; Down syndrome (DS), 72 with intellectual disabilities (IDs), 67; hearing impaired and 121 with other conditions. Refractive error and lag of accommodation were 26 (42.6%) and 14 (22.6%) among children with DS. Contrast sensitivity was impaired in 8 (12.7%) among hearing impaired children. Defective distant and near vision was in 162 (70%) and 104 (42%) of our cohort. Children with ID were most difficult to assess. Children in a group of other disabilities had a higher proportion of impaired visual functioning. They were given low vision aids (telescopes [22], filters [7], and magnifiers [3]) in large numbers compared to those in other groups. Visual functioning of children with other disabilities show great variation and difficult to group. The care, therefore, should be at individual level. All visual functions cannot be assessed at one time.

  4. Objective functional visual outcomes of cataract surgery in patients with good preoperative visual acuity

    PubMed Central

    Zhu, X; Ye, H; He, W; Yang, J; Dai, J; Lu, Y

    2017-01-01

    Purpose To explore the objective functional visual outcomes of cataract surgery in patients with good preoperative visual acuity. Methods We enrolled 130 cataract patients whose best-corrected visual acuity (BCVA) was 20/40 or better preoperatively. Objective visual functions were evaluated with a KR-1W analyzer before and at 1 month after cataract surgery. Results The nuclear (N), cortical (C), and N+C groups had very high preoperative ocular and internal total high-order aberrations (HOAs), coma, and abnormal spherical aberrations. At 1 month after cataract surgery, in addition to the remarkable increase of both uncorrected visual acuity and BCVA, both ocular and internal HOAs in the three groups decreased significantly after cataract surgery (all P<0.05). Point spread function and modulation transfer functions were also improved significantly in these patients (all P<0.05). Conclusions The objective functional vision of patients with 20/40 or better preoperative BCVA improved significantly after cataract surgery. This finding shows that the arbitrary threshold of BCVA worse than 20/40 in China cannot always be used to determine who will benefit from cataract surgery. PMID:27858933

  5. Late maturation of visual spatial integration in humans

    PubMed Central

    Kovács, Ilona; Kozma, Petra; Fehér, Ákos; Benedek, György

    1999-01-01

    Visual development is thought to be completed at an early age. We suggest that the maturation of the visual brain is not homogeneous: functions with greater need for early availability, such as visuomotor control, mature earlier, and the development of other visual functions may extend well into childhood. We found significant improvement in children between 5 and 14 years in visual spatial integration by using a contour-detection task. The data show that long-range spatial interactions—subserving the integration of orientational information across the visual field—span a shorter spatial range in children than in adults. Performance in the task improves in a cue-specific manner with practice, which indicates the participation of fairly low-level perceptual mechanisms. We interpret our findings in terms of a protracted development of ventral visual-stream function in humans. PMID:10518600

  6. Case Report: Use of Sports and Performance Vision Training to Benefit a Low-vision Patient's Function.

    PubMed

    Laby, Daniel M

    2018-05-17

    Despite our inability to attenuate the course of many ocular diseases that can ultimately lead to loss or significantly decreased visual function, this report describes a potential technique to aid such patients in maximizing the use of the vision that remains. The aim of this study was to demonstrate the applicability of utilizing sports vision training to improve objective and subjective visuomotor function in a low-vision patient. A 37-year-old woman with Usher syndrome presented with reduced central visual acuity and visual field. Although we were unable to reverse the damage resulting from her diagnosis, we were able to improve the use of the remaining vision. A 27 to 31% improvement in hand-eye coordination was achieved along with a 41% improvement in object tracking and visual concentration. Most importantly, following the 14-week training period, there was also a subjective improvement in the patient's appreciation of her visual ability. The sports vision literature cites many examples in which sports vision training is useful in improving visuomotor and on-field performance. We hypothesized that these techniques may be used to aid not only athletes but also patients with low vision. Despite suffering from reduced acuity and a limited visual field, these patients often still have a significant amount of vision ability that can be used to guide motor actions. Using techniques to increase the efficient use of this remaining vision may reduce the impact of the reduced visual function and aid in activities of daily living.

  7. Stimulation of functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  8. Improved retinal and visual function following panmacular subthreshold diode micropulse laser for retinitis pigmentosa.

    PubMed

    Luttrull, Jeffrey K

    2018-06-01

    To examine the effect of subthreshold diode micropulse laser (SDM) on pattern electroretinography (PERG) and visual function in retinitis pigmentosa (RP). The records of all patients (pts) undergoing SDM in a vitreoretinal subspecialty practice were reviewed. Inclusion criteria included the presence of RP evaluated before and after SDM by PERG. As a secondary outcome measure, the results of automated omnifield resolution perimetry (ORP) were also reviewed. All eyes undergoing SDM for RP were eligible study, including 26 eyes of 15 pts; seven male and eight female, aged 16-69 (avg. 47) years. Retinal function by PERG improved by all indices, with significant improvements in the 24° field signal latency measures; the MagD(µV)/ Mag(µV) ratio (P < 0.0001) and the MagD(µV) amplitude (P = 0.0003). ORP significantly improved by all indices (p = 0.02-0.002). Average best-corrected chart visual acuities improved from 0.6 to 0.4 logMAR units (p = 0.02). There were no adverse treatment effects. SDM significantly improved chart visual acuity, mesopic logMAR visual acuity perimetry, and retinal function by PERG in RP without adverse treatment effects. Treatment responses indicate a significant capacity for rescue of dysfunctional retina. These results suggest that early and periodic treatment with SDM might slow disease progression and reduce long-term vision loss.

  9. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination ( PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading ( Raz-Kids ( RK )). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  10. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK)). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:28555097

  11. Changes in Visual Function in the Elderly Population in the United States: 1995-2010.

    PubMed

    Chen, Yiqun; Hahn, Paul; Sloan, Frank A

    2016-06-01

    To document recent trends in visual function among the United States population aged 70+ years and investigate how the trends can be explained by inter-temporal changes in: (1) population sociodemographic characteristics, and chronic disease prevalence, including eye diseases (compositional changes); and (2) effects of the above factors on visual function (structural changes). Data from the 1995 Asset and Health Dynamics among the Oldest Old (AHEAD) and the 2010 Health and Retirement Study (HRS) were merged with Medicare Part B claims in the interview years and the 2 previous years. Decomposition analysis was performed. Respondents from both studies were aged 70+ years. The outcome measure was respondent self-reported visual function on a 6-point scale (from 6 = blind to 1 = excellent). Overall, visual function improved from slightly worse than good (3.14) in 1995 to slightly better than good (2.98) in 2010. A decline in adverse effects of aging on vision was found. Among the compositional changes were higher educational attainment leading to improved vision, and higher prevalence of such diseases as diabetes mellitus, which tended to lower visual function. However, compared to compositional changes, structural changes were far more important, including decreased adverse effects of aging, diabetes mellitus (when not controlling for eye diseases), and diagnosed glaucoma. Although the US population has aged and is expected to age further, visual function improved among elderly persons, especially among persons 80+ years, likely reflecting a favorable role of structural changes identified in this study in mitigating the adverse effect of ongoing aging on vision.

  12. The effect of spectacle treatment in patients with mild traumatic brain injury: a pilot study.

    PubMed

    Johansson, Jan; Nygren de Boussard, Catharina; Öqvist Seimyr, Gustaf; Pansell, Tony

    2017-05-01

    Visual symptoms and dysfunctions may be a part of the long-term issues following mild traumatic brain injury. These issues may have an impact on near work and reading, and thus affect activities of daily life and the ability to return to work. The purpose of the study was to assess the effect of spectacle treatment on near work-related visual symptoms, visual function and reading performance in patients with persisting symptoms after mild traumatic brain injury. Eight patients with persisting symptoms after mild traumatic brain injury and anomalies of binocular function were included. Binocular function, visual symptoms and reading performance were assessed before and after spectacle treatment. Reading eye movements were recorded with eye tracking. Four patients showed a considerable symptom reduction along with minor improvement in clinical visual measures. Reading performance improved in four patients; however, the relationship to symptom reduction was inconsistent. The improvement was correlated to reduced average number of fixations per word (r = -0.89, p = 0.02), reduced proportion of regressive saccades (r = -0.93, p = 0.01) and a significant increase of mean progressive saccade length (p = 0.03). This pilot study found that spectacle treatment, specifically directed at optimising near task visual function, significantly reduced symptoms in 50 per cent of patients and improved reading performance in 50 per cent. While promising, lack of placebo control and lack of correlation between reading performance and symptom improvements means we cannot decipher mechanisms without further study. © 2016 Optometry Australia.

  13. Impact of First Eye versus Second Eye Cataract Surgery on Visual Function and Quality of Life.

    PubMed

    Shekhawat, Nakul S; Stock, Michael V; Baze, Elizabeth F; Daly, Mary K; Vollman, David E; Lawrence, Mary G; Chomsky, Amy S

    2017-10-01

    To compare the impact of first eye versus second eye cataract surgery on visual function and quality of life. Cohort study. A total of 328 patients undergoing separate first eye and second eye phacoemulsification cataract surgeries at 5 veterans affairs centers in the United States. Patients with previous ocular surgery, postoperative endophthalmitis, postoperative retinal detachment, reoperation within 30 days, dementia, anxiety disorder, hearing difficulty, or history of drug abuse were excluded. Patients received complete preoperative and postoperative ophthalmic examinations for first eye and second eye cataract surgeries. Best-corrected visual acuity (BCVA) was measured 30 to 90 days preoperatively and postoperatively. Patients completed the National Eye Institute Visual Functioning Questionnaire (NEI-VFQ) 30 to 90 days preoperatively and postoperatively. The NEI-VFQ scores were calculated using a traditional subscale scoring algorithm and a Rasch-refined approach producing visual function and socioemotional subscale scores. Postoperative NEI-VFQ scores and improvement in NEI-VFQ scores comparing first eye versus second eye cataract surgery. Mean age was 70.4 years (±9.6 standard deviation [SD]). Compared with second eyes, first eyes had worse mean preoperative BCVA (0.55 vs. 0.36 logarithm of the minimum angle of resolution (logMAR), P < 0.001), greater mean BCVA improvement after surgery (-0.50 vs. -0.32 logMAR, P < 0.001), and slightly worse postoperative BCVA (0.06 vs. 0.03 logMAR, P = 0.039). Compared with first eye surgery, second eye surgery resulted in higher postoperative NEI-VFQ scores for nearly all traditional subscales (P < 0.001), visual function subscale (-3.85 vs. -2.91 logits, P < 0.001), and socioemotional subscale (-2.63 vs. -2.10 logits, P < 0.001). First eye surgery improved visual function scores more than second eye surgery (-2.99 vs. -2.67 logits, P = 0.021), but both first and second eye surgeries resulted in similar improvements in socioemotional scores (-1.62 vs. -1.51 logits, P = 0.255). Second eye cataract surgery improves visual function and quality of life well beyond levels achieved after first eye cataract surgery alone. For certain socioemotional aspects of quality of life, second eye cataract surgery results in comparable improvement to first eye cataract surgery. Copyright © 2017 American Academy of Ophthalmology. All rights reserved.

  14. Audio visual speech source separation via improved context dependent association model

    NASA Astrophysics Data System (ADS)

    Kazemi, Alireza; Boostani, Reza; Sobhanmanesh, Fariborz

    2014-12-01

    In this paper, we exploit the non-linear relation between a speech source and its associated lip video as a source of extra information to propose an improved audio-visual speech source separation (AVSS) algorithm. The audio-visual association is modeled using a neural associator which estimates the visual lip parameters from a temporal context of acoustic observation frames. We define an objective function based on mean square error (MSE) measure between estimated and target visual parameters. This function is minimized for estimation of the de-mixing vector/filters to separate the relevant source from linear instantaneous or time-domain convolutive mixtures. We have also proposed a hybrid criterion which uses AV coherency together with kurtosis as a non-Gaussianity measure. Experimental results are presented and compared in terms of visually relevant speech detection accuracy and output signal-to-interference ratio (SIR) of source separation. The suggested audio-visual model significantly improves relevant speech classification accuracy compared to existing GMM-based model and the proposed AVSS algorithm improves the speech separation quality compared to reference ICA- and AVSS-based methods.

  15. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    PubMed

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Objective visual assessment of antiangiogenic treatment for wet age-related macular degeneration.

    PubMed

    Baseler, Heidi A; Gouws, André; Crossland, Michael D; Leung, Carmen; Tufail, Adnan; Rubin, Gary S; Morland, Antony B

    2011-10-01

    To assess cortical responses in patients undergoing antiangiogenic treatment for wet age-related macular degeneration (AMD) using functional magnetic resonance imaging (fMRI) as an objective, fixation-independent measure of topographic visual function. A patient with bilateral neovascular AMD was scanned using fMRI before and at regular intervals while undergoing treatment with intravitreal antiangiogenic injections (ranibizumab). Blood oxygenation level-dependent signals were measured in the brain while the patient viewed a stimulus consisting of a full-field flickering (6 Hz) white light alternating with a uniform gray background (18 s on and 18 s off). Topographic distribution and magnitude of activation in visual cortex were compared longitudinally throughout the treatment period (<1 year) and with control patients not currently undergoing treatment. Clinical behavioral tests were also administered, including visual acuity, microperimetry, and reading skills. The area of visual cortex activated increased significantly after the first treatment to include more posterior cortex that normally receives inputs from lesioned parts of the retina. Subsequent treatments yielded no significant further increase in activation area. Behavioral measures all generally showed an improvement with treatment but did not always parallel one another. The untreated control patient showed a consistent lack of significant response in the cortex representing retinal lesions. Retinal treatments may not only improve vision but also result in a concomitant improvement in fixation stability. Current clinical behavioral measures (e.g., acuity and perimetry) are largely dependent on fixation stability and therefore cannot separate improvements of visual function from fixation improvements. fMRI, which provides an objective and sensitive measure of visual function independent of fixation, reveals a significant increase in visual cortical responses in patients with wet AMD after treatment with antiangiogenic injections. Despite recent evidence that visual cortex degenerates subsequent to retinal lesions, our results indicate that it can remain responsive as its inputs are restored.

  17. A matter of time: improvement of visual temporal processing during training-induced restoration of light detection performance

    PubMed Central

    Poggel, Dorothe A.; Treutwein, Bernhard; Sabel, Bernhard A.; Strasburger, Hans

    2015-01-01

    The issue of how basic sensory and temporal processing are related is still unresolved. We studied temporal processing, as assessed by simple visual reaction times (RT) and double-pulse resolution (DPR), in patients with partial vision loss after visual pathway lesions and investigated whether vision restoration training (VRT), a training program designed to improve light detection performance, would also affect temporal processing. Perimetric and campimetric visual field tests as well as maps of DPR thresholds and RT were acquired before and after a 3 months training period with VRT. Patient performance was compared to that of age-matched healthy subjects. Intact visual field size increased during training. Averaged across the entire visual field, DPR remained constant while RT improved slightly. However, in transition zones between the blind and intact areas (areas of residual vision) where patients had shown between 20 and 80% of stimulus detection probability in pre-training visual field tests, both DPR and RT improved markedly. The magnitude of improvement depended on the defect depth (or degree of intactness) of the respective region at baseline. Inter-individual training outcome variability was very high, with some patients showing little change and others showing performance approaching that of healthy controls. Training-induced improvement of light detection in patients with visual field loss thus generalized to dynamic visual functions. The findings suggest that similar neural mechanisms may underlie the impairment and subsequent training-induced functional recovery of both light detection and temporal processing. PMID:25717307

  18. Irregular Corneas: Improve Visual Function With Scleral Contact Lenses.

    PubMed

    de Luis Eguileor, Beatriz; Etxebarria Ecenarro, Jaime; Santamaria Carro, Alaitz; Feijoo Lera, Raquel

    2018-05-01

    To assess visual function in patients with irregular cornea who do not tolerate gas permeable (GP) corneal contact lenses and are fitted with GP scleral contact lenses (Rose K2 XL). In this prospective study, we analyzed 15 eyes of 15 patients who did not tolerate GP corneal contact lenses and were fitted with scleral contact lenses (Rose K2 XL). We assessed visual function using visual acuity and the visual function index (VF-14); we used the VF-14 as an indicator of patient satisfaction. The measurements were taken with the optical correction used before and 1 month after the fitting of the Rose K2 XL contact lenses. We also recorded the number of hours lenses had been worn over the first month. Using Rose K2 XL contact lenses, visual acuity was 0.06±0.07 logMAR. In all cases, visual acuity had improved compared with the measurement before fitting the lenses (0.31±0.18 logMAR; P=0.001). VF-14 scores were 72.74±12.38 before fitting of the scleral lenses, and 89.31±10.87 after 1 month of lens use (P=0.003). Patients used these scleral lenses for 9.33±2.99 comfortable hours of wear. Both visual acuity and VF-14 may improve after fitting Rose K2 XL contact lenses in patients with irregular corneas. In addition, in our patients, these lenses can be worn for a longer period than GP corneal contact lenses.

  19. The Impact of Supplemental Antioxidants on Visual Function in Nonadvanced Age-Related Macular Degeneration: A Head-to-Head Randomized Clinical Trial.

    PubMed

    Akuffo, Kwadwo Owusu; Beatty, Stephen; Peto, Tunde; Stack, Jim; Stringham, Jim; Kelly, David; Leung, Irene; Corcoran, Laura; Nolan, John M

    2017-10-01

    The purpose of this study was to evaluate the impact of supplemental macular carotenoids (including versus not including meso-zeaxanthin) in combination with coantioxidants on visual function in patients with nonadvanced age-related macular degeneration. In this study, 121 participants were randomly assigned to group 1 (Age-Related Eye Disease Study 2 formulation with a low dose [25 mg] of zinc and an addition of 10 mg meso-zeaxanthin; n = 60) or group 2 (Age-Related Eye Disease Study 2 formulation with a low dose [25 mg] of zinc; n = 61). Visual function was assessed using best-corrected visual acuity, contrast sensitivity (CS), glare disability, retinal straylight, photostress recovery time, reading performance, and the National Eye Institute Visual Function Questionnaire-25. Macular pigment was measured using customized heterochromatic flicker photometry. There was a statistically significant improvement in the primary outcome measure (letter CS at 6 cycles per degree [6 cpd]) over time (P = 0.013), and this observed improvement was statistically comparable between interventions (P = 0.881). Statistically significant improvements in several secondary outcome visual function measures (letter CS at 1.2 and 2.4 cpd; mesopic and photopic CS at all spatial frequencies; mesopic glare disability at 1.5, 3, and 6 cpd; photopic glare disability at 1.5, 3, 6, and 12 cpd; photostress recovery time; retinal straylight; mean and maximum reading speed) were also observed over time (P < 0.05, for all), and were statistically comparable between interventions (P > 0.05, for all). Statistically significant increases in macular pigment at all eccentricities were observed over time (P < 0.0005, for all), and the degree of augmentation was statistically comparable between interventions (P > 0.05). Antioxidant supplementation in patients with nonadvanced age-related macular degeneration results in significant increases in macular pigment and improvements in CS and other measures of visual function. (Clinical trial, http://www.isrctn.com/ISRCTN13894787).

  20. Functional improvements following the use of the NVT Vision Rehabilitation program for patients with hemianopia following stroke.

    PubMed

    Hayes, Allison; Chen, Celia S; Clarke, Gayle; Thompson, Annette

    2012-01-01

    The incidence of visual deficits following stroke ranges from 20%-68% and has significant impact on activities of daily living. The NVT system is a compensatory visual scanning training program that consists of combined static and mobility training and transfer to activities of daily living. The study aims to evaluate functional changes following the NVT program for people who have homonymous hemianopia (HH) following stroke. Interventional case series of 13 consecutive participants with HH undergoing NVT vision rehabilitation. The primary outcome measure was the number of targets missed on a standardized Mobility Assessment Course (MAC). Other outcome measures included assessment of visual scanning, vision specific Quality of Life questionnaires and reading performance. The average number of targets (sd) missed on the MAC course was 39.6 ± 20.9% before intervention, 27.5 ± 16.3% immediately post intervention and 20.8 ± 15.5% at 3 months post rehabilitation. The study showed a statistically significant trend in improvement in mobility related subscales of National Eye Institute Visual Function Questionnaire-NEI VFQ-25 (p=0.003) and the Veteran Affairs Low Vision Visual Function Questionnaire-VA LVFQ-48 (p=0.036) at 3 months post rehabilitation. The NVT intervention resulted in functional improvements in mobility post rehabilitation. The NVT training showed improvement in vision specific quality of life. There is a need for standardised vision therapy intervention, in conjunction with existing rehabilitation services, for patients with stroke and traumatic brain injury.

  1. Subthalamic nucleus stimulation selectively improves motor and visual memory performance in Parkinson's disease.

    PubMed

    Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne

    2011-09-01

    Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.

  2. Visual Working Memory in Deaf Children with Diverse Communication Modes: Improvement by Differential Outcomes

    ERIC Educational Resources Information Center

    Lopez-Crespo, Ginesa; Daza, Maria Teresa; Mendez-Lopez, Magdalena

    2012-01-01

    Although visual functions have been proposed to be enhanced in deaf individuals, empirical studies have not yet established clear evidence on this issue. The present study aimed to determine whether deaf children with diverse communication modes had superior visual memory and whether their performance was improved by the use of differential…

  3. Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activation in individuals with amblyopia.

    PubMed

    Spiegel, Daniel P; Byblow, Winston D; Hess, Robert F; Thompson, Benjamin

    2013-10-01

    Amblyopia is a neurodevelopmental disorder of vision that is associated with abnormal patterns of neural inhibition within the visual cortex. This disorder is often considered to be untreatable in adulthood because of insufficient visual cortex plasticity. There is increasing evidence that interventions that target inhibitory interactions within the visual cortex, including certain types of noninvasive brain stimulation, can improve visual function in adults with amblyopia. We tested the hypothesis that anodal transcranial direct current stimulation (a-tDCS) would improve visual function in adults with amblyopia by enhancing the neural response to inputs from the amblyopic eye. Thirteen adults with amblyopia participated and contrast sensitivity in the amblyopic and fellow fixing eye was assessed before, during and after a-tDCS or cathodal tDCS (c-tDCS). Five participants also completed a functional magnetic resonance imaging (fMRI) study designed to investigate the effect of a-tDCS on the blood oxygen level-dependent response within the visual cortex to inputs from the amblyopic versus the fellow fixing eye. A subgroup of 8/13 participants showed a transient improvement in amblyopic eye contrast sensitivity for at least 30 minutes after a-tDCS. fMRI measurements indicated that the characteristic cortical response asymmetry in amblyopes, which favors the fellow eye, was reduced by a-tDCS. These preliminary results suggest that a-tDCS deserves further investigation as a potential tool to enhance amblyopia treatment outcomes in adults.

  4. Visual Spatial Attention Training Improve Spatial Attention and Motor Control for Unilateral Neglect Patients.

    PubMed

    Wang, Wei; Ji, Xiangtong; Ni, Jun; Ye, Qian; Zhang, Sicong; Chen, Wenli; Bian, Rong; Yu, Cui; Zhang, Wenting; Shen, Guangyu; Machado, Sergio; Yuan, Tifei; Shan, Chunlei

    2015-01-01

    To compare the effect of visual spatial training on the spatial attention to that on motor control and to correlate the improvement of spatial attention to motor control progress after visual spatial training in subjects with unilateral spatial neglect (USN). 9 cases with USN after right cerebral stroke were randomly divided into Conventional treatment group + visual spatial attention and Conventional treatment group. The Conventional treatment group + visual spatial attention received conventional rehabilitation therapy (physical and occupational therapy) and visual spatial attention training (optokinetic stimulation and right half-field eye patching). The Conventional treatment group was only treated with conventional rehabilitation training (physical and occupational therapy). All patients were assessed by behavioral inattention test (BIT), Fugl-Meyer Assessment of motor function (FMA), equilibrium coordination test (ECT) and non-equilibrium coordination test (NCT) before and after 4 weeks treatment. Total scores in both groups (without visual spatial attention/with visual spatial attention) improved significantly (BIT: P=0.021/P=0.000, d=1.667/d=2.116, power=0.69/power=0.98, 95%CI[-0.8839,45.88]/95%CI=[16.96,92.64]; FMA: P=0.002/P=0.000, d=2.521/d=2.700, power=0.93/power=0.98, 95%CI[5.707,30.79]/95%CI=[16.06,53.94]; ECT: P=0.002/ P=0.000, d=2.031/d=1.354, power=0.90/power=0.17, 95%CI[3.380,42.61]/95%CI=[-1.478,39.08]; NCT: P=0.013/P=0.000, d=1.124/d=1.822, power=0.41/power=0.56, 95%CI[-7.980,37.48]/95%CI=[4.798,43.60],) after treatment. Among the 2 groups, the group with visual spatial attention significantly improved in BIT (P=0.003, d=3.103, power=1, 95%CI[15.68,48.92]), FMA of upper extremity (P=0.006, d=2.771, power=1, 95%CI[5.061,20.14]) and NCT (P=0.010, d=2.214, power=0.81-0.90, 95%CI[3.018,15.88]). Correlative analysis shows that the change of BIT scores is positively correlated to the change of FMA total score (r=0.77, P<;0.01), FMA of upper extremity (r=0.81, P<0.01), NCT (r=0.78, P<0.01). Four weeks visual spatial training could improve spatial attention as well as motor control functions in hemineglect patients. The improvement of motor function is positively correlated to the progresses of visual spatial functions after visual spatial attention training.

  5. Visual Biofeedback Balance Training Using Wii Fit after Stroke: A Randomized Controlled Trial

    PubMed Central

    Barcala, Luciana; Grecco, Luanda André Collange; Colella, Fernanda; Lucareli, Paulo Roberto Garcia; Salgado, Afonso Shiguemi Inoue; Oliveira, Claudia Santos

    2013-01-01

    [Purpose] The aim of the present study was to investigate the effect of balance training with visual biofeedback on balance, body symmetry, and function among individuals with hemiplegia following a stroke. [Subjects and Methods] The present study was performed using a randomized controlled clinical trial with a blinded evaluator. The subjects were twenty adults with hemiplegia following a stroke. The experimental group performed balance training with visual biofeedback using Wii Fit® together with conventional physical therapy. The control group underwent conventional physical therapy alone. The intervention lasted five weeks, with two sessions per week. Body symmetry (baropodometry), static balance (stabilometry), functional balance (Berg Balance Scale), functional mobility (Timed Up and Go test), and independence in activities of daily living (Functional Independence Measure) were assessed before and after the intervention. [Results] No statistically significant differences were found between the experimental and control groups. In the intragroup analysis, both groups demonstrated a significant improvement in all variables studied. [Conclusion] The physical therapy program combined with balance training involving visual biofeedback (Wii Fit®) led to an improvement in body symmetry, balance, and function among stroke victims. However, the improvement was similar to that achieved with conventional physical therapy alone. PMID:24259909

  6. Correlation between language function and the left arcuate fasciculus detected by diffusion tensor imaging tractography after brain tumor surgery.

    PubMed

    Hayashi, Yutaka; Kinoshita, Masashi; Nakada, Mitsutoshi; Hamada, Jun-ichiro

    2012-11-01

    Disturbance of the arcuate fasciculus in the dominant hemisphere is thought to be associated with language-processing disorders, including conduction aphasia. Although the arcuate fasciculus can be visualized in vivo with diffusion tensor imaging (DTI) tractography, its involvement in functional processes associated with language has not been shown dynamically using DTI tractography. In the present study, to clarify the participation of the arcuate fasciculus in language functions, postoperative changes in the arcuate fasciculus detected by DTI tractography were evaluated chronologically in relation to postoperative changes in language function after brain tumor surgery. Preoperative and postoperative arcuate fasciculus area and language function were examined in 7 right-handed patients with a brain tumor in the left hemisphere located in proximity to part of the arcuate fasciculus. The arcuate fasciculus was depicted, and its area was calculated using DTI tractography. Language functions were measured using the Western Aphasia Battery (WAB). After tumor resection, visualization of the arcuate fasciculus was increased in 5 of the 7 patients, and the total WAB score improved in 6 of the 7 patients. The relative ratio of postoperative visualized area of the arcuate fasciculus to preoperative visualized area of the arcuate fasciculus was increased in association with an improvement in postoperative language function (p = 0.0039). The role of the left arcuate fasciculus in language functions can be evaluated chronologically in vivo by DTI tractography after brain tumor surgery. Because increased postoperative visualization of the fasciculus was significantly associated with postoperative improvement in language functions, the arcuate fasciculus may play an important role in language function, as previously thought. In addition, postoperative changes in the arcuate fasciculus detected by DTI tractography could represent a predicting factor for postoperative language-dependent functional outcomes in patients with brain tumor.

  7. Topical carbonic anhydrase inhibitors and visual function in glaucoma and ocular hypertension.

    PubMed

    Gugleta, Konstantin

    2010-06-01

    Dorzolamide and brinzolamide are topical carbonic anhydrase inhibitors (CAI) indicated for patients with glaucoma and ocular hypertension. An evidence-based review of clinical trials of dorzolamide and brinzolamide was undertaken to determine an effect of these medications on visual function (primarily visual field) in open-angle glaucoma and ocular hypertension. Using the keywords 'dorzolamide' and 'brinzolamide', all articles describing trials of these medications reporting on visual acuity, contrast sensitivity and visual field from September 1966 to July 2009 were found in MEDLINE and EMBASE databases. No information from other sources was included in this review. A relatively modest number of trials was identified, where impact of therapy on one or more of the visual function modes was reported. In the studies of less than 1 year duration (3 days to 1 year, 23 studies) in all but three studies treatment with topical CAIs did not influence visual function, in two studies with dorzolamide some improvement in the contrast sensitivity was observed and in one open-label retrospective no-control-group study with dorzolamide visual field indices improved significantly. A different picture was seen in long-term studies, which were designed and powered to detect changes in visual field. One large study (European Glaucoma Prevention Study) with dorzolamide versus placebo failed to detect significant protective effect of the drug on glaucoma occurrence in ocular hypertensives. Several interesting aspects of this study are discussed in detail. The other two long-term studies reported on the superiority of adding dorzolamide over timolol therapy alone, and the superiority of the combination of dorzolamide and timolol over brinzolamide and timolol in terms of improving ocular blood flow (retrobulbar Color Doppler Imaging--CDI parameters) as well as in terms of visual field preservation in glaucoma patients over 4 to 5 years. For the first time one study could demonstrate that an improvement in ocular blood flow in the long run results in preservation of visual field in glaucoma patients. Dorzolamide, combined with the beta-blocker timolol, seems to be superior in this regard to brinzolamide plus timolol.

  8. Improving visual memory, attention, and school function with atomoxetine in boys with attention-deficit/hyperactivity disorder.

    PubMed

    Shang, Chi-Yung; Gau, Susan Shur-Fen

    2012-10-01

    Atomoxetine is efficacious in reducing symptoms of attention- deficit/hyperactivity disorder (ADHD), but its effect on visual memory and attention needs more investigation. This study aimed to assess the effect of atomoxetine on visual memory, attention, and school function in boys with ADHD in Taiwan. This was an open-label 12 week atomoxetine treatment trial among 30 drug-naíve boys with ADHD, aged 8-16 years. Before administration of atomoxetine, the participants were assessed using psychiatric interviews, the Wechsler Intelligence Scale for Children, 3rd edition (WISC-III), the school function of the Chinese version of the Social Adjustment Inventory for Children and Adolescents (SAICA), the Conners' Continuous Performance Test (CPT), and the tasks of the Cambridge Neuropsychological Test Automated Battery (CANTAB) involving visual memory and attention: Pattern Recognition Memory, Spatial Recognition Memory, and Reaction Time, which were reassessed at weeks 4 and 12. Our results showed there was significant improvement in pattern recognition memory and spatial recognition memory as measured by the CANTAB tasks, sustained attention and response inhibition as measured by the CPT, and reaction time as measured by the CANTAB after treatment with atomoxetine for 4 weeks or 12 weeks. In addition, atomoxetine significantly enhanced school functioning in children with ADHD. Our findings suggested that atomoxetine was associated with significant improvement in visual memory, attention, and school functioning in boys with ADHD.

  9. Low Vision Rehabilitation for Adult African Americans in Two Settings.

    PubMed

    Draper, Erin M; Feng, Rui; Appel, Sarah D; Graboyes, Marcy; Engle, Erin; Ciner, Elise B; Ellenberg, Jonas H; Stambolian, Dwight

    2016-07-01

    The Vision Rehabilitation for African Americans with Central Vision Impairment (VISRAC) study is a demonstration project evaluating how modifications in vision rehabilitation can improve the use of functional vision. Fifty-five African Americans 40 years of age and older with central vision impairment were randomly assigned to receive either clinic-based (CB) or home-based (HB) low vision rehabilitation services. Forty-eight subjects completed the study. The primary outcome was the change in functional vision in activities of daily living, as assessed with the Veteran's Administration Low-Vision Visual Function Questionnaire (VFQ-48). This included scores for overall visual ability and visual ability domains (reading, mobility, visual information processing, and visual motor skills). Each score was normalized into logit estimates by Rasch analysis. Linear regression models were used to compare the difference in the total score and each domain score between the two intervention groups. The significance level for each comparison was set at 0.05. Both CB and HB groups showed significant improvement in overall visual ability at the final visit compared with baseline. The CB group showed greater improvement than the HB group (mean of 1.28 vs. 0.87 logits change), though the group difference is not significant (p = 0.057). The CB group visual motor skills score showed significant improvement over the HB group score (mean of 3.30 vs. 1.34 logits change, p = 0.044). The differences in improvement of the reading and visual information processing scores were not significant (p = 0.054 and p = 0.509) between groups. Neither group had significant improvement in the mobility score, which was not part of the rehabilitation program. Vision rehabilitation is effective for this study population regardless of location. Possible reasons why the CB group performed better than the HB group include a number of psychosocial factors as well as the more standardized distraction-free work environment within the clinic setting.

  10. Randomized controlled trial of electro-stimulation therapies to modulate retinal blood flow and visual function in retinitis pigmentosa.

    PubMed

    Bittner, Ava K; Seger, Kenneth; Salveson, Rachel; Kayser, Samantha; Morrison, Natalia; Vargas, Patricia; Mendelsohn, Deborah; Han, Jorge; Bi, Hua; Dagnelie, Gislin; Benavente, Alexandra; Ramella-Roman, Jessica

    2018-05-01

    We examined changes in visual function and ocular and retinal blood flow (RBF) among retinitis pigmentosa (RP) participants in a randomized controlled trial of electro-stimulation therapies. Twenty-one RP participants were randomized (1:1:1) to transcorneal electrical stimulation (TES) at 6 weekly half-hour sessions, electro-acupuncture or inactive laser acupuncture (sham control) at 10 half-hour sessions over 2 weeks. Early Treatment of Diabetic Retinopathy Study (ETDRS) visual acuity (VA), quick contrast sensitivity function, Goldmann visual fields, AdaptDx scotopic sensitivity, spectral flow and colour Doppler imaging of the central retinal artery (CRA), and RBF in macular capillaries were measured twice pre-treatment, after 2 TES sessions, within a week and a month after intervention completion. We measured a significant improvement in retrobulbar CRA mean flow velocity for both the TES (p = 0.038) and electro-acupuncture groups (p = 0.001) on average after 2 weeks of treatment when compared to sham controls. Transcorneal electrical simulation (TES) and electro-acupuncture subjects had significant 55% and 34% greater increases, respectively, in RBF in the macular vessels when compared to sham controls (p < 0.001; p = 0.008) within a week of completing six TES sessions or a month after electro-acupuncture. There was a significant difference in the proportion of eyes that had improved visual function when comparing the three intervention groups (p = 0.038): four of seven TES subjects (57%), two of seven electro-acupuncture subjects (29%) and none of the seven control subjects (0%) had a significant visual improvement outside of typical test-retest variability at two consecutive post-treatment visits. Increased blood flow following electro-stimulation therapies is an objective, physiological change that occurred in addition to visual function improvements in some RP patients. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Laser Optometric Assessment Of Visual Display Viewability

    NASA Astrophysics Data System (ADS)

    Murch, Gerald M.

    1983-08-01

    Through the technique of laser optometry, measurements of a display user's visual accommodation and binocular convergence were used to assess the visual impact of display color, technology, contrast, and work time. The studies reported here indicate the potential of visual-function measurements as an objective means of improving the design of visual displays.

  12. BilKristal 2.0: A tool for pattern information extraction from crystal structures

    NASA Astrophysics Data System (ADS)

    Okuyan, Erhan; Güdükbay, Uğur

    2014-01-01

    We present a revised version of the BilKristal tool of Okuyan et al. (2007). We converted the development environment into Microsoft Visual Studio 2005 in order to resolve compatibility issues. We added multi-core CPU support and improvements are made to graphics functions in order to improve performance. Discovered bugs are fixed and exporting functionality to a material visualization tool is added.

  13. The Effects of Phacoemulsification and Intraocular Lens Implantation on Anatomical and Functional Parameters in Patients with Primary Angle Closure: A Prospective Study. (An American Ophthalmological Society Thesis).

    PubMed

    Traverso, Carlo Enrico; Cutolo, Carlo Alberto

    2017-08-01

    To investigate the clinical, anatomical, and patient-reported outcomes of phacoemulsification (PE) with intraocular lens implantation performed to treat primary angle closure (PAC) and primary angle-closure glaucoma (PACG). Patients were evaluated at baseline and at 6 months after PE. The examination included visual acuity, intraocular pressure (IOP), visual field, optic nerve head, endothelial cell count (ECC), aqueous depth, and ocular biometric parameters. Patient-reported visual function and health status were assessed. Coprimary outcome measures were IOP changes, angle widening, and patient-reported visual function; secondary outcome measures were visual acuity changes, use of IOP-lowering medications, and complications. Univariate and multivariate analyses were performed to determine the predictors of IOP change. Thirty-nine cases were identified, and postoperative data were analyzed for 59 eyes, 39 with PACG and 20 with PAC. Globally, PE resulted in a mean reduction in IOP of -6.33 mm Hg (95% CI, -8.64 to -4.01, P <.001). Aqueous depth and angle measurements improved ( P <.01), whereas ECC significantly decreased ( P <.001). Both corrected and uncorrected visual acuity improved ( P <.01). The EQ visual analog scale did not change ( P =.16), but VFQ-25 improved ( P <.01). The IOP-lowering effect of PE was greater in the PACG compared to the PAC group ( P =.04). In both groups, preoperative IOP was the most significant predictor of IOP change ( P <.01). No sight-threatening complications were recorded. Our data support the usefulness of PE in lowering the IOP in patients with PAC and PACG. Although PE resulted in several anatomical and patient-reported visual improvements, we observe that a marked decrease in ECC should be carefully weighed before surgery.

  14. Effects of Colored Filters on Visual Function

    DTIC Science & Technology

    2008-05-01

    normal vision, yellow filters have been reported to reduce glare and improve overall visual performance.4-9 The claims of improved vision in dyslexia ...use of tinted lenses and colored overlays for the treatment of dyslexia and other related reading and learning disorders. American Optometric

  15. The advanced glaucoma intervention study, 6: effect of cataract on visual field and visual acuity. The AGIS Investigators.

    PubMed

    2000-12-01

    To investigate the effect of cataract on visual function and the role of cataract in explaining a race-treatment interaction in outcomes of glaucoma surgery. The Advanced Glaucoma Intervention Study (AGIS) enrolled 332 black patients (451 eyes) and 249 white patients (325 eyes) with advanced glaucoma. Eyes were randomly assigned to an argon laser trabeculoplasty (ALT)-trabeculectomy-trabeculectomy sequence or a trabeculectomy-ALT-trabeculectomy sequence. From the AGIS experience with cataract surgery during follow-up, we estimated the expected change in visual function scores from before cataract surgery to after cataract surgery. Then, for eyes with cataract not removed, we used these estimates of expected change to adjust visual function scores for the presumed effects of cataract. In turn, we used the adjusted scores to obtain cataract-adjusted main outcome measures. Average percent of eyes with decrease of visual field (APDVF) and average percent of eyes with decrease of visual acuity (APDVA). Within the 2 months before cataract surgery, visual acuity was better in eyes of white patients than of black patients by an average of approximately 2 lines on the visual acuity test chart. Cataract surgery improved visual acuity and visual field defect scores, with the amounts of improvement greater when preoperative visual acuity was lower. Adjustments for cataract brought about the following relative reductions: for APDVF, a relative reduction of 5% to 11% in black patients and 9% to 11% in white patients; for APDVA, a relative reduction of 45% to 49% in black patients and 31% to 38% in white patients; and for the APDVF and APDVA race-treatment interactions, relative reductions of 25% and 45%, respectively. On average, visual function scores improved after cataract surgery. The findings of reduced race-treatment interactions after adjustment for cataract do not alter our earlier conclusion that the AGIS 7-year results support use of the ALT-trabeculectomy-trabeculectomy sequence for black patients and of the trabeculectomy-ALT-trabeculectomy sequence for white patients without life-threatening health problems. The choice of treatment should take into account individual patient characteristics and needs.

  16. Improving the performance of the amblyopic visual system

    PubMed Central

    Levi, Dennis M.; Li, Roger W.

    2008-01-01

    Experience-dependent plasticity is closely linked with the development of sensory function; however, there is also growing evidence for plasticity in the adult visual system. This review re-examines the notion of a sensitive period for the treatment of amblyopia in the light of recent experimental and clinical evidence for neural plasticity. One recently proposed method for improving the effectiveness and efficiency of treatment that has received considerable attention is ‘perceptual learning’. Specifically, both children and adults with amblyopia can improve their perceptual performance through extensive practice on a challenging visual task. The results suggest that perceptual learning may be effective in improving a range of visual performance and, importantly, the improvements may transfer to visual acuity. Recent studies have sought to explore the limits and time course of perceptual learning as an adjunct to occlusion and to investigate the neural mechanisms underlying the visual improvement. These findings, along with the results of new clinical trials, suggest that it might be time to reconsider our notions about neural plasticity in amblyopia. PMID:19008199

  17. Does age matter? Age and rehabilitation of visual field disorders after brain injury.

    PubMed

    Schuett, Susanne; Zihl, Josef

    2013-04-01

    Homonymous visual field disorders (HVFD) are frequent and disabling consequences of acquired brain injury, particularly in older age. Their rehabilitation is therefore of great importance. Compensatory oculomotor therapy has been found to be effective in improving the associated functional impairments in reading and visual exploration. But older age is commonly considered to adversely affect practice-dependent functional plasticity and, thus, functional and rehabilitation outcome after acquired brain injury. The effect of age in the compensatory treatment of HVFD, however, has never been investigated hitherto. It remains unknown whether age determines not only patients' functional impairments but also the rehabilitation outcome and the required amount of treatment. We therefore present the first study to determine the effect of age in 38 patients with HVFD receiving compensatory oculomotor treatment for their reading and visual exploration impairments. We investigated whether older patients with HVFD (1) show more pronounced impairments and less spontaneous adaptation, (2) show lesser compensatory treatment-related improvement in reading and visual exploration, and (3) require a higher amount of treatment than younger patients. Our main finding is that older patients achieve the same treatment-induced improvements in reading and visual exploration with the same amount of treatment as younger patients; severity of functional impairment also did not differ between older and younger patients, at least in reading. Age does not seem to be a critical factor determining the functional and rehabilitation outcome in the compensatory treatment of HVFD. Older age per se is not necessarily associated with a decline in practice-dependent functional plasticity and adaptation. To the contrary, the effectiveness of compensatory treatment to reduce the functional impairments to a similar extent in younger and older patients with HVFD adds to the growing evidence for a life-long potential for adaptation to the adverse effects of brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A paired case-control comparison of ziprasidone on visual sustained attention and visual selective attention in patients with paranoid schizophrenia.

    PubMed

    Chen, X; Zhang, Z H; Song, Y; Yuan, W; Liu, Z X; Tang, M Q

    2015-08-01

    Cognitive impairment is one of the main targets of the treatment to schizophrenia.The atypical antipsychotic was proved to improve the cognition function of the patients. There were a few of clinical trials to detect the effect of medicine treatment on attention function. But the respective changes of sustained and selective attention in the patients with treatment of ziprasidone were rarely investigated. This present study was to explore the effect of ziprasidone on visual sustained and selective attention in schizophrenia. There were 81 patients who were treated with ziprasidone and matched with 81 healthy controls in this open-label trial. The functions were evaluated by Continuous Performance Test (CPT) and Color Word Test (CWT) at baseline and eight weeks later. Between two groups the functions were compared at the two time points, and in patients group those were compared prior to and post treatment. As compared with healthy controls, the functions of the patients were worse. But after 8 weeks treatment of ziprasidone the functions improved in some degree, which were indicated by the change of CPT and CWT indexes. Furthermore, those of patients post treatment were better than prior to treatment. Patients with paranoid schizophrenia have visual sustained and selective attention deficits. The deficits can be improved partly with ziprasidone treatment.

  19. Molecular medicine in ophthalmic care.

    PubMed

    Richer, Stuart; Stiles, William; Thomas, Carla

    2009-12-01

    Lipofuscin is the most consistent and phylogenically constant morphologic marker of cellular aging. Autofluorescence of the A2E fluorophore within retinal pigment epithelial (RPE) lipofuscin affords the opportunity for noninvasive evaluation of age- and disease-related pathophysiological changes in the human retina. It is being used in National Eye Institute/Age-Related Eye Disease Study II to evaluate age-related macular degeneration (AMD) geographic atrophy expansion. Experiments show lipofuscin can be reversed in cell culture and animal models in heart, brain, spinal cord, and retinal tissues, using an array of antioxidants and iron chelators. An 80-year-old man with a gastric resection presented with complaints of unremitting night driving difficulty despite treatment with lutein and omega III fatty acids. Notable parafoveal deposition of retinal lipofuscin by 50 degrees fundus auto-fluorescence (580 nm excitation/660 barrier filters) and concurrent abnormalities in non-Snellen measures of visual function-Contrast Sensitivity Function, 6.5 degrees large field tritan threshold, 10 degrees threshold visual fields, and deficits in the National Institutes of Health/National Eye Institute Visual Function Questionnaire (VFQ) 25 subjective night driving/mental health subscale questionnaire were obtained. The patient was placed on an over-the-counter daily oral polyphenolic mixture containing resveratrol and re-evaluated 5 months later. The data reveal improvements in all measures of visual function, subjective improvement in vision and mental functioning on the VFQ 25, and visible clearing of RPE lipofuscin. To our knowledge, we believe this to be the first reported human clinical case of lipofuscin reversal in the human eye correlated with measured clinical and subjective improvement in visual and mental function after nutraceutical intervention.

  20. Eccentric correction for off-axis vision in central visual field loss.

    PubMed

    Gustafsson, Jörgen; Unsbo, Peter

    2003-07-01

    Subjects with absolute central visual field loss use eccentric fixation and magnifying devices to utilize their residual vision. This preliminary study investigated the importance of an accurate eccentric correction of off-axis refractive errors to optimize the residual visual function for these subjects. Photorefraction using the PowerRefractor instrument was used to evaluate the ametropia in eccentric fixation angles. Methods were adapted for measuring visual acuity outside the macula using filtered optotypes from high-pass resolution perimetry. Optical corrections were implemented, and the visual function of subjects with central visual field loss was measured with and without eccentric correction. Of the seven cases reported, five experienced an improvement in visual function in their preferred retinal locus with eccentric refraction. The main result was that optical correction for better image quality on the peripheral retina is important for the vision of subjects with central visual field loss, objectively as well as subjectively.

  1. Ontogenetic improvement of visual function in the medaka Oryzias latipes based on an optomotor testing system for larval and adult fish

    USGS Publications Warehouse

    Carvalho, Paulo S. M.; Noltie, Douglas B.; Tillitt, D.E.

    2002-01-01

    We developed a system for evaluation of visual function in larval and adult fish. Both optomotor (swimming) and optokinetic (eye movement) responses were monitored and recorded using a system of rotating stripes. The system allowed manipulation of factors such as width of the stripes used, rotation speed of the striped drum, and light illuminance levels within both the scotopic and photopic ranges. Precise control of these factors allowed quantitative measurements of visual acuity and motion detection. Using this apparatus, we tested the hypothesis that significant posthatch ontogenetic improvements in visual function occur in the medaka Oryzias latipes, and also that this species shows significant in ovo neuronal development. Significant improvements in the acuity angle alpha (ability to discriminate detail) were observed from approximately 5 degrees at hatch to 1 degree in the oldest adult stages. In addition, we measured a significant improvement in flicker fusion thresholds (motion detection skills) between larval and adult life stages within both the scotopic and photopic ranges of light illuminance. Ranges of flicker fusion thresholds (X±SD) at log I=1.96 (photopic) varied from 37.2±1.6 cycles/s in young adults to 18.6±1.6 cycles/s in young larvae 10 days posthatch. At log I=−2.54 (scotopic), flicker fusion thresholds varied from 5.8±0.7 cycles/s in young adults to 1.7±0.4 cycles/s in young larvae 10 days posthatch. Light sensitivity increased approximately 2.9 log units from early hatched larval stages to adults. The demonstrated ontogenetic improvements in visual function probably enable the fish to explore new resources, thereby enlarging their fundamental niche.

  2. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement.

    PubMed

    Cideciyan, Artur V; Jacobson, Samuel G; Beltran, William A; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J; Olivares, Melani B; Schwartz, Sharon B; Komáromy, András M; Hauswirth, William W; Aguirre, Gustavo D

    2013-02-05

    Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5-11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term.

  3. Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.

    PubMed

    Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara

    2017-01-01

    Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.

  4. Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search

    PubMed Central

    Tadin, Duje; Nyquist, Jeffrey B.; Lusk, Kelly E.; Corn, Anne L.; Lappin, Joseph S.

    2012-01-01

    Purpose. Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. Methods. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10–17) and low vision (n = 24, ages 9–18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. Results. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Conclusions. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function. PMID:22836766

  5. Peripheral vision of youths with low vision: motion perception, crowding, and visual search.

    PubMed

    Tadin, Duje; Nyquist, Jeffrey B; Lusk, Kelly E; Corn, Anne L; Lappin, Joseph S

    2012-08-24

    Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10-17) and low vision (n = 24, ages 9-18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function.

  6. Exercise effects on cognitive functioning in young adults with first-episode psychosis: FitForLife.

    PubMed

    Hallgren, Mats; Skott, Maria; Ekblom, Örjan; Firth, Joseph; Schembri, Adrian; Forsell, Yvonne

    2018-05-06

    Exercise has mood-enhancing effects and can improve cognitive functioning, but the effects in first-episode psychosis (FEP) remain understudied. We examined the feasibility and cognitive effects of exercise in FEP. Multi-center, open-label intervention study. Ninety-one outpatients with FEP (mean age = 30 years, 65% male) received usual care plus a 12-week supervised circuit-training program, consisting of high-volume resistance exercises, aerobic training, and stretching. Primary study outcome was cognitive functioning assessed by Cogstate Brief Battery (processing speed, attention, visual learning, working memory) and Trailmaking A and B tasks (visual attention and task shifting). Within-group changes in cognition were assessed using paired sample t tests with effect sizes (Hedges' g) reported for significant values. Relationships between exercise frequency and cognitive improvement were assessed using analysis of covariance. Moderating effects of gender were explored with stratified analyses. Participants exercised on average 13.5 (s.d. = 11.7) times. Forty-eight percent completed 12 or more sessions. Significant post-intervention improvements were seen for processing speed, visual learning, and visual attention; all with moderate effect sizes (g = 0.47-0.49, p < 0.05). Exercise participation was also associated with a positive non-significant trend for working memory (p < 0.07). Stratified analyses indicated a moderating effect of gender. Positive changes were seen among females only for processing speed, visual learning, working memory, and visual attention (g = 0.43-0.69). A significant bivariate correlation was found between total training frequency and improvements in visual attention among males (r = 0.40, p < 0.05). Supported physical exercise is a feasible and safe adjunct treatment for FEP with potential cognitive benefits, especially among females.

  7. Clinical Outcomes of an Optimized Prolate Ablation Procedure for Correcting Residual Refractive Errors Following Laser Surgery.

    PubMed

    Chung, Byunghoon; Lee, Hun; Choi, Bong Joon; Seo, Kyung Ryul; Kim, Eung Kwon; Kim, Dae Yune; Kim, Tae-Im

    2017-02-01

    The purpose of this study was to investigate the clinical efficacy of an optimized prolate ablation procedure for correcting residual refractive errors following laser surgery. We analyzed 24 eyes of 15 patients who underwent an optimized prolate ablation procedure for the correction of residual refractive errors following laser in situ keratomileusis, laser-assisted subepithelial keratectomy, or photorefractive keratectomy surgeries. Preoperative ophthalmic examinations were performed, and uncorrected distance visual acuity, corrected distance visual acuity, manifest refraction values (sphere, cylinder, and spherical equivalent), point spread function, modulation transfer function, corneal asphericity (Q value), ocular aberrations, and corneal haze measurements were obtained postoperatively at 1, 3, and 6 months. Uncorrected distance visual acuity improved and refractive errors decreased significantly at 1, 3, and 6 months postoperatively. Total coma aberration increased at 3 and 6 months postoperatively, while changes in all other aberrations were not statistically significant. Similarly, no significant changes in point spread function were detected, but modulation transfer function increased significantly at the postoperative time points measured. The optimized prolate ablation procedure was effective in terms of improving visual acuity and objective visual performance for the correction of persistent refractive errors following laser surgery.

  8. BIOLOGICAL NETWORK EXPLORATION WITH CYTOSCAPE 3

    PubMed Central

    Su, Gang; Morris, John H.; Demchak, Barry; Bader, Gary D.

    2014-01-01

    Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and pathway construction. Cytoscape provides core functionality to load, visualize, search, filter and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the network, visualizing network associated data (attributes) and identifying clusters. It also highlights new features that benefit experienced users. PMID:25199793

  9. Monocular perceptual learning of contrast detection facilitates binocular combination in adults with anisometropic amblyopia.

    PubMed

    Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin

    2016-02-01

    Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination.

  10. Monocular perceptual learning of contrast detection facilitates binocular combination in adults with anisometropic amblyopia

    PubMed Central

    Chen, Zidong; Li, Jinrong; Liu, Jing; Cai, Xiaoxiao; Yuan, Junpeng; Deng, Daming; Yu, Minbin

    2016-01-01

    Perceptual learning in contrast detection improves monocular visual function in adults with anisometropic amblyopia; however, its effect on binocular combination remains unknown. Given that the amblyopic visual system suffers from pronounced binocular functional loss, it is important to address how the amblyopic visual system responds to such training strategies under binocular viewing conditions. Anisometropic amblyopes (n = 13) were asked to complete two psychophysical supra-threshold binocular summation tasks: (1) binocular phase combination and (2) dichoptic global motion coherence before and after monocular training to investigate this question. We showed that these participants benefited from monocular training in terms of binocular combination. More importantly, the improvements observed with the area under log CSF (AULCSF) were found to be correlated with the improvements in binocular phase combination. PMID:26829898

  11. Is improved contrast sensitivity a natural consequence of visual training?

    PubMed Central

    Levi, Aaron; Shaked, Danielle; Tadin, Duje; Huxlin, Krystel R.

    2015-01-01

    Many studies have shown that training and testing conditions modulate specificity of visual learning to trained stimuli and tasks. In visually impaired populations, generalizability of visual learning to untrained stimuli/tasks is almost always reported, with contrast sensitivity (CS) featuring prominently among these collaterally-improved functions. To understand factors underlying this difference, we measured CS for direction and orientation discrimination in the visual periphery of three groups of visually-intact subjects. Group 1 trained on an orientation discrimination task with static Gabors whose luminance contrast was decreased as performance improved. Group 2 trained on a global direction discrimination task using high-contrast random dot stimuli previously used to recover motion perception in cortically blind patients. Group 3 underwent no training. Both forms of training improved CS with some degree of specificity for basic attributes of the trained stimulus/task. Group 1's largest enhancement was in CS around the trained spatial/temporal frequencies; similarly, Group 2's largest improvements occurred in CS for discriminating moving and flickering stimuli. Group 3 saw no significant CS changes. These results indicate that CS improvements may be a natural consequence of multiple forms of visual training in visually intact humans, albeit with some specificity to the trained visual domain(s). PMID:26305736

  12. Structural-functional relationships between eye orbital imaging biomarkers and clinical visual assessments

    NASA Astrophysics Data System (ADS)

    Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.

    2017-02-01

    Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.

  13. The Puzzle of Visual Development: Behavior and Neural Limits.

    PubMed

    Kiorpes, Lynne

    2016-11-09

    The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.

  14. Hypnosis and Osteopathic Manipulative Treatment for Visual Disorders During Pregnancy: A Case Report.

    PubMed

    Russo, Giancarlo; Remonato, Alessandro; Remonato, Roberto; Zanier, Emiliano

    2017-01-01

    Context • Pregnancy causes physiological alterations to the visual system, particularly in relation to retinal vascularization, with a consequent increase of intraocular pressure, and to the lacrimal fluid, with a consequent ocular dryness, which both can lead to a reduction in visual acuity. Numerous case reports refer to the employment of hypnotic treatment in cases of myopia, but the literature does not report any case of decreased visual acuity postpartum that was treated with hypnosis. Objective • For women with visual disorders that had appeared during pregnancy or were preexisting, the study intended to evaluate the benefits of treatment of the diaphragm by hypnotherapy and osteopathy to modify intracorporeal pressure and restore the women's visual function. Design • The research team performed a case study. Setting • The setting was a private osteopathic clinic. Participant • The participant was a 35-y-old woman lacking visual acuity postpartum. Intervention • The study took place during a period of 1 d. The participant first took part in a hypnotherapy session, the first intervention, and then participated in an osteopathic session, the second intervention. Outcome Measures • For the first evaluation of visual function at baseline, 3 tests were performed: (1) a visual acuity test; (2) a cover test for near and distance vision; and (3) a test for near point convergence. The visual function evaluation (all 3 tests) occurred after the 2 types of treatment (T1, T2). Finally, a visual function evaluation (all 3 tests) occurred at a follow-up session 1 mo after the end of treatment (T3). Results • The intervention produced a significant improvement in visual acuity, due to the multidisciplinary approach of treatment with hypnotherapy and osteopathy, and achieved a result that was maintained in the medium term. Conclusions • Hypnosis and osteopathy produced a significant improvement in visual acuity and the result was maintained in the medium term. Further studies are needed to verify the efficacy of the 2 treatments.

  15. Experience-dependent plasticity from eye opening enables lasting, visual cortex-dependent enhancement of motion vision.

    PubMed

    Prusky, Glen T; Silver, Byron D; Tschetter, Wayne W; Alam, Nazia M; Douglas, Robert M

    2008-09-24

    Developmentally regulated plasticity of vision has generally been associated with "sensitive" or "critical" periods in juvenile life, wherein visual deprivation leads to loss of visual function. Here we report an enabling form of visual plasticity that commences in infant rats from eye opening, in which daily threshold testing of optokinetic tracking, amid otherwise normal visual experience, stimulates enduring, visual cortex-dependent enhancement (>60%) of the spatial frequency threshold for tracking. The perceptual ability to use spatial frequency in discriminating between moving visual stimuli is also improved by the testing experience. The capacity for inducing enhancement is transitory and effectively limited to infancy; however, enhanced responses are not consolidated and maintained unless in-kind testing experience continues uninterrupted into juvenile life. The data show that selective visual experience from infancy can alone enable visual function. They also indicate that plasticity associated with visual deprivation may not be the only cause of developmental visual dysfunction, because we found that experientially inducing enhancement in late infancy, without subsequent reinforcement of the experience in early juvenile life, can lead to enduring loss of function.

  16. The effects of prism glasses and intensive upper limb exercise on hemineglect, upper limb function, and activities of daily living in stroke patients: a case series.

    PubMed

    Oh, Se-Il; Kim, Jin-Kyung; Park, So-Yeon

    2015-12-01

    [Purpose] This study aimed to examine the effects of visual field with prism glasses, and intensive upper limb functional training on reduction of hemineglect and improvement in upper limb function and activities of daily living in three stroke patients with hemineglect. [Subjects] This study included three stroke patients hospitalized in a sanatorium. [Methods] Intervention treatment involving prism glass use for 12 hours and 30 minutes and paretic side upper limb training was conducted 5 days a week for 15 weeks. Three upper limb training tasks (hitting a balloon, passing through a ring, and reading a newspaper) were performed for 10 minutes each session, for a total of 30 minutes. Line by Section, Motor-Free Visual Perception Test-3 (MVPT-3), Manual Function Test (MFT), Box & Block Test (BBT), and Assessment of Motor and Process Skills (AMPS) were conducted before and after intervention. [Results] Subjects' hemineglect decreased and upper limb function on the paretic side improved after intervention, which enhanced activities of daily living. [Conclusion] Prism glass use and paretic upper limb functional training effectively ameliorated stroke patients' hemineglect and improved upper limb function. Future research should focus on prism glasses that provide a wide visual field for use in patients with different conditions.

  17. Training-related changes in early visual processing of functionally illiterate adults: evidence from event-related brain potentials

    PubMed Central

    2013-01-01

    Background Event-related brain potentials (ERPs) were used to investigate training-related changes in fast visual word recognition of functionally illiterate adults. Analyses focused on the left-lateralized occipito-temporal N170, which represents the earliest processing of visual word forms. Event-related brain potentials were recorded from 20 functional illiterates receiving intensive literacy training for adults, 10 functional illiterates not participating in the training and 14 regular readers while they read words, pseudowords or viewed symbol strings. Subjects were required to press a button whenever a stimulus was immediately repeated. Results Attending intensive literacy training was associated with improvements in reading and writing skills and with an increase of the word-related N170 amplitude. For untrained functional illiterates and regular readers no changes in literacy skills or N170 amplitude were observed. Conclusions Results of the present study suggest that the word-related N170 can still be modulated in adulthood as a result of the improvements in literacy skills. PMID:24330622

  18. Training-related changes in early visual processing of functionally illiterate adults: evidence from event-related brain potentials.

    PubMed

    Boltzmann, Melanie; Rüsseler, Jascha

    2013-12-13

    Event-related brain potentials (ERPs) were used to investigate training-related changes in fast visual word recognition of functionally illiterate adults. Analyses focused on the left-lateralized occipito-temporal N170, which represents the earliest processing of visual word forms. Event-related brain potentials were recorded from 20 functional illiterates receiving intensive literacy training for adults, 10 functional illiterates not participating in the training and 14 regular readers while they read words, pseudowords or viewed symbol strings. Subjects were required to press a button whenever a stimulus was immediately repeated. Attending intensive literacy training was associated with improvements in reading and writing skills and with an increase of the word-related N170 amplitude. For untrained functional illiterates and regular readers no changes in literacy skills or N170 amplitude were observed. Results of the present study suggest that the word-related N170 can still be modulated in adulthood as a result of the improvements in literacy skills.

  19. Rehabilitation Approaches in Macular Degeneration Patients

    PubMed Central

    Maniglia, Marcello; Cottereau, Benoit R.; Soler, Vincent; Trotter, Yves

    2016-01-01

    Age related macular degeneration (AMD) is a visual disease that affects elderly population. It entails a progressive loss of central vision whose consequences are dramatic for the patient’s quality of life. Current rehabilitation programs are restricted to technical aids based on visual devices. They only temporarily improve specific visual functions such as reading skills. Considering the rapid increase of the aging population worldwide, it is crucial to intensify clinical research on AMD in order to develop simple and efficient methods that improve the patient’s visual performances in many different contexts. One very promising approach to face this challenge is based on perceptual learning (PL). Through intensive practice, PL can induce neural plasticity in sensory cortices and result in long-lasting enhancements for various perceptual tasks in both normal and visually impaired populations. A growing number of studies showed how appropriate PL protocols improve visual functions in visual disorders, namely amblyopia, presbyopia or myopia. In order to successfully apply these approaches to more severe conditions such as AMD, numerous challenges have to be overcome. Indeed, the overall elderly age of patients and the reduced cortical surface that is devoted to peripheral vision potentially limit neural plasticity in this population. In addition, ocular fixation becomes much less stable because patients have to rely on peripheral fixation spots outside the scotoma whose size keeps on evolving. The aim of this review article is to discuss the recent literature on this topic and to offer a unified approach for developing new rehabilitation programs of AMD using PL. We argue that with an appropriate experimental and training protocol that is adapted to each patient needs, PL can offer fascinating opportunities for the development of simple, non-expensive rehabilitation approaches a large spectrum of visual functions in AMD patients. PMID:28082876

  20. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    PubMed

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  1. Verbal Dominant Memory Impairment and Low Risk for Post-operative Memory Worsening in Both Left and Right Temporal Lobe Epilepsy Associated with Hippocampal Sclerosis.

    PubMed

    Khalil, Amr Farid; Iwasaki, Masaki; Nishio, Yoshiyuki; Jin, Kazutaka; Nakasato, Nobukazu; Tominaga, Teiji

    2016-11-15

    Post-operative memory changes after temporal lobe surgery have been established mainly by group analysis of cognitive outcome. This study investigated individual patient-based memory outcome in surgically-treated patients with mesial temporal lobe epilepsy (TLE). This study included 84 consecutive patients with intractable TLE caused by unilateral hippocampal sclerosis (HS) who underwent epilepsy surgery (47 females, 41 left [Lt] TLE). Memory functions were evaluated with the Wechsler Memory Scale-Revised before and at 1 year after surgery. Pre-operative memory function was classified into three patterns: verbal dominant memory impairment (Verb-D), visual dominant impairment (Vis-D), and no material-specific impairment. Post-operative changes in verbal and visual memory indices were classified into meaningful improvement, worsening, or no significant changes. Pre-operative patterns and post-operative changes in verbal and visual memory function were compared between the Lt and right (Rt) TLE groups. Pre-operatively, Verb-D was the most common type of impairment in both the Lt and Rt TLE groups (65.9 and 48.8%), and verbal memory indices were lower than visual memory indices, especially in the Lt compared with Rt TLE group. Vis-D was observed only in 11.6% of Rt and 7.3% of Lt TLE patients. Post-operatively, meaningful improvement of memory indices was observed in 23.3-36.6% of the patients, and the memory improvement was equivalent between Lt and Rt TLE groups and between verbal and visual materials. In conclusion, Verb-D is most commonly observed in patients with both the Lt and Rt TLE associated with HS. Hippocampectomy can improve memory indices in such patients regardless of the side of surgery and the function impaired.

  2. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study.

    PubMed

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = -2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = -1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders.

  3. A New Visual Stimulation Program for Improving Visual Acuity in Children with Visual Impairment: A Pilot Study

    PubMed Central

    Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin

    2016-01-01

    The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = –2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = –1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders. PMID:27148014

  4. Effect of neodymium:YAG laser capsulotomy on visual function in patients with posterior capsule opacification and good visual acuity.

    PubMed

    Yotsukura, Erisa; Torii, Hidemasa; Saiki, Megumi; Negishi, Kazuno; Tsubota, Kazuo

    2016-03-01

    To evaluate the effect of neodymium:YAG (Nd:YAG) laser capsulotomy on the visual function in patients with posterior capsule opacification (PCO) and good visual acuity. Keio University Hospital, Tokyo, Japan. Observational case series. Eyes were evaluated that had previous cataract surgery with a clinical diagnosis of PCO requiring Nd:YAG laser capsulotomy regardless of a good corrected distance visual acuity (CDVA) (at least 20/20). The CDVA, 10% low contrast visual acuity (LCVA), wavefront aberrations from the 3rd to 6th order, and retinal straylight were measured before and after Nd:YAG laser capsulotomy. The study included 16 eyes of 16 patients (10 men, 6 women; mean age 69.5 years ± 9.3 [SD]). The mean CDVA, LCVA, and straylight after Nd:YAG laser capsulotomy improved significantly (P < .05). The root mean square (RMS) of the 3rd Zernike coefficients (S3) and the RMS of the total higher-order aberrations (HOAs) from the 3rd to 6th order decreased significantly after capsulotomy (P < .05). The straylight correlated significantly with the total HOAs (r = 0.727, P = .002) and S3 (r = 0.748, P = .001) before capsulotomy. Subjective symptoms resolved after capsulotomy in all cases. Neodymium:YAG laser capsulotomy enabled a significant improvement in visual function even in patients with PCO with good visual acuity. Straylight measurements might be useful to determine the indications for Nd:YAG laser capsulotomy when patients report visual disturbances without decreased visual acuity. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Longitudinal Vision-Related Quality of Life for Patients with Noninfectious Uveitis Treated with Fluocinolone Acetonide Implant or Systemic Corticosteroid Therapy.

