Sample records for visual hemifield contralateral

  1. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning

    PubMed Central

    Larcombe, Stephanie J.; Kennard, Chris

    2017-01-01

    Abstract Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145–156, 2018. © 2017 Wiley Periodicals, Inc. PMID:28963815

  2. What Does Ipsilateral Delay Activity Reflect? Inferences from Slow Potentials in a Lateralized Visual Working Memory Task

    ERIC Educational Resources Information Center

    Arend, Anna M.; Zimmer, Hubert D.

    2011-01-01

    In the lateralized change detection task, two item arrays are presented, one on each side of the display. Participants have to remember the items in the relevant hemifield and ignore the items in the irrelevant hemifield. A difference wave between contralateral and ipsilateral slow potentials with respect to the relevant items, the contralateral…

  3. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning.

    PubMed

    Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly

    2018-01-01

    Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Topographic organization, number, and laminar distribution of callosal cells connecting visual cortical areas 17 and 18 of normally pigmented and Siamese cats.

    PubMed

    Berman, N E; Grant, S

    1992-07-01

    The callosal connections between visual cortical areas 17 and 18 in adult normally pigmented and "Boston" Siamese cats were studied using degeneration methods, and by transport of WGA-HRP combined with electrophysiological mapping. In normal cats, over 90% of callosal neurons were located in the supragranular layers. The supragranular callosal cell zone spanned the area 17/18 border and extended, on average, some 2-3 mm into both areas to occupy a territory which was roughly co-extensive with the distribution of callosal terminations in these areas. The region of the visual field adjoining the vertical meridian that was represented by neurons in the supragranular callosal cell zone was shown to increase systematically with decreasing visual elevation. Thus, close to the area centralis, receptive-field centers recorded from within this zone extended only up to 5 deg into the contralateral hemifield but at elevations of -10 deg and -40 deg they extended as far as 8 deg and 14 deg, respectively, into this hemifield. This suggests an element of visual non-correspondence in the callosal pathway between these cortical areas, which may be an essential substrate for "coarse" stereopsis at the visual midline. In the Siamese cats, the callosal cell and termination zones in areas 17 and 18 were expanded in width compared to the normal animals, but the major components were less robust. The area 17/18 border was often devoid of callosal axons and, in particular, the number of supragranular layer neurons participating in the pathway were drastically reduced, to only about 25% of those found in the normally pigmented adults. The callosal zones contained representations of the contralateral and ipsilateral hemifields that were roughly mirror-symmetric about the vertical meridian, and both hemifield representations increased with decreasing visual elevation. The extent and severity of the anomalies observed were similar across individual cats, regardless of whether a strabismus was also present. The callosal pathway between these visual cortical areas in the Siamese cat has been considered "silent," since nearly all neurons within its territory are activated only by the contralateral eye. The paucity of supragranular pyramidal neurons involved in the pathway may explain this silence.

  5. Stimulus Load and Oscillatory Activity in Higher Cortex

    PubMed Central

    Kornblith, Simon; Buschman, Timothy J.; Miller, Earl K.

    2016-01-01

    Exploring and exploiting a rich visual environment requires perceiving, attending, and remembering multiple objects simultaneously. Recent studies have suggested that this mental “juggling” of multiple objects may depend on oscillatory neural dynamics. We recorded local field potentials from the lateral intraparietal area, frontal eye fields, and lateral prefrontal cortex while monkeys maintained variable numbers of visual stimuli in working memory. Behavior suggested independent processing of stimuli in each hemifield. During stimulus presentation, higher-frequency power (50–100 Hz) increased with the number of stimuli (load) in the contralateral hemifield, whereas lower-frequency power (8–50 Hz) decreased with the total number of stimuli in both hemifields. During the memory delay, lower-frequency power increased with contralateral load. Load effects on higher frequencies during stimulus encoding and lower frequencies during the memory delay were stronger when neural activity also signaled the location of the stimuli. Like power, higher-frequency synchrony increased with load, but beta synchrony (16–30 Hz) showed the opposite effect, increasing when power decreased (stimulus presentation) and decreasing when power increased (memory delay). Our results suggest roles for lower-frequency oscillations in top-down processing and higher-frequency oscillations in bottom-up processing. PMID:26286916

  6. Effects of subjective preference of colors on attention-related occipital theta oscillations.

    PubMed

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2012-01-02

    Human daily behaviors are often affected by subjective preferences. Studies have shown that physical responses are affected by unconscious preferences before conscious decision making. Accordingly, attention-related neural activities could be influenced by unconscious preferences. However, few neurological data exist on the relationship between visual attention and subjective preference. To address this issue, we focused on lateralization during visual attention and investigated the effects of subjective color preferences on visual attention-related brain activities. We recorded electroencephalograph (EEG) data during a preference judgment task that required 19 participants to choose their preferred color from 2 colors simultaneously presented to the right and left hemifields. In addition, to identify oscillatory activity during visual attention, we conducted a control experiment in which the participants focused on either the right or the left color without stating their preference. The EEG results showed enhanced theta (4-6 Hz) and decreased alpha (10-12 Hz) activities in the right and left occipital electrodes when the participants focused on the color in the opposite hemifield. Occipital theta synchronizations also increased contralaterally to the hemifield to which the preferred color was presented, whereas the alpha desynchronizations showed no lateralization. The contralateral occipital theta activity lasted longer than the ipsilateral occipital theta activity. Interestingly, theta lateralization was observed even when the preferred color was presented to the unattended side in the control experiment, revealing the strength of the preference-related theta-modulation effect irrespective of visual attention. These results indicate that subjective preferences modulate visual attention-related brain activities. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  7. The Effects of Bilateral Presentations on Lateralized Lexical Decision

    ERIC Educational Resources Information Center

    Fernandino, Leonardo; Iacoboni, Marco; Zaidel, Eran

    2007-01-01

    We investigated how lateralized lexical decision is affected by the presence of distractors in the visual hemifield contralateral to the target. The study had three goals: first, to determine how the presence of a distractor (either a word or a pseudoword) affects visual field differences in the processing of the target; second, to identify the…

  8. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory.

    PubMed

    Mitchell, Daniel J; Cusack, Rhodri

    2011-01-01

    An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  9. Alpha oscillations correlate with the successful inhibition of unattended stimuli.

    PubMed

    Händel, Barbara F; Haarmeier, Thomas; Jensen, Ole

    2011-09-01

    Because the human visual system is continually being bombarded with inputs, it is necessary to have effective mechanisms for filtering out irrelevant information. This is partly achieved by the allocation of attention, allowing the visual system to process relevant input while blocking out irrelevant input. What is the physiological substrate of attentional allocation? It has been proposed that alpha activity reflects functional inhibition. Here we asked if inhibition by alpha oscillations has behavioral consequences for suppressing the perception of unattended input. To this end, we investigated the influence of alpha activity on motion processing in two attentional conditions using magneto-encephalography. The visual stimuli used consisted of two random-dot kinematograms presented simultaneously to the left and right visual hemifields. Subjects were cued to covertly attend the left or right kinematogram. After 1.5 sec, a second cue tested whether subjects could report the direction of coherent motion in the attended (80%) or unattended hemifield (20%). Occipital alpha power was higher contralateral to the unattended side than to the attended side, thus suggesting inhibition of the unattended hemifield. Our key finding is that this alpha lateralization in the 20% invalidly cued trials did correlate with the perception of motion direction: Subjects with pronounced alpha lateralization were worse at detecting motion direction in the unattended hemifield. In contrast, lateralization did not correlate with visual discrimination in the attended visual hemifield. Our findings emphasize the suppressive nature of alpha oscillations and suggest that processing of inputs outside the field of attention is weakened by means of increased alpha activity.

  10. Magnetic Stimulation Studies of Foveal Representation

    ERIC Educational Resources Information Center

    Lavidor, Michal; Walsh, Vincent

    2004-01-01

    The right and left visual fields each project to the contralateral cerebral hemispheres, but the extent of the functional overlap of the two hemifields along the vertical meridian is still under debate. After presenting the spatial, temporal, and functional specifications of Transcranial Magnetic Stimulation (TMS), we show that TMS is particularly…

  11. Contralateral Cortical Organisation of Information in Visual Short-Term Memory: Evidence from Lateralized Brain Activity during Retrieval

    ERIC Educational Resources Information Center

    Fortier-Gauthier, Ulysse; Moffat, Nicolas; Dell'Acqua, Robert; McDonald, John J.; Jolicoeur, Pierre

    2012-01-01

    We studied brain activity during retention and retrieval phases of two visual short-term memory (VSTM) experiments. Experiment 1 used a balanced memory array, with one color stimulus in each hemifield, followed by a retention interval and a central probe, at the fixation point that designated the target stimulus in memory about which to make a…

  12. ERP effects of spatial attention and display search with unilateral and bilateral stimulus displays.

    PubMed

    Lange, J J; Wijers, A A; Mulder, L J; Mulder, G

    1999-07-01

    Two experiments were performed in which the effects of selective spatial attention on the ERPs elicited by unilateral and bilateral stimulus arrays were compared. In Experiment 1, subjects received a series of grating patterns. In the unilateral condition these gratings were presented one at a time, randomly to the right or left of fixation. In the bilateral condition, gratings were presented in pairs, one to each side of fixation. In the unilateral condition standard ERP effects of visual spatial attention were observed. However, in the bilateral condition we failed to observe an attention related posterior contralateral positivity (overlapping the P1 and N1 components, latency interval about 100-250 ms), as reported in several previous studies. In Experiment 2, we investigated whether attention related ERP lateralizations are affected by the task requirement to search among multiple objects in the visual field. We employed a task paradigm identical to that used by Luck et al. (Luck, S.J., Heinze, H.J., Mangun, G.R., Hillyard, S.A., 1990. Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr. Clin. Neurophysiol. 75, 528-542). Four letters were presented to a visual hemifield, simultaneously to both the attended and unattended hemifields in the bilateral conditions, and to one hemifield only in the unilateral conditions. In a focused attention condition, subjects searched for a target letter at a fixed position, whereas they searched for the target letter among all four letters in the divided attention condition (as in the experiment of Luck et al., 1990). In the bilateral focused attention condition, only the contralateral P1 was enhanced. In the bilateral divided attention condition a prolonged posterior positivity was observed over the hemisphere contralateral to the attended hemifield, comparable to the results of Luck et al. (1990). A comparison of the ERPs elicited in the focused and divided attention conditions revealed a prolonged 'search related negativity'. We discuss possible interactions between this negativity and attention related lateralizations. The display search negativity consisted of two phases, one phase comprised a midline occipital negativity, developing first over the ipsilateral scalp, while the second phase involved two symmetrical occipitotemporal negativities, strongly resembling the N1 in their topography. The display search effect could be modelled with a dipole in a medial occipital (possibly striate) region and two symmetrical dipoles in occipitotemporal brain areas. We hypothesize that this effect reflects a process of rechecking the decaying information of iconic memory in the occipitotemporal object recognition pathway.

  13. Additive effects of emotional content and spatial selective attention on electrocortical facilitation.

    PubMed

    Keil, Andreas; Moratti, Stephan; Sabatinelli, Dean; Bradley, Margaret M; Lang, Peter J

    2005-08-01

    Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.

  14. Visuotopic organization of the cebus pulvinar: a double representation the contralateral hemifield.

    PubMed

    Gattass, R; Oswaldo-Cruz, E; Sousa, A P

    1978-08-18

    The projection of the visual field in the pulvinar nucleus was studied in 17 Cebus monkeys using electrophysiological techniques. Visual space is represented in two regions of the pulvinar; (1) the ventrolateral group, Pvlg, comprising nuclei P delta, P delta, P gamma, P eta and P mu 1; and (2) P mu. In the first group, which corresponds to the pulvinar inferior and ventral part of the pulvinar lateralis, we observed a greater respresentation of the central part of the visual field. Approximately 58% of the volume of the ventrolateral group is concerned with the visual space within 10 degrees of the fovea. This portion of the visual field is represented at its lateral aspects, mainly close to the level of the caudal pole of the lateral geniculate nucleus (LGN). Projection of the vertical meridian runs along its lateral border while that of the horizontal one is found running from the dorsal third of the LGN's hilus to the medial border of the ventro-lateral group. The lower quadrant is represented at its dorsal portion while the upper quadrant is represented at the ventral one. In Pmu the representation is rotated 90 degrees clockwise around the rostrocaudal axis: the vertical meridian is found at the ventromedial border of this nucleus. Thus, the lower quadrant is represented at the later portion of Pmu and the upper at its medial portion. Both projections are restricted to the contralateral hemifield.

  15. Visual attention in posterior stroke and relations to alexia.

    PubMed

    Petersen, A; Vangkilde, S; Fabricius, C; Iversen, H K; Delfi, T S; Starrfelt, R

    2016-11-01

    Impaired visual attention is common following strokes in the territory of the middle cerebral artery, particularly in the right hemisphere, while attentional effects of more posterior lesions are less clear. Commonly, such deficits are investigated in relation to specific syndromes like visual agnosia or pure alexia. The aim of this study was to characterize visual processing speed and apprehension span following posterior cerebral artery (PCA) stroke. In addition, the relationship between these attentional parameters and single word reading is investigated, as previous studies have suggested that reduced visual speed and span may explain pure alexia. Eight patients with unilateral PCA strokes (four left hemisphere, four right hemisphere) were selected on the basis of lesion location, rather than the presence of any visual symptoms. Visual attention was characterized by a whole report paradigm allowing for hemifield-specific measurements of processing speed and apprehension span. All patients showed reductions in visual span contralateral to the lesion site, and four patients showed bilateral reductions in visual span despite unilateral lesions (2L; 2R). Six patients showed selective deficits in visual span, though processing speed was unaffected in the same field (ipsi- or contralesionally). Only patients with right hemifield reductions in visual span were impaired in reading, and this could follow either right or left lateralized stroke and was irrespective of visual field impairments. In conclusion, visual span may be affected bilaterally by unilateral PCA-lesions. Reductions in visual span may also be confined to one hemifield, and may be affected in spite of preserved visual processing speed. Furthermore, reduced span in the right visual field seems to be related to reading impairment in this group, regardless of lesion lateralization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.

    PubMed

    Schwartz, Sophie; Vuilleumier, Patrik; Hutton, Chloe; Maravita, Angelo; Dolan, Raymond J; Driver, Jon

    2005-06-01

    Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.

  17. Spatial updating in human parietal cortex

    NASA Technical Reports Server (NTRS)

    Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.

    2003-01-01

    Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.

  18. The left hemisphere learns what is right: Hemispatial reward learning depends on reinforcement learning processes in the contralateral hemisphere.

    PubMed

    Aberg, Kristoffer Carl; Doell, Kimberly Crystal; Schwartz, Sophie

    2016-08-01

    Orienting biases refer to consistent, trait-like direction of attention or locomotion toward one side of space. Recent studies suggest that such hemispatial biases may determine how well people memorize information presented in the left or right hemifield. Moreover, lesion studies indicate that learning rewarded stimuli in one hemispace depends on the integrity of the contralateral striatum. However, the exact neural and computational mechanisms underlying the influence of individual orienting biases on reward learning remain unclear. Because reward-based behavioural adaptation depends on the dopaminergic system and prediction error (PE) encoding in the ventral striatum, we hypothesized that hemispheric asymmetries in dopamine (DA) function may determine individual spatial biases in reward learning. To test this prediction, we acquired fMRI in 33 healthy human participants while they performed a lateralized reward task. Learning differences between hemispaces were assessed by presenting stimuli, assigned to different reward probabilities, to the left or right of central fixation, i.e. presented in the left or right visual hemifield. Hemispheric differences in DA function were estimated through differential fMRI responses to positive vs. negative feedback in the left vs. right ventral striatum, and a computational approach was used to identify the neural correlates of PEs. Our results show that spatial biases favoring reward learning in the right (vs. left) hemifield were associated with increased reward responses in the left hemisphere and relatively better neural encoding of PEs for stimuli presented in the right (vs. left) hemifield. These findings demonstrate that trait-like spatial biases implicate hemisphere-specific learning mechanisms, with individual differences between hemispheres contributing to reinforcing spatial biases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Frontal Eye Fields Control Attentional Modulation of Alpha and Gamma Oscillations in Contralateral Occipitoparietal Cortex

    PubMed Central

    O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O.

    2015-01-01

    Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8–12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. PMID:25632139

  20. Contralateral cortical organisation of information in visual short-term memory: evidence from lateralized brain activity during retrieval.

    PubMed

    Fortier-Gauthier, Ulysse; Moffat, Nicolas; Dell'Acqua, Roberto; McDonald, John J; Jolicœur, Pierre

    2012-07-01

    We studied brain activity during retention and retrieval phases of two visual short-term memory (VSTM) experiments. Experiment 1 used a balanced memory array, with one color stimulus in each hemifield, followed by a retention interval and a central probe, at the fixation point that designated the target stimulus in memory about which to make a determination of orientation. Retrieval of information from VSTM was associated with an event-related lateralization (ERL) with a contralateral negativity relative to the visual field from which the probed stimulus was originally encoded, suggesting a lateralized organization of VSTM. The scalp distribution of the retrieval ERL was more anterior than what is usually associated with simple maintenance activity, which is consistent with the involvement of different brain structures for these distinct visual memory mechanisms. Experiment 2 was like Experiment 1, but used an unbalanced memory array consisting of one lateral color stimulus in a hemifield and one color stimulus on the vertical mid-line. This design enabled us to separate lateralized activity related to target retrieval from distractor processing. Target retrieval was found to generate a negative-going ERL at electrode sites found in Experiment 1, and suggested representations were retrieved from anterior cortical structures. Distractor processing elicited a positive-going ERL at posterior electrodes sites, which could be indicative of a return to baseline of retention activity for the discarded memory of the now-irrelevant stimulus, or an active inhibition mechanism mediating distractor suppression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Readout from iconic memory and selective spatial attention involve similar neural processes.

    PubMed

    Ruff, Christian C; Kristjánsson, Arni; Driver, Jon

    2007-10-01

    Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus.

  2. Readout From Iconic Memory and Selective Spatial Attention Involve Similar Neural Processes

    PubMed Central

    Ruff, Christian C; Kristjánsson, Árni; Driver, Jon

    2007-01-01

    Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus. PMID:17894608

  3. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.

    PubMed

    Marshall, Tom R; O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O

    2015-01-28

    Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8-12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. Copyright © 2015 the authors 0270-6474/15/351638-10$15.00/0.

  4. The effects of bilateral presentations on lateralized lexical decision.

    PubMed

    Fernandino, Leonardo; Iacoboni, Marco; Zaidel, Eran

    2007-06-01

    We investigated how lateralized lexical decision is affected by the presence of distractors in the visual hemifield contralateral to the target. The study had three goals: first, to determine how the presence of a distractor (either a word or a pseudoword) affects visual field differences in the processing of the target; second, to identify the stage of the process in which the distractor is affecting the decision about the target; and third, to determine whether the interaction between the lexicality of the target and the lexicality of the distractor ("lexical redundancy effect") is due to facilitation or inhibition of lexical processing. Unilateral and bilateral trials were presented in separate blocks. Target stimuli were always underlined. Regarding our first goal, we found that bilateral presentations (a) increased the effect of visual hemifield of presentation (right visual field advantage) for words by slowing down the processing of word targets presented to the left visual field, and (b) produced an interaction between visual hemifield of presentation (VF) and target lexicality (TLex), which implies the use of different strategies by the two hemispheres in lexical processing. For our second goal of determining the processing stage that is affected by the distractor, we introduced a third condition in which targets were always accompanied by "perceptual" distractors consisting of sequences of the letter "x" (e.g., xxxx). Performance on these trials indicated that most of the interaction occurs during lexical access (after basic perceptual analysis but before response programming). Finally, a comparison between performance patterns on the trials containing perceptual and lexical distractors indicated that the lexical redundancy effect is mainly due to inhibition of word processing by pseudoword distractors.

  5. Sustained Splits of Attention within versus across Visual Hemifields Produce Distinct Spatial Gain Profiles.

    PubMed

    Walter, Sabrina; Keitel, Christian; Müller, Matthias M

    2016-01-01

    Visual attention can be focused concurrently on two stimuli at noncontiguous locations while intermediate stimuli remain ignored. Nevertheless, behavioral performance in multifocal attention tasks falters when attended stimuli fall within one visual hemifield as opposed to when they are distributed across left and right hemifields. This "different-hemifield advantage" has been ascribed to largely independent processing capacities of each cerebral hemisphere in early visual cortices. Here, we investigated how this advantage influences the sustained division of spatial attention. We presented six isoeccentric light-emitting diodes (LEDs) in the lower visual field, each flickering at a different frequency. Participants attended to two LEDs that were spatially separated by an intermediate LED and responded to synchronous events at to-be-attended LEDs. Task-relevant pairs of LEDs were either located in the same hemifield ("within-hemifield" conditions) or separated by the vertical meridian ("across-hemifield" conditions). Flicker-driven brain oscillations, steady-state visual evoked potentials (SSVEPs), indexed the allocation of attention to individual LEDs. Both behavioral performance and SSVEPs indicated enhanced processing of attended LED pairs during "across-hemifield" relative to "within-hemifield" conditions. Moreover, SSVEPs demonstrated effective filtering of intermediate stimuli in "across-hemifield" condition only. Thus, despite identical physical distances between LEDs of attended pairs, the spatial profiles of gain effects differed profoundly between "across-hemifield" and "within-hemifield" conditions. These findings corroborate that early cortical visual processing stages rely on hemisphere-specific processing capacities and highlight their limiting role in the concurrent allocation of visual attention to multiple locations.

  6. Hemisphere-Dependent Attentional Modulation of Human Parietal Visual Field Representations

    PubMed Central

    Silver, Michael A.

    2015-01-01

    Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder. PMID:25589746

  7. [Visual hemifield differences in recognition of kanji and hiragana and its relation to hemispheric cerebral asymmetries].

    PubMed

    Miyazaki, T; Sugimoto, Y; Sato, H

    1990-07-01

    Visual hemifield differences in recognition of kanji and hiragana were studied on forty male right handers. A letter of kanji or hiragana was presented unilaterally to the right or left visual hemifield on a CRT display for 123 msec. A hundred and twenty recognition trials were performed for each subject using 20 well-acquainted kanji, 20 unfamiliar kanji and 20 hiragana. Kanji was more accurately recognized in the left visual hemifield than in the right hemifield. This tendency was more prominent in unfamiliar kanji compared with well-acquainted kanji. There were no visual hemifield differences in recognition of hiragana. Learning effects were observed for the right hemifield on kanji and both hemifields on hiragana. The results were discussed in relation to cerebral asymmetries of function. Kanji might be processed in the right cerebral hemisphere as geometric forms. The results on hiragana may be explained by mental set. It is suggested that modes of processing may be different between kanji and hiragana.

  8. Within-Hemifield Competition in Early Visual Areas Limits the Ability to Track Multiple Objects with Attention

    PubMed Central

    Alvarez, George A.; Cavanagh, Patrick

    2014-01-01

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651

  9. Deficient attention modulation of lateralized alpha power in schizophrenia.

    PubMed

    Kustermann, Thomas; Rockstroh, Brigitte; Kienle, Johanna; Miller, Gregory A; Popov, Tzvetan

    2016-06-01

    Modulation of 8-14 Hz (alpha) activity in posterior brain regions is associated with covert attention deployment in visuospatial tasks. Alpha power decrease contralateral to to-be-attended stimuli is believed to foster subsequent processing, such as retention of task-relevant input. Degradation of this alpha-regulation mechanism may reflect an early stage of disturbed attention regulation contributing to impaired attention and working memory commonly found in schizophrenia. The present study tested this hypothesis of early disturbed attention regulation by examining alpha power modulation in a lateralized cued delayed response task in 14 schizophrenia patients (SZ) and 25 healthy controls (HC). Participants were instructed to remember the location of a 100-ms saccade-target cue in the left or right visual hemifield in order to perform a delayed saccade to that location after a retention interval. As expected, alpha power decrease during the retention interval was larger in contralateral than ipsilateral posterior regions, and SZ showed less of this lateralization than did HC. In particular, SZ failed to show hemifield-specific alpha modulation in posterior right hemisphere. Results suggest less efficient modulation of alpha oscillations that are considered critical for attention deployment and item encoding and, hence, may affect subsequent spatial working memory performance. © 2016 Society for Psychophysiological Research.

  10. The Retinotopic Organization of Macaque Occipitotemporal Cortex Anterior to V4 and Caudoventral to the Middle Temporal (MT) Cluster

    PubMed Central

    Janssens, Thomas; Orban, Guy A.

    2014-01-01

    The retinotopic organization of macaque occipitotemporal cortex rostral to area V4 and caudorostral to the recently described middle temporal (MT) cluster of the monkey (Kolster et al., 2009) is not well established. The proposed number of areas within this region varies from one to four, underscoring the ambiguity concerning the functional organization in this region of extrastriate cortex. We used phase-encoded retinotopic functional MRI mapping methods to reveal the functional topography of this cortical domain. Polar-angle maps showed one complete hemifield representation bordering area V4 anteriorly, split into dorsal and ventral counterparts corresponding to the lower and upper visual field quadrants, respectively. The location of this hemifield representation corresponds to area V4A. More rostroventrally, we identified three other complete hemifield representations. Two of these correspond to the dorsal and the ventral posterior inferotemporal areas (PITd and PITv, respectively) as identified in the Felleman and Van Essen (1991) scheme. The third representation has been tentatively named dorsal occipitotemporal area (OTd). Areas V4A, PITd, PITv, and OTd share a central visual field representation, similar to the areas constituting the MT cluster. Furthermore, they vary widely in size and represent the complete contralateral visual field. Functionally, these four areas show little motion sensitivity, unlike those of the MT cluster, and two of them, OTd and PITd, displayed pronounced two-dimensional shape sensitivity. In general, these results suggest that retinotopically organized tissue extends farther into rostral occipitotemporal cortex of the monkey than generally assumed. PMID:25080580

  11. Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention.

    PubMed

    Störmer, Viola S; Alvarez, George A; Cavanagh, Patrick

    2014-08-27

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. Copyright © 2014 the authors 0270-6474/14/3311526-08$15.00/0.

  12. Study of target and non-target interplay in spatial attention task.

    PubMed

    Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree

    2018-02-01

    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.

  13. Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral intraparietal area in macaques.

    PubMed

    Viswanathan, Pooja; Nieder, Andreas

    2017-12-01

    The concept of receptive field (RF) describes the responsiveness of neurons to sensory space. Neurons in the primate association cortices have long been known to be spatially selective but a detailed characterisation and direct comparison of RFs between frontal and parietal association cortices are missing. We sampled the RFs of a large number of neurons from two interconnected areas of the frontal and parietal lobes, the dorsolateral prefrontal cortex (dlPFC) and ventral intraparietal area (VIP), of rhesus monkeys by systematically presenting a moving bar during passive fixation. We found that more than half of neurons in both areas showed spatial selectivity. Single neurons in both areas could be assigned to five classes according to the spatial response patterns: few non-uniform RFs with multiple discrete response maxima could be dissociated from the vast majority of uniform RFs showing a single maximum; the latter were further classified into full-field and confined foveal, contralateral and ipsilateral RFs. Neurons in dlPFC showed a preference for the contralateral visual space and collectively encoded the contralateral visual hemi-field. In contrast, VIP neurons preferred central locations, predominantly covering the foveal visual space. Putative pyramidal cells with broad-spiking waveforms in PFC had smaller RFs than putative interneurons showing narrow-spiking waveforms, but distributed similarly across the visual field. In VIP, however, both putative pyramidal cells and interneurons had similar RFs at similar eccentricities. We provide a first, thorough characterisation of visual RFs in two reciprocally connected areas of a fronto-parietal cortical network. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Illusory conjunctions in visual short-term memory: Individual differences in corpus callosum connectivity and splitting attention between the two hemifields.

    PubMed

    Qin, Shuo; Ray, Nicholas R; Ramakrishnan, Nithya; Nashiro, Kaoru; O'Connell, Margaret A; Basak, Chandramallika

    2016-11-01

    Overloading the capacity of visual attention can result in mistakenly combining the various features of an object, that is, illusory conjunctions. We hypothesize that if the two hemispheres separately process visual information by splitting attention, connectivity of corpus callosum-a brain structure integrating the two hemispheres-would predict the degree of illusory conjunctions. In the current study, we assessed two types of illusory conjunctions using a memory-scanning paradigm; the features were either presented across the two opposite hemifields or within the same hemifield. Four objects, each with two visual features, were briefly presented together followed by a probe-recognition and a confidence rating for the recognition accuracy. MRI scans were also obtained. Results indicated that successful recollection during probe recognition was better for across hemifields conjunctions compared to within hemifield conjunctions, lending support to the bilateral advantage of the two hemispheres in visual short-term memory. Age-related differences regarding the underlying mechanisms of the bilateral advantage indicated greater reliance on recollection-based processing in young and on familiarity-based processing in old. Moreover, the integrity of the posterior corpus callosum was more predictive of opposite hemifield illusory conjunctions compared to within hemifield illusory conjunctions, even after controlling for age. That is, individuals with lesser posterior corpus callosum connectivity had better recognition for objects when their features were recombined from the opposite hemifields than from the same hemifield. This study is the first to investigate the role of the corpus callosum in splitting attention between versus within hemifields. © 2016 Society for Psychophysiological Research.

  15. Visual Cortical Representation of Whole Words and Hemifield-split Word Parts.

    PubMed

    Strother, Lars; Coros, Alexandra M; Vilis, Tutis

    2016-02-01

    Reading requires the neural integration of visual word form information that is split between our retinal hemifields. We examined multiple visual cortical areas involved in this process by measuring fMRI responses while observers viewed words that changed or repeated in one or both hemifields. We were specifically interested in identifying brain areas that exhibit decreased fMRI responses as a result of repeated versus changing visual word form information in each visual hemifield. Our method yielded highly significant effects of word repetition in a previously reported visual word form area (VWFA) in occipitotemporal cortex, which represents hemifield-split words as whole units. We also identified a more posterior occipital word form area (OWFA), which represents word form information in the right and left hemifields independently and is thus both functionally and anatomically distinct from the VWFA. Both the VWFA and the OWFA were left-lateralized in our study and strikingly symmetric in anatomical location relative to known face-selective visual cortical areas in the right hemisphere. Our findings are consistent with the observation that category-selective visual areas come in pairs and support the view that neural mechanisms in left visual cortex--especially those that evolved to support the visual processing of faces--are developmentally malleable and become incorporated into a left-lateralized visual word form network that supports rapid word recognition and reading.

  16. Hemifield columns co-opt ocular dominance column structure in human achiasma.

    PubMed

    Olman, Cheryl A; Bao, Pinglei; Engel, Stephen A; Grant, Andrea N; Purington, Chris; Qiu, Cheng; Schallmo, Michael-Paul; Tjan, Bosco S

    2018-01-01

    In the absence of an optic chiasm, visual input to the right eye is represented in primary visual cortex (V1) in the right hemisphere, while visual input to the left eye activates V1 in the left hemisphere. Retinotopic mapping In V1 reveals that in each hemisphere left and right visual hemifield representations are overlaid (Hoffmann et al., 2012). To explain how overlapping hemifield representations in V1 do not impair vision, we tested the hypothesis that visual projections from nasal and temporal retina create interdigitated left and right visual hemifield representations in V1, similar to the ocular dominance columns observed in neurotypical subjects (Victor et al., 2000). We used high-resolution fMRI at 7T to measure the spatial distribution of responses to left- and right-hemifield stimulation in one achiasmic subject. T 2 -weighted 2D Spin Echo images were acquired at 0.8mm isotropic resolution. The left eye was occluded. To the right eye, a presentation of flickering checkerboards alternated between the left and right visual fields in a blocked stimulus design. The participant performed a demanding orientation-discrimination task at fixation. A general linear model was used to estimate the preference of voxels in V1 to left- and right-hemifield stimulation. The spatial distribution of voxels with significant preference for each hemifield showed interdigitated clusters which densely packed V1 in the right hemisphere. The spatial distribution of hemifield-preference voxels in the achiasmic subject was stable between two days of testing and comparable in scale to that of human ocular dominance columns. These results are the first in vivo evidence showing that visual hemifield representations interdigitate in achiasmic V1 following a similar developmental course to that of ocular dominance columns in V1 with intact optic chiasm. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Visual working memory gives up attentional control early in learning: ruling out interhemispheric cancellation.