    PubMed

    Sugar, Elizabeth A; Venugopal, Vidya; Thorne, Jennifer E; Frick, Kevin D; Holland, Gary N; Wang, Robert C; Almanzor, Robert; Jabs, Douglas A; Holbrook, Janet T

    2017-11-01

    To evaluate longitudinal vision-related quality of life (VRQoL) in patients with noninfectious uveitis. Cohort study using randomized controlled trial data. Patients with active or recently active intermediate uveitis, posterior uveitis, or panuveitis enrolled in the Multicenter Steroid Treatment Trial and Follow-up Study. Data from the 25-item National Eye Institute Visual Functioning Questionnaire (NEI-VFQ-25) for the first 3 years after randomization were evaluated semiannually. Analyses were stratified by assigned treatment (129 implants vs. 126 systemic therapies) because of substantial differences in the trajectories of VRQoL. The impact of baseline measurements of visual function (visual acuity and visual field), demographics, and disease characteristics was assessed using generalized estimating equations. Primary outcome was the NEI-VFQ-25 composite score over 3 years after randomization. Individuals in both treatment groups showed similar improvement in NEI-VFQ-25 scores after 3 years of follow-up (implant: 11.9 points; 95% confidence interval [CI], 8.6-15.2; P < 0.001; systemic: 9.0 points; 95% CI, 5.6-12.3; P < 0.001; P = 0.21 for interaction). Individuals in the implant group showed a substantial improvement during the first 6 months followed by stable scores, whereas individuals in the systemic group showed a steady improvement over the course of follow-up. Worse initial visual acuity and visual fields were associated with lower initial NEI-VFQ-25 scores for both treatment groups. In the systemic group, these differences were maintained throughout follow-up. In the implant group, individuals with initial visual acuity worse than 20/40 showed additional improvement in NEI-VFQ-25 score to come within -7 points (95% CI, -15.0 to 0.9) of those with visual acuity 20/40 or better initially, a clinically meaningful but not statistically significant difference (P = 0.081). Results based on sensitivity analyses showed similar patterns. Both treatment groups demonstrated significant improvements in NEI-VFQ-25 scores; however, the improvement was immediate for the implant group as opposed to gradual for the systemic group. Poorer visual function was associated significantly with initial differences in NEI-VFQ-25 scores. However, only individuals in the implant group with poor visual acuity were able to overcome their initial deficits by the end of 3 years. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  6. Treadmill sideways gait training with visual blocking for patients with brain lesions.

    PubMed

    Kim, Tea-Woo; Kim, Yong-Wook

    2014-09-01

    [Purpose] The aim of this study was to verify the effect of sideways treadmill training with and without visual blocking on the balance and gait function of patients with brain lesions. [Subjects] Twenty-four stroke and traumatic brain injury subjects participated in this study. They were divided into two groups: an experimental group (12 subjects) and a control group (12 subjects). [Methods] Each group executed a treadmill training session for 20 minutes, three times a week, for 6 weeks. The sideways gait training on the treadmill was performed with visual blocking by the experimental group and with normal vision by the control group. A Biodex Gait Trainer 2 was used to assess the gait function. It was used to measure walking speed, walking distance, step length, and stance time on each foot. The Five-Times-Sit-To-Stand test (FTSST) and Timed Up and Go test (TUG) were used as balance measures. [Results] The sideways gait training with visual blocking group showed significantly improved walking speed, walking distance, step length, and stance time on each foot after training; FTSST and TUG times also significantly improved after training in the experimental group. Compared to the control group, the experimental group showed significant increases in stance time on each foot. [Conclusion] Sideways gait training on a treadmill with visual blocking performed by patients with brain lesions significantly improved their balance and gait function.

  7. The human visual cortex responds to gene therapy–mediated recovery of retinal function

    PubMed Central

    Ashtari, Manzar; Cyckowski, Laura L.; Monroe, Justin F.; Marshall, Kathleen A.; Chung, Daniel C.; Auricchio, Alberto; Simonelli, Francesca; Leroy, Bart P.; Maguire, Albert M.; Shindler, Kenneth S.; Bennett, Jean

    2011-01-01

    Leber congenital amaurosis (LCA) is a rare degenerative eye disease, linked to mutations in at least 14 genes. A recent gene therapy trial in patients with LCA2, who have mutations in RPE65, demonstrated that subretinal injection of an adeno-associated virus (AAV) carrying the normal cDNA of that gene (AAV2-hRPE65v2) could markedly improve vision. However, it remains unclear how the visual cortex responds to recovery of retinal function after prolonged sensory deprivation. Here, 3 of the gene therapy trial subjects, treated at ages 8, 9, and 35 years, underwent functional MRI within 2 years of unilateral injection of AAV2-hRPE65v2. All subjects showed increased cortical activation in response to high- and medium-contrast stimuli after exposure to the treated compared with the untreated eye. Furthermore, we observed a correlation between the visual field maps and the distribution of cortical activations for the treated eyes. These data suggest that despite severe and long-term visual impairment, treated LCA2 patients have intact and responsive visual pathways. In addition, these data suggest that gene therapy resulted in not only sustained and improved visual ability, but also enhanced contrast sensitivity. PMID:21606598

  8. Visual Contrast Sensitivity Improvement by Right Frontal High-Beta Activity Is Mediated by Contrast Gain Mechanisms and Influenced by Fronto-Parietal White Matter Microstructure

    PubMed Central

    Quentin, Romain; Elkin Frankston, Seth; Vernet, Marine; Toba, Monica N.; Bartolomeo, Paolo; Chanes, Lorena; Valero-Cabré, Antoni

    2016-01-01

    Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance. PMID:25899709

  9. Useful field of view test.

    PubMed

    Wood, Joanne M; Owsley, Cynthia

    2014-01-01

    The useful field of view test was developed to reflect the visual difficulties that older adults experience with everyday tasks. Importantly, the useful field of view test (UFOV) is one of the most extensively researched and promising predictor tests for a range of driving outcomes measures, including driving ability and crash risk as well as other everyday tasks. Currently available commercial versions of the test can be administered using personal computers; these measure the speed of visual processing for rapid detection and localization of targets under conditions of divided visual attention and in the presence and absence of visual clutter. The test is believed to assess higher-order cognitive abilities, but performance also relies on visual sensory function because in order for targets to be attended to, they must be visible. The format of the UFOV has been modified over the years; the original version estimated the spatial extent of useful field of view, while the latest version measures visual processing speed. While deficits in the useful field of view are associated with functional impairments in everyday activities in older adults, there is also emerging evidence from several research groups that improvements in visual processing speed can be achieved through training. These improvements have been shown to reduce crash risk, and can have a positive impact on health and functional well-being, with the potential to increase the mobility and hence the independence of older adults. © 2014 S. Karger AG, Basel

  10. Effects of tenotomy on patients with infantile nystagmus syndrome: foveation improvement over a broadened visual field.

    PubMed

    Wang, Zhong; Dell'Osso, Louis F; Jacobs, Jonathan B; Burnstine, Robert A; Tomsak, Robert L

    2006-12-01

    To investigate the effects of four-muscle tenotomy on visual function and gaze angle in patients with infantile nystagmus syndrome (INS). Eye movements of nine patients with infantile nystagmus were recorded using infrared reflection or high-speed digital video techniques. Experimental protocols were designed to record the patients' eye-movement waveforms, pre- and post-tenotomy, at different gaze angles. We used the eXpanded Nystagmus Acuity Function (NAFX) to measure tenotomy-induced changes in the nystagmus at primary position and various gaze angles. The longest foveation domains (LFD) were measured from fitted curves. Peak-to-peak nystagmus amplitudes and foveation-period durations were also measured. All measurements were made unmasked. All seven patients with narrow, high-NAFX, gaze-angle regions showed broadening of these regions of higher visual function. Three patients showed moderate NAFX improvement (13.9-32.6%) at primary position, five showed large improvement (39.9-162.4%), and one showed no NAFX change (due to his high pretenotomy NAFX). Primary position measured acuities improved in six patients. All patients had reductions in nystagmus amplitudes ranging from 14.6 to 37%. The duration of the foveation period increased in all nine patients (11.2-200%). The percentage improvements in both the NAFX and the LFD decreased with higher pretenotomy values. In addition to elevating primary position NAFX, tenotomy also broadens the high-NAFX regions. This broadening effect is more prominent in patients who had sharp pretenotomy NAFX peaks. Four-muscle tenotomy produces higher primary position NAFX increases in infantile nystagmus patients whose pretenotomy values are relatively low, with the improvement decreasing at higher pretenotomy values. The tenotomy procedure improves visual function beyond primary position acuity. This extends the utility of surgical therapy to several different classes of patients with INS for whom other procedures are contraindicated. The pretenotomy NAFX can now be used to predict both primary position acuity improvements and broadening of a patient's high-NAFX range of gaze angles.

  11. Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia.

    PubMed

    Spiegel, Daniel P; Li, Jinrong; Hess, Robert F; Byblow, Winston D; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2013-10-01

    Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.

  12. Ginkgo biloba Extract and Bilberry Anthocyanins Improve Visual Function in Patients with Normal Tension Glaucoma

    PubMed Central

    Shim, Seong Hee; Choi, Chul Young; Kim, Chan Yun; Park, Ki Ho

    2012-01-01

    Abstract Ginkgo biloba extract (GBE) and anthocyanins are considered beneficial for various vascular diseases. This study was performed to evaluate the effect of GBE and anthocyanins on visual function in patients with normal tension glaucoma (NTG) based on the vascular theory of mechanisms of glaucomatous optic nerve damage. Retrospective analysis was carried out by a chart review of 332 subjects (209 men and 123 women) who were treated with anthocyanins (n=132), GBE (n=103), or no medication (control, n=97). Humphrey Visual Field (HVF) test, logarithm of the minimal angle of resolution best-corrected visual acuity (logMAR BCVA), intraocular pressure, blood pressure, and fasting blood glucose were determined before and after treatment. Complete ocular and systemic examinations were performed. The mean follow-up duration was 23.82±9.84 (range, 12–59) months; the mean anthocyanin treatment duration was 24.32±10.43 (range, 6–53) months, and the mean GBE treatment duration was 23.81±10.36 months (range, 6–59) months. After anthocyanin treatment, the mean BCVA for all eyes improved from 0.16 (±0.34) to 0.11 (±0.18) logMAR units (P=.008), and HVF mean deviation improved from −6.44 (±7.05) to −5.34 (±6.42) (P=.001). After GBE treatment, HVF mean deviation improved from −5.25 (±6.13) to −4.31 (±5.60) (P=.002). A generalized linear model demonstrated that the final BCVA was not affected by demographic differences among the groups. These results suggest that anthocyanins and GBE may be helpful in improving visual function in some individuals with NTG. PMID:22870951

  13. Successful Outcomes from a Structured Curriculum Used in the Veterans Affairs Low Vision Intervention Trial

    ERIC Educational Resources Information Center

    Stelmack, Joan A.; Rinne, Stephen; Mancil, Rickilyn M.; Dean, Deborah; Moran, D'Anna; Tang, X. Charlene; Cummings, Roger; Massof, Robert W.

    2008-01-01

    A low vision rehabilitation program with a structured curriculum was evaluated in a randomized controlled trial. The treatment group demonstrated large improvements in self-reported visual function (reading, mobility, visual information processing, visual motor skills, and overall). The team approach and the protocols of the treatment program are…

  14. Tracking the evolution of crossmodal plasticity and visual functions before and after sight restoration

    PubMed Central

    Dormal, Giulia; Lepore, Franco; Harissi-Dagher, Mona; Albouy, Geneviève; Bertone, Armando; Rossion, Bruno

    2014-01-01

    Visual deprivation leads to massive reorganization in both the structure and function of the occipital cortex, raising crucial challenges for sight restoration. We tracked the behavioral, structural, and neurofunctional changes occurring in an early and severely visually impaired patient before and 1.5 and 7 mo after sight restoration with magnetic resonance imaging. Robust presurgical auditory responses were found in occipital cortex despite residual preoperative vision. In primary visual cortex, crossmodal auditory responses overlapped with visual responses and remained elevated even 7 mo after surgery. However, these crossmodal responses decreased in extrastriate occipital regions after surgery, together with improved behavioral vision and with increases in both gray matter density and neural activation in low-level visual regions. Selective responses in high-level visual regions involved in motion and face processing were observable even before surgery and did not evolve after surgery. Taken together, these findings demonstrate that structural and functional reorganization of occipital regions are present in an individual with a long-standing history of severe visual impairment and that such reorganizations can be partially reversed by visual restoration in adulthood. PMID:25520432

  15. The Efficiency of a Visual Skills Training Program on Visual Search Performance

    PubMed Central

    Krzepota, Justyna; Zwierko, Teresa; Puchalska-Niedbał, Lidia; Markiewicz, Mikołaj; Florkiewicz, Beata; Lubiński, Wojciech

    2015-01-01

    In this study, we conducted an experiment in which we analyzed the possibilities to develop visual skills by specifically targeted training of visual search. The aim of our study was to investigate whether, for how long and to what extent a training program for visual functions could improve visual search. The study involved 24 healthy students from the Szczecin University who were divided into two groups: experimental (12) and control (12). In addition to regular sports and recreational activities of the curriculum, the subjects of the experimental group also participated in 8-week long training with visual functions, 3 times a week for 45 min. The Signal Test of the Vienna Test System was performed four times: before entering the study, after first 4 weeks of the experiment, immediately after its completion and 4 weeks after the study terminated. The results of this experiment proved that an 8-week long perceptual training program significantly differentiated the plot of visual detecting time. For the visual detecting time changes, the first factor, Group, was significant as a main effect (F(1,22)=6.49, p<0.05) as well as the second factor, Training (F(3,66)=5.06, p<0.01). The interaction between the two factors (Group vs. Training) of perceptual training was F(3,66)=6.82 (p<0.001). Similarly, for the number of correct reactions, there was a main effect of a Group factor (F(1,22)=23.40, p<0.001), a main effect of a Training factor (F(3,66)=11.60, p<0.001) and a significant interaction between factors (Group vs. Training) (F(3,66)=10.33, p<0.001). Our study suggests that 8-week training of visual functions can improve visual search performance. PMID:26240666

  16. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  17. Quantitative evaluation of vision-related and health-related quality of life after endoscopic transsphenoidal surgery for pituitary adenoma.

    PubMed

    Wolf, Amparo; Coros, Alexandra; Bierer, Joel; Goncalves, Sandy; Cooper, Paul; Van Uum, Stan; Lee, Donald H; Proulx, Alain; Nicolle, David; Fraser, J Alexander; Rotenberg, Brian W; Duggal, Neil

    2017-08-01

    OBJECTIVE Endoscopic resection of pituitary adenomas has been reported to improve vision function in up to 80%-90% of patients with visual impairment due to these adenomas. It is unclear how these reported rates translate into improvement in visual outcomes and general health as perceived by the patients. The authors evaluated self-assessed health-related quality of life (HR-QOL) and vision-related QOL (VR-QOL) in patients before and after endoscopic resection of pituitary adenomas. METHODS The authors prospectively collected data from 50 patients who underwent endoscopic resection of pituitary adenomas. This cohort included 32 patients (64%) with visual impairment preoperatively. Twenty-seven patients (54%) had pituitary dysfunction, including 17 (34%) with hormone-producing tumors. Patients completed the National Eye Institute Visual Functioning Questionnaire and the 36-Item Short Form Health Survey preoperatively and 6 weeks and 6 months after surgery. RESULTS Patients with preoperative visual impairment reported a significant impact of this condition on VR-QOL preoperatively, including general vision, near activities, and peripheral vision; they also noted vision-specific impacts on mental health, role difficulties, dependency, and driving. After endoscopic resection of adenomas, patients reported improvement across all these categories 6 weeks postoperatively, and this improvement was maintained by 6 months postoperatively. Patients with preoperative pituitary dysfunction, including hormone-producing tumors, perceived their general health and physical function as poorer, with some of these patients reporting improvement in perceived general health after the endoscopic surgery. All patients noted that their ability to work or perform activities of daily living was transiently reduced 6 weeks postoperatively, followed by significant improvement by 6 months after the surgery. CONCLUSIONS Both VR-QOL and patient's perceptions of their ability to do work and perform other daily activities as a result of their physical health significantly improved by 6 months after endoscopic resection of pituitary adenoma. The use of multidimensional QOL questionnaires provides a precise assessment of perceived outcomes after endoscopic surgery.

  18. Public health nurse perceptions of Omaha System data visualization.

    PubMed

    Lee, Seonah; Kim, Era; Monsen, Karen A

    2015-10-01

    Electronic health records (EHRs) provide many benefits related to the storage, deployment, and retrieval of large amounts of patient data. However, EHRs have not fully met the need to reuse data for decision making on follow-up care plans. Visualization offers new ways to present health data, especially in EHRs. Well-designed data visualization allows clinicians to communicate information efficiently and effectively, contributing to improved interpretation of clinical data and better patient care monitoring and decision making. Public health nurse (PHN) perceptions of Omaha System data visualization prototypes for use in EHRs have not been evaluated. To visualize PHN-generated Omaha System data and assess PHN perceptions regarding the visual validity, helpfulness, usefulness, and importance of the visualizations, including interactive functionality. Time-oriented visualization for problems and outcomes and Matrix visualization for problems and interventions were developed using PHN-generated Omaha System data to help PHNs consume data and plan care at the point of care. Eleven PHNs evaluated prototype visualizations. Overall PHNs response to visualizations was positive, and feedback for improvement was provided. This study demonstrated the potential for using visualization techniques within EHRs to summarize Omaha System patient data for clinicians. Further research is needed to improve and refine these visualizations and assess the potential to incorporate visualizations within clinical EHRs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. A tool for improving the Web accessibility of visually handicapped persons.

    PubMed

    Fujiki, Tadayoshi; Hanada, Eisuke; Yamada, Tomomi; Noda, Yoshihiro; Antoku, Yasuaki; Nakashima, Naoki; Nose, Yoshiaki

    2006-04-01

    Abstract Much has been written concerning the difficulties faced by visually handicapped persons when they access the internet. To solve some of the problems and to make web pages more accessible, we developed a tool we call the "Easy Bar," which works as a toolbar on the web browser. The functions of the Easy Bar are to change the size of web texts and images, to adjust the color, and to clear cached data that is automatically saved by the web browser. These functions are executed with ease by clicking buttons and operating a pull-down list. Since the icons built into Easy Bar are quite large, it is not necessary for the user to deal with delicate operations. The functions of Easy Bar run on any web page without increasing the processing time. For the visually handicapped, Easy Bar would contribute greatly to improved web accessibility to medical information.

  20. Neural correlates of atomoxetine improving inhibitory control and visual processing in Drug-naïve adults with attention-deficit/hyperactivity disorder.

    PubMed

    Fan, Li-Ying; Chou, Tai-Li; Gau, Susan Shur-Fen

    2017-10-01

    Atomoxetine improves inhibitory control and visual processing in healthy volunteers and adults with attention-deficit/hyperactivity disorder (ADHD). However, little is known about the neural correlates of these two functions after chronic treatment with atomoxetine. This study aimed to use the counting Stroop task with functional magnetic resonance imaging (fMRI) and the Cambridge Neuropsychological Test Automated Battery (CANTAB) to investigate the changes related to inhibitory control and visual processing in adults with ADHD. This study is an 8-week, placebo-controlled, double-blind, randomized clinical trial of atomoxetine in 24 drug-naïve adults with ADHD. We investigated the changes of treatment with atomoxetine compared to placebo-treated counterparts using the counting Stroop fMRI and two CANTAB tests: rapid visual information processing (RVP) for inhibitory control and delayed matching to sample (DMS) for visual processing. Atomoxetine decreased activations in the right inferior frontal gyrus and anterior cingulate cortex, which were correlated with the improvement in inhibitory control assessed by the RVP. Also, atomoxetine increased activation in the left precuneus, which was correlated with the improvement in the mean latency of correct responses assessed by the DMS. Moreover, anterior cingulate activation in the pre-treatment was able to predict the improvements of clinical symptoms. Treatment with atomoxetine may improve inhibitory control to suppress interference and may enhance the visual processing to process numbers. In addition, the anterior cingulate cortex might play an important role as a biological marker for the treatment effectiveness of atomoxetine. Hum Brain Mapp 38:4850-4864, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Optic nerve sheath meningiomas: visual improvement after stereotactic radiotherapy.

    PubMed

    Liu, James K; Forman, Scott; Hershewe, Gerard L; Moorthy, Chitti R; Benzil, Deborah L

    2002-05-01

    The management of primary optic nerve sheath meningioma (ONSM) is controversial. Surgery often results in postoperative blindness in the affected eye and thus has been abandoned as a treatment option for most patients. When these tumors are left untreated, however, progressive visual impairment ensues, which also leads to blindness. Recently, radiation therapy has gained wider acceptance in the treatment of these lesions. Experience with stereotactic radiotherapy (SRT) in the treatment of ONSMs is limited because of the rare incidence of this tumor. We present a series of patients with ONSM who were treated with SRT. Five patients (three women, two men), ranging in age from 40 to 73 years, presented with progressive visual loss with decreased visual field, visual acuity, and color vision affecting six eyes (one patient had tumor involving both optic nerves). One patient also presented with proptosis and diplopia. Five eyes had functional residual vision (range, 20/20 to 20/40), and one eye was completely blind. All five patients were diagnosed clinically and radiographically to have an ONSM. Three were intraorbital, one was intracanalicular as well as intraorbital, and one was a left ONSM extending through the optic foramen into the intracranial space and involving the right optic nerve. The five functional eyes were treated with SRT by use of 1.8-Gy fractions to a cumulative dose of 45 to 54 Gy. Follow-up ranged from 1 to 7 years, and serial magnetic resonance imaging revealed no changes in the size of the tumor in all five patients. Four patients experienced dramatic improvement in visual acuity, visual field, and color vision within 3 months after SRT. One patient remained stable without evidence of visual deterioration or disease progression. None had radiation-induced optic neuropathy. SRT may be a viable option for treatment of primary ONSM in patients with documented progressive visual deterioration, and it may be effective in improving or stabilizing remaining functional vision.

  2. Can human amblyopia be treated in adulthood?

    PubMed

    Astle, Andrew T; McGraw, Paul V; Webb, Ben S

    2011-09-01

    Amblyopia is a common visual disorder that results in a spatial acuity deficit in the affected eye. Orthodox treatment is to occlude the unaffected eye for lengthy periods, largely determined by the severity of the visual deficit at diagnosis. Although this treatment is not without its problems (poor compliance, potential to reduce binocular function, etc) it is effective in many children with moderate to severe amblyopia. Diagnosis and initiation of treatment early in life are thought to be critical to the success of this form of therapy. Occlusion is rarely undertaken in older children (more than 10 years old) as the visual benefits are considered to be marginal. Therefore, in subjects where occlusion is not effective or those missed by mass screening programs, there is no alternative therapy available later in life. More recently, burgeoning evidence has begun to reveal previously unrecognized levels of residual neural plasticity in the adult brain and scientists have developed new genetic, pharmacological, and behavioral interventions to activate these latent mechanisms in order to harness their potential for visual recovery. Prominent amongst these is the concept of perceptual learning--the fact that repeatedly practicing a challenging visual task leads to substantial and enduring improvements in visual performance over time. In the normal visual system the improvements are highly specific to the attributes of the trained stimulus. However, in the amblyopic visual system, learned improvements have been shown to generalize to novel tasks. In this paper we ask whether amblyopic deficits can be reduced in adulthood and explore the pattern of transfer of learned improvements. We also show that developing training protocols that target the deficit in stereo acuity allows the recovery of normal stereo function even in adulthood. This information will help guide further development of learning-based interventions in this clinical group.

  3. Can human amblyopia be treated in adulthood?

    PubMed Central

    Astle, Andrew T.; McGraw, Paul V.; Webb, Ben S.

    2012-01-01

    Amblyopia is a common visual disorder that results in a spatial acuity deficit in the affected eye. Orthodox treatment is to occlude the unaffected eye for lengthy periods, largely determined by the severity of the visual deficit at diagnosis. Although this treatment is not without its problems (poor compliance, potential to reduce binocular function etc.) it is effective in many children with moderate to severe amblyopia. Diagnosis and initiation of treatment early in life are thought to be critical to the success of this form of therapy. Occlusion is rarely undertaken in older children (over 10 years old) as the visual benefits are considered to be marginal. Therefore, in subjects where occlusion is not effective or those missed by mass screening programmes there is no alternative therapy available later in life. More recently, burgeoning evidence has begun to reveal previously unrecognised levels of residual neural plasticity in the adult brain and scientists have developed new genetic, pharmacological and behavioural interventions to activate these latent mechanisms in order to harness their potential for visual recovery. Prominent amongst these is the concept of perceptual learning - the fact that repeatedly practicing a challenging visual task leads to substantial and enduring improvements in visual performance over time. In the normal visual system the improvements are highly specific to the attributes of the trained stimulus. However, in the amblyopic visual system learned improvements have been shown to generalize to novel tasks. In this paper we ask whether amblyopic deficits can be reduced in adulthood and explore the pattern of transfer of learned improvements. We also show that developing training protocols that target the deficit in stereo acuity allows the recovery of normal stereo function even in adulthood. This information will help guide further development of learning-based interventions in this clinical group. PMID:21870913

  4. A strategy for measuring patient preferences to incorporate in benefit-risk assessment of new ophthalmic devices and procedures

    NASA Astrophysics Data System (ADS)

    Massof, R. W.; Bradley, C.

    2016-11-01

    The U.S. Food and Drug Administration recently released guidance documents explaining that measurement of patient preferences should be considered during the pre-market approval process to specify patients’ tolerances for risk and perspectives on benefit when assessing the benefit-risk profile of new medical devices. For ophthalmological patients, the typical primary clinical outcome is a visual impairment measure. Especially for surgically- implanted devices, the benefit a specified improvement in vision measures must be translated to a patient-specific benefit of the improvement in ability to function in everyday life. We developed, and validated with simulations, a strategy for measuring an individual patient's ability to function and the overall benefit to that patient of specified improvements in functional ability. Our strategy employs Rasch analysis to measure changes in functional ability; multidimensional scaling to measure patient-specific benefits of changes in functional ability; and structural equation modeling to cross-walk patient preferences for functional ability changes to changes in visual impairment measures.

  5. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology.

    PubMed

    Wei, Qing; Khan, Ishita K; Ding, Ziyun; Yerneni, Satwica; Kihara, Daisuke

    2017-03-20

    The number of genomics and proteomics experiments is growing rapidly, producing an ever-increasing amount of data that are awaiting functional interpretation. A number of function prediction algorithms were developed and improved to enable fast and automatic function annotation. With the well-defined structure and manual curation, Gene Ontology (GO) is the most frequently used vocabulary for representing gene functions. To understand relationship and similarity between GO annotations of genes, it is important to have a convenient pipeline that quantifies and visualizes the GO function analyses in a systematic fashion. NaviGO is a web-based tool for interactive visualization, retrieval, and computation of functional similarity and associations of GO terms and genes. Similarity of GO terms and gene functions is quantified with six different scores including protein-protein interaction and context based association scores we have developed in our previous works. Interactive navigation of the GO function space provides intuitive and effective real-time visualization of functional groupings of GO terms and genes as well as statistical analysis of enriched functions. We developed NaviGO, which visualizes and analyses functional similarity and associations of GO terms and genes. The NaviGO webserver is freely available at: http://kiharalab.org/web/navigo .

  6. How to help children with neurodevelopmental and visual problems: a scoping review

    PubMed Central

    Williams, C; Northstone, K; Borwick, C; Gainsborough, M; Roe, J; Howard, S; Rogers, S; Amos, J; Woodhouse, J M

    2014-01-01

    Children with visual impairment and a condition affecting their neurodevelopment (children with VND) may require extensive and specialised help but evidence on the most effective strategies for visual improvement is lacking. We defined a PICO format (Population, Intervention, Comparator, Outcome) for a scoping review and systematically searched 13 databases. Two reviewers assessed the abstracts for inclusion and a third arbitrated in cases of disagreement. We abstracted data from included studies. We found 4450 abstracts from which we identified 107 papers for inclusion. Of these, 42 related to interventions involving a change in visual input or function: 5 controlled trials, 8 before and after studies and 29 case reports. The strongest evidence supported the provision of spectacles to improve distance or near vision and the use of ultraviolet light as environmental modification for training. Less strong but suggestive evidence supported training/practice routines to improve acuity or oculomotor control. Interventions exist to help children with VND and current recommendations that they are assessed by a vision specialist are supported by the evidence. More information is needed on the effectiveness of training/practice programmes which may promote improved function, and of environmental modifications to facilitate engagement of children with VND with the surroundings. PMID:24158842

  7. Ophthalmological outcome after resection of tumors based on the pineal gland.

    PubMed

    Hart, Michael G; Sarkies, Nicholas J; Santarius, Thomas; Kirollos, Ramez W

    2013-08-01

    Descriptions of visual dysfunction in pineal gland tumors tend to focus on upward gaze palsy alone. The authors aimed to characterize the nature, incidence, and functional significance of ophthalmological dysfunction after resection of tumors based on the pineal gland. Review of a retrospective case series was performed and included consecutive patients who underwent surgery performed by a consultant neurosurgeon between 2002 and 2011. Only tumors specifically based on the pineal gland were included; tumors encroaching on the pineal gland from other regions were excluded. All patients with visual signs and/or symptoms were reviewed by a specialist consultant neuroophthalmologist to accurately characterize the nature of their deficits. Visual disturbance was defined as visual symptoms caused by a disturbance of ocular motility. A total of 20 patients underwent resection of pineal gland tumors. Complete resection was obtained in 85%, and there were no perioperative deaths. Visual disturbance was present in 35% at presentation; of those who had normal ocular motility preoperatively 82% had normal motility postoperatively. In total, 55% of patients had residual visual disturbance postoperatively. Although upward gaze tended to improve, significant functional deficits remained, particularly with regard to complex convergence and accommodation dysfunction. Prisms were used in 25% but were only ever partially effective. Visual outcome was only related to preoperative visual status and tumor volume (multivariate analysis). Long-term visual morbidity after pineal gland tumor resection is common and leads to significant functional impairment. Improvement in deficits rarely occurs spontaneously, and prisms only have limited effectiveness, probably due to the dynamic nature of supranuclear ocular movement coordination.

  8. A randomized controlled trial comparing 2 interventions for visual field loss with standard occupational therapy during inpatient stroke rehabilitation.

    PubMed

    Mödden, Claudia; Behrens, Marion; Damke, Iris; Eilers, Norbert; Kastrup, Andreas; Hildebrandt, Helmut

    2012-06-01

    Compensatory and restorative treatments have been developed to improve visual field defects after stroke. However, no controlled trials have compared these interventions with standard occupational therapy (OT). A total of 45 stroke participants with visual field defect admitted for inpatient rehabilitation were randomized to restorative computerized training (RT) using computer-based stimulation of border areas of their visual field defects or to a computer-based compensatory therapy (CT) teaching a visual search strategy. OT, in which different compensation strategies were used to train for activities of daily living, served as standard treatment for the active control group. Each treatment group received 15 single sessions of 30 minutes distributed over 3 weeks. The primary outcome measures were visual field expansion for RT, visual search performance for CT, and reading performance for both treatments. Visual conjunction search, alertness, and the Barthel Index were secondary outcomes. Compared with OT, CT resulted in a better visual search performance, and RT did not result in a larger expansion of the visual field. Intragroup pre-post comparisons demonstrated that CT improved all defined outcome parameters and RT several, whereas OT only improved one. CT improved functional deficits after visual field loss compared with standard OT and may be the intervention of choice during inpatient rehabilitation. A larger trial that includes lesion location in the analysis is recommended.

  9. Deep brain stimulation does not change neurovascular coupling in non-motor visual cortex: an autonomic and visual evoked blood flow velocity response study.

    PubMed

    Azevedo, Elsa; Santos, Rosa; Freitas, João; Rosas, Maria-José; Gago, Miguel; Garrett, Carolina; Rosengarten, Bernhard

    2010-11-01

    In Parkinson's disease (PD) subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function. Also an effect on the neurovascular coupling in motor cortex was reported due to a parallel activation of a subthalamic vasodilator area (SVA). To address this issue further we analysed neurovascular coupling in a non-motor area. Twenty PD patients selected for bilateral STN-DBS were investigated with functional transcranial Doppler (f-TCD) before and after surgery. Hemodynamic responses to visual stimulation were registered in left posterior cerebral artery (PCA) and analysed with a control-system approach (parameters gain, rate time, attenuation and natural frequency). To exclude autonomic effects of STN-DBS, we also addressed spectrum analysis of heart rate and of systolic arterial blood pressure variability, and baroreceptor gain. Findings in the PD group were compared with healthy age-matched controls. PD patients showed no neurovascular coupling changes in PCA territory, compared to controls, and STN-DBS changed neither blood flow regulatory parameters nor autonomic function. Improvement of vasoregulation in some motor cortical areas after STN-DBS might be related to an improved neuronal functional rather than indicating an effect on the neurovascular coupling or autonomic function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    PubMed

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  11. Combining visual rehabilitative training and noninvasive brain stimulation to enhance visual function in patients with hemianopia: a comparative case study.

    PubMed

    Plow, Ela B; Obretenova, Souzana N; Halko, Mark A; Kenkel, Sigrid; Jackson, Mary Lou; Pascual-Leone, Alvaro; Merabet, Lotfi B

    2011-09-01

    To standardize a protocol for promoting visual rehabilitative outcomes in post-stroke hemianopia by combining occipital cortical transcranial direct current stimulation (tDCS) with Vision Restoration Therapy (VRT). A comparative case study assessing feasibility and safety. A controlled laboratory setting. Two patients, both with right hemianopia after occipital stroke damage. METHODS AND OUTCOME MEASUREMENTS: Both patients underwent an identical VRT protocol that lasted 3 months (30 minutes, twice a day, 3 days per week). In patient 1, anodal tDCS was delivered to the occipital cortex during VRT training, whereas in patient 2 sham tDCS with VRT was performed. The primary outcome, visual field border, was defined objectively by using high-resolution perimetry. Secondary outcomes included subjective characterization of visual deficit and functional surveys that assessed performance on activities of daily living. For patient 1, the neural correlates of visual recovery were also investigated, by using functional magnetic resonance imaging. Delivery of combined tDCS with VRT was feasible and safe. High-resolution perimetry revealed a greater shift in visual field border for patient 1 versus patient 2. Patient 1 also showed greater recovery of function in activities of daily living. Contrary to the expectation, patient 2 perceived greater subjective improvement in visual field despite objective high-resolution perimetry results that indicated otherwise. In patient 1, visual function recovery was associated with functional magnetic resonance imaging activity in surviving peri-lesional and bilateral higher-order visual areas. Results of preliminary case comparisons suggest that occipital cortical tDCS may enhance recovery of visual function associated with concurrent VRT through visual cortical reorganization. Future studies may benefit from incorporating protocol refinements such as those described here, which include global capture of function, control for potential confounds, and investigation of underlying neural substrates of recovery. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  12. Outcomes of cataract surgery with residents as primary surgeons in the Veterans Affairs Healthcare System.

    PubMed

    Payal, Abhishek R; Gonzalez-Gonzalez, Luis A; Chen, Xi; Cakiner-Egilmez, Tulay; Chomsky, Amy; Baze, Elizabeth; Vollman, David; Lawrence, Mary G; Daly, Mary K

    2016-03-01

    To explore visual outcomes, functional visual improvement, and events in resident-operated cataract surgery cases. Veterans Affairs Ophthalmic Surgery Outcomes Database Project across 5 Veterans Affairs Medical Centers. Retrospective data analysis of deidentified data. Cataract surgery cases with residents as primary surgeons were analyzed for logMAR corrected distance visual acuity (CDVA) and vision-related quality of life (VRQL) measured by the modified National Eye Institute Vision Function Questionnaire and 30 intraoperative and postoperative events. In some analyses, cases without events (Group A) were compared with cases with events (Group B). The study included 4221 cataract surgery cases. Preoperative to postoperative CDVA improved significantly in both groups (P < .0001), although the level of improvement was less in Group B (P = .03). A CDVA of 20/40 or better was achieved in 96.64% in Group A and 88.25% in Group B (P < .0001); however, Group B had a higher prevalence of preoperative ocular comorbidities (P < .0001). Cases with 1 or more events were associated with a higher likelihood of a postoperative CDVA worse than 20/40 (odds ratio, 3.82; 95% confidence interval, 2.92-5.05; P < .0001) than those who did not experience an event. Both groups had a significant increase in VRQL from preoperative levels (both P < .0001); however, the level of preoperative to postoperative VRQL improvement was significantly less in Group B (P < .0001). Resident-operated cases with and without events had an overall significant improvement in visual acuity and visual function compared with preoperatively, although this improvement was less marked in those that had an event. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Visual Perceptual Learning and Models.

    PubMed

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  14. Perceptual training yields rapid improvements in visually impaired youth.

    PubMed

    Nyquist, Jeffrey B; Lappin, Joseph S; Zhang, Ruyuan; Tadin, Duje

    2016-11-30

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events.

  15. Long-term outcomes of gene therapy for the treatment of Leber's hereditary optic neuropathy.

    PubMed

    Yang, Shuo; Ma, Si-Qi; Wan, Xing; He, Heng; Pei, Han; Zhao, Min-Jian; Chen, Chen; Wang, Dao-Wen; Dong, Xiao-Yan; Yuan, Jia-Jia; Li, Bin

    2016-08-01

    Leber's hereditary optic neuropathy (LHON) is a disease that leads to blindness. Gene therapy has been investigated with some success, and could lead to important advancements in treating LHON. This was a prospective, open-label trial involving 9 LHON patients at Tongji Hospital, Wuhan, China, from August 2011 to December 2015. The purpose of this study was to evaluate the long-term outcomes of gene therapy for LHON. Nine LHON patients voluntarily received an intravitreal injection of rAAV2-ND4. Systemic examinations and visual function tests were performed during the 36-month follow-up period to determine the safety and efficacy of this gene therapy. Based on successful experiments in an animal model of LHON, 1 subject also received an rAAV2-ND4 injection in the second eye 12months after gene therapy was administered in the first eye. Recovery of visual acuity was defined as the primary outcome of this study. Changes in the visual field, visual evoked potential (VEP), optical coherence tomography findings, liver and kidney function, and antibodies against AAV2 were defined as secondary endpoints. Eight patients (Patients 2-9) received unilateral gene therapy and visual function improvement was observed in both treated eyes (Patients 4, 6, 7, and 8) and untreated eyes (Patients 2, 3, 4, 6 and 8). Visual regression fluctuations, defined as changes in visual acuity greater than or equal to 0.3 logMAR, were observed in Patients 2 and 9. Age at disease onset, disease duration, and the amount of remaining optic nerve fibers did not have a significant effect on the visual function improvement. The visual field and pattern reversal VEP also improved. The patient (Patient 1) who received gene therapy in both eyes had improved visual acuity in the injected eye after the first treatment. Unfortunately, visual acuity in this eye decreased 3months after he received gene therapy in the second eye. Animal experiments suggested that ND4 expression remains stable in the contralateral eye after intravitreal injections. No serious safety problem was observed in the 3-year follow-up of the 9 participants enrolled in this virus-based gene therapy. Meanwhile, our results support the use of intravitreal rAAV2-ND4 as an aggressive maneuver in our clinical trial. Further study in additional patients and in these 9 subjects is needed to better understand the effects of rAAV2-ND4 gene therapy on LHON and to increase the applications of this technique. Copyright © 2016 The Ohio State University Wexner Medical Center. Published by Elsevier B.V. All rights reserved.

  16. Are Covert Saccade Functionally Relevant in Vestibular Hypofunction?

    PubMed

    Hermann, R; Pelisson, D; Dumas, O; Urquizar, Ch; Truy, E; Tilikete, C

    2018-06-01

    The vestibulo-ocular reflex maintains gaze stabilization during angular or linear head accelerations, allowing adequate dynamic visual acuity. In case of bilateral vestibular hypofunction, patients use saccades to compensate for the reduced vestibulo-ocular reflex function, with covert saccades occurring even during the head displacement. In this study, we questioned whether covert saccades help maintain dynamic visual acuity, and evaluated which characteristic of these saccades are the most relevant to improve visual function. We prospectively included 18 patients with chronic bilateral vestibular hypofunction. Subjects underwent evaluation of dynamic visual acuity in the horizontal plane as well as video recording of their head and eye positions during horizontal head impulse tests in both directions (36 ears tested). Frequency, latency, consistency of covert saccade initiation, and gain of covert saccades as well as residual vestibulo-ocular reflex gain were calculated. We found no correlation between residual vestibulo-ocular reflex gain and dynamic visual acuity. Dynamic visual acuity performance was however positively correlated with the frequency and gain of covert saccades and negatively correlated with covert saccade latency. There was no correlation between consistency of covert saccade initiation and dynamic visual acuity. Even though gaze stabilization in space during covert saccades might be of very short duration, these refixation saccades seem to improve vision in patients with bilateral vestibular hypofunction during angular head impulses. These findings emphasize the need for specific rehabilitation technics that favor the triggering of covert saccades. The physiological origin of covert saccades is discussed.

  17. Standard-Fractionated Radiotherapy for Optic Nerve Sheath Meningioma: Visual Outcome Is Predicted by Mean Eye Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abouaf, Lucie; Girard, Nicolas; Claude Bernard University, Lyon

    2012-03-01

    Purpose: Radiotherapy has shown its efficacy in controlling optic nerve sheath meningiomas (ONSM) tumor growth while allowing visual acuity to improve or stabilize. However, radiation-induced toxicity may ultimately jeopardize the functional benefit. The purpose of this study was to identify predictive factors of poor visual outcome in patients receiving radiotherapy for ONSM. Methods and Materials: We conducted an extensive analysis of 10 patients with ONSM with regard to clinical, radiologic, and dosimetric aspects. All patients were treated with conformal radiotherapy and subsequently underwent biannual neuroophthalmologic and imaging assessments. Pretreatment and posttreatment values of visual acuity and visual field were comparedmore » with Wilcoxon's signed rank test. Results: Visual acuity values significantly improved after radiotherapy. After a median follow-up time of 51 months, 6 patients had improved visual acuity, 4 patients had improved visual field, 1 patient was in stable condition, and 1 patient had deteriorated visual acuity and visual field. Tumor control rate was 100% at magnetic resonance imaging assessment. Visual acuity deterioration after radiotherapy was related to radiation-induced retinopathy in 2 patients and radiation-induced mature cataract in 1 patient. Study of radiotherapy parameters showed that the mean eye dose was significantly higher in those 3 patients who had deteriorated vision. Conclusions: Our study confirms that radiotherapy is efficient in treating ONSM. Long-term visual outcome may be compromised by radiation-induced side effects. Mean eye dose has to be considered as a limiting constraint in treatment planning.« less

  18. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning

    PubMed Central

    Larcombe, Stephanie J.; Kennard, Chris

    2017-01-01

    Abstract Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145–156, 2018. © 2017 Wiley Periodicals, Inc. PMID:28963815

  19. Comparison of Neurocognitive Outcomes after Carotid Endarterectomy and Carotid Artery Stenting.

    PubMed

    Kim, Jerry J; Schwartz, Samuel; Wen, Johnny; deVirgilio, Christian; Lobue, Abeline; Walot, Irwin; Koopmann, Matthew; Donayre, Carlos; White, Rodney A

    2015-10-01

    Cognitive and emotional outcomes after carotid endarterectomy (CEA) and carotid artery stenting with embolic protection device (CAS + EPD) are not clear. Patients were entered prospectively into a United States Food and Drug Administration-approved single-center physician-sponsored investigational device exemption between 2004 and 2010 and received either CEA or CAS + EPD. Patients underwent cognitive testing preprocedure and at 6, 12, and 60 months postprocedure. Cognitive domains assessed included attention, memory, executive, motor function, visual spatial functioning, language, and processing speed. Beck Depression and anxiety scales were also compared. There were a total of 38 patients that met conventional indications for carotid surgery (symptomatic with ≥50% stenosis or asymptomatic with ≥70% stenosis)-12 patients underwent CEA, whereas 26 patients underwent CAS + EPD. Both CEA and CAS + EPD patients showed postprocedure improvement in memory and executive function. No differences were seen at follow-up in regards to emotional dysfunction (depression and anxiety), attention, visual spatial functioning, language, motor function, and processing speed. Only two patients underwent neuropsychiatric testing at 60 months-these CAS + EPD patients showed sustained improvement in memory, visual spatial, and executive functions. In conclusion, cognitive and emotional outcomes were similar between CEA and CAS + EPD patients.

  20. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263

  1. Long-Term Effect of Gene Therapy on Leber’s Congenital Amaurosis

    PubMed Central

    Bainbridge, J.W.B.; Mehat, M.S.; Sundaram, V.; Robbie, S.J.; Barker, S.E.; Ripamonti, C.; Georgiadis, A.; Mowat, F.M.; Beattie, S.G.; Gardner, P.J.; Feathers, K.L.; Luong, V.A.; Yzer, S.; Balaggan, K.; Viswanathan, A.; de Ravel, T.J.L.; Casteels, I.; Holder, G.E.; Tyler, N.; Fitzke, F.W.; Weleber, R.G.; Nardini, M.; Moore, A.T.; Thompson, D.A.; Petersen-Jones, S.M.; Michaelides, M.; van den Born, L.I.; Stockman, A.; Smith, A.J.; Rubin, G.; Ali, R.R.

    2015-01-01

    BACKGROUND Mutations in RPE65 cause Leber’s congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. METHODS We performed a phase 1–2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, and measured visual function over the course of 3 years. Four participants were administered a lower dose of the vector, and 8 were administered a higher dose. In a parallel study in dogs, we investigated the relationship among vector dose, visual function, and electroretinography (ERG) findings. RESULTS Improvements in retinal sensitivity were evident, to varying extents, in six participants for up to 3 years, peaking at 6 to 12 months after treatment and then declining. No associated improvement in retinal function was detected by means of ERG. Three participants had intraocular inflammation, and two had clinically significant deterioration of visual acuity. The reduction in central retinal thickness varied among participants. In dogs, RPE65 gene therapy with the same vector at lower doses improved vision-guided behavior, but only higher doses resulted in improvements in retinal function that were detectable with the use of ERG. CONCLUSIONS Gene therapy with rAAV2/2 RPE65 vector improved retinal sensitivity, albeit modestly and temporarily. Comparison with the results obtained in the dog model indicates that there is a species difference in the amount of RPE65 required to drive the visual cycle and that the demand for RPE65 in affected persons was not met to the extent required for a durable, robust effect. (Funded by the National Institute for Health Research and others; ClinicalTrials.gov number, NCT00643747.) PMID:25938638

  2. Training-Induced Recovery of Low-Level Vision Followed by Mid-Level Perceptual Improvements in Developmental Object and Face Agnosia

    ERIC Educational Resources Information Center

    Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L.; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri

    2015-01-01

    Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental…

  3. Survey of Network Visualization Tools

    DTIC Science & Technology

    2007-12-01

    Dimensionality • 2D Comments: Deployment Type: • Components for tool building • Standalone Tool OS: • Windows Extensibility • ActiveX ...Visual Basic Comments: Interoperability Daisy is fully compliant with Microsoft’s ActiveX , therefore, other Windows based programs can...other functions that improve analytic decision making. Available in ActiveX , C++, Java, and .NET editions. • Tom Sawyer Visualization: Enables you to

  4. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment

    PubMed Central

    Lee, Christine; Tu, Hong Anh; Weir, Mark; Holubowich, Corinne

    2016-01-01

    Background Retinitis pigmentosa is a group of genetic disorders that involves the breakdown and loss of photoreceptors in the retina, resulting in progressive retinal degeneration and eventual blindness. The Argus II Retinal Prosthesis System is the only currently available surgical implantable device approved by Health Canada. It has been shown to improve visual function in patients with severe visual loss from advanced retinitis pigmentosa. The objective of this analysis was to examine the clinical effectiveness, cost-effectiveness, budget impact, and safety of the Argus II system in improving visual function, as well as exploring patient experiences with the system. Methods We performed a systematic search of the literature for studies examining the effects of the Argus II retinal prosthesis system in patients with advanced retinitis pigmentosa, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on visual function, functional outcomes, quality of life, and adverse events. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care over a 10-year time horizon. We also conducted a 5-year budget impact analysis. We used a qualitative design and an interview methodology to examine patients’ lived experience, and we used a modified grounded theory methodology to analyze information from interviews. Transcripts were coded, and themes were compared against one another. Results One multicentre international study and one single-centre study were included in the clinical review. In both studies, patients showed improved visual function with the Argus II system. However, the sight-threatening surgical complication rate was substantial. In the base-case analysis, the Argus II system was cost-effective compared with standard care only if willingness-to-pay was more than $207,616 per quality-adjusted life-year. The 5-year budget impact of funding the Argus II system ranged from $800,404 to $837,596. Retinitis pigmentosa significantly affects people's ability to navigate physical and virtual environments. Argus II was described as enabling the fundamental elements of sight. As such, it had a positive impact on quality of life for people with retinitis pigmentosa. Conclusions Based on evidence of moderate quality, patients with advanced retinitis pigmentosa who were implanted with the Argus II retinal prosthesis system showed significant improvement in visual function, real-life functional outcomes, and quality of life, but there were complications associated with the surgery that could be managed through standard ophthalmologic treatments. The costs for the technology are high. PMID:27468325

  5. Retinal Prosthesis System for Advanced Retinitis Pigmentosa: A Health Technology Assessment.

    PubMed

    2016-01-01

    Retinitis pigmentosa is a group of genetic disorders that involves the breakdown and loss of photoreceptors in the retina, resulting in progressive retinal degeneration and eventual blindness. The Argus II Retinal Prosthesis System is the only currently available surgical implantable device approved by Health Canada. It has been shown to improve visual function in patients with severe visual loss from advanced retinitis pigmentosa. The objective of this analysis was to examine the clinical effectiveness, cost-effectiveness, budget impact, and safety of the Argus II system in improving visual function, as well as exploring patient experiences with the system. We performed a systematic search of the literature for studies examining the effects of the Argus II retinal prosthesis system in patients with advanced retinitis pigmentosa, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on visual function, functional outcomes, quality of life, and adverse events. We developed a Markov decision-analytic model to assess the cost-effectiveness of the Argus II system compared with standard care over a 10-year time horizon. We also conducted a 5-year budget impact analysis. We used a qualitative design and an interview methodology to examine patients' lived experience, and we used a modified grounded theory methodology to analyze information from interviews. Transcripts were coded, and themes were compared against one another. One multicentre international study and one single-centre study were included in the clinical review. In both studies, patients showed improved visual function with the Argus II system. However, the sight-threatening surgical complication rate was substantial. In the base-case analysis, the Argus II system was cost-effective compared with standard care only if willingness-to-pay was more than $207,616 per quality-adjusted life-year. The 5-year budget impact of funding the Argus II system ranged from $800,404 to $837,596. Retinitis pigmentosa significantly affects people's ability to navigate physical and virtual environments. Argus II was described as enabling the fundamental elements of sight. As such, it had a positive impact on quality of life for people with retinitis pigmentosa. Based on evidence of moderate quality, patients with advanced retinitis pigmentosa who were implanted with the Argus II retinal prosthesis system showed significant improvement in visual function, real-life functional outcomes, and quality of life, but there were complications associated with the surgery that could be managed through standard ophthalmologic treatments. The costs for the technology are high.

  6. [Quality of life of visually impaired adults after low-vision intervention: a pilot study].

    PubMed

    Fintz, A-C; Gottenkiene, S; Speeg-Schatz, C

    2011-10-01

    To demonstrate the benefits of a low-vision intervention upon the quality of life of visually disabled adults. The survey was proposed to patients who sought a low-vision intervention at the Colmar and Strasbourg hospital centres over a period of 9 months. Patients in agreement with the survey were asked to complete the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ25) in interview format by telephone, once they had attended the first meeting and again 2 months after the end of the low-vision intervention. The low-vision intervention led to overall improvement as judged by the 25 items of the questionnaire. Some items involving visual function and psychological issues showed significant benefits: the patients reported a more optimistic score concerning their general vision, described better nearby activities, and felt a bit more autonomous. More than mainstream psychological counselling, low-vision services help patients cope with visual disabilities during their daily life. The low-vision intervention improves physical and technical issues necessary to retaining autonomy in daily life. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Visual function after strontium-90 plaque irradiation in patients with age-related subfoveal choroidal neovascularization.

    PubMed

    Jaakkola, A; Heikkonen, J; Tarkkanen, A; Immonen, I

    1999-02-01

    To report 2-year visual and angiographic results in eyes treated with strontium plaque irradiation for subfoveal choroidal neovascular membranes (CNVM) in age-related macular degeneration. Twenty eyes with recent subfoveal CNVM were treated with local irradiation. The impact of the treatment on visual function was evaluated by visual acuity, contrast sensitivity and reading speed testing. At 12 months visual acuity had improved or remained the same in 9/ 20 eyes (45%). At 24 months visual acuity was stable in 5/18 eyes (28%). Eyes with signs of CNVM regression (13/18, 72%) lost a mean of 3.3 lines, but eyes with recurrent CNVM lost a mean of 5.1 lines of vision. The mean contrast sensitivity was better in the irradiated eyes than in the fellow eyes with late age-related macular degeneration at 24 months. Six of 17 irradiated eyes (35%) could read at least some words at 24 months. Visual function decreases in patients treated with strontium irradiation, but less in eyes showing regression of the CNVM than in eyes with further growth of the CNVM.

  8. Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation.

    PubMed

    Plow, Ela B; Obretenova, Souzana N; Fregni, Felipe; Pascual-Leone, Alvaro; Merabet, Lotfi B

    2012-01-01

    Vision Restoration Therapy (VRT) aims to improve visual field function by systematically training regions of residual vision associated with the activity of suboptimal firing neurons within the occipital cortex. Transcranial direct current stimulation (tDCS) has been shown to modulate cortical excitability. Assess the possible efficacy of tDCS combined with VRT. The authors conducted a randomized, double-blind, demonstration-of-concept pilot study where participants were assigned to either VRT and tDCS or VRT and sham. The anode was placed over the occipital pole to target both affected and unaffected lobes. One hour training sessions were carried out 3 times per week for 3 months in a laboratory. Outcome measures included objective and subjective changes in visual field, recording of visual fixation performance, and vision-related activities of daily living (ADLs) and quality of life (QOL). Although 12 participants were enrolled, only 8 could be analyzed. The VRT and tDCS group demonstrated significantly greater expansion in visual field and improvement on ADLs compared with the VRT and sham group. Contrary to expectations, subjective perception of visual field change was greater in the VRT and sham group. QOL did not change for either group. The observed changes in visual field were unrelated to compensatory eye movements, as shown with fixation monitoring. The combination of occipital cortical tDCS with visual field rehabilitation appears to enhance visual functional outcomes compared with visual rehabilitation alone. TDCS may enhance inherent mechanisms of plasticity associated with training.

  9. A 12-Week Physical and Cognitive Exercise Program Can Improve Cognitive Function and Neural Efficiency in Community-Dwelling Older Adults: A Randomized Controlled Trial.

    PubMed

    Nishiguchi, Shu; Yamada, Minoru; Tanigawa, Takanori; Sekiyama, Kaoru; Kawagoe, Toshikazu; Suzuki, Maki; Yoshikawa, Sakiko; Abe, Nobuhito; Otsuka, Yuki; Nakai, Ryusuke; Aoyama, Tomoki; Tsuboyama, Tadao

    2015-07-01

    To investigate whether a 12-week physical and cognitive exercise program can improve cognitive function and brain activation efficiency in community-dwelling older adults. Randomized controlled trial. Kyoto, Japan. Community-dwelling older adults (N = 48) were randomized into an exercise group (n = 24) and a control group (n = 24). Exercise group participants received a weekly dual task-based multimodal exercise class in combination with pedometer-based daily walking exercise during the 12-week intervention phase. Control group participants did not receive any intervention and were instructed to spend their time as usual during the intervention phase. The outcome measures were global cognitive function, memory function, executive function, and brain activation (measured using functional magnetic resonance imaging) associated with visual short-term memory. Exercise group participants had significantly greater postintervention improvement in memory and executive functions than the control group (P < .05). In addition, after the intervention, less activation was found in several brain regions associated with visual short-term memory, including the prefrontal cortex, in the exercise group (P < .001, uncorrected). A 12-week physical and cognitive exercise program can improve the efficiency of brain activation during cognitive tasks in older adults, which is associated with improvements in memory and executive function. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  10. Cognitive functioning following traumatic brain injury: A five-year follow-up.

    PubMed

    Marsh, Nigel V; Ludbrook, Maria R; Gaffaney, Lauren C

    2016-01-01

    To describe the long-term prevalence and severity of cognitive deficits following significant (i.e., ventilation required for >24 hours) traumatic brain injury. To assess a comprehensive range of cognitive functions using psychometric measures with established normative, reliability, and validity data. A group of 71 adults was assessed at approximately five years (mean = 66 months) following injury. Assessment of cognitive functioning covered the domains of intelligence, attention, verbal and visual memory, visual-spatial construction, and executive functions. Impairment was evident across all domains but prevalence varied both within and between domains. Across aspects of intelligence clinical impairment ranged from 8-25% , attention 39-62% , verbal memory 16-46% , visual memory 23-51% , visual-spatial construction 38% , and executive functions (verbal fluency) 13% . In addition, 3-23% of performances across the measures were in the borderline range, suggesting a high prevalence of subclinical deficit. Although the prevalence of impairment may vary across cognitive domains, long-term follow-up documented deficits in all six domains. These findings provide further evidence that while improvement of cognitive functioning following significant traumatic brain injury may be possible, recovery of function is unlikely.

  11. Prentice Award Lecture 2011: Removing the Brakes on Plasticity in the Amblyopic Brain

    PubMed Central

    Levi, Dennis M.

    2012-01-01

    Experience-dependent plasticity is closely linked with the development of sensory function. Beyond this sensitive period, developmental plasticity is actively limited; however, new studies provide growing evidence for plasticity in the adult visual system. The amblyopic visual system is an excellent model for examining the “brakes” that limit recovery of function beyond the critical period. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. However new clinical and experimental studies in both animals and humans provide evidence for neural plasticity beyond the critical period. The results suggest that perceptual learning and video game play may be effective in improving a range of visual performance measures and importantly the improvements may transfer to better visual acuity and stereopsis. These findings, along with the results of new clinical trials, suggest that it might be time to re-consider our notions about neural plasticity in amblyopia. PMID:22581119

  12. Efficacy of vision restoration therapy after optic neuritis (VISION study): study protocol for a randomized controlled trial.

    PubMed

    Schinzel, Johann; Schwarzlose, Lina; Dietze, Holger; Bartusch, Karolina; Weiss, Susanne; Ohlraun, Stephanie; Paul, Friedemann; Dörr, Jan

    2012-06-28

    Optic neuritis is a frequent manifestation of multiple sclerosis. Visual deficits range from a minor impairment of visual functions through to complete loss of vision. Although many patients recover almost completely, roughly 35% of patients remain visually impaired for years, and therapeutic options for those patients hardly exist. Vision restoration therapy is a software-based visual training program that has been shown to improve visual deficits after pre- and postchiasmatic injury. The aim of this pilot study is to evaluate whether residual visual deficits after past or recent optic neuritis can be reduced by means of vision restoration therapy. A randomized, controlled, patient- and observer-blinded clinical pilot study (VISION study) was designed to evaluate the efficacy of vision restoration therapy in optic neuritis patients. Eighty patients with a residual visual deficit after optic neuritis (visual acuity ≤0.7 and/or scotoma) will be stratified according to the time of optic neuritis onset (manifestation more than 12 months ago (40 patients, fixed deficit) versus manifestation 2 to 6 months ago (40 patients, recent optic neuritis)), and randomized into vision restoration therapy arm or saccadic training arm (control intervention). Patients will be instructed to complete a computer-based visual training for approximately 30 minutes each day for a period of 6 months. Patients and evaluators remain blinded to the treatment allocation throughout the study. All endpoints will be analyzed and P-values < 0.05 will be considered statistically significant. The primary outcome parameter will be the expansion of the visual field after 3 and 6 months of treatment as determined by static visual field perimetry and high resolution perimetry. Secondary outcome variables will include visual acuity at both low and high contrast, glare contrast sensitivity, visually evoked potentials, optical coherence tomography and other functional tests of the visual system, alertness, health-related quality of life, fatigue, and depression. If vision restoration therapy is shown to improve visual function after optic neuritis, this method might be a first therapeutic option for patients with incomplete recovery from optic neuritis. NCT01274702.

  13. Interventions for visual field defects in patients with stroke.

    PubMed

    Pollock, Alex; Hazelton, Christine; Henderson, Clair A; Angilley, Jayne; Dhillon, Baljean; Langhorne, Peter; Livingstone, Katrina; Munro, Frank A; Orr, Heather; Rowe, Fiona J; Shahani, Uma

    2011-10-05

    Visual field defects are estimated to affect 20% to 57% of people who have had a stroke. Visual field defects can affect functional ability in activities of daily living (commonly affecting mobility, reading and driving), quality of life, ability to participate in rehabilitation, and depression, anxiety and social isolation following stroke. There are many interventions for visual field defects, which are proposed to work by restoring the visual field (restitution); compensating for the visual field defect by changing behaviour or activity (compensation); substituting for the visual field defect by using a device or extraneous modification (substitution); or ensuring appropriate diagnosis, referral and treatment prescription through standardised assessment or screening, or both. To determine the effects of interventions for people with visual field defects after stroke. We searched the Cochrane Stroke Group Trials Register (February 2011), the Cochrane Eyes and Vision Group Trials Register (December 2009) and nine electronic bibliographic databases including CENTRAL (The Cochrane Library 2009, Issue 4), MEDLINE (1950 to December 2009), EMBASE (1980 to December 2009), CINAHL (1982 to December 2009), AMED (1985 to December 2009), and PsycINFO (1967 to December 2009). We also searched reference lists and trials registers, handsearched journals and conference proceedings and contacted experts. Randomised trials in adults after stroke, where the intervention was specifically targeted at improving the visual field defect or improving the ability of the participant to cope with the visual field loss. The primary outcome was functional ability in activities of daily living and secondary outcomes included functional ability in extended activities of daily living, reading ability, visual field measures, balance, falls, depression and anxiety, discharge destination or residence after stroke, quality of life and social isolation, visual scanning, adverse events and death. Two review authors independently screened abstracts, extracted data and appraised trials. We undertook an assessment of methodological quality for allocation concealment, blinding of outcome assessors, method of dealing with missing data, and other potential sources of bias. Thirteen studies (344 randomised participants, 285 of whom were participants with stroke) met the inclusion criteria for this review. However, only six of these studies compared the effect of an intervention with a placebo, control or no treatment group and were included in comparisons within this review. Four studies compared the effect of scanning (compensatory) training with a control or placebo intervention. Meta-analysis demonstrated that scanning training is more effective than control or placebo at improving reading ability (three studies, 129 participants; mean difference (MD) 3.24, 95% confidence interval (CI) 0.84 to 5.59) and visual scanning (three studies, 129 participants; MD 18.84, 95% CI 12.01 to 25.66) but that scanning may not improve visual field outcomes (two studies, 110 participants; MD -0.70, 95% CI -2.28 to 0.88). There were insufficient data to enable generalised conclusions to be made about the effectiveness of scanning training relative to control or placebo for the primary outcome of activities of daily living (one study, 33 participants). Only one study (19 participants) compared the effect of a restitutive intervention with a control or placebo intervention and only one study (39 participants) compared the effect of a substitutive intervention with a control or placebo intervention. There is limited evidence which supports the use of compensatory scanning training for patients with visual field defects (and possibly co-existing visual neglect) to improve scanning and reading outcomes. There is insufficient evidence to reach a conclusion about the impact of compensatory scanning training on functional activities of daily living. There is insufficient evidence to reach generalised conclusions about the benefits of visual restitution training (VRT) (restitutive intervention) or prisms (substitutive intervention) for patients with visual field defects after stroke.

  14. Evaluation of visual and computer-based CT analysis for the identification of functional patterns of obstruction and restriction in hypersensitivity pneumonitis.

    PubMed

    Jacob, Joseph; Bartholmai, Brian J; Brun, Anne Laure; Egashira, Ryoko; Rajagopalan, Srinivasan; Karwoski, Ronald; Kouranos, Vasileios; Kokosi, Maria; Hansell, David M; Wells, Athol U

    2017-11-01

    To determine whether computer-based quantification (CALIPER software) is superior to visual computed tomography (CT) scoring in the identification of CT patterns indicative of restrictive and obstructive functional indices in hypersensitivity pneumonitis (HP). A total of 135 consecutive HP patients had CT parenchymal patterns evaluated quantitatively by both visual scoring and CALIPER. Results were evaluated against: forced vital capacity (FVC), total lung capacity (TLC), diffusing capacity for carbon monoxide (DL CO ) and a composite physiological index (CPI) to identify which CT scoring method better correlated with functional indices. CALIPER-derived scores of total interstitial lung disease extent correlated more strongly than visual scores: FVC (CALIPER R = 0.73, visual R = 0.51); DL CO (CALIPER R = 0.61, visual R = 0.48); and CPI (CALIPER R = 0·70, visual R = 0·55). The CT variable that correlated most strongly with restrictive functional indices was CALIPER pulmonary vessel volume (PVV): FVC R = 0.75, DL CO R = 0.68 and CPI R = 0.76. Ground-glass opacity quantified by CALIPER alone demonstrated strong associations with restrictive functional indices: CALIPER FVC R = 0.65; DL CO R = 0.59; CPI R = 0.64; and visual = not significant. Decreased attenuation lung quantified by CALIPER was a better morphological measure of obstructive lung disease than equivalent visual scores as judged by relationships with TLC (CALIPER R = 0.63 and visual R = 0.12). All results were maintained on multivariate analysis. CALIPER improved on visual scoring in HP as judged by restrictive and obstructive functional correlations. Decreased attenuation regions of the lung quantified by CALIPER demonstrated better linkages to obstructive lung physiology than visually quantified CT scores. A novel CALIPER variable, the PVV, demonstrated the strongest linkages with restrictive functional indices and could represent a new automated index of disease severity in HP. © 2017 Asian Pacific Society of Respirology.