    PubMed

    Reinhart, Robert M G; Carlisle, Nancy B; Woodman, Geoffrey F

    2014-08-01

    Current research suggests that we can watch visual working memory surrender the control of attention early in the process of learning to search for a specific object. This inference is based on the observation that the contralateral delay activity (CDA) rapidly decreases in amplitude across trials when subjects search for the same target object. Here, we tested the alternative explanation that the role of visual working memory does not actually decline across learning, but instead lateralized representations accumulate in both hemispheres across trials and wash out the lateralized CDA. We show that the decline in CDA amplitude occurred even when the target objects were consistently lateralized to a single visual hemifield. Our findings demonstrate that reductions in the amplitude of the CDA during learning are not simply due to the dilution of the CDA from interhemispheric cancellation. Copyright © 2014 Society for Psychophysiological Research.

  18. Asymmetrical brain activity induced by voluntary spatial attention depends on the visual hemifield: a functional near-infrared spectroscopy study.

    PubMed

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-04-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a previous psychophysical study, namely, the attentional resources for the left and right visual hemifields are distinct. Increasing the attentional load asymmetrically increased the brain activity. Increase in attentional load produced a greater increase in brain activity in the case of the left visual hemifield than in the case of the right visual hemifield. This asymmetry was observed in all the examined brain areas, including the right and left occipital and parietal cortices. These results suggest the existence of asymmetrical inhibitory interactions between the hemispheres and the presence of an extensive inhibitory network. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Competitive interactions of attentional resources in early visual cortex during sustained visuospatial attention within or between visual hemifields: evidence for the different-hemifield advantage.

    PubMed

    Walter, Sabrina; Quigley, Cliodhna; Mueller, Matthias M

    2014-05-01

    Performing a task across the left and right visual hemifields results in better performance than in a within-hemifield version of the task, termed the different-hemifield advantage. Although recent studies used transient stimuli that were presented with long ISIs, here we used a continuous objective electrophysiological (EEG) measure of competitive interactions for attentional processing resources in early visual cortex, the steady-state visual evoked potential (SSVEP). We frequency-tagged locations in each visual quadrant and at central fixation by flickering light-emitting diodes (LEDs) at different frequencies to elicit distinguishable SSVEPs. Stimuli were presented for several seconds, and participants were cued to attend to two LEDs either in one (Within) or distributed across left and right visual hemifields (Across). In addition, we introduced two reference measures: one for suppressive interactions between the peripheral LEDs by using a task at fixation where attention was withdrawn from the periphery and another estimating the upper bound of SSVEP amplitude by cueing participants to attend to only one of the peripheral LEDs. We found significantly greater SSVEP amplitude modulations in Across compared with Within hemifield conditions. No differences were found between SSVEP amplitudes elicited by the peripheral LEDs when participants attended to the centrally located LEDs compared with when peripheral LEDs had to be ignored in Across and Within trials. Attending to only one LED elicited the same SSVEP amplitude as Across conditions. Although behavioral data displayed a more complex pattern, SSVEP amplitudes were well in line with the predictions of the different-hemifield advantage account during sustained visuospatial attention.

  20. The role of the right posterior parietal cortex in temporal order judgment.

    PubMed

    Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min

    2009-03-01

    Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the processing speed of a visual target, we applied single-pulse TMS over the region in 14 normal subjects, while they judged the temporal order of two consecutive visual stimuli. Stimulus-onset-asynchrony (SOA) randomly varied between -100 and 100 ms in 20-ms steps (with a positive SOA when a target appeared on the right hemi-field before the other on the left), and a point of subjective simultaneity was measured for individual subjects. TMS stimulation was time-locked at 50, 100, 150, and 200 ms after the onset of the first stimulus, and results in trials with TMS on right PPC were compared with those in trials without TMS. TMS over the right PPC delayed the detection of a visual target in the contralateral, i.e., left hemi-field by 24 (+/-7 SE) ms and 16 (+/-4 SE) ms, when the stimulation was given at 50 and 100 ms after the first target onset. In contrast, TMS on the left PPC was not effective. These results show that the right PPC is important in a timely detection of a target appearing on the left visual field, especially in competition with another target simultaneously appearing in the opposite field.

  1. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.

    PubMed

    Omoto, Jaison Jiro; Keleş, Mehmet Fatih; Nguyen, Bao-Chau Minh; Bolanos, Cheyenne; Lovick, Jennifer Kelly; Frye, Mark Arthur; Hartenstein, Volker

    2017-04-24

    The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A circuit for saccadic suppression in the primate brain

    PubMed Central

    Cavanaugh, James; McAlonan, Kerry; Wurtz, Robert H.

    2017-01-01

    Saccades should cause us to see a blur as the eyes sweep across a visual scene. Specific brain mechanisms prevent this by producing suppression during saccades. Neuronal correlates of such suppression were first established in the visual superficial layers of the superior colliculus (SC) and subsequently have been observed in cortical visual areas, including the middle temporal visual area (MT). In this study, we investigated suppression in a recently identified circuit linking visual SC (SCs) to MT through the inferior pulvinar (PI). We examined responses to visual stimuli presented just before saccades to reveal a neuronal correlate of suppression driven by a copy of the saccade command, referred to as a corollary discharge. We found that visual responses were similarly suppressed in SCs, PI, and MT. Within each region, suppression of visual responses occurred with saccades into both visual hemifields, but only in the contralateral hemifield did this suppression consistently begin before the saccade (~100 ms). The consistency of the signal along the circuit led us to hypothesize that the suppression in MT was influenced by input from the SC. We tested this hypothesis in one monkey by inactivating neurons within the SC and found evidence that suppression in MT depends on corollary discharge signals from motor SC (SCi). Combining these results with recent findings in rodents, we propose a complete circuit originating with corollary discharge signals in SCi that produces suppression in visual SCs, PI, and ultimately, MT cortex. NEW & NOTEWORTHY A fundamental puzzle in visual neuroscience is that we frequently make rapid eye movements (saccades) but seldom perceive the visual blur accompanying each movement. We investigated neuronal correlates of this saccadic suppression by recording from and perturbing a recently identified circuit from brainstem to cortex. We found suppression at each stage, with evidence that it was driven by an internally generated signal. We conclude that this circuit contributes to neuronal suppression of visual signals during eye movements. PMID:28003409

  3. A Bilateral Advantage for Storage in Visual Working Memory

    ERIC Educational Resources Information Center

    Umemoto, Akina; Drew, Trafton; Ester, Edward F.; Awh, Edward

    2010-01-01

    Various studies have demonstrated enhanced visual processing when information is presented across both visual hemifields rather than in a single hemifield (the "bilateral advantage"). For example, Alvarez and Cavanagh (2005) reported that observers were able to track twice as many moving visual stimuli when the tracked items were presented…

  4. Colour-specific differences in attentional deployment for equiluminant pop-out colours: evidence from lateralised potentials.

    PubMed

    Pomerleau, Vincent Jetté; Fortier-Gauthier, Ulysse; Corriveau, Isabelle; Dell'Acqua, Roberto; Jolicœur, Pierre

    2014-03-01

    We investigated how target colour affected behavioural and electrophysiological results in a visual search task. Perceptual and attentional mechanisms were tracked using the N2pc component of the event-related potential and other lateralised components. Four colours (red, green, blue, or yellow) were calibrated for each participant for luminance through heterochromatic flicker photometry and equated to the luminance of grey distracters. Each visual display contained 10 circles, 1 colored and 9 grey, each of which contained an oriented line segment. The task required deploying attention to the colored circle, which was either in the left or right visual hemifield. Three lateralised ERP components relative to the side of the lateral coloured circle were examined: a posterior contralateral positivity (Ppc) prior to N2pc, the N2pc, reflecting the deployment of visual spatial attention, and a temporal and contralateral positivity (Ptc) following N2pc. Red or blue stimuli, as compared to green or yellow, had an earlier N2pc. Both the Ppc and Ptc had higher amplitudes to red stimuli, suggesting particular selectivity for red. The results suggest that attention may be deployed to red and blue more quickly than to other colours and suggests special caution when designing ERP experiments involving stimuli in different colours, even when all colours are equiluminant. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres

    PubMed Central

    Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.

    2015-01-01

    Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450

  6. Anatomical constraints on attention: Hemifield independence is a signature of multifocal spatial selection

    PubMed Central

    Alvarez, George A; Gill, Jonathan; Cavanagh, Patrick

    2012-01-01

    Previous studies have shown independent attentional selection of targets in the left and right visual hemifields during attentional tracking (Alvarez & Cavanagh, 2005) but not during a visual search (Luck, Hillyard, Mangun, & Gazzaniga, 1989). Here we tested whether multifocal spatial attention is the critical process that operates independently in the two hemifields. It is explicitly required in tracking (attend to a subset of object locations, suppress the others) but not in the standard visual search task (where all items are potential targets). We used a modified visual search task in which observers searched for a target within a subset of display items, where the subset was selected based on location (Experiments 1 and 3A) or based on a salient feature difference (Experiments 2 and 3B). The results show hemifield independence in this subset visual search task with location-based selection but not with feature-based selection; this effect cannot be explained by general difficulty (Experiment 4). Combined, these findings suggest that hemifield independence is a signature of multifocal spatial attention and highlight the need for cognitive and neural theories of attention to account for anatomical constraints on selection mechanisms. PMID:22637710

  7. Opponent Coding of Sound Location (Azimuth) in Planum Temporale is Robust to Sound-Level Variations

    PubMed Central

    Derey, Kiki; Valente, Giancarlo; de Gelder, Beatrice; Formisano, Elia

    2016-01-01

    Coding of sound location in auditory cortex (AC) is only partially understood. Recent electrophysiological research suggests that neurons in mammalian auditory cortex are characterized by broad spatial tuning and a preference for the contralateral hemifield, that is, a nonuniform sampling of sound azimuth. Additionally, spatial selectivity decreases with increasing sound intensity. To accommodate these findings, it has been proposed that sound location is encoded by the integrated activity of neuronal populations with opposite hemifield tuning (“opponent channel model”). In this study, we investigated the validity of such a model in human AC with functional magnetic resonance imaging (fMRI) and a phase-encoding paradigm employing binaural stimuli recorded individually for each participant. In all subjects, we observed preferential fMRI responses to contralateral azimuth positions. Additionally, in most AC locations, spatial tuning was broad and not level invariant. We derived an opponent channel model of the fMRI responses by subtracting the activity of contralaterally tuned regions in bilateral planum temporale. This resulted in accurate decoding of sound azimuth location, which was unaffected by changes in sound level. Our data thus support opponent channel coding as a neural mechanism for representing acoustic azimuth in human AC. PMID:26545618

  8. The second visual area in the marmoset monkey: visuotopic organisation, magnification factors, architectonical boundaries, and modularity.

    PubMed

    Rosa, M G; Fritsches, K A; Elston, G N

    1997-11-03

    The organisation of the second visual area (V2) in marmoset monkeys was studied by means of extracellular recordings of responses to visual stimulation and examination of myelin- and cytochrome oxidase-stained sections. Area V2 forms a continuous cortical belt of variable width (1-2 mm adjacent to the foveal representation of V1, and 3-3.5 mm near the midline and on the tentorial surface) bordering V1 on the lateral, dorsal, medial, and tentorial surfaces of the occipital lobe. The total surface area of V2 is approximately 100 mm2, or about 50% of the surface area of V1 in the same individuals. In each hemisphere, the receptive fields of V2 neurones cover the entire contralateral visual hemifield, forming an ordered visuotopic representation. As in other simians, the dorsal and ventral halves of V2 represent the lower and upper contralateral quadrants, respectively, with little invasion of the ipsilateral hemifield. The representation of the vertical meridian forms the caudal border of V2, with V1, whereas a field discontinuity approximately coincident with the horizontal meridian forms the rostral border of V2, with other visually responsive areas. The bridge of cortex connecting dorsal and ventral V2 contains neurones with receptive fields centred within 1 degree of the centre of the fovea. The visuotopy, size, shape and location of V2 show little variation among individuals. Analysis of cortical magnification factor (CMF) revealed that the V2 map of the visual field is highly anisotropic: for any given eccentricity, the CMF is approximately twice as large in the dimension parallel to the V1/V2 border as it is perpendicular to this border. Moreover, comparison of V2 and V1 in the same individuals demonstrated that the representation of the central visual field is emphasised in V2, relative to V1. Approximately half of the surface area of V2 is dedicated to the representation of the central 5 degrees of the visual field. Calculations based on the CMF, receptive field scatter, and receptive field size revealed that the point-image size measured parallel to the V1/V2 border (2-3 mm) equals the width of a full cycle of cytochrome oxidase stripes in V2, suggesting a close correspondence between physiological and anatomical estimates of the dimensions of modular components in this area.

  9. Implicit recognition based on lateralized perceptual fluency.

    PubMed

    Vargas, Iliana M; Voss, Joel L; Paller, Ken A

    2012-02-06

    In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this "implicit recognition" results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention encoding. Presentation in the same visual hemifield at test produced higher recognition accuracy than presentation in the opposite visual hemifield, but only for guess responses. These correct guesses likely reflect a contribution from implicit recognition, given that when the stimulated visual hemifield was the same at study and test, recognition accuracy was higher for guess responses than for responses with any level of confidence. The dramatic difference in guessing accuracy as a function of lateralized perceptual overlap between study and test suggests that implicit recognition arises from memory storage in visual cortical networks that mediate repetition-induced fluency increments.

  10. Dynamic Circuitry for Updating Spatial Representations: III. From Neurons to Behavior

    PubMed Central

    Berman, Rebecca A.; Heiser, Laura M.; Dunn, Catherine A.; Saunders, Richard C.; Colby, Carol L.

    2008-01-01

    Each time the eyes move, the visual system must adjust internal representations to account for the accompanying shift in the retinal image. In the lateral intraparietal cortex (LIP), neurons update the spatial representations of salient stimuli when the eyes move. In previous experiments, we found that split-brain monkeys were impaired on double-step saccade sequences that required updating across visual hemifields, as compared to within hemifield (Berman et al. 2005; Heiser et al. 2005). Here we describe a subsequent experiment to characterize the relationship between behavioral performance and neural activity in LIP in the split-brain monkey. We recorded from single LIP neurons while split-brain and intact monkeys performed two conditions of the double-step saccade task: one required across-hemifield updating and the other within-hemifield updating. We found that, despite extensive experience with the task, the split-brain monkeys were significantly more accurate for within-hemifield as compared to across-hemifield sequences. In parallel, we found that population activity in LIP of the split-brain monkeys was significantly stronger for within-hemifield as compared to across-hemifield conditions of the double-step task. In contrast, in the normal monkey, both the average behavioral performance and population activity showed no bias toward the within-hemifield condition. Finally, we found that the difference between within-hemifield and across-hemifield performance in the split-brain monkeys was reflected at the level of single neuron activity in LIP. These findings indicate that remapping activity in area LIP is present in the split-brain monkey for the double-step task and co-varies with spatial behavior on within-hemifield compared to across-hemifield sequences. PMID:17493922

  11. Dynamic circuitry for updating spatial representations. II. Physiological evidence for interhemispheric transfer in area LIP of the split-brain macaque.

    PubMed

    Heiser, Laura M; Berman, Rebecca A; Saunders, Richard C; Colby, Carol L

    2005-11-01

    With each eye movement, a new image impinges on the retina, yet we do not notice any shift in visual perception. This perceptual stability indicates that the brain must be able to update visual representations to take our eye movements into account. Neurons in the lateral intraparietal area (LIP) update visual representations when the eyes move. The circuitry that supports these updated representations remains unknown, however. In this experiment, we asked whether the forebrain commissures are necessary for updating in area LIP when stimulus representations must be updated from one visual hemifield to the other. We addressed this question by recording from LIP neurons in split-brain monkeys during two conditions: stimulus traces were updated either across or within hemifields. Our expectation was that across-hemifield updating activity in LIP would be reduced or abolished after transection of the forebrain commissures. Our principal finding is that LIP neurons can update stimulus traces from one hemifield to the other even in the absence of the forebrain commissures. This finding provides the first evidence that representations in parietal cortex can be updated without the use of direct cortico-cortical links. The second main finding is that updating activity in LIP is modified in the split-brain monkey: across-hemifield signals are reduced in magnitude and delayed in onset compared with within-hemifield signals, which indicates that the pathways for across-hemifield updating are less effective in the absence of the forebrain commissures. Together these findings reveal a dynamic circuit that contributes to updating spatial representations.

  12. Diagnostic Value of Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma With Superior or Inferior Visual Hemifield Defects.

    PubMed

    Kim, Ho Soong; Yang, Heon; Lee, Tae Heon; Lee, Kyung Heon

    2016-06-01

    To determine the diagnostic value of the ganglion cell-inner plexiform layer (GCIPL) thickness in glaucomatous eyes with superior or inferior visual hemifield defects. Eighty-five patients with glaucoma (42 isolated superior hemifield defects and 43 isolated inferior hemifield defects) and 46 normal subjects were enrolled. All patients underwent Cirrus high-definition optical coherence tomography and standard automated perimetry. The area under the receiver operating characteristic curve (AUC) was calculated to determine the diagnostic ability of the GCIPL and peripapillary retinal nerve fiber layer (pRNFL). In the superior hemifield defect glaucoma group, the best parameters for discriminating normal eyes from glaucomatous eyes were the inferotemporal GCIPL thickness (0.942), inferior quadrant RNFL thickness (0.974), and 7 o'clock sector RNFL thickness (0.999). For diagnosing inferior hemifield defect glaucoma, the AUCs of all GCIPL parameters (0.331 to 0.702) were significantly lower than that of the superior quadrant RNFL thickness (0.866, P<0.05). The diagnostic ability of GCIPL parameters was similar to that of the pRNFL parameters in superior hemifield defect glaucoma. However, the diagnostic performance of the GCIPL parameters was significantly inferior to those of the pRNFL parameters in eyes with inferior hemifield defect glaucoma.

  13. Temporal information entropy of the Blood-Oxygenation Level-Dependent signals increases in the activated human primary visual cortex

    NASA Astrophysics Data System (ADS)

    DiNuzzo, Mauro; Mascali, Daniele; Moraschi, Marta; Bussu, Giorgia; Maraviglia, Bruno; Mangia, Silvia; Giove, Federico

    2017-02-01

    Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e. dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.

  14. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.

    PubMed

    Grubert, Anna; Eimer, Martin

    2015-11-11

    During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Opponent Coding of Sound Location (Azimuth) in Planum Temporale is Robust to Sound-Level Variations.

    PubMed

    Derey, Kiki; Valente, Giancarlo; de Gelder, Beatrice; Formisano, Elia

    2016-01-01

    Coding of sound location in auditory cortex (AC) is only partially understood. Recent electrophysiological research suggests that neurons in mammalian auditory cortex are characterized by broad spatial tuning and a preference for the contralateral hemifield, that is, a nonuniform sampling of sound azimuth. Additionally, spatial selectivity decreases with increasing sound intensity. To accommodate these findings, it has been proposed that sound location is encoded by the integrated activity of neuronal populations with opposite hemifield tuning ("opponent channel model"). In this study, we investigated the validity of such a model in human AC with functional magnetic resonance imaging (fMRI) and a phase-encoding paradigm employing binaural stimuli recorded individually for each participant. In all subjects, we observed preferential fMRI responses to contralateral azimuth positions. Additionally, in most AC locations, spatial tuning was broad and not level invariant. We derived an opponent channel model of the fMRI responses by subtracting the activity of contralaterally tuned regions in bilateral planum temporale. This resulted in accurate decoding of sound azimuth location, which was unaffected by changes in sound level. Our data thus support opponent channel coding as a neural mechanism for representing acoustic azimuth in human AC. © The Author 2015. Published by Oxford University Press.

  16. Cortical Asymmetries during Hand Laterality Task Vary with Hand Laterality: A fMRI Study in 295 Participants

    PubMed Central

    Mellet, Emmanuel; Mazoyer, Bernard; Leroux, Gaelle; Joliot, Marc; Tzourio-Mazoyer, Nathalie

    2016-01-01

    The aim of this study was to characterize, using fMRI, the functional asymmetries of hand laterality task (HLT) in a sample of 295 participants balanced for handedness. During HLT, participants have to decide whether the displayed picture of a hand represent a right or a left hand. Pictures of hands’ back view were presented for 150 ms in the right or left hemifield. At the whole hemisphere level, we evidenced that the laterality of the hand and of the hemifield in which the picture was displayed combined their effects on the hemispheric asymmetry in an additive way. We then identified a set of 17 functional homotopic regions of interest (hROIs) including premotor, motor, somatosensory and parietal regions, whose activity and asymmetry varied with the laterality of the presented hands. When the laterality of a right hand had to be evaluated, these areas showed stronger leftward asymmetry, the hROI located in the primary motor area showing a significant larger effect than all other hROIs. In addition a subset of six parietal regions involved in visuo-motor integration together with two postcentral areas showed a variation in asymmetry with hemifield of presentation. Finally, while handedness had no effect at the hemispheric level, two regions located in the parietal operculum and intraparietal sulcus exhibited larger leftward asymmetry with right handedness independently of the hand of presentation. The present results extend those of previous works in showing a shift of asymmetries during HLT according to the hand presented in sensorimotor areas including primary motor cortex. This shift was not affected by manual preference. They also demonstrate that the coordination of visual information and handedness identification of hands relied on the coexistence of contralateral motor and visual representations in the superior parietal lobe and the postcentral gyrus. PMID:27999536

  17. Asymmetrical Brain Activity Induced by Voluntary Spatial Attention Depends on the Visual Hemifield: A Functional Near-Infrared Spectroscopy Study

    ERIC Educational Resources Information Center

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-01-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…

  18. The Visual Hemifield Asymmetry in the Spatial Blink during Singleton Search and Feature Search

    ERIC Educational Resources Information Center

    Burnham, Bryan R.; Rozell, Cassandra A.; Kasper, Alex; Bianco, Nicole E.; Delliturri, Antony

    2011-01-01

    The present study examined a visual field asymmetry in the contingent capture of attention that was previously observed by Du and Abrams (2010). In our first experiment, color singleton distractors that matched the color of a to-be-detected target produced a stronger capture of attention when they appeared in the left visual hemifield than in the…

  19. Restoration of visual orienting into a cortically blind hemifield by reversible deactivation of posterior parietal cortex or the superior colliculus.

    PubMed

    Lomber, Stephen G; Payne, Bertram R; Hilgetag, Claus C; Rushmore, JarrettR

    2002-02-01

    A contralateral hemineglect of the visual field can be induced by unilateral cooling deactivation of posterior middle suprasylvian (pMS) sulcal cortex of the posterior parietal region, and this neglect can be reversed by additional cooling deactivation of pMS cortex in the opposite hemisphere. The purpose of the present study was to test whether an enduring hemianopia induced by removal of all contiguous visual cortical areas of one hemisphere could be reversed by local cooling of pMS cortex in the opposite hemisphere. Two cats sustained large unilateral ablations of the contiguous visual areas, and cooling loops were placed in the pMS sulcus, and in contact with adjacent area 7 or posterior ectosylvian (PE) cortex of the opposite hemisphere. In both instances cooling of pMS cortex, but neither area 7 nor PE, restored a virtually normal level of orienting performance to stimuli presented anywhere in the previously hemianopic field. The reversal was highly sensitive to the extent of cooling deactivation. In a third cat, cooling deactivation of the superficial layers of the contralateral superior colliculus also restored orienting performance to a cortical ablation-induced hemianopia. This reversal was graded from center-to-periphery in a temperature-dependent manner. Neither the cortical ablation nor any of the cooling deactivations had any impact on an auditory detection and orienting task. The deactivations were localized and confirmed by reduced uptake of radiolabeled 2-deoxyglucose to be limited to the immediate vicinity of each cooling loop. The results are discussed in terms of excitation and disinhibition of visual circuits.

  20. Evaluation of retinal nerve fiber layer thickness in the area of apparently normal hemifield in glaucomatous eyes with optical coherence tomography.

    PubMed

    Kee, Changwon; Cho, Changhwan

    2003-06-01

    The authors investigated the correlation between visual field defects detected by automated perimetry and the thickness of the retinal nerve fiber layer measured with optical coherence tomography, and examined whether there is a decrease in retinal nerve fiber layer thickness in the apparently normal hemifield of glaucomatous eyes. Forty-one patients with glaucoma and 41 normal control subjects were included in this study. Statistical correlations between the sum of the total deviation of 37 stimuli of each hemifield and the ratio of decrease in retinal nerve fiber layer thickness were evaluated. The statistical difference between the retinal nerve fiber layer thickness of the apparently normal hemifield in glaucomatous eyes and that of the corresponding hemifield in normal subjects was also evaluated. There was a statistically significant correlation in the sum of the total deviation and retinal nerve fiber layer thickness decrease ratio (superior hemifield, P = 0.001; inferior hemifield, P = 0.003). There was no significant decrease in retinal nerve fiber layer thickness in the area that corresponded to the normal visual field in the hemifield defect with respect to the horizontal meridian in glaucomatous eyes (superior side, P = 0.148; inferior side, P = 0.341). Optical coherence tomography was capable of demonstrating and measuring retinal nerve fiber layer abnormalities. No changes in the retinal nerve fiber layer thickness of the apparently normal hemifield were observed in glaucomatous eyes.

  1. Feature-based interference from unattended visual field during attentional tracking in younger and older adults.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2011-02-01

    The ability to attend to multiple objects that move in the visual field is important for many aspects of daily functioning. The attentional capacity for such dynamic tracking, however, is highly limited and undergoes age-related decline. Several aspects of the tracking process can influence performance. Here, we investigated effects of feature-based interference from distractor objects that appear in unattended regions of the visual field with a hemifield-tracking task. Younger and older participants performed an attentional tracking task in one hemifield while distractor objects were concurrently presented in the unattended hemifield. Feature similarity between objects in the attended and unattended hemifields as well as motion speed and the number of to-be-tracked objects were parametrically manipulated. The results show that increasing feature overlap leads to greater interference from the unattended visual field. This effect of feature-based interference was only present in the slow speed condition, indicating that the interference is mainly modulated by perceptual demands. High-performing older adults showed a similar interference effect as younger adults, whereas low-performing adults showed poor tracking performance overall.

  2. Laterality and performance of agility-trained dogs.

    PubMed

    Siniscalchi, Marcello; Bertino, Daniele; Quaranta, Angelo

    2014-01-01

    Correlations between lateralised behaviour and performance were investigated in 19 agility-trained dogs (Canis familiaris) by scoring paw preference to hold a food object and relating it to performance during typical agility obstacles (jump/A-frame and weave poles). In addition, because recent behavioural studies reported that visual stimuli of emotional valence presented to one visual hemifield at a time affect visually guided motor responses in dogs, the possibility that the position of the owner respectively in the left and in the right canine visual hemifield might be associated with quality of performance during agility was considered. Dogs' temperament was also measured by an owner-rated questionnaire. The most relevant finding was that agility-trained dogs displayed longer latencies to complete the obstacles with the owner located in their left visual hemifield compared to the right. Interestingly, the results showed that this phenomenon was significantly linked to both dogs' trainability and the strength of paw preference.

  3. Modulation of induced gamma band activity in the human EEG by attention and visual information processing.

    PubMed

    Müller, M M; Gruber, T; Keil, A

    2000-12-01

    Here we present a series of four studies aimed to investigate the link between induced gamma band activity in the human EEG and visual information processing. We demonstrated and validated the modulation of spectral gamma band power by spatial selective visual attention. When subjects attended to a certain stimulus, spectral power was increased as compared to when the same stimulus was ignored. In addition, we showed a shift in spectral gamma band power increase to the contralateral hemisphere when subjects shifted their attention to one visual hemifield. The following study investigated induced gamma band activity and the perception of a Gestalt. Ambiguous rotating figures were used to operationalize the law of good figure (gute Gestalt). We found increased gamma band power at posterior electrode sites when subjects perceived an object. In the last experiment we demonstrated a differential hemispheric gamma band activation when subjects were confronted with emotional pictures. Results of the present experiments in combination with other studies presented in this volume are supportive for the notion that induced gamma band activity in the human EEG is closely related to visual information processing and attentional perceptual mechanisms.

  4. Spatial location in brief, free-viewing face encoding modulates contextual face recognition

    PubMed Central

    Felisberti, Fatima M.; McDermott, Mark R.

    2013-01-01

    The effect of the spatial location of faces in the visual field during brief, free-viewing encoding in subsequent face recognition is not known. This study addressed this question by tagging three groups of faces with cheating, cooperating or neutral behaviours and presenting them for encoding in two visual hemifields (upper vs. lower or left vs. right). Participants then had to indicate if a centrally presented face had been seen before or not. Head and eye movements were free in all phases. Findings showed that the overall recognition of cooperators was significantly better than cheaters, and it was better for faces encoded in the upper hemifield than in the lower hemifield, both in terms of a higher d′ and faster reaction time (RT). The d′ for any given behaviour in the left and right hemifields was similar. The RT in the left hemifield did not vary with tagged behaviour, whereas the RT in the right hemifield was longer for cheaters than for cooperators. The results showed that memory biases in contextual face recognition were modulated by the spatial location of briefly encoded faces and are discussed in terms of scanning reading habits, top-left bias in lighting preference and peripersonal space. PMID:24349694

  5. Interlateral Asymmetry in the Time Course of the Effect of a Peripheral Prime Stimulus

    ERIC Educational Resources Information Center

    Castro-Barros, B. A.; Righi, L. L.; Grechi, G.; Ribeiro-do-Valle, L. E.

    2008-01-01

    Evidence exists that both right and left hemisphere attentional mechanisms are mobilized when attention is directed to the right visual hemifield and only right hemisphere attentional mechanisms are mobilized when attention is directed to the left visual hemifield. This arrangement might lead to a rightward bias of automatic attention. The…

  6. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception.

    PubMed

    Capilla, Almudena; Schoffelen, Jan-Mathijs; Paterson, Gavin; Thut, Gregor; Gross, Joachim

    2014-02-01

    Modulations of occipito-parietal α-band (8-14 Hz) power that are opposite in direction (α-enhancement vs. α-suppression) and origin of generation (ipsilateral vs. contralateral to the locus of attention) are a robust correlate of anticipatory visuospatial attention. Yet, the neural generators of these α-band modulations, their interdependence across homotopic areas, and their respective contribution to subsequent perception remain unclear. To shed light on these questions, we employed magnetoencephalography, while human volunteers performed a spatially cued detection task. Replicating previous findings, we found α-power enhancement ipsilateral to the attended hemifield and contralateral α-suppression over occipito-parietal sensors. Source localization (beamforming) analysis showed that α-enhancement and suppression were generated in 2 distinct brain regions, located in the dorsal and ventral visual streams, respectively. Moreover, α-enhancement and suppression showed different dynamics and contribution to perception. In contrast to the initial and transient dorsal α-enhancement, α-suppression in ventro-lateral occipital cortex was sustained and influenced subsequent target detection. This anticipatory biasing of ventro-lateral extrastriate α-activity probably reflects increased receptivity in the brain region specialized in processing upcoming target features. Our results add to current models on the role of α-oscillations in attention orienting by showing that α-enhancement and suppression can be dissociated in time, space, and perceptual relevance.

  7. Attentional asymmetry between visual hemifields is related to habitual direction of reading and its implications for debate on cause and effects of dyslexia.