  15. Radial optic neurotomy for ischaemic central vein occlusion

    PubMed Central

    Martínez-Jardón, C S; Meza-de Regil, A; Dalma-Weiszhausz, J; Leizaola-Fernández, C; Morales-Cantón, V; Guerrero-Naranjo, J L; Quiroz-Mercado, H

    2005-01-01

    Background/aims: Ischaemic central retinal vein occlusion (CRVO) accounts for 20–50% of all CRVO. No treatment has been proved to be effective. The efficacy of radial optic neurotomy (RON) was evaluated in eyes with ischaemic CRVO. Methods: 10 patients with ischaemic CRVO underwent RON. After pars plana vitrectomy, a microvitreoretinal blade was used to incise the scleral ring, cribriform plate, and adjacent sclera at the nasal edge of the optic disc. Best corrected visual acuity (BCVA), intraocular pressure (IOP), fluorescein angiography (FA), multifocal electroretinography (mfERG), and optical coherence tomography (OCT) were measured preoperatively and at 1, 3, and 6 months postoperatively. Results: No visual improvement was noted in the eyes that underwent RON. FA and mfERG showed no increase in retinal perfusion or retinal function postoperatively. Mean macular central thickness changed from 841 (SD 170) μm preoperatively to 162 (SD 34) μm at the sixth postoperative month. One patient had retinal central artery perforation intraoperatively. One patient developed neovascular glaucoma. Conclusion: RON in ischaemic CRVO did not improve visual function (by mfERG) or visual acuity although macular thickness did improve. This technique may be associated with potential risks. Randomised studies are needed to corroborate these results. PMID:15834084

  16. Neuroplus biofeedback improves attention, resilience, and injury prevention in elite soccer players.

    PubMed

    Rusciano, Aiace; Corradini, Giuliano; Stoianov, Ivilin

    2017-06-01

    Performance and injury prevention in elite soccer players are typically investigated from physical-tactical, biomechanical, and metabolic perspectives. However, executive functions, visuospatial abilities, and psychophysiological adaptability or resilience are also fundamental for efficiency and well-being in sports. Based on previous research associating autonomic flexibility with prefrontal cortical control, we designed a novel integrated autonomic biofeedback training method called Neuroplus to improve resilience, visual attention, and injury prevention. Herein, we introduce the method and provide an evaluation of 20 elite soccer players from the Italian Soccer High Division (Serie-A): 10 players trained with Neuroplus and 10 trained with a control treatment. The assessments included psychophysiological stress profiles, a visual search task, and indexes of injury prevention, which were measured pre- and posttreatment. The analysis showed a significant enhancement of physiological adaptability, recovery following stress, visual selective attention, and injury prevention that were specific to the Neuroplus group. Enhancing the interplay between autonomic and cognitive functions through biofeedback may become a key principle for obtaining excellence and well-being in sports. To our knowledge, this is the first evidence that shows improvement in visual selective attention following intense autonomic biofeedback. © 2017 Society for Psychophysiological Research.

  17. Cognitive changes after cerebrospinal fluid shunting in young adults with spina bifida and assumed arrested hydrocephalus

    PubMed Central

    Mataro, M.; Poca, M. A.; Sahuquillo, J.; Cuxart, A.; Iborra, J.; de la Calzada, M. D.; Junque, C.

    2000-01-01

    OBJECTIVES—To establish whether surgery can improve the neuropsychological functioning of young adult patients with spina bifida and apparent clinically arrested hydrocephalus showing abnormal intracranial pressure.
METHODS—Twenty three young adults with spina bifida and assumed arrested hydrocephalus (diagnosed as active or compensated by continuous intracranial pressure monitoring) underwent surgery. All patients received neuropsychological examination before surgery and 6 months later. Neuropsychological assessment included tests of verbal and visual memory, visuospatial functions, speed of mental processing, and frontal lobe functions.
RESULTS—Shunt placement in this subgroup of patients improves neuropsychological functioning, especially in verbal and visual memory and attention and cognitive flexibility.
CONCLUSIONS—Young adults with spina bifida and suspected non-functioning shunt or non-shunted ventriculomegaly should be carefully monitored to identify those who could benefit from shunting.

 PMID:10766893

  18. Virtual reality training improves balance function.

    PubMed

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  19. Virtual reality training improves balance function

    PubMed Central

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  20. The relationship of global form and motion detection to reading fluency.

    PubMed

    Englund, Julia A; Palomares, Melanie

    2012-08-15

    Visual motion processing in typical and atypical readers has suggested aspects of reading and motion processing share a common cortical network rooted in dorsal visual areas. Few studies have examined the relationship between reading performance and visual form processing, which is mediated by ventral cortical areas. We investigated whether reading fluency correlates with coherent motion detection thresholds in typically developing children using random dot kinematograms. As a comparison, we also evaluated the correlation between reading fluency and static form detection thresholds. Results show that both dorsal and ventral visual functions correlated with components of reading fluency, but that they have different developmental characteristics. Motion coherence thresholds correlated with reading rate and accuracy, which both improved with chronological age. Interestingly, when controlling for non-verbal abilities and age, reading accuracy significantly correlated with thresholds for coherent form detection but not coherent motion detection in typically developing children. Dorsal visual functions that mediate motion coherence seem to be related maturation of broad cognitive functions including non-verbal abilities and reading fluency. However, ventral visual functions that mediate form coherence seem to be specifically related to accurate reading in typically developing children. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Perceptual training yields rapid improvements in visually impaired youth

    PubMed Central

    Nyquist, Jeffrey B.; Lappin, Joseph S.; Zhang, Ruyuan; Tadin, Duje

    2016-01-01

    Visual function demands coordinated responses to information over a wide field of view, involving both central and peripheral vision. Visually impaired individuals often seem to underutilize peripheral vision, even in absence of obvious peripheral deficits. Motivated by perceptual training studies with typically sighted adults, we examined the effectiveness of perceptual training in improving peripheral perception of visually impaired youth. Here, we evaluated the effectiveness of three training regimens: (1) an action video game, (2) a psychophysical task that combined attentional tracking with a spatially and temporally unpredictable motion discrimination task, and (3) a control video game. Training with both the action video game and modified attentional tracking yielded improvements in visual performance. Training effects were generally larger in the far periphery and appear to be stable 12 months after training. These results indicate that peripheral perception might be under-utilized by visually impaired youth and that this underutilization can be improved with only ~8 hours of perceptual training. Moreover, the similarity of improvements following attentional tracking and action video-game training suggest that well-documented effects of action video-game training might be due to the sustained deployment of attention to multiple dynamic targets while concurrently requiring rapid attending and perception of unpredictable events. PMID:27901026

  2. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning.

    PubMed

    Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly

    2018-01-01

    Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  3. Sounds Activate Visual Cortex and Improve Visual Discrimination

    PubMed Central

    Störmer, Viola S.; Martinez, Antigona; McDonald, John J.; Hillyard, Steven A.

    2014-01-01

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. PMID:25031419

  4. Cognitive and psychomotor effects of risperidone in schizophrenia and schizoaffective disorder.

    PubMed

    Houthoofd, Sofie A M K; Morrens, Manuel; Sabbe, Bernard G C

    2008-09-01

    The aim of this review was to discuss data from double-blind, randomized controlled trials (RCTs) that have investigated the effects of oral and long-acting injectable risperidone on cognitive and psychomotor functioning in patients with schizophrenia or schizoaffective disorder. PubMed/MEDLINE and the Institute of Scientific Information Web of Science database were searched for relevant English-language double-blind RCTs published between March 2000 and July 2008, using the terms schizophrenia, schizoaffective disorder, cognition, risperidone, psychomotor, processing speed, attention, vigilance, working memory, verbal learning, visual learning, reasoning, problem solving, social cognition, MATRICS, and long-acting. Relevant studies included patients with schizophrenia or schizoaffective disorder. Cognitive domains were delineated at the Consensus Conferences of the National Institute of Mental Health-Measurement And Treatment Research to Improve Cognition in Schizophrenia (NIMH-MATRICS). The tests employed to assess each domain and psychomotor functioning, and the within-group and between-group comparisons of risperidone with haloperidol and other atypical antipsychotics, are presented. The results of individual tests were included when they were individually presented and interpretable for either drug; outcomes that were presented as cluster scores or factor structures were excluded. A total of 12 articles were included in this review. Results suggested that the use of oral risperidone appeared to be associated with within-group improvements on the cognitive domains of processing speed, attention/vigilance, verbal and visual learning and memory, and reasoning and problem solving in patients with schizophrenia or schizoaffective disorder. Risperidone and haloperidol seemed to generate similar beneficial effects (on the domains of processing speed, attention/vigilance, [verbal and nonverbal] working memory, and visual learning and memory, as well as psychomotor functioning), although the results for verbal fluency, verbal learning and memory, and reasoning and problem solving were not unanimous, and no comparative data on social cognition were available. Similar cognitive effects were found with risperidone, olanzapine, and quetiapine on the domains of verbal working memory and reasoning and problem solving, as well as verbal fluency. More research is needed on the domains in which study results were contradictory. For olanzapine versus risperidone, these were verbal and visual learning and memory and psychomotor functioning. No comparative data for olanzapine and risperidone were available for the social cognition domain. For quetiapine versus risperidone, the domains in which no unanimity was found were processing speed, attention/vigilance, nonverbal working memory, and verbal learning and memory. The limited available reports on risperidone versus clozapine suggest that: risperidone was associated with improved, and clozapine with worsened, performance on the nonverbal working memory domain; risperidone improved and clozapine did not improve reasoning and problem-solving performance; clozapine improved, and risperidone did not improve, social cognition performance. Use of long-acting injectable risperidone seemed to be associated with improved performance in the domains of attention/vigilance, verbal learning and memory, and reasoning and problem solving, as well as psychomotor functioning. The results for the nonverbal working memory domain were indeterminate, and no clear improvement was seen in the social cognition domain. The domains of processing speed, verbal working memory, and visual learning and memory, as well as verbal fluency, were not assessed. The results of this review of within-group comparisons of oral risperidone suggest that the agent appeared to be associated with improved functioning in the cognitive domains of processing speed, attention/vigilance, verbal and visual learning and memory, and reasoning and problem solving in patients with schizophrenia or schizoaffective disorder. Long-acting injectable risperidone seemed to be associated with improved functioning in the domains of attention/vigilance, verbal learning and memory, and reasoning and problem solving, as well as psychomotor functioning, in patients with schizophrenia or schizoaffective disorder.

  5. Ranibizumab treatment in age-related macular degeneration: a meta-analysis of one-year results.

    PubMed

    Gerding, H

    2014-04-01

    Although ranibizumab is widely used in age-related macular degeneration there is no systematic data available on the relation between treatment frequency and functional efficacy within the first 12 months of follow-up. A meta-analysis was performed on available MEDLINE literature. 47 relevant clinical studies (54 case series) could be identified covering 11706 treated eyes. Non-linear and linear regressions were calculated for the relation between treatment frequency and functional outcome (average gain in visual acuity, % of eyes losing less than 15 letters of visual acuity, % of eyes gaining ≥ 15 letters) within the first year of care. Mean improvement of average visual gain was +4.9 ± 3.6 (mean ± 1 standard deviation) letters (case-weighted: 3.3 letters). The average number of ranibizumab injections until month 12 was 6.3 ± 2.0 (case-weighted: 5.9). 92.4 ± 3.9% of eyes (case-weighted: 91.9%) lost less than three lines of visual acuity and 24.5 ± 8.2% (case-weighted: 23.3) gained more than 3 lines within the first year. Analysis of the relation between the number of injections and functional improvement indicated best fit for non-linear equations. A nearly stepwise improvement of functional gain occurred between 6.8 and 7.2 injections/year. A saturation effect of treatment occurred at higher injection frequency. The results of this meta-analysis clearly indicate a non-linear relation between the number of injections and functional gain of ranibizumab within the first 12 months of treatment. Treatment saturation seems to occur at a treatment frequency >7.2 injections within the first 12 months. Georg Thieme Verlag KG Stuttgart · New York.

  6. Improving vision by pupil masking

    PubMed Central

    Bonaque-González, Sergio; Ríos-Rodríguez, Susana; López-Gil, Norberto

    2016-01-01

    We propose an alternative solution to improve visual quality by spatially modulating the amplitude of light passing into the eye (related to the eye's transmittance), in contrast to traditional correction of the wavefront phase (related to the local refractive power). Numerical simulations show that masking the aberrated areas at the pupil plane should enhance visual function, especially in highly aberrated eyes. This correction could be implemented in practice using customized contact or intraocular lenses. PMID:27446688

  7. Effect of virtual reality on cognitive dysfunction in patients with brain tumor.

    PubMed

    Yang, Seoyon; Chun, Min Ho; Son, Yu Ri

    2014-12-01

    To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment.

  8. Effect of Virtual Reality on Cognitive Dysfunction in Patients With Brain Tumor

    PubMed Central

    Yang, Seoyon; Son, Yu Ri

    2014-01-01

    Objective To investigate whether virtual reality (VR) training will help the recovery of cognitive function in brain tumor patients. Methods Thirty-eight brain tumor patients (19 men and 19 women) with cognitive impairment recruited for this study were assigned to either VR group (n=19, IREX system) or control group (n=19). Both VR training (30 minutes a day for 3 times a week) and computer-based cognitive rehabilitation program (30 minutes a day for 2 times) for 4 weeks were given to the VR group. The control group was given only the computer-based cognitive rehabilitation program (30 minutes a day for 5 days a week) for 4 weeks. Computerized neuropsychological tests (CNTs), Korean version of Mini-Mental Status Examination (K-MMSE), and Korean version of Modified Barthel Index (K-MBI) were used to evaluate cognitive function and functional status. Results The VR group showed improvements in the K-MMSE, visual and auditory continuous performance tests (CPTs), forward and backward digit span tests (DSTs), forward and backward visual span test (VSTs), visual and verbal learning tests, Trail Making Test type A (TMT-A), and K-MBI. The VR group showed significantly (p<0.05) better improvements than the control group in visual and auditory CPTs, backward DST and VST, and TMT-A after treatment. Conclusion VR training can have beneficial effects on cognitive improvement when it is combined with computer-assisted cognitive rehabilitation. Further randomized controlled studies with large samples according to brain tumor type and location are needed to investigate how VR training improves cognitive impairment. PMID:25566470

  9. Probing the functional impact of sub-retinal prosthesis

    PubMed Central

    Roux, Sébastien; Matonti, Frédéric; Dupont, Florent; Hoffart, Louis; Takerkart, Sylvain; Picaud, Serge; Pham, Pascale; Chavane, Frédéric

    2016-01-01

    Retinal prostheses are promising tools for recovering visual functions in blind patients but, unfortunately, with still poor gains in visual acuity. Improving their resolution is thus a key challenge that warrants understanding its origin through appropriate animal models. Here, we provide a systematic comparison between visual and prosthetic activations of the rat primary visual cortex (V1). We established a precise V1 mapping as a functional benchmark to demonstrate that sub-retinal implants activate V1 at the appropriate position, scalable to a wide range of visual luminance, but with an aspect-ratio and an extent much larger than expected. Such distorted activation profile can be accounted for by the existence of two sources of diffusion, passive diffusion and activation of ganglion cells’ axons en passant. Reverse-engineered electrical pulses based on impedance spectroscopy is the only solution we tested that decreases the extent and aspect-ratio, providing a promising solution for clinical applications. DOI: http://dx.doi.org/10.7554/eLife.12687.001 PMID:27549126

  10. Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina

    PubMed Central

    Mui, Amanda M.; Yang, Victoria; Aung, Moe H.; Fu, Jieming; Adekunle, Adewumi N.; Prall, Brian C.; Sidhu, Curran S.; Park, Han na; Boatright, Jeffrey H.; Iuvone, P. Michael

    2018-01-01

    Visual experience during the critical period modulates visual development such that deprivation causes visual impairments while stimulation induces enhancements. This study aimed to determine whether visual stimulation in the form of daily optomotor response (OMR) testing during the mouse critical period (1) improves aspects of visual function, (2) involves retinal mechanisms and (3) is mediated by brain derived neurotrophic factor (BDNF) and dopamine (DA) signaling pathways. We tested spatial frequency thresholds in C57BL/6J mice daily from postnatal days 16 to 23 (P16 to P23) using OMR testing. Daily OMR-treated mice were compared to littermate controls that were placed in the OMR chamber without moving gratings. Contrast sensitivity thresholds, electroretinograms (ERGs), visual evoked potentials, and pattern ERGs were acquired at P21. To determine the role of BDNF signaling, a TrkB receptor antagonist (ANA-12) was systemically injected 2 hours prior to OMR testing in another cohort of mice. BDNF immunohistochemistry was performed on retina and brain sections. Retinal DA levels were measured using high-performance liquid chromatography. Daily OMR testing enhanced spatial frequency thresholds and contrast sensitivity compared to controls. OMR-treated mice also had improved rod-driven ERG oscillatory potential response times, greater BDNF immunoreactivity in the retinal ganglion cell layer, and increased retinal DA content compared to controls. VEPs and pattern ERGs were unchanged. Systemic delivery of ANA-12 attenuated OMR-induced visual enhancements. Daily OMR testing during the critical period leads to general visual function improvements accompanied by increased DA and BDNF in the retina, with this process being requisitely mediated by TrkB activation. These results suggest that novel combination therapies involving visual stimulation and using both behavioral and molecular approaches may benefit degenerative retinal diseases or amblyopia. PMID:29408880

  11. Adjuvant or radical fractionated stereotactic radiotherapy for patients with pituitary functional and nonfunctional macroadenoma

    PubMed Central

    2011-01-01

    Purpose To evaluate the efficacy and toxicity of stereotactic fractionated radiotherapy (SFRT) for patients with pituitary macroadenoma (PMA). Methods and Materials Between March 2000 and March 2009, 27 patients (male to female ratio, 1.25) with PMA underwent SFRT (median dose, 50.4 Gy). Mean age of the patients was 56.5 years (range, 20.3 - 77.4). In all but one patient, SFRT was administered for salvage treatment after surgical resection (transphenoidal resection in 23, transphenoidal resection followed by craniotomy in 2 and multiple transphenoidal resections in another patient). In 10 (37%) patients, the PMAs were functional (3 ACTH-secreting, 3 prolactinomas, 2 growth hormone-secreting and 2 multiple hormone-secretion). Three (11.1%) and 9 (33.3%) patients had PMA abutting and compressing the optic chiasm, respectively. Mean tumor volume was 2.9 ± 4.6 cm3. Eighteen (66.7%) patients had hypopituitarism prior to SFRT. The mean follow-up period after SFRT was 72.4 ± 37.2 months. Results Tumor size decreased for 6 (22.2%) patients and remained unchanged for 19 (70.4%) other patients. Two (7.4%) patients had tumor growth inside the prescribed treatment volume. The estimated 5-year tumor growth control was 95.5% after SFRT. Biochemical remission occurred in 3 (30%) patients with functional PMA. Two patients with normal anterior pituitary function before SFRT developed new deficits 25 and 65 months after treatment. The 5-year survival without new anterior pituitary deficit was thus 95.8%. Five patients with visual field defect had improved visual function and 1 patient with no visual defect prior to SFRT, but an optic chiasm abutting tumor, had a decline in visual function. The estimated 5-year vision and pituitary function preservation rates were 93.2% and 95.8%, respectively. Conclusions SFRT is a safe and effective treatment for patients with PMA, although longer follow-up is needed to evaluate long-term outcomes. In this study, approximately 1 patient with visual field defect out of two had an improved visual function. PMID:22152397

  12. Parent, Teacher, and Student Perspectives on how Corrective Lenses Improve Child Wellbeing and School Function

    PubMed Central

    Dudovitz, Rebecca N; Izadpanah, Nilufar; Chung, Paul J.; Slusser, Wendelin

    2015-01-01

    Objectives Up to 20% of school-age children have a vision problem identifiable by screening, over 80% of which can be corrected with glasses. While vision problems are associated with poor school performance, few studies describe whether and how corrective lenses affect academic achievement and health. Further, there are virtually no studies exploring how children with correctable visual deficits, their parents, and teachers perceive the connection between vision care and school function. Methods We conducted a qualitative evaluation of Vision to Learn (VTL), a school-based program providing free corrective lenses to low-income students in Los Angeles. Nine focus groups with students, parents, and teachers from three schools served by VTL explored the relationships between poor vision, receipt of corrective lenses, and school performance and health. Results Twenty parents, 25 teachers, and 21 students from three elementary schools participated. Participants described how uncorrected visual deficits reduced students’ focus, perseverance, and class participation, affecting academic functioning and psychosocial stress; how receiving corrective lenses improved classroom attention, task persistence, and willingness to practice academic skills; and how serving students in school rather than in clinics increased both access to and use of corrective lenses. Conclusions for Practice Corrective lenses may positively impact families, teachers, and students coping with visual deficits by improving school function and psychosocial wellbeing. Practices that increase ownership and use of glasses, such as serving students in school, may significantly improve both child health and academic performance. PMID:26649878

  13. Parent, Teacher, and Student Perspectives on How Corrective Lenses Improve Child Wellbeing and School Function.

    PubMed

    Dudovitz, Rebecca N; Izadpanah, Nilufar; Chung, Paul J; Slusser, Wendelin

    2016-05-01

    Up to 20 % of school-age children have a vision problem identifiable by screening, over 80 % of which can be corrected with glasses. While vision problems are associated with poor school performance, few studies describe whether and how corrective lenses affect academic achievement and health. Further, there are virtually no studies exploring how children with correctable visual deficits, their parents, and teachers perceive the connection between vision care and school function. We conducted a qualitative evaluation of Vision to Learn (VTL), a school-based program providing free corrective lenses to low-income students in Los Angeles. Nine focus groups with students, parents, and teachers from three schools served by VTL explored the relationships between poor vision, receipt of corrective lenses, and school performance and health. Twenty parents, 25 teachers, and 21 students from three elementary schools participated. Participants described how uncorrected visual deficits reduced students' focus, perseverance, and class participation, affecting academic functioning and psychosocial stress; how receiving corrective lenses improved classroom attention, task persistence, and willingness to practice academic skills; and how serving students in school rather than in clinics increased both access to and use of corrective lenses. for Practice Corrective lenses may positively impact families, teachers, and students coping with visual deficits by improving school function and psychosocial wellbeing. Practices that increase ownership and use of glasses, such as serving students in school, may significantly improve both child health and academic performance.

  14. Spectral data compression using weighted principal component analysis with consideration of human visual system and light sources

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Wan, Xiaoxia; Li, Junfeng; Liu, Qiang; Liang, Jingxing; Li, Chan

    2016-10-01

    This paper proposed two weight functions based on principal component analysis (PCA) to reserve more colorimetric information in spectral data compression process. One weight function consisted of the CIE XYZ color-matching functions representing the characteristic of the human visual system, while another was made up of the CIE XYZ color-matching functions of human visual system and relative spectral power distribution of the CIE standard illuminant D65. The improvement obtained from the proposed two methods were tested to compress and reconstruct the reflectance spectra of 1600 glossy Munsell color chips and 1950 Natural Color System color chips as well as six multispectral images. The performance was evaluated by the mean values of color difference under the CIE 1931 standard colorimetric observer and the CIE standard illuminant D65 and A. The mean values of root mean square errors between the original and reconstructed spectra were also calculated. The experimental results show that the proposed two methods significantly outperform the standard PCA and another two weighted PCA in the aspects of colorimetric reconstruction accuracy with very slight degradation in spectral reconstruction accuracy. In addition, weight functions with the CIE standard illuminant D65 can improve the colorimetric reconstruction accuracy compared to weight functions without the CIE standard illuminant D65.

  15. Impact of Trichiasis Surgery on Physical Functioning in Ethiopian Patients: STAR Trial

    PubMed Central

    Wolle, Meraf A.; Cassard, Sandra D.; Gower, Emily W.; Munoz, Beatriz E.; Wang, Jiangxia; Alemayehu, Wondu; West, Sheila K.

    2010-01-01

    Purpose To evaluate the physical functioning of Ethiopian trichiasis surgery patients before and six months after surgery. Design Nested Cohort Study Methods This study was nested within the Surgery for Trichiasis, Antibiotics to Prevent Recurrence (STAR) clinical trial conducted in Ethiopia. Demographic information, ocular examinations, and physical functioning assessments were collected before and 6 months after surgery. A single score for patients’ physical functioning was constructed using Rasch analysis. A multivariate linear regression model was used to determine if change in physical functioning was associated with change in visual acuity. Results Of the 438 participants, 411 (93.8%) had both baseline and follow-up questionnaires. Physical functioning scores at baseline ranged from −6.32 (great difficulty) to +6.01 (no difficulty). The percent of participants reporting no difficulty in physical functioning increased by 32.6%; the proportion of participants in the mild/no visual impairment category increased by 8.6%. A multivariate linear regression model showed that for every line of vision gained, physical functioning improves significantly (0.09 units; 95% CI: 0.02–0.16). Conclusions Surgery to correct trichiasis appears to improve patients’ physical functioning as measured at 6 months. More effort in promoting trichiasis surgery is essential, not only to prevent corneal blindness, but also to enable improved functioning in daily life. PMID:21333268

  16. Visual working memory in deaf children with diverse communication modes: improvement by differential outcomes.

    PubMed

    López-Crespo, Ginesa; Daza, María Teresa; Méndez-López, Magdalena

    2012-01-01

    Although visual functions have been proposed to be enhanced in deaf individuals, empirical studies have not yet established clear evidence on this issue. The present study aimed to determine whether deaf children with diverse communication modes had superior visual memory and whether their performance was improved by the use of differential outcomes. Severely or profoundly deaf children who employed spoken Spanish, Spanish Sign Language (SSL), and both spoken Spanish and SSL modes of communication were tested in a delayed matching-to-sample task for visual working memory assessment. Hearing controls were used to compare performance. Participants were tested in two conditions, differential outcome and non-differential outcome conditions. Deaf groups with either oral or SSL modes of communication completed the task with less accuracy than bilingual and control hearing children. In addition, the performances of all groups improved through the use of differential outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Mediated-reality magnification for macular degeneration rehabilitation

    NASA Astrophysics Data System (ADS)

    Martin-Gonzalez, Anabel; Kotliar, Konstantin; Rios-Martinez, Jorge; Lanzl, Ines; Navab, Nassir

    2014-10-01

    Age-related macular degeneration (AMD) is a gradually progressive eye condition, which is one of the leading causes of blindness and low vision in the Western world. Prevailing optical visual aids compensate part of the lost visual function, but omitting helpful complementary information. This paper proposes an efficient magnification technique, which can be implemented on a head-mounted display, for improving vision of patients with AMD, by preserving global information of the scene. Performance of the magnification approach is evaluated by simulating central vision loss in normally sighted subjects. Visual perception was measured as a function of text reading speed and map route following speed. Statistical analysis of experimental results suggests that our magnification method improves reading speed 1.2 times and spatial orientation to find routes on a map 1.5 times compared to a conventional magnification approach, being capable to enhance peripheral vision of AMD subjects along with their life quality.

  18. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    PubMed

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  19. Training Visual Imagery: Improvements of Metacognition, but not Imagery Strength

    PubMed Central

    Rademaker, Rosanne L.; Pearson, Joel

    2012-01-01

    Visual imagery has been closely linked to brain mechanisms involved in perception. Can visual imagery, like visual perception, improve by means of training? Previous research has demonstrated that people can reliably evaluate the vividness of single episodes of imagination – might the metacognition of imagery also improve over the course of training? We had participants imagine colored Gabor patterns for an hour a day, over the course of five consecutive days, and again 2 weeks after training. Participants rated the subjective vividness and effort of their mental imagery on each trial. The influence of imagery on subsequent binocular rivalry dominance was taken as our measure of imagery strength. We found no overall effect of training on imagery strength. Training did, however, improve participant’s metacognition of imagery. Trial-by-trial ratings of vividness gained predictive power on subsequent rivalry dominance as a function of training. These data suggest that, while imagery strength might be immune to training in the current context, people’s metacognitive understanding of mental imagery can improve with practice. PMID:22787452

  20. Wii-based interactive video games as a supplement to conventional therapy for rehabilitation of children with cerebral palsy: A pilot, randomized controlled trial.

    PubMed

    Sajan, Jane Elizabeth; John, Judy Ann; Grace, Pearlin; Sabu, Sneha Sara; Tharion, George

    2017-08-01

    To assess the effect of interactive video gaming (IVG) with Nintendo Wii (Wii) supplemented to conventional therapy in rehabilitation of children with cerebral palsy (CP). Randomized, controlled, assessor-blinded study. Children with CP; 10 children each in the control and intervention groups. IVG using Wii, given as a supplement to conventional therapy, for 45 min per day, 6 days a week for 3 weeks. The children in the control group received conventional therapy alone. Posture control and balance, upper limb function, visual-perceptual skills, and functional mobility. Significant improvement in upper limb functions was seen in the intervention group but not in the control group. Improvements in balance, visual perception, and functional mobility were not significantly different between control and intervention groups. Wii-based IVG may be offered as an effective supplement to conventional therapy in the rehabilitation of children with CP.

  1. HT1001, a proprietary North American ginseng extract, improves working memory in schizophrenia: a double-blind, placebo-controlled study.

    PubMed

    Chen, Eric Y H; Hui, Christy L M

    2012-08-01

    Evidence suggests that HT1001™, a proprietary North American ginseng extract containing known levels of active ginsenosides, may improve cognitive function. Importantly, individuals with schizophrenia show marked deficits in working memory, which are believed to be predictive of functional outcome in this population. The present study aimed to characterize the effect of HT1001 on working memory in a group of stable individuals with schizophrenia. In a double-blind, placebo-controlled study design, a total of 64 individuals satisfying DSM-IV criteria for schizophrenia were randomly assigned to receive either HT100 or placebo for 4 weeks. Verbal working memory and visual working memory were assessed at baseline and again at the end of the treatment phase using the Letter-Number Span Test and Visual Pattern Test, respectively. Symptoms and medication side effects were also measured at baseline and post-treatment. Visual working memory was significantly improved in the HT1001 group, but not in the placebo group. Furthermore, extrapyramidal symptoms were significantly reduced after 4 weeks treatment with HT1001, whereas no difference in extrapyramidal effects was observed in the placebo group. These results provide a solid foundation for the further investigation of HT1001 as an adjunct therapy in schizophrenia, as an improvement in working memory and a reduction in medication-related side effects has considerable potential to improve functional outcome in this population. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Effect of virtual reality on cognition in stroke patients.

    PubMed

    Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young

    2011-08-01

    To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients.

  3. Crosswatch: a System for Providing Guidance to Visually Impaired Travelers at Traffic Intersections

    PubMed Central

    Coughlan, James M.; Shen, Huiying

    2013-01-01

    Purpose This paper describes recent progress on the “Crosswatch” project, a smartphone-based system developed for providing guidance to blind and visually impaired travelers at traffic intersections. Building on past work on Crosswatch functionality to help the user achieve proper alignment with the crosswalk and read the status of walk lights to know when it is time to cross, we outline the directions Crosswatch is now taking to help realize its potential for becoming a practical system: namely, augmenting computer vision with other information sources, including geographic information systems (GIS) and sensor data, and inferring the user's location much more precisely than is possible through GPS alone, to provide a much larger range of information about traffic intersections to the pedestrian. Design/methodology/approach The paper summarizes past progress on Crosswatch and describes details about the development of new Crosswatch functionalities. One such functionality, which is required for determination of the user's precise location, is studied in detail, including the design of a suitable user interface to support this functionality and preliminary tests of this interface with visually impaired volunteer subjects. Findings The results of the tests of the new Crosswatch functionality demonstrate that the functionality is feasible in that it is usable by visually impaired persons. Research limitations/implications While the tests that were conducted of the new Crosswatch functionality are preliminary, the results of the tests have suggested several possible improvements, to be explored in the future. Practical implications The results described in this paper suggest that the necessary technologies used by the Crosswatch system are rapidly maturing, implying that the system has an excellent chance of becoming practical in the near future. Originality/value The paper addresses an innovative solution to a key problem faced by blind and visually impaired travelers, which has the potential to greatly improve independent travel for these individuals. PMID:24353745

  4. The Effects of Compensatory Scanning Training on Mobility in Patients with Homonymous Visual Field Defects: Further Support, Predictive Variables and Follow-Up

    PubMed Central

    Melis-Dankers, Bart J. M.; Brouwer, Wiebo H.; Tucha, Oliver; Heutink, Joost

    2016-01-01

    Introduction People with homonymous visual field defects (HVFD) often report difficulty detecting obstacles in the periphery on their blind side in time when moving around. Recently, a randomized controlled trial showed that the InSight-Hemianopia Compensatory Scanning Training (IH-CST) specifically improved detection of peripheral stimuli and avoiding obstacles when moving around, especially in dual task situations. Method The within-group training effects of the previously reported IH-CST are examined in an extended patient group. Performance of patients with HVFD on a pre-assessment, post-assessment and follow-up assessment and performance of a healthy control group are compared. Furthermore, it is examined whether training effects can be predicted by demographic characteristics, variables related to the visual disorder, and neuropsychological test results. Results Performance on both subjective and objective measures of mobility-related scanning was improved after training, while no evidence was found for improvement in visual functions (including visual fields), reading, visual search and dot counting. Self-reported improvement did not correlate with improvement in objective mobility performance. According to the participants, the positive effects were still present six to ten months after training. No demographic characteristics, variables related to the visual disorder, and neuropsychological test results were found to predict the size of training effect, although some inconclusive evidence was found for more improvement in patients with left-sided HVFD than in patients with right-sided HFVD. Conclusion Further support was found for a positive effect of IH-CST on detection of visual stimuli during mobility-related activities specifically. Based on the reports given by patients, these effects appear to be long-term effects. However, no conclusions can be drawn on the objective long-term training effects. PMID:27935973

  5. Visual impairment at baseline is associated with future poor physical functioning among middle-aged women: The Study of Women's Health Across the Nation, Michigan Site.

    PubMed

    Chandrasekaran, Navasuja; Harlow, Sioban; Moroi, Sayoko; Musch, David; Peng, Qing; Karvonen-Gutierrez, Carrie

    2017-02-01

    Emerging evidence suggests that the prevalence rates of poor functioning and of disability are increasing among middle-aged individuals. Visual impairment is associated with poor functioning among older adults but little is known about the impact of vision on functioning during midlife. The objective of this study was to assess the impact of visual impairment on future physical functioning among middle-aged women. In this longitudinal study, the sample consisted of 483 women aged 42 to 56 years, from the Michigan site of the Study of Women's Health Across the Nation. At baseline, distance and near vision were measured using a Titmus vision screener. Visual impairment was defined as visual acuity worse than 20/40. Physical functioning was measured up to 10 years later using performance-based measures, including a 40-foot timed walk, timed stair climb and forward reach. Women with impaired distance vision at baseline had 2.81 centimeters less forward reach distance (95% confidence interval (CI): -4.19, -1.42) and 4.26s longer stair climb time (95% CI: 2.73, 5.79) at follow-up than women without impaired distance vision. Women with impaired near vision also had less forward reach distance (2.26 centimeters, 95% CI: -3.30, -1.21) than those without impaired near vision. Among middle-aged women, visual impairment is a marker of poor physical functioning. Routine eye testing and vision correction may help improve physical functioning among midlife individuals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Visual Impairment at Baseline is Associated with Future Poor Physical Functioning Among Middle-Aged Women: The Study of Women's Health Across the Nation, Michigan site

    PubMed Central

    Chandrasekaran, Navasuja; Harlow, Sioban; Moroi, Sayoko; Musch, David; Peng, Qing; Karvonen-Gutierrez, Carrie

    2016-01-01

    Objectives Emerging evidence suggests that the prevalence rates of poor functioning and of disability are increasing among middle-aged individuals. Visual impairment is associated with poor functioning among older adults but little is known about the impact of vision on functioning during midlife. The objective of this study was to assess the impact of visual impairment on future physical functioning among middle-aged women. Study design In this longitudinal study, the sample consisted of 483 women aged 42 to 56 years, from the Michigan site of the Study of Women's Health Across the Nation. Main Outcome Measures At baseline, distance and near vision were measured using a Titmus vision screener. Visual impairment was defined as visual acuity worse than 20/40. Physical functioning was measured up to 10 years later using performance-based measures, including a 40-foot timed walk, timed stair climb and forward reach. Results Women with impaired distance vision at baseline had 2.81 centimeters less forward reach distance (95% confidence interval (CI): −4.19,−1.42) and 4.26 seconds longer stair climb time (95% CI: 2.73, 5.79) at follow-up than women without impaired distance vision. Women with impaired near vision also had less forward reach distance (2.26 centimeters, 95% CI: −3.30,−1.21) than those without impaired near vision. Conclusion Among middle-aged women, visual impairment is a marker of poor physical functioning. Routine eye testing and vision correction may help improve physical functioning among midlife individuals. PMID:28041592

  7. Impact of cataract surgery on vision-related life performances: the usefulness of Real-Life Vision Test for cataract surgery outcomes evaluation

    PubMed Central

    Ni, W; Li, X; Hou, Z; Zhang, H; Qiu, W; Wang, W

    2015-01-01

    Purpose Real-Life Vision Test (RLVT) is a newly developed performance-based measures of functional vision. This present study is designed to determine whether it could be a meaningful assessment for cataract surgery outcomes evaluation. Patients and methods Age-related cataract patients (56) who scheduled for bilateral cataract surgery and 44 age-matched controls were evaluated by four types of measurements: (1) demographic, medical, cognitive and depressive evaluation, and the reaction time testing; (2) clinical measures (visual acuity, contrast sensitivity, stereopsis, and color perception); (3) the 25-item National Eye Institute's Visual Functioning Questionnaire (NEI-VFQ); (4) the RLVT. Spearman's coefficients and multiple regression analysis were conducted to investigate the relationship among RLVT, clinical measures, and self-report assessment of visual function. Results The results of RLVT, clinical measures, and NEI-VFQ total scores were improved significantly after cataract surgery. There were no differences between control subjects and post-surgery patients with respect to NEI-VFQ-25 total scores, self-rating depression scale scores and three tasks of RLVT. Change of RLVT was significantly associated with the change of clinical measures in the cataract group. Multiple regression analysis demonstrated that change of distance, intermediate, and near visual acuity, and binocular contrast sensitivity were significant predictors of improvements of RLVT. Conclusions Cataract surgery could improve real-world visual ability effectively for cataract patients. Our study highlights the potential usefulness of RLVT as an adjunct to the current outcomes evaluation system for cataract surgery. The use of RLVT combined with clinical and self-survey methods may be the comprehensive strategy to manifest the impact of cataract surgery on patients' overall vision-related quality of life. PMID:26272444

  8. Vision restoration through extrastriate stimulation in patients with visual field defects: a double-blind and randomized experimental study.

    PubMed

    Jobke, Sandra; Kasten, Erich; Sabel, Bernhard A

    2009-01-01

    . Vision restoration therapy (VRT) to treat visual field defects used single-point visual stimulation in areas of residual vision up to now. The question arises if the efficiency of restoration can be increased when the entire region of blindness is trained by a visual stimulus aimed at activating extrastriate pathways (extrastriate VRT). . In this crossover study, 18 patients with visual field defects with prior VRT experience were treated with 2 training paradigms. Group 1 (n = 8) first used extrastriate VRT followed by conventional standard VRT. Group 2 (n = 10) trained in reverse order. Visual field size was assessed with computer-based perimetry and subjective vision with the National Eye Institute Visual Function Questionnaire (NEI-VFQ). . In group 1, stimulus detection in high-resolution perimetry (HRP) improved by 5.9% (P < .01) after extrastriate VRT. After the second training period (standard VRT), detection further improved by 1.8% (P = .093). In group 2, detection performance improved after standard VRT by 2.9% (P < .05) and after extrastriate VRT by 2.9% (P < .05). Detection performance increased twice as much after extrastriate VRT (4.2%) than after standard VRT (2.4%; P < .05). All changes in fixation performance were unrelated to detection improvements. NEI-VFQ did not show any significant changes. . Greater improvement after extrastriate VRT is interpreted as an activation of extrastriate pathways by massive "spiral-like" stimulation. These pathways bypass the damaged visual cortex, stimulating extrastriate cortical regions, and are thought to be involved in blindsight.

  9. Spatial attention improves the quality of population codes in human visual cortex.

    PubMed

    Saproo, Sameer; Serences, John T

    2010-08-01

    Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.

  10. The Effectiveness of Two Programs To Develop Visual Perception in Spanish Schoolchildren with Low Vision.

    ERIC Educational Resources Information Center

    Lopez-Justicia, Maria D.; Martos, Francisco J.

    1999-01-01

    This study compared improvements in visual function of 20 Spanish children with low vision, ages 4 to 6 years. Children received either the Barraga and Morris program or the Frostig program, or placebo control or no treatment. No significant differences between treatment groups were found. (DB)

  11. [Usher syndrome: about a case].

    PubMed

    Daoudi, Chama; Boutimzine, Noureddine; Haouzi, Samia El; Lezrek, Omar; Tachfouti, Samira; Lezrek, Mounir; Laghmari, Mina; Daoudi, Rajae

    2017-01-01

    Usher syndrome is a genetic disease resulting in double sensory deprivation (auditory and visual) called deafblindness. We report the case of a 50-year old patient, born to consanguineous parents, presenting with congenital deafness associated with normal vestibular function and pigmentary retinopathy responsible for decreased bilateral visual acuity occurred at the age of 16 years. This association composes Usher syndrome type 2, a rare autosomal recessive disorder. Cataract surgery allowed visual acuity improvement in this patient.

  12. A Novel Locally Linear KNN Method With Applications to Visual Recognition.

    PubMed

    Liu, Qingfeng; Liu, Chengjun

    2017-09-01

    A locally linear K Nearest Neighbor (LLK) method is presented in this paper with applications to robust visual recognition. Specifically, the concept of an ideal representation is first presented, which improves upon the traditional sparse representation in many ways. The objective function based on a host of criteria for sparsity, locality, and reconstruction is then optimized to derive a novel representation, which is an approximation to the ideal representation. The novel representation is further processed by two classifiers, namely, an LLK-based classifier and a locally linear nearest mean-based classifier, for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Additional new theoretical analysis is presented, such as the nonnegative constraint, the group regularization, and the computational efficiency of the proposed LLK method. New methods such as a shifted power transformation for improving reliability, a coefficients' truncating method for enhancing generalization, and an improved marginal Fisher analysis method for feature extraction are proposed to further improve visual recognition performance. Extensive experiments are implemented to evaluate the proposed LLK method for robust visual recognition. In particular, eight representative data sets are applied for assessing the performance of the LLK method for various visual recognition applications, such as action recognition, scene recognition, object recognition, and face recognition.

  13. Portable electronic vision enhancement systems in comparison with optical magnifiers for near vision activities: an economic evaluation alongside a randomized crossover trial.

    PubMed

    Bray, Nathan; Brand, Andrew; Taylor, John; Hoare, Zoe; Dickinson, Christine; Edwards, Rhiannon T

    2017-08-01

    To determine the incremental cost-effectiveness of portable electronic vision enhancement system (p-EVES) devices compared with optical low vision aids (LVAs), for improving near vision visual function, quality of life and well-being of people with a visual impairment. An AB/BA randomized crossover trial design was used. Eighty-two participants completed the study. Participants were current users of optical LVAs who had not tried a p-EVES device before and had a stable visual impairment. The trial intervention was the addition of a p-EVES device to the participant's existing optical LVA(s) for 2 months, and the control intervention was optical LVA use only, for 2 months. Cost-effectiveness and cost-utility analyses were conducted from a societal perspective. The mean cost of the p-EVES intervention was £448. Carer costs were £30 (4.46 hr) less for the p-EVES intervention compared with the LVA only control. The mean difference in total costs was £417. Bootstrapping gave an incremental cost-effectiveness ratio (ICER) of £736 (95% CI £481 to £1525) for a 7% improvement in near vision visual function. Cost per quality-adjusted life year (QALY) ranged from £56 991 (lower 95% CI = £19 801) to £66 490 (lower 95% CI = £23 055). Sensitivity analysis varying the commercial price of the p-EVES device reduced ICERs by up to 75%, with cost per QALYs falling below £30 000. Portable electronic vision enhancement system (p-EVES) devices are likely to be a cost-effective use of healthcare resources for improving near vision visual function, but this does not translate into cost-effective improvements in quality of life, capability or well-being. © 2016 The Authors. Acta Ophthalmologica published by John Wiley & Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation and European Association for Vision & Eye Research.

  14. Visual rehabilitation: visual scanning, multisensory stimulation and vision restoration trainings

    PubMed Central

    Dundon, Neil M.; Bertini, Caterina; Làdavas, Elisabetta; Sabel, Bernhard A.; Gall, Carolin

    2015-01-01

    Neuropsychological training methods of visual rehabilitation for homonymous vision loss caused by postchiasmatic damage fall into two fundamental paradigms: “compensation” and “restoration”. Existing methods can be classified into three groups: Visual Scanning Training (VST), Audio-Visual Scanning Training (AViST) and Vision Restoration Training (VRT). VST and AViST aim at compensating vision loss by training eye scanning movements, whereas VRT aims at improving lost vision by activating residual visual functions by training light detection and discrimination of visual stimuli. This review discusses the rationale underlying these paradigms and summarizes the available evidence with respect to treatment efficacy. The issues raised in our review should help guide clinical care and stimulate new ideas for future research uncovering the underlying neural correlates of the different treatment paradigms. We propose that both local “within-system” interactions (i.e., relying on plasticity within peri-lesional spared tissue) and changes in more global “between-system” networks (i.e., recruiting alternative visual pathways) contribute to both vision restoration and compensatory rehabilitation, which ultimately have implications for the rehabilitation of cognitive functions. PMID:26283935

  15. Combination therapy with diquafosol tetrasodium and sodium hyaluronate in patients with dry eye after laser in situ keratomileusis.

    PubMed

    Toda, Ikuko; Ide, Takeshi; Fukumoto, Teruki; Ichihashi, Yoshiyuki; Tsubota, Kazuo

    2014-03-01

    To evaluate the possible advantages of combination therapy with diquafosol tetrasodium and sodium hyaluronate for dry eye after laser in situ keratomileusis (LASIK). Prospective randomized comparative trial. A total of 206 eyes of 105 patients who underwent LASIK were enrolled in this study. Patients were randomly assigned to 1 of 4 treatment groups according to the postoperative treatment: artificial tears, sodium hyaluronate, diquafosol tetrasodium, and a combination of hyaluronate and diquafosol. Questionnaire responses reflecting subjective dry eye symptoms, uncorrected and corrected visual acuity, functional visual acuity, manifest refraction, tear break-up time, fluorescein corneal staining, Schirmer test, and corneal sensitivity were examined before and 1 week and 1 month after LASIK. Distance uncorrected visual acuity was significantly better in the combination group than in the hyaluronate group 1 week and 1 month after LASIK. Near uncorrected visual acuity was significantly better in the combination group than in the artificial tear and diquafosol groups 1 week and 1 month after LASIK. Distance functional visual acuity improved significantly only in the combination group 1 month after LASIK. The Schirmer value in the combination group was significantly higher than that in the hyaluronate group at 1 month after LASIK. Subjective dry eye symptoms in the combination group improved significantly compared with those in the other groups 1 week after surgery. Our results suggest that hyaluronate and diquafosol combination therapy is beneficial for early stabilization of visual performance and improvement of subjective dry eye symptoms in patients after LASIK. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Sounds activate visual cortex and improve visual discrimination.

    PubMed

    Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A

    2014-07-16

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. Copyright © 2014 the authors 0270-6474/14/349817-08$15.00/0.

  17. Visual functions in amblyopia as determinants of response to treatment.

    PubMed

    Singh, Vinita; Agrawal, Siddharth

    2013-01-01

    To describe the visual functions in amblyopia as determinants of response to treatment. Sixty-nine patients with unilateral and bilateral amblyopia (114 amblyopic eyes) 3 to 15 years old (mean age: 8.80 ± 2.9 years), 40 males (58%) and 29 females (42%), were included in this study. All patients were treated by conventional occlusion 6 hours per day for mild to moderate amblyopia (visual acuity 0.70 or better) and full-time for 4 weeks followed by 6 hours per day for severe amblyopia (visual acuity 0.8 or worse). During occlusion, near activities requiring hand-eye coordination were advised. The follow-up examination was done at 3 and 6 months. Improvement in visual acuity was evaluated on the logMAR chart and correlated with the visual functions. Statistical analysis was done using Wilcoxon rank sum test (Mann-Whitney U test) and Kruskal-Wallis analysis. There was a statistically significant association of poor contrast sensitivity with the grade of amblyopia (P < .001). The grade of amblyopia (P < .01), accommodation (P < .01), stereopsis (P = .01), and mesopic visual acuity (P < .03) were found to have a correlation with response to amblyopia therapy. The grade of amblyopia (initial visual acuity) and accommodation are strong determinants of response to amblyopia therapy, whereas stereopsis and mesopic visual acuity have some value as determinants. Copyright 2013, SLACK Incorporated.

  18. OIPAV: an integrated software system for ophthalmic image processing, analysis and visualization

    NASA Astrophysics Data System (ADS)

    Zhang, Lichun; Xiang, Dehui; Jin, Chao; Shi, Fei; Yu, Kai; Chen, Xinjian

    2018-03-01

    OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.

  19. Vision improvement in pilots with presbyopia following perceptual learning.

    PubMed

    Sterkin, Anna; Levy, Yuval; Pokroy, Russell; Lev, Maria; Levian, Liora; Doron, Ravid; Yehezkel, Oren; Fried, Moshe; Frenkel-Nir, Yael; Gordon, Barak; Polat, Uri

    2017-11-24

    Israeli Air Force (IAF) pilots continue flying combat missions after the symptoms of natural near-vision deterioration, termed presbyopia, begin to be noticeable. Because modern pilots rely on the displays of the aircraft control and performance instruments, near visual acuity (VA) is essential in the cockpit. We aimed to apply a method previously shown to improve visual performance of presbyopes, and test whether presbyopic IAF pilots can overcome the limitation imposed by presbyopia. Participants were selected by the IAF aeromedical unit as having at least initial presbyopia and trained using a structured personalized perceptual learning method (GlassesOff application), based on detecting briefly presented low-contrast Gabor stimuli, under the conditions of spatial and temporal constraints, from a distance of 40 cm. Our results show that despite their initial visual advantage over age-matched peers, training resulted in robust improvements in various basic visual functions, including static and temporal VA, stereoacuity, spatial crowding, contrast sensitivity and contrast discrimination. Moreover, improvements generalized to higher-level tasks, such as sentence reading and aerial photography interpretation (specifically designed to reflect IAF pilots' expertise in analyzing noisy low-contrast input). In concert with earlier suggestions, gains in visual processing speed are plausible to account, at least partially, for the observed training-induced improvements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    PubMed

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  1. Interferon-free therapy in hepatitis C virus (HCV) monoinfected and HCV/HIV coinfected patients: effect on cognitive function, fatigue, and mental health.

    PubMed

    Kleefeld, Felix; Heller, Sophie; Ingiliz, Patrick; Jessen, Heiko; Petersen, Anders; Kopp, Ute; Kraft, Antje; Hahn, Katrin

    2018-05-21

    The efficacy and safety of interferon-free therapies for hepatitis C virus (HCV) infection have been reported. Considering the accumulating evidence for a direct central nervous system infection by HCV, we aim to evaluate the effect of direct acting antivirals (DAA) therapy on cognitive function in HCV patients. We conducted a longitudinal analysis of the cognitive performance of 22 patients (8 HCV+, 14 HCV+/HIV+) who completed neuropsychological testing at baseline and at week 12 after DAA therapy. In 20 patients, we analyzed specific attention parameters derived from an experimental testing based on the Theory of Visual Attention (TVA). Depression, fatigue, and mental health were assessed as patient reported outcomes. At baseline, 54.5% of the patients met the criteria for cognitive impairment and 40% showed impairment in TVA parameters. Follow-up analysis revealed significant improvements in the domains of visual memory/learning, executive functions, verbal fluency, processing speed, and motor skills but not in verbal learning and attention/working memory. We did not observe significant improvement in visual attention measured by TVA. Fatigue and mental health significantly improved at follow-up. Our findings indicate that successful DAA treatment leads to cognitive improvements in several domains measured by standard neuropsychological testing. The absence of improvement in TVA parameters and of significant improvement in the domain of attention/working memory might reflect the persistence of specific cognitive deficits after HCV eradication. In summary, DAA treatment seems to have a positive effect on some cognitive domains and leads to an improvement in mental health and fatigue in HCV-infected patients.

  2. Visual Field Outcomes for the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT).

    PubMed

    Wall, Michael; Johnson, Chris A; Cello, Kimberly E; Zamba, K D; McDermott, Michael P; Keltner, John L

    2016-03-01

    The Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) showed that acetazolamide provided a modest, significant improvement in mean deviation (MD). Here, we further analyze visual field changes over the 6-month study period. Of 165 subjects with mild visual loss in the IIHTT, 125 had perimetry at baseline and 6 months. We evaluated pointwise linear regression of visual sensitivity versus time to classify test locations in the worst MD (study) eye as improving or not; pointwise changes from baseline to month 6 in decibels; and clinical consensus of change from baseline to 6 months. The average study eye had 36 of 52 test locations with improving sensitivity over 6 months using pointwise linear regression, but differences between the acetazolamide and placebo groups were not significant. Pointwise results mostly improved in both treatment groups with the magnitude of the mean change within groups greatest and statistically significant around the blind spot and the nasal area, especially in the acetazolamide group. The consensus classification of visual field change from baseline to 6 months in the study eye yielded percentages (acetazolamide, placebo) of 7.2% and 17.5% worse, 35.1% and 31.7% with no change, and 56.1% and 50.8% improved; group differences were not statistically significant. In the IIHTT, compared to the placebo group, the acetazolamide group had a significant pointwise improvement in visual field function, particularly in the nasal and pericecal areas; the latter is likely due to reduction in blind spot size related to improvement in papilledema. (ClinicalTrials.gov number, NCT01003639.).

  3. VisualCNA: a GUI for interactive constraint network analysis and protein engineering for improving thermostability.

    PubMed

    Rathi, Prakash Chandra; Mulnaes, Daniel; Gohlke, Holger

    2015-07-15

    Constraint network analysis (CNA) is a graph theory-based rigidity analysis approach for linking a biomolecule's structure, flexibility, (thermo)stability and function. Results from CNA are highly information-rich and require intuitive, synchronized and interactive visualization for a comprehensive analysis. We developed VisualCNA, an easy-to-use PyMOL plug-in that allows setup of CNA runs and analysis of CNA results linking plots with molecular graphics representations. From a practical viewpoint, the most striking feature of VisualCNA is that it facilitates interactive protein engineering aimed at improving thermostability. VisualCNA and its dependencies (CNA and FIRST software) are available free of charge under GPL and academic licenses, respectively. VisualCNA and CNA are available at http://cpclab.uni-duesseldorf.de/software; FIRST is available at http://flexweb.asu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Return of visual function after bilateral visual loss following flow diversion embolization of a giant ophthalmic aneurysm due to both reduction in mass effect and reduction in aneurysm pulsation.

    PubMed

    Patel, Saharsh; Fargen, Kyle M; Peters, Keith; Krall, Peter; Samy, Hazem; Hoh, Brian L

    2014-01-10

    Large and giant paraclinoid aneurysms are challenging to treat by either surgical or endovascular means. Visual dysfunction secondary to optic nerve compression and its relationship with aneurysm size, pulsation and thrombosis is poorly understood. We present a patient with a giant paraclinoid aneurysm resulting in bilateral visual loss that worsened following placement of a Pipeline Embolization Device and adjunctive coiling. Visual worsening occurred in conjunction with aneurysm thrombosis, increase in maximal aneurysm diameter and new adjacent edema. Her visual function spontaneously improved in a delayed fashion to better than pre-procedure, in conjunction with reduced aneurysmal mass effect, size and pulsation artifact on MRI. This report documents detailed ophthalmologic and MRI evidence for the role of thrombosis, aneurysm mass effect and aneurysm pulsation as causative etiologies for both cranial nerve dysfunction and delayed resolution following flow diversion treatment of large cerebral aneurysms.

  5. Visual feedback training using WII Fit improves balance in Parkinson's disease.

    PubMed

    Zalecki, Tomasz; Gorecka-Mazur, Agnieszka; Pietraszko, Wojciech; Surowka, Artur D; Novak, Pawel; Moskala, Marek; Krygowska-Wajs, Anna

    2013-01-01

    Postural instability including imbalance is the most disabling long term problem in Parkinson's disease (PD) that does not respond to pharmacotherapy. This study aimed at investigating the effectiveness of a novel visual-feedback training method, using Wii Fit balance board in improving balance in patients with PD. Twenty four patients with moderate PD were included in the study which comprised of a 6-week home-based balance training program using Nintendo Wii Fit and balance board. The PD patients significantly improved their results in Berg Balance Scale, Tinnet's Performance-Oriented Mobility Assessment, Timed Up-and-Go, Sit-to-stand test, 10-Meter Walk test and Activities-specific Balance Confidence scale at the end of the programme. This study suggests that visual feedback training using Wii-Fit with balance board could improve dynamic and functional balance as well as motor disability in PD patients.

  6. The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia.

    PubMed

    Camilleri, Rebecca; Pavan, Andrea; Campana, Gianluca

    2016-08-01

    It has recently been demonstrated how perceptual learning, that is an improvement in a sensory/perceptual task upon practice, can be boosted by concurrent high-frequency transcranial random noise stimulation (tRNS). It has also been shown that perceptual learning can generalize and produce an improvement of visual functions in participants with mild refractive defects. By using three different groups of participants (single-blind study), we tested the efficacy of a short training (8 sessions) using a single Gabor contrast-detection task with concurrent hf-tRNS in comparison with the same training with sham stimulation or hf-tRNS with no concurrent training, in improving visual acuity (VA) and contrast sensitivity (CS) of individuals with uncorrected mild myopia. A short training with a contrast detection task is able to improve VA and CS only if coupled with hf-tRNS, whereas no effect on VA and marginal effects on CS are seen with the sole administration of hf-tRNS. Our results support the idea that, by boosting the rate of perceptual learning via the modulation of neuronal plasticity, hf-tRNS can be successfully used to reduce the duration of the perceptual training and/or to increase its efficacy in producing perceptual learning and generalization to improved VA and CS in individuals with uncorrected mild myopia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator

    NASA Astrophysics Data System (ADS)

    Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi

    Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.

  8. BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy.

    PubMed

    Gupta, Shikha; Kumaran, Senthil S; Saxena, Rohit; Gudwani, Sunita; Menon, Vimala; Sharma, Pradeep

    2016-08-01

    Evaluation of brain cluster activation using the functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) was sought in strabismic amblyopes. In this hospital-based case-control cross-sectional study, fMRI and DTI were conducted in strabismic amblyopes before initiation of any therapy and after visual recovery following the administration of occlusion therapy. FMRI was performed in 10 strabismic amblyopic subjects (baseline group) and in 5 left strabismic amblyopic children post-occlusion therapy after two-line visual improvement. Ten age-matched healthy children with right ocular dominance formed control group. Structural and functional MRI was carried out on 1.5T MR scanner. The visual task consisted of 8 Hz flickering checkerboard with red dot and occasional green dot. Blood-oxygen-level-dependent (BOLD) fMRI was analyzed using statistical parametric mapping and DTI on NordicIce (NordicNeuroLab) softwares. Reduced occipital activation was elicited when viewing with the amblyopic eye in amblyopes. An 'ipsilateral to viewing eye' pattern of calcarine BOLD activation was observed in controls and left amblyopes. Activation of cortical areas associated with visual processing differed in relation to the viewing eye. Following visual recovery on occlusion therapy, enhanced activity in bilateral hemispheres in striate as well as extrastriate regions when viewing with either eye was seen. Improvement in visual acuity following occlusion therapy correlates with hemodynamic activity in amblyopes.

  9. [Cataract surgery and its impact on balance and autonomy in elderly].

    PubMed

    Raynal, M; Aupy, B; Jahidi, A; Ettien, D; Le Page, P; Briche, T; Kossowski, M; Pailllaud, E

    2009-01-01

    Cataract is a major cause of visual impairment among elderly. Cataract surgery improves visual afferencies and can have an impact on balance. The present study assessed the impact of cataract surgery upon balance and autonomy in elderly. We realized clinical examinations and objective tests the day before surgery and 2-months later. The initial cohort consisted of 66 patients that had to undergo a cataract surgery. Their mean age was 79 +/- 0.5. For logistic reasons, only 33 patients have been completely evaluated before and after surgery. Each patient underwent a history and examination that have assessed autonomy, walking, visual and then cochleo-vestibular functions including bone vibratory test and dynamic computerized posturography (Equitest). After 2 months, cataract surgery had no incidence on balance. The fear of falling has stayed the same whereas the number of falls has been noticeably reduced by surgery. The overall score of Equitest has shown an increase in visual dependence after surgery. Although cataract surgery has no incidence on autonomy, it may improve the quality of life among older people by leisure activities recovery. An early physical rehabilitation facilitated by visual improvement after surgery can also prevent visual dependence and autonomy loss. We recommend vestibular rehabilitation in elderly with major visual dependence.

  10. Optimization of Visual Information Presentation for Visual Prosthesis.

    PubMed

    Guo, Fei; Yang, Yuan; Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.

  11. Optimization of Visual Information Presentation for Visual Prosthesis

    PubMed Central

    Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis. PMID:29731769

  12. Validation of the Preverbal Visual Assessment (PreViAs) questionnaire.

    PubMed

    García-Ormaechea, Inés; González, Inmaculada; Duplá, María; Andres, Eva; Pueyo, Victoria

    2014-10-01

    Visual cognitive integrative functions need to be evaluated by a behavioral assessment, which requires an experienced evaluator. The Preverbal Visual Assessment (PreViAs) questionnaire was designed to evaluate these functions, both in general pediatric population or in children with high risk of visual cognitive problems, through primary caregivers' answers. We aimed to validate the PreViAs questionnaire by comparing caregiver reports with results from a comprehensive clinical protocol. A total of 220 infants (<2 years old) were divided into two groups according to visual development, as determined by the clinical protocol. Their primary caregivers completed the PreViAs questionnaire, which consists of 30 questions related to one or more visual domains: visual attention, visual communication, visual-motor coordination, and visual processing. Questionnaire answers were compared with results of behavioral assessments performed by three pediatric ophthalmologists. Results of the clinical protocol classified 128 infants as having normal visual maturation, and 92 as having abnormal visual maturation. The specificity of PreViAs questionnaire was >80%, and sensitivity was 64%-79%. More than 80% of the infants were correctly classified, and test-retest reliability exceeded 0.9 for all domains. The PreViAs questionnaire is useful to detect abnormal visual maturation in infants from birth to 24months of age. It improves the anamnesis process in infants at risk of visual dysfunctions. Copyright © 2014. Published by Elsevier Ireland Ltd.

  13. Displays. [three dimensional analog visual system for aiding pilot space perception

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An experimental investigation made to determine the depth cue of a head movement perspective and image intensity as a function of depth is summarized. The experiment was based on the use of a hybrid computer generated contact analog visual display in which various perceptual depth cues are included on a two dimensional CRT screen. The system's purpose was to impart information, in an integrated and visually compelling fashion, about the vehicle's position and orientation in space. Results show head movement gives a 40% improvement in depth discrimination when the display is between 40 and 100 cm from the subject; intensity variation resulted in as much improvement as head movement.

  14. Plasticity of the human visual system after retinal gene therapy in patients with Leber’s congenital amaurosis

    PubMed Central

    Ashtari, Manzar; Zhang, Hui; Cook, Philip A.; Cyckowski, Laura L.; Shindler, Kenneth S.; Marshall, Kathleen A.; Aravand, Puya; Vossough, Arastoo; Gee, James C.; Maguire, Albert M.; Baker, Chris I.; Bennett, Jean

    2015-01-01

    Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber’s congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. PMID:26180100

  15. Sharpening coarse-to-fine stereo vision by perceptual learning: asymmetric transfer across the spatial frequency spectrum

    PubMed Central

    Tran, Truyet T.; Craven, Ashley P.; Leung, Tsz-Wing; Chat, Sandy W.; Levi, Dennis M.

    2016-01-01

    Neurons in the early visual cortex are finely tuned to different low-level visual features, forming a multi-channel system analysing the visual image formed on the retina in a parallel manner. However, little is known about the potential ‘cross-talk’ among these channels. Here, we systematically investigated whether stereoacuity, over a large range of target spatial frequencies, can be enhanced by perceptual learning. Using narrow-band visual stimuli, we found that practice with coarse (low spatial frequency) targets substantially improves performance, and that the improvement spreads from coarse to fine (high spatial frequency) three-dimensional perception, generalizing broadly across untrained spatial frequencies and orientations. Notably, we observed an asymmetric transfer of learning across the spatial frequency spectrum. The bandwidth of transfer was broader when training was at a high spatial frequency than at a low spatial frequency. Stereoacuity training is most beneficial when trained with fine targets. This broad transfer of stereoacuity learning contrasts with the highly specific learning reported for other basic visual functions. We also revealed strategies to boost learning outcomes ‘beyond-the-plateau’. Our investigations contribute to understanding the functional properties of the network subserving stereovision. The ability to generalize may provide a key principle for restoring impaired binocular vision in clinical situations. PMID:26909178

  16. Binocular function to increase visual outcome in patients implanted with a diffractive trifocal intraocular lens.

    PubMed

    Kretz, Florian T A; Müller, Matthias; Gerl, Matthias; Gerl, Ralf H; Auffarth, Gerd U

    2015-08-21

    To evaluate binocular visual outcome for near, intermediate and distance compared to monocular visual outcome at the same distances in patients implanted with a diffractive trifocal intraocular lens (IOL). The study comprised of 100 eyes of 50 patients that underwent bilateral refractive lens exchange or cataract surgery with implantation of a multifocal diffractive IOL (AT LISA tri 839MP, Carl Zeiss Meditech, Germany). A complete ophthalmological examination was performed preoperatively and 3 month postoperatively. The main outcome measures were monocular and binocular uncorrected distance (UDVA), corrected distance (CDVA), uncorrected intermediate (UIVA), and uncorrected near visual acuities (UNVA), keratometry, and manifest refraction. The mean age was 59.28 years ± 9.6 [SD] (range 44-79 years), repectively. There was significant improvement in UDVA, UIVA, UNVA and CDVA. Comparing the monocular results to the binocular results there was a statistical significant better binocular outcome in all distances (UDVA p = 0.036; UIVA p < 0.0001; UNVA p = 0.001). The postoperative manifest refraction was in 86 % of patients within ± 0.50 [D]. The trifocal IOL improved near, intermediate, and distance vision compared to preoperatively. In addition a statistical significant increase for binocular visual function in all distances could be found. German Clinical Trials Register (DRKS) DRKS00007837.

  17. Development of an in vivo visual robot system with a magnetic anchoring mechanism and a lens cleaning mechanism for laparoendoscopic single-site surgery (LESS).

    PubMed

    Feng, Haibo; Dong, Dinghui; Ma, Tengfei; Zhuang, Jinlei; Fu, Yili; Lv, Yi; Li, Liyi

    2017-12-01

    Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Behavioral Training as New Treatment for Adult Amblyopia: A Meta-Analysis and Systematic Review.

    PubMed

    Tsirlin, Inna; Colpa, Linda; Goltz, Herbert C; Wong, Agnes M F

    2015-06-01

    New behavioral treatment methods, including dichoptic training, perceptual learning, and video gaming, have been proposed to improve visual function in adult amblyopia. Here, we conducted a meta-analysis of these methods to investigate the factors involved in amblyopia recovery and their clinical significance. Mean and individual participant data meta-analyses were performed on 24 studies using the new behavioral methods in adults. Studies were identified using PubMed, Google Scholar, and published reviews. The new methods yielded a mean improvement in visual acuity of 0.17 logMAR with 32% participants achieving gains ≥ 0.2 logMAR, and a mean improvement in stereo sensitivity of 0.01 arcsec-1 with 42% of participants improving ≥2 octaves. The most significant predictor of treatment outcome was visual acuity at the onset of treatment. Participants with more severe amblyopia improved more on visual acuity and less on stereo sensitivity than those with milder amblyopia. Better initial stereo sensitivity was a predictor of greater gains in stereo sensitivity following treatment. Treatment type, amblyopia type, age, and training duration did not have any significant influence on visual and stereo acuity outcomes. Our analyses showed that some participants may benefit from the new treatments; however, clinical trials are required to confirm these findings. Despite the diverse nature of the new behavioral methods, the lack of significant differences in visual and stereo sensitivity outcomes among them suggests that visual attention-a common element among the varied treatment methods-may play an important role in amblyopia recovery.