    PubMed

    Kermani, Mojtaba; Verghese, Ashika; Vidyasagar, Trichur R

    2018-02-01

    A major controversy regarding dyslexia is whether any of the many visual and phonological deficits found to be correlated with reading difficulty cause the impairment or result from the reduced amount of reading done by dyslexics. We studied this question by comparing a visual capacity in the left and right visual hemifields in people habitually reading scripts written right-to-left or left-to-right. Selective visual attention is necessary for efficient visual search and also for the sequential recognition of letters in words. Because such attentional allocation during reading depends on the direction in which one is reading, asymmetries in search efficiency may reflect biases arising from the habitual direction of reading. We studied this by examining search performance in three cohorts: (a) left-to-right readers who read English fluently; (b) right-to-left readers fluent in reading Farsi but not any left-to-right script; and (c) bilingual readers fluent in English and in Farsi, Arabic, or Hebrew. Left-to-right readers showed better search performance in the right hemifield and right-to-left readers in the left hemifield, but bilingual readers showed no such asymmetries. Thus, reading experience biases search performance in the direction of reading, which has implications for the cause and effect relationships between reading and cognitive functions. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Occipital Alpha Activity during Stimulus Processing Gates the Information Flow to Object-Selective Cortex

    PubMed Central

    Zumer, Johanna M.; Scheeringa, René; Schoffelen, Jan-Mathijs; Norris, David G.; Jensen, Ole

    2014-01-01

    Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity. PMID:25333286

  9. Spatial Probability Dynamically Modulates Visual Target Detection in Chickens

    PubMed Central

    Sridharan, Devarajan; Ramamurthy, Deepa L.; Knudsen, Eric I.

    2013-01-01

    The natural world contains a rich and ever-changing landscape of sensory information. To survive, an organism must be able to flexibly and rapidly locate the most relevant sources of information at any time. Humans and non-human primates exploit regularities in the spatial distribution of relevant stimuli (targets) to improve detection at locations of high target probability. Is the ability to flexibly modify behavior based on visual experience unique to primates? Chickens (Gallus domesticus) were trained on a multiple alternative Go/NoGo task to detect a small, briefly-flashed dot (target) in each of the quadrants of the visual field. When targets were presented with equal probability (25%) in each quadrant, chickens exhibited a distinct advantage for detecting targets at lower, relative to upper, hemifield locations. Increasing the probability of presentation in the upper hemifield locations (to 80%) dramatically improved detection performance at these locations to be on par with lower hemifield performance. Finally, detection performance in the upper hemifield changed on a rapid timescale, improving with successive target detections, and declining with successive detections at the diagonally opposite location in the lower hemifield. These data indicate the action of a process that in chickens, as in primates, flexibly and dynamically modulates detection performance based on the spatial probabilities of sensory stimuli as well as on recent performance history. PMID:23734188

  10. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.

    PubMed

    Zhang, Dan; Hong, Bo; Gao, Shangkai; Röder, Brigitte

    2017-05-01

    While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.

  11. Splitting attention across the two visual fields in visual short-term memory.

    PubMed

    Delvenne, Jean-Francois; Holt, Jessica L

    2012-02-01

    Humans have the ability to attentionally select the most relevant visual information from their extrapersonal world and to retain it in a temporary buffer, known as visual short-term memory (VSTM). Research suggests that at least two non-contiguous items can be selected simultaneously when they are distributed across the two visual hemifields. In two experiments, we show that attention can also be split between the left and right sides of internal representations held in VSTM. Participants were asked to remember several colors, while cues presented during the delay instructed them to orient their attention to a subset of memorized colors. Experiment 1 revealed that orienting attention to one or two colors strengthened equally participants' memory for those colors, but only when they were from separate hemifields. Experiment 2 showed that in the absence of attentional cues the distribution of the items in the visual field per se had no effect on memory. These findings strongly suggest the existence of independent attentional resources in the two hemifields for selecting and/or consolidating information in VSTM. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The effects of anterior arcuate and dorsomedial frontal cortex lesions on visually guided eye movements: 2. Paired and multiple targets.

    PubMed

    Schiller, P H; Chou, I

    2000-01-01

    This study examined the effects of anterior arcuate and dorsomedial frontal cortex lesions on the execution of saccadic eye movements made to paired and multiple targets in rhesus monkeys. Identical paired targets were presented with various temporal asynchronies to determine the temporal offset required to yield equal probability choices to either target. In the intact animal equal probability choices were typically obtained when the targets appeared simultaneously. After unilateral anterior arcuate lesions a major shift arose in the temporal offset required to obtain equal probability choices for paired targets that necessitated presenting the target in the hemifield contralateral to the lesion more than 100 ms prior to the target in the ipsilateral hemifield. This deficit was still pronounced 1 year after the lesion. Dorsomedial frontal cortex lesions produced much smaller but significant shifts in target selection that recovered more rapidly. Paired lesions produced deficits similar to those observed with anterior arcuate lesions alone. Major deficits were also observed on a multiple target temporal discrimination task after anterior arcuate but not after dorsomedial frontal cortex lesions. These results suggest that the frontal eye fields that reside in anterior bank of the arcuate sulcus play an important role in temporal processing and in target selection. Dorsomedial frontal cortex, that contains the medial eye fields, plays a much less important role in the execution of these tasks.

  13. A bilateral advantage for maintaining objects in visual short term memory.

    PubMed

    Holt, Jessica L; Delvenne, Jean-François

    2015-01-01

    Research has shown that attentional pre-cues can subsequently influence the transfer of information into visual short term memory (VSTM) (Schmidt, B., Vogel, E., Woodman, G., & Luck, S. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64(5), 754-763). However, studies also suggest that those effects are constrained by the hemifield alignment of the pre-cues (Holt, J. L., & Delvenne, J.-F. (2014). A bilateral advantage in controlling access to visual short-term memory. Experimental Psychology, 61(2), 127-133), revealing better recall when distributed across hemifields relative to within a single hemifield (otherwise known as a bilateral field advantage). By manipulating the duration of the retention interval in a colour change detection task (1s, 3s), we investigated whether selective pre-cues can also influence how information is later maintained in VSTM. The results revealed that the pre-cues influenced the maintenance of the colours in VSTM, promoting consistent performance across retention intervals (Experiments 1 & 4). However, those effects were only shown when the pre-cues were directed to stimuli displayed across hemifields relative to stimuli within a single hemifield. Importantly, the results were not replicated when participants were required to memorise colours (Experiment 2) or locations (Experiment 3) in the absence of spatial pre-cues. Those findings strongly suggest that attentional pre-cues have a strong influence on both the transfer of information in VSTM and its subsequent maintenance, allowing bilateral items to better survive decay. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Patient-reported vision-related quality of life differences between superior and inferior hemifield visual field defects in primary open-angle glaucoma.

    PubMed

    Cheng, Hui-Chen; Guo, Chao-Yu; Chen, Mei-Ju; Ko, Yu-Chieh; Huang, Nicole; Liu, Catherine Jui-ling

    2015-03-01

    Previous studies have found that glaucoma is associated with impaired patient-reported vision-related quality of life (pVRQOL) but few, to our knowledge, have assessed how the visual field (VF) defect location impacts the pVRQOL. To investigate the associations of VF defects in the superior vs inferior hemifields with pVRQOL outcomes in patients with primary open-angle glaucoma. Prospective cross-sectional study at a tertiary referral center from March 1, 2012, to January 1, 2013, including patients with primary open-angle glaucoma who had a best-corrected visual acuity in the better eye equal to or better than 20/60 and reliable VF tests. The pVRQOL was assessed by a validated Taiwanese version of the 25-item National Eye Institute Visual Function Questionnaire. Reliable VF tests obtained within 3 months of enrollment were transformed to binocular integrated VF (IVF). The IVF was further stratified by VF location (superior vs inferior hemifield). The association between each domain of the 25-item National Eye Institute Visual Function Questionnaire and superior or inferior hemifield IVF was determined using multivariable linear regression analysis. The analysis included 186 patients with primary open-angle glaucoma with a mean age of 59.1 years (range, 19-86 years) and IVF mean deviation (MD) of -4.84 dB (range, -27.56 to 2.17 dB). In the multivariable linear regression analysis, the MD of the full-field IVF showed positive associations with near activities (β = 0.05; R2 = 0.20; P < .001), vision-specific role difficulties (β = 0.04; R2 = 0.19; P = .01), vision-specific dependency (β = 0.04; R2 = 0.20; P < .001), driving (β = 0.05; R2 = 0.24; P < .001), peripheral vision (β = 0.03; R2 = 0.18; P = .02), and composite scores (β = 0.04; R2 = 0.27; P = .005). Subsequent analysis showed that the MD of the superior hemifield IVF was associated only with near activities (β = 0.04; R2 = 0.21; P < .001) while the MD of the inferior hemifield IVF was associated with general vision (β = 0.04; R2 = 0.12; P = .01), vision-specific role difficulties (β = 0.04; R2 = 0.20; P = .01), and peripheral vision (β = 0.03; R2 = 0.17; P = .03). Superior hemifield IVF was strongly associated with difficulty with near activities. Inferior hemifield IVF impacted vision-specific role difficulties and general and peripheral vision. The impact of a VF defect on a patient's pVRQOL may depend not only on its severity, but also on its hemifield location.

  15. Retinal nerve fibre thickness measured with optical coherence tomography accurately detects confirmed glaucomatous damage.

    PubMed

    Hood, D C; Harizman, N; Kanadani, F N; Grippo, T M; Baharestani, S; Greenstein, V C; Liebmann, J M; Ritch, R

    2007-07-01

    To assess the accuracy of optical coherence tomography (OCT) in detecting damage to a hemifield, patients with hemifield defects confirmed on both static automated perimetry (SAP) and multifocal visual evoked potentials (mfVEP) were studied. Eyes of 40 patients with concomitant SAP and mfVEP glaucomatous loss and 25 controls underwent OCT retinal nerve fibre layer (RNFL), mfVEP and 24-2 SAP tests. For the mfVEP and 24-2 SAP, a hemifield was defined as abnormal based upon cluster criteria. On OCT, a hemifield was considered abnormal if one of the five clock hour sectors (3 and 9 o'clock excluded) was at <1% (red) or two were at <5% (yellow). Seventy seven (43%) of the hemifields were abnormal on both mfVEP and SAP tests. The OCT was abnormal for 73 (95%) of these. Only 1 (1%) of the 100 hemifields of the controls was abnormal on OCT. Sensitivity/specificity (one eye per person) was 95/98%. The OCT RNFL test accurately detects abnormal hemifields confirmed on both subjective and objective functional tests. Identifying abnormal hemifields with a criterion of 1 red (1%) or 2 yellow (5%) clock hours may prove useful in clinical practice.

  16. Asymmetrical Interhemispheric Connections Develop in Cat Visual Cortex after Early Unilateral Convergent Strabismus: Anatomy, Physiology, and Mechanisms

    PubMed Central

    Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal

    2011-01-01

    In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883

  17. Retinal nerve fibre thickness measured with optical coherence tomography accurately detects confirmed glaucomatous damage

    PubMed Central

    Hood, D C; Harizman, N; Kanadani, F N; Grippo, T M; Baharestani, S; Greenstein, V C; Liebmann, J M; Ritch, R

    2007-01-01

    Aim To assess the accuracy of optical coherence tomography (OCT) in detecting damage to a hemifield, patients with hemifield defects confirmed on both static automated perimetry (SAP) and multifocal visual evoked potentials (mfVEP) were studied. Methods Eyes of 40 patients with concomitant SAP and mfVEP glaucomatous loss and 25 controls underwent OCT retinal nerve fibre layer (RNFL), mfVEP and 24‐2 SAP tests. For the mfVEP and 24‐2 SAP, a hemifield was defined as abnormal based upon cluster criteria. On OCT, a hemifield was considered abnormal if one of the five clock hour sectors (3 and 9 o'clock excluded) was at <1% (red) or two were at <5% (yellow). Results Seventy seven (43%) of the hemifields were abnormal on both mfVEP and SAP tests. The OCT was abnormal for 73 (95%) of these. Only 1 (1%) of the 100 hemifields of the controls was abnormal on OCT. Sensitivity/specificity (one eye per person) was 95/98%. Conclusions The OCT RNFL test accurately detects abnormal hemifields confirmed on both subjective and objective functional tests. Identifying abnormal hemifields with a criterion of 1 red (1%) or 2 yellow (5%) clock hours may prove useful in clinical practice. PMID:17301118

  18. On the spatial specificity of audiovisual crossmodal exogenous cuing effects.

    PubMed

    Lee, Jae; Spence, Charles

    2017-06-01

    It is generally-accepted that the presentation of an auditory cue will direct an observer's spatial attention to the region of space from where it originates and therefore facilitate responses to visual targets presented there rather than from a different position within the cued hemifield. However, to date, there has been surprisingly limited evidence published in support of such within-hemifield crossmodal exogenous spatial cuing effects. Here, we report two experiments designed to investigate within- and between-hemifield spatial cuing effects in the case of audiovisual exogenous covert orienting. Auditory cues were presented from one of four frontal loudspeakers (two on either side of central fixation). There were eight possible visual target locations (one above and another below each of the loudspeakers). The auditory cues were evenly separated laterally by 30° in Experiment 1, and by 10° in Experiment 2. The potential cue and target locations were separated vertically by approximately 19° in Experiment 1, and by 4° in Experiment 2. On each trial, the participants made a speeded elevation (i.e., up vs. down) discrimination response to the visual target following the presentation of a spatially-nonpredictive auditory cue. Within-hemifield spatial cuing effects were observed only when the auditory cues were presented from the inner locations. Between-hemifield spatial cuing effects were observed in both experiments. Taken together, these results demonstrate that crossmodal exogenous shifts of spatial attention depend on the eccentricity of both the cue and target in a way that has not been made explicit by previous research. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Symmetry of Visual Fields in Chromatic Discrimination

    ERIC Educational Resources Information Center

    Danilova, M. V.; Mollon, J. D.

    2009-01-01

    Both classical and recent reports suggest a right-hemisphere superiority for color discrimination. Testing highly-trained normal subjects and taking care to eliminate asymmetries from the testing situation, we found no significant differences between left and right hemifields or between upper and lower hemifields. This was the case for both of the…

  20. Occipitoparietal alpha-band responses to the graded allocation of top-down spatial attention.

    PubMed

    Dombrowe, Isabel; Hilgetag, Claus C

    2014-09-15

    The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes. Copyright © 2014 the American Physiological Society.

  1. Altered figure-ground perception in monkeys with an extra-striate lesion.

    PubMed

    Supèr, Hans; Lamme, Victor A F

    2007-11-05

    The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.

  2. Lack of Multisensory Integration in Hemianopia: No Influence of Visual Stimuli on Aurally Guided Saccades to the Blind Hemifield

    PubMed Central

    Ten Brink, Antonia F.; Nijboer, Tanja C. W.; Bergsma, Douwe P.; Barton, Jason J. S.; Van der Stigchel, Stefan

    2015-01-01

    In patients with visual hemifield defects residual visual functions may be present, a phenomenon called blindsight. The superior colliculus (SC) is part of the spared pathway that is considered to be responsible for this phenomenon. Given that the SC processes input from different modalities and is involved in the programming of saccadic eye movements, the aim of the present study was to examine whether multimodal integration can modulate oculomotor competition in the damaged hemifield. We conducted two experiments with eight patients who had visual field defects due to lesions that affected the retinogeniculate pathway but spared the retinotectal direct SC pathway. They had to make saccades to an auditory target that was presented alone or in combination with a visual stimulus. The visual stimulus could either be spatially coincident with the auditory target (possibly enhancing the auditory target signal), or spatially disparate to the auditory target (possibly competing with the auditory tar-get signal). For each patient we compared the saccade endpoint deviation in these two bi-modal conditions with the endpoint deviation in the unimodal condition (auditory target alone). In all seven hemianopic patients, saccade accuracy was affected only by visual stimuli in the intact, but not in the blind visual field. In one patient with a more limited quadrantano-pia, a facilitation effect of the spatially coincident visual stimulus was observed. We conclude that our results show that multisensory integration is infrequent in the blind field of patients with hemianopia. PMID:25835952

  3. Visual recovery in cortical blindness is limited by high internal noise

    PubMed Central

    Cavanaugh, Matthew R.; Zhang, Ruyuan; Melnick, Michael D.; Das, Anasuya; Roberts, Mariel; Tadin, Duje; Carrasco, Marisa; Huxlin, Krystel R.

    2015-01-01

    Damage to the primary visual cortex typically causes cortical blindness (CB) in the hemifield contralateral to the damaged hemisphere. Recent evidence indicates that visual training can partially reverse CB at trained locations. Whereas training induces near-complete recovery of coarse direction and orientation discriminations, deficits in fine motion processing remain. Here, we systematically disentangle components of the perceptual inefficiencies present in CB fields before and after coarse direction discrimination training. In seven human CB subjects, we measured threshold versus noise functions before and after coarse direction discrimination training in the blind field and at corresponding intact field locations. Threshold versus noise functions were analyzed within the framework of the linear amplifier model and the perceptual template model. Linear amplifier model analysis identified internal noise as a key factor differentiating motion processing across the tested areas, with visual training reducing internal noise in the blind field. Differences in internal noise also explained residual perceptual deficits at retrained locations. These findings were confirmed with perceptual template model analysis, which further revealed that the major residual deficits between retrained and intact field locations could be explained by differences in internal additive noise. There were no significant differences in multiplicative noise or the ability to process external noise. Together, these results highlight the critical role of altered internal noise processing in mediating training-induced visual recovery in CB fields, and may explain residual perceptual deficits relative to intact regions of the visual field. PMID:26389544

  4. Attention modulates maintenance of representations in visual short-term memory.

    PubMed

    Kuo, Bo-Cheng; Stokes, Mark G; Nobre, Anna Christina

    2012-01-01

    Recent studies have shown that selective attention is of considerable importance for encoding task-relevant items into visual short-term memory (VSTM) according to our behavioral goals. However, it is not known whether top-down attentional biases can continue to operate during the maintenance period of VSTM. We used ERPs to investigate this question across two experiments. Specifically, we tested whether orienting attention to a given spatial location within a VSTM representation resulted in modulation of the contralateral delay activity (CDA), a lateralized ERP marker of VSTM maintenance generated when participants selectively encode memory items from one hemifield. In both experiments, retrospective cues during the maintenance period could predict a specific item (spatial retrocue) or multiple items (neutral retrocue) that would be probed at the end of the memory delay. Our results revealed that VSTM performance is significantly improved by orienting attention to the location of a task-relevant item. The behavioral benefit was accompanied by modulation of neural activity involved in VSTM maintenance. Spatial retrocues reduced the magnitude of the CDA, consistent with a reduction in memory load. Our results provide direct evidence that top-down control modulates neural activity associated with maintenance in VSTM, biasing competition in favor of the task-relevant information.

  5. Modulation of alpha and gamma oscillations related to retrospectively orienting attention within working memory.

    PubMed

    Poch, Claudia; Campo, Pablo; Barnes, Gareth R

    2014-07-01

    Selective attention mechanisms allow us to focus on information that is relevant to the current behavior and, equally important, ignore irrelevant information. An influential model proposes that oscillatory neural activity in the alpha band serves as an active functional inhibitory mechanism. Recent studies have shown that, in the same way that attention can be selectively oriented to bias sensory processing in favor of relevant stimuli in perceptual tasks, it is also possible to retrospectively orient attention to internal representations held in working memory. However, these studies have not explored the associated oscillatory phenomena. In the current study, we analysed the patterns of neural oscillatory activity recorded with magnetoencephalography while participants performed a change detection task, in which a spatial retro-cue was presented during the maintenance period, indicating which item or items were relevant for subsequent retrieval. Participants benefited from retro-cues in terms of accuracy and reaction time. Retro-cues also modulated oscillatory activity in the alpha and gamma frequency bands. We observed greater alpha activity in a ventral visual region ipsilateral to the attended hemifield, thus supporting its suppressive role, i.e., a functional disengagement of task-irrelevant regions. Accompanying this modulation, we found an increase in gamma activity contralateral to the attended hemifield, which could reflect attentional orienting and selective processing. These findings suggest that the oscillatory mechanisms underlying attentional orienting to representations held in working memory are similar to those engaged when attention is oriented in the perceptual space. © 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Association between the Frequency of Optic Disk Hemorrhage and Progression of NTG Related with the Initial Location of RNFL Defect.

    PubMed

    Cho, Hyun-Kyung; Lee, Min Gyu; Kee, Changwon

    2018-06-12

    This study aimed to investigate the association of the frequency of optic disk hemorrhage (DH) and progression of normal tension glaucoma (NTG) between each group based on the location of the initial retinal nerve fiber layer (RNFL) defect. In this retrospective, observational cohort study, 142 NTG patients who underwent more than 5 reliable visual field tests with initial superior hemifield (group 2, n = 51), inferior hemifield (group 1, n = 44), or both hemifield (group 3, n = 47) defects were included. The number of DHs was inspected in serial optic disk photographs by 2 different ophthalmologists. Progression rates, which are the slope of mean thresholds from the 52 points, were calculated using a linear mixed effect model. The mean follow-up period was 8.19 ± 3.30 years. DHs related with the initial RNFL defect occurred significantly more frequently in group 2 (35 in inferior hemifield) than in group 1 (6 in superior hemifield) (p = 0.009) or group 3 (6 in inferior hemifield) (p = 0.006). The progression rate in group 2 was significantly faster than in group 1 (p = 0.019) or the superior hemifield of group 3 (p = 0.001). The progression rate of subjects showing recurrent DH was significantly faster than those showing single DH from all groups (-0.5460 vs. -0.2867 dB/year, p = 0.0053). More careful examination and caution are required when NTG patients show recurrent DH in the inferior hemifield related to the initial RNFL defect. © 2018 S. Karger AG, Basel.

  7. Transfer of Learning between Hemifields in Multiple Object Tracking: Memory Reduces Constraints of Attention

    PubMed Central

    Lapierre, Mark; Howe, Piers D. L.; Cropper, Simon J.

    2013-01-01

    Many tasks involve tracking multiple moving objects, or stimuli. Some require that individuals adapt to changing or unfamiliar conditions to be able to track well. This study explores processes involved in such adaptation through an investigation of the interaction of attention and memory during tracking. Previous research has shown that during tracking, attention operates independently to some degree in the left and right visual hemifields, due to putative anatomical constraints. It has been suggested that the degree of independence is related to the relative dominance of processes of attention versus processes of memory. Here we show that when individuals are trained to track a unique pattern of movement in one hemifield, that learning can be transferred to the opposite hemifield, without any evidence of hemifield independence. However, learning is not influenced by an explicit strategy of memorisation of brief periods of recognisable movement. The findings lend support to a role for implicit memory in overcoming putative anatomical constraints on the dynamic, distributed spatial allocation of attention involved in tracking multiple objects. PMID:24349555

  8. Interhemispheric Transfer Time Asymmetry of Visual Information Depends on Eye Dominance: An Electrophysiological Study

    PubMed Central

    Chaumillon, Romain; Blouin, Jean; Guillaume, Alain

    2018-01-01

    The interhemispheric transfer of information is a fundamental process in the human brain. When a visual stimulus appears eccentrically in one visual-hemifield, it will first activate the contralateral hemisphere but also the ipsilateral one with a slight delay due to the interhemispheric transfer. This interhemispheric transfer of visual information is believed to be faster from the right to the left hemisphere in right-handers. Such an asymmetry is considered as a relevant fact in the context of the lateralization of the human brain. We show here using current source density (CSD) analyses of visually evoked potential (VEP) that, in right-handers and, to a lesser extent in left-handers, this asymmetry is in fact dependent on the sighting eye dominance, the tendency we have to prefer one eye for monocular tasks. Indeed, in right-handers, a faster interhemispheric transfer of visual information from the right to left hemisphere was observed only in participants with a right dominant eye (DE). Right-handers with a left DE showed the opposite pattern, with a faster transfer from the left to the right hemisphere. In left-handers, albeit a smaller number of participants has been tested and hence confirmation is required, only those with a right DE showed an asymmetrical interhemispheric transfer with a faster transfer from the right to the left hemisphere. As a whole these results demonstrate that eye dominance is a fundamental determinant of asymmetries in interhemispheric transfer of visual information and suggest that it is an important factor of brain lateralization. PMID:29515351

  9. Interhemispheric Transfer Time Asymmetry of Visual Information Depends on Eye Dominance: An Electrophysiological Study.

    PubMed

    Chaumillon, Romain; Blouin, Jean; Guillaume, Alain

    2018-01-01

    The interhemispheric transfer of information is a fundamental process in the human brain. When a visual stimulus appears eccentrically in one visual-hemifield, it will first activate the contralateral hemisphere but also the ipsilateral one with a slight delay due to the interhemispheric transfer. This interhemispheric transfer of visual information is believed to be faster from the right to the left hemisphere in right-handers. Such an asymmetry is considered as a relevant fact in the context of the lateralization of the human brain. We show here using current source density (CSD) analyses of visually evoked potential (VEP) that, in right-handers and, to a lesser extent in left-handers, this asymmetry is in fact dependent on the sighting eye dominance, the tendency we have to prefer one eye for monocular tasks. Indeed, in right-handers, a faster interhemispheric transfer of visual information from the right to left hemisphere was observed only in participants with a right dominant eye (DE). Right-handers with a left DE showed the opposite pattern, with a faster transfer from the left to the right hemisphere. In left-handers, albeit a smaller number of participants has been tested and hence confirmation is required, only those with a right DE showed an asymmetrical interhemispheric transfer with a faster transfer from the right to the left hemisphere. As a whole these results demonstrate that eye dominance is a fundamental determinant of asymmetries in interhemispheric transfer of visual information and suggest that it is an important factor of brain lateralization.

  10. Peripapillary and Macular Vessel Density in Glaucoma Patients with Single-Hemifield Visual Field Defect

    PubMed Central

    Yarmohammadi, Adeleh; Zangwill, Linda M.; Diniz-Filho, Alberto; Saunders, Luke J.; Suh, Min Hee; Wu, Zhichao; Manalastas, Patricia Isabel C.; Akagi, Tadamichi; Medeiros, Felipe A.; Weinreb, Robert N.

    2017-01-01

    Purpose To compare hemifield differences in the vessel density of the optic nerve head and macula in open-angle glaucoma (OAG) eyes with visual field (VF) defect confined to one hemifield using optical coherence tomography angiography (OCT-A). Design Cross-sectional study. Participants Fifty-eight eyes of 58 glaucoma patients with VF loss confined to a single hemifield, and 28 healthy eyes. Methods Retinal vasculature information was summarized as circumpapillary vessel density (cpVD) and perifoveal vessel density (pfVD). Circumpapillary retinal nerve fiber layer (cpRNFL) and macular ganglion cell complex (mGCC) thickness were also calculated using spectral domain OCT. Paired and unpaired t-tests were utilized to evaluate differences between the perimetrically affected and intact hemiretinae and healthy hemiretinae. Linear regression analyses were performed to evaluate the associations between VF measures with vascular and structural measurements. Main Outcome Measures Total and hemispheric cpVD, pfVD, cpRNFL, mGCC and mean sensitivity (MS). Results Mean cpVD and pfVD in the intact hemiretinae of OAG eyes (59.0% and 51.1%) were higher than the affected hemiretinae (54.7% and 48.3%; p<0.001) but lower than healthy eyes (62.4% and 53.8%; p<0.001). Similar results were noted with cpRNFL and mGCC thickness measurements (p<0.05 for both). The strongest associations between MS in the affected hemifields were found for cpVD (r = 0.707), followed by pfVD (r = 0.615), cpRNFL (r = 0.496) and mGCC (r = 0.482) in the corresponding hemiretinae (p<0.001 for all). Moreover the correlations in the intact hemifields between MS with cpVD and pfVD were found to be higher (r = 0.450 and 0.403) than the correlations between MS and cpRNFL and mGCC thickness measurements (r = 0.340 and 0.290; all p-values <0.05 for all). Conclusions Reduced peripapillary and macular vessel density was detectable in the perimetrically intact hemiretinae of glaucoma eyes with a single-hemifield defect. Moreover vessel density attenuation in both affected and intact hemiretinae was associated with the extent of VF damage in the corresponding hemifields. OCT-A potentially shows promise for identifying glaucomatous damage before focal VF defects are detectable. PMID:28196732

  11. Attentional reorienting triggers spatial asymmetries in a search task with cross-modal spatial cueing

    PubMed Central

    Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias

    2018-01-01

    Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637

  12. [Hemispheric differences in letter matching of hiragana and katakana].

    PubMed

    Iizuka, K; Sato, H

    1992-07-01

    The purpose of the present study was to examine the hemispheric differences in letter matching of hiragana and katakana. The stimuli with a pair of each one letter of hiragana and katakana were presented unilaterally to the right or left visual hemifield with a tachistoscope. The subjects were 40 male right handers. They were required to judge whether a pair of letters had the same name or different one. A significant right visual hemifield superiority was observed for both the accuracy of recognition and reaction time. The results suggest that the callosal relay model of Zaidel may be applied to the name matching task.

  13. Markers of preparatory attention predict visual short-term memory performance.

    PubMed

    Murray, Alexandra M; Nobre, Anna C; Stokes, Mark G

    2011-05-01

    Visual short-term memory (VSTM) is limited in capacity. Therefore, it is important to encode only visual information that is most likely to be relevant to behaviour. Here we asked which aspects of selective biasing of VSTM encoding predict subsequent memory-based performance. We measured EEG during a selective VSTM encoding task, in which we varied parametrically the memory load and the precision of recall required to compare a remembered item to a subsequent probe item. On half the trials, a spatial cue indicated that participants only needed to encode items from one hemifield. We observed a typical sequence of markers of anticipatory spatial attention: early attention directing negativity (EDAN), anterior attention directing negativity (ADAN), late directing attention positivity (LDAP); as well as of VSTM maintenance: contralateral delay activity (CDA). We found that individual differences in preparatory brain activity (EDAN/ADAN) predicted cue-related changes in recall accuracy, indexed by memory-probe discrimination sensitivity (d'). Importantly, our parametric manipulation of memory-probe similarity also allowed us to model the behavioural data for each participant, providing estimates for the quality of the memory representation and the probability that an item could be retrieved. We found that selective encoding primarily increased the probability of accurate memory recall; that ERP markers of preparatory attention predicted the cue-related changes in recall probability. Copyright © 2011. Published by Elsevier Ltd.

  14. Splitting Attention across the Two Visual Fields in Visual Short-Term Memory

    ERIC Educational Resources Information Center

    Delvenne, Jean-Francois; Holt, Jessica L.

    2012-01-01

    Humans have the ability to attentionally select the most relevant visual information from their extrapersonal world and to retain it in a temporary buffer, known as visual short-term memory (VSTM). Research suggests that at least two non-contiguous items can be selected simultaneously when they are distributed across the two visual hemifields. In…

  15. Audiovisual integration in hemianopia: A neurocomputational account based on cortico-collicular interaction.

    PubMed

    Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro

    2016-10-01

    Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hemifield-dependent N1 and event-related theta/delta oscillations: An unbiased comparison of surface Laplacian and common EEG reference choices

    PubMed Central

    Kayser, Jürgen; Tenke, Craig E.