  19. Visual management of large scale data mining projects.

    PubMed

    Shah, I; Hunter, L

    2000-01-01

    This paper describes a unified framework for visualizing the preparations for, and results of, hundreds of machine learning experiments. These experiments were designed to improve the accuracy of enzyme functional predictions from sequence, and in many cases were successful. Our system provides graphical user interfaces for defining and exploring training datasets and various representational alternatives, for inspecting the hypotheses induced by various types of learning algorithms, for visualizing the global results, and for inspecting in detail results for specific training sets (functions) and examples (proteins). The visualization tools serve as a navigational aid through a large amount of sequence data and induced knowledge. They provided significant help in understanding both the significance and the underlying biological explanations of our successes and failures. Using these visualizations it was possible to efficiently identify weaknesses of the modular sequence representations and induction algorithms which suggest better learning strategies. The context in which our data mining visualization toolkit was developed was the problem of accurately predicting enzyme function from protein sequence data. Previous work demonstrated that approximately 6% of enzyme protein sequences are likely to be assigned incorrect functions on the basis of sequence similarity alone. In order to test the hypothesis that more detailed sequence analysis using machine learning techniques and modular domain representations could address many of these failures, we designed a series of more than 250 experiments using information-theoretic decision tree induction and naive Bayesian learning on local sequence domain representations of problematic enzyme function classes. In more than half of these cases, our methods were able to perfectly discriminate among various possible functions of similar sequences. We developed and tested our visualization techniques on this application.

  20. Impact of correcting visual impairment and low vision in deaf-mute students in Pune, India.

    PubMed

    Gogate, Parikshit; Bhusan, Shashi; Ray, Shantanu; Shinde, Amit

    2016-12-01

    The aim of this study was to evaluate visual acuity and vision function before and after providing spectacles and low vision devices (LVDs) in deaf-mute students. Schools for deaf-mute in West Maharashtra. Hearing-impaired children in all special schools in Pune district underwent detailed visual acuity testing (with teachers' help), refraction, external ocular examination, and fundoscopy. Students with refractive errors and low vision were provided with spectacles and LVD. The LV Prasad-Functional Vision Questionnaire consisting of twenty items was administered to each subject before and after providing spectacles, LVDs. Wilcoxon matched-pairs signed-ranks test. 252/929 (27.1%) students had a refractive error. 794 (85.5%) were profound deaf. Two-hundred and fifty students were dispensed spectacles and LVDs. Mean LogMAR visual acuity before introduction of spectacles and LVDs were 0.33 ± 0.36 which improved to 0.058 (P < 0.0001) after intervention. It was found that difference in functional vision pre- and post-intervention was statistically significant (P < 0.0001) for questions 1-19. The most commonly reported difficulties were for performing distance task like reading the bus destination (58.7%), making out the bus number (51.1%), copying from blackboard (47.7%), and seeing whether somebody is waving hand from across the road (45.5%). In response to question number 20, 57.4% of students felt that their vision was much worse than their friend's vision, which was reduced to 17.6% after dispensing spectacles and LVDs. Spectacle and LVD reduced visual impairment and improved vision function in deaf-mute students, augmenting their ability to negotiate in and out of school.

  1. Effect of Virtual Reality on Cognition in Stroke Patients

    PubMed Central

    Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young

    2011-01-01

    Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159

  2. Assessing morphology and function of the semicircular duct system: introducing new in-situ visualization and software toolbox

    PubMed Central

    David, R.; Stoessel, A.; Berthoz, A.; Spoor, F.; Bennequin, D.

    2016-01-01

    The semicircular duct system is part of the sensory organ of balance and essential for navigation and spatial awareness in vertebrates. Its function in detecting head rotations has been modelled with increasing sophistication, but the biomechanics of actual semicircular duct systems has rarely been analyzed, foremost because the fragile membranous structures in the inner ear are hard to visualize undistorted and in full. Here we present a new, easy-to-apply and non-invasive method for three-dimensional in-situ visualization and quantification of the semicircular duct system, using X-ray micro tomography and tissue staining with phosphotungstic acid. Moreover, we introduce Ariadne, a software toolbox which provides comprehensive and improved morphological and functional analysis of any visualized duct system. We demonstrate the potential of these methods by presenting results for the duct system of humans, the squirrel monkey and the rhesus macaque, making comparisons with past results from neurophysiological, oculometric and biomechanical studies. Ariadne is freely available at http://www.earbank.org. PMID:27604473

  3. Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis.

    PubMed

    Tu, Joanna H; Foote, Katharina G; Lujan, Brandon J; Ratnam, Kavitha; Qin, Jia; Gorin, Michael B; Cunningham, Emmett T; Tuten, William S; Duncan, Jacque L; Roorda, Austin

    2017-09-01

    Confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images provide a sensitive measure of cone structure. However, the relationship between structural findings of diminished cone reflectivity and visual function is unclear. We used fundus-referenced testing to evaluate visual function in regions of apparent cone loss identified using confocal AOSLO images. A patient diagnosed with acute bilateral foveolitis had spectral-domain optical coherence tomography (SD-OCT) (Spectralis HRA + OCT system [Heidelberg Engineering, Vista, CA, USA]) images indicating focal loss of the inner segment-outer segment junction band with an intact, but hyper-reflective, external limiting membrane. Five years after symptom onset, visual acuity had improved from 20/80 to 20/25, but the retinal appearance remained unchanged compared to 3 months after symptoms began. We performed structural assessments using SD-OCT, directional OCT (non-standard use of a prototype on loan from Carl Zeiss Meditec) and AOSLO (custom-built system). We also administered fundus-referenced functional tests in the region of apparent cone loss, including analysis of preferred retinal locus (PRL), AOSLO acuity, and microperimetry with tracking SLO (TSLO) (prototype system). To determine AOSLO-corrected visual acuity, the scanning laser was modulated with a tumbling E consistent with 20/30 visual acuity. Visual sensitivity was assessed in and around the lesion using TSLO microperimetry. Complete eye examination, including standard measures of best-corrected visual acuity, visual field tests, color fundus photos, and fundus auto-fluorescence were also performed. Despite a lack of visible cone profiles in the foveal lesion, fundus-referenced vision testing demonstrated visual function within the lesion consistent with cone function. The PRL was within the lesion of apparent cone loss at the fovea. AOSLO visual acuity tests were abnormal, but measurable: for trials in which the stimulus remained completely within the lesion, the subject got 48% correct, compared to 78% correct when the stimulus was outside the lesion. TSLO microperimetry revealed reduced, but detectible, sensitivity thresholds within the lesion. Fundus-referenced visual testing proved useful to identify functional cones despite apparent photoreceptor loss identified using AOSLO and SD-OCT. While AOSLO and SD-OCT appear to be sensitive for the detection of abnormal or absent photoreceptors, changes in photoreceptors that are identified with these imaging tools do not correlate completely with visual function in every patient. Fundus-referenced vision testing is a useful tool to indicate the presence of cones that may be amenable to recovery or response to experimental therapies despite not being visible on confocal AOSLO or SD-OCT images.

  4. The visual and functional impacts of astigmatism and its clinical management.

    PubMed

    Read, Scott A; Vincent, Stephen J; Collins, Michael J

    2014-05-01

    To provide a comprehensive overview of research examining the impact of astigmatism on clinical and functional measures of vision, the short and longer term adaptations to astigmatism that occur in the visual system, and the currently available clinical options for the management of patients with astigmatism. The presence of astigmatism can lead to substantial reductions in visual performance in a variety of clinical vision measures and functional visual tasks. Recent evidence demonstrates that astigmatic blur results in short-term adaptations in the visual system that appear to reduce the perceived impact of astigmatism on vision. In the longer term, uncorrected astigmatism in childhood can also significantly impact on visual development, resulting in amblyopia. Astigmatism is also associated with the development of spherical refractive errors. Although the clinical correction of small magnitudes of astigmatism is relatively straightforward, the precise, reliable correction of astigmatism (particularly high astigmatism) can be challenging. A wide variety of refractive corrections are now available for the patient with astigmatism, including spectacle, contact lens and surgical options. Astigmatism is one of the most common refractive errors managed in clinical ophthalmic practice. The significant visual and functional impacts of astigmatism emphasise the importance of its reliable clinical management. With continued improvements in ocular measurement techniques and developments in a range of different refractive correction technologies, the future promises the potential for more precise and comprehensive correction options for astigmatic patients. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  5. Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex

    PubMed Central

    Jehee, Janneke F.M.; Ling, Sam; Swisher, Jascha D.; van Bergen, Ruben S.; Tong, Frank

    2013-01-01

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily one-hour training sessions. Training on average led to a two-fold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1–V4) using signal detection measures, both pre- and post-training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2–V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information. PMID:23175828

  6. Perceptual learning selectively refines orientation representations in early visual cortex.

    PubMed

    Jehee, Janneke F M; Ling, Sam; Swisher, Jascha D; van Bergen, Ruben S; Tong, Frank

    2012-11-21

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily 1 h training sessions. Training on average led to a twofold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1-V4) using signal detection measures, both before and after training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2-V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information.

  7. Visual Culture and Electronic Government: Exploring a New Generation of E-Government

    NASA Astrophysics Data System (ADS)

    Bekkers, Victor; Moody, Rebecca

    E-government is becoming more picture-oriented. What meaning do stakeholders attach to visual events and visualization? Comparative case study research show the functional meaning primarily refers to registration, integration, transparency and communication. The political meaning refers to new ways of framing in order to secure specific interests and claims. To what the institutional meaning relates is ambiguous: either it improves the position of citizens, or it reinforces the existing bias presented by governments. Hence, we expect that the emergence of a visualized public space, through omnipresent penetration of (mobile) multimedia technologies, will influence government-citizen interactions.

  8. Effects of youth football on selected clinical measures of neurologic function: a pilot study.

    PubMed

    Munce, Thayne A; Dorman, Jason C; Odney, Tryg O; Thompson, Paul A; Valentine, Verle D; Bergeron, Michael F

    2014-12-01

    We assessed 10 youth football players (13.4 ± 0.7 y) immediately before and after their season to explore the effects of football participation on selected clinical measures of neurologic function. Postseason postural stability in a closed-eye condition was improved compared to preseason (P = .017). Neurocognitive testing with the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) battery revealed that reaction time was significantly faster at postseason (P = .015). There were no significant preseason versus postseason differences in verbal memory (P = .507), visual memory (P = .750), or visual motor speed (P = .087). Oculomotor performance assessed by the King-Devick test was moderately to significantly improved (P = .047-.115). A 12-week season of youth football did not impair the postural stability, neurocognitive function, or oculomotor performance measures of the players evaluated. Though encouraging, continued and more comprehensive investigations of this at-risk population are warranted. © The Author(s) 2013.

  9. Effect of anterior capsule contraction on visual function after cataract surgery.

    PubMed

    Hayashi, Ken; Hayashi, Hideyuki

    2007-11-01

    To examine the effect of contraction of the anterior capsule opening after cataract surgery on visual acuity and contrast sensitivity. Hayashi Eye Hospital, Fukuoka, Japan. Thirty-two eyes of 32 consecutive patients who showed marked contraction of the anterior capsule opening after implantation of an intraocular lens were recruited. The area of the anterior capsule opening was measured by Scheimpflug videophotography before and after neodymium:YAG (Nd:YAG) laser anterior capsulotomy and was correlated with visual acuity and contrast sensitivity. After Nd:YAG laser anterior capsulotomy, the mean area of the anterior capsule opening increased significantly from 8.2 mm(2) to 18.0 mm(2) (P<.0001). Contrast sensitivity at most visual angles also improved significantly after Nd:YAG anterior capsulotomy, although visual acuity did not. The area of the anterior capsule opening before anterior capsulotomy was correlated significantly with contrast sensitivity but not with visual acuity, whereas there was no correlation between the opening area after anterior capsulotomy and visual acuity or contrast sensitivity. Contraction of the anterior capsule opening after cataract surgery significantly diminished contrast sensitivity in proportion to the opening area but did not markedly worsen visual acuity. Neodymium:YAG laser anterior capsulotomy improved contrast sensitivity.

  10. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning.

    PubMed

    Bonaccorsi, Joyce; Berardi, Nicoletta; Sale, Alessandro

    2014-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1-5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat.

  11. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning

    PubMed Central

    Bonaccorsi, Joyce; Berardi, Nicoletta; Sale, Alessandro

    2014-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat. PMID:25076874

  12. Environmental enrichment decreases GABAergic inhibition and improves cognitive abilities, synaptic plasticity, and visual functions in a mouse model of Down syndrome

    PubMed Central

    Begenisic, Tatjana; Spolidoro, Maria; Braschi, Chiara; Baroncelli, Laura; Milanese, Marco; Pietra, Gianluca; Fabbri, Maria E.; Bonanno, Giambattista; Cioni, Giovanni; Maffei, Lamberto; Sale, Alessandro

    2011-01-01

    Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice. PMID:22207837

  13. Long lasting effects of daily theta burst rTMS sessions in the human amblyopic cortex.

    PubMed

    Clavagnier, Simon; Thompson, Benjamin; Hess, Robert F

    2013-11-01

    It has been reported that a single session of 1 Hz or 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in adults with amblyopia. More recently, continuous theta burst stimulation (cTBS) of the visual cortex has been found to improve contrast sensitivity in observers with normal vision. The aims of this study were to assess whether cTBS of the visual cortex could improve contrast sensitivity in adults with amblyopia and whether repeated sessions of cTBS would lead to more pronounced and/or longer lasting effects. cTBS was delivered to the visual cortex while patients viewed a high contrast stimulus with their non-amblyopic eye. This manipulation was designed to bias the effects of cTBS toward inputs from the amblyopic eye. Contrast sensitivity was measured before and after stimulation. The effects of one cTBS session were measured in five patients and the effects of five consecutive daily sessions were measured in four patients. Three patients were available for follow-up at varying intervals after the final session. cTBS improved amblyopic eye contrast sensitivity to high spatial frequencies (P < 0.05) and there was a cumulative improvement across sessions with asymptotic improvement occurring after 2 daily sessions of stimulation. The contrast sensitivity improvements were stable over a period of up to 78 days. These initial results in a small number of patients indicate the cTBS may allow for enduring visual function improvements in adults with amblyopia. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Learning to identify crowded letters: Does the learning depend on the frequency of training?

    PubMed Central

    Chung, Susana T. L.; Truong, Sandy R.

    2012-01-01

    Performance for many visual tasks improves with training. The magnitude of improvement following training depends on the training task, number of trials per training session and the total amount of training. Does the magnitude of improvement also depend on the frequency of training sessions? In this study, we compared the learning effect for three groups of normally sighted observers who repeatedly practiced the task of identifying crowded letters in the periphery for six sessions (1000 trials per session), according to three different training schedules — one group received one session of training everyday, the second group received a training session once a week and the third group once every two weeks. Following six sessions of training, all observers improved in their performance of identifying crowded letters in the periphery. Most importantly, the magnitudes of improvement were similar across the three training groups. The improvement was accompanied by a reduction in the spatial extent of crowding, an increase in the size of visual span and a reduction in letter-size threshold. The magnitudes of these accompanied improvements were also similar across the three training groups. Our finding that the effectiveness of visual perceptual learning is similar for daily, weekly and biweekly training has significant implication for adopting perceptual learning as an option to improve visual functions for clinical patients. PMID:23206551

  15. The Relationship of Motor Coordination, Visual Perception, and Executive Function to the Development of 4–6-Year-Old Chinese Preschoolers' Visual Motor Integration Skills

    PubMed Central

    Fang, Ying; Zhang, Ying

    2017-01-01

    Visual motor integration (VMI) is a vital ability in childhood development, which is associated with the performance of many functional skills. By using the Beery Developmental Test Package and Executive Function Tasks, the present study explored the VMI development and its factors (visual perception, motor coordination, and executive function) among 151 Chinese preschoolers from 4 to 6 years. Results indicated that the VMI skills of children increased quickly at 4 years and peaked at 5 years and decreased at around 5 to 6 years. Motor coordination and cognitive flexibility were related to the VMI development of children from 4 to 6 years. Visual perception was associated with the VMI development at early 4 years and inhibitory control was also associated with it among 4-year-old and the beginning of 5-year-old children. Working memory had no impact on the VMI. In conclusion, the development of VMI skills among children in preschool was not stable but changed dynamically in this study. Meanwhile the factors of the VMI worked in different age range for preschoolers. These findings may give some guidance to researchers or health professionals on improving children's VMI skills in their early childhood. PMID:29457030

  16. A dichoptic custom-made action video game as a treatment for adult amblyopia.

    PubMed

    Vedamurthy, Indu; Nahum, Mor; Huang, Samuel J; Zheng, Frank; Bayliss, Jessica; Bavelier, Daphne; Levi, Dennis M

    2015-09-01

    Previous studies have employed different experimental approaches to enhance visual function in adults with amblyopia including perceptual learning, videogame play, and dichoptic training. Here, we evaluated the efficacy of a novel dichoptic action videogame combining all three approaches. This experimental intervention was compared to a conventional, yet unstudied method of supervised occlusion while watching movies. Adults with unilateral amblyopia were assigned to either play the dichoptic action game (n=23; 'game' group), or to watch movies monocularly while the fellow eye was patched (n=15; 'movies' group) for a total of 40hours. Following training, visual acuity (VA) improved on average by ≈0.14logMAR (≈28%) in the game group, with improvements noted in both anisometropic and strabismic patients. This improvement is similar to that obtained following perceptual learning, video game play or dichoptic training. Surprisingly, patients with anisometropic amblyopia in the movies group showed similar improvement, revealing a greater impact of supervised occlusion in adults than typically thought. Stereoacuity, reading speed, and contrast sensitivity improved more for game group participants compared with movies group participants. Most improvements were largely retained following a 2-month no-contact period. This novel video game, which combines action gaming, perceptual learning and dichoptic presentation, results in VA improvements equivalent to those previously documented with each of these techniques alone. Our game intervention led to greater improvement than control training in a variety of visual functions, thus suggesting that this approach has promise for the treatment of adult amblyopia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A dichoptic custom-made action video game as a treatment for adult amblyopia

    PubMed Central

    Vedamurthy, Indu; Nahum, Mor; Huang, Samuel J.; Zheng, Frank; Bayliss, Jessica; Bavelier, Daphne; Levi, Dennis M.

    2015-01-01

    Previous studies have employed different experimental approaches to enhance visual function in adults with amblyopia including perceptual learning, videogame play, and dichoptic training. Here, we evaluated the efficacy of a novel dichoptic action videogame combining all three approaches. This experimental intervention was compared to a conventional, yet unstudied method of supervised occlusion while watching movies. Adults with unilateral amblyopia were assigned to either playing the dichoptic action game (n = 23; ‘game’ group), or to watching movies monocularly while the fellow eye was patched (n = 15; ‘movies’ group) for a total of 40 h. Following training, visual acuity (VA) improved on average by ≈0.14 logMAR (≈27%) in the game group, with improvements noted in both anisometropic and strabismic patients. This improvement is similar to that described after perceptual learning, video game play or dichoptic training. Surprisingly, patients with anisometropic amblyopia in the movies group showed similar improvement, revealing a greater impact of supervised occlusion in adults than typically thought. Stereoacuity, reading speed, and contrast sensitivity improved more for game group participants compared with movies group participants. Most improvements were largely retained following a 2-month no-contact period. This novel video game, which combines action gaming, perceptual learning and dichoptic presentation, results in VA improvements equivalent to those previously documented with each of these techniques alone. Interestingly, however, our game intervention led to greater improvement than control training in a variety of visual functions, thus suggesting that this approach has promise for the treatment of adult amblyopia. PMID:25917239

  18. The effects of augmented visual feedback during balance training in Parkinson's disease: study design of a randomized clinical trial.

    PubMed

    van den Heuvel, Maarten R C; van Wegen, Erwin E H; de Goede, Cees J T; Burgers-Bots, Ingrid A L; Beek, Peter J; Daffertshofer, Andreas; Kwakkel, Gert

    2013-10-04

    Patients with Parkinson's disease often suffer from reduced mobility due to impaired postural control. Balance exercises form an integral part of rehabilitative therapy but the effectiveness of existing interventions is limited. Recent technological advances allow for providing enhanced visual feedback in the context of computer games, which provide an attractive alternative to conventional therapy. The objective of this randomized clinical trial is to investigate whether a training program capitalizing on virtual-reality-based visual feedback is more effective than an equally-dosed conventional training in improving standing balance performance in patients with Parkinson's disease. Patients with idiopathic Parkinson's disease will participate in a five-week balance training program comprising ten treatment sessions of 60 minutes each. Participants will be randomly allocated to (1) an experimental group that will receive balance training using augmented visual feedback, or (2) a control group that will receive balance training in accordance with current physical therapy guidelines for Parkinson's disease patients. Training sessions consist of task-specific exercises that are organized as a series of workstations. Assessments will take place before training, at six weeks, and at twelve weeks follow-up. The functional reach test will serve as the primary outcome measure supplemented by comprehensive assessments of functional balance, posturography, and electroencephalography. We hypothesize that balance training based on visual feedback will show greater improvements on standing balance performance than conventional balance training. In addition, we expect that learning new control strategies will be visible in the co-registered posturographic recordings but also through changes in functional connectivity.

  19. [Effects on salivation, xerostomia and halitosis in elders after oral function improvement exercises].

    PubMed

    Kim, Young Jin; Park, Kyung Min

    2012-12-01

    The purpose of this study was to investigate effects of Oral Function Improvement Exercises on salivation, xerostomia and halitosis in elderly people. The participants in the study were 48 female community-dwelling elders in D city. The Oral Function Improvement Exercises were given 3 times a week, for a total of 24 times from August to October 2011. Spitting method, Visual Analogue Scale, and halimeter (mBA-21) were used to evaluate the effects of Oral Function Improvement Exercises on salivation, xerostomia, and halitosis. The data were analyzed using χ²-test and t-test with the SPSS program. The experimental group had significantly better salivation, and less xerostomia and halitosis than the control group. The results indicate that Oral Function Improvement Exercises were effective for salivation, xerostomia and halitosis in the elders. Therefore, it was suggested that Oral Function Improvement Exercise are applicable in a community nursing intervention program to improve the quality of life for elders.

  20. Brain plasticity in the adult: modulation of function in amblyopia with rTMS.

    PubMed

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2008-07-22

    Amblyopia is a cortically based visual disorder caused by disruption of vision during a critical early developmental period. It is often thought to be a largely intractable problem in adult patients because of a lack of neuronal plasticity after this critical period [1]; however, recent advances have suggested that plasticity is still present in the adult amblyopic visual cortex [2-6]. Here, we present data showing that repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in the amblyopic visual cortex. The results indicate continued plasticity of the amblyopic visual system in adulthood and open the way for a potential new therapeutic approach to the treatment of amblyopia.

  1. Sport stacking in auditory and visual attention of grade 3 learners.

    PubMed

    Mortimer, J; Krysztofiak, J; Custard, S; McKune, A J

    2011-08-01

    The effect of sport stacking on auditory and visual attention in 32 Grade 3 children was examined using a randomised, cross-over design. Children were randomly assigned to a sport stacking (n=16) or arts/crafts group (n=16) with these activities performed over 3 wk. (12 30-min. sessions, 4 per week). This was followed by a 3-wk. wash-out period after which there was a cross-over and the 3-wk. intervention repeated, with the sports stacking group performing arts/crafts and the arts/crafts group performing sports stacking. Performance on the Integrated Visual and Auditory Continuous Performance Test, a measure of auditory and visual attention, was assessed before and after each of the 3-wk. interventions for each group. Comparisons indicated that sport stacking resulted in significant improvement in high demand function and fine motor regulation, while it caused a significant reduction in low demand function. Auditory and visual attention adaptations to sport stacking may be specific to the high demand nature of the task.

  2. Plasticity of the human visual system after retinal gene therapy in patients with Leber's congenital amaurosis.

    PubMed

    Ashtari, Manzar; Zhang, Hui; Cook, Philip A; Cyckowski, Laura L; Shindler, Kenneth S; Marshall, Kathleen A; Aravand, Puya; Vossough, Arastoo; Gee, James C; Maguire, Albert M; Baker, Chris I; Bennett, Jean

    2015-07-15

    Much of our knowledge of the mechanisms underlying plasticity in the visual cortex in response to visual impairment, vision restoration, and environmental interactions comes from animal studies. We evaluated human brain plasticity in a group of patients with Leber's congenital amaurosis (LCA), who regained vision through gene therapy. Using non-invasive multimodal neuroimaging methods, we demonstrated that reversing blindness with gene therapy promoted long-term structural plasticity in the visual pathways emanating from the treated retina of LCA patients. The data revealed improvements and normalization along the visual fibers corresponding to the site of retinal injection of the gene therapy vector carrying the therapeutic gene in the treated eye compared to the visual pathway for the untreated eye of LCA patients. After gene therapy, the primary visual pathways (for example, geniculostriate fibers) in the treated retina were similar to those of sighted control subjects, whereas the primary visual pathways of the untreated retina continued to deteriorate. Our results suggest that visual experience, enhanced by gene therapy, may be responsible for the reorganization and maturation of synaptic connectivity in the visual pathways of the treated eye in LCA patients. The interactions between the eye and the brain enabled improved and sustained long-term visual function in patients with LCA after gene therapy. Copyright © 2015, American Association for the Advancement of Science.

  3. The Associations between Visual Attention and Facial Expression Identification in Patients with Schizophrenia.

    PubMed

    Lin, I-Mei; Fan, Sheng-Yu; Huang, Tiao-Lai; Wu, Wan-Ting; Li, Shi-Ming

    2013-12-01

    Visual search is an important attention process that precedes the information processing. Visual search also mediates the relationship between cognition function (attention) and social cognition (such as facial expression identification). However, the association between visual attention and social cognition in patients with schizophrenia remains unknown. The purposes of this study were to examine the differences in visual search performance and facial expression identification between patients with schizophrenia and normal controls, and to explore the relationship between visual search performance and facial expression identification in patients with schizophrenia. Fourteen patients with schizophrenia (mean age=46.36±6.74) and 15 normal controls (mean age=40.87±9.33) participated this study. The visual search task, including feature search and conjunction search, and Japanese and Caucasian Facial Expression of Emotion were administered. Patients with schizophrenia had worse visual search performance both in feature search and conjunction search than normal controls, as well as had worse facial expression identification, especially in surprised and sadness. In addition, there were negative associations between visual search performance and facial expression identification in patients with schizophrenia, especially in surprised and sadness. However, this phenomenon was not showed in normal controls. Patients with schizophrenia who had visual search deficits had the impairment on facial expression identification. Increasing ability of visual search and facial expression identification may improve their social function and interpersonal relationship.

  4. Fractionated Stereotactic Radiotherapy in Patients With Optic Nerve Sheath Meningioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulsen, Frank, E-mail: frank.paulsen@med.uni-tuebingen.de; Doerr, Stefan; Wilhelm, Helmut

    Purpose: To evaluate the effectiveness of fractionated stereotactic radiotherapy (SFRT) in the treatment of optic nerve sheath meningioma (ONSM). Methods and Materials: Between 1993 and 2005, 109 patients (113 eyes) with primary (n = 37) or secondary (n = 76) ONSM were treated according to a prospective protocol with SFRT to a median dose of 54 Gy. All patients underwent radiographic, ophthalmologic, and endocrine analysis before and after SFRT. Radiographic response, visual control, and late side effects were endpoints of the analysis. Results: Median time to last clinical, radiographic, and ophthalmologic follow up was 30.2 months (n = 113), 42.7more » months (n = 108), and 53.7 months (n = 91), respectively. Regression of the tumor was observed in 5 eyes and progression in 4 eyes, whereas 104 remained stable. Visual acuity improved in 12, deteriorated in 11, and remained stable in 68 eyes. Mean visual field defects reduced from 33.6% (n = 90) to 17.8% (n = 56) in ipsilateral and from 10% (n = 94) to 6.7% (n = 62) in contralateral eyes. Ocular motility improved in 23, remained stable in 65, and deteriorated in 3 eyes. Radiographic tumor control was 100% at 3 years and 98% at 5 years. Visual acuity was preserved in 94.8% after 3 years and in 90.9% after 5 years. Endocrine function was normal in 90.8% after 3 years and in 81.3% after 5 years. Conclusions: SFRT represents a highly effective treatment for ONSM. Interdisciplinary counseling of the patients is recommended. Because of the high rate of preservation of visual acuity we consider SFRT the standard approach for the treatment of ONSM. Prolonged observation is warranted to more accurately assess late visual impairment. Moderate de-escalation of the radiation dose might improve the preservation of visual acuity and pituitary gland function.« less

  5. [Quality of life in visual impaired children treated for Early Visual Stimulation].

    PubMed

    Messa, Alcione Aparecida; Nakanami, Célia Regina; Lopes, Marcia Caires Bestilleiro

    2012-01-01

    To evaluate the quality of life in visually impaired children followed in the Early Visual Stimulation Ambulatory of Unifesp in two moments, before and after rehabilitational intervention of multiprofessional team. A CVFQ quality of life questionnaire was used. This instrument has a version for less than three years old children and another one for children older than three years (three to seven years) divided in six subscales: General health, General vision health, Competence, Personality, Family impact and Treatment. The correlation between the subscales on two moments was significant. There was a statistically significant difference in general vision health (p=0,029) and other important differences obtained in general health, family impact and quality of life general score. The questionnaire showed to be effective in order to measure the quality of life related to vision on families followed on this ambulatory. The multidisciplinary interventions provided visual function and familiar quality of life improvement. The quality of life related to vision in children followed in Early Visual Stimulation Ambulatory of Unifesp showed a significant improvement on general vision health.

  6. The informativity of sound modulates crossmodal facilitation of visual discrimination: a fMRI study.

    PubMed

    Li, Qi; Yu, Hongtao; Li, Xiujun; Sun, Hongzan; Yang, Jingjing; Li, Chunlin

    2017-01-18

    Many studies have investigated behavioral crossmodal facilitation when a visual stimulus is accompanied by a concurrent task-irrelevant sound. Lippert and colleagues reported that a concurrent task-irrelevant sound reduced the uncertainty of the timing of the visual display and improved perceptional responses (informative sound). However, the neural mechanism by which the informativity of sound affected crossmodal facilitation of visual discrimination remained unclear. In this study, we used event-related functional MRI to investigate the neural mechanisms underlying the role of informativity of sound in crossmodal facilitation of visual discrimination. Significantly faster reaction times were observed when there was an informative relationship between auditory and visual stimuli. The functional MRI results showed sound informativity-induced activation enhancement including the left fusiform gyrus and the right lateral occipital complex. Further correlation analysis showed that the right lateral occipital complex was significantly correlated with the behavioral benefit in reaction times. This suggests that this region was modulated by the informative relationship within audiovisual stimuli that was learnt during the experiment, resulting in late-stage multisensory integration and enhanced behavioral responses.

  7. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    PubMed

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience suggests that higher-order cognition may be involved in VPL. If so, real-time strategy (RTS) video-game experience may facilitate VPL as a result of heavy involvement of cognitive skills. Here, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and investigated the underlying neural mechanisms. VGPs showed better performance in the early phase of training on the texture discrimination task and greater level of neuronal activity in cognitive areas and structural connectivity between visual and cognitive areas than NVGPs. These results support the hypothesis that VPL can occur beyond the visual cortex. Copyright © 2015 the authors 0270-6474/15/3510485-08$15.00/0.

  8. High-density diffuse optical tomography of term infant visual cortex in the nursery

    NASA Astrophysics Data System (ADS)

    Liao, Steve M.; Ferradal, Silvina L.; White, Brian R.; Gregg, Nicholas; Inder, Terrie E.; Culver, Joseph P.

    2012-08-01

    Advancements in antenatal and neonatal medicine over the last few decades have led to significant improvement in the survival rates of sick newborn infants. However, this improvement in survival has not been matched by a reduction in neurodevelopmental morbidities with increasing recognition of the diverse cognitive and behavioral challenges that preterm infants face in childhood. Conventional neuroimaging modalities, such as cranial ultrasound and magnetic resonance imaging, provide an important definition of neuroanatomy with recognition of brain injury. However, they fail to define the functional integrity of the immature brain, particularly during this critical developmental period. Diffuse optical tomography methods have established success in imaging adult brain function; however, few studies exist to demonstrate their feasibility in the neonatal population. We demonstrate the feasibility of using recently developed high-density diffuse optical tomography (HD-DOT) to map functional activation of the visual cortex in healthy term-born infants. The functional images show high contrast-to-noise ratio obtained in seven neonates. These results illustrate the potential for HD-DOT and provide a foundation for investigations of brain function in more vulnerable newborns, such as preterm infants.

  9. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees.

    PubMed

    He, Zilong; Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Chen, Wei-Hua; Hu, Songnian

    2016-07-08

    Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its 'dataset system' contains not only the data to be visualized on the tree, but also 'modifiers' that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new 'Demo' trees to demonstrate the basic functionalities of Evolview, and five new 'Showcase' trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Effects of light touch on postural sway and visual search accuracy: A test of functional integration and resource competition hypotheses.

    PubMed

    Chen, Fu-Chen; Chen, Hsin-Lin; Tu, Jui-Hung; Tsai, Chia-Liang

    2015-09-01

    People often multi-task in their daily life. However, the mechanisms for the interaction between simultaneous postural and non-postural tasks have been controversial over the years. The present study investigated the effects of light digital touch on both postural sway and visual search accuracy for the purpose of assessing two hypotheses (functional integration and resource competition), which may explain the interaction between postural sway and the performance of a non-postural task. Participants (n=42, 20 male and 22 female) were asked to inspect a blank sheet of paper or visually search for target letters in a text block while a fingertip was in light contact with a stable surface (light touch, LT), or with both arms hanging at the sides of the body (no touch, NT). The results showed significant main effects of LT on reducing the magnitude of postural sway as well as enhancing visual search accuracy compared with the NT condition. The findings support the hypothesis of function integration, demonstrating that the modulation of postural sway can be modulated to improve the performance of a visual search task. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Slushy weightings for the optimal pilot model. [considering visual tracking task

    NASA Technical Reports Server (NTRS)

    Dillow, J. D.; Picha, D. G.; Anderson, R. O.

    1975-01-01

    A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.

  12. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  13. Corneal changes induced by laser ablation: study of the visual-quality evolution by a customized eye model

    NASA Astrophysics Data System (ADS)

    Ortiz, D.; Anera, R. G.; Saiz, J. M.; Jiménez, J. R.; Moreno, F.; Jiménez Del Barco, L.; González, F.

    2006-11-01

    This study focuses on the changes induced in both the asphericity and homogeneity of the cornea for a group of myopic eyes undergoing LASIK surgery. Eyes were characterized by a Kooijman-based customized eye model in which changes were introduced in the form of Gaussian-distributed refractive-index variations of given correlation length for the inhomogeneities and in the form of an expression, based on the modified Munnerlyn's paraxial formula, for the post-LASIK asphericity. Visual quality was evaluated in terms of the Modulation Transfer Function and the Point-Spread Function. The results show that, on average, the evolution of visual acuity is consistent with the change in corneal asphericity, while the evolution of contrast sensitivity requires a loss in corneal homogeneity in order to be explained. By including both effects in the model, the overall model performance in predicting visual quality is improved.

  14. Addition of visual noise boosts evoked potential-based brain-computer interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  15. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  16. Top-Down Computerized Cognitive Remediation in Schizophrenia: A Case Study of an Individual with Impairment in Verbal Fluency

    PubMed Central

    Masson, Marjolaine; Wykes, Til; Maziade, Michel; Reeder, Clare; Gariépy, Marie-Anne; Roy, Marc-André; Ivers, Hans; Cellard, Caroline

    2015-01-01

    The objective of this case study was to assess the specific effect of cognitive remediation for schizophrenia on the pattern of cognitive impairments. Case A is a 33-year-old man with a schizophrenia diagnosis and impairments in visual memory, inhibition, problem solving, and verbal fluency. He was provided with a therapist delivered cognitive remediation program involving practice and strategy which was designed to train attention, memory, executive functioning, visual-perceptual processing, and metacognitive skills. Neuropsychological and clinical assessments were administered at baseline and after three months of treatment. At posttest assessment, Case A had improved significantly on targeted (visual memory and problem solving) and nontargeted (verbal fluency) cognitive processes. The results of the current case study suggest that (1) it is possible to improve specific cognitive processes with targeted exercises, as seen by the improvement in visual memory due to training exercises targeting this cognitive domain; (2) cognitive remediation can produce improvements in cognitive processes not targeted during remediation since verbal fluency was improved while there was no training exercise on this specific cognitive process; and (3) including learning strategies in cognitive remediation increases the value of the approach and enhances participant improvement, possibly because strategies using verbalization can lead to improvement in verbal fluency even if it was not practiced. PMID:25949840

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne

    A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing jointmore » visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  18. RVA: A Plugin for ParaView 3.14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-04

    RVA is a plugin developed for the 64-bit Windows version of the ParaView 3.14 visualization package. RVA is designed to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed onmore » enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including: sophisticated connectivity analysis, cross sections through simulation results between selected wells, simplified volumetric calculations, global vertical exaggeration adjustments, ingestion of UTChem simulation results, ingestion of Isatis geostatistical framework models, interrogation of joint geologic and reservoir modeling results, joint visualization and analysis of well history files, location-targeted visualization, advanced correlation analysis, visualization of flow paths, and creation of static images and animations highlighting targeted reservoir features.« less

  19. Perceptual Learning Improves Stereoacuity in Amblyopia

    PubMed Central

    Xi, Jie; Jia, Wu-Li; Feng, Li-Xia; Lu, Zhong-Lin; Huang, Chang-Bing

    2014-01-01

    Purpose. Amblyopia is a developmental disorder that results in both monocular and binocular deficits. Although traditional treatment in clinical practice (i.e., refractive correction, or occlusion by patching and penalization of the fellow eye) is effective in restoring monocular visual acuity, there is little information on how binocular function, especially stereopsis, responds to traditional amblyopia treatment. We aim to evaluate the effects of perceptual learning on stereopsis in observers with amblyopia in the current study. Methods. Eleven observers (21.1 ± 5.1 years, six females) with anisometropic or ametropic amblyopia were trained to judge depth in 10 to 13 sessions. Red–green glasses were used to present three different texture anaglyphs with different disparities but a fixed exposure duration. Stereoacuity was assessed with the Fly Stereo Acuity Test and visual acuity was assessed with the Chinese Tumbling E Chart before and after training. Results. Averaged across observers, training significantly reduced disparity threshold from 776.7″ to 490.4″ (P < 0.01) and improved stereoacuity from 200.3″ to 81.6″ (P < 0.01). Interestingly, visual acuity also significantly improved from 0.44 to 0.35 logMAR (approximately 0.9 lines, P < 0.05) in the amblyopic eye after training. Moreover, the learning effects in two of the three retested observers were largely retained over a 5-month period. Conclusions. Perceptual learning is effective in improving stereo vision in observers with amblyopia. These results, together with previous evidence, suggest that structured monocular and binocular training might be necessary to fully recover degraded visual functions in amblyopia. Chinese Abstract PMID:24508791

  20. Perceptual learning improves stereoacuity in amblyopia.

    PubMed

    Xi, Jie; Jia, Wu-Li; Feng, Li-Xia; Lu, Zhong-Lin; Huang, Chang-Bing

    2014-04-15

    Amblyopia is a developmental disorder that results in both monocular and binocular deficits. Although traditional treatment in clinical practice (i.e., refractive correction, or occlusion by patching and penalization of the fellow eye) is effective in restoring monocular visual acuity, there is little information on how binocular function, especially stereopsis, responds to traditional amblyopia treatment. We aim to evaluate the effects of perceptual learning on stereopsis in observers with amblyopia in the current study. Eleven observers (21.1 ± 5.1 years, six females) with anisometropic or ametropic amblyopia were trained to judge depth in 10 to 13 sessions. Red-green glasses were used to present three different texture anaglyphs with different disparities but a fixed exposure duration. Stereoacuity was assessed with the Fly Stereo Acuity Test and visual acuity was assessed with the Chinese Tumbling E Chart before and after training. Averaged across observers, training significantly reduced disparity threshold from 776.7″ to 490.4″ (P < 0.01) and improved stereoacuity from 200.3″ to 81.6″ (P < 0.01). Interestingly, visual acuity also significantly improved from 0.44 to 0.35 logMAR (approximately 0.9 lines, P < 0.05) in the amblyopic eye after training. Moreover, the learning effects in two of the three retested observers were largely retained over a 5-month period. Perceptual learning is effective in improving stereo vision in observers with amblyopia. These results, together with previous evidence, suggest that structured monocular and binocular training might be necessary to fully recover degraded visual functions in amblyopia. Chinese Abstract.

  1. Optical functional performance of the osteo-odonto-keratoprosthesis.

    PubMed

    Lee, Richard M H; Ong, Gek L; Lam, Fook Chang; White, Joy; Crook, David; Liu, Christopher S C; Hull, Chris C

    2014-10-01

    The aim of this study was to evaluate optical and visual functional performance of the osteo-odonto-keratoprosthesis (OOKP). Optical design and analysis was performed with customized optical design software. Nine patients with implanted OOKP devices and 9 age-matched control patients were assessed. Contrast sensitivity was assessed and glare effect was measured with a brightness acuity test. All OOKP patients underwent kinetic Goldmann perimetry and wavefront aberrometry and completed the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). Optical analysis showed that the optical cylinder is near diffraction-limited. A reduction in median visual acuity (VA) with increasing glare settings was observed from 0.04 logMAR (without glare) to 0.20 logMAR (with glare at "high" setting) and significantly reduced statistically when compared with the control group at all levels of glare (P < 0.05). Contrast sensitivity was significantly reduced when compared with age-matched controls at medium and high spatial frequencies (P < 0.05). Median Goldmann perimetry was 65 degrees (interquartile range, 64-74 degrees; V-4e isopters) and 69 degrees excluding 2 glaucomatous subjects. Several vision-related NEI VFQ-25 subscales correlated significantly with VA at various brightness acuity test levels and contrast sensitivity at medium spatial frequencies, including dependency, general vision, near activities and distance activities. The OOKP optical cylinder provides patients with a good level of VA that is significantly reduced by glare. We have shown in vivo that updates to the optical cylinder design have improved the patient's field of view. Reduction of glare and refinement of cylinder alignment methods may further improve visual function and patient satisfaction.

  2. Feasibility and Preliminary Efficacy of Visual Cue Training to Improve Adaptability of Walking after Stroke: Multi-Centre, Single-Blind Randomised Control Pilot Trial.

    PubMed

    Hollands, Kristen L; Pelton, Trudy A; Wimperis, Andrew; Whitham, Diane; Tan, Wei; Jowett, Sue; Sackley, Catherine M; Wing, Alan M; Tyson, Sarah F; Mathias, Jonathan; Hensman, Marianne; van Vliet, Paulette M

    2015-01-01

    Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services. Community dwelling stroke survivors with walking speed <0.8m/s, lower limb paresis and no severe visual impairments. Over-ground visual cue training (O-VCT), Treadmill based visual cue training (T-VCT), and Usual care (UC) delivered by physiotherapists twice weekly for 8 weeks. Participants were randomised using computer generated random permutated balanced blocks of randomly varying size. Recruitment, retention, adherence, adverse events and mobility and balance were measured before randomisation, post-intervention and at four weeks follow-up. Fifty-six participants participated (18 T-VCT, 19 O-VCT, 19 UC). Thirty-four completed treatment and follow-up assessments. Of the participants that completed, adherence was good with 16 treatments provided over (median of) 8.4, 7.5 and 9 weeks for T-VCT, O-VCT and UC respectively. No adverse events were reported. Post-treatment improvements in walking speed, symmetry, balance and functional mobility were seen in all treatment arms. Outpatient based treadmill and over-ground walking adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. Clinicaltrials.gov NCT01600391.

  3. New pinhole sulcus implant for the correction of irregular corneal astigmatism.

    PubMed

    Trindade, Claudio C; Trindade, Bruno C; Trindade, Fernando C; Werner, Liliana; Osher, Robert; Santhiago, Marcony R

    2017-10-01

    To evaluate the effect on visual acuity of the implantation of a new intraocular pinhole device (Xtrafocus) in cases of irregular corneal astigmatism with significant visual impairment. University of São Paulo, São Paulo, Brazil. Prospective case series. Pseudophakic eyes of patients with irregular corneal astigmatism were treated with the pinhole device. The causes of irregular corneal astigmatism were keratoconus, post radial keratotomy (RK), post-penetrating keratoplasty (PKP), and traumatic corneal laceration. The device was implanted in the ciliary sulcus in a piggyback configuration to minimize the effect of corneal aberrations. Preoperative and postoperative visual parameters were compared. The main outcome variables were manifest refraction, uncorrected and corrected distance and near visual acuities, subjective patient satisfaction, and intraoperative and postoperative adverse events and complications. Twenty-one patients (ages 35 to 85 years) were included. There was statistically significant improvement in uncorrected and corrected (CDVA) distance visual acuities. The median CDVA improved from 20/200 (range 20/800 to 20/60) preoperatively to 20/50 (range 20/200 to 20/20) in the first month postoperatively and remained stable over the following months. Manifest refraction remained unchanged, while a subjective visual performance questionnaire revealed perception of improvement in all the tested working distances. No major complication was observed. One case presented with decentration of the device, which required an additional surgical intervention. The intraocular pinhole device performed well in patients with irregular astigmatism caused by keratoconus, RK, PKP, and traumatic corneal laceration. There was marked improvement in visual function, with high patient satisfaction. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Decreased activation along the dorsal visual pathway after a 3-month treatment with galantamine in mild Alzheimer disease: a functional magnetic resonance imaging study.

    PubMed

    Bokde, Arun L W; Karmann, Michaela; Teipel, Stefan J; Born, Christine; Lieb, Martin; Reiser, Maximilian F; Möller, Hans-Jürgen; Hampel, Harald

    2009-04-01

    Visual perception has been shown to be altered in Alzheimer disease (AD) patients, and it is associated with decreased cognitive function. Galantamine is an active cholinergic agent, which has been shown to lead to improved cognition in mild to moderate AD patients. This study examined brain activation in a group of mild AD patients after a 3-month open-label treatment with galantamine. The objective was to examine the changes in brain activation due to treatment. There were 2 tasks to visual perception. The first task was a face-matching task to test the activation along the ventral visual pathway, and the second task was a location-matching task to test neuronal function along the dorsal pathway. Brain activation was measured using functional magnetic resonance imaging. There were 5 mild AD patients in the study. There were no differences in the task performance and in the cognitive scores of the Consortium to Establish a Registry for Alzheimer's Disease battery before and after treatment. In the location-matching task, we found a statistically significant decrease in activation along the dorsal visual pathway after galantamine treatment. A previous study found that AD patients had higher activation in the location-matching task compared with healthy controls. There were no differences in activation for the face-matching task after treatment. Our data indicate that treatment with galantamine leads to more efficient visual processing of stimuli or changes the compensatory mechanism in the AD patients. A visual perception task recruiting the dorsal visual system may be useful as a biomarker of treatment effects.

  5. Artificial limb representation in amputees

    PubMed Central

    van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R

    2018-01-01

    Abstract The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a ‘hook’ prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies. PMID:29534154

  6. Artificial limb representation in amputees.

    PubMed

    van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R

    2018-05-01

    The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a 'hook' prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies.

  7. Vision restoration after brain and retina damage: the "residual vision activation theory".

    PubMed

    Sabel, Bernhard A; Henrich-Noack, Petra; Fedorov, Anton; Gall, Carolin

    2011-01-01

    Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive stimulation which, depending on the method, may take days (noninvasive brain stimulation) or months (behavioral training). By becoming again engaged in everyday vision, (re)activation of areas of residual vision outlasts the stimulation period, thus contributing to lasting vision restoration and improvements in quality of life. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Improved reading performance using individualized compensation filters for observers with losses in central vision

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B.

    1989-01-01

    A method to improve the reading performance of subjects with losses in central vision is proposed in which the amplitudes of the intermediate spatial frequencies are boosted relative to the lower spatial frequencies. In the method, words are filtered using an image enhancement function which is based on a subject's losses in visual function relative to a normal subject. It was found that 30-70 percent less magnification was necessary, and that reading rates were improved 2-3 times, using the method. The individualized compensation filters improved the clarity and visibility of words. The shape of the enhancement function was shown to be important in determining the optimum compensation filter for improving reading performance.

  9. Low Vision: Assessment and Training for Mobility.

    ERIC Educational Resources Information Center

    Dodds, Allan G.; Davis, Denis P.

    1987-01-01

    To develop a battery of tasks to predict and improve mobility performance, a series of functional vision tasks (texural shearing, degraded images, embedded figures, and parafoveal attention) were generated by a microcomputer. Sixty visually impaired subjects given either computerized task training or real-life training improved their low vision…

  10. InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology

    DOE PAGES

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; ...

    2016-08-31

    Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less

  11. InteGO2: a web tool for measuring and visualizing gene semantic similarities using Gene Ontology.

    PubMed

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; Juan, Liran; Jiang, Qinghua; Wang, Yadong; Chen, Jin

    2016-08-31

    The Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. We present InteGO2, a web tool that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface. InteGO2 can be accessed via http://mlg.hit.edu.cn:8089/ .

  12. InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang

    Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less

  13. Threat captures attention but does not affect learning of contextual regularities.

    PubMed

    Yamaguchi, Motonori; Harwood, Sarah L

    2017-04-01

    Some of the stimulus features that guide visual attention are abstract properties of objects such as potential threat to one's survival, whereas others are complex configurations such as visual contexts that are learned through past experiences. The present study investigated the two functions that guide visual attention, threat detection and learning of contextual regularities, in visual search. Search arrays contained images of threat and non-threat objects, and their locations were fixed on some trials but random on other trials. Although they were irrelevant to the visual search task, threat objects facilitated attention capture and impaired attention disengagement. Search time improved for fixed configurations more than for random configurations, reflecting learning of visual contexts. Nevertheless, threat detection had little influence on learning of the contextual regularities. The results suggest that factors guiding visual attention are different from factors that influence learning to guide visual attention.

  14. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention

    PubMed Central

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L.

    2012-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. Previous findings by our group strongly suggested that the changes in neural activity observed during increased cholinergic function may reflect an increase in neural efficiency that leads to improved task performance. The current study was designed to assess the effects of cholinergic enhancement on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover functional magnetic resonance imaging (fMRI) study. Following an infusion of physostigmine (1mg/hr) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions was reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Cholinergic enhancement also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions provide further support to the hypothesis that cholinergic augmentation results in enhanced neural efficiency. PMID:22906685

  15. Factors influencing self-reported vision-related activity limitation in the visually impaired.

    PubMed

    Tabrett, Daryl R; Latham, Keziah

    2011-07-15

    The use of patient-reported outcome (PRO) measures to assess self-reported difficulty in visual activities is common in patients with impaired vision. This study determines the visual and psychosocial factors influencing patients' responses to self-report measures, to aid in understanding what is being measured. One hundred visually impaired participants completed the Activity Inventory (AI), which assesses self-reported, vision-related activity limitation (VRAL) in the task domains of reading, mobility, visual information, and visual motor tasks. Participants also completed clinical tests of visual function (distance visual acuity and near reading performance both with and without low vision aids [LVAs], contrast sensitivity, visual fields, and depth discrimination), and questionnaires assessing depressive symptoms, social support, adjustment to visual loss, and personality. Multiple regression analyses identified that an acuity measure (distance or near), and, to a lesser extent, near reading performance without LVAs, visual fields, and contrast sensitivity best explained self-reported VRAL (28%-50% variance explained). Significant psychosocial correlates were depression and adjustment, explaining an additional 6% to 19% unique variance. Dependent on task domain, the parameters assessed explained 59% to 71% of the variance in self-reported VRAL. Visual function, most notably acuity without LVAs, is the best predictor of self-reported VRAL assessed by the AI. Depression and adjustment to visual loss also significantly influence self-reported VRAL, largely independent of the severity of visual loss and most notably in the less vision-specific tasks. The results suggest that rehabilitation strategies addressing depression and adjustment could improve perceived visual disability.

  16. A pre- and post-treatment evaluation of vision-related quality of life in uveitis

    PubMed Central

    Rathinam, SR

    2008-01-01

    Aim: To study the effect of treatment on vision-related quality of life (VR-QOL) in uveitis patients. Materials and Methods: Interviewer-administered questionnaire-based evaluation of visual function and VR-QOL in Tamil-speaking adult patients with active uveitis at presentation and follow-up by the same interviewer. Results: Ninety-eight patients participated in this study. There was a statistically significant improvement in VR-QOL in all the scales following treatment (P < 0.001). Patients with chronic uveitis showed better improvement upon treatment than patients with acute uveitis. The visual symptoms scale showed moderate gains following treatment (effect size 0.56). Persons with bilateral disease had poorer mean scores compared to those with unilateral disease. Visual acuity was closely correlated with VR-QOL scores. Conclusion: The VR-QOL measurement has shown that it is sensitive to demonstrate the problems of patients with uveitis irrespective of their demographic profile. The scores improved significantly in patients with uveitis following treatment and have shown close correlation to visual acuity thus demonstrating that VR-QOL is effective in assessing the response to treatment. PMID:18579990

  17. Visual function and quality of life among visually impaired and cataract operated adults. The Pakistan National Blindness and Visual Impairment Survey.

    PubMed

    Taylor, Amy E; Shah, Shaheen P; Gilbert, Clare E; Jadoon, Mohammad Z; Bourne, Rupert R A; Dineen, Brendan; Johnson, Gordon J; Khan, Mohammad D

    2008-01-01

    To assess visual functioning and quality of life in a representative sample of normally sighted, visually impaired and cataract operated individuals aged >or= 30 years in Pakistan. As part of the Pakistan National Blindness and Visual Impairment Survey, visual functioning (VF) and quality of life (QOL) questionnaires were administered to participants with presenting visual acuity less than 6/60 in either eye, aphakes/pseudophakes and a phakic sample with normal acuity (>or= 6/12 both eyes). Of 16,507 adults included in the survey, 2329 questionnaires were administered. There were strong correlations between visual acuity and VF/QOL. Mean VF and median QOL scores in normally sighted phakic individuals were 81.1 and 88.9, respectively, but were only 34.8 and 64.9 in blind unoperated individuals. In the cataract operated population overall mean VF and median QOL scores were 49.3 and 75.0. Both VF and QOL scores were lower in operated individuals than unoperated individuals (p < 0.001). Among operated individuals, rural dwelling and illiteracy were associated with lower VF and QOL scores (p all < 0.02). Although in multivariable analysis bilateral pseudophakes had similar VF scores to bilateral aphakes they had significantly better QOL scores (p = 0.001). Cataract surgery in Pakistan has not led to VF and QOL scores equivalent to those in unoperated individuals with the same levels of visual acuity. The higher proportion of intraocular lens surgery in recent years is likely to improve QOL following cataract surgery. Further focus is needed on rural and illiterate populations, to ensure that they achieve comparable VF/QOL outcomes following surgery.

  18. Risk factors for treatment failure and recurrence of anisometropic amblyopia.

    PubMed

    Kirandi, Ece Uzun; Akar, Serpil; Gokyigit, Birsen; Onmez, Funda Ebru Aksoy; Oto, Sibel

    2017-08-01

    The aim of this study was to identify factors associated with failed vision improvement and recurrence following occlusion therapy for anisometropic amblyopia in children aged 7-9 years. We retrospectively reviewed the medical records of 64 children aged 7-9 years who had been diagnosed as having anisometropic amblyopia and were treated with patching. Functional treatment failure was defined as final visual acuity in the amblyopic eye of worse than 20/32. Improvement of fewer than two logMAR lines was considered relative treatment failure. Recurrence was defined as the reduction of at least two logMAR levels of visual acuity after decreased or discontinued patching. Functional and relative success rates were 51.6 and 62.5 %, respectively. The most important factor for functional treatment failure [adjusted odds ratio (OR) (95 % confidence interval, CI) 11.57 (1.4-95.74)] and the only risk factor for recurrence [adjusted OR (95 % CI) 3.04 (1.13-8.12)] were the same: high spherical equivalent (SE) of the amblyopic eye. A large interocular difference in the best-corrected visual acuity was found to be a risk factor for both functional and relative failure. High SE of the amblyopic eye was the most influential risk factor for treatment failure and recurrence in compliant children aged 7-9 years.

  19. Visual Assessment of Brain Perfusion MRI Scans in Dementia: A Pilot Study.

    PubMed

    Fällmar, David; Lilja, Johan; Velickaite, Vilma; Danfors, Torsten; Lubberink, Mark; Ahlgren, André; van Osch, Matthias J P; Kilander, Lena; Larsson, Elna-Marie

    2016-05-01

    Functional imaging is becoming increasingly important for the detection of neurodegenerative disorders. Perfusion MRI with arterial spin labeling (ASL) has been reported to provide promising diagnostic possibilities but is not yet widely used in routine clinical work. The aim of this study was to compare, in a clinical setting, the visual assessment of subtracted ASL CBF maps with and without additional smoothing, to FDG-PET data. Ten patients with a clinical diagnosis of dementia and 11 age-matched cognitively healthy controls were examined with pseudo-continuous ASL (pCASL) and 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET). Three diagnostic physicians visually assessed the pCASL maps after subtraction only, and after postprocessing using Gaussian smoothing and GLM-based beta estimate functions. The assessment scores were compared to FDG PET values. Furthermore, the ability to discriminate patients from healthy elderly controls was assessed. Smoothing improved the correlation between visually assessed regional ASL perfusion scores and the FDG PET SUV-r values from the corresponding regions. However, subtracted pCASL maps discriminated patients from healthy controls better than smoothed maps. Smoothing increased the number of false-positive patient identifications. Application of beta estimate functions had only a marginal effect. Spatial smoothing of ASL images increased false positive results in the discrimination of hypoperfusion conditions from healthy elderly. It also decreased interreader agreement. However, regional characterization and subjective perception of image quality was improved. Copyright © 2015 by the American Society of Neuroimaging.

  20. Visual system manifestations of Alzheimer's disease.

    PubMed

    Kusne, Yael; Wolf, Andrew B; Townley, Kate; Conway, Mandi; Peyman, Gholam A

    2017-12-01

    Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Progressive posterior cortical dysfunction

    PubMed Central

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  2. Vision Science and Adaptive Optics, The State of the Field

    PubMed Central

    Marcos, Susana; Werner, John S.; Burns, Stephen A; Merigan, William H.; Artal, Pablo; Atchison, David A.; Hampson, Karen M.; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S.; Doble, Nathan; Dubis, Adam M.; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T.; Paques, Michel; Smithson, Hannah E.; Young, Laura K.; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C.

    2017-01-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. PMID:28212982

  3. [Use of liquid crystal eyeglasses for examination and recovery of binocular vision].

    PubMed

    Grigorian, A Iu; Avetisov, E S; Kashchenko, T P; Iachmeneva, E I

    1999-01-01

    A new method for diploptic treatment of strabismus is proposed, based on phase division of visual fields using liquid crystal eyeglasses --computer complex. The method is based on stereovision training (allowing stereothreshold measurements up to 150 ang. sec.). The method was tried in examinations of two groups of children: 10 controls and 74 patients with strabismus. Examinations of normal controls gave new criteria for measuring fusion reserves and stereovisual acuity by the proposed method. The therapeutic method was tried in 2 groups of patients. Time course of visual function improvement was followed up by several criteria: changes in binocular status by the color test and improvement of in-depth and stereoscopic visual acuity. The method is recommended for practice. The authors discuss the problem of small angle strabismus.

  4. Cell replacement and visual restoration by retinal sheet transplants

    PubMed Central

    Seiler, Magdalene J.; Aramant, Robert B.

    2012-01-01

    Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a ‘nursing’ role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance – they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy. PMID:22771454

  5. Decreased visual acuity resulting from glistening and sub-surface nano-glistening formation in intraocular lenses: A retrospective analysis of 5 cases

    PubMed Central

    Matsushima, Hiroyuki; Nagata, Mayumi; Katsuki, Yoko; Ota, Ichiro; Miyake, Kensaku; Beiko, George H.H.; Grzybowski, Andrzej

    2015-01-01

    Background To report on five patients with decreased visual acuity due to glistening and severe sub-surface nano-glistening (SSNG) formation within their intraocular lenses (IOLs). Design Case reports and analysis of extracted IOLs. Participants and samples We report improved visual acuity when IOLs with severe glistening and SSNG were exchanged for clear IOLs in five patients. Methods Case reports. Main outcome measures The main outcome measure was visual acuity. The secondary outcome measure was light transmission. Explanted IOLs were subjected to investigation. Pre- and postoperative slit lamp images of the anterior eye and microscopic images of the extracted IOLs were taken and compared. Light transmission of the IOL was measured using a double beam type spectrophotometer. An integrated value of the percentage light transmittance in the visible light spectrum was calculated. Results We report on five patients whose visual acuity improved when IOLs were exchanged because of severe glistening and SSNG. All of the affected IOLs were MA60BM (Alcon, Forth Wroth Texas, USA) and the original implantation had occurred over a range of 6–15 years prior to the IOL exchange. Light transmission was decreased in all affected lenses compared to a similar control IOL. Conclusions Although only a few reports of cases in which glistening and SSNG have progressed to the level of decreased visual function have been published, the likelihood is that this phenomena will increase as the severity and incidence of these inclusions have been shown to increase with time. Appropriate evaluations of visual function in such patients are needed and consideration should be given to IOL exchange in symptomatic patients. PMID:26586975

  6. Observation of Human Retinal Remodeling in Octogenarians with a Resveratrol Based Nutritional Supplement

    PubMed Central

    Richer, Stuart; Stiles, William; Ulanski, Lawrence; Carroll, Donn; Podella, Carla

    2013-01-01

    Purpose: Rare spontaneous remissions from age-related macular degeneration (AMD) suggest the human retina has large regenerative capacity, even in advanced age. We present examples of robust improvement of retinal structure and function using an OTC oral resveratrol (RV) based nutritional supplement called Longevinex® or L/RV (circa 2004, Resveratrol Partners, LLC, Las Vegas, NV, USA). RV, a polyphenolic phytoalexin caloric-restriction mimic, induces hormesis at low doses with widespread beneficial effects on systemic health. RV alone inhibits neovascularization in the murine retina. Thus far, published evidence includes L/RV mitigation of experimentally induced murine cardiovascular reperfusion injury, amelioration of human atherosclerosis serum biomarkers in a human Japanese randomized placebo controlled trial, modulation of micro RNA 20b and 539 that control hypoxia-inducing-factor (HIF-1) and vascular endothelial growth factor (VEGF) genes in the murine heart (RV inhibited micro RNA20b 189-fold, L/RV 1366-fold). Little is known about the effects of L/RV on human ocular pathology. Methods: Absent FDA IRB approval, but with permission from our Chief of Staff and medical center IRB, L/RV is reserved for AMD patients, on a case-by-case compassionate care basis. Patients include those who progress on AREDS II type supplements, refuse intra-vitreal anti-VEGF injections or fail to respond to Lucentis®, Avastin® or Eylea®. Patients are clinically followed traditionally as well as with multi-spectral retinal imaging, visual acuity, contrast sensitivity, cone glare recovery and macular visual fields. Three cases are presented. Results: Observed dramatic short-term anti-VEGF type effect including anatomic restoration of retinal structure with a suggestion of improvement in choroidal blood flow by near IR multispectral imaging. The visual function improvement mirrors the effect seen anatomically. The effect is bilateral with the added benefit of better RPE function. Effects have lasted for one year or longer when taken daily, at which point one patient required initiation of anti-VEGF agents. Unanticipated systemic benefits were observed. Conclusions: Preliminary observations support previous publications in animals and humans. Restoration of structure and visual function in octogenarians with daily oral consumption of L/RV is documented. Applications include failure on AREDS II supplements, refusing or failing conventional anti-VEGF therapy, adjunct therapy to improve RPE function, and compassionate use in medically underserved or economically depressed third-world countries. PMID:23736827

  7. Visual and brainstem auditory evoked potentials in infants with severe vitamin B12 deficiency.

    PubMed

    Demir, Nihat; Koç, Ahmet; Abuhandan, Mahmut; Calik, Mustafa; Işcan, Akin

    2015-01-01

    Vitamin B12 plays an important role in the development of mental, motor, cognitive, and social functions via its role in DNA synthesis and nerve myelination. Its deficiency in infants might cause neuromotor retardation as well as megaloblastic anemia. The objective of this study was to investigate the effects of infantile vitamin B12 deficiency on evoked brain potentials and determine whether improvement could be obtained with vitamin B12 replacement at appropriate dosages. Thirty patients with vitamin B12 deficiency and 30 age-matched healthy controls were included in the study. Hematological parameters, visual evoked potentials, and brainstem auditory evoked potentials tests were performed prior to treatment, 1 week after treatment, and 3 months after treatment. Visual evoked potentials (VEPs) and brainstem auditory evoked potentials (BAEPs) were found to be prolonged in 16 (53.3%) and 15 (50%) patients, respectively. Statistically significant improvements in VEP and BAEP examinations were determined 3 months after treatment. Three months after treatment, VEP and BAEP examinations returned to normal in 81.3% and 53.3% of subjects with prolonged VEPs and BAEPs, respectively. These results demonstrate that vitamin B12 deficiency in infants causes significant impairment in the auditory and visual functioning tests of the brain, such as VEP and BAEP.

  8. Peripheral resolution and contrast sensitivity: Effects of stimulus drift.

    PubMed

    Venkataraman, Abinaya Priya; Lewis, Peter; Unsbo, Peter; Lundström, Linda

    2017-04-01

    Optimal temporal modulation of the stimulus can improve foveal contrast sensitivity. This study evaluates the characteristics of the peripheral spatiotemporal contrast sensitivity function in normal-sighted subjects. The purpose is to identify a temporal modulation that can potentially improve the remaining peripheral visual function in subjects with central visual field loss. High contrast resolution cut-off for grating stimuli with four temporal frequencies (0, 5, 10 and 15Hz drift) was first evaluated in the 10° nasal visual field. Resolution contrast sensitivity for all temporal frequencies was then measured at four spatial frequencies between 0.5 cycles per degree (cpd) and the measured stationary cut-off. All measurements were performed with eccentric optical correction. Similar to foveal vision, peripheral contrast sensitivity is highest for a combination of low spatial frequency and 5-10Hz drift. At higher spatial frequencies, there was a decrease in contrast sensitivity with 15Hz drift. Despite this decrease, the resolution cut-off did not vary largely between the different temporal frequencies tested. Additional measurements of contrast sensitivity at 0.5 cpd and resolution cut-off for stationary (0Hz) and 7.5Hz stimuli performed at 10, 15, 20 and 25° in the nasal visual field also showed the same characteristics across eccentricities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The outcome of septorhinoplasty surgery on olfactory function.

    PubMed

    Randhawa, P S; Watson, N; Lechner, M; Ritchie, L; Choudhury, N; Andrews, P J

    2016-02-01

    To assess olfactory outcomes in patients undergoing septorhinoplasty surgery in our unit. Prospective cohort study. The Royal National Throat Nose and Ear Hospital, London. Forty-three patients undergoing functional septorhinoplasty (Males = 26; mean age = 34.1 ± 12.2) were recruited into the study. The primary outcome of olfactory function was assessed using 'Sniffin sticks'. Our secondary outcomes were assessment of patient quality of life using the disease specific Sino-nasal Outcome Test-23 questionnaire (SNOT-23) and a visual analogue scale for sense of smell. These measures were repeated at 12 weeks post operatively. There was a significant change in the Sniffin' sticks score post-operatively (8.3 versus 9.6; P < 0.001). The SNOT-23 score also showed a significant improvement post-operatively (53.5 versus 40.4; P < 0.001). A significant improvement was not found in the smell/taste question (question 21) of the SNOT-23 questionnaire as well as the visual analogue scale for sense of smell. A difference in olfactory outcome was not found between open versus closed approaches, primary versus revision surgery and traumatic versus non traumatic cases. The results show a measured significant improvement in olfaction following functional Septorhinoplasty but not a subjective improvement in the patients perception of their sense of smell and hence not a clinically significant difference. The reasons for the measured improvement are not clear and are likely to be multifactorial. © 2015 John Wiley & Sons Ltd.

  10. Accounting for the phase, spatial frequency and orientation demands of the task improves metrics based on the visual Strehl ratio.