    2015-01-01

    Surface Laplacian methodology has been used to reduce the impact of volume conduction and arbitrary choice of EEG recording reference for the analysis of surface potentials. However, the empirical implications of employing these different transformations to the same EEG data remain obscure. This study directly compared the statistical effects of four commonly-used (nose, linked mastoids, average) or recommended (reference electrode standardization technique [REST]) references and their spherical spline current source density (CSD) transformation for a large data set stemming from a well-understood experimental manipulation. ERPs (72 sites) recorded from 130 individuals during a visual half-field paradigm with highly-controlled emotional stimuli were characterized by mid-parietooccipital N1 (125 ms peak latency) and event-related synchronization (ERS) of theta/delta (160 ms), which were most robust over the contralateral hemisphere. All five data transformations were rescaled to the same covariance and submitted to a single temporal or time-frequency PCA (Varimax) to yield simplified estimates of N1 or theta/delta ERS. Unbiased nonparametric permutation tests revealed that these hemifield-dependent asymmetries were by far most focal and prominent for CSD data, despite all transformations showing maximum effects at mid-parietooccipital sites. Employing smaller subsamples (signal-to-noise) or window-based ERP/ERS amplitudes did not affect these comparisons. Furthermore, correlations between N1 and theta/delta ERS at these sites were strongest for CSD and weakest for nose-referenced data. Contrary to the common notion that the spatial high pass filter properties of a surface Laplacian reduce important contributions of neuronal generators to the EEG signal, the present findings demonstrate that instead volume conduction inherent in surface potentials weakens the representation of neuronal activation patterns at scalp that directly reflect regional brain activity. PMID:25562833

  17. Time course influences transfer of visual perceptual learning across spatial location.

    PubMed

    Larcombe, S J; Kennard, C; Bridge, H

    2017-06-01

    Visual perceptual learning describes the improvement of visual perception with repeated practice. Previous research has established that the learning effects of perceptual training may be transferable to untrained stimulus attributes such as spatial location under certain circumstances. However, the mechanisms involved in transfer have not yet been fully elucidated. Here, we investigated the effect of altering training time course on the transferability of learning effects. Participants were trained on a motion direction discrimination task or a sinusoidal grating orientation discrimination task in a single visual hemifield. The 4000 training trials were either condensed into one day, or spread evenly across five training days. When participants were trained over a five-day period, there was transfer of learning to both the untrained visual hemifield and the untrained task. In contrast, when the same amount of training was condensed into a single day, participants did not show any transfer of learning. Thus, learning time course may influence the transferability of perceptual learning effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A bilateral advantage in controlling access to visual short-term memory.

    PubMed

    Holt, Jessica L; Delvenne, Jean-François

    2014-01-01

    Recent research on visual short-term memory (VSTM) has revealed the existence of a bilateral field advantage (BFA--i.e., better memory when the items are distributed in the two visual fields than if they are presented in the same hemifield) for spatial location and bar orientation, but not for color (Delvenne, 2005; Umemoto, Drew, Ester, & Awh, 2010). Here, we investigated whether a BFA in VSTM is constrained by attentional selective processes. It has indeed been previously suggested that the BFA may be a general feature of selective attention (Alvarez & Cavanagh, 2005; Delvenne, 2005). Therefore, the present study examined whether VSTM for color benefits from bilateral presentation if attentional selective processes are particularly engaged. Participants completed a color change detection task whereby target stimuli were presented either across both hemifields or within one single hemifield. In order to engage attentional selective processes, some trials contained irrelevant stimuli that needed to be ignored. Targets were selected based on spatial locations (Experiment 1) or on a salient feature (Experiment 2). In both cases, the results revealed a BFA only when irrelevant stimuli were presented among the targets. Overall, the findings strongly suggest that attentional selective processes at encoding can constrain whether a BFA is observed in VSTM.

  19. Acute Inactivation of Primary Auditory Cortex Causes a Sound Localisation Deficit in Ferrets

    PubMed Central

    Wood, Katherine C.; Town, Stephen M.; Atilgan, Huriye; Jones, Gareth P.

    2017-01-01

    The objective of this study was to demonstrate the efficacy of acute inactivation of brain areas by cooling in the behaving ferret and to demonstrate that cooling auditory cortex produced a localisation deficit that was specific to auditory stimuli. The effect of cooling on neural activity was measured in anesthetized ferret cortex. The behavioural effect of cooling was determined in a benchmark sound localisation task in which inactivation of primary auditory cortex (A1) is known to impair performance. Cooling strongly suppressed the spontaneous and stimulus-evoked firing rates of cortical neurons when the cooling loop was held at temperatures below 10°C, and this suppression was reversed when the cortical temperature recovered. Cooling of ferret auditory cortex during behavioural testing impaired sound localisation performance, with unilateral cooling producing selective deficits in the hemifield contralateral to cooling, and bilateral cooling producing deficits on both sides of space. The deficit in sound localisation induced by inactivation of A1 was not caused by motivational or locomotor changes since inactivation of A1 did not affect localisation of visual stimuli in the same context. PMID:28099489

  20. Visual Field Asymmetry in Attentional Capture

    ERIC Educational Resources Information Center

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  1. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  2. EEG correlates of visual short-term memory in older age vary with adult lifespan cognitive development.

    PubMed

    Wiegand, Iris; Lauritzen, Martin J; Osler, Merete; Mortensen, Erik Lykke; Rostrup, Egill; Rask, Lene; Richard, Nelly; Horwitz, Anna; Benedek, Krisztina; Vangkilde, Signe; Petersen, Anders

    2018-02-01

    Visual short-term memory (vSTM) is a cognitive resource that declines with age. This study investigated whether electroencephalography (EEG) correlates of vSTM vary with cognitive development over individuals' lifespan. We measured vSTM performance and EEG in a lateralized whole-report task in a healthy birth cohort, whose cognitive function (intelligence quotient) was assessed in youth and late-middle age. Higher vSTM capacity (K; measured by Bundesen's theory of visual attention) was associated with higher amplitudes of the contralateral delay activity (CDA) and the central positivity (CP). In addition, rightward hemifield asymmetry of vSTM (K λ ) was associated with lower CDA amplitudes. Furthermore, more severe cognitive decline from young adulthood to late-middle age predicted higher CDA amplitudes, and the relationship between K and the CDA was less reliable in individuals who show higher levels of cognitive decline compared to individuals with preserved abilities. By contrast, there was no significant effect of lifespan cognitive changes on the CP or the relationship between behavioral measures of vSTM and the CP. Neither the CDA, nor the CP, nor the relationships between K or K λ and the event-related potentials were predicted by individuals' current cognitive status. Together, our findings indicate complex age-related changes in processes underlying behavioral and EEG measures of vSTM and suggest that the K-CDA relationship might be a marker of cognitive lifespan trajectories. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Temporal kinetics of prefrontal modulation of the extrastriate cortex during visual attention.

    PubMed

    Yago, Elena; Duarte, Audrey; Wong, Ting; Barceló, Francisco; Knight, Robert T

    2004-12-01

    Single-unit, event-related potential (ERP), and neuroimaging studies have implicated the prefrontal cortex (PFC) in top-down control of attention and working memory. We conducted an experiment in patients with unilateral PFC damage (n = 8) to assess the temporal kinetics of PFC-extrastriate interactions during visual attention. Subjects alternated attention between the left and the right hemifields in successive runs while they detected target stimuli embedded in streams of repetitive task-irrelevant stimuli (standards). The design enabled us to examine tonic (spatial selection) and phasic (feature selection) PFC-extrastriate interactions. PFC damage impaired performance in the visual field contralateral to lesions, as manifested by both larger reaction times and error rates. Assessment of the extrastriate P1 ERP revealed that the PFC exerts a tonic (spatial selection) excitatory input to the ipsilateral extrastriate cortex as early as 100 msec post stimulus delivery. The PFC exerts a second phasic (feature selection) excitatory extrastriate modulation from 180 to 300 msec, as evidenced by reductions in selection negativity after damage. Finally, reductions of the N2 ERP to target stimuli supports the notion that the PFC exerts a third phasic (target selection) signal necessary for successful template matching during postselection analysis of target features. The results provide electrophysiological evidence of three distinct tonic and phasic PFC inputs to the extrastriate cortex in the initial few hundred milliseconds of stimulus processing. Damage to this network appears to underlie the pervasive deficits in attention observed in patients with prefrontal lesions.

  4. Right Visual Field Advantage for Perceived Contrast: Correlation with an Auditory Bias and Handedness

    ERIC Educational Resources Information Center

    Railo, H.; Tallus, J.; Hamalainen, H.

    2011-01-01

    Studies have suggested that supramodal attentional resources are biased rightward due to asymmetric spatial fields of the two hemispheres. This bias has been observed especially in right-handed subjects. We presented left and right-handed subjects with brief uniform grey visual stimuli in either the left or right visual hemifield. Consistent with…

  5. Interhemispheric Resource Sharing: Decreasing Benefits with Increasing Processing Efficiency

    ERIC Educational Resources Information Center

    Maertens, M.; Pollmann, S.

    2005-01-01

    Visual matches are sometimes faster when stimuli are presented across visual hemifields, compared to within-field matching. Using a cued geometric figure matching task, we investigated the influence of computational complexity vs. processing efficiency on this bilateral distribution advantage (BDA). Computational complexity was manipulated by…

  6. How does interhemispheric communication in visual word recognition work? Deciding between early and late integration accounts of the split fovea theory.

    PubMed

    Van der Haegen, Lise; Brysbaert, Marc; Davis, Colin J

    2009-02-01

    It has recently been shown that interhemispheric communication is needed for the processing of foveally presented words. In this study, we examine whether the integration of information happens at an early stage, before word recognition proper starts, or whether the integration is part of the recognition process itself. Two lexical decision experiments are reported in which words were presented at different fixation positions. In Experiment 1, a masked form priming task was used with primes that had two adjacent letters transposed. The results showed that although the fixation position had a substantial influence on the transposed letter priming effect, the priming was not smaller when the transposed letters were sent to different hemispheres than when they were projected to the same hemisphere. In Experiment 2, stimuli were presented that either had high frequency hemifield competitors or could be identified unambiguously on the basis of the information in one hemifield. Again, the lexical decision times did not vary as a function of hemifield competitors. These results are consistent with the early integration account, as presented in the SERIOL model of visual word recognition.

  7. Functional evolution of new and expanded attention networks in humans

    PubMed Central

    Patel, Gaurav H.; Yang, Danica; Jamerson, Emery C.; Snyder, Lawrence H.; Corbetta, Maurizio; Ferrera, Vincent P.

    2015-01-01

    Macaques are often used as a model system for invasive investigations of the neural substrates of cognition. However, 25 million years of evolution separate humans and macaques from their last common ancestor, and this has likely substantially impacted the function of the cortical networks underlying cognitive processes, such as attention. We examined the homology of frontoparietal networks underlying attention by comparing functional MRI data from macaques and humans performing the same visual search task. Although there are broad similarities, we found fundamental differences between the species. First, humans have more dorsal attention network areas than macaques, indicating that in the course of evolution the human attention system has expanded compared with macaques. Second, potentially homologous areas in the dorsal attention network have markedly different biases toward representing the contralateral hemifield, indicating that the underlying neural architecture of these areas may differ in the most basic of properties, such as receptive field distribution. Third, despite clear evidence of the temporoparietal junction node of the ventral attention network in humans as elicited by this visual search task, we did not find functional evidence of a temporoparietal junction in macaques. None of these differences were the result of differences in training, experimental power, or anatomical variability between the two species. The results of this study indicate that macaque data should be applied to human models of cognition cautiously, and demonstrate how evolution may shape cortical networks. PMID:26170314

  8. Functional evolution of new and expanded attention networks in humans.

    PubMed

    Patel, Gaurav H; Yang, Danica; Jamerson, Emery C; Snyder, Lawrence H; Corbetta, Maurizio; Ferrera, Vincent P

    2015-07-28

    Macaques are often used as a model system for invasive investigations of the neural substrates of cognition. However, 25 million years of evolution separate humans and macaques from their last common ancestor, and this has likely substantially impacted the function of the cortical networks underlying cognitive processes, such as attention. We examined the homology of frontoparietal networks underlying attention by comparing functional MRI data from macaques and humans performing the same visual search task. Although there are broad similarities, we found fundamental differences between the species. First, humans have more dorsal attention network areas than macaques, indicating that in the course of evolution the human attention system has expanded compared with macaques. Second, potentially homologous areas in the dorsal attention network have markedly different biases toward representing the contralateral hemifield, indicating that the underlying neural architecture of these areas may differ in the most basic of properties, such as receptive field distribution. Third, despite clear evidence of the temporoparietal junction node of the ventral attention network in humans as elicited by this visual search task, we did not find functional evidence of a temporoparietal junction in macaques. None of these differences were the result of differences in training, experimental power, or anatomical variability between the two species. The results of this study indicate that macaque data should be applied to human models of cognition cautiously, and demonstrate how evolution may shape cortical networks.

  9. Relative Spatial Frequency Processing Drives Hemispheric Asymmetry in Conscious Awareness

    PubMed Central

    Piazza, Elise A.; Silver, Michael A.

    2017-01-01

    Visual stimuli with different spatial frequencies (SFs) are processed asymmetrically in the two cerebral hemispheres. Specifically, low SFs are processed relatively more efficiently in the right hemisphere than the left hemisphere, whereas high SFs show the opposite pattern. In this study, we ask whether these differences between the two hemispheres reflect a low-level division that is based on absolute SF values or a flexible comparison of the SFs in the visual environment at any given time. In a recent study, we showed that conscious awareness of SF information (i.e., visual perceptual selection from multiple SFs simultaneously present in the environment) differs between the two hemispheres. Building upon that result, here we employed binocular rivalry to test whether this hemispheric asymmetry is due to absolute or relative SF processing. In each trial, participants viewed a pair of rivalrous orthogonal gratings of different SFs, presented either to the left or right of central fixation, and continuously reported which grating they perceived. We found that the hemispheric asymmetry in perception is significantly influenced by relative processing of the SFs of the simultaneously presented stimuli. For example, when a medium SF grating and a higher SF grating were presented as a rivalry pair, subjects were more likely to report that they initially perceived the medium SF grating when the rivalry pair was presented in the left visual hemifield (right hemisphere), compared to the right hemifield. However, this same medium SF grating, when it was paired in rivalry with a lower SF grating, was more likely to be perceptually selected when it was in the right visual hemifield (left hemisphere). Thus, the visual system’s classification of a given SF as “low” or “high” (and therefore, which hemisphere preferentially processes that SF) depends on the other SFs that are present, demonstrating that relative SF processing contributes to hemispheric differences in visual perceptual selection. PMID:28469585

  10. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  11. Visual speech perception in foveal and extrafoveal vision: further implications for divisions in hemispheric projections.

    PubMed

    Jordan, Timothy R; Sheen, Mercedes; Abedipour, Lily; Paterson, Kevin B

    2014-01-01

    When observing a talking face, it has often been argued that visual speech to the left and right of fixation may produce differences in performance due to divided projections to the two cerebral hemispheres. However, while it seems likely that such a division in hemispheric projections exists for areas away from fixation, the nature and existence of a functional division in visual speech perception at the foveal midline remains to be determined. We investigated this issue by presenting visual speech in matched hemiface displays to the left and right of a central fixation point, either exactly abutting the foveal midline or else located away from the midline in extrafoveal vision. The location of displays relative to the foveal midline was controlled precisely using an automated, gaze-contingent eye-tracking procedure. Visual speech perception showed a clear right hemifield advantage when presented in extrafoveal locations but no hemifield advantage (left or right) when presented abutting the foveal midline. Thus, while visual speech observed in extrafoveal vision appears to benefit from unilateral projections to left-hemisphere processes, no evidence was obtained to indicate that a functional division exists when visual speech is observed around the point of fixation. Implications of these findings for understanding visual speech perception and the nature of functional divisions in hemispheric projection are discussed.

  12. Reduction of Left Visual Field Lexical Decision Accuracy as a Result of Concurrent Nonverbal Auditory Stimulation

    ERIC Educational Resources Information Center

    Van Strien, Jan W.

    2004-01-01

    To investigate whether concurrent nonverbal sound sequences would affect visual-hemifield lexical processing, lexical-decision performance of 24 strongly right-handed students (12 men, 12 women) was measured in three conditions: baseline, concurrent neutral sound sequence, and concurrent emotional sound sequence. With the neutral sequence,…

  13. Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity

    PubMed Central

    Li, Ling; Zhang, Jin-Xiang; Jiang, Tao

    2011-01-01

    Background Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. Methodology/Principal Findings In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4–8 Hz), alpha- (8–12 Hz), beta- (12–32 Hz), and gamma- (32–40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy. Conclusions/Significance We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in functional connectivity and topological properties during retention period may result in the decline of behavioral performance in RVF task. PMID:21789253

  14. Lateralized responses during covert attention are modulated by target eccentricity.

    PubMed

    Bahramisharif, Ali; Heskes, Tom; Jensen, Ole; van Gerven, Marcel A J

    2011-03-10

    Various studies have demonstrated that covert attention to different locations in the visual field can be used as a control signal for brain computer interfacing. It is well known that when covert attention is directed to the left visual hemifield, posterior alpha activity decreases in the right hemisphere while simultaneously increasing in the left hemisphere and vice versa. However, it remains unknown if and how the classical lateralization pattern depends on the eccentricity of the locations to which one attends. In this paper we study the effect of target eccentricity on the performance of a brain computer interface system that is driven by covert attention. Results show that the lateralization pattern becomes more pronounced as target eccentricity increases and suggest that in the current design the minimum eccentricity for having an acceptable classification performance for two targets at equal distance from fixation in opposite hemifields is about 6° of visual angle. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Left, right, left, right, eyes to the front! Müller-Lyer bias in grasping is not a function of hand used, hand preferred or visual hemifield, but foveation does matter.