    PubMed

    Young, Laura K; Love, Gordon D; Smithson, Hannah E

    2013-09-20

    Advances in ophthalmic instrumentation have allowed high order aberrations to be measured in vivo. These measurements describe the distortions to a plane wavefront entering the eye, but not the effect they have on visual performance. One metric for predicting visual performance from a wavefront measurement uses the visual Strehl ratio, calculated in the optical transfer function (OTF) domain (VSOTF) (Thibos et al., 2004). We considered how well such a metric captures empirical measurements of the effects of defocus, coma and secondary astigmatism on letter identification and on reading. We show that predictions using the visual Strehl ratio can be significantly improved by weighting the OTF by the spatial frequency band that mediates letter identification and further improved by considering the orientation of phase and contrast changes imposed by the aberration. We additionally showed that these altered metrics compare well to a cross-correlation-based metric. We suggest a version of the visual Strehl ratio, VScombined, that incorporates primarily those phase disruptions and contrast changes that have been shown independently to affect object recognition processes. This metric compared well to VSOTF for letter identification and was the best predictor of reading performance, having a higher correlation with the data than either the VSOTF or cross-correlation-based metric. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Processing reafferent and exafferent visual information for action and perception.

    PubMed

    Reichenbach, Alexandra; Diedrichsen, Jörn

    2015-01-01

    A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.

  12. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity

    PubMed Central

    Lee, Vincent K.; Nau, Amy C.; Laymon, Charles; Chan, Kevin C.; Rosario, Bedda L.; Fisher, Chris

    2014-01-01

    Purpose: Neuronal reorganization after blindness is of critical interest because it has implications for the rational prescription of artificial vision devices. The purpose of this study was to distinguish the microstructural differences between perinatally blind (PB), acquired blind (AB), and normally sighted controls (SCs) and relate these differences to performance on functional tasks using a sensory substitution device (BrainPort). Methods: We enrolled 52 subjects (PB n = 11; AB n = 35; SC n = 6). All subjects spent 15 h undergoing BrainPort device training. Outcomes of light perception, motion, direction, temporal resolution, grating, and acuity were tested at baseline and after training. Twenty-six of the subjects were scanned with a three Tesla MRI scanner for diffusion tensor imaging (DTI), and with a positron emission tomography (PET) scanner for mapping regional brain glucose consumption during sensory substitution function. Non-parametric models were used to analyze fractional anisotropy (FA; a DTI measure of microstructural integrity) of the brain via region-of-interest (ROI) analysis and tract-based spatial statistics (TBSS). Results: At baseline, all subjects performed all tasks at chance level. After training, light perception, time resolution, location and grating acuity tasks improved significantly for all subject groups. ROI and TBSS analyses of FA maps show areas of statistically significant differences (p ≤ 0.025) in the bilateral optic radiations and some visual association connections between all three groups. No relationship was found between FA and functional performance with the BrainPort. Discussion: All subjects showed performance improvements using the BrainPort irrespective of nature and duration of blindness. Definite brain areas with significant microstructural integrity changes exist among PB, AB, and NC, and these variations are most pronounced in the visual pathways. However, the use of sensory substitution devices is feasible irrespective of microstructural integrity of the primary visual pathways between the eye and the brain. Therefore, tongue based devices devices may be usable for a broad array of non-sighted patients. PMID:24860473

  13. Different Cognitive Profiles of Patients with Severe Aphasia.

    PubMed

    Marinelli, Chiara Valeria; Spaccavento, Simona; Craca, Angela; Marangolo, Paola; Angelelli, Paola

    2017-01-01

    Cognitive dysfunction frequently occurs in aphasic patients and primarily compromises linguistic skills. However, patients suffering from severe aphasia show heterogeneous performance in basic cognition. Our aim was to characterize the cognitive profiles of patients with severe aphasia and to determine whether they also differ as to residual linguistic abilities. We examined 189 patients with severe aphasia with standard language tests and with the CoBaGA (Cognitive Test Battery for Global Aphasia), a battery of nonverbal tests that assesses a wide range of cognitive domains such as attention, executive functions, intelligence, memory, visual-auditory recognition, and visual-spatial abilities. Twenty patients were also followed longitudinally in order to assess their improvement in cognitive skills after speech therapy. Three different subgroups of patients with different types and severity of cognitive impairment were evidenced. Subgroups differed as to residual linguistic skills, in particular comprehension and reading-writing abilities. Attention, reasoning, and executive functions improved after language rehabilitation. This study highlights the importance of an extensive evaluation of cognitive functions in patients with severe aphasia.

  14. Kinematical Focus on NGC 7086

    NASA Astrophysics Data System (ADS)

    Tadross, A. L.

    2005-12-01

    The main physical parameters; the cluster center, distance, radius, age, reddening, and visual absorbtion; have been re-estimated and improved for the open cluster NGC 7086. The metal abundance, galactic distances, membership richness, luminosity function, mass function, and the total mass of NGC 7086 have been examined for the first time here using Monet et al. (2003) catalog.

  15. Intraoperative magnetic resonance imaging assessment of non-functioning pituitary adenomas during transsphenoidal surgery.

    PubMed

    Patel, Kunal S; Yao, Yong; Wang, Renzhi; Carter, Bob S; Chen, Clark C

    2016-04-01

    To review the utility of intraoperative imaging in facilitating maximal resection of non-functioning pituitary adenomas (NFAs). We performed an exhaustive MEDLINE search, which yielded 5598 articles. Upon careful review of these studies, 31 were pertinent to the issue of interest. Nine studies examined whether intraoperative MRI (iMRI) findings correlated with the presence of residual tumor on MRI taken 3 months after surgical resection. All studies using iMRI of >0.15T showed a ≥90% concordance between iMRI and 3-month post-operative MRI findings. 24 studies (22 iMRI and 2 intraoperative CT) examined whether intraoperative imaging improved the surgeon's ability to achieve a more complete resection. The resections were carried out under microscopic magnification in 17 studies and under endoscopic visualization in 7 studies. All studies support the value of intraoperative imaging in this regard, with improved resection in 15-83% of patients. Two studies examined whether iMRI (≥0.3T) improved visualization of residual NFA when compared to endoscopic visualization. Both studies demonstrated the value of iMRI in this regard, particularly when the tumor is located lateral of the sella, in the cavernous sinus, and in the suprasellar space. The currently available literature supports the utility of intraoperative imaging in facilitating increased NFA resection, without compromising safety.

  16. Contingency Analysis Post-Processing With Advanced Computing and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Glaesemann, Kurt; Fitzhenry, Erin

    Contingency analysis is a critical function widely used in energy management systems to assess the impact of power system component failures. Its outputs are important for power system operation for improved situational awareness, power system planning studies, and power market operations. With the increased complexity of power system modeling and simulation caused by increased energy production and demand, the penetration of renewable energy and fast deployment of smart grid devices, and the trend of operating grids closer to their capacity for better efficiency, more and more contingencies must be executed and analyzed quickly in order to ensure grid reliability andmore » accuracy for the power market. Currently, many researchers have proposed different techniques to accelerate the computational speed of contingency analysis, but not much work has been published on how to post-process the large amount of contingency outputs quickly. This paper proposes a parallel post-processing function that can analyze contingency analysis outputs faster and display them in a web-based visualization tool to help power engineers improve their work efficiency by fast information digestion. Case studies using an ESCA-60 bus system and a WECC planning system are presented to demonstrate the functionality of the parallel post-processing technique and the web-based visualization tool.« less

  17. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility.

    PubMed

    Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev

    2012-01-01

    To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.

  18. Does Game Participation Impact Cognition and Symptoms in Elite Football Players?

    PubMed

    Mrazik, Martin; Naidu, Dhiren; Manning, David E; Brooks, Brian L

    2016-09-01

    To measure neurocognitive functioning in college and professional football players after game participation. Retrospective, cross-sectional cohort design. Ninety-four male university and professional football players. All participants completed Immediate Postconcussion Assessment and Cognitive Testing (ImPACT) testing at baseline, and either at postconcussion (group 1) or postgame (group 2) participation. Results from the 5 ImPACT composite scores (Verbal Memory, Visual Memory, Visual Motor Speed, Reaction Time and Impulse Control) and Total Symptom Score. Repeated-measures analysis of variance demonstrated a significant main effect for time (improvements) in 3 of 5 domains for the postconcussion group, but no improvements in the postgame group. The postconcussion group presented with significantly improved results on 4 of 5 ImPACT domains compared with the postgame group at the follow-up time interval. Participation in a football game with potential cumulative head contacts did not yield increased symptoms or cognitive impairment. However, the absence of improvement in cognitive functioning in noninjured football players, which was found in those players who were returned to play after an injury, may suggest that there is a measureable impact as a result of playing football.

  19. Comparing Visual and Statistical Analysis of Multiple Baseline Design Graphs.

    PubMed

    Wolfe, Katie; Dickenson, Tammiee S; Miller, Bridget; McGrath, Kathleen V

    2018-04-01

    A growing number of statistical analyses are being developed for single-case research. One important factor in evaluating these methods is the extent to which each corresponds to visual analysis. Few studies have compared statistical and visual analysis, and information about more recently developed statistics is scarce. Therefore, our purpose was to evaluate the agreement between visual analysis and four statistical analyses: improvement rate difference (IRD); Tau-U; Hedges, Pustejovsky, Shadish (HPS) effect size; and between-case standardized mean difference (BC-SMD). Results indicate that IRD and BC-SMD had the strongest overall agreement with visual analysis. Although Tau-U had strong agreement with visual analysis on raw values, it had poorer agreement when those values were dichotomized to represent the presence or absence of a functional relation. Overall, visual analysis appeared to be more conservative than statistical analysis, but further research is needed to evaluate the nature of these disagreements.

  20. Feasibility and Preliminary Efficacy of Visual Cue Training to Improve Adaptability of Walking after Stroke: Multi-Centre, Single-Blind Randomised Control Pilot Trial

    PubMed Central

    Hollands, Kristen L.; Pelton, Trudy A.; Wimperis, Andrew; Whitham, Diane; Tan, Wei; Jowett, Sue; Sackley, Catherine M.; Wing, Alan M.; Tyson, Sarah F.; Mathias, Jonathan; Hensman, Marianne; van Vliet, Paulette M.

    2015-01-01

    Objectives Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. Design This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services Participants Community dwelling stroke survivors with walking speed <0.8m/s, lower limb paresis and no severe visual impairments Intervention Over-ground visual cue training (O-VCT), Treadmill based visual cue training (T-VCT), and Usual care (UC) delivered by physiotherapists twice weekly for 8 weeks. Main outcome measures: Participants were randomised using computer generated random permutated balanced blocks of randomly varying size. Recruitment, retention, adherence, adverse events and mobility and balance were measured before randomisation, post-intervention and at four weeks follow-up. Results Fifty-six participants participated (18 T-VCT, 19 O-VCT, 19 UC). Thirty-four completed treatment and follow-up assessments. Of the participants that completed, adherence was good with 16 treatments provided over (median of) 8.4, 7.5 and 9 weeks for T-VCT, O-VCT and UC respectively. No adverse events were reported. Post-treatment improvements in walking speed, symmetry, balance and functional mobility were seen in all treatment arms. Conclusions Outpatient based treadmill and over-ground walking adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. Trial Registration Clinicaltrials.gov NCT01600391 PMID:26445137

  1. Effects of Fasting During Ramadan Month on Cognitive Function in Muslim Athletes

    PubMed Central

    Tian, Ho-Heng; Aziz, Abdul-Rashid; Png, Weileen; Wahid, Mohamed Faizul; Yeo, Donald; Constance Png, Ai-Li

    2011-01-01

    Purpose Our study aimed to profile the effect of fasting during the Ramadan month on cognitive function in a group of healthy Muslim athletes. Methods Eighteen male athletes underwent computerized neuropsychological testing during (fasting) and after (non-fasting) Ramadan. Diet was standardized, and tests were performed at 0900h and 1600h to characterize potential time-of-day (TOD) interactions. Psychomotor function (processing speed), vigilance (visual attention), visual learning and memory, working memory (executive function), verbal learning and memory were examined. Capillary glucose, body temperature, urine specific gravity, and sleep volume were also recorded. Results Fasting effects were observed for psychomotor function (Cohen's d=1.3, P=0.01) and vigilance (d=0.6, P=0.004), with improved performance at 0900h during fasting; verbal learning and memory was poorer at 1600h (d=-0.8, P=0.03). A TOD effect was present for psychomotor function (d=-0.4, P<0.001), visual learning (d=-0.5, P=0.04), verbal learning and memory (d=-1.3, P=0.001), with poorer performances at 1600h. There was no significant fasting effect on visual learning and working memory. Conclusions Our results show that the effect of fasting on cognition is heterogeneous and domain-specific. Performance in functions requiring sustained rapid responses was better in the morning, declining in the late afternoon, whereas performance in non-speed dependent accuracy measures was more resilient. PMID:22375233

  2. Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.

    PubMed

    Byers, Anna; Serences, John T

    2014-09-01

    Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.

  3. fMRI evidence of improved visual function in patients with progressive retinitis pigmentosa by eye-movement training.

    PubMed

    Yoshida, Masako; Origuchi, Maki; Urayama, Shin-Ichi; Takatsuki, Akira; Kan, Shigeyuki; Aso, Toshihiko; Shiose, Takayuki; Sawamoto, Nobukatsu; Miyauchi, Satoru; Fukuyama, Hidenao; Seiyama, Akitoshi

    2014-01-01

    To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8-10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements.

  4. fMRI evidence of improved visual function in patients with progressive retinitis pigmentosa by eye-movement training

    PubMed Central

    Yoshida, Masako; Origuchi, Maki; Urayama, Shin-ichi; Takatsuki, Akira; Kan, Shigeyuki; Aso, Toshihiko; Shiose, Takayuki; Sawamoto, Nobukatsu; Miyauchi, Satoru; Fukuyama, Hidenao; Seiyama, Akitoshi

    2014-01-01

    To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8–10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements. PMID:25068106

  5. Clinical Evaluation of Functional Vision of +1.5 Diopters near Addition, Aspheric, Rotational Asymmetric Multifocal Intraocular Lens

    PubMed Central

    Khoramnia, Rahmin; Attia, Mary Safwat; Koss, Michael Janusz; Linz, Katharina; Auffarth, Gerd Uwe

    2016-01-01

    Purpose To evaluate postoperative outcomes and visual performance in intermediate distance after implantation of a +1.5 diopters (D) addition, aspheric, rotational asymmetric multifocal intraocular lens (MIOL). Methods Patients underwent bilateral cataract surgery with implantation of an aspheric, asymmetric MIOL with +1.5 D near addition. A complete ophthalmological examination was performed preoperatively and 3 months postoperatively. The main outcome measures were monocular and binocular uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), uncorrected intermediate visual acuity (UIVA), distance corrected intermediate visual acuity (DCIVA), uncorrected near visual acuity (UNVA) and distance corrected keratometry, and manifest refraction. The Salzburg Reading Desk was used to analyze unilateral and bilateral functional vision with uncorrected and corrected reading acuity, reading distance, reading speed, and the smallest log-scaled print size that could be read effectively at near and intermediate distances. Results The study comprised 60 eyes of 30 patients (mean age, 68.30 ± 9.26 years; range, 34 to 80 years). There was significant improvement in UDVA and CDVA. Mean UIVA was 0.01 ± 0.09 logarithm of the minimum angle of resolution (logMAR) and mean DCIVA was -0.02 ± 0.11 logMAR. In Salzburg Reading Desk analysis for UIVA, the mean subjective intermediate distance was 67.58 ± 8.59 cm with mean UIVA of -0.02 ± 0.09 logMAR and mean word count of 96.38 ± 28.32 words/min. Conclusions The new aspheric, asymmetric, +1.5 D near addition MIOL offers good results for distance visual function in combination with good performance for intermediate distances and functional results for near distance. PMID:27729759

  6. Clinical Evaluation of Functional Vision of +1.5 Diopters near Addition, Aspheric, Rotational Asymmetric Multifocal Intraocular Lens.

    PubMed

    Kretz, Florian Tobias Alwin; Khoramnia, Rahmin; Attia, Mary Safwat; Koss, Michael Janusz; Linz, Katharina; Auffarth, Gerd Uwe

    2016-10-01

    To evaluate postoperative outcomes and visual performance in intermediate distance after implantation of a +1.5 diopters (D) addition, aspheric, rotational asymmetric multifocal intraocular lens (MIOL). Patients underwent bilateral cataract surgery with implantation of an aspheric, asymmetric MIOL with +1.5 D near addition. A complete ophthalmological examination was performed preoperatively and 3 months postoperatively. The main outcome measures were monocular and binocular uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), uncorrected intermediate visual acuity (UIVA), distance corrected intermediate visual acuity (DCIVA), uncorrected near visual acuity (UNVA) and distance corrected keratometry, and manifest refraction. The Salzburg Reading Desk was used to analyze unilateral and bilateral functional vision with uncorrected and corrected reading acuity, reading distance, reading speed, and the smallest log-scaled print size that could be read effectively at near and intermediate distances. The study comprised 60 eyes of 30 patients (mean age, 68.30 ± 9.26 years; range, 34 to 80 years). There was significant improvement in UDVA and CDVA. Mean UIVA was 0.01 ± 0.09 logarithm of the minimum angle of resolution (logMAR) and mean DCIVA was -0.02 ± 0.11 logMAR. In Salzburg Reading Desk analysis for UIVA, the mean subjective intermediate distance was 67.58 ± 8.59 cm with mean UIVA of -0.02 ± 0.09 logMAR and mean word count of 96.38 ± 28.32 words/min. The new aspheric, asymmetric, +1.5 D near addition MIOL offers good results for distance visual function in combination with good performance for intermediate distances and functional results for near distance.

  7. How art changes your brain: differential effects of visual art production and cognitive art evaluation on functional brain connectivity.

    PubMed

    Bolwerk, Anne; Mack-Andrick, Jessica; Lang, Frieder R; Dörfler, Arnd; Maihöfner, Christian

    2014-01-01

    Visual art represents a powerful resource for mental and physical well-being. However, little is known about the underlying effects at a neural level. A critical question is whether visual art production and cognitive art evaluation may have different effects on the functional interplay of the brain's default mode network (DMN). We used fMRI to investigate the DMN of a non-clinical sample of 28 post-retirement adults (63.71 years ±3.52 SD) before (T0) and after (T1) weekly participation in two different 10-week-long art interventions. Participants were randomly assigned to groups stratified by gender and age. In the visual art production group 14 participants actively produced art in an art class. In the cognitive art evaluation group 14 participants cognitively evaluated artwork at a museum. The DMN of both groups was identified by using a seed voxel correlation analysis (SCA) in the posterior cingulated cortex (PCC/preCUN). An analysis of covariance (ANCOVA) was employed to relate fMRI data to psychological resilience which was measured with the brief German counterpart of the Resilience Scale (RS-11). We observed that the visual art production group showed greater spatial improvement in functional connectivity of PCC/preCUN to the frontal and parietal cortices from T0 to T1 than the cognitive art evaluation group. Moreover, the functional connectivity in the visual art production group was related to psychological resilience (i.e., stress resistance) at T1. Our findings are the first to demonstrate the neural effects of visual art production on psychological resilience in adulthood.

  8. How Art Changes Your Brain: Differential Effects of Visual Art Production and Cognitive Art Evaluation on Functional Brain Connectivity

    PubMed Central

    Bolwerk, Anne; Mack-Andrick, Jessica; Lang, Frieder R.; Dörfler, Arnd; Maihöfner, Christian

    2014-01-01

    Visual art represents a powerful resource for mental and physical well-being. However, little is known about the underlying effects at a neural level. A critical question is whether visual art production and cognitive art evaluation may have different effects on the functional interplay of the brain's default mode network (DMN). We used fMRI to investigate the DMN of a non-clinical sample of 28 post-retirement adults (63.71 years ±3.52 SD) before (T0) and after (T1) weekly participation in two different 10-week-long art interventions. Participants were randomly assigned to groups stratified by gender and age. In the visual art production group 14 participants actively produced art in an art class. In the cognitive art evaluation group 14 participants cognitively evaluated artwork at a museum. The DMN of both groups was identified by using a seed voxel correlation analysis (SCA) in the posterior cingulated cortex (PCC/preCUN). An analysis of covariance (ANCOVA) was employed to relate fMRI data to psychological resilience which was measured with the brief German counterpart of the Resilience Scale (RS-11). We observed that the visual art production group showed greater spatial improvement in functional connectivity of PCC/preCUN to the frontal and parietal cortices from T0 to T1 than the cognitive art evaluation group. Moreover, the functional connectivity in the visual art production group was related to psychological resilience (i.e., stress resistance) at T1. Our findings are the first to demonstrate the neural effects of visual art production on psychological resilience in adulthood. PMID:24983951

  9. Improving visual perception through neurofeedback

    PubMed Central

    Scharnowski, Frank; Hutton, Chloe; Josephs, Oliver; Weiskopf, Nikolaus; Rees, Geraint

    2012-01-01

    Perception depends on the interplay of ongoing spontaneous activity and stimulus-evoked activity in sensory cortices. This raises the possibility that training ongoing spontaneous activity alone might be sufficient for enhancing perceptual sensitivity. To test this, we trained human participants to control ongoing spontaneous activity in circumscribed regions of retinotopic visual cortex using real-time functional MRI based neurofeedback. After training, we tested participants using a new and previously untrained visual detection task that was presented at the visual field location corresponding to the trained region of visual cortex. Perceptual sensitivity was significantly enhanced only when participants who had previously learned control over ongoing activity were now exercising control, and only for that region of visual cortex. Our new approach allows us to non-invasively and non-pharmacologically manipulate regionally specific brain activity, and thus provide ‘brain training’ to deliver particular perceptual enhancements. PMID:23223302

  10. Long-Lasting Enhancement of Visual Perception with Repetitive Noninvasive Transcranial Direct Current Stimulation

    PubMed Central

    Behrens, Janina R.; Kraft, Antje; Irlbacher, Kerstin; Gerhardt, Holger; Olma, Manuel C.; Brandt, Stephan A.

    2017-01-01

    Understanding processes performed by an intact visual cortex as the basis for developing methods that enhance or restore visual perception is of great interest to both researchers and medical practitioners. Here, we explore whether contrast sensitivity, a main function of the primary visual cortex (V1), can be improved in healthy subjects by repetitive, noninvasive anodal transcranial direct current stimulation (tDCS). Contrast perception was measured via threshold perimetry directly before and after intervention (tDCS or sham stimulation) on each day over 5 consecutive days (24 subjects, double-blind study). tDCS improved contrast sensitivity from the second day onwards, with significant effects lasting 24 h. After the last stimulation on day 5, the anodal group showed a significantly greater improvement in contrast perception than the sham group (23 vs. 5%). We found significant long-term effects in only the central 2–4° of the visual field 4 weeks after the last stimulation. We suspect a combination of two factors contributes to these lasting effects. First, the V1 area that represents the central retina was located closer to the polarization electrode, resulting in higher current density. Second, the central visual field is represented by a larger cortical area relative to the peripheral visual field (cortical magnification). This is the first study showing that tDCS over V1 enhances contrast perception in healthy subjects for several weeks. This study contributes to the investigation of the causal relationship between the external modulation of neuronal membrane potential and behavior (in our case, visual perception). Because the vast majority of human studies only show temporary effects after single tDCS sessions targeting the visual system, our study underpins the potential for lasting effects of repetitive tDCS-induced modulation of neuronal excitability. PMID:28860969

  11. Visualization assisted by parallel processing

    NASA Astrophysics Data System (ADS)

    Lange, B.; Rey, H.; Vasques, X.; Puech, W.; Rodriguez, N.

    2011-01-01

    This paper discusses the experimental results of our visualization model for data extracted from sensors. The objective of this paper is to find a computationally efficient method to produce a real time rendering visualization for a large amount of data. We develop visualization method to monitor temperature variance of a data center. Sensors are placed on three layers and do not cover all the room. We use particle paradigm to interpolate data sensors. Particles model the "space" of the room. In this work we use a partition of the particle set, using two mathematical methods: Delaunay triangulation and Voronoý cells. Avis and Bhattacharya present these two algorithms in. Particles provide information on the room temperature at different coordinates over time. To locate and update particles data we define a computational cost function. To solve this function in an efficient way, we use a client server paradigm. Server computes data and client display this data on different kind of hardware. This paper is organized as follows. The first part presents related algorithm used to visualize large flow of data. The second part presents different platforms and methods used, which was evaluated in order to determine the better solution for the task proposed. The benchmark use the computational cost of our algorithm that formed based on located particles compared to sensors and on update of particles value. The benchmark was done on a personal computer using CPU, multi core programming, GPU programming and hybrid GPU/CPU. GPU programming method is growing in the research field; this method allows getting a real time rendering instates of a precompute rendering. For improving our results, we compute our algorithm on a High Performance Computing (HPC), this benchmark was used to improve multi-core method. HPC is commonly used in data visualization (astronomy, physic, etc) for improving the rendering and getting real-time.

  12. Visual motion perception predicts driving hazard perception ability.

    PubMed

    Lacherez, Philippe; Au, Sandra; Wood, Joanne M

    2014-02-01

    To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  13. Neural practice effect during cross-modal selective attention: Supra-modal and modality-specific effects.

    PubMed

    Xia, Jing; Zhang, Wei; Jiang, Yizhou; Li, You; Chen, Qi

    2018-05-16

    Practice and experiences gradually shape the central nervous system, from the synaptic level to large-scale neural networks. In natural multisensory environment, even when inundated by streams of information from multiple sensory modalities, our brain does not give equal weight to different modalities. Rather, visual information more frequently receives preferential processing and eventually dominates consciousness and behavior, i.e., visual dominance. It remains unknown, however, the supra-modal and modality-specific practice effect during cross-modal selective attention, and moreover whether the practice effect shows similar modality preferences as the visual dominance effect in the multisensory environment. To answer the above two questions, we adopted a cross-modal selective attention paradigm in conjunction with the hybrid fMRI design. Behaviorally, visual performance significantly improved while auditory performance remained constant with practice, indicating that visual attention more flexibly adapted behavior with practice than auditory attention. At the neural level, the practice effect was associated with decreasing neural activity in the frontoparietal executive network and increasing activity in the default mode network, which occurred independently of the modality attended, i.e., the supra-modal mechanisms. On the other hand, functional decoupling between the auditory and the visual system was observed with the progress of practice, which varied as a function of the modality attended. The auditory system was functionally decoupled with both the dorsal and ventral visual stream during auditory attention while was decoupled only with the ventral visual stream during visual attention. To efficiently suppress the irrelevant visual information with practice, auditory attention needs to additionally decouple the auditory system from the dorsal visual stream. The modality-specific mechanisms, together with the behavioral effect, thus support the visual dominance model in terms of the practice effect during cross-modal selective attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Can Driving-Simulator Training Enhance Visual Attention, Cognition, and Physical Functioning in Older Adults?

    PubMed

    Haeger, Mathias; Bock, Otmar; Memmert, Daniel; Hüttermann, Stefanie

    2018-01-01

    Virtual reality offers a good possibility for the implementation of real-life tasks in a laboratory-based training or testing scenario. Thus, a computerized training in a driving simulator offers an ecological valid training approach. Visual attention had an influence on driving performance, so we used the reverse approach to test the influence of a driving training on visual attention and executive functions. Thirty-seven healthy older participants (mean age: 71.46 ± 4.09; gender: 17 men and 20 women) took part in our controlled experimental study. We examined transfer effects from a four-week driving training (three times per week) on visual attention, executive function, and motor skill. Effects were analyzed using an analysis of variance with repeated measurements. Therefore, main factors were group and time to show training-related benefits of our intervention. Results revealed improvements for the intervention group in divided visual attention; however, there were benefits neither in the other cognitive domains nor in the additional motor task. Thus, there are no broad training-induced transfer effects from such an ecologically valid training regime. This lack of findings could be addressed to insufficient training intensities or a participant-induced bias following the cancelled randomization process.

  15. Relieving the attentional blink in the amblyopic brain with video games.

    PubMed

    Li, Roger W; Ngo, Charlie V; Levi, Dennis M

    2015-02-26

    Video game play induces a generalized recovery of a range of spatial visual functions in the amblyopic brain. Here we ask whether video game play also alters temporal processing in the amblyopic brain. When visual targets are presented in rapid succession, correct identification of the first target (T1) can interfere with identification of the second (T2). This is known as the "attentional blink". We measured the attentional blink in each eye of adults with amblyopia before and after 40 hours of active video game play, using a rapid serial visual presentation technique. After videogame play, we observed a ~40% reduction in the attentional blink (identifying T2 200 ms after T1) seen through the amblyopic eye and this improvement in performance transferred substantially to the untrained fellow sound eye. Our experiments show that the enhanced performance cannot be simply explained by eye patching alone, or to improved visual acuity, but is specific to videogame experience. Thus, videogame training might have important therapeutic applications for amblyopia and other visual brain disorders.

  16. Long-term musical training may improve different forms of visual attention ability.

    PubMed

    Rodrigues, Ana Carolina; Loureiro, Maurício Alves; Caramelli, Paulo

    2013-08-01

    Many studies have suggested that structural and functional cerebral neuroplastic processes result from long-term musical training, which in turn may produce cognitive differences between musicians and non-musicians. We aimed to investigate whether intensive, long-term musical practice is associated with improvements in three different forms of visual attention ability: selective, divided and sustained attention. Musicians from symphony orchestras (n=38) and non-musicians (n=38), who were comparable in age, gender and education, were submitted to three neuropsychological tests, measuring reaction time and accuracy. Musicians showed better performance relative to non-musicians on four variables of the three visual attention tests, and such an advantage could not solely be explained by better sensorimotor integration. Moreover, in the group of musicians, significant correlations were observed between the age at the commencement of musical studies and reaction time in all visual attention tests. The results suggest that musicians present augmented ability in different forms of visual attention, thus illustrating the possible cognitive benefits of long-term musical training. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Return of visual function after bilateral visual loss following flow diversion embolization of a giant ophthalmic aneurysm due to both reduction in mass effect and reduction in aneurysm pulsation.

    PubMed

    Patel, Saharsh; Fargen, Kyle M; Peters, Keith; Krall, Peter; Samy, Hazem; Hoh, Brian L

    2015-01-01

    Large and giant paraclinoid aneurysms are challenging to treat by either surgical or endovascular means. Visual dysfunction secondary to optic nerve compression and its relationship with aneurysm size, pulsation and thrombosis is poorly understood. We present a patient with a giant paraclinoid aneurysm resulting in bilateral visual loss that worsened following placement of a Pipeline Embolization Device and adjunctive coiling. Visual worsening occurred in conjunction with aneurysm thrombosis, increase in maximal aneurysm diameter and new adjacent edema. Her visual function spontaneously improved in a delayed fashion to better than pre-procedure, in conjunction with reduced aneurysmal mass effect, size and pulsation artifact on MRI. This report documents detailed ophthalmologic and MRI evidence for the role of thrombosis, aneurysm mass effect and aneurysm pulsation as causative etiologies for both cranial nerve dysfunction and delayed resolution following flow diversion treatment of large cerebral aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Eye size and visual acuity influence vestibular anatomy in mammals.

    PubMed

    Kemp, Addison D; Christopher Kirk, E

    2014-04-01

    The semicircular canals of the inner ear detect head rotations and trigger compensatory movements that stabilize gaze and help maintain visual fixation. Mammals with large eyes and high visual acuity require precise gaze stabilization mechanisms because they experience diminished visual functionality at low thresholds of uncompensated motion. Because semicircular canal radius of curvature is a primary determinant of canal sensitivity, species with large canal radii are expected to be capable of more precise gaze stabilization than species with small canal radii. Here, we examine the relationship between mean semicircular canal radius of curvature, eye size, and visual acuity in a large sample of mammals. Our results demonstrate that eye size and visual acuity both explain a significant proportion of the variance in mean canal radius of curvature after statistically controlling for the effects of body mass and phylogeny. These findings suggest that variation in mean semicircular canal radius of curvature among mammals is partly the result of selection for improved gaze stabilization in species with large eyes and acute vision. Our results also provide a possible functional explanation for the small semicircular canal radii of fossorial mammals and plesiadapiforms. Copyright © 2014 Wiley Periodicals, Inc.

  19. The Glenn A. Fry Award Lecture 2012: Plasticity of the visual system following central vision loss.

    PubMed

    Chung, Susana T L

    2013-06-01

    Following the onset of central vision loss, most patients develop an eccentric retinal location outside the affected macular region, the preferred retinal locus (PRL), as their new reference for visual tasks. The first goal of this article is to present behavioral evidence showing the presence of experience-dependent plasticity in people with central vision loss. The evidence includes the presence of oculomotor re-referencing of fixational saccades to the PRL; the characteristics of the shape of the crowding zone (spatial region within which the presence of other objects affects the recognition of a target) at the PRL are more "foveal-like" instead of resembling those of the normal periphery; and the change in the shape of the crowding zone at a para-PRL location that includes a component referenced to the PRL. These findings suggest that there is a shift in the referencing locus of the oculomotor and the sensory visual system from the fovea to the PRL for people with central vision loss, implying that the visual system for these individuals is still plastic and can be modified through experiences. The second goal of the article is to demonstrate the feasibility of applying perceptual learning, which capitalizes on the presence of plasticity, as a tool to improve functional vision for people with central vision loss. Our finding that visual function could improve with perceptual learning presents an exciting possibility for the development of an alternative rehabilitative strategy for people with central vision loss.

  20. [Vitrectomy for idiopathic and secondary preretinal macular membrane].

    PubMed

    Oficjalska-Młyńczak, Jolanta; Jamrozy-Witkowska, Agnieszka

    2004-01-01

    To evaluate the results of pars plana vitrectomy and membrane stripping for idiopathic and secondary preretinal macular membrane (PMM). Twenty one consecutive subjects (21 eyes) ranging in age from 40 to 78 (mean 66.9) with PMM underwent vitrectomy and membrane peeling. 17 cases had membranes that were considered idiopathic, and 4 cases were associated with other disorders: 3 occurred after successful retinal reattachment surgery, 1--after laserotherapy in the course of diabetic retinopathy. Visual acuity (VA), Amsler grid, and postoperative complications were assessed. The follow-up was 1 to 22 months, mean 5.7. Visual acuity improved postoperatively in 15 eyes (71.4%), at least two lines on the Snellen chart in 8 eyes (38.1%), entirely in patients with idiopathic PMM. It remained unchanged in 3 eyes (14.3%) and deteriorated in 3 eyes (14.3%). Eyes with transparent membrane showed greater visual improvement than opaque ones. The preoperative Amsler test was positive in 15 patients (71.4%), postoperatively--in 4 cases (19%). 2 idiopathic cases with VA of 0.7 showed postoperatively VA of 1.0. Complications included retinal detachment in 2 eyes (1 in idiopathic and 1 in secondary PMM), and development of nuclear sclerotic cataract in 2 eyes. At 6 months of follow-up, a residual membrane formation in 1 cases appeared. Macular pseudohole was observed in 1 eye with no impact on visual results. 1. Vitrectomy with membrane peeling for preretinal macular membrane provides improvement in visual acuity and reduces metamorphopsia 2. Thin, cellophane-like appearance of the membrane gives a better prognosis of visual function improvement.

  1. The effect of amblyopia treatment on stereoacuity.

    PubMed

    Stewart, Catherine E; Wallace, Michael P; Stephens, David A; Fielder, Alistair R; Moseley, Merrick J

    2013-04-01

    To explore how stereoacuity changes in patients while they are being treated for amblyopia. The Monitored Occlusion Treatment for Amblyopia Study (MOTAS) comprised 3 distinct phases. In the first phase, baseline, assessments of visual function were made to confirm the initial visual and binocular visual deficit. The second phase, refractive adaptation, now commonly termed "optical treatment," was an 18-week period of spectacle wear with measurements of logMAR visual acuity and stereoacuity with the Frisby test at weeks 0, 6, 12, and 18. In the third phase, occlusion, participants were prescribed 6 hours of patching per day. A total of 85 children were enrolled (mean age, 5.1 ± 1.5 years). In 21 children amblyopia was associated with anisometropia; in 29, with strabismus; and in 35, with both. At study entry, poor stereoacuity was associated with poor visual acuity (P < 0.001) in the amblyopic eye and greater angle of strabismus (P < 0.001). Of 66 participants, 25 (38%) who received refractive adaptation and 19 (29%) who received occlusion improved by at least one octave in stereoacuity, exceeding test-retest variability. Overall, 38 (45%) improved one or more octaves across both treatment phases. Unmeasureable stereoacuity was observed in 56 participants (66%) at study entry and in 37 (43%) at study exit. Stereoacuity improved for almost one half of the study participants. Improvement was observed in both treatment phases. Factors associated with poor or nil stereoacuity at study entry and exit were poor visual acuity of the amblyopic eye and large-angle strabismus. Copyright © 2013 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.

  2. Not just a light fingertip touch: A facilitation of functional integration between body sway and visual search in older adults.

    PubMed

    Chen, Fu-Chen; Chu, Chia-Hua; Pan, Chien-Yu; Tsai, Chia-Liang

    2018-05-01

    Prior studies demonstrated that, compared to no fingertip touch (NT), a reduction in body sway resulting from the effects of light fingertip touch (LT) facilitates the performance of visual search, buttressing the concept of functional integration. However, previous findings may be confounded by different arm postures required between the NT and LT conditions. Furthermore, in older adults, how LT influences the interactions between body sway and visual search has not been established. (1) Are LT effects valid after excluding the influences of different upper limb configurations? (2) Is functional integration is feasible for older adults? Twenty-two young (age = 21.3 ± 2.0) and 22 older adults (age = 71.8 ± 4.1) were recruited. Participants performed visual inspection and visual searches under NT and LT conditions. The older group significantly reduced AP sway (p < 0.05) in LT compared to NT conditions, of which the LT effects on postural adaptation were more remarkable in older than young adults (p < 0.05). In addition, the older group significantly improved search accuracy (p < 0.05) from the LT to the NT condition, and these effects were equivalent between groups. After controlling for postural configurations, the results demonstrate that light fingertip touch reduces body sway and concurrently enhances visual search performance in older adults. These findings confirmed the effects of LT on postural adaptation as well as supported functional integration in older adults. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Cholinergic, But Not Dopaminergic or Noradrenergic, Enhancement Sharpens Visual Spatial Perception in Humans

    PubMed Central

    Wallace, Deanna L.

    2017-01-01

    The neuromodulator acetylcholine modulates spatial integration in visual cortex by altering the balance of inputs that generate neuronal receptive fields. These cholinergic effects may provide a neurobiological mechanism underlying the modulation of visual representations by visual spatial attention. However, the consequences of cholinergic enhancement on visuospatial perception in humans are unknown. We conducted two experiments to test whether enhancing cholinergic signaling selectively alters perceptual measures of visuospatial interactions in human subjects. In Experiment 1, a double-blind placebo-controlled pharmacology study, we measured how flanking distractors influenced detection of a small contrast decrement of a peripheral target, as a function of target-flanker distance. We found that cholinergic enhancement with the cholinesterase inhibitor donepezil improved target detection, and modeling suggested that this was mainly due to a narrowing of the extent of facilitatory perceptual spatial interactions. In Experiment 2, we tested whether these effects were selective to the cholinergic system or would also be observed following enhancements of related neuromodulators dopamine or norepinephrine. Unlike cholinergic enhancement, dopamine (bromocriptine) and norepinephrine (guanfacine) manipulations did not improve performance or systematically alter the spatial profile of perceptual interactions between targets and distractors. These findings reveal mechanisms by which cholinergic signaling influences visual spatial interactions in perception and improves processing of a visual target among distractors, effects that are notably similar to those of spatial selective attention. SIGNIFICANCE STATEMENT Acetylcholine influences how visual cortical neurons integrate signals across space, perhaps providing a neurobiological mechanism for the effects of visual selective attention. However, the influence of cholinergic enhancement on visuospatial perception remains unknown. Here we demonstrate that cholinergic enhancement improves detection of a target flanked by distractors, consistent with sharpened visuospatial perceptual representations. Furthermore, whereas most pharmacological studies focus on a single neurotransmitter, many neuromodulators can have related effects on cognition and perception. Thus, we also demonstrate that enhancing noradrenergic and dopaminergic systems does not systematically improve visuospatial perception or alter its tuning. Our results link visuospatial tuning effects of acetylcholine at the neuronal and perceptual levels and provide insights into the connection between cholinergic signaling and visual attention. PMID:28336568

  4. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.

    PubMed

    Chader, Gerald J; Weiland, James; Humayun, Mark S

    2009-01-01

    Hundreds of thousands around the world have poor vision or no vision at all due to inherited retinal degenerations (RDs) like retinitis pigmentosa (RP). Similarly, millions suffer from vision loss due to age-related macular degeneration (AMD). In both of these allied diseases, the primary target for pathology is the retinal photoreceptor cells that dysfunction and die. Secondary neurons though are relatively spared. To replace photoreceptor cell function, an electronic prosthetic device can be used such that retinal secondary neurons receive a signal that simulates an external visual image. The composite device has a miniature video camera mounted on the patient's eyeglasses, which captures images and passes them to a microprocessor that converts the data to an electronic signal. This signal, in turn, is transmitted to an array of electrodes placed on the retinal surface, which transmits the patterned signal to the remaining viable secondary neurons. These neurons (ganglion, bipolar cells, etc.) begin processing the signal and pass it down the optic nerve to the brain for final integration into a visual image. Many groups in different countries have different versions of the device, including brain implants and retinal implants, the latter having epiretinal or subretinal placement. The device furthest along in development is an epiretinal implant sponsored by Second Sight Medical Products (SSMP). Their first-generation device had 16 electrodes with human testing in a Phase 1 clinical trial beginning in 2002. The second-generation device has 60+ electrodes and is currently in Phase 2/3 clinical trial. Increased numbers of electrodes are planned for future versions of the device. Testing of the device's efficacy is a challenge since patients admitted into the trial have little or no vision. Thus, methods must be developed that accurately and reproducibly record small improvements in visual function after implantation. Standard tests such as visual acuity, visual field, electroretinography, or even contrast sensitivity may not adequately capture some aspects of improvement that relate to a better quality of life (QOL). Because of this, some tests are now relying more on "real-world functional capacity" that better assesses possible improvement in aspects of everyday living. Thus, a new battery of tests have been suggested that include (1) standard psychophysical testing, (2) performance in tasks that are used in real-life situations such as object discrimination, mobility, etc., and (3) well-crafted questionnaires that assess the patient's own feelings as to the usefulness of the device. In the Phase 1 trial of the SSMP 16-electrode device, six subjects with severe RP were implanted with ongoing, continuing testing since then. First, it was evident that even limited sight restoration is a slow, learning process that takes months for improvement to become evident. However, light perception was restored in all six patients. Moreover, all subjects ultimately saw discrete phosphenes and could perform simple visual spatial and motion tasks. As mentioned above, a Phase 2/3 trial is now ongoing with a 60+ device. A 250+ device is on the drawing board, and one with over 1000 electrodes is being planned. Each has the possibility of significantly improving a patient's vision and QOL, being smaller and safer in design and lasting for the lifetime of the patient. From theoretical modeling, it is estimated that a device with approximately 1000 electrodes could give good functional vision, i.e., face recognition and reading ability. This could be a reality within 5-10 years from now. In summary, no treatments are currently available for severely affected patients with RP and dry AMD. An electrical prosthetic device appears to offer hope in replacing the function of degenerating or dead photoreceptor neurons. Devices with new, sophisticated designs and increasing numbers of electrodes could allow for long-term restoration of functional sight in patients with improvement in object recognition, mobility, independent living, and general QOL.

  5. [Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].

    PubMed

    Sabel, B A

    2017-02-01

    Visual field defects are considered irreversible because the retina and optic nerve do not regenerate. Nevertheless, there is some potential for recovery of the visual fields. This can be accomplished by the brain, which analyses and interprets visual information and is able to amplify residual signals through neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. This is actually the neurobiological basis of normal learning. Plasticity is maintained throughout life and can be induced by repetitively stimulating (training) brain circuits. The question now arises as to how plasticity can be utilised to activate residual vision for the treatment of visual field loss. Just as in neurorehabilitation, visual field defects can be modulated by post-lesion plasticity to improve vision in glaucoma, diabetic retinopathy or optic neuropathy. Because almost all patients have some residual vision, the goal is to strengthen residual capacities by enhancing synaptic efficacy. New treatment paradigms have been tested in clinical studies, including vision restoration training and non-invasive alternating current stimulation. While vision training is a behavioural task to selectively stimulate "relative defects" with daily vision exercises for the duration of 6 months, treatment with alternating current stimulation (30 min. daily for 10 days) activates and synchronises the entire retina and brain. Though full restoration of vision is not possible, such treatments improve vision, both subjectively and objectively. This includes visual field enlargements, improved acuity and reaction time, improved orientation and vision related quality of life. About 70 % of the patients respond to the therapies and there are no serious adverse events. Physiological studies of the effect of alternating current stimulation using EEG and fMRI reveal massive local and global changes in the brain. These include local activation of the visual cortex and global reorganisation of neuronal brain networks. Because modulation of neuroplasticity can strengthen residual vision, the brain deserves a better reputation in ophthalmology for its role in visual rehabilitation. For patients, there is now more light at the end of the tunnel, because vision loss in some areas of the visual field defect is indeed reversible. Georg Thieme Verlag KG Stuttgart · New York.

  6. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.

    PubMed

    Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F

    2016-10-01

    The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Changes in Drivers’ Visual Performance during the Collision Avoidance Process as a Function of Different Field of Views at Intersections

    PubMed Central

    Yan, Xuedong; Zhang, Xinran; Zhang, Yuting; Li, Xiaomeng; Yang, Zhuo

    2016-01-01

    The intersection field of view (IFOV) indicates an extent that the visual information can be observed by drivers. It has been found that further enhancing IFOV can significantly improve emergent collision avoidance performance at intersections, such as faster brake reaction time, smaller deceleration rate, and lower traffic crash involvement risk. However, it is not known how IFOV affects drivers’ eye movements, visual attention and the relationship between visual searching and traffic safety. In this study, a driving simulation experiment was conducted to uncover the changes in drivers’ visual performance during the collision avoidance process as a function of different field of views at an intersection by using an eye tracking system. The experimental results showed that drivers’ ability in identifying the potential hazard in terms of visual searching was significantly affected by different IFOV conditions. As the IFOVs increased, drivers had longer gaze duration (GD) and more number of gazes (NG) in the intersection surrounding areas and paid more visual attention to capture critical visual information on the emerging conflict vehicle, thus leading to a better collision avoidance performance and a lower crash risk. It was also found that female drivers had a better visual performance and a lower crash rate than male drivers. From the perspective of drivers’ visual performance, the results strengthened the evidence that further increasing intersection sight distance standards should be encouraged for enhancing traffic safety. PMID:27716824

  8. Ocular toxicity and functional vision recovery in a patient treated with hydroxychloroquine.

    PubMed

    Rodríguez-Hurtado, Francisco Jorge; Sáez-Moreno, José Antonio; Rodríguez-Ferrer, José Manuel

    2015-01-01

    We report the case of a 64-year-old woman with rheumatoid arthritis and Sjögren's syndrome, treated during 48 months with hydroxychloroquine that was removed after an ophthalmological evaluation showed bilateral vision loss associated with paracentral scotoma in the visual field, fundoscopic macular pigmentary changes, and severely impaired central multifocal electrorretinogram (mfERG). Twelve months after treatment withdrawal, visual acuity and central mfERG had surprisingly improved. This is an unusual case of functional recovery after treatment withdrawal. We consider that central mfERG is a more sensitive test than pattern electrorretinogram in the detection of retinal toxicity and functional vision recovery after hydroxychloroquine treatment cessation. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  9. Comparing the Impact of Refractive and Nonrefractive Vision Loss on Functioning and Disability: The Salisbury Eye Evaluation.

    PubMed

    Zebardast, Nazlee; Swenor, Bonnielin K; van Landingham, Suzanne W; Massof, Robert W; Munoz, Beatriz; West, Sheila K; Ramulu, Pradeep Y

    2015-06-01

    To compare the effects of uncorrected refractive error (URE) and nonrefractive visual impairment (VI) on performance and disability measures. Cross-sectional, population-based study. A total of 2469 individuals with binocular presenting visual acuity (PVA) of ≥ 20/80 who participated in the first round of the Salisbury Eye Evaluation study. The URE was defined as binocular PVA of ≤ 20/30, improving to >20/30 with subjective refraction. The VI was defined as post-refraction binocular best-corrected visual acuity (BCVA) of ≤ 20/30. The visual acuity decrement due to VI was calculated as the difference between BCVA and 20/30, whereas visual acuity due to URE was taken as the difference between PVA and BCVA. Multivariable regression analyses were used to assess the disability impact of (1) vision status (VI, URE, or normal vision) using the group with normal vision as reference and (2) a 1-line decrement in acuity due to VI or URE. Objective measures of visual function were obtained from timed performance of mobility and near vision tasks, self-reported driving cessation, and self-reported visual difficulty measured by the Activities of Daily Vision (ADV) scale. The ADV responses were analyzed using Rasch analysis to determine visual ability. Compared with individuals with normal vision, subjects with VI (n = 191) had significantly poorer objective and subjective visual functioning in all metrics examined (P < 0.05), whereas subjects with URE (n = 132) demonstrated slower walking speeds, slower near task performance, more frequent driving cessation, and lower ADV scores (P < 0.05), but did not demonstrate slower stair climbing or descent speed. For all functional metrics evaluated, the impact of VI was greater than the impact of URE. The impact of a 1-line VA decrement due to VI was associated with greater deficits in mobility measures and driving cessation when compared with a 1-line VA decrement due to URE. Visual impairment is associated with greater disability than URE across a wide variety of functional measures, even in analyses adjusting for the severity of vision loss. Refractive and nonrefractive vision loss should be distinguished in studies evaluating visual disability and be understood to have differing consequences. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  10. The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke.

    PubMed

    Santos-Couto-Paz, Clarissa C; Teixeira-Salmela, Luci F; Tierra-Criollo, Carlos J

    2013-01-01

    Mental practice (MP) is a cognitive strategy which may improve the acquisition of motor skills and functional performance of athletes and individuals with neurological injuries. To determine whether an individualized, specific functional task-oriented MP, when added to conventional physical therapy (PT), promoted better learning of motor skills in daily functions in individuals with chronic stroke (13 ± 6.5 months post-stroke). Nine individuals with stable mild and moderate upper limb impairments participated, by employing an A1-B-A2 single-case design. Phases A1 and A2 included one month of conventional PT, and phase B the addition of MP training to PT. The motor activity log (MAL-Brazil) was used to assess the amount of use (AOU) and quality of movement (QOM) of the paretic upper limb; the revised motor imagery questionnaire (MIQ-RS) to assess the abilities in kinesthetic and visual motor imagery; the Minnesota manual dexterity test to assess manual dexterity; and gait speed to assess mobility. After phase A1, no significant changes were observed for any of the outcome measures. However, after phase B, significant improvements were observed for the MAL, AOU and QOM scores (p<0.0001), and MIQ-RS kinesthetic and visual scores (p=0.003; p=0.007, respectively). The significant gains in manual dexterity (p=0.002) and gait speed (p=0.019) were maintained after phase A2. Specific functional task-oriented MP, when added to conventional PT, led to improvements in motor imagery abilities combined with increases in the AOU and QOM in daily functions, manual dexterity, and gait speed.

  11. Comparison of psychomotor function between music students and students participating in music training.

    PubMed

    Chansirinukor, Wunpen; Khemthong, Supalak

    2014-07-01

    To compare psychomotor function between a music student group who had music education and a non-music student group who participated in music training. Consecutive sampling was used for completing questionnaires, testing reaction times (visual, auditory, and tactile system), measuring electromyography of upper trapezius muscles both sides and taking photos of the Craniovertebral (CV) angle in the sitting position. Data collection was made twice for each student group: the music students at one-hour intervals for resting and conducting nonmusic activities, the non-music students at two-day intervals, 20 minutes/session, and performed music training (by a manual of keyboard notation). The non-music students (n = 65) improved reaction times, but responded slower than the music students except for the tactile system. The music students (n = 28) showed faster reaction times and higher activities of the trapezius muscle than the non-music students at post-test. In addition, the CV angle of the non-music students was significantly improved. The level of musical ability may influence the psychomotor function. Significant improvement was observed in visual, auditory and tactile reaction time, and CV angle in the non-music students. However upper trapezius muscle activities between both student groups were unchanged.

  12. Amblyopia and Binocular Vision

    PubMed Central

    Birch, Eileen E.

    2012-01-01

    Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3% to 3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. PMID:23201436

  13. External self-representations improve self-awareness in a child with autism.

    PubMed

    Root, Nicholas B; Case, Laura K; Burrus, Caley J; Ramachandran, V S

    2015-01-01

    We have previously suggested that the social symptoms of autism spectrum disorder (ASD) could be caused in part by a dysfunctional mirror neuron system (MNS). Since the recursive activity of a functioning MNS might enable the brain to integrate visual and motor sensations into a coherent body schema, the deficits in self-awareness often seen in ASD might be caused by the same mirror neuron dysfunction. CL is an autistic adolescent who is profoundly fascinated with his reflection, looking in mirrors at every opportunity. We demonstrate that CL's abnormal gait improves significantly when using a mirror for visual feedback. We also show that both the fascination and the happiness that CL derives from looking at a computer-generated reflection diminish when a delay is introduced between the camera input and screen output. We believe that immediate, real-time visual feedback allows CL to integrate motor sensations with external visual ones into a coherent body schema that he cannot internally generate, perhaps due to a dysfunctional MNS.

  14. [Surgical solution to vitreous floaters visual problem].

    PubMed

    Martínez-Sanz, F; Velarde, J I; Casuso, P; Fernández-Cotero, J N

    2009-05-01

    To evaluate the role of 25 gauge pars-plana vitrectomy (25G-PPV), after a careful patient selection, when we find highly annoying vitreous floaters and to question if this is an ethical therapeutic option. A retrospective study of eight eyes (seven patients) aged 58+/-14 years old (range 42-78) high myopes and pseudophakes who underwent 25G-PPV. Clinical data and visual acuity were studied at six to twelve months follow-up. Health-related functioning and quality of life was measured with the 39-item National Eye Institute Visual Functioning Questionnaire (NEI VFQ-39). No complications were observed. All patients were satisfied. Safety at third month was 100% and 37.5% improved one or more lines of visual acuity. Vitreous floaters can be often undervaluated by ophthalmologists, resulting in no intervention. Conventional 20 gauge PPV after a carefully examination can be an effective option for some authors. 25G-PPV incorporates also advantages as the early recovery, with little complications in pseudophakic eyes.

  15. Reading performance after vision rehabilitation of subjects with homonymous visual field defects.

    PubMed

    Gall, Carolin; Sabel, Bernhard A

    2012-12-01

    To examine whether increased visual functioning after vision-restoration training (VRT) coincides with improved reading abilities. Prospective noncontrolled open-label trial. Controlled laboratory setting for all diagnostic procedures that were conducted before and after 6 months of home-based VRT with telemedicine support. Eleven subjects who had experienced a posterior-parietal stroke and have homonymous visual field defects. Six months of VRT (1 hour daily repeated light stimulation in the partially damaged visual field). VRT outcome measures were the number of detected light stimuli in eye-tracker controlled high-resolution perimetry and the spared visual field within the affected hemifield up to the relative and absolute defect visual field border (square degrees). Enlargements of spared visual field within the affected hemifield were correlated with changes of reading speed after VRT. After VRT, the number of detected light stimuli increased by 5.02 ± 4.31% (mean ± SD; P = .03). The spared visual field up to the relative defect visual field border increased from 18.09 ± 32.35 square degrees before to 137.40 ± 53.32 after VRT (P = .006), as well as for the absolute defect visual field border from 36.95 ± 33.77 square degrees before VRT to 152.02 ± 49.70 after VRT (P = .005). Reading speed increased from 108.95 ± 33.95 words per minute before VRT to 122.26 ± 30.35 after VRT (P = .017), which significantly correlated with increased spared visual field up to the relative defect visual field border (r = 0.73, P = .016). Measures of eye movement variability did not correlate with VRT outcome. VRT improved visual fields in parafoveal areas, which are most relevant for reading. This finding cannot be explained by changes in eye movement behavior. Because of a significant association between improvements of parafoveal vision and reading speed, we propose that patients with homonymous visual field defects who have reading deficits may benefit from visual stimulation by training. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. Effect of levodopa and carbidopa in human amblyopia.

    PubMed

    Pandey, P K; Chaudhuri, Zia; Kumar, Maneesh; Satyabala, K; Sharma, Pankaj

    2002-01-01

    To assess the role of continuous therapy for 3 weeks with levodopa and carbidopa in the management of human amblyopia in children and adults. There were 88 amblyopic eyes of 82 subjects included in this double masked randomized prospective clinical trial. Levodopa and carbidopa combination in 2 different dosage schedules were given to both adults and children. The response was monitored of the improvement in visual acuity, contrast sensitivity, and visually evoked potentials. Patients receiving higher dosages of levodopa and carbidopa in both adults and children showed a better response to treatment. However, the effect did not last beyond 9 weeks of stopping treatment. Though levodopa and carbidopa therapy may not be able to ameliorate amblyopia on its own on a long-term basis, it may be considered nonetheless to be an important adjunct to conventional therapy because it may improve patient compliance for occlusion by improving visual acuity in the amblyopic eye. Thus, it offers promise of improving the functional outcome in these cases. However, longer follow-up trials are needed to substantiate these conclusions.

  17. Vision science and adaptive optics, the state of the field.

    PubMed

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Sensorimotor recovery following spaceflight may be due to frequent square-wave saccadic intrusions

    NASA Technical Reports Server (NTRS)

    Reschke, Millard; Somers, Jeffrey T.; Leigh, R. John; Krnavek, Jody M.; Kornilova, Ludmila; Kozlovskaya, Inessa; Bloomberg, Jacob J.; Paloski, William H.

    2004-01-01

    Square-wave jerks (SWJs) are small, involuntary saccades that disrupt steady fixation. We report the case of an astronaut (approximately 140 d on orbit) who showed frequent SWJs, especially postflight, but who showed no impairment of vision or decrement of postflight performance. These data support the view that SWJs do not impair vision because they are paired movements, consisting of a small saccade away from the fixation position followed, within 200 ms, by a corrective saccade that brings the eye back on target. Since many returning astronauts show a decrement of dynamic visual function during postflight locomotion, it seems possible that frequent SWJs improved this astronaut's visual function by providing postsaccadic enhancement of visual fixation, which aided postflight performance. Certainly, frequent SWJs did not impair performance in this astronaut, who had no other neurological disorder.

  19. Fine Motor Skills of Children With Amblyopia Improve Following Binocular Treatment.

    PubMed

    Webber, Ann L; Wood, Joanne M; Thompson, Benjamin

    2016-09-01

    The purpose of this study was to determine whether reduced fine motor skills in children with amblyopia improve after binocular treatment and whether improvements are sustained once treatment has ceased. Fine motor skills (FMS [Bruininks-Oseretsky Test of Motor Proficiency]), visual acuity (VA [Early Treatment of Diabetic Retinopathy Study chart]) and level of binocular function (BF [Randot preschool stereoacuity and Worth 4 Dot]) were measured in children with amblyopia (n = 20; age: 8.5 ± 1.3 years; 11 anisometropic; 5 strabismic; 4 mixed) and in a group of visually normal children (n = 10; age: 9.63 ± 1.6 years). Eighteen children with amblyopia subsequently completed 5 weeks of binocular treatment provided by home-based dichoptic iPod game play. FMS, VA, and BF were retested at the end of treatment and 12 weeks after treatment cessation. All visually normal children also completed FMS measurements at baseline and 5 weeks later to assess test-retest variability of the FMS scores. Prior to treatment, FMS scores in children with amblyopia were poorer than those in children with normal vision (P < 0.05). In the children with amblyopia, binocular treatment significantly improved FMS scores (P < 0.05). Better baseline amblyopic eye VA and BF were associated with greater improvements in FMS score. Improvements were still evident at 12 weeks post treatment. In the visually normal children, FMS scores remained stable across the two test sessions. Binocular treatment provided by dichoptic iPod game play improved FMS performance in children with amblyopia, particularly in those with less severe amblyopia. Improvements were maintained at 3 months following cessation of treatment.

  20. Super-resolution pupil filtering for visual performance enhancement using adaptive optics

    NASA Astrophysics Data System (ADS)

    Zhao, Lina; Dai, Yun; Zhao, Junlei; Zhou, Xiaojun

    2018-05-01

    Ocular aberration correction can significantly improve visual function of the human eye. However, even under ideal aberration correction conditions, pupil diffraction restricts the resolution of retinal images. Pupil filtering is a simple super-resolution (SR) method that can overcome this diffraction barrier. In this study, a 145-element piezoelectric deformable mirror was used as a pupil phase filter because of its programmability and high fitting accuracy. Continuous phase-only filters were designed based on Zernike polynomial series and fitted through closed-loop adaptive optics. SR results were validated using double-pass point spread function images. Contrast sensitivity was further assessed to verify the SR effect on visual function. An F-test was conducted for nested models to statistically compare different CSFs. These results indicated CSFs for the proposed SR filter were significantly higher than the diffraction correction (p < 0.05). As such, the proposed filter design could provide useful guidance for supernormal vision optical correction of the human eye.

  1. A Behavioral Treatment for Traumatic Brain Injury-Associated Visual Dysfunction Based on Adult Cortical Plasticity

    DTIC Science & Technology

    2012-10-01

    reported by the subjects. Based on the accumulate data, we prepared an updated set of pretest / posttest and training protocol in order to improve the...the  initial  pretests ,  the  training  and  the  posttests   in  the  control  group .  There  was  a  remarkable  improvement  in  the  objective...here  their  results.  All  measurements  of  the  visual  functions  are  shown  before  ( pretest )  and  after  ( posttest )  completing 20 training

  2. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention.

    PubMed

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L

    2013-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions support the hypothesis that cholinergic augmentation results in enhanced neural efficiency. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Early response to ranibizumab predictive of functional outcome after dexamethasone for unresponsive diabetic macular oedema.

    PubMed

    Cicinelli, Maria Vittoria; Cavalleri, Michele; Querques, Lea; Rabiolo, Alessandro; Bandello, Francesco; Querques, Giuseppe

    2017-12-01

    To analyse the effects of intravitreal dexamethasone implant in patients suffering from diabetic macular oedema (DME) on the basis of their visual and functional response to antivascular endothelial growth factor (VEGF) loading dose, in order to early shift to corticosteroids in poorly responding patients. Retrospective monocentric study. Data of patients with diabetes shifted to 0.7 mg dexamethasone implant after three injections of ranibizumab (RNB) and followed-up to 12 months were reviewed. Main outcome was the evaluation of short-term changes after dexamethasone implant injection, stratifying patients on the basis of best-corrected visual acuity (BCVA) and central macular thickness (CMT) after RNB loading dose. Secondary outcome was to investigate clinical gain maintenance at long-term follow-up. Overall, 45 eyes of 45 patients (23 males, 51.1%), mean age 69.7±9 years, were included in the analysis. After 3 injections of RNB, 30 eyes (66.7%) had a poor visual response (-4.3±10.7 letters), while 15 eyes (33.3%) disclosed good visual outcome (+13.9±9.2 letters). Patients with poor visual response were associated with limited morphological improvement (p=0.04). After 1 month from dexamethasone, only poor responders showed relevant increase in BCVA (p=0.006) and reduction in CMT (p=0.002), in comparison to good visual response patients, featuring only minor clinical effects (p=0.3). The same trend was maintained up to 12 months, after a mean of 1.9±1.1 dexamethasone administrations. Visual and anatomical responses after RNB loading dose are significant predictors of both early term and long-term visual acuity improvement after switching to corticosteroids in patients with DME unresponsive to anti-VEGF. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. The Effectiveness of Irlen Filters for Improving Reading Performance: A Pilot Study.

    ERIC Educational Resources Information Center

    Blaskey, Penni; And Others

    1990-01-01

    The study compared the effectiveness of Irlen filters and traditional optometric intervention with 30 volunteers (ages 9-51). Pre- and posttesting revealed that subjects in both treatment groups were more comfortable after treatment, that only the vision therapy group showed improved visual functioning, and that the Irlen filter group did not show…

  5. Practices of Assistive Technology Implementation and Facilitation: Experiences of Teachers of Students with Visual Impairments in Singapore

    ERIC Educational Resources Information Center

    Wong, Meng Ee; Law, Janet S. P.

    2016-01-01

    Assistive technology is defined by the Individuals With Disabilities Education Improvement Act (IDEIA) of 2004 as "any item, piece of equipment, or product system, whether acquired commercially off the shelf, modified, or customized, that is used to increase, maintain, or improve functional capabilities of a child with a disability"…

  6. Treatment of dry age-related macular degeneration with dobesilate

    PubMed Central

    Cuevas, P; Outeiriño, L A; Angulo, J; Giménez-Gallego, G

    2012-01-01

    The authors present anatomical and functional evidences of dry age-macular degeneration improvement, after intravitreal treatment with dobesilate. Main outcomes measures were normalisation of retinal structure and function, assessed by optical coherence tomography, fundus-monitored microperimetry, electrophysiology and visual acuity. The effect might be related to the normalisation of the outer retinal architecture. PMID:22729337

  7. An Improved Representation of Regional Boundaries on Parcellated Morphological Surfaces

    PubMed Central

    Hao, Xuejun; Xu, Dongrong; Bansal, Ravi; Liu, Jun; Peterson, Bradley S.

    2010-01-01

    Establishing the correspondences of brain anatomy with function is important for understanding neuroimaging data. Regional delineations on morphological surfaces define anatomical landmarks and help to visualize and interpret both functional data and morphological measures mapped onto the cortical surface. We present an efficient algorithm that accurately delineates the morphological surface of the cerebral cortex in real time during generation of the surface using information from parcellated 3D data. With this accurate region delineation, we then develop methods for boundary-preserved simplification and smoothing, as well as procedures for the automated correction of small, misclassified regions to improve the quality of the delineated surface. We demonstrate that our delineation algorithm, together with a new method for double-snapshot visualization of cortical regions, can be used to establish a clear correspondence between brain anatomy and mapped quantities, such as morphological measures, across groups of subjects. PMID:21144708

  8. Falls and health status in elderly women following first eye cataract surgery: a randomised controlled trial

    PubMed Central

    Harwood, R H; Foss, A J E; Osborn, F; Gregson, R M; Zaman, A; Masud, T

    2005-01-01

    Background/aim: A third of elderly people fall each year. Poor vision is associated with increased risk of falls. The authors aimed to determine if first eye cataract surgery reduces the risk of falling, and to measure associated health gain. Methods: 306 women aged over 70, with cataract, were randomised to expedited (approximately 4 weeks) or routine (12 months wait) surgery. Falls were ascertained by diary, with follow up every 3 months. Health status was measured after 6 months. Results: Visual function improved in the operated group (corrected binocular acuity improved by 0.25 logMAR units; 8% had acuity worse than 6/12 compared with 37% of controls). Over 12 months of follow up, 76 (49%) operated participants fell at least once, and 28 (18%) fell more than once. 69 (45%) unoperated participants fell at least once, 38 (25%) fell more than once. Rate of falling was reduced by 34% in the operated group (rate ratio 0.66, 95% confidence interval 0.45 to 0.96, p = 0.03). Activity, anxiety, depression, confidence, visual disability, and handicap all improved in the operated group compared with the control group. Four participants in the operated group had fractures (3%), compared with 12 (8%) in the control group (p = 0.04). Conclusion: First eye cataract surgery reduces the rate of falling, and risk of fractures and improves visual function and general health status. PMID:15615747

  9. Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light.

    PubMed

    Stöckl, Anna Lisa; O'Carroll, David Charles; Warrant, Eric James

    2016-03-21

    Most of the world's animals are active in dim light and depend on good vision for the tasks of daily life. Many have evolved visual adaptations that permit a performance superior to that of manmade imaging devices [1]. In insects, a major model visual system, nocturnal species show impressive visual abilities ranging from flight control [2, 3], to color discrimination [4, 5], to navigation using visual landmarks [6-8] or dim celestial compass cues [9, 10]. In addition to optical adaptations that improve their sensitivity in dim light [11], neural summation of light in space and time-which enhances the coarser and slower features of the scene at the expense of noisier finer and faster features-has been suggested to improve sensitivity in theoretical [12-14], anatomical [15-17], and behavioral [18-20] studies. How these summation strategies function neurally is, however, presently unknown. Here, we quantified spatial and temporal summation in the motion vision pathway of a nocturnal hawkmoth. We show that spatial and temporal summation combine supralinearly to substantially increase contrast sensitivity and visual information rate over four decades of light intensity, enabling hawkmoths to see at light levels 100 times dimmer than without summation. Our results reveal how visual motion is calculated neurally in dim light and how spatial and temporal summation improve sensitivity while simultaneously maximizing spatial and temporal resolution, thus extending models of insect motion vision derived predominantly from diurnal flies. Moreover, the summation strategies we have revealed may benefit manmade vision systems optimized for variable light levels [21]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Improved method for retinotopy constrained source estimation of visual evoked responses

    PubMed Central

    Hagler, Donald J.; Dale, Anders M.

    2011-01-01

    Retinotopy constrained source estimation (RCSE) is a method for non-invasively measuring the time courses of activation in early visual areas using magnetoencephalography (MEG) or electroencephalography (EEG). Unlike conventional equivalent current dipole or distributed source models, the use of multiple, retinotopically-mapped stimulus locations to simultaneously constrain the solutions allows for the estimation of independent waveforms for visual areas V1, V2, and V3, despite their close proximity to each other. We describe modifications that improve the reliability and efficiency of this method. First, we find that increasing the number and size of visual stimuli results in source estimates that are less susceptible to noise. Second, to create a more accurate forward solution, we have explicitly modeled the cortical point spread of individual visual stimuli. Dipoles are represented as extended patches on the cortical surface, which take into account the estimated receptive field size at each location in V1, V2, and V3 as well as the contributions from contralateral, ipsilateral, dorsal, and ventral portions of the visual areas. Third, we implemented a map fitting procedure to deform a template to match individual subject retinotopic maps derived from functional magnetic resonance imaging (fMRI). This improves the efficiency of the overall method by allowing automated dipole selection, and it makes the results less sensitive to physiological noise in fMRI retinotopy data. Finally, the iteratively reweighted least squares (IRLS) method was used to reduce the contribution from stimulus locations with high residual error for robust estimation of visual evoked responses. PMID:22102418

  11. A novel x-ray detector design with higher DQE and reduced aliasing: Theoretical analysis of x-ray reabsoprtion in detector converter material

    NASA Astrophysics Data System (ADS)

    Nano, Tomi; Escartin, Terenz; Karim, Karim S.; Cunningham, Ian A.

    2016-03-01

    The ability to improve visualization of structural information in digital radiography without increasing radiation exposures requires improved image quality across all spatial frequencies, especially at high frequencies. The detective quantum efficiency (DQE) as a function of spatial frequency quantifies image quality given by an x-ray detector. We present a method of increasing DQE at high spatial frequencies by improving the modulation transfer function (MTF) and reducing noise aliasing. The Apodized Aperature Pixel (AAP) design uses a detector with micro-elements to synthesize desired pixels and provide higher DQE than conventional detector designs. A cascaded system analysis (CSA) that incorporates x-ray interactions is used for comparison of the theoretical MTF, noise power spectrum (NPS), and DQE. Signal and noise transfer through the converter material is shown to consist of correlated an uncorrelated terms. The AAP design was shown to improve the DQE of both material types that have predominantly correlated transfer (such as CsI) and predominantly uncorrelated transfer (such as Se). Improvement in the MTF by 50% and the DQE by 100% at the sampling cut-off frequency is obtained when uncorrelated transfer is prevalent through the converter material. Optimizing high-frequency DQE results in improved image contrast and visualization of small structures and fine-detail.

  12. Sensory Eye Dominance in Treated Anisometropic Amblyopia

    PubMed Central

    Chen, Yao

    2017-01-01

    Amblyopia results from inadequate visual experience during the critical period of visual development. Abnormal binocular interactions are believed to play a critical role in amblyopia. These binocular deficits can often be resolved, owing to the residual visual plasticity in amblyopes. In this study, we quantitatively measured the sensory eye dominance in treated anisometropic amblyopes to determine whether they had fully recovered. Fourteen treated anisometropic amblyopes with normal or corrected to normal visual acuity participated, and their sensory eye dominance was assessed by using a binocular phase combination paradigm. We found that the two eyes were unequal in binocular combination in most (11 out of 14) of our treated anisometropic amblyopes, but none of the controls. We concluded that the treated anisometropic amblyopes, even those with a normal range of visual acuity, exhibited abnormal binocular processing. Our results thus suggest that there is potential for improvement in treated anisometropic amblyopes that may further enhance their binocular visual functioning. PMID:28573051

  13. Can perceptual learning be used to treat amblyopia beyond the critical period of visual development?

    PubMed

    Astle, Andrew T; Webb, Ben S; McGraw, Paul V

    2011-11-01

    Amblyopia presents early in childhood and affects approximately 3% of western populations. The monocular visual acuity loss is conventionally treated during the 'critical periods' of visual development by occluding or penalising the fellow eye to encourage use of the amblyopic eye. Despite the measurable success of this approach in many children, substantial numbers of people still suffer with amblyopia later in life because either they were never diagnosed in childhood, did not respond to the original treatment, the amblyopia was only partially remediated, or their acuity loss returned after cessation of treatment. In this review, we consider whether the visual deficits of this largely overlooked amblyopic group are amenable to conventional and innovative therapeutic interventions later in life, well beyond the age at which treatment is thought to be effective. There is a considerable body of evidence that residual plasticity is present in the adult visual brain and this can be harnessed to improve function in adults with amblyopia. Perceptual training protocols have been developed to optimise visual gains in this clinical population. Results thus far are extremely encouraging; marked visual improvements have been demonstrated, the perceptual benefits transfer to new visual tasks and appear to be relatively enduring. The essential ingredients of perceptual training protocols are being incorporated into video game formats, facilitating home-based interventions. Many studies support perceptual training as a tool for improving vision in amblyopes beyond the critical period. Should this novel form of treatment stand up to the scrutiny of a randomised controlled trial, clinicians may need to re-evaluate their therapeutic approach to adults with amblyopia. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.

  14. Can perceptual learning be used to treat amblyopia beyond the critical period of visual development?

    PubMed Central

    Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.

    2012-01-01

    Background Amblyopia presents early in childhood and affects approximately 3% of western populations. The monocular visual acuity loss is conventionally treated during the “critical periods” of visual development by occluding or penalising the fellow eye to encourage use of the amblyopic eye. Despite the measurable success of this approach in many children, substantial numbers of people still suffer with amblyopia later in life because either they were never diagnosed in childhood, did not respond to the original treatment, the amblyopia was only partially remediated, or their acuity loss returned after cessation of treatment. Purpose In this review, we consider whether the visual deficits of this largely overlooked amblyopic group are amenable to conventional and innovative therapeutic interventions later in life, well beyond the age at which treatment is thought to be effective. Recent findings There is a considerable body of evidence that residual plasticity is present in the adult visual brain and this can be harnessed to improve function in adults with amblyopia. Perceptual training protocols have been developed to optimise visual gains in this clinical population. Results thus far are extremely encouraging: marked visual improvements have been demonstrated, the perceptual benefits transfer to new visual tasks and appear to be relatively enduring. The essential ingredients of perceptual training protocols are being incorporated into video game formats, facilitating home-based interventions. Summary Many studies support perceptual training as a tool for improving vision in amblyopes beyond the critical period. Should this novel form of treatment stand up to the scrutiny of a randomised controlled trial, clinicians may need to re-evaluate their therapeutic approach to adults with amblyopia. PMID:21981034

  15. Treatment dose-response in amblyopia therapy: the Monitored Occlusion Treatment of Amblyopia Study (MOTAS).

    PubMed

    Stewart, Catherine E; Moseley, Merrick J; Stephens, David A; Fielder, Alistair R

    2004-09-01

    Amblyopia is the commonest visual disorder of childhood. Yet the contributions of the two principal treatments (spectacle wear and occlusion) to outcome are unknown. This study was undertaken to investigate the dose-response relationship of amblyopia therapy. The study comprised three distinct phases: baseline, in which repeat measures of visual function were undertaken to confirm the initial visual deficit; refractive adaptation: an 18-week period of spectacle wear with six weekly measurements of logarithm of the minimum angle of resolution (logMAR) visual acuity; occlusion: in which participants were prescribed 6 hours of "patching" per day. In the latter phase, occlusion was objectively monitored and logMAR visual acuity recorded at 2-week intervals until any observed gains had ceased. Data were obtained from 94 participants (mean age, 5.1 +/- 1.4 years) with amblyopia associated with strabismus (n = 34), anisometropia (n = 23), and both anisometropia and strabismus (n = 37). Eighty-six underwent refractive adaptation. Average concordance with patching was 48%. The relationship between logMAR visual acuity gain and total occlusion dose was monotonic and linear. Increasing dose rate beyond 2 h/d hastened the response but did not improve outcome. More than 80% of the improvement during occlusion occurred within 6 weeks. Treatment outcome was significantly better for children younger than 4 years (n = 17) than in those older than 6 years (n = 24; P = 0.0014). Continuous objective monitoring of the amount of patching therapy received has provided insight into the dose-response relationship of occlusion therapy for amblyopia. Patching is most effective within the first few weeks of treatment, even for those in receipt of a relatively small dose. Further studies are needed to elucidate the neural basis for the dose-response functions. Copyright Association for Research in Vision and Ophthalmology

  16. Therapist-Assisted Rehabilitation of Visual Function and Hemianopia after Brain Injury: Intervention Study on the Effect of the Neuro Vision Technology Rehabilitation Program.

    PubMed

    Rasmussen, Rune Skovgaard; Schaarup, Anne Marie Heltoft; Overgaard, Karsten

    2018-02-27

    Serious and often lasting vision impairments affect 30% to 35% of people following stroke. Vision may be considered the most important sense in humans, and even smaller permanent injuries can drastically reduce quality of life. Restoration of visual field impairments occur only to a small extent during the first month after brain damage, and therefore the time window for spontaneous improvements is limited. One month after brain injury causing visual impairment, patients usually will experience chronically impaired vision and the need for compensatory vision rehabilitation is substantial. The purpose of this study is to investigate whether rehabilitation with Neuro Vision Technology will result in a significant and lasting improvement in functional capacity in persons with chronic visual impairments after brain injury. Improving eyesight is expected to increase both physical and mental functioning, thus improving the quality of life. This is a prospective open label trial in which participants with chronic visual field impairments are examined before and after the intervention. Participants typically suffer from stroke or traumatic brain injury and will be recruited from hospitals and The Institute for the Blind and Partially Sighted. Treatment is based on Neuro Vision Technology, which is a supervised training course, where participants are trained in compensatory techniques using specially designed equipment. Through the Neuro Vision Technology procedure, the vision problems of each individual are carefully investigated, and personal data is used to organize individual training sessions. Cognitive face-to-face assessments and self-assessed questionnaires about both life and vision quality are also applied before and after the training. Funding was provided in June 2017. Results are expected to be available in 2020. Sample size is calculated to 23 participants. Due to age, difficulty in transport, and the time-consuming intervention, up to 25% dropouts are expected; thus, we aim to include at least 29 participants. This investigation will evaluate the effects of Neuro Vision Technology therapy on compensatory vision rehabilitation. Additionally, quality of life and cognitive improvements associated to increased quality of life will be explored. ClinicalTrials.gov NCT03160131; https://clinicaltrials.gov/ct2/show/NCT03160131 (Archived by WebCite at http://www.webcitation.org/6x3f5HnCv). ©Rune Skovgaard Rasmussen, Anne Marie Heltoft Schaarup, Karsten Overgaard. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 27.02.2018.

  17. Accessibility of insulin pumps for blind and visually impaired people.

    PubMed

    Uslan, Mark M; Burton, Darren M; Chertow, Bruce S; Collins, Ronda

    2004-10-01

    Continuous subcutaneous insulin infusion using an insulin pump (IP) more closely mimics the normal pancreas than multiple insulin injections. It is an effective, and often a preferred, means of maintaining normal blood glucose levels, but IPs were not designed to be fully accessible to blind or visually impaired people. This study will identify accessibility issues related to the design of IPs and focus on the key improvements required in the user interface to provide access for people who are blind or visually impaired. IPs that are commercially available were evaluated, and features and functions such as operating procedures, user interface design, and user manuals were tabulated and analyzed. Potential failures and design priorities were identified through a Failure Modes and Effects Analysis (FMEA). Although the IPs do provide some limited audio output, in general, it was found to be of minimal use to people who are blind or visually impaired. None of the IPs uses high-contrast displays with consistently large fonts preferred by people who are visually impaired. User manuals were also found to be of minimal use. Results of the FMEA emphasize the need to focus design improvements on communicating and verifying information so that errors and failures can be detected and corrected. The most important recommendation for future IP development is speech output capability, which, more than any other improvement, would break down accessibility barriers and allow blind and visually impaired people to take advantage of the benefits of IP technology.

  18. Improved data visualization techniques for analyzing macromolecule structural changes.

    PubMed

    Kim, Jae Hyun; Iyer, Vidyashankara; Joshi, Sangeeta B; Volkin, David B; Middaugh, C Russell

    2012-10-01

    The empirical phase diagram (EPD) is a colored representation of overall structural integrity and conformational stability of macromolecules in response to various environmental perturbations. Numerous proteins and macromolecular complexes have been analyzed by EPDs to summarize results from large data sets from multiple biophysical techniques. The current EPD method suffers from a number of deficiencies including lack of a meaningful relationship between color and actual molecular features, difficulties in identifying contributions from individual techniques, and a limited ability to be interpreted by color-blind individuals. In this work, three improved data visualization approaches are proposed as techniques complementary to the EPD. The secondary, tertiary, and quaternary structural changes of multiple proteins as a function of environmental stress were first measured using circular dichroism, intrinsic fluorescence spectroscopy, and static light scattering, respectively. Data sets were then visualized as (1) RGB colors using three-index EPDs, (2) equiangular polygons using radar charts, and (3) human facial features using Chernoff face diagrams. Data as a function of temperature and pH for bovine serum albumin, aldolase, and chymotrypsin as well as candidate protein vaccine antigens including a serine threonine kinase protein (SP1732) and surface antigen A (SP1650) from S. pneumoniae and hemagglutinin from an H1N1 influenza virus are used to illustrate the advantages and disadvantages of each type of data visualization technique. Copyright © 2012 The Protein Society.

  19. Improved data visualization techniques for analyzing macromolecule structural changes

    PubMed Central

    Kim, Jae Hyun; Iyer, Vidyashankara; Joshi, Sangeeta B; Volkin, David B; Middaugh, C Russell

    2012-01-01

    The empirical phase diagram (EPD) is a colored representation of overall structural integrity and conformational stability of macromolecules in response to various environmental perturbations. Numerous proteins and macromolecular complexes have been analyzed by EPDs to summarize results from large data sets from multiple biophysical techniques. The current EPD method suffers from a number of deficiencies including lack of a meaningful relationship between color and actual molecular features, difficulties in identifying contributions from individual techniques, and a limited ability to be interpreted by color-blind individuals. In this work, three improved data visualization approaches are proposed as techniques complementary to the EPD. The secondary, tertiary, and quaternary structural changes of multiple proteins as a function of environmental stress were first measured using circular dichroism, intrinsic fluorescence spectroscopy, and static light scattering, respectively. Data sets were then visualized as (1) RGB colors using three-index EPDs, (2) equiangular polygons using radar charts, and (3) human facial features using Chernoff face diagrams. Data as a function of temperature and pH for bovine serum albumin, aldolase, and chymotrypsin as well as candidate protein vaccine antigens including a serine threonine kinase protein (SP1732) and surface antigen A (SP1650) from S. pneumoniae and hemagglutinin from an H1N1 influenza virus are used to illustrate the advantages and disadvantages of each type of data visualization technique. PMID:22898970

  20. Improve Problem Solving Skills through Adapting Programming Tools

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  1. Longitudinal Analysis of Music Education on Executive Functions in Primary School Children

    PubMed Central

    Jaschke, Artur C.; Honing, Henkjan; Scherder, Erik J. A.

    2018-01-01

    Background: Research on the effects of music education on cognitive abilities has generated increasing interest across the scientific community. Nonetheless, longitudinal studies investigating the effects of structured music education on cognitive sub-functions are still rare. Prime candidates for investigating a relationship between academic achievement and music education appear to be executive functions such as planning, working memory, and inhibition. Methods: One hundred and forty-seven primary school children, Mage = 6.4 years, SD = 0.65 were followed for 2.5 years. Participants were randomized into four groups: two music intervention groups, one active visual arts group, and a no arts control group. Neuropsychological tests assessed verbal intelligence and executive functions. Additionally, a national pupil monitor provided data on academic performance. Results: Children in the visual arts group perform better on visuospatial memory tasks as compared to the three other conditions. However, the test scores on inhibition, planning and verbal intelligence increased significantly in the two music groups over time as compared to the visual art and no arts controls. Mediation analysis with executive functions and verbal IQ as mediator for academic performance have shown a possible far transfer effect from executive sub-function to academic performance scores. Discussion: The present results indicate a positive influence of long-term music education on cognitive abilities such as inhibition and planning. Of note, following a two-and-a-half year long visual arts program significantly improves scores on a visuospatial memory task. All results combined, this study supports a far transfer effect from music education to academic achievement mediated by executive sub-functions. PMID:29541017

  2. Longitudinal Analysis of Music Education on Executive Functions in Primary School Children.

    PubMed

    Jaschke, Artur C; Honing, Henkjan; Scherder, Erik J A

    2018-01-01

    Background: Research on the effects of music education on cognitive abilities has generated increasing interest across the scientific community. Nonetheless, longitudinal studies investigating the effects of structured music education on cognitive sub-functions are still rare. Prime candidates for investigating a relationship between academic achievement and music education appear to be executive functions such as planning, working memory, and inhibition. Methods: One hundred and forty-seven primary school children, M age = 6.4 years, SD = 0.65 were followed for 2.5 years. Participants were randomized into four groups: two music intervention groups, one active visual arts group, and a no arts control group. Neuropsychological tests assessed verbal intelligence and executive functions. Additionally, a national pupil monitor provided data on academic performance. Results: Children in the visual arts group perform better on visuospatial memory tasks as compared to the three other conditions. However, the test scores on inhibition, planning and verbal intelligence increased significantly in the two music groups over time as compared to the visual art and no arts controls. Mediation analysis with executive functions and verbal IQ as mediator for academic performance have shown a possible far transfer effect from executive sub-function to academic performance scores. Discussion: The present results indicate a positive influence of long-term music education on cognitive abilities such as inhibition and planning. Of note, following a two-and-a-half year long visual arts program significantly improves scores on a visuospatial memory task. All results combined, this study supports a far transfer effect from music education to academic achievement mediated by executive sub-functions.

  3. Patient-reported benefit of ReSTOR® multi-focal intraocular lenses after cataract surgery: Results of Principal Component Analysis on clinical trial data

    PubMed Central

    Berdeaux, Gilles; Viala, Muriel; Roborel de Climens, Aude; Arnould, Benoit

    2008-01-01

    Background Restoration of functional distance and near vision independently of additional correction remains a goal for cataract surgery. ReSTOR®, a new multi-focal intraocular lens (IOL) addresses this issue with an improvement in both distance and near vision, often without need for glasses. This analysis attempted to discuss the patient-reported benefit of ReSTOR® using a full but organised representation of data. Methods Two non-randomised, open-label clinical trials conducted in Europe and the United-States were conducted to compare the efficacy of ReSTOR® to AcrySof® mono-focal IOLs. A total of 710 patients in need of bilateral cataract extraction were included in the pooled study. The TyPE, a patient questionnaire, was fully completed by 672 of them before and after each eye surgery. The TyPE, composed of 67 items measuring overall visual functioning in both conditions (with and without wearing glasses), evaluates limitations, troubles and satisfaction in distance and near vision. A principal component analysis (PCA) of the TyPE questionnaire was performed on pooled data from baseline and post-surgery observations in order to fully represent the change in the TyPE data over time. ReSTOR® and mono-focal groups were used as illustrative variables. The coordinates of the first 2 factors were compared between visits and between IOLs (ReSTOR® vs. mono-focal), using paired t-tests and t-tests, respectively. Results The first factor of the PCA explained 55% of the variance and represented 'visual functioning and patient satisfaction'. The second factor explained 6% of the variance and was interpreted as 'independence from glasses'. An overall difference in factorial coordinates in both factors was seen between baseline and the first eye surgery, and between the first and the second eye surgery. No difference between ReSTOR® and mono-focal IOL groups was observed at baseline. After surgery, ReSTOR® treated-patients had higher coordinates on both "visual functioning and satisfaction" and "independence from glasses" factors. Findings observed on the factorial plan were supported by statistical comparisons of factorial coordinates. Conclusion Both mono-focal and ReSTOR®-implanted patients improved their visual functioning after bilateral cataract surgery. Moreover, ReSTOR® patients reported an additional benefit in independence from glasses as well as in visual functioning and patient satisfaction. PMID:18218068

  4. Patient-reported benefit of ReSTOR multi-focal intraocular lenses after cataract surgery: results of principal component analysis on clinical trial data.

    PubMed

    Berdeaux, Gilles; Viala, Muriel; Roborel de Climens, Aude; Arnould, Benoit

    2008-01-24

    Restoration of functional distance and near vision independently of additional correction remains a goal for cataract surgery. ReSTOR, a new multi-focal intraocular lens (IOL) addresses this issue with an improvement in both distance and near vision, often without need for glasses. This analysis attempted to discuss the patient-reported benefit of ReSTOR using a full but organised representation of data. Two non-randomised, open-label clinical trials conducted in Europe and the United-States were conducted to compare the efficacy of ReSTOR to AcrySof mono-focal IOLs. A total of 710 patients in need of bilateral cataract extraction were included in the pooled study. The TyPE, a patient questionnaire, was fully completed by 672 of them before and after each eye surgery. The TyPE, composed of 67 items measuring overall visual functioning in both conditions (with and without wearing glasses), evaluates limitations, troubles and satisfaction in distance and near vision. A principal component analysis (PCA) of the TyPE questionnaire was performed on pooled data from baseline and post-surgery observations in order to fully represent the change in the TyPE data over time. ReSTOR and mono-focal groups were used as illustrative variables. The coordinates of the first 2 factors were compared between visits and between IOLs (ReSTOR vs. mono-focal), using paired t-tests and t-tests, respectively. The first factor of the PCA explained 55% of the variance and represented 'visual functioning and patient satisfaction'. The second factor explained 6% of the variance and was interpreted as 'independence from glasses'. An overall difference in factorial coordinates in both factors was seen between baseline and the first eye surgery, and between the first and the second eye surgery. No difference between ReSTOR and mono-focal IOL groups was observed at baseline. After surgery, ReSTOR treated-patients had higher coordinates on both "visual functioning and satisfaction" and "independence from glasses" factors. Findings observed on the factorial plan were supported by statistical comparisons of factorial coordinates. Both mono-focal and ReSTOR-implanted patients improved their visual functioning after bilateral cataract surgery. Moreover, ReSTOR patients reported an additional benefit in independence from glasses as well as in visual functioning and patient satisfaction.

  5. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial.

    PubMed

    Li, Zhen; Wang, Xiu-Xia; Liang, Yan-Yi; Chen, Shu-Yan; Sheng, Jing; Ma, Shao-Jun

    2018-01-01

    Force platform training with functional electric stimulation aimed at improving balance may be effective in fall prevention for older adults. Aim of the study is to evaluate the effects of the visual-feedback-based force platform balance training with functional electric stimulation on balance and fall prevention in older adults. A single-centre, unblinded, randomized controlled trial was conducted. One hundred and twenty older adults were randomly allocated to two groups: the control group ( n  = 60, one-leg standing balance exercise, 12 min/d) or the intervention group ( n  = 60, force platform training with functional electric stimulation, 12 min/d). The training was provided 15 days a month for 3 months by physical therapists. Medial-lateral and anterior-posterior maximal range of sway with eyes open and closed, the Berg Balance Scale, the Barthel Index, the Falls Efficacy scale-International were assessed at baseline and after the 3-month intervention. A fall diary was kept by each participant during the 6-month follow-up. On comparing the two groups, the intervention group showed significantly decreased ( p  < 0.01) medial-lateral and anterior-posterior maximal range of sway with eyes open and closed. There was significantly higher improvement in the Berg Balance Scale ( p  < 0.05), the Barthel Index ( p  < 0.05) and the Falls Efficacy Scale-International ( p  < 0.05), along with significantly lesser number of injurious fallers ( p  < 0.05), number of fallers ( p  < 0.05), and fall rates ( p  < 0.05) during the 6-month follow-up in the intervention group. This study showed that the visual feedback-based force platform training with functional electric stimulation improved balance and prevented falls in older adults.

  6. Tai Chi and balance control.

    PubMed

    Wong, Alice M K; Lan, Ching

    2008-01-01

    Balance function begins to decline from middle age on, and poor balance function increases the risk of fall and injury. Suitable exercise training may improve balance function and prevent accidental falls. The coordination of visual, proprioceptive, vestibular and musculoskeletal system is important to maintain balance. Balance function can be evaluated by functional balance testing and sensory organization testing. Tai Chi Chuan (TC) is a popular conditioning exercise in the Chinese community, and recent studies substantiate that TC is effective in balance function enhancement and falls prevention. In studies utilizing functional balance testing, TC may increase the duration of one-leg standing and the distance of functional reach. In studies utilizing sensory organization testing, TC improves static and dynamic balance, especially in more challenging sensory perturbed condition. Therefore, TC may be prescribed as an alternative exercise program for elderly subjects or balance-impaired patients. Participants can choose to perform a complete set of TC or selected movements according to their needs. In conclusion, TC may improve balance function and is appropriate for implementation in the community.

  7. Video-Game Play Induces Plasticity in the Visual System of Adults with Amblyopia

    PubMed Central

    Li, Roger W.; Ngo, Charlie; Nguyen, Jennie; Levi, Dennis M.

    2011-01-01

    Abnormal visual experience during a sensitive period of development disrupts neuronal circuitry in the visual cortex and results in abnormal spatial vision or amblyopia. Here we examined whether playing video games can induce plasticity in the visual system of adults with amblyopia. Specifically 20 adults with amblyopia (age 15–61 y; visual acuity: 20/25–20/480, with no manifest ocular disease or nystagmus) were recruited and allocated into three intervention groups: action videogame group (n = 10), non-action videogame group (n = 3), and crossover control group (n = 7). Our experiments show that playing video games (both action and non-action games) for a short period of time (40–80 h, 2 h/d) using the amblyopic eye results in a substantial improvement in a wide range of fundamental visual functions, from low-level to high-level, including visual acuity (33%), positional acuity (16%), spatial attention (37%), and stereopsis (54%). Using a cross-over experimental design (first 20 h: occlusion therapy, and the next 40 h: videogame therapy), we can conclude that the improvement cannot be explained simply by eye patching alone. We quantified the limits and the time course of visual plasticity induced by video-game experience. The recovery in visual acuity that we observed is at least 5-fold faster than would be expected from occlusion therapy in childhood amblyopia. We used positional noise and modelling to reveal the neural mechanisms underlying the visual improvements in terms of decreased spatial distortion (7%) and increased processing efficiency (33%). Our study had several limitations: small sample size, lack of randomization, and differences in numbers between groups. A large-scale randomized clinical study is needed to confirm the therapeutic value of video-game treatment in clinical situations. Nonetheless, taken as a pilot study, this work suggests that video-game play may provide important principles for treating amblyopia, and perhaps other cortical dysfunctions. Trial Registration ClinicalTrials.gov NCT01223716 PMID:21912514

  8. Video-game play induces plasticity in the visual system of adults with amblyopia.

    PubMed

    Li, Roger W; Ngo, Charlie; Nguyen, Jennie; Levi, Dennis M

    2011-08-01

    Abnormal visual experience during a sensitive period of development disrupts neuronal circuitry in the visual cortex and results in abnormal spatial vision or amblyopia. Here we examined whether playing video games can induce plasticity in the visual system of adults with amblyopia. Specifically 20 adults with amblyopia (age 15-61 y; visual acuity: 20/25-20/480, with no manifest ocular disease or nystagmus) were recruited and allocated into three intervention groups: action videogame group (n = 10), non-action videogame group (n = 3), and crossover control group (n = 7). Our experiments show that playing video games (both action and non-action games) for a short period of time (40-80 h, 2 h/d) using the amblyopic eye results in a substantial improvement in a wide range of fundamental visual functions, from low-level to high-level, including visual acuity (33%), positional acuity (16%), spatial attention (37%), and stereopsis (54%). Using a cross-over experimental design (first 20 h: occlusion therapy, and the next 40 h: videogame therapy), we can conclude that the improvement cannot be explained simply by eye patching alone. We quantified the limits and the time course of visual plasticity induced by video-game experience. The recovery in visual acuity that we observed is at least 5-fold faster than would be expected from occlusion therapy in childhood amblyopia. We used positional noise and modelling to reveal the neural mechanisms underlying the visual improvements in terms of decreased spatial distortion (7%) and increased processing efficiency (33%). Our study had several limitations: small sample size, lack of randomization, and differences in numbers between groups. A large-scale randomized clinical study is needed to confirm the therapeutic value of video-game treatment in clinical situations. Nonetheless, taken as a pilot study, this work suggests that video-game play may provide important principles for treating amblyopia, and perhaps other cortical dysfunctions. ClinicalTrials.gov NCT01223716.

  9. Advancements to Visualization Control System (VCS, part of UV-CDAT), a Visualization Package Designed for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Lipsa, D.; Chaudhary, A.; Williams, D. N.; Doutriaux, C.; Jhaveri, S.

    2017-12-01

    Climate Data Analysis Tools (UV-CDAT, https://uvcdat.llnl.gov) is a data analysis and visualization software package developed at Lawrence Livermore National Laboratory and designed for climate scientists. Core components of UV-CDAT include: 1) Community Data Management System (CDMS) which provides I/O support and a data model for climate data;2) CDAT Utilities (GenUtil) that processes data using spatial and temporal averaging and statistic functions; and 3) Visualization Control System (VCS) for interactive visualization of the data. VCS is a Python visualization package primarily built for climate scientists, however, because of its generality and breadth of functionality, it can be a useful tool to other scientific applications. VCS provides 1D, 2D and 3D visualization functions such as scatter plot and line graphs for 1d data, boxfill, meshfill, isofill, isoline for 2d scalar data, vector glyphs and streamlines for 2d vector data and 3d_scalar and 3d_vector for 3d data. Specifically for climate data our plotting routines include projections, Skew-T plots and Taylor diagrams. While VCS provided a user-friendly API, the previous implementation of VCS relied on slow performing vector graphics (Cairo) backend which is suitable for smaller dataset and non-interactive graphics. LLNL and Kitware team has added a new backend to VCS that uses the Visualization Toolkit (VTK) as its visualization backend. VTK is one of the most popular open source, multi-platform scientific visualization library written in C++. Its use of OpenGL and pipeline processing architecture results in a high performant VCS library. Its multitude of available data formats and visualization algorithms results in easy adoption of new visualization methods and new data formats in VCS. In this presentation, we describe recent contributions to VCS that includes new visualization plots, continuous integration testing using Conda and CircleCI, tutorials and examples using Jupyter notebooks as well as upgrades that we are planning in the near future which will improve its ease of use and reliability and extend its capabilities.

  10. Using an Augmented Reality Device as a Distance-based Vision Aid-Promise and Limitations.

    PubMed

    Kinateder, Max; Gualtieri, Justin; Dunn, Matt J; Jarosz, Wojciech; Yang, Xing-Dong; Cooper, Emily A

    2018-06-06

    For people with limited vision, wearable displays hold the potential to digitally enhance visual function. As these display technologies advance, it is important to understand their promise and limitations as vision aids. The aim of this study was to test the potential of a consumer augmented reality (AR) device for improving the functional vision of people with near-complete vision loss. An AR application that translates spatial information into high-contrast visual patterns was developed. Two experiments assessed the efficacy of the application to improve vision: an exploratory study with four visually impaired participants and a main controlled study with participants with simulated vision loss (n = 48). In both studies, performance was tested on a range of visual tasks (identifying the location, pose and gesture of a person, identifying objects, and moving around in an unfamiliar space). Participants' accuracy and confidence were compared on these tasks with and without augmented vision, as well as their subjective responses about ease of mobility. In the main study, the AR application was associated with substantially improved accuracy and confidence in object recognition (all P < .001) and to a lesser degree in gesture recognition (P < .05). There was no significant change in performance on identifying body poses or in subjective assessments of mobility, as compared with a control group. Consumer AR devices may soon be able to support applications that improve the functional vision of users for some tasks. In our study, both artificially impaired participants and participants with near-complete vision loss performed tasks that they could not do without the AR system. Current limitations in system performance and form factor, as well as the risk of overconfidence, will need to be overcome.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  11. Setting visual pre-placement testing in a technology manufacturing environment.

    PubMed

    Gowan, Nancy J

    2014-01-01

    Every day we use our eyes to perform activities of daily living and work. Aging changes as well as health conditions can impact an individual's visual function, making it more difficult to accurately perform work activities. Occupational therapists work closely with optometrists and employers to develop ways to accommodate for these changes so that the employee can continue to perform the work tasks. This manuscript outlines a case study of systematically developing visual demands analyses and pre-placement vision screening assessment protocols for individuals completing quality inspection positions. When the vision screening was completed, it was discovered that over 20% of the employees had visual deficits that were correctable. This screening process yielded improved quality results but also identification of previously undetected visual deficits. Further development of vision screening in the workplace is supported.

  12. Amblyopia and binocular vision.

    PubMed

    Birch, Eileen E

    2013-03-01

    Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3%-3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Nutrition in brain development and aging: role of essential fatty acids.

    PubMed

    Uauy, Ricardo; Dangour, Alan D

    2006-05-01

    The essential fatty acids (EFAs), particularly the n-3 long-chain polyunsaturated fatty acids (LCPs), are important for brain development during both the fetal and postnatal period. They are also increasingly seen to be of value in limiting the cognitive decline during aging. EFA deficiency was first shown over 75 years ago, but the more subtle effects of the n-3 fatty acids in terms of skin changes, a poor response to linoleic acid supplementation, abnormal visual function, and peripheral neuropathy were only discovered later. Both n-3 and n-6 LCPs play important roles in neuronal growth, development of synaptic processing of neural cell interaction, and expression of genes regulating cell differentiation and growth. The fetus and placenta are dependent on maternal EFA supply for their growth and development, with docosahexaenomic acid (DHA)-supplemented infants showing significantly greater mental and psychomotor development scores (breast-fed children do even better). Dietary DHA is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Aging is also associated with decreased brain levels of DHA: fish consumption is associated with decreased risk of dementia and Alzheimer's disease, and the reported daily use of fish-oil supplements has been linked to improved cognitive function scores, but confirmation of these effects is needed.

  14. Cognitive performance of detoxified alcoholic Korsakoff syndrome patients remains stable over two years.

    PubMed

    Fujiwara, Esther; Brand, Matthias; Borsutzky, Sabine; Steingass, Hans-P; Markowitsch, Hans J

    2008-07-01

    Excessive alcohol consumption is assumed to promote cognitive decline, eventually increasing the risk of dementia. However, little is known about the time course of cognitive functions in patients with chronic alcoholic Korsakoff syndrome (KS). Therefore, we assessed neuropsychological performance in 20 detoxified chronic KS inpatients at time 1 (T1) with a follow-up after two years (T2). The neuropsychological tests assessed verbal and visual short- and long-term memory, working memory, basic executive functions, language, general knowledge, and visual-spatial abilities. Surveys with caregivers and medical records provided information about current and previous disease-related parameters, drinking history, additional pathologies, as well as psychosocial and cognitive therapy within the two-year period. At both sessions, the majority of the KS patients' results were inferior to those of normal subjects. Comparing T1 and T2 revealed no significant decline in any of the investigated functions. Instead, general knowledge, visual long-term memory, and verbal fluency improved slightly after two years, though they still remained within pathological range. Comparing most improved and most deteriorated patients, better outcome occurred more frequently in men than women and was associated with higher premorbid education and fewer detoxifications in the past. In this sample of detoxified KS patients there was no indication of accelerated cognitive decline or onset of dementia-like symptoms over two years.

  15. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.

    PubMed

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.

  16. Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity.

    PubMed

    Finn, Emily S; Shen, Xilin; Holahan, John M; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E; Shaywitz, Bennett A; Constable, R Todd

    2014-09-01

    Functional connectivity analyses of functional magnetic resonance imaging data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which might result in mixing distinct activation time-courses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words on the basis of their visual properties, whereas DYS readers recruit altered reading circuits and rely on laborious phonology-based "sounding out" strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  17. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  18. Improvement of uncorrected visual acuity and contrast sensitivity with perceptual learning and transcranial random noise stimulation in individuals with mild myopia

    PubMed Central

    Camilleri, Rebecca; Pavan, Andrea; Ghin, Filippo; Battaglini, Luca; Campana, Gianluca

    2014-01-01

    Perceptual learning has been shown to produce an improvement of visual acuity (VA) and contrast sensitivity (CS) both in subjects with amblyopia and refractive defects such as myopia or presbyopia. Transcranial random noise stimulation (tRNS) has proven to be efficacious in accelerating neural plasticity and boosting perceptual learning in healthy participants. In this study, we investigated whether a short behavioral training regime using a contrast detection task combined with online tRNS was as effective in improving visual functions in participants with mild myopia compared to a 2-month behavioral training regime without tRNS (Camilleri et al., 2014). After 2 weeks of perceptual training in combination with tRNS, participants showed an improvement of 0.15 LogMAR in uncorrected VA (UCVA) that was comparable with that obtained after 8 weeks of training with no tRNS, and an improvement in uncorrected CS (UCCS) at various spatial frequencies (whereas no UCCS improvement was seen after 8 weeks of training with no tRNS). On the other hand, a control group that trained for 2 weeks without stimulation did not show any significant UCVA or UCCS improvement. These results suggest that the combination of behavioral and neuromodulatory techniques can be fast and efficacious in improving sight in individuals with mild myopia. PMID:25400610

  19. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-09

    Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.

  20. Matching multiple rigid domain decompositions of proteins

    PubMed Central

    Flynn, Emily; Streinu, Ileana

    2017-01-01

    We describe efficient methods for consistently coloring and visualizing collections of rigid cluster decompositions obtained from variations of a protein structure, and lay the foundation for more complex setups that may involve different computational and experimental methods. The focus here is on three biological applications: the conceptually simpler problems of visualizing results of dilution and mutation analyses, and the more complex task of matching decompositions of multiple NMR models of the same protein. Implemented into the KINARI web server application, the improved visualization techniques give useful information about protein folding cores, help examining the effect of mutations on protein flexibility and function, and provide insights into the structural motions of PDB proteins solved with solution NMR. These tools have been developed with the goal of improving and validating rigidity analysis as a credible coarse-grained model capturing essential information about a protein’s slow motions near the native state. PMID:28141528

  1. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction

    PubMed Central

    Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng

    2014-01-01

    This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728

  2. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    PubMed

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Design of a reading test for low-vision image warping

    NASA Astrophysics Data System (ADS)

    Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. Shane

    1993-08-01

    NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision -- maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer- generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.

  4. Design of a reading test for low vision image warping

    NASA Technical Reports Server (NTRS)

    Loshin, David S.; Wensveen, Janice; Juday, Richard D.; Barton, R. S.

    1993-01-01

    NASA and the University of Houston College of Optometry are examining the efficacy of image warping as a possible prosthesis for at least two forms of low vision - maculopathy and retinitis pigmentosa. Before incurring the expense of reducing the concept to practice, one would wish to have confidence that a worthwhile improvement in visual function would result. NASA's Programmable Remapper (PR) can warp an input image onto arbitrary geometric coordinate systems at full video rate, and it has recently been upgraded to accept computer-generated video text. We have integrated the Remapper with an SRI eye tracker to simulate visual malfunction in normal observers. A reading performance test has been developed to determine if the proposed warpings yield an increase in visual function; i.e., reading speed. We will describe the preliminary experimental results of this reading test with a simulated central field defect with and without remapped images.

  5. Short-term music training enhances verbal intelligence and executive function.

    PubMed

    Moreno, Sylvain; Bialystok, Ellen; Barac, Raluca; Schellenberg, E Glenn; Cepeda, Nicholas J; Chau, Tom

    2011-11-01

    Researchers have designed training methods that can be used to improve mental health and to test the efficacy of education programs. However, few studies have demonstrated broad transfer from such training to performance on untrained cognitive activities. Here we report the effects of two interactive computerized training programs developed for preschool children: one for music and one for visual art. After only 20 days of training, only children in the music group exhibited enhanced performance on a measure of verbal intelligence, with 90% of the sample showing this improvement. These improvements in verbal intelligence were positively correlated with changes in functional brain plasticity during an executive-function task. Our findings demonstrate that transfer of a high-level cognitive skill is possible in early childhood.

  6. Metacognitive Confidence Increases with, but Does Not Determine, Visual Perceptual Learning.

    PubMed

    Zizlsperger, Leopold; Kümmel, Florian; Haarmeier, Thomas

    2016-01-01

    While perceptual learning increases objective sensitivity, the effects on the constant interaction of the process of perception and its metacognitive evaluation have been rarely investigated. Visual perception has been described as a process of probabilistic inference featuring metacognitive evaluations of choice certainty. For visual motion perception in healthy, naive human subjects here we show that perceptual sensitivity and confidence in it increased with training. The metacognitive sensitivity-estimated from certainty ratings by a bias-free signal detection theoretic approach-in contrast, did not. Concomitant 3Hz transcranial alternating current stimulation (tACS) was applied in compliance with previous findings on effective high-low cross-frequency coupling subserving signal detection. While perceptual accuracy and confidence in it improved with training, there were no statistically significant tACS effects. Neither metacognitive sensitivity in distinguishing between their own correct and incorrect stimulus classifications, nor decision confidence itself determined the subjects' visual perceptual learning. Improvements of objective performance and the metacognitive confidence in it were rather determined by the perceptual sensitivity at the outset of the experiment. Post-decision certainty in visual perceptual learning was neither independent of objective performance, nor requisite for changes in sensitivity, but rather covaried with objective performance. The exact functional role of metacognitive confidence in human visual perception has yet to be determined.

  7. The Glenn A. Fry Award Lecture 2012: Plasticity of the Visual System Following Central Vision Loss

    PubMed Central

    Chung, Susana T. L.

    2013-01-01

    Following the onset of central vision loss, most patients develop an eccentric retinal location outside the affected macular region, the preferred retinal locus (PRL), as their new reference for visual tasks. The first goal of this paper is to present behavioral evidence showing the presence of experience-dependent plasticity in people with central vision loss. The evidence includes (1) the presence of oculomotor re-referencing of fixational saccades to the PRL; (2) the characteristics of the shape of the crowding zone (spatial region within which the presence of other objects affects the recognition of a target) at the PRL are more “foveal-like” instead of resembling those of the normal periphery; and (3) the change in the shape of the crowding zone at a para-PRL location that includes a component referenced to the PRL. These findings suggest that there is a shift in the referencing locus of the oculomotor and the sensory visual system from the fovea to the PRL for people with central vision loss, implying that the visual system for these individuals is still plastic and can be modified through experiences. The second goal of the paper is to demonstrate the feasibility of applying perceptual learning, which capitalizes on the presence of plasticity, as a tool to improve functional vision for people with central vision loss. Our finding that visual function could improve with perceptual learning presents an exciting possibility for the development of an alternative rehabilitative strategy for people with central vision loss. PMID:23670125

  8. An Examination of Mediators of the Transfer of Cognitive Speed of Processing Training to Everyday Functional Performance

    PubMed Central

    Edwards, Jerri D.; Ruva, Christine L.; O’Brien, Jennifer L.; Haley, Christine B.; Lister, Jennifer J.

    2013-01-01

    The purpose of these analyses was to examine mediators of the transfer of cognitive speed of processing training to improved everyday functional performance (Edwards, Wadley, Vance, Roenker, & Ball, 2005). Cognitive speed of processing and visual attention (as measured by the Useful Field of View Test; UFOV) were examined as mediators of training transfer. Secondary data analyses were conducted from the Staying Keen in Later Life (SKILL) study, a randomized cohort study including 126 community dwelling adults 63 to 87 years of age. In the SKILL study, participants were randomized to an active control group or cognitive speed of processing training (SOPT), a non-verbal, computerized intervention involving perceptual practice of visual tasks. Prior analyses found significant effects of training as measured by the UFOV and Timed Instrumental Activities of Daily Living (TIADL) Tests. Results from the present analyses indicate that speed of processing for a divided attention task significantly mediated the effect of SOPT on everyday performance (e.g., TIADL) in a multiple mediation model accounting for 91% of the variance. These findings suggest that everyday functional improvements found from SOPT are directly attributable to improved UFOV performance, speed of processing for divided attention in particular. Targeting divided attention in cognitive interventions may be important to positively affect everyday functioning among older adults. PMID:23066808

  9. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  10. Discovering and visualizing indirect associations between biomedical concepts

    PubMed Central

    Tsuruoka, Yoshimasa; Miwa, Makoto; Hamamoto, Kaisei; Tsujii, Jun'ichi; Ananiadou, Sophia

    2011-01-01

    Motivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner. Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance. Availability: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/. Contact: tsuruoka@jaist.ac.jp PMID:21685059

  11. Operator vision aids for space teleoperation assembly and servicing

    NASA Technical Reports Server (NTRS)

    Brooks, Thurston L.; Ince, Ilhan; Lee, Greg

    1992-01-01

    This paper investigates concepts for visual operator aids required for effective telerobotic control. Operator visual aids, as defined here, mean any operational enhancement that improves man-machine control through the visual system. These concepts were derived as part of a study of vision issues for space teleoperation. Extensive literature on teleoperation, robotics, and human factors was surveyed to definitively specify appropriate requirements. This paper presents these visual aids in three general categories of camera/lighting functions, display enhancements, and operator cues. In the area of camera/lighting functions concepts are discussed for: (1) automatic end effector or task tracking; (2) novel camera designs; (3) computer-generated virtual camera views; (4) computer assisted camera/lighting placement; and (5) voice control. In the technology area of display aids, concepts are presented for: (1) zone displays, such as imminent collision or indexing limits; (2) predictive displays for temporal and spatial location; (3) stimulus-response reconciliation displays; (4) graphical display of depth cues such as 2-D symbolic depth, virtual views, and perspective depth; and (5) view enhancements through image processing and symbolic representations. Finally, operator visual cues (e.g., targets) that help identify size, distance, shape, orientation and location are discussed.

  12. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish

    PubMed Central

    Yokogawa, Tohei; Hannan, Markus C.; Burgess, Harold A.

    2012-01-01

    During waking behavior animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. Following a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context. PMID:23100441

  13. Visual processing in Alzheimer's disease: surface detail and colour fail to aid object identification.

    PubMed

    Adlington, Rebecca L; Laws, Keith R; Gale, Tim M

    2009-10-01

    It has been suggested that object recognition in patients with Alzheimer's disease (AD) may be strongly influenced both by image format (e.g. colour vs. line-drawn) and by low-level visual impairments. To examine these notions, we tested basic visual functioning and picture naming in 41 AD patients and 40 healthy elderly controls. Picture naming was examined using 105 images representing a wide range of living and nonliving subcategories (from the Hatfield image test [HIT]: [Adlington, R. A., Laws, K. R., & Gale, T. M. (in press). The Hatfield image test (HIT): A new picture test and norms for experimental and clinical use. Journal of Clinical and Experimental Neuropsychology]), with each item presented in colour, greyscale, or line-drawn formats. Whilst naming for elderly controls improved linearly with the addition of surface detail and colour, AD patients showed no benefit from the addition of either surface information or colour. Additionally, controls showed a significant category by format interaction; however, the same profile did not emerge for AD patients. Finally, AD patients showed widespread and significant impairment on tasks of visual functioning, and low-level visual impairment was predictive of patient naming.

  14. Impact of Cerebral Visual Impairments on Motor Skills: Implications for Developmental Coordination Disorders

    PubMed Central

    Chokron, Sylvie; Dutton, Gordon N.

    2016-01-01

    Cerebral visual impairment (CVI) has become the primary cause of visual impairment and blindness in children in industrialized countries. Its prevalence has increased sharply, due to increased survival rates of children who sustain severe neurological conditions during the perinatal period. Improved diagnosis has probably contributed to this increase. As in adults, the nature and severity of CVI in children relate to the cause, location and extent of damage to the brain. In the present paper, we define CVI and how this impacts on visual function. We then define developmental coordination disorder (DCD) and discuss the link between CVI and DCD. The neuroanatomical correlates and aetiologies of DCD are also presented in relationship with CVI as well as the consequences of perinatal asphyxia (PA) and preterm birth on the occurrence and nature of DCD and CVI. This paper underlines why there are both clinical and theoretical reasons to disentangle CVI and DCD, and to categorize the features with more precision. In order to offer the most appropriate rehabilitation, we propose a systematic and rapid evaluation of visual function in at-risk children who have survived preterm birth or PA whether or not they have been diagnosed with cerebral palsy or DCD. PMID:27757087

  15. A low-cost, portable, micro-controlled device for multi-channel LED visual stimulation.

    PubMed

    Pinto, Marcos Antonio da Silva; de Souza, John Kennedy Schettino; Baron, Jerome; Tierra-Criollo, Carlos Julio

    2011-04-15

    Light emitting diodes (LEDs) are extensively used as light sources to investigate visual and visually related function and dysfunction. Here, we describe the design of a compact, low-cost, stand-alone LED-based system that enables the configuration, storage and presentation of elaborate visual stimulation paradigms. The core functionality of this system is provided by a microcontroller whose ultra-low power consumption makes it well suited for long lasting battery applications. The effective use of hardware resources is managed by multi-layered architecture software that provides an intuitive and user-friendly interface. In the configuration mode, different stimulation sequences can be created and memorized for ten channels, independently. LED-driving current output can be set either as continuous or pulse modulated, up to 500 Hz, by duty cycle adjustments. In run mode, multiple-channel stimulus sequences are automatically applied according to the pre-programmed protocol. Steady state visual evoked potentials were successfully recorded in five subjects with no visible electromagnetic interferences from the stimulator, demonstrating the efficacy of combining our prototyped equipment with electrophysiological techniques. Finally, we discuss a number of possible improvements for future development of our project. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. One-year clinical outcomes after prolapse surgery with nonanchored mesh and vaginal support device.

    PubMed

    Zyczynski, Halina M; Carey, Marcus P; Smith, Anthony R B; Gauld, Judi M; Robinson, David; Sikirica, Vanja; Reisenauer, Christl; Slack, Mark

    2010-12-01

    The purpose of this study was to evaluate outcomes after standardized transvaginal prolapse repair with nonanchored mesh and a vaginal support device. Postoperative vaginal support was assessed by pelvic organ prolapse quantitative examination after repair of symptomatic stage II/III prolapse. Validated questionnaires assessed pelvic symptoms and sexual function. Visual analog scales quantified experience with the vaginal support device. One hundred thirty-six women received the planned surgery; 95.6% of the women returned for the 1-year assessment: 76.9% of the cases were stage 0/I; however, in 86.9% of the cases, the leading vaginal edge was above the hymen. Pelvic symptoms, quality of life, and sexual function improved significantly from baseline (P < .05). Median visual analog scale scores for vaginal support device awareness and discomfort were 2.6 and 1.2, respectively (0 = none; 10 = worst possible). Vaginal support, pelvic symptoms, and sexual function improved at 1 year, compared with baseline, after trocar-free prolapse repair with nonanchored mesh and a vaginal support device. Copyright © 2010 Mosby, Inc. All rights reserved.

  17. Value of TENS for relief of chronic low back pain with or without radicular pain.

    PubMed

    Buchmuller, A; Navez, M; Milletre-Bernardin, M; Pouplin, S; Presles, E; Lantéri-Minet, M; Tardy, B; Laurent, B; Camdessanché, J P

    2012-05-01

    To evaluate the efficacy of transcutaneous electrical neurostimulation (TENS) in patients with chronic low back pain (LBP). Prospective, randomized, multicentre, single-blind study. Twenty-one French pain centres. Two hundred thirty-six consecutive adult patients consulting for chronic LBP, with or without radicular pain (mean age ± standard deviation: 53 ± 13 years; range: 28-86 years). Patients were randomly assigned to receive either active (n = 117) or sham (n = 119) TENS in four 1-h daily treatment sessions for 3 months. The primary outcome measured was improvement of functional status at 6 weeks (Roland-Morris Disability Questionnaire). Secondary outcome measures were improvement of functional status at 3 months, pain relief (weekly visual analogue scale assessments), positive functional repercussions of pain levels on quality of life, a diminution of the use of analgesic and anti-inflammatory medication, satisfaction with the overall treatment strategy and compliance. Functional status did not differ between the groups, whether at 6 weeks or 3 months (p = 0.351 at 6 weeks). A significant improvement between the first and last visual analogue scale assessments was observed in patients with either lumbar pain alone or lumbar and radicular pain treated with active TENS. Other outcome measures did not differ significantly between the two groups. There was no functional benefit of TENS in the treatment of patients with chronic LBP. © 2011 European Federation of International Association for the Study of Pain Chapters.

  18. Development of a battery of functional tests for low vision.

    PubMed

    Dougherty, Bradley E; Martin, Scott R; Kelly, Corey B; Jones, Lisa A; Raasch, Thomas W; Bullimore, Mark A

    2009-08-01

    We describe the development and evaluation of a battery of tests of functional visual performance of everyday tasks intended to be suitable for assessment of low vision patients. The functional test battery comprises-Reading rate: reading aloud 20 unrelated words for each of four print sizes (8, 4, 2, & 1 M); Telephone book: finding a name and reading the telephone number; Medicine bottle label: reading the name and dosing; Utility bill: reading the due date and amount due; Cooking instructions: reading cooking time on a food package; Coin sorting: making a specified amount from coins placed on a table; Playing card recognition: identifying denomination and suit; and Face recognition: identifying expressions of printed, life-size faces at 1 and 3 m. All tests were timed except face and playing card recognition. Fourteen normally sighted and 24 low vision subjects were assessed with the functional test battery. Visual acuity, contrast sensitivity, and quality of life (National Eye Institute Visual Function Questionnaire 25 [NEI-VFQ 25]) were measured and the functional tests repeated. Subsequently, 23 low vision patients participated in a pilot randomized clinical trial with half receiving low vision rehabilitation and half a delayed intervention. The functional tests were administered at enrollment and 3 months later. Normally sighted subjects could perform all tasks but the proportion of trials performed correctly by the low vision subjects ranged from 35% for face recognition at 3 m, to 95% for the playing card identification. On average, low vision subjects performed three times slower than the normally sighted subjects. Timed tasks with a visual search component showed poorer repeatability. In the pilot clinical trial, low vision rehabilitation produced the greatest improvement for the medicine bottle and cooking instruction tasks. Performance of patients on these functional tests has been assessed. Some appear responsive to low vision rehabilitation.

  19. Perceptual Learning as a potential treatment for amblyopia: a mini-review

    PubMed Central

    Levi, Dennis M.; Li, Roger W.

    2009-01-01

    Amblyopia is a developmental abnormality that results from physiological alterations in the visual cortex and impairs form vision. It is a consequence of abnormal binocular visual experience during the “sensitive period” early in life. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. A number of studies over the last twelve years or so suggest that Perceptual Learning (PL) may provide an important new method for treating amblyopia. The aim of this mini-review is to provide a critical review and “meta-analysis” of perceptual learning in adults and children with amblyopia, with a view to extracting principles that might make PL more effective and efficient. Specifically we evaluate: What factors influence the outcome of perceptual learning?Specificity and generalization – two sides of the coin.Do the improvements last?How does PL improve visual function?Should PL be part of the treatment armamentarium? A review of the extant studies makes it clear that practicing a visual task results in a long-lasting improvement in performance in an amblyopic eye. The improvement is generally strongest for the trained eye, task, stimulus and orientation, but appears to have a broader spatial frequency bandwidth than in normal vision. Importantly, practicing on a variety of different tasks and stimuli seems to transfer to improved visual acuity. Perceptual learning operates via a reduction of internal neural noise and/or through more efficient use of the stimulus information by retuning the weighting of the information. The success of PL raises the question of whether it should become a standard part of the armamentarium for the clinical treatment of amblyopia, and suggests several important principles for effective perceptual learning in amblyopia. PMID:19250947

  20. Physiotherapist agreement when visually rating movement quality during lower extremity functional screening tests.

    PubMed

    Whatman, Chris; Hing, Wayne; Hume, Patria

    2012-05-01

    To investigate physiotherapist agreement in rating movement quality during lower extremity functional tests using two visual rating methods and physiotherapists with differing clinical experience. Clinical measurement. Six healthy individuals were rated by 44 physiotherapists. These raters were in three groups (inexperienced, novice, experienced). Video recordings of all six individuals performing four lower extremity functional tests were visually rated (dichotomous or ordinal scale) using two rating methods (overall or segment) on two occasions separated by 3-4 weeks. Intra and inter-rater agreement for physiotherapists was determined using overall percentage agreement (OPA) and the first order agreement coefficient (AC1). Intra-rater agreement for overall and segment methods ranged from slight to almost perfect (OPA: 29-96%, AC1: 0.01 to 0.96). AC1 agreement was better in the experienced group (84-99% likelihood) and for dichotomous rating (97-100% likelihood). Inter-rater agreement ranged from fair to good (OPA: 45-79%; AC1: 0.22-0.71). AC1 agreement was not influenced by clinical experience but was again better using dichotomous rating. Physiotherapists' visual rating of movement quality during lower extremity functional tests resulted in slight to almost perfect intra-rater agreement and fair to good inter-rater agreement. Agreement improved with increased level of clinical experience and use of dichotomous rating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Touch to see: neuropsychological evidence of a sensory mirror system for touch.

    PubMed

    Bolognini, Nadia; Olgiati, Elena; Xaiz, Annalisa; Posteraro, Lucio; Ferraro, Francesco; Maravita, Angelo

    2012-09-01

    The observation of touch can be grounded in the activation of brain areas underpinning direct tactile experience, namely the somatosensory cortices. What is the behavioral impact of such a mirror sensory activity on visual perception? To address this issue, we investigated the causal interplay between observed and felt touch in right brain-damaged patients, as a function of their underlying damaged visual and/or tactile modalities. Patients and healthy controls underwent a detection task, comprising visual stimuli depicting touches or without a tactile component. Touch and No-touch stimuli were presented in egocentric or allocentric perspectives. Seeing touches, regardless of the viewing perspective, differently affects visual perception depending on which sensory modality is damaged: In patients with a selective visual deficit, but without any tactile defect, the sight of touch improves the visual impairment; this effect is associated with a lesion to the supramarginal gyrus. In patients with a tactile deficit, but intact visual perception, the sight of touch disrupts visual processing, inducing a visual extinction-like phenomenon. This disruptive effect is associated with the damage of the postcentral gyrus. Hence, a damage to the somatosensory system can lead to a dysfunctional visual processing, and an intact somatosensory processing can aid visual perception.

  2. Changes in Visual Function Following Optical Treatment of Astigmatism-Related Amblyopia

    PubMed Central

    Harvey, Erin M.; Dobson, Velma; Miller, Joseph M.; Donaldson, Candice E.

    2009-01-01

    Effects of optical correction on best-corrected grating acuity (vertical (V), horizontal (H), oblique (O)), vernier acuity (V, H, O), contrast sensitivity (1.5, 6.0, and 18.0 cy/deg spatial frequency, V and H), and stereoacuity were evaluated prospectively in 4- to 13-year-old astigmats and a non-astigmatic age-matched control group. Measurements made at baseline (eyeglasses dispensed for astigmats), 6 weeks, and 1 year showed greater improvement in astigmatic than non-astigmatic children for all measures. Treatment effects occurred by 6 weeks, and did not differ by cohort (< 8 vs. 8 years), but astigmatic children did not attain normal levels of visual function. PMID:18261760

  3. The role of visual deprivation and experience on the performance of sensory substitution devices.

    PubMed

    Stronks, H Christiaan; Nau, Amy C; Ibbotson, Michael R; Barnes, Nick

    2015-10-22

    It is commonly accepted that the blind can partially compensate for their loss of vision by developing enhanced abilities with their remaining senses. This visual compensation may be related to the fact that blind people rely on their other senses in everyday life. Many studies have indeed shown that experience plays an important role in visual compensation. Numerous neuroimaging studies have shown that the visual cortices of the blind are recruited by other functional brain areas and can become responsive to tactile or auditory input instead. These cross-modal plastic changes are more pronounced in the early blind compared to late blind individuals. The functional consequences of cross-modal plasticity on visual compensation in the blind are debated, as are the influences of various etiologies of vision loss (i.e., blindness acquired early or late in life). Distinguishing between the influences of experience and visual deprivation on compensation is especially relevant for rehabilitation of the blind with sensory substitution devices. The BrainPort artificial vision device and The vOICe are assistive devices for the blind that redirect visual information to another intact sensory system. Establishing how experience and different etiologies of vision loss affect the performance of these devices may help to improve existing rehabilitation strategies, formulate effective selection criteria and develop prognostic measures. In this review we will discuss studies that investigated the influence of training and visual deprivation on the performance of various sensory substitution approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Four-dimensional in vivo X-ray microscopy with projection-guided gating

    NASA Astrophysics Data System (ADS)

    Mokso, Rajmund; Schwyn, Daniel A.; Walker, Simon M.; Doube, Michael; Wicklein, Martina; Müller, Tonya; Stampanoni, Marco; Taylor, Graham K.; Krapp, Holger G.

    2015-03-01

    Visualizing fast micrometer scale internal movements of small animals is a key challenge for functional anatomy, physiology and biomechanics. We combine phase contrast tomographic microscopy (down to 3.3 μm voxel size) with retrospective, projection-based gating (in the order of hundreds of microseconds) to improve the spatiotemporal resolution by an order of magnitude over previous studies. We demonstrate our method by visualizing 20 three-dimensional snapshots through the 150 Hz oscillations of the blowfly flight motor.

  5. Public Health Analysis Transport Optimization Model v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyeler, Walt; Finley, Patrick; Walser, Alex

    PHANTOM models logistic functions of national public health systems. The system enables public health officials to visualize and coordinate options for public health surveillance, diagnosis, response and administration in an integrated analytical environment. Users may simulate and analyze system performance applying scenarios that represent current conditions or future contingencies what-if analyses of potential systemic improvements. Public health networks are visualized as interactive maps, with graphical displays of relevant system performance metrics as calculated by the simulation modeling components.

  6. rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects.

    PubMed

    Kupers, R; Pappens, M; de Noordhout, A Maertens; Schoenen, J; Ptito, M; Fumal, A

    2007-02-27

    To study the functional involvement of the visual cortex in Braille reading, we applied repetitive transcranial magnetic stimulation (rTMS) over midoccipital (MOC) and primary somatosensory (SI) cortex in blind subjects. After rTMS of MOC, but not SI, subjects made significantly more errors and showed an abolishment of the improvement in reading speed following repetitive presentation of the same word list, suggesting a role of the visual cortex in repetition priming in the blind.

  7. Simplification of Visual Rendering in Simulated Prosthetic Vision Facilitates Navigation.

    PubMed

    Vergnieux, Victor; Macé, Marc J-M; Jouffrais, Christophe

    2017-09-01

    Visual neuroprostheses are still limited and simulated prosthetic vision (SPV) is used to evaluate potential and forthcoming functionality of these implants. SPV has been used to evaluate the minimum requirement on visual neuroprosthetic characteristics to restore various functions such as reading, objects and face recognition, object grasping, etc. Some of these studies focused on obstacle avoidance but only a few investigated orientation or navigation abilities with prosthetic vision. The resolution of current arrays of electrodes is not sufficient to allow navigation tasks without additional processing of the visual input. In this study, we simulated a low resolution array (15 × 18 electrodes, similar to a forthcoming generation of arrays) and evaluated the navigation abilities restored when visual information was processed with various computer vision algorithms to enhance the visual rendering. Three main visual rendering strategies were compared to a control rendering in a wayfinding task within an unknown environment. The control rendering corresponded to a resizing of the original image onto the electrode array size, according to the average brightness of the pixels. In the first rendering strategy, vision distance was limited to 3, 6, or 9 m, respectively. In the second strategy, the rendering was not based on the brightness of the image pixels, but on the distance between the user and the elements in the field of view. In the last rendering strategy, only the edges of the environments were displayed, similar to a wireframe rendering. All the tested renderings, except the 3 m limitation of the viewing distance, improved navigation performance and decreased cognitive load. Interestingly, the distance-based and wireframe renderings also improved the cognitive mapping of the unknown environment. These results show that low resolution implants are usable for wayfinding if specific computer vision algorithms are used to select and display appropriate information regarding the environment. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. The Effect of Spinal Tap Test on Different Sensory Modalities of Postural Stability in Idiopathic Normal Pressure Hydrocephalus.

    PubMed

    Abram, Katrin; Bohne, Silvia; Bublak, Peter; Karvouniari, Panagiota; Klingner, Carsten M; Witte, Otto W; Guntinas-Lichius, Orlando; Axer, Hubertus

    2016-01-01

    Postural instability in patients with normal pressure hydrocephalus (NPH) is a most crucial symptom leading to falls with secondary complications. The aim of the current study was to evaluate the therapeutic effect of spinal tap on postural stability in these patients. Seventeen patients with clinical symptoms of NPH were examined using gait scale, computerized dynamic posturography (CDP), and neuropsychological assessment. Examinations were done before and after spinal tap test. The gait score showed a significant improvement 24 h after spinal tap test in all subtests and in the sum score (p < 0.003), while neuropsychological assessment did not reveal significant differences 72 h after spinal tap test. CDP showed significant improvements after spinal tap test in the Sensory Organization Tests 2 (p = 0.017), 4 (p = 0.001), and 5 (p = 0.009) and the composite score (p = 0.01). Patients showed best performance in somatosensory and worst performance in vestibular dominated tests. Vestibular dominated tests did not improve significantly after spinal tap test, while somatosensory and visual dominated tests did. Postural stability in NPH is predominantly affected by deficient vestibular functions, which did not improve after spinal tap test. Conditions which improved best were mainly independent from visual control and are based on proprioceptive functions.

  9. Perceptual learning improves visual performance in juvenile amblyopia.

    PubMed

    Li, Roger W; Young, Karen G; Hoenig, Pia; Levi, Dennis M

    2005-09-01

    To determine whether practicing a position-discrimination task improves visual performance in children with amblyopia and to determine the mechanism(s) of improvement. Five children (age range, 7-10 years) with amblyopia practiced a positional acuity task in which they had to judge which of three pairs of lines was misaligned. Positional noise was produced by distributing the individual patches of each line segment according to a Gaussian probability function. Observers were trained at three noise levels (including 0), with each observer performing between 3000 and 4000 responses in 7 to 10 sessions. Trial-by-trial feedback was provided. Four of the five observers showed significant improvement in positional acuity. In those four observers, on average, positional acuity with no noise improved by approximately 32% and with high noise by approximately 26%. A position-averaging model was used to parse the improvement into an increase in efficiency or a decrease in equivalent input noise. Two observers showed increased efficiency (51% and 117% improvements) with no significant change in equivalent input noise across sessions. The other two observers showed both a decrease in equivalent input noise (18% and 29%) and an increase in efficiency (17% and 71%). All five observers showed substantial improvement in Snellen acuity (approximately 26%) after practice. Perceptual learning can improve visual performance in amblyopic children. The improvement can be parsed into two important factors: decreased equivalent input noise and increased efficiency. Perceptual learning techniques may add an effective new method to the armamentarium of amblyopia treatments.

  10. Phototaxis and the origin of visual eyes

    PubMed Central

    Randel, Nadine

    2016-01-01

    Vision allows animals to detect spatial differences in environmental light levels. High-resolution image-forming eyes evolved from low-resolution eyes via increases in photoreceptor cell number, improvements in optics and changes in the neural circuits that process spatially resolved photoreceptor input. However, the evolutionary origins of the first low-resolution visual systems have been unclear. We propose that the lowest resolving (two-pixel) visual systems could initially have functioned in visual phototaxis. During visual phototaxis, such elementary visual systems compare light on either side of the body to regulate phototactic turns. Another, even simpler and non-visual strategy is characteristic of helical phototaxis, mediated by sensory–motor eyespots. The recent mapping of the complete neural circuitry (connectome) of an elementary visual system in the larva of the annelid Platynereis dumerilii sheds new light on the possible paths from non-visual to visual phototaxis and to image-forming vision. We outline an evolutionary scenario focusing on the neuronal circuitry to account for these transitions. We also present a comprehensive review of the structure of phototactic eyes in invertebrate larvae and assign them to the non-visual and visual categories. We propose that non-visual systems may have preceded visual phototactic systems in evolution that in turn may have repeatedly served as intermediates during the evolution of image-forming eyes. PMID:26598725

  11. The combined effect of visual impairment and cognitive impairment on disability in older people.

    PubMed

    Whitson, Heather E; Cousins, Scott W; Burchett, Bruce M; Hybels, Celia F; Pieper, Carl F; Cohen, Harvey J

    2007-06-01

    To determine the risk of disability in individuals with coexisting visual and cognitive impairment and to compare the magnitude of risk associated with visual impairment, cognitive impairment, or the multimorbidity. Prospective cohort. North Carolina. Three thousand eight hundred seventy-eight participants in the North Carolina Established Populations for the Epidemiologic Studies of the Elderly with nonmissing visual status, cognitive status, and disability status data at baseline Short Portable Mental Status Questionnaire (cognitive impairment defined as > or =4 errors), self reported visual acuity (visual impairment defined as inability to see well enough to recognize a friend across the street or to read newspaper print), demographic and health-related variables, disability status (activities of daily living (ADLs), instrumental activities of daily living (IADLs), mobility), death, and time to nursing home placement. Participants with coexisting visual and cognitive impairment were at greater risk of IADL disability (odds ratio (OR)=6.50, 95% confidence interval (CI)=4.34-9.75), mobility disability (OR=4.04, 95% CI=2.49-6.54), ADL disability (OR=2.84, 95% CI=1.87-4.32), and incident ADL disability (OR=3.66, 95%, CI=2.36-5.65). In each case, the estimated OR associated with the multimorbidity was greater than the estimated OR associated with visual or cognitive impairment alone, a pattern that was not observed for other adverse outcomes assessed. No significant interactions were observed between cognitive impairment and visual impairment as predictors of disability status. Individuals with coexisting visual impairment and cognitive impairment are at high risk of disability, with each condition contributing additively to disability risk. Further study is needed to improve functional trajectories in patients with this prevalent multimorbidity. When visual or cognitive impairment is present, efforts to maximize the other function may be beneficial.

  12. A pilot randomized controlled trial comparing effectiveness of prism glasses, visual search training and standard care in hemianopia.

    PubMed

    Rowe, F J; Conroy, E J; Bedson, E; Cwiklinski, E; Drummond, A; García-Fiñana, M; Howard, C; Pollock, A; Shipman, T; Dodridge, C; MacIntosh, C; Johnson, S; Noonan, C; Barton, G; Sackley, C

    2017-10-01

    Pilot trial to compare prism therapy and visual search training, for homonymous hemianopia, to standard care (information only). Prospective, multicentre, parallel, single-blind, three-arm RCT across fifteen UK acute stroke units. Stroke survivors with homonymous hemianopia. Arm a (Fresnel prisms) for minimum 2 hours, 5 days per week over 6 weeks. Arm b (visual search training) for minimum 30 minutes, 5 days per week over 6 weeks. Arm c (standard care-information only). Adult stroke survivors (>18 years), stable hemianopia, visual acuity better than 0.5 logMAR, refractive error within ±5 dioptres, ability to read/understand English and provide consent. Primary outcomes were change in visual field area from baseline to 26 weeks and calculation of sample size for a definitive trial. Secondary measures included Rivermead Mobility Index, Visual Function Questionnaire 25/10, Nottingham Extended Activities of Daily Living, Euro Qual, Short Form-12 questionnaires and Radner reading ability. Measures were post-randomization at baseline and 6, 12 and 26 weeks. Randomization block lists stratified by site and partial/complete hemianopia. Allocations disclosed to patients. Primary outcome assessor blind to treatment allocation. Eighty-seven patients were recruited: 27-Fresnel prisms, 30-visual search training and 30-standard care; 69% male; mean age 69 years (SD 12). At 26 weeks, full results for 24, 24 and 22 patients, respectively, were compared to baseline. Sample size calculation for a definitive trial determined as 269 participants per arm for a 200 degree 2 visual field area change at 90% power. Non-significant relative change in area of visual field was 5%, 8% and 3.5%, respectively, for the three groups. Visual Function Questionnaire responses improved significantly from baseline to 26 weeks with visual search training (60 [SD 19] to 68.4 [SD 20]) compared to Fresnel prisms (68.5 [SD 16.4] to 68.2 [18.4]: 7% difference) and standard care (63.7 [SD 19.4] to 59.8 [SD 22.7]: 10% difference), P=.05. Related adverse events were common with Fresnel prisms (69.2%; typically headaches). No significant change occurred for area of visual field area across arms over follow-up. Visual search training had significant improvement in vision-related quality of life. Prism therapy produced adverse events in 69%. Visual search training results warrant further investigation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Comparing the Impact of Refractive and Non-Refractive Vision Loss on Functioning and Disability: The Salisbury Eye Evaluation

    PubMed Central

    Zebardast, Nazlee; Swenor, Bonnielin K.; van Landingham, Suzanne W.; Massof, Robert W.; Munoz, Beatriz; West, Sheila K.; Ramulu, Pradeep Y.

    2015-01-01

    Purpose To compare the effects of uncorrected refractive error (URE) and non-refractive visual impairment (VI) on performance and disability measures. Design Cross-sectional population-based study. Participants 2469 individuals with binocular presenting visual acuity (PVA) of 20/80 or better who participated in the first round of the Salisbury Eye Evaluation study. Methods URE was defined as binocular PVA of 20/30 or worse, improving to better than 20/30 with subjective refraction. VI was defined as post-refraction binocular best corrected visual acuity (BCVA) of 20/30 or worse. The visual acuity decrement attributable to VI was calculated as the difference between BCVA and 20/30 while that due to URE was taken as the difference between PVA and BCVA. Multivariable regression analyses were used to assess the disability impact of 1) vision status (VI, URE, or normal vision) using the group with normal vision as reference, and 2) a one-line decrement in acuity due to VI or URE. Main Outcome Measures Objective measures of visual function were obtained from timed performance of mobility and near vision tasks, self-reported driving cessation, and self-reported visual difficulty measured by the Activities of Daily Vision (ADV) scale. ADV responses were analyzed using Rasch analysis to determine visual ability. Results Compared to individuals with normal vision, subjects with VI (n=191) had significantly poorer objective and subjective visual functioning in all metrics examined (p<0.05) while subjects with URE (n=132) demonstrated slower walking speeds, slower near task performance, more frequent driving cessation and lower ADV scores (p<0.05), but did not demonstrate slower stair climbing or descent speed. For all functional metrics evaluated, the impact of VI was greater than the impact of URE. The impact of a one-line VA decrement due to VI was associated with greater deficits in mobility measures and driving cessation when compared to a one-line VA decrement due to URE. Conclusions VI is associated with greater disability than URE across a wide variety of functional measures, even in analyses adjusting for the severity of vision loss. Refractive and non-refractive vision loss should be distinguished in studies evaluating visual disability, and should be understood to have differing consequences. PMID:25813453

  14. Intraocular and extraocular cameras for retinal prostheses: Effects of foveation by means of visual prosthesis simulation

    NASA Astrophysics Data System (ADS)

    McIntosh, Benjamin Patrick

    Blindness due to Age-Related Macular Degeneration and Retinitis Pigmentosa is unfortunately both widespread and largely incurable. Advances in visual prostheses that can restore functional vision in those afflicted by these diseases have evolved rapidly from new areas of research in ophthalmology and biomedical engineering. This thesis is focused on further advancing the state-of-the-art of both visual prostheses and implantable biomedical devices. A novel real-time system with a high performance head-mounted display is described that enables enhanced realistic simulation of intraocular retinal prostheses. A set of visual psychophysics experiments is presented using the visual prosthesis simulator that quantify, in several ways, the benefit of foveation afforded by an eye-pointed camera (such as an eye-tracked extraocular camera or an implantable intraocular camera) as compared with a head-pointed camera. A visual search experiment demonstrates a significant improvement in the time to locate a target on a screen when using an eye-pointed camera. A reach and grasp experiment demonstrates a 20% to 70% improvement in time to grasp an object when using an eye-pointed camera, with the improvement maximized when the percept is blurred. A navigation and mobility experiment shows a 10% faster walking speed and a 50% better ability to avoid obstacles when using an eye-pointed camera. Improvements to implantable biomedical devices are also described, including the design and testing of VLSI-integrable positive mobile ion contamination sensors and humidity sensors that can validate the hermeticity of biomedical device packages encapsulated by hermetic coatings, and can provide early warning of leaks or contamination that may jeopardize the implant. The positive mobile ion contamination sensors are shown to be sensitive to externally applied contamination. A model is proposed to describe sensitivity as a function of device geometry, and verified experimentally. Guidelines are provided on the use of spare CMOS oxide and metal layers to maximize the hermeticity of an implantable microchip. In addition, results are presented on the design and testing of small form factor, very low power, integrated CMOS clock generation circuits that are stable enough to drive commercial image sensor arrays, and therefore can be incorporated in an intraocular camera for retinal prostheses.

  15. A Novel and Intelligent Home Monitoring System for Care Support of Elders with Cognitive Impairment.

    PubMed

    Lazarou, Ioulietta; Karakostas, Anastasios; Stavropoulos, Thanos G; Tsompanidis, Theodoros; Meditskos, Georgios; Kompatsiaris, Ioannis; Tsolaki, Magda

    2016-10-18

    Assistive technology, in the form of a smart home environment, is employed to support people with dementia. To propose a system for continuous and objective remote monitoring of problematic daily living activity areas and design personalized interventions based on system feedback and clinical observations for improving cognitive function and health-related quality of life. The assistive technology of the proposed system, including wearable, sleep, object motion, presence, and utility usage sensors, was methodically deployed at four different home installations of people with cognitive impairment. Detection of sleep patterns, physical activity, and activities of daily living, based on the collected sensor data and analytics, was available at all times through comprehensive data visualization solutions. Combined with clinical observation, targeted psychosocial interventions were introduced to enhance the participants' quality of life and improve their cognitive functions and daily functionality. Meanwhile, participants and their caregivers were able to visualize a reduced set of information tailored to their needs. Overall, paired-sample t-test analysis of monitored qualities revealed improvement for all participants in neuropsychological assessment. Moreover, improvement was detected from the beginning to the end of the trial, in physical condition and in the domains of sleep. Detecting abnormalities via the system, for example in sleep quality, such as REM sleep, has proved to be critical to assess current status, drive interventions, and evaluate improvements in a reliable manner. It has been proved that the proposed system is suitable to support clinicians to reliably drive and evaluate clinical interventions toward quality of life improvement of people with cognitive impairment.

  16. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  17. Modified CBT using visualization for Autism Spectrum Disorder (ASD), anxiety and avoidance behavior--a quasi-experimental open pilot study.

    PubMed

    Ekman, Elizabeth; Hiltunen, Arto J

    2015-12-01

    In recent studies it has been suggested that Cognitive Behavior Therapy (CBT) is beneficial to people with Autism Spectrum Disorder (ASD) but that the method needs to be modified in relation to their cognitive profile. The aim of this study is to measure the effect of modified CBT, that is, using visualized language throughout the entire session for clients with ASD and anxiety and avoidance behavior. The modification of CBT in this study consists of focusing on CBT protocols for anxiety disorders and depression, while visualizing and systematizing "the invisible" in the conversation, in order for the clients to understand the social, cognitive and emotional context of self and others and how they should interact to avoid misunderstandings. ASD clients may need help to detect the invisible code of social interaction and communication. The level of anxiety and the frequency of target behavior were measured. Four assessments were made, two at the pre-assessment, and one in mid-therapy and end of therapy respectively. Generally, results suggest no improvement during pre-treatment period but a significant improvement during treatment. The values of the clients' psychological, social and occupational ability to function improved on the Global Function Rating scale. The preliminary conclusion of this pilot study indicates that the use of visualized language throughout the CBT therapy sessions is a promising modification of current CBT protocols for individuals with ASD. After manualization, larger studies with randomized controlled study designs can replicate or challenge these results. © 2015 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  18. Transcatheter Arterial Embolization with a Mixture of Absolute Ethanol and Iodized Oil for Poorly Visualized Endophytic Renal Masses Prior to CT-Guided Percutaneous Cryoablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michimoto, Kenkichi, E-mail: michikoo@jikei.ac.jp; Shimizu, Kanichiro; Kameoka, Yoshihiko

    PurposeTo retrospectively evaluate the feasibility of transcatheter arterial embolization (TAE) using a mixture of absolute ethanol and iodized oil to improve localization of endophytic renal masses on unenhanced computed tomography (CT) prior to CT-guided percutaneous cryoablation (PCA).Materials and MethodsOur institutional review board approved this retrospective study. From September 2011 to June 2015, 17 patients (mean age, 66.8 years) with stage T1a endophytic renal masses (mean diameter, 26.5 mm) underwent TAE using a mixture of absolute ethanol and iodized oil to improve visualization of small and endophytic renal masses on unenhanced CT prior to CT-guided PCA. TAE was considered successful that accumulated iodizedmore » oil depicted whole of the tumor edge on CT. PCA was considered successful when the iceball covered the entire tumor with over a 5 mm margin. Oncological and renal functional outcomes and complications were also evaluated.ResultsTAE was successfully performed in 16 of 17 endophytic tumors. The 16 tumors were performed under CT-guided PCA with their distinct visualization of localization and safe ablated margin. During the mean follow-up period of 15.4 ± 5.1 months, one patient developed local recurrence. Estimated glomerular filtration rate declined by 8 % with statistical significance (P = 0.01). There was no procedure-related significant complication.ConclusionTAE using a mixture of absolute ethanol and iodized oil to improve visualization of endophytic renal masses facilitated tumor localization on unenhanced CT, permitting depiction of the tumor edge as well as a safe margin for ablation during CT-guided PCA, with an acceptable decline in renal function.« less

  19. Measuring outcomes of cataract surgery using the Quality of Well-Being Scale and VF-14 Visual Function Index.

    PubMed

    Rosen, Peter N; Kaplan, Robert M; David, Kristen

    2005-02-01

    To evaluate the validity and responsiveness of the self-administered Quality of Well-Being Scale (QWB-SA) and the 14-item Visual Function Index (VF-14) to assess patients having cataract surgery. Large Southern California health maintenance organization. This study comprised 233 adults who had uneventful small-incision (< 3.0 mm) phacoemulsification cataract extraction under local anesthesia. Patients were assessed before surgery as well as 4 to 6 weeks and 4 months after surgery using the QWB-SA and the VF-14. Postoperatively, patients reported significant improvements on QWB-SA (P < .005) and VF-14 (P < .001) measures. Those grouped by visual acuity in the operated eye and unoperated eye and first-eye surgery or second-eye surgery had significant changes in VF-14 results (P < .001). Improvements on the QWB-SA were significant except when the preoperative visual acuity was better than 20/40 in the operated eye or 20/50 in the unoperated eye and when patients had first-eye surgery. The vision-specific VF-14 was more sensitive to improvements after surgery than the more general QWB-SA. Both demonstrated a greater magnitude of change with lower baseline scores and correlated significantly with self-reported satisfaction and trouble with vision. Both the utility-based generic QWB-SA and disease-specific VF-14 profile were responsive to changes in quality of life after cataract surgery. The VF-14 was more sensitive to change but cannot be used for comparison across disease states or for policy analysis. The QWB-SA can be used to estimate the cost/utility of cataract surgery.

  20. Validation of Catquest-9SF-A Visual Disability Instrument to Evaluate Patient Function After Corneal Transplantation.

    PubMed

    Claesson, Margareta; Armitage, W John; Byström, Berit; Montan, Per; Samolov, Branka; Stenvi, Ulf; Lundström, Mats

    2017-09-01

    Catquest-9SF is a 9-item visual disability questionnaire developed for evaluating patient-reported outcome measures after cataract surgery. The aim of this study was to use Rasch analysis to determine the responsiveness of Catquest-9SF for corneal transplant patients. Patients who underwent corneal transplantation primarily to improve vision were included. One group (n = 199) completed the Catquest-9SF questionnaire before corneal transplantation and a second independent group (n = 199) completed the questionnaire 2 years after surgery. All patients were recorded in the Swedish Cornea Registry, which provided clinical and demographic data for the study. Winsteps software v.3.91.0 (Winsteps.com, Beaverton, OR) was used to assess the fit of the Catquest-9SF data to the Rasch model. Rasch analysis showed that Catquest-9SF applied to corneal transplant patients was unidimensional (infit range, 0.73-1.32; outfit range, 0.81-1.35), and therefore, measured a single underlying construct (visual disability). The Rasch model explained 68.5% of raw variance. The response categories of the 9-item questionnaire were ordered, and the category thresholds were well defined. Item difficulty matched the level of patients' ability (0.36 logit difference between the means). Precision in terms of person separation (3.09) and person reliability (0.91) was good. Differential item functioning was notable for only 1 item (satisfaction with vision), which had a differential item functioning contrast of 1.08 logit. Rasch analysis showed that Catquest-9SF is a valid instrument for measuring visual disability in patients who have undergone corneal transplantation primarily to improve vision.

  1. The Impact of a Sports Vision Training Program in Youth Field Hockey Players

    PubMed Central

    Schwab, Sebastian; Memmert, Daniel

    2012-01-01

    The aim of this study was to investigate whether a sports vision training program improves the visual performance of youth male field hockey players, ages 12 to 16 years, after an intervention of six weeks compared to a control group with no specific sports vision training. The choice reaction time task at the D2 board (Learning Task I), the functional field of view task (Learning Task II) and the multiple object tracking (MOT) task (Transfer Task) were assessed before and after the intervention and again six weeks after the second test. Analyzes showed significant differences between the two groups for the choice reaction time task at the D2 board and the functional field of view task, with significant improvements for the intervention group and none for the control group. For the transfer task, we could not find statistically significant improvements for either group. The results of this study are discussed in terms of theoretical and practical implications. Key pointsPerceptual training with youth field hockey playersCan a sports vision training program improve the visual performance of youth male field hockey players, ages 12 to 16 years, after an intervention of six weeks compared to a control group with no specific sports vision training?The intervention was performed in the “VisuLab” as DynamicEye® SportsVision Training at the German Sport University Cologne.We ran a series of 3 two-factor univariate analysis of variance (ANOVA) with repeated measures on both within subject independent variables (group; measuring point) to examine the effects on central perception, peripheral perception and choice reaction time.The present study shows an improvement of certain visual abilities with the help of the sports vision training program. PMID:24150071

  2. Training in Contrast Detection Improves Motion Perception of Sinewave Gratings in Amblyopia

    PubMed Central

    Hou, Fang; Huang, Chang-bing; Tao, Liming; Feng, Lixia; Zhou, Yifeng; Lu, Zhong-Lin

    2011-01-01

    Purpose. One critical concern about using perceptual learning to treat amblyopia is whether training with one particular stimulus and task generalizes to other stimuli and tasks. In the spatial domain, it has been found that the bandwidth of contrast sensitivity improvement is much broader in amblyopes than in normals. Because previous studies suggested the local motion deficits in amblyopia are explained by the spatial vision deficits, the hypothesis for this study was that training in the spatial domain could benefit motion perception of sinewave gratings. Methods. Nine adult amblyopes (mean age, 22.1 ± 5.6 years) were trained in a contrast detection task in the amblyopic eye for 10 days. Visual acuity, spatial contrast sensitivity functions, and temporal modulation transfer functions (MTF) for sinewave motion detection and discrimination were measured for each eye before and after training. Eight adult amblyopes (mean age, 22.6 ± 6.7 years) served as control subjects. Results. In the amblyopic eye, training improved (1) contrast sensitivity by 6.6 dB (or 113.8%) across spatial frequencies, with a bandwidth of 4.4 octaves; (2) sensitivity of motion detection and discrimination by 3.2 dB (or 44.5%) and 3.7 dB (or 53.1%) across temporal frequencies, with bandwidths of 3.9 and 3.1 octaves, respectively; (3) visual acuity by 3.2 dB (or 44.5%). The fellow eye also showed a small amount of improvement in contrast sensitivities and no significant change in motion perception. Control subjects who received no training demonstrated no obvious improvement in any measure. Conclusions. The results demonstrate substantial plasticity in the amblyopic visual system, and provide additional empirical support for perceptual learning as a potential treatment for amblyopia. PMID:21693615

  3. Effect of Developmental Binocular Vision Abnormalities on Visual Vertigo Symptoms and Treatment Outcome.

    PubMed

    Pavlou, Marousa; Acheson, James; Nicolaou, Despina; Fraser, Clare L; Bronstein, Adolfo M; Davies, Rosalyn A

    2015-10-01

    Customized vestibular rehabilitation incorporating optokinetic (OK) stimulation improves visual vertigo (VV) symptoms; however, the degree of improvement varies among individuals. Binocular vision abnormalities (misalignment of ocular axis, ie, strabismus) may be a potential risk factor. This study aimed to investigate the influence of binocular vision abnormalities on VV symptoms and treatment outcome. Sixty subjects with refractory peripheral vestibular symptoms underwent an orthoptic assessment after being recruited for participation in an 8-week customized program incorporating OK training via a full-field visual environment rotator or video display, supervised or unsupervised. Treatment response was assessed at baseline and at 8 weeks with dynamic posturography, Functional Gait Assessment (FGA), and questionnaires for symptoms, symptom triggers, and psychological state. As no significant effect of OK training type was noted for any variables, data were combined and new groups identified on the basis of the absence or presence of a binocular vision abnormality. A total of 34 among 60 subjects consented to the orthoptic assessment, of whom 8 of the 34 had binocular vision abnormalities and 30 of the 34 subjects completed both the binocular function assessment and vestibular rehabilitation program. No significant between-group differences were noted at baseline. The only significant between-group difference was observed for pre-/post-VV symptom change (P = 0.01), with significant improvements noted only for the group without binocular vision abnormalities (P < 0.0005). Common vestibular symptoms, posturography, and the FGA improved significantly for both groups (P < 0.05). Binocular vision abnormalities may affect VV symptom improvement. These findings may have important implications for the management of subjects with refractory vestibular symptoms.Video Abstract available for insights from the authors regarding clinical implication of the study findings (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A115).

  4. Does visual feedback during walking result in similar improvements in trunk control for young and older healthy adults?

    PubMed

    Anson, Eric; Rosenberg, Russell; Agada, Peter; Kiemel, Tim; Jeka, John

    2013-11-26

    Most current applications of visual feedback to improve postural control are limited to a fixed base of support and produce mixed results regarding improved postural control and transfer to functional tasks. Currently there are few options available to provide visual feedback regarding trunk motion while walking. We have developed a low cost platform to provide visual feedback of trunk motion during walking. Here we investigated whether augmented visual position feedback would reduce trunk movement variability in both young and older healthy adults. The subjects who participated were 10 young and 10 older adults. Subjects walked on a treadmill under conditions of visual position feedback and no feedback. The visual feedback consisted of anterior-posterior (AP) and medial-lateral (ML) position of the subject's trunk during treadmill walking. Fourier transforms of the AP and ML trunk kinematics were used to calculate power spectral densities which were integrated as frequency bins "below the gait cycle" and "gait cycle and above" for analysis purposes. Visual feedback reduced movement power at very low frequencies for lumbar and neck translation but not trunk angle in both age groups. At very low frequencies of body movement, older adults had equivalent levels of movement variability with feedback as young adults without feedback. Lower variability was specific to translational (not angular) trunk movement. Visual feedback did not affect any of the measured lower extremity gait pattern characteristics of either group, suggesting that changes were not invoked by a different gait pattern. Reduced translational variability while walking on the treadmill reflects more precise control maintaining a central position on the treadmill. Such feedback may provide an important technique to augment rehabilitation to minimize body translation while walking. Individuals with poor balance during walking may benefit from this type of training to enhance path consistency during over-ground locomotion.

  5. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex.

    PubMed

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.

  6. Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas.

    PubMed

    Ntali, Georgia; Wass, John A

    2018-04-01

    Non-functioning pituitary adenomas (NFPAs) are benign pituitary neoplasms that do not cause a hormonal hypersecretory syndrome. An improved understanding of their epidemiology, clinical presentation and diagnosis is needed. A literature review was performed using Pubmed to identify research reports and clinical case series on NFPAs. They account for 14-54% of pituitary adenomas and have a prevalence of 7-41.3/100,000 population. Their standardized incidence rate is 0.65-2.34/100,000 and the peak occurence is from the fourth to the eighth decade. The clinical spectrum of NFPAs varies from being completely asymptomatic to causing significant hypothalamic/pituitary dysfunction and visual field compromise due to their large size. Most patients present with symptoms of mass effect, such as headaches, visual field defects, ophthalmoplegias, and hypopituitarism but also hyperprolactinaemia due to pituitary stalk deviation and less frequently pituitary apoplexy. Non-functioning pituitary incidentalomas are found on brain imaging performed for an unrelated reason. Diagnostic approach includes magnetic resonance imaging of the sellar region, laboratory evaluations, screening for hormone hypersecretion and for hypopituitarism, and a visual field examination if the lesion abuts the optic nerves or chiasm. This article reviews the epidemiology, clinical behaviour and diagnostic approach of non-functioning pituitary adenomas.

  7. Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial.

    PubMed

    Wall, Michael; McDermott, Michael P; Kieburtz, Karl D; Corbett, James J; Feldon, Steven E; Friedman, Deborah I; Katz, David M; Keltner, John L; Schron, Eleanor B; Kupersmith, Mark J

    Acetazolamide is commonly used to treat idiopathic intracranial hypertension (IIH), but there is insufficient information to establish an evidence base for its use. To determine whether acetazolamide is beneficial in improving vision when added to a low-sodium weight reduction diet in patients with IIH and mild visual loss. Multicenter, randomized, double-masked, placebo-controlled study of acetazolamide in 165 participants with IIH and mild visual loss who received a low-sodium weight-reduction diet. Participants were enrolled at 38 academic and private practice sites in North America from March 2010 to November 2012 and followed up for 6 months (last visit in June 2013). All participants met the modified Dandy criteria for IIH and had a perimetric mean deviation (PMD) between -2 dB and -7 dB. The mean age was 29 years and all but 4 participants were women. Low-sodium weight-reduction diet plus the maximally tolerated dosage of acetazolamide (up to 4 g/d) or matching placebo for 6 months. The planned primary outcome variable was the change in PMD from baseline to month 6 in the most affected eye, as measured by Humphrey Field Analyzer. Perimetric mean deviation is a measure of global visual field loss (mean deviation from age-corrected normal values), with a range of 2 to -32 dB; larger negative values indicate greater vision loss. Secondary outcome variables included changes in papilledema grade, quality of life (Visual Function Questionnaire 25 [VFQ-25] and 36-Item Short Form Health Survey), headache disability, and weight at month 6. The mean improvement in PMD was greater with acetazolamide (1.43 dB, from -3.53 dB at baseline to -2.10 dB at month 6; n = 86) than with placebo (0.71 dB, from -3.53 dB to -2.82 dB; n = 79); the difference was 0.71 dB (95% CI, 0 to 1.43 dB; P = .050). Mean improvements in papilledema grade (acetazolamide: -1.31, from 2.76 to 1.45; placebo: -0.61, from 2.76 to 2.15; treatment effect, -0.70; 95% CI, -0.99 to -0.41; P < .001) and vision-related quality of life as measured by the National Eye Institute VFQ-25 (acetazolamide: 8.33, from 82.97 to 91.30; placebo: 1.98, from 82.97 to 84.95; treatment effect, 6.35; 95% CI, 2.22 to 10.47; P = .003) and its 10-item neuro-ophthalmic supplement (acetazolamide: 9.82, from 75.45 to 85.27; placebo: 1.59, from 75.45 to 77.04; treatment effect, 8.23; 95% CI, 3.89 to 12.56; P < .001) were also observed with acetazolamide. Participants assigned to acetazolamide also experienced a reduction in weight (acetazolamide: -7.50 kg, from 107.72 kg to 100.22 kg; placebo: -3.45 kg, from 107.72 kg to 104.27 kg; treatment effect, -4.05 kg, 95% CI, -6.27 to -1.83 kg; P < .001). In patients with IIH and mild visual loss, the use of acetazolamide with a low-sodium weight-reduction diet compared with diet alone resulted in modest improvement in visual field function. The clinical importance of this improvement remains to be determined. clinicaltrials.gov Identifier: NCT01003639.

  8. Graphical function mapping as a new way to explore cause-and-effect chains

    USGS Publications Warehouse

    Evans, Mary Anne

    2016-01-01

    Graphical function mapping provides a simple method for improving communication within interdisciplinary research teams and between scientists and nonscientists. This article introduces graphical function mapping using two examples and discusses its usefulness. Function mapping projects the outcome of one function into another to show the combined effect. Using this mathematical property in a simpler, even cartoon-like, graphical way allows the rapid combination of multiple information sources (models, empirical data, expert judgment, and guesses) in an intuitive visual to promote further discussion, scenario development, and clear communication.

  9. The Argus(®) II Retinal Prosthesis System.

    PubMed

    Luo, Yvonne Hsu-Lin; da Cruz, Lyndon

    2016-01-01

    The Argus(®) II Retinal Prosthesis System (Second Sight Medical Products) is the first prosthetic vision device to obtain regulatory approval in both Europe and the USA. As such it has entered the commercial market as a treatment for patients with profound vision loss from end-stage outer retinal disease, predominantly retinitis pigmentosa. To date, over 100 devices have been implanted worldwide, representing the largest group of patients currently treated with visual prostheses. The system works by direct stimulation of the relatively preserved inner retina via epiretinal microelectrodes, thereby replacing the function of the degenerated photoreceptors. Visual information from a glasses-mounted video camera is converted to a pixelated image by an external processor, before being transmitted to the microelectrode array at the macula. Elicited retinal responses are then relayed via the normal optic nerve to the cortex for interpretation. We reviewed the animal and human studies that led to the development of the Argus(®) II device. A sufficiently robust safety profile was demonstrated in the phase I/II clinical trial of 30 patients. Improvement of function in terms of orientation and mobility, target localisation, shape and object recognition, and reading of letters and short unrehearsed words have also been shown. There remains a wide variability in the functional outcomes amongst the patients and the factors contributing to these performance differences are still unclear. Future developments in terms of both software and hardware aimed at improving visual function have been proposed. Further experience in clinical outcomes is being acquired due to increasing implantation. Copyright © 2015. Published by Elsevier Ltd.

  10. The effect of visual scanning exercises integrated into physiotherapy in patients with unilateral spatial neglect poststroke: a matched-pair randomized control trial.

    PubMed

    van Wyk, Andoret; Eksteen, Carina A; Rheeder, Paul

    2014-01-01

    Unilateral spatial neglect (USN) is a visual-perceptual disorder that entails the inability to perceive and integrate stimuli on one side of the body, resulting in the neglect of one side of the body. Stroke patients with USN present with extensive functional disability and duration of therapy input. To determine the effect of saccadic eye movement training with visual scanning exercises (VSEs) integrated with task-specific activities on USN poststroke. A matched-pair randomized control trial was conducted. Subjects were matched according to their functional activity level and allocated to either a control (n = 12) or an experimental group (n = 12). All patients received task-specific activities for a 4-week intervention period. The experimental group received saccadic eye movement training with VSE integrated with task specific activities as an "add on" intervention. Assessments were conducted weekly over the intervention period. Statistical significant difference was noted on the King-Devick Test (P = .021), Star Cancellation Test (P = .016), and Barthel Index (P = .004). Intensive saccadic eye movement training with VSE integrated with task-specific activities has a significant effect on USN in patients poststroke. Results of this study are supported by findings from previously reviewed literature in the sense that the effect of saccadic eye movement training with VSE as an intervention approach has a significant effect on the visual perceptual processing of participants with USN poststroke. The significant improved visual perceptual processing translate to significantly better visual function and ability to perform activities of daily living following the stroke. © The Author(s) 2014.

  11. Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity

    PubMed Central

    Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd

    2013-01-01

    Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929

  12. Endoscopic high-resolution auto fluorescence imaging and optical coherence tomography of airways in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carley; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    In this work, we present multimodal imaging of peripheral airways in vivo using an endoscopic imaging system capable of co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI). This system employs a 0.9 mm diameter double-clad fiber optic-based catheter for endoscopic imaging of small peripheral airways. Optical coherence tomography (OCT) can visualize detailed airway morphology in the lung periphery and autofluorescence imaging (AFI) can visualize fluorescent tissue components such as collagen and elastin, improving the detection of airway lesions. Results from in vivo imaging of 40 patients indicate that OCT and AFI offer complementary information that may increase the ability to identify pulmonary nodules in the lung periphery and improve the safety of biopsy collection by identifying large blood vessels. AFI can rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. By providing complementary information about structure and function of tissue, OCT-AFI may improve site selection during biopsy collection in the lung periphery.

  13. Retinal stimulation strategies to restore vision: Fundamentals and systems.

    PubMed

    Yue, Lan; Weiland, James D; Roska, Botond; Humayun, Mark S

    2016-07-01

    Retinal degeneration, a leading cause of blindness worldwide, is primarily characterized by the dysfunctional/degenerated photoreceptors that impair the ability of the retina to detect light. Our group and others have shown that bioelectronic retinal implants restore useful visual input to those who have been blind for decades. This unprecedented approach of restoring sight demonstrates that patients can adapt to new visual input, and thereby opens up opportunities to not only improve this technology but also develop alternative retinal stimulation approaches. These future improvements or new technologies could have the potential of selectively stimulating specific cell classes in the inner retina, leading to improved visual resolution and color vision. In this review we will detail the progress of bioelectronic retinal implants and future devices in this genre as well as discuss other technologies such as optogenetics, chemical photoswitches, and ultrasound stimulation. We will discuss the principles, biological aspects, technology development, current status, clinical outcomes/prospects, and challenges for each approach. The review will cover functional imaging documented cortical responses to retinal stimulation in blind patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Task-dependent enhancement of facial expression and identity representations in human cortex.

    PubMed

    Dobs, Katharina; Schultz, Johannes; Bülthoff, Isabelle; Gardner, Justin L

    2018-05-15

    What cortical mechanisms allow humans to easily discern the expression or identity of a face? Subjects detected changes in expression or identity of a stream of dynamic faces while we measured BOLD responses from topographically and functionally defined areas throughout the visual hierarchy. Responses in dorsal areas increased during the expression task, whereas responses in ventral areas increased during the identity task, consistent with previous studies. Similar to ventral areas, early visual areas showed increased activity during the identity task. If visual responses are weighted by perceptual mechanisms according to their magnitude, these increased responses would lead to improved attentional selection of the task-appropriate facial aspect. Alternatively, increased responses could be a signature of a sensitivity enhancement mechanism that improves representations of the attended facial aspect. Consistent with the latter sensitivity enhancement mechanism, attending to expression led to enhanced decoding of exemplars of expression both in early visual and dorsal areas relative to attending identity. Similarly, decoding identity exemplars when attending to identity was improved in dorsal and ventral areas. We conclude that attending to expression or identity of dynamic faces is associated with increased selectivity in representations consistent with sensitivity enhancement. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Socio-cognitive profiles for visual learning in young and older adults

    PubMed Central

    Christian, Julie; Goldstone, Aimee; Kuai, Shu-Guang; Chin, Wynne; Abrams, Dominic; Kourtzi, Zoe

    2015-01-01

    It is common wisdom that practice makes perfect; but why do some adults learn better than others? Here, we investigate individuals’ cognitive and social profiles to test which variables account for variability in learning ability across the lifespan. In particular, we focused on visual learning using tasks that test the ability to inhibit distractors and select task-relevant features. We tested the ability of young and older adults to improve through training in the discrimination of visual global forms embedded in a cluttered background. Further, we used a battery of cognitive tasks and psycho-social measures to examine which of these variables predict training-induced improvement in perceptual tasks and may account for individual variability in learning ability. Using partial least squares regression modeling, we show that visual learning is influenced by cognitive (i.e., cognitive inhibition, attention) and social (strategic and deep learning) factors rather than an individual’s age alone. Further, our results show that independent of age, strong learners rely on cognitive factors such as attention, while weaker learners use more general cognitive strategies. Our findings suggest an important role for higher-cognitive circuits involving executive functions that contribute to our ability to improve in perceptual tasks after training across the lifespan. PMID:26113820

  16. A cross-sectional controlled developmental study of neuropsychological functions in patients with glutaric aciduria type I.

    PubMed

    Boy, Nikolas; Heringer, Jana; Haege, Gisela; Glahn, Esther M; Hoffmann, Georg F; Garbade, Sven F; Kölker, Stefan; Burgard, Peter

    2015-12-22

    Glutaric aciduria type I (GA-I) is an inherited metabolic disease due to deficiency of glutaryl-CoA dehydrogenase (GCDH). Cognitive functions are generally thought to be spared, but have not yet been studied in detail. Thirty patients detected by newborn screening (n = 13), high-risk screening (n = 3) or targeted metabolic testing (n = 14) were studied for simple reaction time (SRT), continuous performance (CP), visual working memory (VWM), visual-motor coordination (Tracking) and visual search (VS). Dystonia (n = 13 patients) was categorized using the Barry-Albright-Dystonia Scale (BADS). Patients were compared with 196 healthy controls. Developmental functions of cognitive performances were analysed using a negative exponential function model. BADS scores correlated with speed tests but not with tests measuring stability or higher cognitive functions without time constraints. Developmental functions of GA-I patients significantly differed from controls for SRT and VS but not for VWM and showed obvious trends for CP and Tracking. Dystonic patients were slower in SRT and CP but reached their asymptote of performance similar to asymptomatic patients and controls in all tests. Asymptomatic patients did not differ from controls, except showing significantly better results in Tracking and a trend for slower reactions in visual search. Data across all age groups of patients and controls fitted well to a model of negative exponential development. Dystonic patients predominantly showed motor speed impairment, whereas performance improved with higher cognitive load. Patients without motor symptoms did not differ from controls. Developmental functions of cognitive performances were similar in patients and controls. Performance in tests with higher cognitive demand might be preserved in GA-I, even in patients with striatal degeneration.

  17. Sensorimotor Adaptability Training Improves Motor and Dual-Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J.J.; Peters, B.T.; Mulavara, A.P.; Brady, R.; Batson, C.; Cohen, H.S.

    2009-01-01

    The overall objective of our project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The goal of our current study was to determine if SA training using variation in visual flow and support surface motion produces improved performance in a novel sensory environment and demonstrate the retention characteristics of SA training.

  18. The Functional Classification of Brain Damage-Related Vision Loss

    ERIC Educational Resources Information Center

    Colenbrander, August

    2009-01-01

    This article provides a terminological framework to show the relationships among different types of visual deficits. It distinguishes between visual functions, which describe how the eye and the lower visual system function, and functional vision, which describes how a person functions. When visual functions are disturbed, the term "visual…

  19. Recovery from Spatial Neglect with Intra- and Transhemispheric Functional Connectivity Changes in Vestibular and Visual Cortex Areas-A Case Study.

    PubMed

    Conrad, Julian; Boegle, Rainer; Ertl, Matthias; Brandt, Thomas; Dieterich, Marianne

    2018-01-01

    Vestibular signals are involved in higher cortical functions like spatial orientation and its disorders. Vestibular dysfunction contributes, for example, to spatial neglect which can be transiently improved by caloric stimulation. The exact roles and mechanisms of the vestibular and visual systems for the recovery of neglect are not yet known. Resting-state functional connectivity (fc) magnetic resonance imaging was recorded in a patient with hemispatial neglect during the acute phase and after recovery 6 months later following a right middle cerebral artery infarction before and after caloric vestibular stimulation. Seeds in the vestibular [parietal operculum (OP2)], the parietal [posterior parietal cortex (PPC); 7A, hIP3], and the visual cortex (VC) were used for the analysis. During the acute stage after caloric stimulation the fc of the right OP2 to the left OP2, the anterior cingulum, and the para/hippocampus was increased bilaterally (i.e., the vestibular network), while the interhemispheric fc was reduced between homologous regions in the VC. After 6 months, similar fc increases in the vestibular network were found without stimulation. In addition, fc increases of the OP2 to the PPC and the VC were seen; interhemispherically this was true for both PPCs and for the right PPC to both VCs. Improvement of neglect after caloric stimulation in the acute phase was associated with increased fc of vestibular cortex areas in both hemispheres to the para-hippocampus and the dorsal anterior cingulum, but simultaneously with reduced interhemispheric VC connectivity. This disclosed a, to some extent, similar but also distinct short-term mechanism (vestibular stimulation) of an improvement of spatial orientation compared to the long-term recovery of neglect.

  20. Long-term sensorimotor and therapeutical effects of a mild regime of prism adaptation in spatial neglect. A double-blind RCT essay.

    PubMed

    Rode, G; Lacour, S; Jacquin-Courtois, S; Pisella, L; Michel, C; Revol, P; Alahyane, N; Luauté, J; Gallagher, S; Halligan, P; Pélisson, D; Rossetti, Y

    2015-04-01

    Spatial neglect (SN) is commonly associated with poor functional outcome. Adaptation to a rightward optical deviation of vision has been shown to benefit to SN rehabilitation. The neurophysiological foundations and the optimal modalities of prism adaptation (PA) therapy however remain to be validated. This study is aimed at exploring the long-term sensory-motor, cognitive and functional effects produced by weekly PA sessions over a period of four weeks. A double-blind, monocentric randomized and controlled trial (RCT) was carried out. Twenty patients with left SN secondary to stroke were included, 10 in the "prism" group and 10 in the "control" group. The sensory-motor effects of PA were evaluated by measurement of manual and visual straight-ahead, and also by precision of pointing without visual feedback before and after each PA session. The functional independence measure (FIM) was evaluated before and at 1, 3 and 6 months after PA, while SN severity was assessed using the Behavioural Inattention Test (BIT) before and 6 months after PA. Before the intervention, only manual straight-ahead pointing constituted a reproducible sensory-motor measurement. During prism exposure, a questionnaire showed that not a single patient were aware of the direct effects of optical deviation on pointing movement performance. The sensory-motor after-effects produced by the PA produced a more rapid reduction of the rightward manual straight-ahead, which was secondarily followed by visual straight-ahead. These sensory-motor effects helped to clarify the action mechanisms of PA on SN. At the conclusion of the 6-month follow-up, the two groups showed similar improvement, indicating that a weekly PA session over 4 weeks was not sufficient to produce long-term functional benefit. This improvement was correlated with the evolution of visual straight-ahead, which can be proposed as a marker for patients outcome. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Effect of Target Location on Dynamic Visual Acuity During Passive Horizontal Rotation

    NASA Technical Reports Server (NTRS)

    Appelbaum, Meghan; DeDios, Yiri; Kulecz, Walter; Peters, Brian; Wood, Scott

    2010-01-01

    The vestibulo-ocular reflex (VOR) generates eye rotation to compensate for potential retinal slip in the specific plane of head movement. Dynamic visual acuity (DVA) has been utilized as a functional measure of the VOR. The purpose of this study was to examine changes in accuracy and reaction time when performing a DVA task with targets offset from the plane of rotation, e.g. offset vertically during horizontal rotation. Visual acuity was measured in 12 healthy subjects as they moved a hand-held joystick to indicate the orientation of a computer-generated Landolt C "as quickly and accurately as possible." Acuity thresholds were established with optotypes presented centrally on a wall-mounted LCD screen at 1.3 m distance, first without motion (static condition) and then while oscillating at 0.8 Hz (DVA, peak velocity 60 deg/s). The effect of target location was then measured during horizontal rotation with the optotypes randomly presented in one of nine different locations on the screen (offset up to 10 deg). The optotype size (logMar 0, 0.2 or 0.4, corresponding to Snellen range 20/20 to 20/50) and presentation duration (150, 300 and 450 ms) were counter-balanced across five trials, each utilizing horizontal rotation at 0.8 Hz. Dynamic acuity was reduced relative to static acuity in 7 of 12 subjects by one step size. During the random target trials, both accuracy and reaction time improved proportional to optotype size. Accuracy and reaction time also improved between 150 ms and 300 ms presentation durations. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements when acquiring vertical targets. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of motion. Both reaction time and accuracy are functionally relevant DVA parameters of VOR function.

  2. Improving resolution of dynamic communities in human brain networks through targeted node removal

    PubMed Central

    Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.

    2017-01-01

    Current approaches to dynamic community detection in complex networks can fail to identify multi-scale community structure, or to resolve key features of community dynamics. We propose a targeted node removal technique to improve the resolution of community detection. Using synthetic oscillator networks with well-defined “ground truth” communities, we quantify the community detection performance of a common modularity maximization algorithm. We show that the performance of the algorithm on communities of a given size deteriorates when these communities are embedded in multi-scale networks with communities of different sizes, compared to the performance in a single-scale network. We demonstrate that targeted node removal during community detection improves performance on multi-scale networks, particularly when removing the most functionally cohesive nodes. Applying this approach to network neuroscience, we compare dynamic functional brain networks derived from fMRI data taken during both repetitive single-task and varied multi-task experiments. After the removal of regions in visual cortex, the most coherent functional brain area during the tasks, community detection is better able to resolve known functional brain systems into communities. In addition, node removal enables the algorithm to distinguish clear differences in brain network dynamics between these experiments, revealing task-switching behavior that was not identified with the visual regions present in the network. These results indicate that targeted node removal can improve spatial and temporal resolution in community detection, and they demonstrate a promising approach for comparison of network dynamics between neuroscientific data sets with different resolution parameters. PMID:29261662

  3. A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.

    PubMed

    Calhoun, V; Adali, T; Liu, J

    2006-01-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.

  4. WISC-IV and WIAT-II profiles in children with high-functioning autism.

    PubMed

    Mayes, Susan Dickerson; Calhoun, Susan L

    2008-03-01

    Children with high-functioning autism earned above normal scores on the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) Perceptual Reasoning and Verbal Comprehension Indexes and below normal scores on the Working Memory and Processing Speed Indexes and Wechsler Individual Achievement Test-Second Edition (WIAT-II) Written Expression. Full Scale IQ (FSIQ) and reading and math scores were similar to the norm. Profiles were consistent with previous WISC-III research, except that the new WISC-IV motor-free visual reasoning subtests (Matrix Reasoning and Picture Concepts) were the highest of the nonverbal subtests. The WISC-IV may be an improvement over the WISC-III for children with high-functioning autism because it captures their visual reasoning strength, while identifying their attention, graphomotor, and processing speed weaknesses. FSIQ was the best single predictor of academic achievement.

  5. A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm

    NASA Astrophysics Data System (ADS)

    Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina

    The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.

  6. Associations among visual acuity and vision- and health-related quality of life among patients in the multicenter uveitis steroid treatment trial.

    PubMed

    Frick, Kevin D; Drye, Lea T; Kempen, John H; Dunn, James P; Holland, Gary N; Latkany, Paul; Rao, Narsing A; Sen, H Nida; Sugar, Elizabeth A; Thorne, Jennifer E; Wang, Robert C; Holbrook, Janet T

    2012-03-01

    To evaluate the associations between visual acuity and self-reported visual function; visual acuity and health-related quality of life (QoL) metrics; a summary measure of self-reported visual function and health-related QoL; and individual domains of self-reported visual function and health-related QoL in patients with uveitis. Best-corrected visual acuity, vision-related functioning as assessed by the NEI VFQ-25, and health-related QoL as assessed by the SF-36 and EuroQoL EQ-5D questionnaires were obtained at enrollment in a clinical trial of uveitis treatments. Multivariate regression and Spearman correlations were used to evaluate associations between visual acuity, vision-related function, and health-related QoL. Among the 255 patients, median visual acuity in the better-seeing eyes was 20/25, the vision-related function score indicated impairment (median, 60), and health-related QoL scores were within the normal population range. Better visual acuity was predictive of higher visual function scores (P ≤ 0.001), a higher SF-36 physical component score, and a higher EQ-5D health utility score (P < 0.001). The vision-specific function score was predictive of all general health-related QoL (P < 0.001). The correlations between visual function score and general quality of life measures were moderate (ρ = 0.29-0.52). The vision-related function score correlated positively with visual acuity and moderately positively with general QoL measures. Cost-utility analyses relying on changes in generic healthy utility measures will be more likely to detect changes when there are clinically meaningful changes in vision-related function, rather than when there are only changes in visual acuity. (ClinicalTrials.gov number, NCT00132691.).

  7. 42 CFR 483.136 - Evaluating whether an individual with intellectual disability requires specialized services...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., positioning, transfer skills, gross motor dexterity, visual motor perception, fine motor dexterity, eye-hand... improve the individual's functional capacity; (10) Social development, such as interpersonal skills, recreation-leisure skills, and relationships with others; (11) Academic/educational development, including...

  8. 42 CFR 483.136 - Evaluating whether an individual with intellectual disability requires specialized services...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., positioning, transfer skills, gross motor dexterity, visual motor perception, fine motor dexterity, eye-hand... improve the individual's functional capacity; (10) Social development, such as interpersonal skills, recreation-leisure skills, and relationships with others; (11) Academic/educational development, including...

  9. 42 CFR 483.136 - Evaluating whether an individual with intellectual disability requires specialized services...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., positioning, transfer skills, gross motor dexterity, visual motor perception, fine motor dexterity, eye-hand... improve the individual's functional capacity; (10) Social development, such as interpersonal skills, recreation-leisure skills, and relationships with others; (11) Academic/educational development, including...

  10. Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy.

    PubMed

    Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira

    2017-01-01

    In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10-34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population.

  11. Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy

    PubMed Central

    Capelini, Camila Miliani; da Silva, Talita Dias; Tonks, James; Watson, Suzanna; Alvarez, Mayra Priscila Boscolo; de Menezes, Lilian Del Ciello; Favero, Francis Meire; Caromano, Fátima Aparecida; Massetti, Thais; de Mello Monteiro, Carlos Bandeira

    2017-01-01

    Background In individuals severely affected with Duchenne muscular dystrophy (DMD), virtual reality has recently been used as a tool to enhance community interaction. Smartphones offer the exciting potential to improve communication, access, and participation, and present the unique opportunity to directly deliver functionality to people with disabilities. Objective To verify whether individuals with DMD improve their motor performance when undertaking a visual motor task using a smartphone game. Patients and methods Fifty individuals with DMD and 50 healthy, typically developing (TD) controls, aged 10–34 years participated in the study. The functional characterization of the sample was determined through Vignos, Egen Klassifikation, and the Motor Function Measure scales. To complete the task, individuals moved a virtual ball around a virtual maze and the time in seconds was measured after every attempt in order to analyze improvement of performance after the practice trials. Motor performance (time to finish each maze) was measured in phases of acquisition, short-term retention, and transfer. Results Use of the smartphone maze game promoted improvement in performance during acquisition in both groups, which remained in the retention phase. At the transfer phases, with alternative maze tasks, the performance in DMD group was similar to the performance of TD group, with the exception of the transfer to the contralateral hand (nondominant). However, the group with DMD demonstrated longer movement time at all stages of learning, compared with the TD group. Conclusion The practice of a visual motor task delivered via smartphone game promoted an improvement in performance with similar patterns of learning in both groups. Performance can be influenced by task difficulty, and for people with DMD, motor deficits are responsible for the lower speed of execution. This study indicates that individuals with DMD showed improved performance in a short-term motor learning protocol using a smartphone. We advocate that this technology could be used to promote function in this population. PMID:28860778

  12. JBrowse: a dynamic web platform for genome visualization and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buels, Robert; Yao, Eric; Diesh, Colin M.

    JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. JBrowse is a maturemore » web application suitable for genome visualization and analysis.« less

  13. Development of the Macro Command Editing Executive System for Factory Workers-Oriented Programless Visual Inspection System

    NASA Astrophysics Data System (ADS)

    Anezaki, Takashi; Wakitani, Kouichi; Nakamura, Masatoshi; Kubo, Hiroyasu

    Because visual inspection systems are difficult to tune, they create many problems for the kaizen process. This results in increased development costs and time to assure that the inspection systems function properly. In order to improve inspection system development, we designed an easy-tuning system called a “Program-less” visual inspection system. The ROI macro command which consisted of eight kinds of shape recognition macro commands and decision, operation, control commands was built. Furthermore, the macro command editing executive system was developed by the operation of only the GUI without editing source program. The validity of the ROI macro command was proved by the application of 488 places.

  14. JBrowse: a dynamic web platform for genome visualization and analysis.

    PubMed

    Buels, Robert; Yao, Eric; Diesh, Colin M; Hayes, Richard D; Munoz-Torres, Monica; Helt, Gregg; Goodstein, David M; Elsik, Christine G; Lewis, Suzanna E; Stein, Lincoln; Holmes, Ian H

    2016-04-12

    JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. JBrowse is a mature web application suitable for genome visualization and analysis.

  15. Deficits in vision and visual attention associated with motor performance of very preterm/very low birth weight children.

    PubMed

    Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G

    2016-01-01

    To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of L-arginine on anatomical and electrophysiological deterioration of the eye in a rodent model of nonarteritic ischemic optic neuropathy.

    PubMed

    Chuman, Hideki; Maekubo, Tomoyuki; Osako, Takako; Ishiai, Michitaka; Kawano, Naoko; Nao-I, Nobuhisa

    2013-07-01

    The aims of this study were to clarify the effectiveness of L-arginine (1) for reducing the severity of anatomical changes in the eye and improving visual function in the acute stage of a rodent model of nonarteritic ischemic optic neuropathy (rNAION) and (2) in preventing those changes in anatomy and visual function. For the first aim, L-arginine was intravenously injected into rats 3 h after rNAION induction; for the second aim, rNAION was induced after the oral administration of L-arginine for 7 days. The inner retinal thickness was determined over time by optical coherence tomography, and the amplitude of the scotopic threshold response (STR) and the number of surviving retinal ganglion cells (RGCs) were measured. These data were compared with the baseline data from the control group. Both intravenous infusion of L-arginine after rNAION induction and oral pretreatment with L-arginine significantly decreased optic disc edema in the acute stage and thinning of the inner retina, reduced the decrease in STR amplitude, and reduced the decrease in the number of RGCs during rNAION. Based on these results, we conclude that L-arginine treatment is effective for reducing anatomical changes in the eye and improving visual function in the acute stage of rNAION and that pretreatment with L-arginine is an effective therapy to reduce the severity of the condition during recurrence in the other eye.

  17. Reading speed in the peripheral visual field of older adults: Does it benefit from perceptual learning?

    PubMed

    Yu, Deyue; Cheung, Sing-Hang; Legge, Gordon E; Chung, Susana T L

    2010-04-21

    Enhancing reading ability in peripheral vision is important for the rehabilitation of people with central-visual-field loss from age-related macular degeneration (AMD). Previous research has shown that perceptual learning, based on a trigram letter-recognition task, improved peripheral reading speed among normally-sighted young adults (Chung, Legge, & Cheung, 2004). Here we ask whether the same happens in older adults in an age range more typical of the onset of AMD. Eighteen normally-sighted subjects, aged 55-76years, were randomly assigned to training or control groups. Visual-span profiles (plots of letter-recognition accuracy as a function of horizontal letter position) and RSVP reading speeds were measured at 10 degrees above and below fixation during pre- and post-tests for all subjects. Training consisted of repeated measurements of visual-span profiles at 10 degrees below fixation, in four daily sessions. The control subjects did not receive any training. Perceptual learning enlarged the visual spans in both trained (lower) and untrained (upper) visual fields. Reading speed improved in the trained field by 60% when the trained print size was used. The training benefits for these older subjects were weaker than the training benefits for young adults found by Chung et al. Despite the weaker training benefits, perceptual learning remains a potential option for low-vision reading rehabilitation among older adults. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Recovery of biological motion perception and network plasticity after cerebellar tumor removal.

    PubMed

    Sokolov, Arseny A; Erb, Michael; Grodd, Wolfgang; Tatagiba, Marcos S; Frackowiak, Richard S J; Pavlova, Marina A

    2014-10-01

    Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.

  19. Functional visual fields: relationship of visual field areas to self-reported function.

    PubMed

    Subhi, Hikmat; Latham, Keziah; Myint, Joy; Crossland, Michael D

    2017-07-01

    The aim of this study is to relate areas of the visual field to functional difficulties to inform the development of a binocular visual field assessment that can reflect the functional consequences of visual field loss. Fifty-two participants with peripheral visual field loss undertook binocular assessment of visual fields using the 30-2 and 60-4 SITA Fast programs on the Humphrey Field Analyser, and mean thresholds were derived. Binocular visual acuity, contrast sensitivity and near reading performance were also determined. Self-reported overall and mobility function were assessed using the Dutch ICF Activity Inventory. Greater visual field loss (0-60°) was associated with worse self-reported function both overall (R 2 = 0.50; p < 0.0001), and for mobility (R 2 = 0.64; p < 0.0001). Central (0-30°) and peripheral (30-60°) visual field areas were similarly related to mobility function (R 2 = 0.61, p < 0.0001 and R 2 = 0.63, p < 0.0001 respectively), although the peripheral (30-60°) visual field was the best predictor of mobility self-reported function in multiple regression analyses. Superior and inferior visual field areas related similarly to mobility function (R 2 = 0.56, p < 0.0001 and R 2 = 0.67, p < 0.0001 respectively). The inferior field was found to be the best predictor of mobility function in multiple regression analysis. Mean threshold of the binocular visual field to 60° eccentricity is a good predictor of self-reported function overall, and particularly of mobility function. Both the central (0-30°) and peripheral (30-60°) mean threshold are good predictors of self-reported function, but the peripheral (30-0°) field is a slightly better predictor of mobility function, and should not be ignored when considering functional consequences of field loss. The inferior visual field is a slightly stronger predictor of perceived overall and mobility function than the superior field. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  20. A feasibility study of a new computerised cognitive remediation for young adults with schizophrenia

    PubMed Central

    Cellard, Caroline; Reeder, Clare; Paradis-Giroux, Andrée-Anne; Roy, Marc-André; Gilbert, Elsa; Ivers, Hans; Bouchard, Roch-Hugo; Maziade, Michel; Wykes, Til

    2016-01-01

    Cognitive remediation therapy is effective for improving cognition, symptoms and social functioning in individuals with schizophrenia; however, the impact on visual episodic memory remains unclear. The objectives of this feasibility study were: (1) to explore whether or not CIRCuiTS—a new computerised cognitive remediation therapy programme developed in England—improves visual episodic memory and other cognitive domains in young adults with early course schizophrenia; and (2) to evaluate acceptability of the CIRCuiTS programme in French-Canadians. Three participants with visual episodic memory impairments at baseline were recruited from clinical settings in Canada, and consented to participate. Neuropsychological, clinical and social functioning was evaluated at baseline and post-treatment. Intervention involved 40 sessions of cognitive remediation. First, the reliable change index (RCI) revealed that each participant demonstrated significant post-therapy change in episodic memory and in other cognitive domains. The response profile was characterised by the use of organisational strategies. Second, the treatment was considered acceptable to participants in terms of session frequency (number of sessions per week), intensity (hours per week; total hours), and number of missed sessions and total completed sessions. This preliminary study yielded encouraging data demonstrating the feasibility of the CIRCuiTS programme in French-Canadian young adults with schizophrenia. PMID:25753694

  1. Neonatal hemodynamic response to visual cortex activity: high-density near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Liao, Steve M.; Gregg, Nick M.; White, Brian R.; Zeff, Benjamin W.; Bjerkaas, Katelin A.; Inder, Terrie E.; Culver, Joseph P.

    2010-03-01

    The neurodevelopmental outcome of neonatal intensive care unit (NICU) infants is a major clinical concern with many infants displaying neurobehavioral deficits in childhood. Functional neuroimaging may provide early recognition of neural deficits in high-risk infants. Near-infrared spectroscopy (NIRS) has the advantage of providing functional neuroimaging in infants at the bedside. However, limitations in traditional NIRS have included contamination from superficial vascular dynamics in the scalp. Furthermore, controversy exists over the nature of normal vascular, responses in infants. To address these issues, we extend the use of novel high-density NIRS arrays with multiple source-detector distances and a superficial signal regression technique to infants. Evaluations of healthy term-born infants within the first three days of life are performed without sedation using a visual stimulus. We find that the regression technique significantly improves brain activation signal quality. Furthermore, in six out of eight infants, both oxy- and total hemoglobin increases while deoxyhemoglobin decreases, suggesting that, at term, the neurovascular coupling in the visual cortex is similar to that found in healthy adults. These results demonstrate the feasibility of using high-density NIRS arrays in infants to improve signal quality through superficial signal regression, and provide a foundation for further development of high-density NIRS as a clinical tool.

  2. Dysthyroid Optic Neuropathy.

    PubMed

    Saeed, Peerooz; Tavakoli Rad, Shahzad; Bisschop, Peter H L T

    2018-06-19

    Dysthyroid optic neuropathy (DON) is a serious complication of Graves orbitopathy that can result in irreversible and profound visual loss. Controversy exists regarding the pathogenesis and management of the disease. The authors provide an overview of the current understanding of DON and present a therapeutic guideline. A review of the literature. The mechanism of DON appears to be multifactorial: direct compression of the optic nerve by enlarged extraocular muscles, stretching of the optic nerve by proptosis, orbital pressure, vascular insufficiency, and inflammation. Some or all of these factors may be involved in an individual patient. There has only been one controlled trial comparing high-dose intravenous methylprednisolone to bony orbital decompression for DON. Both 2-wall and 3-wall decompression techniques successfully improve visual functions of patients with DON. There are few case reports/case series that suggest biologic agents may improve visual function in DON. DON is a serious complication of Graves orbitopathy, the diagnosis and management of which is complex and requires a multidisciplinary approach. There is little evidence regarding the optimum management strategy. Based on the current literature, the first line of treatment is intravenous methylprednisolone, with the exact timing and indication of bony orbital decompression still to be determined. In addition, there may be a role for the use of biologic agents that will require a systematic program to determine efficacy.

  3. Objective Measures of Visual Function in Papilledema

    PubMed Central

    Moss, Heather E.

    2016-01-01

    Synopsis Visual function is an important parameter to consider when managing patients with papilledema. Though the current standard of care uses standard automated perimetry (SAP) to obtain this information, this test is inherently subjective and prone to patient errors. Objective visual function tests including the visual evoked potential, pattern electroretinogram, photopic negative response of the full field electroretinogram, and pupillary light response have the potential to replace or supplement subjective visual function tests in papilledema management. This article reviews the evidence for use of objective visual function tests to assess visual function in papilledema and discusses future investigations needed to develop them as clinically practical and useful measures for this purpose. PMID:28451649

  4. Increasing Spontaneous Retinal Activity before Eye Opening Accelerates the Development of Geniculate Receptive Fields

    PubMed Central

    Davis, Zachary W.; Chapman, Barbara

    2015-01-01

    Visually evoked activity is necessary for the normal development of the visual system. However, little is known about the capacity for patterned spontaneous activity to drive the maturation of receptive fields before visual experience. Retinal waves provide instructive retinotopic information for the anatomical organization of the visual thalamus. To determine whether retinal waves also drive the maturation of functional responses, we increased the frequency of retinal waves pharmacologically in the ferret (Mustela putorius furo) during a period of retinogeniculate development before eye opening. The development of geniculate receptive fields after receiving these increased neural activities was measured using single-unit electrophysiology. We found that increased retinal waves accelerate the developmental reduction of geniculate receptive field sizes. This reduction is due to a decrease in receptive field center size rather than an increase in inhibitory surround strength. This work reveals an instructive role for patterned spontaneous activity in guiding the functional development of neural circuits. SIGNIFICANCE STATEMENT Patterned spontaneous neural activity that occurs during development is known to be necessary for the proper formation of neural circuits. However, it is unknown whether the spontaneous activity alone is sufficient to drive the maturation of the functional properties of neurons. Our work demonstrates for the first time an acceleration in the maturation of neural function as a consequence of driving patterned spontaneous activity during development. This work has implications for our understanding of how neural circuits can be modified actively to improve function prematurely or to recover from injury with guided interventions of patterned neural activity. PMID:26511250

  5. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    PubMed Central

    Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity. PMID:29662444

  6. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks.

    PubMed

    Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity.

  7. Eyelid transplantation: lessons from a total face transplant and the importance of blink.

    PubMed

    Sosin, Michael; Mundinger, Gerhard S; Dorafshar, Amir H; Fisher, Mark; Bojovic, Branko; Christy, Michael R; Iliff, Nicholas T; Rodriguez, Eduardo D

    2015-01-01

    Despite inclusion of periorbital structures in facial transplants, critical assessment of posttransplantation short- and long-term periorbital function has not been reported. The purpose of this article is to report recovery of ocular and periorbital function, with critical appraisal of posttransplant blink in the setting of revision surgery. Prospective ocular and periorbital functional assessments were completed at multiple time points in a patient undergoing facial transplantation and subsequent revision operations. Function was evaluated using clinical ocular examinations, visual acuity assessments, photography, and video at various intervals from preoperative baseline to 13.5 months after transplantation. During this period, revision operations involving periorbital structures were performed at 6 and 9 months after transplantation. Before transplantation, volitional blink was 100 percent in both eyes. Involuntary blink was 40 percent in the right eye and 90 percent in the left eye, with occasional full closure. Following face transplantation, voluntary blink was preserved, partial skin sensation was present, and involuntary blink improved to 70 percent in the right eye and 100 percent in the left eye. Following revision surgery, visual acuity and voluntary and involuntary blink were impaired. By 7.5 months after revision, improvement comparable to the pretransplantation assessment was observed. Adherence to principles of blink preservation is critical in periorbital transplantation. Involuntary blink is essential for preserving vision, and can be improved after transplantation. Revision surgery may temporarily impair advances made with initial allotransplantation. A comprehensive understanding of ocular biomechanics and function is invaluable to the reconstructive surgeon performing facial transplantation involving periorbital structures and posttransplant revision operations. Therapeutic, V.

  8. Effects of two-year testosterone replacement therapy on cognition, emotions and quality of life in young and middle-aged hypogonadal men.

    PubMed

    Lašaitė, L; Čeponis, J; Preikša, R T; Žilaitienė, B

    2017-04-01

    The aim of the study was to examine the effects of two-year testosterone replacement therapy on cognitive functioning, emotional state and quality of life in young and middle-aged men with hypogonadotropic hypogonadism. Nineteen males diagnosed with hypogonadotropic hypogonadism participated in the study. Cognitive functions were assessed by Trail Making Test and Digit Span Test of Wechsler Adult Intelligence Scale. Emotional state was evaluated by Profile of Mood States. Quality of life was evaluated by WHO Brief Quality of Life Questionnaire. Changes after two-year testosterone replacement therapy were detected in Trail Making A (42.9 ± 22.3 vs. 36.2 ± 22.5, p = .050) and B (90.6 ± 55.3 vs. 65.6 ± 21.4, p = .025) tests, showing improvement in attention and visual scanning abilities, executive function and psychomotor speed, as well as in Digit Span Test forward score (5.4 ± 2.0 vs. 6.1 ± 2.6, p = .046), showing improvement in attention capacity and psychomotor speed. No significant differences were observed in emotional state and quality of life. In conclusion, beneficial effect in cognitive functioning (improved attention and visual scanning ability, executive function and psychomotor speed), but not in emotional state and quality of life, was observed in young and middle-aged hypogonadal men after two-year testosterone replacement therapy. © 2016 Blackwell Verlag GmbH.

  9. Enhancement of Temporal Resolution and BOLD Sensitivity in Real-Time fMRI using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Rick, Jochen; Shane, Matthew; Murray-Krezan, Cristina; Zaitsev, Maxim; Speck, Oliver

    2012-01-01

    In this study, a new approach to high-speed fMRI using multi-slab echo-volumar imaging (EVI) is developed that minimizes geometrical image distortion and spatial blurring, and enables nonaliased sampling of physiological signal fluctuation to increase BOLD sensitivity compared to conventional echo-planar imaging (EPI). Real-time fMRI using whole brain 4-slab EVI with 286 ms temporal resolution (4 mm isotropic voxel size) and partial brain 2-slab EVI with 136 ms temporal resolution (4×4×6 mm3 voxel size) was performed on a clinical 3 Tesla MRI scanner equipped with 12-channel head coil. Four-slab EVI of visual and motor tasks significantly increased mean (visual: 96%, motor: 66%) and maximum t-score (visual: 263%, motor: 124%) and mean (visual: 59%, motor: 131%) and maximum (visual: 29%, motor: 67%) BOLD signal amplitude compared with EPI. Time domain moving average filtering (2 s width) to suppress physiological noise from cardiac and respiratory fluctuations further improved mean (visual: 196%, motor: 140%) and maximum (visual: 384%, motor: 200%) t-scores and increased extents of activation (visual: 73%, motor: 70%) compared to EPI. Similar sensitivity enhancement, which is attributed to high sampling rate at only moderately reduced temporal signal-to-noise ratio (mean: − 52%) and longer sampling of the BOLD effect in the echo-time domain compared to EPI, was measured in auditory cortex. Two-slab EVI further improved temporal resolution for measuring task-related activation and enabled mapping of five major resting state networks (RSNs) in individual subjects in 5 min scans. The bilateral sensorimotor, the default mode and the occipital RSNs were detectable in time frames as short as 75 s. In conclusion, the high sampling rate of real-time multi-slab EVI significantly improves sensitivity for studying the temporal dynamics of hemodynamic responses and for characterizing functional networks at high field strength in short measurement times. PMID:22398395

  10. Vitrectomy for floaters: prospective efficacy analyses and retrospective safety profile.

    PubMed

    Sebag, Jerry; Yee, Kenneth M P; Wa, Christianne A; Huang, Laura C; Sadun, Alfredo A

    2014-06-01

    Floaters impact vision but the mechanism is unknown. We hypothesize that floaters reduce contrast sensitivity function, which can be normalized by vitrectomy, and that minimally invasive vitrectomy will have lower incidences of retinal tears (reported at 30%) and cataracts (50-76%). Seventy-six eyes (34 phakic) with floaters were evaluated in 2 separate studies. Floater etiologies were primarily posterior vitreous detachment in 61 of 76 eyes (80%) and myopic vitreopathy in 24 of 76 eyes (32%). Minimally invasive 25G vitrectomy was performed without posterior vitreous detachment induction, leaving anterior vitreous, and using nonhollow probes for cannula extraction. Efficacy was studied prospectively (up to 9 months) in 16 floater cases with Freiburg Acuity Contrast Testing (Weber index [%W] reproducibility = 92.1%) and the National Eye Institute Visual Function Questionnaire. Safety was separately evaluated in 60 other cases followed up on an average of 17.5 months (range, 3-51 months). Floater eyes had 67% contrast sensitivity function attenuation (4.0 ± 2.3 %W; control subjects = 2.4 ± 0.9 %W, P < 0.013). After vitrectomy, contrast sensitivity function normalized in each case at 1 week (2.0 ± 1.4 %W, P < 0.01) and remained normal at 1 month (2.0 ± 1.0 %W, P < 0.003) and 3 months to 9 months (2.2 ± 1.5 %W, P < 0.018). Visual Function Questionnaire was 28.3% lower in floater patients (73.2 ± 15.6, N = 16) than in age-matched control subjects (93.9 ± 8.0, N = 12, P < 0.001), and postoperatively improved by 29.2% (P < 0.001). In the safety study of 60 floater cases treated with vitrectomy, none developed retinal breaks, infection, or glaucoma after a mean follow-up of 17.5 months. Only 8 of 34 cases (23.5%) required cataract surgery (none younger than 53 years) at an average of 15 months postvitrectomy. Floaters lower contrast sensitivity function, which normalizes after vitrectomy. Visual Function Questionnaire quantified improvement in satisfaction. Not inducing posterior vitreous detachment reduced retinal tear incidence from 30% to 0% (P < 0.007). Postvitrectomy cataract incidence was reduced from 50% to 23.5% (P < 0.02). This approach thus seems effective and safe in alleviating the visual dysfunction induced by floaters.

  11. SIGUEME: Technology-based intervention for low-functioning autism to train skills to work with visual signifiers and concepts.

    PubMed

    Vélez-Coto, María; Rodríguez-Fórtiz, María José; Rodriguez-Almendros, María Luisa; Cabrera-Cuevas, Marcelino; Rodríguez-Domínguez, Carlos; Ruiz-López, Tomás; Burgos-Pulido, Ángeles; Garrido-Jiménez, Inmaculada; Martos-Pérez, Juan

    2017-05-01

    People with low-functioning ASD and other disabilities often find it difficult to understand the symbols traditionally used in educational materials during the learning process. Technology-based interventions are becoming increasingly common, helping children with cognitive disabilities to perform academic tasks and improve their abilities and knowledge. Such children often find it difficult to perform certain tasks contained in educational materials since they lack necessary skills such as abstract reasoning. In order to help these children, the authors designed and created SIGUEME to train attention and the perceptual and visual cognitive skills required to work with and understand graphic materials and objects. A pre-test/post-test design was implemented to test SIGUEME. Seventy-four children with low-functioning ASD (age=13.47, SD=8.74) were trained with SIGUEME over twenty-five sessions and compared with twenty-eight children (age=12.61, SD=2.85) who had not received any intervention. There was a statistically significant improvement in the experimental group in Attention (W=-5.497, p<0.001). There was also a significant change in Association and Categorization (W=2.721, p=0.007) and Interaction (W=-3.287, p=0.001). SIGUEME is an effective tool for improving attention, categorization and interaction in low-functioning children with ASD. It is also a useful and powerful instrument for teachers, parents and educators by increasing the child's motivation and autonomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Vision problems are a leading source of modifiable health expenditures.

    PubMed

    Rein, David B

    2013-12-13

    According to recent studies, visual problems represent one of the top contributors to economic health burden in the United States. This burden is divided nearly equally between direct expenditures for the care and treatment of visual problems, and the indirect costs of outcomes caused by low vision, including productivity losses, the cost of care, and incremental nursing home placements. A large amount of academic research is devoted to visual science, the biology of the visual system, and the medical treatment of visual disorders. Compared to the burden, a disproportionate share of this research is devoted to the study of retinal disorders and glaucoma. This is understandable, as research into the retina and optic nerve has the potential to unlock fundamental insights into the nature of sight and visual cognition. However, population visual health and the functionality that depends upon it also may benefit greatly from additional research into areas of prevention, rehabilitation, and adaptation. In addition, comparative research into the benefits of resource allocation across prevention, treatment, and rehabilitative resources could lead to improvements in population health.

  13. Effect of Microgravity on Several Visual Functions During STS Shuttle Missions: Visual Function Tester-model 1 (VFT-1)

    NASA Technical Reports Server (NTRS)

    Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.

    1992-01-01

    Viewgraphs on the effect of microgravity on several visual functions during STS shuttle missions are presented. The purpose, methods, results, and discussion are discussed. The visual function tester model 1 is used.

  14. Yoga Practice Increases Minimum Muscular Fitness in Children with Visual Impairment.

    PubMed

    Mohanty, Soubhagyalaxmi; Venkata Ramana Murty, Peri; Pradhan, Balaram; Hankey, Alex

    2015-12-01

    Muscle strength, a component for balance, gait and functional mobility is vital for children with visual impairment. Yoga has frequently been demonstrated to improve physical and mental fitness in children. This study aimed to assess the effect of 16 weeks yoga training on muscular fitness in children with visual impairment. This was a wait-listed two-armed-matched case-control study. Eighty (41 yoga, 39 control) visual impairment students of both genders aged 9-16 years matched on age, gender and degree of blindness were assessed at pre, mid (after 8 weeks) and post (after 16 weeks) yoga intervention using the Kraus-Weber test. The percentage of students passed in yoga group were 12.2%, 43.9% and 68.3% whereas percentages in the control group were 23.1%, 30.8% and 30.8% in pre, mid, and post tests respectively. McNemar test showed significant differences between pre and mid, mid and post in the yoga group while those parameters were not significantly different in the control group. Yoga therapy seemed to have considerable benefits for the children's muscular fitness. The study suggests that yoga have considerable benefits for improvement of fitness level in children with visual impairment and may be recommended as and effective, alternative, inexpensive low risk training activity option for them.

  15. Imaging anatomy of the vestibular and visual systems.

    PubMed

    Gunny, Roxana; Yousry, Tarek A

    2007-02-01

    This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.

  16. Development of driver’s assistant system of additional visual information of blind areas for Gazelle Next

    NASA Astrophysics Data System (ADS)

    Makarov, V.; Korelin, O.; Koblyakov, D.; Kostin, S.; Komandirov, A.

    2018-02-01

    The article is devoted to the development of the Advanced Driver Assistance Systems (ADAS) for the GAZelle NEXT car. This project is aimed at developing a visual information system for the driver integrated into the windshield racks. The developed system implements the following functions: assistance in maneuvering and parking; Recognition of road signs; Warning the driver about the possibility of a frontal collision; Control of "blind" zones; "Transparent" vision in the windshield racks, widening the field of view, behind them; Visual and sound information about the traffic situation; Control and descent from the lane of the vehicle; Monitoring of the driver’s condition; navigation system; All-round review. The scheme of action of sensors of the developed system of visual information of the driver is provided. The moments of systems on a prototype of a vehicle are considered. Possible changes in the interior and dashboard of the car are given. The results of the implementation are aimed at the implementation of the system - improved informing of the driver about the environment and the development of an ergonomic interior for this system within the new Functional Salon of the Gazelle Next vehicle equipped with a visual information system for the driver.

  17. Audiovisual Rehabilitation in Hemianopia: A Model-Based Theoretical Investigation

    PubMed Central

    Magosso, Elisa; Cuppini, Cristiano; Bertini, Caterina

    2017-01-01

    Hemianopic patients exhibit visual detection improvement in the blind field when audiovisual stimuli are given in spatiotemporally coincidence. Beyond this “online” multisensory improvement, there is evidence of long-lasting, “offline” effects induced by audiovisual training: patients show improved visual detection and orientation after they were trained to detect and saccade toward visual targets given in spatiotemporal proximity with auditory stimuli. These effects are ascribed to the Superior Colliculus (SC), which is spared in these patients and plays a pivotal role in audiovisual integration and oculomotor behavior. Recently, we developed a neural network model of audiovisual cortico-collicular loops, including interconnected areas representing the retina, striate and extrastriate visual cortices, auditory cortex, and SC. The network simulated unilateral V1 lesion with possible spared tissue and reproduced “online” effects. Here, we extend the previous network to shed light on circuits, plastic mechanisms, and synaptic reorganization that can mediate the training effects and functionally implement visual rehabilitation. The network is enriched by the oculomotor SC-brainstem route, and Hebbian mechanisms of synaptic plasticity, and is used to test different training paradigms (audiovisual/visual stimulation in eye-movements/fixed-eyes condition) on simulated patients. Results predict different training effects and associate them to synaptic changes in specific circuits. Thanks to the SC multisensory enhancement, the audiovisual training is able to effectively strengthen the retina-SC route, which in turn can foster reinforcement of the SC-brainstem route (this occurs only in eye-movements condition) and reinforcement of the SC-extrastriate route (this occurs in presence of survived V1 tissue, regardless of eye condition). The retina-SC-brainstem circuit may mediate compensatory effects: the model assumes that reinforcement of this circuit can translate visual stimuli into short-latency saccades, possibly moving the stimuli into visual detection regions. The retina-SC-extrastriate circuit is related to restitutive effects: visual stimuli can directly elicit visual detection with no need for eye movements. Model predictions and assumptions are critically discussed in view of existing behavioral and neurophysiological data, forecasting that other oculomotor compensatory mechanisms, beyond short-latency saccades, are likely involved, and stimulating future experimental and theoretical investigations. PMID:29326578

  18. Audiovisual Rehabilitation in Hemianopia: A Model-Based Theoretical Investigation.

    PubMed

    Magosso, Elisa; Cuppini, Cristiano; Bertini, Caterina

    2017-01-01

    Hemianopic patients exhibit visual detection improvement in the blind field when audiovisual stimuli are given in spatiotemporally coincidence. Beyond this "online" multisensory improvement, there is evidence of long-lasting, "offline" effects induced by audiovisual training: patients show improved visual detection and orientation after they were trained to detect and saccade toward visual targets given in spatiotemporal proximity with auditory stimuli. These effects are ascribed to the Superior Colliculus (SC), which is spared in these patients and plays a pivotal role in audiovisual integration and oculomotor behavior. Recently, we developed a neural network model of audiovisual cortico-collicular loops, including interconnected areas representing the retina, striate and extrastriate visual cortices, auditory cortex, and SC. The network simulated unilateral V1 lesion with possible spared tissue and reproduced "online" effects. Here, we extend the previous network to shed light on circuits, plastic mechanisms, and synaptic reorganization that can mediate the training effects and functionally implement visual rehabilitation. The network is enriched by the oculomotor SC-brainstem route, and Hebbian mechanisms of synaptic plasticity, and is used to test different training paradigms (audiovisual/visual stimulation in eye-movements/fixed-eyes condition) on simulated patients. Results predict different training effects and associate them to synaptic changes in specific circuits. Thanks to the SC multisensory enhancement, the audiovisual training is able to effectively strengthen the retina-SC route, which in turn can foster reinforcement of the SC-brainstem route (this occurs only in eye-movements condition) and reinforcement of the SC-extrastriate route (this occurs in presence of survived V1 tissue, regardless of eye condition). The retina-SC-brainstem circuit may mediate compensatory effects: the model assumes that reinforcement of this circuit can translate visual stimuli into short-latency saccades, possibly moving the stimuli into visual detection regions. The retina-SC-extrastriate circuit is related to restitutive effects: visual stimuli can directly elicit visual detection with no need for eye movements. Model predictions and assumptions are critically discussed in view of existing behavioral and neurophysiological data, forecasting that other oculomotor compensatory mechanisms, beyond short-latency saccades, are likely involved, and stimulating future experimental and theoretical investigations.

  19. The contribution of single case studies to the neuroscience of vision.

    PubMed

    Zihl, Josef; Heywood, Charles A

    2016-03-01

    Visual neuroscience is concerned with the neurobiological foundations of visual perception, that is, the morphological, physiological, and functional organization of the visual brain and its co-operative partners. One important approach for understanding the functional organization of the visual brain is the study of visual perception from the pathological perspective. The study of patients with focal injury to the visual brain allows conclusions about the representation of visual perceptual functions in the framework of association and dissociation of functions. Selective disorders have been reported for more "elementary" visual capabilities, for example, color and movement vision, but also for visuo-cognitive capacities, such as visual agnosia or the visual field of attention. Because these visual disorders occur rather seldom as selective and specific dysfunctions, single cases have always played, and still play, a significant role in gaining insights into the functional organization of the visual brain. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  20. Combination treatment of pediatric coats' disease: a bicenter study in Taiwan.

    PubMed

    Lin, Chun-Ju; Chen, San-Ni; Hwang, Jiunn-Feng; Yang, Chung-May

    2013-01-01

    To present the clinical outcome of different combination treatment modalities in pediatric Coats' disease in two Taiwan medical centers. A retrospective review of clinical records was done of pediatric patients with Coats' disease treated at National Taiwan University Hospital and Changhua Christian Hospital. Data regarding the age at the time of diagnosis, initial presentation, methods of treatment, visual and anatomic results, and complications were recorded. Changes in vision and retinal status with the different methods of treatment were specifically evaluated. From 2005 through 2011, 10 eyes of 9 patients were treated under the diagnosis of Coats' disease. The clinical manifestations varied from localized vascular abnormalities with subretinal fluid and hard exudates to extensive detachment with massive exudates and retinal hemorrhage. The main treatment modalities include argon laser photocoagulation, micropulse laser, and cryotherapy. The adjunctive therapies included intravitreal triamcinolone, bevacizumab, and ranibizumab. The mean follow-up was 40.50 ± 20.52 months (range: 14 to 72 months). Best corrected visual acuity at last follow-up was light perception to 1.0 (20/20 Snellen). Anatomic improvement was achieved in 9 eyes (90%). Visual improvement was noted in 7 eyes (70%), visual stabilization in 2 eyes (20%), and visual deterioration in 1 eye (10%). Vitreous fibrosis evolving into tractional retinal detachment occurred in 1 patient receiving cryotherapy combined with intravitreal bevacizumab injections. No enucleation was ultimately necessary. Pediatric Coats' disease varies greatly in severity. Carefully selected treatment modalities can improve most eyes with different conditions. Intravitreal anti-vascular endothelial growth factor agents may act as useful adjuncts to improve anatomic and functional outcome. Cryotherapy combined with the intravitreal bevacizumab injection in severe cases of exudative retinal detachment may carry the risk of vitreoretinal traction and tractional retinal detachment.

  1. Corneal Collagen Crosslinking Combined with Phototherapeutic Keratectomy and Photorefractive Keratectomy for Corneal Ectasia after Laser in situ Keratomileusis.

    PubMed

    Zhu, Wei; Han, Yunfei; Cui, Changxia; Xu, Wenwen; Wang, Xuan; Dou, Xiaoxiao; Xu, Linlin; Xu, Yanyun; Mu, Guoying

    2018-01-01

    The aim of this study was to analyze the effects of corneal crosslinking (CXL) combined with phototherapeutic keratectomy (PTK) and photorefractive keratectomy (PRK) in halting the progression and improving the visual function of corneal ectasia after laser in situ keratomileusis (LASIK). PTK-PRK-CXL was performed on 14 eyes of 14 patients who developed corneal ectasia after LASIK. The visual acuity, spherical refraction and cylinder, corneal topography indices, thinnest corneal thickness (TCT), and endothelial cell count were evaluated at baseline and at 1, 3, 6, and 12 months postoperatively. The mean uncorrected visual acuity improved significantly from 0.64 ± 0.36 logMAR preoperatively to 0.19 ± 0.12 logMAR at 12 months of follow-up (p < 0.001), while the mean best corrected visual acuity improved from 0.21 ± 0.14 logMAR at baseline to 0.04 ± 0.10 logMAR at 12 months postoperatively (p < 0.001). A significant decrease was observed in Kmax and Kmean values from 52.51 ± 6.74 and 43.55 ± 3.37 D at baseline to 45.72 ± 5.18 (p < 0.001) and 40.60 ± 3.05 D (p < 0.001) at the 1-year follow-up. The mean TCT decreased significantly from 419.07 ± 36.56 µm before treatment to 320.93 ± 39.78 µm at 12 months of follow-up (p < 0.001), and there was no significant endothelial cell loss (p > 0.05) beyond 6 months after treatment. PTK-PRK-CXL is a promising procedure to halt the progression of post-LASIK keratectasia with significant visual quality improvement. © 2018 S. Karger AG, Basel.

  2. Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing.

    PubMed

    Clark, Kait; Appelbaum, L Gregory; van den Berg, Berry; Mitroff, Stephen R; Woldorff, Marty G

    2015-04-01

    Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance. Copyright © 2015 the authors 0270-6474/15/355351-09$15.00/0.

  3. Binocular vision in amblyopia: structure, suppression and plasticity.

    PubMed

    Hess, Robert F; Thompson, Benjamin; Baker, Daniel H

    2014-03-01

    The amblyopic visual system was once considered to be structurally monocular. However, it now evident that the capacity for binocular vision is present in many observers with amblyopia. This has led to new techniques for quantifying suppression that have provided insights into the relationship between suppression and the monocular and binocular visual deficits experienced by amblyopes. Furthermore, new treatments are emerging that directly target suppressive interactions within the visual cortex and, on the basis of initial data, appear to improve both binocular and monocular visual function, even in adults with amblyopia. The aim of this review is to provide an overview of recent studies that have investigated the structure, measurement and treatment of binocular vision in observers with strabismic, anisometropic and mixed amblyopia. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  4. Visual Analytics for Pattern Discovery in Home Care

    PubMed Central

    Monsen, Karen A.; Bae, Sung-Heui; Zhang, Wenhui

    2016-01-01

    Summary Background Visualization can reduce the cognitive load of information, allowing users to easily interpret and assess large amounts of data. The purpose of our study was to examine home health data using visual analysis techniques to discover clinically salient associations between patient characteristics with problem-oriented health outcomes of older adult home health patients during the home health service period. Methods Knowledge, Behavior and Status ratings at discharge as well as change from admission to discharge that was coded using the Omaha System was collected from a dataset on 988 de-identified patient data from 15 home health agencies. SPSS Visualization Designer v1.0 was used to visually analyze patterns between independent and outcome variables using heat maps and histograms. Visualizations suggesting clinical salience were tested for significance using correlation analysis. Results The mean age of the patients was 80 years, with the majority female (66%). Of the 150 visualizations, 69 potentially meaningful patterns were statistically evaluated through bivariate associations, revealing 21 significant associations. Further, 14 associations between episode length and Charlson co-morbidity index mainly with urinary related diagnoses and problems remained significant after adjustment analyses. Through visual analysis, the adverse association of the longer home health episode length and higher Charlson co-morbidity index with behavior or status outcomes for patients with impaired urinary function was revealed. Conclusions We have demonstrated the use of visual analysis to discover novel patterns that described high-needs subgroups among the older home health patient population. The effective presentation of these data patterns can allow clinicians to identify areas of patient improvement, and time periods that are most effective for implementing home health interventions to improve patient outcomes. PMID:27466053

  5. Effects of nicergoline on the retinal and cortical electrophysiological responses in glaucoma patients: a preliminary open study.

    PubMed

    Parisi, V; Colacino, G; Milazzo, G; Scuderi, A C; Manni, G

    1999-09-01

    The retinal dysfunction and the delayed visual cortex responses shown by patients affected by glaucoma can be objectively assessed by Pattern Electroretinogram (PERG) and Visual Evoked Potentials (VEP) recordings. The present study aims to evaluate the effects of nicergoline on the retinal function and on the visual cortical responses in glaucoma patients. Sixty patients (mean age 44.6+/-3.7) with open angle glaucoma were enrolled. The patients were divided into two groups: NG Group, where 30 patients were treated with nicergoline (Cebran((R)), 2 cps day) for 30 days; and CG Group, where 30 patients were not treated. Simultaneous recordings of PERG and VEP were performed in NG patients at the baseline, at 30 days after treatment with nicergoline (day 30), and at 45 days from the end of the treatment (day 75). PERG and VEP were recorded in CG patients at the baseline and after 30 and 75 days. The visual stimulus for recording PERGs and VEPs was a checkerboard whose elements subtended a visual arc of 60' and 15' with a 70% contrast, and alternated at a frequency of 2 Hz. At the baseline none of the electrophysiological parameters observed in NG Group patients differed (P>0.05) from those of CG Group patients. At days 30 and 75, in CG Group patients the values of the PERG and VEP parameters were unmodified (P>0.05) with respect to the baseline. In NG Group patients, the 30-day treatment period with nicergoline induced a significant (P<0.01) improvement of the PERG and VEP parameters. At day 75 all the electrophysiological parameters of NG Group did not differ significantly (P>0.05) from those at the baseline. Treatment with nicergoline induces an improvement of the retinal function and of the visual cortical responses in patients affected by glaucoma. This effect disappears within 45 days after the suspension of the treatment. Copyright 1999 Academic Press.

  6. Arthroscopic in Situ Repair of Partial Bursal Rotator Cuff Tears Without Acromioplasty.

    PubMed

    Ranalletta, Maximiliano; Rossi, Luciano A; Atala, Nicolas A; Bertona, Agustin; Maignon, Gastón D; Bongiovanni, Santiago L

    2017-07-01

    To evaluate functional outcomes and complications in a consecutive group of patients with partial bursal rotator cuff tears (PBRCTs) treated with insitu repair without acromioplasty. Seventy-four patients who had undergone an arthroscopic single row in situ repair for bursal-sided rotator cuff tears were evaluated. Clinical assessment consisted of glenohumeral range of motion measurement, the American Shoulder and Elbow Surgeons score, and the University of California at Los Angeles score. Pain was recorded using a visual analog scale. Postoperative complications were also assessed. Mean age was 55.2 years (±6.3) with a minimum of 2-year follow-up. After arthroscopic repair, all active range of motion parameters improved significantly (P < .0001). The American Shoulder and Elbow Surgeons scores improved from 42.5 to 86.1; the University of California at Los Angeles scores improved from 15.8 to 31.4, and the visual analog scale scores improved from 6.6 to 0.7 (P < .0001). Only 3 patients developed a postoperative adhesive capsulitis that responded to physical therapy. In the midterm follow-up (42 months), arthroscopic in situ repair of PBRCTs without acromioplasty is a reliable procedure that produces significant functional improvements and pain relief. Level IV, therapeutic case series. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Odour discrimination and identification are improved in early blindness.

    PubMed

    Cuevas, Isabel; Plaza, Paula; Rombaux, Philippe; De Volder, Anne G; Renier, Laurent

    2009-12-01

    Previous studies showed that early blind humans develop superior abilities in the use of their remaining senses, hypothetically due to a functional reorganization of the deprived visual brain areas. While auditory and tactile functions have been investigated for long, little is known about the effects of early visual deprivation on olfactory processing. However, blind humans make an extensive use of olfactory information in their daily life. Here we investigated olfactory discrimination and identification abilities in early blind subjects and age-matched sighted controls. Three levels of cuing were used in the identification task, i.e., free-identification (no cue), categorization (semantic cues) and multiple choice (semantic and phonological cues). Early blind subjects significantly outperformed the controls in odour discrimination, free-identification and categorization. In addition, the larger group difference was observed in the free-identification as compared to the categorization and the multiple choice conditions. This indicated that a better access to the semantic information from odour perception accounted for part of the improved olfactory performances in odour identification in the blind. We concluded that early blind subjects have both improved perceptual abilities and a better access to the information stored in semantic memory than sighted subjects.

  8. Wavelet decomposition analysis in the two-flash multifocal ERG in early glaucoma: a comparison to ganglion cell analysis and visual field.

    PubMed

    Brandao, Livia M; Monhart, Matthias; Schötzau, Andreas; Ledolter, Anna A; Palmowski-Wolfe, Anja M

    2017-08-01

    To further improve analysis of the two-flash multifocal electroretinogram (2F-mfERG) in glaucoma in regard to structure-function analysis, using discrete wavelet transform (DWT) analysis. Sixty subjects [35 controls and 25 primary open-angle glaucoma (POAG)] underwent 2F-mfERG. Responses were analyzed with the DWT. The DWT level that could best separate POAG from controls was compared to the root-mean-square (RMS) calculations previously used in the analysis of the 2F-mfERG. In a subgroup analysis, structure-function correlation was assessed between DWT, optical coherence tomography and automated perimetry (mf103 customized pattern) for the central 15°. Frequency level 4 of the wavelet variance analysis (144 Hz, WVA-144) was most sensitive (p < 0.003). It correlated positively with RMS but had a better AUC. Positive relations were found between visual field, WVA-144 and GCIPL thickness. The highest predictive factor for glaucoma diagnostic was seen in the GCIPL, but this improved further by adding the mean sensitivity and WVA-144. mfERG using WVA analysis improves glaucoma diagnosis, especially when combined with GCIPL and MS.

  9. [Posterior vitrectomy with gas endotamponade and retinal laser therapy in treatment of patients with macular complications of the optic disc pit].

    PubMed

    Cywiński, Adam; Kałużny, Jakub; Ferda, Daniela; Piwońska-Lobermajer, Anna

    2015-01-01

    Retrospective evaluation of functional and anatomical treatment outcomes in patients with macular cornplications of optic disc pit. 9 patients (eyes) underwent central posterior vitrectomy in conjunction with posterior vitreous detachment, retinal laser therapy to the optic disc pit area and endotamponade with expansile gas. It was followed by the patient's forced positioning (recommended for a few days especially at night), which ended the treatment protocol. Improved anatomical relationships, accompanied by functional improvement were achieved in each reported case. The resolution of macular lesions was slow, lasting even for several months. Too long delay in performing the surgery (over 5 months since the onset of visual impairment) was associated with the development of retinal complications, mainly macular hole formation, most likely caused by the long-term ischemia. The central posterior vitrectomy combined with posterior vitreous detachment, laser therapy, andd expansile gas tamponade offers good outcomes in patients with retinal complications of optic disc pit. Surgery performed shortly after the onset of visual dysfunction gives the best functional outcomes. Restoration of normal anatomical relationships is a long-term process. In some cases, though, these abnormalities may not resolve completely.

  10. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  11. Retrospective cues based on object features improve visual working memory performance in older adults.

    PubMed

    Gilchrist, Amanda L; Duarte, Audrey; Verhaeghen, Paul

    2016-01-01

    Research with younger adults has shown that retrospective cues can be used to orient top-down attention toward relevant items in working memory. We examined whether older adults could take advantage of these cues to improve memory performance. Younger and older adults were presented with visual arrays of five colored shapes; during maintenance, participants were presented either with an informative cue based on an object feature (here, object shape or color) that would be probed, or with an uninformative, neutral cue. Although older adults were less accurate overall, both age groups benefited from the presentation of an informative, feature-based cue relative to a neutral cue. Surprisingly, we also observed differences in the effectiveness of shape versus color cues and their effects upon post-cue memory load. These results suggest that older adults can use top-down attention to remove irrelevant items from visual working memory, provided that task-relevant features function as cues.

  12. Giovanni: The Bridge between Data and Science

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Lynnes, Christopher; Kempler, Steven J.

    2012-01-01

    NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a web-based remote sensing and model data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional data sets, covering atmospheric dynamics, atmospheric chemistry, hydrology, oceanographic, and land surface. Data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. Visualization options enable comparisons of multiple variables and easier refinement. Recently, new features have been developed, such as interactive scatter plots and maps. The performance is also being improved, in some cases by an order of magnitude for certain analysis functions with optimized software. We are working toward merging current Giovanni portals into a single omnibus portal with all variables in one (virtual) location to help users find a variable easily and enhance the intercomparison capability

  13. Comparison of clinical features and 3-month treatment response among three different choroidal thickness groups in polypoidal choroidal vasculopathy.

    PubMed

    Kong, Mingui; Kim, Sung Min; Ham, Don-Il

    2017-01-01

    Eyes with polypoidal choroidal vasculopathy (PCV) were recently reported to have various choroidal thickness, and choroidal thickness might be associated with visual outcome in the treatment of many retinal disorders. The range of subfoveal choroidal thickness (SFCT), clinical features, and 3-month treatment response among three groups having different range of SFCT were investigated in PCV eyes. In 78 treatment-naïve eyes with PCV, SFCT was measured using optical coherence tomography. Eyes were classified into thin, medium, and thick groups, using mean and one standard deviation of SFCT. Clinical features and imaging findings were compared among the three groups. Some eyes were treated with three consecutive monthly injection of anti-vascular endothelial growth factor (VEGF) as an initial treatment. They were also classified into three thickness groups, and the short-term post-treatment improvement in visual acuity and central retinal thickness were compared among groups. The mean SFCT was 271.9 ± 135.6 μm. Twelve, 53, and 13 eyes were classified into thin (<136.3 μm), medium (136.3-407.5 μm), and thick (>407.5 μm) groups, respectively. The thin group showed older age, lower visual acuity, and a higher prevalence of fundus tessellation than the other two groups (P <0.05). In multiple linear regression analyses, baseline BCVA was correlated with baseline SFCT. Forty-six eyes completed three consecutive anti-VEGF treatments. The thin group showed no visual improvement after treatment (P = 0.141), unlike the other two groups showing visual improvement (P<0.05). Eyes with PCV have a broad range of SFCT, and PCV eyes with a thin choroid manifest worse visual function than eyes with a medium or thick choroid.

  14. Longitudinal Impact on Quality of Life for School-aged Children with Amblyopia Treatment: Perspective from Children.

    PubMed

    Chen, Yanyan; Chen, Xinhong; Chen, Jie; Zheng, Jingwei; Xu, Jinling; Yu, Xinping

    2016-01-01

    To evaluate the longitudinal impact on health-related quality of life (HRQOL) during amblyopia treatment for school-aged children from children's perspective. School-aged children prescribed amblyopia treatment for the first time were recruited into the current study. Using a questionnaire, subjects' HRQOL was assessed before patching treatment, and at 8 weeks and 16 weeks after the commencement of patching treatment. Evaluation of visual function and psychosocial aspect was included in the questionnaire. Visual acuity and demographic data of the subjects were recorded. Forty-four children, aged 7-12 years, with anisometropic amblyopia were included in the study. Visual acuity in the amblyopic eye improved 1.90 (0.41-3.74) and 3.98 (2.22-5.11) lines at follow-up weeks 8 and 16, respectively. Both the total score and subscales of the questionnaire were reduced at the first follow-up and recovered at the second follow-up. Scores at week 16 were higher than those before treatment in the psychosocial aspect (p = 0.003), and lower in the visual function aspect (p < 0.001), without significant difference in total score (p = 0.207). Visual acuity in the amblyopic eye and psychosocial expectations for treatment were the most important factors that influenced HRQOL during treatment. From the children's perspective, the impacts on visual function and psychosocial aspect were significant in the first two months of treatment, and could be adapted during therapy for school-aged children. More attention should be paid to negative effects of treatment on daily life and study at the stage of amblyopia treatment for school-aged children. Meanwhile, necessary precautions should be taken to help reduce the impacts.

  15. In vivo Visuotopic Brain Mapping with Manganese-Enhanced MRI and Resting-State Functional Connectivity MRI

    PubMed Central

    Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.

    2014-01-01

    The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694

  16. The management of corneal trauma: advances in the past twenty-five years.

    PubMed

    Macsai, M S

    2000-09-01

    Over the past quarter century, advances in our understanding of corneal anatomy, physiology, and wound healing have all played an integral role in the management of corneal trauma. As the etiologies of corneal trauma have changed, so has our understanding of the impact of injury on corneal function as it relates to visual rehabilitation. Numerous new classes of antibiotics, antiinflammatory agents, and tissue adhesives have emerged. Occlusive therapy has advanced from simple pressure patching bandage soft contact lenses and collagen shields. Surgical instrumentation, operating microscopes, viscoelastic substances, and suture materials have all improved the outcomes of corneal trauma repair. Improved understanding of the refractive properties of the cornea through topography and alternative suture techniques has helped us restore the natural corneal curvature and visual outcomes. Consequently, in the last quarter of this century our therapeutic approaches to cornea trauma, both medical and surgical, have improved.

  17. 38 CFR 4.75 - General considerations for evaluating visual impairment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... refraction), visual field, and muscle function. (b) Examination for visual impairment. The examination must.... Examinations of visual fields or muscle function will be conducted only when there is a medical indication of disease or injury that may be associated with visual field defect or impaired muscle function. Unless...

  18. 38 CFR 4.75 - General considerations for evaluating visual impairment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... refraction), visual field, and muscle function. (b) Examination for visual impairment. The examination must.... Examinations of visual fields or muscle function will be conducted only when there is a medical indication of disease or injury that may be associated with visual field defect or impaired muscle function. Unless...

  19. 38 CFR 4.75 - General considerations for evaluating visual impairment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... refraction), visual field, and muscle function. (b) Examination for visual impairment. The examination must.... Examinations of visual fields or muscle function will be conducted only when there is a medical indication of disease or injury that may be associated with visual field defect or impaired muscle function. Unless...

  20. Functional Outcomes of the Low Vision Depression Prevention Trial in Age-Related Macular Degeneration.

    PubMed

    Deemer, Ashley D; Massof, Robert W; Rovner, Barry W; Casten, Robin J; Piersol, Catherine V

    2017-03-01

    To compare the efficacy of behavioral activation (BA) plus low vision rehabilitation with an occupational therapist (OT-LVR) with supportive therapy (ST) on visual function in patients with age-related macular degeneration (AMD). Single-masked, attention-controlled, randomized clinical trial with AMD patients with subsyndromal depressive symptoms (n = 188). All subjects had two outpatient low vision rehabilitation optometry visits, then were randomized to in-home BA + OT-LVR or ST. Behavioral activation is a structured behavioral treatment aiming to increase adaptive behaviors and achieve valued goals. Supportive therapy is a nondirective, psychological treatment that provides emotional support and controls for attention. Functional vision was assessed with the activity inventory (AI) in which participants rate the difficulty level of goals and corresponding tasks. Participants were assessed at baseline and 4 months. Improvements in functional vision measures were seen in both the BA + OT-LVR and ST groups at the goal level (d = 0.71; d = 0.56 respectively). At the task level, BA + OT-LVR patients showed more improvement in reading, inside-the-home tasks and outside-the-home tasks, when compared to ST patients. The greatest effects were seen in the BA + OT-LVR group in subjects with a visual acuity ≥20/70 (d = 0.360 reading; d = 0.500 inside the home; d = 0.468 outside the home). Based on the trends of the AI data, we suggest that BA + OT-LVR services, provided by an OT in the patient's home following conventional low vision optometry services, are more effective than conventional optometric low vision services alone for those with mild visual impairment. (ClinicalTrials.gov number, NCT00769015.).

  1. Water intake reverses dehydration associated impaired executive function in healthy young women.

    PubMed

    Stachenfeld, Nina S; Leone, Cheryl A; Mitchell, Ellen S; Freese, Eric; Harkness, Laura

    2018-03-01

    Healthy women do not always consume Recommended Daily Levels of fluid intake ad libitum. We hypothesized that 1) women lose≥1.0% BW during daily activities, 2) that mild body water loss impairs memory and executive function, 3) water intake to recommended daily levels will improve cognitive function. We tested 12 women (26±5yr, 22.5±2.6kg/m 2 BMI). Session 1 was a control (CON) session, during which subjects monitored their food and fluid intake (diary) and activity (Fitbit®). The next two sessions were applied in balanced order: dehydration (DEH) session, where subjects minimized drinking, and a euhydration (EUH) session, where subjects drank Recommended Daily Levels of fluid for their age and sex, or 2500ml/24h. We compared emotion, sensory perception and cognition with computer based visual analog tests and computer based cognitive tasks (Cogstate) at 5PM, i.e. baseline (BL) on the evening prior to the session, and at 7AM, 12PM, and 5PM during the session. Urine specific gravity (USG) was similar at BL across conditions (CON 1.013±0.002, DEH 1.015±0.002, EUH 1.014±0.002) and increased with dehydration (CON 1.011±0.003, DEH 1.021±0.002, EUH 1.010±0.002, P<0.05) by 5PM of the session. Uncontrolled fluid intake and physical activity were similar across sessions. The water challenges did not impact Detection, Identification, One-Card Learning, but EUH improved visual and working memory (Groton Maze Learning Test) errors: CON 40.1±11.1, DEH 40.5±10.1, EUH 33.9±10.9, P<0.05. Executive function [Set Shifting (SETS)] also improved under EUH, errors: BL 22.5±12.7 vs. 5PM 17.8±6.2, P<0.05. Mild dehydration caused deficits in visual and working memory and executive function in healthy young women. These deficits were reversed by drinking water to the European Food Safety Authority and Institute of Medicine requirements of 2.5l/day for adult women. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The effects of soy milk and isoflavone supplements on cognitive performance in healthy, postmenopausal women.

    PubMed

    Fournier, L R; Ryan Borchers, T A; Robison, L M; Wiediger, M; Park, J S; Chew, B P; McGuire, M K; Sclar, D A; Skaer, T L; Beerman, K A

    2007-01-01

    The decline in estrogen concentrations in women after menopause can contribute to health related changes including impairments in cognition, especially memory. Because of the health concerns related to hormone replacement therapy (HRT), alternative approaches to treat menopausal symptoms, such as nutritional supplements and/or diet containing isoflavones, are of interest. This study investigated whether soy isoflavones (soy milk and supplement) could improve cognitive functioning in healthy, postmenopausal women. PARTICIPANTS, INTERVENTION AND DESIGN: A total of 79 postmenopausal women, 48-65 years of age, completed a double-blind, placebo-controlled trial in which they were randomly assigned to one of three experimental groups: cow's milk and a placebo supplement (control); soy milk and placebo supplement (soy milk, 72 mg isoflavones/day); or cow's milk and isoflavone supplement (isoflavone supplement, 70 mg isoflavones/day). Cognitive functioning was assessed using various cognitive tasks before the intervention (baseline) and after the intervention (test). In contrast to predictions, soy isoflavones did not improve selective attention (Stroop task), visual long-term memory (pattern recognition), short-term visuospatial memory (Benton Visual Retention Test), or visuo-spatial working memory (color match task). Also, the soy milk group showed a decline in verbal working memory (Digit Ordering Task) compared to the soy supplement and control groups. Soy isoflavones consumed as a food or supplement over a 16-week period did not improve or appreciably affect cognitive functioning in healthy, postmenopausal women.

  3. Effects of proprioceptive circuit exercise on knee joint pain and muscle function in patients with knee osteoarthritis.

    PubMed

    Ju, Sung-Bum; Park, Gi Duck; Kim, Sang-Soo

    2015-08-01

    [Purpose] This study applied proprioceptive circuit exercise to patients with degenerative knee osteoarthritis and examined its effects on knee joint muscle function and the level of pain. [Subjects] In this study, 14 patients with knee osteoarthritis in two groups, a proprioceptive circuit exercise group (n = 7) and control group (n = 7), were examined. [Methods] IsoMed 2000 (D&R Ferstl GmbH, Hemau, Germany) was used to assess knee joint muscle function, and a Visual Analog Scale was used to measure pain level. [Results] In the proprioceptive circuit exercise group, knee joint muscle function and pain levels improved significantly, whereas in the control group, no significant improvement was observed. [Conclusion] A proprioceptive circuit exercise may be an effective way to strengthen knee joint muscle function and reduce pain in patients with knee osteoarthritis.

  4. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation.

    PubMed

    Ballios, Brian G; Cooke, Michael J; Donaldson, Laura; Coles, Brenda L K; Morshead, Cindi M; van der Kooy, Derek; Shoichet, Molly S

    2015-06-09

    The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC) and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC)-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs). The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. An intensive virtual reality program improves functional balance and mobility of adolescents with cerebral palsy.

    PubMed

    Brien, Marie; Sveistrup, Heidi

    2011-01-01

    To examine functional balance and mobility in adolescents with cerebral palsy classified at Gross Motor Function Classification System (GMFCS) level I following an intensive short-duration virtual reality (VR) intervention. Single-subject, multiple-baseline design with 4 adolescents. Outcomes included the Community Balance and Mobility Scale (CB&M), the 6-Minute Walk Test (6MWT), the Timed Up and Down Stairs, and the Gross Motor Function Measure Dimension E. Assessments were recorded 3 to 6 times at baseline, 5 times during intervention, and 4 times at follow-up. Daily 90-minute VR intervention was completed for 5 consecutive days. Visual, statistical, and clinical significance analyses were used. Statistically significant improvements were shown in all adolescents on CB&M and 6MWT. True change was recorded in all for the CB&M and in 3 for the 6MWT. Functional balance and mobility in adolescents with cerebral palsy classified at GMFCS level I improve with intense, short duration VR intervention, and changes are maintained at 1-month posttraining.

  6. Teaching Function and Practice Thinking of Psychological Movies

    ERIC Educational Resources Information Center

    Wu, Weidong

    2010-01-01

    Psychology teaching was implemented in virtue of excellent psychological movies, which not only could help to stimulate students' interest, and make the abstract theory concretion and visualization, but also provide the scenes similar to the reality for students' learning with attempts to improve their learning achievement. However, as for the…

  7. The Efficacy of Optometric Vision Therapy.

    ERIC Educational Resources Information Center

    Journal of the American Optometric Association, 1988

    1988-01-01

    This review aims to document the efficacy and validity of vision therapy for modifying and improving vision functioning. The paper describes the essential components of the visual system and disorders which can be physiologically and clinically identified. Vision therapy is defined as a clinical approach for correcting and ameliorating the effects…

  8. From motor cortex to visual cortex: the application of noninvasive brain stimulation to amblyopia.

    PubMed

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2012-04-01

    Noninvasive brain stimulation is a technique for inducing changes in the excitability of discrete neural populations in the human brain. A current model of the underlying pathological processes contributing to the loss of motor function after stroke has motivated a number of research groups to investigate the potential therapeutic application of brain stimulation to stroke rehabilitation. The loss of motor function is modeled as resulting from a combination of reduced excitability in the lesioned motor cortex and an increased inhibitory drive from the nonlesioned hemisphere over the lesioned hemisphere. This combination of impaired neural function and pathological suppression resonates with current views on the cause of the visual impairment in amblyopia. Here, we discuss how the rationale for using noninvasive brain stimulation in stroke rehabilitation can be applied to amblyopia, review a proof-of-principle study demonstrating that brain stimulation can temporarily improve amblyopic eye function, and propose future research avenues. Copyright © 2010 Wiley Periodicals, Inc.

  9. Small-Gauge Pars Plana Vitrectomy for the Management of Symptomatic Posterior Vitreous Detachment after Phacoemulsification and Multifocal Intraocular Lens Implantation: A Pilot Study from the Pan-American Collaborative Retina Study Group

    PubMed Central

    Navarro, Rodrigo M.; Machado, Leonardo M.; Maia, Ossires; Wu, Lihteh; Farah, Michel E.; Magalhaes, Octaviano; Arevalo, J. Fernando; Maia, Mauricio

    2015-01-01

    Purpose. To determine the efficacy of 23-gauge pars plana vitrectomy (PPV) for symptomatic posterior vitreous detachment (PVD) on visual acuity (VA) and quality after multifocal intraocular lenses (IOLs). Methods. In this prospective case series, patients who developed symptomatic PVD and were not satisfied with visual quality due to floaters and halos after multifocal IOL implantation underwent PPV. Examinations included LogMAR uncorrected visual acuity (UCVA), intraocular pressure, biomicroscopy, and indirect ophthalmoscopy at baseline and 1, 7, 30, and 180 days postoperatively. Ultrasonography and aberrometry were performed. The Visual Functioning Questionnaire 25 (VFQ-25) was administered preoperatively and at 30 days postoperatively. Both the postoperative UCVA and questionnaire results were compared to preoperative findings using the Wilcoxon test. Results. Sixteen eyes of 8 patients were included. VA significantly improved from 0.17 to 0.09 postoperatively (P = 0.017). All patients reported improvement of halos, glare, and floaters. VFQ-25 scores significantly improved in general vision (P = 0.023), near activities (P = 0.043), distance activities (P = 0.041), mental health (P = 0.011), role difficulties (P = 0.042), and driving (P = 0.016). Conclusion. PPV may increase UCVA and quality of vision in patients with bilateral multifocal IOLs and symptomatic PVD. Larger studies are advised. PMID:26504590

  10. Improved Intraoperative Visualization of Nerves through a Myelin-Binding Fluorophore and Dual-Mode Laparoscopic Imaging.

    PubMed

    Cotero, Victoria E; Kimm, Simon Y; Siclovan, Tiberiu M; Zhang, Rong; Kim, Evgenia M; Matsumoto, Kazuhiro; Gondo, Tatsuo; Scardino, Peter T; Yazdanfar, Siavash; Laudone, Vincent P; Tan Hehir, Cristina A

    2015-01-01

    The ability to visualize and spare nerves during surgery is critical for avoiding chronic morbidity, pain, and loss of function. Visualization of such critical anatomic structures is even more challenging during minimal access procedures because the small incisions limit visibility. In this study, we focus on improving imaging of nerves through the use of a new small molecule fluorophore, GE3126, used in conjunction with our dual-mode (color and fluorescence) laparoscopic imaging instrument. GE3126 has higher aqueous solubility, improved pharmacokinetics, and reduced non-specific adipose tissue fluorescence compared to previous myelin-binding fluorophores. Dosing and kinetics were initially optimized in mice. A non-clinical modified Irwin study in rats, performed to assess the potential of GE3126 to induce nervous system injuries, showed the absence of major adverse reactions. Real-time intraoperative imaging was performed in a porcine model. Compared to white light imaging, nerve visibility was enhanced under fluorescence guidance, especially for small diameter nerves obscured by fascia, blood vessels, or adipose tissue. In the porcine model, nerve visualization was observed rapidly, within 5 to 10 minutes post-intravenous injection and the nerve fluorescence signal was maintained for up to 80 minutes. The use of GE3126, coupled with practical implementation of an imaging instrument may be an important step forward in preventing nerve damage in the operating room.

  11. Electrical Capacitance Tomography Measurement of the Migration of Ice Frontal Surface in Freezing Soil

    NASA Astrophysics Data System (ADS)

    Liu, J.; Suo, X. M.; Zhou, S. S.; Meng, S. Q.; Chen, S. S.; Mu, H. P.

    2016-12-01

    The tracking of the migration of ice frontal surface is crucial for the understanding of the underlying physical mechanisms in freezing soil. Owing to the distinct advantages, including non-invasive sensing, high safety, low cost and high data acquisition speed, the electrical capacitance tomography (ECT) is considered to be a promising visualization measurement method. In this paper, the ECT method is used to visualize the migration of ice frontal surface in freezing soil. With the main motivation of the improvement of imaging quality, a loss function with multiple regularizers that incorporate the prior formation related to the imaging objects is proposed to cast the ECT image reconstruction task into an optimization problem. An iteration scheme that integrates the superiority of the split Bregman iteration (SBI) method is developed for searching for the optimal solution of the proposed loss function. An unclosed electrodes sensor is designed for satisfying the requirements of practical measurements. An experimental system of one dimensional freezing in frozen soil is constructed, and the ice frontal surface migration in the freezing process of the wet soil sample containing five percent of moisture is measured. The visualization measurement results validate the feasibility and effectiveness of the ECT visualization method

  12. JBrowse: A dynamic web platform for genome visualization and analysis

    DOE PAGES

    Buels, Robert; Yao, Eric; Diesh, Colin M.; ...

    2016-04-12

    Background: JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. Results: Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. Conclusions: JBrowsemore » is a mature web application suitable for genome visualization and analysis.« less

  13. Effectiveness of a Binocular Video Game vs Placebo Video Game for Improving Visual Functions in Older Children, Teenagers, and Adults With Amblyopia: A Randomized Clinical Trial.

    PubMed

    Gao, Tina Y; Guo, Cindy X; Babu, Raiju J; Black, Joanna M; Bobier, William R; Chakraborty, Arijit; Dai, Shuan; Hess, Robert F; Jenkins, Michelle; Jiang, Yannan; Kearns, Lisa S; Kowal, Lionel; Lam, Carly S Y; Pang, Peter C K; Parag, Varsha; Pieri, Roberto; Raveendren, Rajkumar Nallour; South, Jayshree; Staffieri, Sandra Elfride; Wadham, Angela; Walker, Natalie; Thompson, Benjamin

    2018-02-01

    Binocular amblyopia treatment using contrast-rebalanced stimuli showed promise in laboratory studies and requires clinical trial investigation in a home-based setting. To compare the effectiveness of a binocular video game with a placebo video game for improving visual functions in older children and adults. The Binocular Treatment of Amblyopia Using Videogames clinical trial was a multicenter, double-masked, randomized clinical trial. Between March 2014 and June 2016, 115 participants 7 years and older with unilateral amblyopia (amblyopic eye visual acuity, 0.30-1.00 logMAR; Snellen equivalent, 20/40-20/200) due to anisometropia, strabismus, or both were recruited. Eligible participants were allocated with equal chance to receive either the active or the placebo video game, with minimization stratified by age group (child, age 7 to 12 years; teenager, age 13 to 17 years; and adult, 18 years and older). Falling-blocks video games played at home on an iPod Touch for 1 hour per day for 6 weeks. The active video game had game elements split between eyes with a dichoptic contrast offset (mean [SD] initial fellow eye contrast, 0.23 [0.14]). The placebo video game presented identical images to both eyes. Change in amblyopic eye visual acuity at 6 weeks. Secondary outcomes included compliance, stereoacuity, and interocular suppression. Participants and clinicians who measured outcomes were masked to treatment allocation. Of the 115 included participants, 65 (56.5%) were male and 83 (72.2%) were white, and the mean (SD) age at randomization was 21.5 (13.6) years. There were 89 participants (77.4%) who had prior occlusion. The mean (SD) amblyopic eye visual acuity improved 0.06 (0.12) logMAR from baseline in the active group (n = 56) and 0.07 (0.10) logMAR in the placebo group (n = 59). The mean treatment difference between groups, adjusted for baseline visual acuity and age group, was -0.02 logMAR (95% CI, -0.06 to 0.02; P = .25). Compliance with more than 25% of prescribed game play was achieved by 36 participants (64%) in the active group and by 49 (83%) in the placebo group. At 6 weeks, 36 participants (64%) in the active group achieved fellow eye contrast greater than 0.9 in the binocular video game. No group differences were observed for any secondary outcomes. Adverse effects included 3 reports of transient asthenopia. The specific home-based binocular falling-blocks video game used in this clinical trial did not improve visual outcomes more than the placebo video game despite increases in fellow eye contrast during game play. More engaging video games with considerations for compliance may improve effectiveness. anzctr.org.au Identifier: ACTRN12613001004752.

  14. Changes in vision related quality of life in patients with diabetic macular edema: ranibizumab or laser treatment?

    PubMed

    Turkoglu, Elif Betul; Celık, Erkan; Aksoy, Nilgun; Bursalı, Ozlem; Ucak, Turgay; Alagoz, Gursoy

    2015-01-01

    To compare the changes in vision related quality of life (VR-QoL) in patients with diabetic macular edema (DME) undergoing intravitreal ranibizumab (IVR) injection or focal/grid laser. In this prospective study, 70 patients with clinically significant macular edema (CSME) were randomized to undergo IVR injection (n=35) and focal/grid laser (n=35). If necessary, the laser or ranibizumab injections were repeated. Distance and near visual acuities, central retinal thickness (CRT) and The 25-item Visual Function Questionnaire (VFQ-25) were used to measure the effectiveness of treatments and VR-QoL before and after 6 months following IVR or laser treatment. The demographic and clinical findings before the treatments were similar in both main groups. The improvements in distance and near visual acuities were higher in IVR group than the laser group (p<0.01). The reduction in CRT in IVR group was higher than that in laser treatment group (p<0.01). In both groups, the VFQ-25 composite score tended to improve from baseline to 6 months. And at 6th month, the changes in composite score were significantly higher in IVR group than in laser group (p<0.05). The improvements in overall composite scores were 6.3 points for the IVR group compared with 3.0 points in the laser group. Patients treated with IVR and laser had large improvements in composite scores, general vision, near and distance visual acuities in VFQ-25 at 6 months, in comparison with baseline scores, and also mental health subscale in IVR group. Our study revealed that IVR improved not only visual acuity or CRT, but also vision related quality of life more than laser treatment in DME. And these patient-reported outcomes may play an important role in the treatment choice in DME for clinicians. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Neurofibromatosis type 1 and attention deficit hyperactivity disorder: a case study and literature review

    PubMed Central

    Miguel, Carmen Sílvia; Chaim-Avancini, Tiffany M; Silva, Maria Aparecida; Louzã, Mario Rodrigues

    2015-01-01

    Background The cognitive profile of children with neurofibromatosis type 1 (NF1) and attention deficit hyperactivity disorder (ADHD) has been well characterized, but few studies have evaluated the cognitive abilities of adults with NF1 and ADHD. Objectives We investigated 1) the cognitive profile of an adult patient with NF1 and inattention problems, 2) changes in his cognition after 14 months of follow-up, and 3) whether the patient exhibited comorbid NF1 and ADHD or secondary ADHD-like symptoms. Methods We administered neuropsychological tests of executive function, attention, verbal and visual memory, visuospatial function, and language during two evaluations separated by 14 months. Results We found no changes in sustained attention, language, or verbal memory. Visual memory, verbal learning, selective attention inhibitory control, and problem solving declined over time, whereas visual search, psychomotor speed, visuospatial function, and mental flexibility improved. Conclusion Our patient exhibited a cognitive profile characteristic of both NF1 and ADHD, leading to the hypothesis that the patient had comorbid ADHD instead of secondary ADHD-like symptoms. More studies are necessary to characterize the cognition of patients with NF1 and ADHD. PMID:25848279

  16. Investigating the impact of audio instruction and audio-visual biofeedback for lung cancer radiation therapy

    NASA Astrophysics Data System (ADS)

    George, Rohini

    Lung cancer accounts for 13% of all cancers in the Unites States and is the leading cause of deaths among both men and women. The five-year survival for lung cancer patients is approximately 15%.(ACS facts & figures) Respiratory motion decreases accuracy of thoracic radiotherapy during imaging and delivery. To account for respiration, generally margins are added during radiation treatment planning, which may cause a substantial dose delivery to normal tissues and increase the normal tissue toxicity. To alleviate the above-mentioned effects of respiratory motion, several motion management techniques are available which can reduce the doses to normal tissues, thereby reducing treatment toxicity and allowing dose escalation to the tumor. This may increase the survival probability of patients who have lung cancer and are receiving radiation therapy. However the accuracy of these motion management techniques are inhibited by respiration irregularity. The rationale of this thesis was to study the improvement in regularity of respiratory motion by breathing coaching for lung cancer patients using audio instructions and audio-visual biofeedback. A total of 331 patient respiratory motion traces, each four minutes in length, were collected from 24 lung cancer patients enrolled in an IRB-approved breathing-training protocol. It was determined that audio-visual biofeedback significantly improved the regularity of respiratory motion compared to free breathing and audio instruction, thus improving the accuracy of respiratory gated radiotherapy. It was also observed that duty cycles below 30% showed insignificant reduction in residual motion while above 50% there was a sharp increase in residual motion. The reproducibility of exhale based gating was higher than that of inhale base gating. Modeling the respiratory cycles it was found that cosine and cosine 4 models had the best correlation with individual respiratory cycles. The overall respiratory motion probability distribution function could be approximated to a normal distribution function. A statistical analysis was also performed to investigate if a patient's physical, tumor or general characteristics played a role in identifying whether he/she responded positively to the coaching type---signified by a reduction in the variability of respiratory motion. The analysis demonstrated that, although there were some characteristics like disease type and dose per fraction that were significant with respect to time-independent analysis, there were no significant time trends observed for the inter-session or intra-session analysis. Based on patient feedback with the existing audio-visual biofeedback system used for the study and research performed on other feedback systems, an improved audio-visual biofeedback system was designed. It is hoped the widespread clinical implementation of audio-visual biofeedback for radiotherapy will improve the accuracy of lung cancer radiotherapy.

  17. Randomized, double-blind, placebo-controlled study of zeaxanthin and visual function in patients with atrophic age-related macular degeneration: the Zeaxanthin and Visual Function Study (ZVF) FDA IND #78, 973.

    PubMed

    Richer, Stuart P; Stiles, William; Graham-Hoffman, Kelly; Levin, Marc; Ruskin, Dennis; Wrobel, James; Park, Dong-Wouk; Thomas, Carla

    2011-11-01

    The purpose of this study is to evaluate whether dietary supplementation with the carotenoid zeaxanthin (Zx) raises macula pigment optical density (MPOD) and has unique visual benefits for patients with early atrophic macular degeneration having visual symptoms but lower-risk National Institute of Health/National Eye Institute/Age-Related Eye Disease Study characteristics. This was a 1-year, n = 60 (57 men, 3 women), 4-visit, intention-to-treat, prospective, randomized controlled clinical trial of patients (74.9 years, standard deviation [SD] 10) with mild-to-moderate age-related macular degeneration (AMD) randomly assigned to 1 of 2 dietary supplement carotenoid pigment intervention groups: 8 mg Zx (n = 25) and 8 mg Zx plus 9 mg lutein (L) (n = 25) or 9 mg L ("Faux Placebo," control group, n = 10). Analysis was by Bartlett's test for equal variance, 3-way repeated factors analysis of variance, independent t test (P < 0.05) for variance and between/within group differences, and post-hoc Scheffé's tests. Estimated foveal heterochromic flicker photometry, 1° macular pigment optical density (MPOD QuantifEye(®)), low- and high-contrast visual acuity, foveal shape discrimination (Retina Foundation of the Southwest), 10° yellow kinetic visual fields (KVF), glare recovery, contrast sensitivity function (CSF), and 6° blue cone ChromaTest(®) color thresholds were obtained serially at 4, 8, and 12 months. Ninety percent of subjects completed ≥ 2 visits with an initial Age-Related Eye Disease Study report #18 retinopathy score of 1.4 (1.0 SD)/4.0 and pill intake compliance of 96% with no adverse effects. There were no intergroup differences in 3 major AMD risk factors: age, smoking, and body mass index as well as disease duration and Visual Function Questionnaire 25 composite score differences. Randomization resulted in equal MPOD variance and MPOD increasing in each of the 3 groups from 0.33 density units (du) (0.17 SD) baseline to 0.51 du (0.18 SD) at 12 m, (P = 0.03), but no between-group differences (Analysis of Variance; P = 0.47). In the Zx group, detailed high-contrast visual acuity improved by 1.5 lines, Retina Foundation of the Southwest shape discrimination sharpened from 0.97 to 0.57 (P = 0.06, 1-tail), and a larger percentage of Zx patients experienced clearing of their KVF central scotomas (P = 0.057). The "Faux Placebo" L group was superior in terms of low-contrast visual acuity, CSF, and glare recovery, whereas Zx showed a trend toward significance. In older male patients with AMD, Zx-induced foveal MPOD elevation mirrored that of L and provided complementary distinct visual benefits by improving foveal cone-based visual parameters, whereas L enhanced those parameters associated with gross detailed rod-based vision, with considerable overlap between the 2 carotenoids. The equally dosed (atypical dietary ratio) Zx plus L group fared worse in terms of raising MPOD, presumably because of duodenal, hepatic-lipoprotein or retinal carotenoid competition. These results make biological sense based on retinal distribution and Zx foveal predominance. Published by Elsevier Inc.

  18. Development of a preference-based index from the National Eye Institute Visual Function Questionnaire-25.

    PubMed

    Rentz, Anne M; Kowalski, Jonathan W; Walt, John G; Hays, Ron D; Brazier, John E; Yu, Ren; Lee, Paul; Bressler, Neil; Revicki, Dennis A

    2014-03-01

    Understanding how individuals value health states is central to patient-centered care and to health policy decision making. Generic preference-based measures of health may not effectively capture the impact of ocular diseases. Recently, 6 items from the National Eye Institute Visual Function Questionnaire-25 were used to develop the Visual Function Questionnaire-Utility Index health state classification, which defines visual function health states. To describe elicitation of preferences for health states generated from the Visual Function Questionnaire-Utility Index health state classification and development of an algorithm to estimate health preference scores for any health state. Nonintervention, cross-sectional study of the general community in 4 countries (Australia, Canada, United Kingdom, and United States). A total of 607 adult participants were recruited from local newspaper advertisements. In the United Kingdom, an existing database of participants from previous studies was used for recruitment. Eight of 15,625 possible health states from the Visual Function Questionnaire-Utility Index were valued using time trade-off technique. A θ severity score was calculated for Visual Function Questionnaire-Utility Index-defined health states using item response theory analysis. Regression models were then used to develop an algorithm to assign health state preference values for all potential health states defined by the Visual Function Questionnaire-Utility Index. Health state preference values for the 8 states ranged from a mean (SD) of 0.343 (0.395) to 0.956 (0.124). As expected, preference values declined with worsening visual function. Results indicate that the Visual Function Questionnaire-Utility Index describes states that participants view as spanning most of the continuum from full health to dead. Visual Function Questionnaire-Utility Index health state classification produces health preference scores that can be estimated in vision-related studies that include the National Eye Institute Visual Function Questionnaire-25. These preference scores may be of value for estimating utilities in economic and health policy analyses.

  19. Predictive factors for postoperative visual function of primary chronic rhegmatogenous retinal detachment after scleral buckling.

    PubMed

    Fang, Wei; Li, Jiu-Ke; Jin, Xiao-Hong; Dai, Yuan-Min; Li, Yu-Min

    2016-01-01

    To evaluate predictive factors for postoperative visual function of primary chronic rhegmatgenous retinal detachment (RRD) after sclera buckling (SB). Totally 48 patients (51 eyes) with primary chronic RRD were included in this prospective interventional clinical cases study, which underwent SB alone from June 2008 to December 2014. Age, sex, symptoms duration, detached extension, retinal hole position, size, type, fovea on/off, proliferative vitreoretinopathy (PVR), posterior vitreous detachment (PVD), baseline best corrected visual acuity (BCVA), operative duration, follow up duration, final BCVA were measured. Pearson correlation analysis, Spearman correlation analysis and multivariate linear stepwise regression were used to confirm predictive factors for better final visual acuity. Student's t-test, Wilcoxon two-sample test, Chi-square test and logistic stepwise regression were used to confirm predictive factors for better vision improvement. Baseline BCVA was 0.8313±0.6911 logMAR and final BCVA was 0.4761±0.4956 logMAR. Primary surgical success rate was 92.16% (47/51). Correlation analyses revealed shorter symptoms duration (r=0.3850, P=0.0053), less detached area (r=0.5489, P<0.0001), fovea (r=0.4605, P=0.0007), no PVR (r=0.3138, P=0.0250), better baseline BCVA (r=0.7291, P<0.0001), shorter operative duration (r=0.3233, P=0.0207) and longer follow up (r=-0.3358, P=0.0160) were related with better final BCVA, while independent predictive factors were better baseline BCVA [partial R-square (PR(2))=0.5316, P<0.0001], shorter symptoms duration (PR(2)=0.0609, P=0.0101), longer follow up duration (PR(2)=0.0278, P=0.0477) and shorter operative duration (PR(2)=0.0338, P=0.0350). Patients with vision improvement took up 49.02% (25/51). Univariate and multivariate analyses both revealed predictive factors for better vision improvement were better baseline vision [odds ratio (OR) =50.369, P=0.0041] and longer follow up duration (OR=1.144, P=0.0067). Independent predictive factors for better visual outcome of primary chronic RRD after SB are better baseline BCVA, shorter symptoms duration, shorter operative duration and longer follow up duration, while independent predictive factors for better vision improvement after operation are better baseline vision and longer follow up duration.

  20. Atlas and feature based 3D pathway visualization enhancement for skull base pre-operative fast planning from head CT

    NASA Astrophysics Data System (ADS)

    Aghdasi, Nava; Li, Yangming; Berens, Angelique; Moe, Kris S.; Bly, Randall A.; Hannaford, Blake

    2015-03-01

    Minimally invasive neuroendoscopic surgery provides an alternative to open craniotomy for many skull base lesions. These techniques provides a great benefit to the patient through shorter ICU stays, decreased post-operative pain and quicker return to baseline function. However, density of critical neurovascular structures at the skull base makes planning for these procedures highly complex. Furthermore, additional surgical portals are often used to improve visualization and instrument access, which adds to the complexity of pre-operative planning. Surgical approach planning is currently limited and typically involves review of 2D axial, coronal, and sagittal CT and MRI images. In addition, skull base surgeons manually change the visualization effect to review all possible approaches to the target lesion and achieve an optimal surgical plan. This cumbersome process relies heavily on surgeon experience and it does not allow for 3D visualization. In this paper, we describe a rapid pre-operative planning system for skull base surgery using the following two novel concepts: importance-based highlight and mobile portal. With this innovation, critical areas in the 3D CT model are highlighted based on segmentation results. Mobile portals allow surgeons to review multiple potential entry portals in real-time with improved visualization of critical structures located inside the pathway. To achieve this we used the following methods: (1) novel bone-only atlases were manually generated, (2) orbits and the center of the skull serve as features to quickly pre-align the patient's scan with the atlas, (3) deformable registration technique was used for fine alignment, (4) surgical importance was assigned to each voxel according to a surgical dictionary, and (5) pre-defined transfer function was applied to the processed data to highlight important structures. The proposed idea was fully implemented as independent planning software and additional data are used for verification and validation. The experimental results show: (1) the proposed methods provided greatly improved planning efficiency while optimal surgical plans were successfully achieved, (2) the proposed methods successfully highlighted important structures and facilitated planning, (3) the proposed methods require shorter processing time than classical segmentation algorithms, and (4) these methods can be used to improve surgical safety for surgical robots.

Top