    PubMed

    van der Kamp, John; de Wit, Matthieu M; Masters, Rich S W

    2012-04-01

    We investigated whether the control of movement of the left hand is more likely to involve the use of allocentric information than movements performed with the right hand. Previous studies (Gonzalez et al. in J Neurophys 95:3496-3501, 2006; De Grave et al. in Exp Br Res 193:421-427, 2009) have reported contradictory findings in this respect. In the present study, right-handed participants (N = 12) and left-handed participants (N = 12) made right- and left-handed grasps to foveated objects and peripheral, non-foveated objects that were located in the right or left visual hemifield and embedded within a Müller-Lyer illusion. They were also asked to judge the size of the object by matching their hand aperture to its length. Hand apertures did not show significant differences in illusory bias as a function of hand used, handedness or visual hemifield. However, the illusory effect was significantly larger for perception than for action, and for the non-foveated compared to foveated objects. No significant illusory biases were found for reach movement times. These findings are consistent with the two-visual system model that holds that the use of allocentric information is more prominent in perception than in movement control. We propose that the increased involvement of allocentric information in movements toward peripheral, non-foveated objects may be a consequence of more awkward, less automatized grasps of nonfoveated than foveated objects. The current study does not support the conjecture that the control of left-handed and right-handed grasps is predicated on different sources of information.

  16. TMS over the right precuneus reduces the bilateral field advantage in visual short term memory capacity.

    PubMed

    Kraft, Antje; Dyrholm, Mads; Kehrer, Stefanie; Kaufmann, Christian; Bruening, Jovita; Kathmann, Norbert; Bundesen, Claus; Irlbacher, Kerstin; Brandt, Stephan A

    2015-01-01

    Several studies have demonstrated a bilateral field advantage (BFA) in early visual attentional processing, that is, enhanced visual processing when stimuli are spread across both visual hemifields. The results are reminiscent of a hemispheric resource model of parallel visual attentional processing, suggesting more attentional resources on an early level of visual processing for bilateral displays [e.g. Sereno AB, Kosslyn SM. Discrimination within and between hemifields: a new constraint on theories of attention. Neuropsychologia 1991;29(7):659-75.]. Several studies have shown that the BFA extends beyond early stages of visual attentional processing, demonstrating that visual short term memory (VSTM) capacity is higher when stimuli are distributed bilaterally rather than unilaterally. Here we examine whether hemisphere-specific resources are also evident on later stages of visual attentional processing. Based on the Theory of Visual Attention (TVA) [Bundesen C. A theory of visual attention. Psychol Rev 1990;97(4):523-47.] we used a whole report paradigm that allows investigating visual attention capacity variability in unilateral and bilateral displays during navigated repetitive transcranial magnetic stimulation (rTMS) of the precuneus region. A robust BFA in VSTM storage capacity was apparent after rTMS over the left precuneus and in the control condition without rTMS. In contrast, the BFA diminished with rTMS over the right precuneus. This finding indicates that the right precuneus plays a causal role in VSTM capacity, particularly in bilateral visual displays. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex

    PubMed Central

    Jeong, Su Keun; Xu, Yaoda

    2016-01-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region. PMID:27494544

  18. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex.

    PubMed

    Jeong, Su Keun; Xu, Yaoda

    2016-08-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.

  19. Multifocal visual evoked potential and automated perimetry abnormalities in strabismic amblyopes.

    PubMed

    Greenstein, Vivienne C; Eggers, Howard M; Hood, Donald C

    2008-02-01

    To compare visual field abnormalities obtained with standard automated perimetry (SAP) to those obtained with the multifocal visual evoked potential (mfVEP) technique in strabismic amblyopes. Humphrey 24-2 visual fields (HVF) and mfVEPs were obtained from each eye of 12 strabismic amblyopes. For the mfVEP, amplitudes and latencies were analyzed and probability plots were derived. Multifocal VEP and HVF hemifields were abnormal if they had clusters of two or more contiguous points at p < 0.01, or three or more contiguous points at p < 0.05 with at least one at p < 0.01. An eye was abnormal if it had an abnormal hemifield. On SAP, amblyopic eyes had significantly higher foveal thresholds (p = 0.003) and lower mean deviation values (p = 0.005) than fellow eyes. For the mfVEP, 11 amblyopic and 6 fellow eyes were abnormal. Of the 11 amblyopic eyes, 6 were abnormal on SAP. The deficits extended from the center to mid periphery. Monocular mfVEP latencies were significantly decreased for amblyopic eyes compared with control eyes (p < 0.0002). Both techniques revealed deficits in visual function across the visual field in strabismic amblyopes, but the mfVEP revealed deficits in fellow eyes and in more amblyopic eyes. In addition, mfVEP response latencies for amblyopic eyes were shorter than normal.

  20. A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    PubMed Central

    Carmeli, Cristian; Lopez-Aguado, Laura; Schmidt, Kerstin E.; De Feo, Oscar; Innocenti, Giorgio M.

    2007-01-01

    Background The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization. PMID:18074012

  1. Does flexibility in perceptual organization compete with automatic grouping?

    PubMed

    van Assche, Mitsouko; Gos, Pierre; Giersch, Anne

    2012-02-06

    Segregated objects can be sought simultaneously, i.e., mentally "re-grouped." Although the mechanisms underlying such "re-grouping" clearly differ from automatic grouping, it is unclear whether or not the end products of "re-grouping" and automatic grouping are the same. If they are, they would have similar impact on visual organization but would be in conflict. We compared the consequences of grouping and re-grouping on the performance cost induced by stimuli presented across hemifields. Two identical and contiguous target figures had to be identified within a display of circles and squares alternating around a fixation point. Eye tracking was used to check central fixation. The target pair could be located in the same or separate hemifields. A large cost of presenting targets across hemifields was observed. Grouping by connectedness yielded two types of target pair, connected and unconnected. Subjects prioritized unconnected pairs efficiently when prompted to do so, suggesting "re-grouping." However, unlike automatic grouping, this did not affect the cost of across-hemifield presentation. The suggestion is that re-grouping yields different outputs to automatic grouping, such that a fresh representation resulting from re-grouping complements the one resulting from automatic grouping but does not replace it. This is one step toward understanding how our mental exploration of the world ties in and coexists with ongoing perception.

  2. Assessment of the vision-specific quality of life using clustered visual field in glaucoma patients.

    PubMed

    Sawada, Hideko; Yoshino, Takaiko; Fukuchi, Takeo; Abe, Haruki

    2014-02-01

    To investigate the significance of vision-specific quality of life (QOL) in glaucoma patients based on the location of visual field defects. We examined 336 eyes of 168 patients. The 25-item National Eye Institute Visual Function Questionnaire was used to evaluate patients' QOL. Visual field testing was performed using the Humphrey Field Analyzer; the visual field was divided into 10 clusters. We defined the eye with better mean deviation as the better eye and the fellow eye as the worse eye. A single linear regression analysis was applied to assess the significance of the relationship between QOL and the clustered visual field. The strongest correlation was observed in the lower paracentral visual field in the better eye. The lower peripheral visual field in the better eye also showed a good correlation. Correlation coefficients in the better eye were generally higher than those in the worse eye. For driving, the upper temporal visual field in the better eye was the most strongly correlated (r=0.509). For role limitation and peripheral vision, the lower peripheral visual field in the better eye had the highest correlation coefficients at 0.459 and 0.425, respectively. Overall, clusters in the lower hemifield in the better eye were more strongly correlated with QOL than those in the worse eye. In particular, the lower paracentral visual field in the better eye was correlated most strongly of all. Driving, however, strongly correlated with the upper hemifield in the better eye.

  3. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex

    PubMed Central

    Zeitoun, Jack H.; Kim, Hyungtae

    2017-01-01

    Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011

  4. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex.

    PubMed

    Duecker, Felix; Formisano, Elia; Sack, Alexander T

    2013-08-01

    Lesion studies in neglect patients have inspired two competing models of spatial attention control, namely, Heilman's "hemispatial" theory and Kinsbourne's "opponent processor" model. Both assume a functional asymmetry between the two hemispheres but propose very different mechanisms. Neuroimaging studies have identified a bilateral dorsal frontoparietal network underlying voluntary shifts of spatial attention. However, lateralization of attentional processes within this network has not been consistently reported. In the current study, we aimed to provide direct evidence concerning the functional asymmetry of the right and left FEF during voluntary shifts of spatial attention. To this end, we applied fMRI-guided neuronavigation to disrupt individual FEF activation foci with a longer-lasting inhibitory patterned TMS protocol followed by a spatial cueing task. Our results indicate that right FEF stimulation impaired the ability of shifting spatial attention toward both hemifields, whereas the effects of left FEF stimulation were limited to the contralateral hemifield. These results provide strong direct evidence for right-hemispheric dominance in spatial attention within frontal cortex supporting Heilman's "hemispatial" theory. This complements previous TMS studies that generally conform to Kinsbourne's "opponent processor" model after disruption of parietal cortex, and we therefore propose that both theories are not mutually exclusive.

  5. An investigation of the spatial selectivity of the duration after-effect.

    PubMed

    Maarseveen, Jim; Hogendoorn, Hinze; Verstraten, Frans A J; Paffen, Chris L E

    2017-01-01

    Adaptation to the duration of a visual stimulus causes the perceived duration of a subsequently presented stimulus with a slightly different duration to be skewed away from the adapted duration. This pattern of repulsion following adaptation is similar to that observed for other visual properties, such as orientation, and is considered evidence for the involvement of duration-selective mechanisms in duration encoding. Here, we investigated whether the encoding of duration - by duration-selective mechanisms - occurs early on in the visual processing hierarchy. To this end, we investigated the spatial specificity of the duration after-effect in two experiments. We measured the duration after-effect at adapter-test distances ranging between 0 and 15° of visual angle and for within- and between-hemifield presentations. We replicated the duration after-effect: the test stimulus was perceived to have a longer duration following adaptation to a shorter duration, and a shorter duration following adaptation to a longer duration. Importantly, this duration after-effect occurred at all measured distances, with no evidence for a decrease in the magnitude of the after-effect at larger distances or across hemifields. This shows that adaptation to duration does not result from adaptation occurring early on in the visual processing hierarchy. Instead, it seems likely that duration information is a high-level stimulus property that is encoded later on in the visual processing hierarchy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. What is Grouping during Binocular Rivalry?

    PubMed Central

    Stuit, Sjoerd M.; Paffen, Chris L. E.; van der Smagt, Maarten J.; Verstraten, Frans A. J.

    2011-01-01

    During binocular rivalry, perception alternates between dissimilar images presented dichoptically. Although perception during rivalry is believed to originate from competition at a local level, different rivalry zones are not independent: rival targets that are spaced apart but have similar features tend to be dominant at the same time. We investigated grouping of spatially separated rival targets presented to the same or to different eyes and presented in the same or in different hemifields. We found eye-of-origin to be the strongest cue for grouping during binocular rivalry. Grouping was additionally affected by orientation: identical orientations were grouped longer than dissimilar orientations, even when presented to different eyes. Our results suggest that eye-based and orientation-based grouping is independent and additive in nature. Grouping effects were further modulated by the distribution of the targets across the visual field. That is, grouping within the same hemifield can be stronger or weaker than between hemifields, depending on the eye-of-origin of the grouped targets. We also quantified the contribution of the previous cues to grouping of two images during binocular rivalry. These quantifications can be successfully used to predict the dominance durations of different studies. Incorporating the relative contribution of different cues to grouping, and the dependency on hemifield, into future models of binocular rivalry will prove useful in our understanding of the functional and anatomical basis of the phenomenon of binocular rivalry. PMID:22022312

  7. Dichoptic stimulation improves detection of glaucoma with multifocal visual evoked potentials.

    PubMed

    Arvind, Hemamalini; Klistorner, Alexander; Graham, Stuart; Grigg, John; Goldberg, Ivan; Klistorner, Asya; Billson, Frank A

    2007-10-01

    To determine whether simultaneous binocular (dichoptic) stimulation for multifocal visual evoked potentials (mfVEP) detects glaucomatous defects and decreases intereye variability. Twenty-eight patients with glaucoma and 30 healthy subjects underwent mfVEP on monocular and dichoptic stimulation. Dichoptic stimulation was presented with the use of virtual reality goggles (recording time, 7 minutes). Monocular mfVEPs were recorded sequentially for each eye (recording time, 10 minutes). Comparison of mean relative asymmetry coefficient (RAC; calculated as difference in amplitudes between eyes/sum of amplitudes of both eyes at each segment) on monocular and dichoptic mfVEP revealed significantly lower RAC on dichoptic (0.003 +/- 0.03) compared with monocular testing (-0.02 +/- 0.04; P = 0.002). In all 28 patients, dichoptic mfVEP identified defects with excellent topographic correspondence. Of 56 hemifields (28 eyes), 33 had Humphrey visual field (HFA) scotomas, all of which were detected by dichoptic mfVEP. Among 23 hemifields with normal HFA, two were abnormal on monocular and dichoptic mfVEP. Five hemifields (five patients) normal on HFA and monocular mfVEP were abnormal on dichoptic mfVEP. In all five patients, corresponding rim changes were observed on disc photographs. Mean RAC of glaucomatous eyes was significantly higher on dichoptic (0.283 +/- 0.18) compared with monocular (0.199 +/- 0.12) tests (P = 0.0006). Dichoptic mfVEP not only detects HFA losses, it may identify early defects in areas unaffected on HFA and monocular mfVEP while reducing testing time by 30%. Asymmetry was tighter among healthy subjects but wider in patients with glaucoma on simultaneous binocular stimulation, which is potentially a new tool in the early detection of glaucoma.

  8. Factors influencing the latency of simple reaction time

    PubMed Central

    Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce

    2015-01-01

    Simple reaction time (SRT), the minimal time needed to respond to a stimulus, is a basic measure of processing speed. SRTs were first measured by Francis Galton in the 19th century, who reported visual SRT latencies below 190 ms in young subjects. However, recent large-scale studies have reported substantially increased SRT latencies that differ markedly in different laboratories, in part due to timing delays introduced by the computer hardware and software used for SRT measurement. We developed a calibrated and temporally precise SRT test to analyze the factors that influence SRT latencies in a paradigm where visual stimuli were presented to the left or right hemifield at varying stimulus onset asynchronies (SOAs). Experiment 1 examined a community sample of 1469 subjects ranging in age from 18 to 65. Mean SRT latencies were short (231, 213 ms when corrected for hardware delays) and increased significantly with age (0.55 ms/year), but were unaffected by sex or education. As in previous studies, SRTs were prolonged at shorter SOAs and were slightly faster for stimuli presented in the visual field contralateral to the responding hand. Stimulus detection time (SDT) was estimated by subtracting movement initiation time, measured in a speeded finger tapping test, from SRTs. SDT latencies averaged 131 ms and were unaffected by age. Experiment 2 tested 189 subjects ranging in age from 18 to 82 years in a different laboratory using a larger range of SOAs. Both SRTs and SDTs were slightly prolonged (by 7 ms). SRT latencies increased with age while SDT latencies remained stable. Precise computer-based measurements of SRT latencies show that processing speed is as fast in contemporary populations as in the Victorian era, and that age-related increases in SRT latencies are due primarily to slowed motor output. PMID:25859198

  9. Posterior alpha oscillations reflect attentional problems in boys with Attention Deficit Hyperactivity Disorder.

    PubMed

    Vollebregt, Madelon A; Zumer, Johanna M; Ter Huurne, Niels; Buitelaar, Jan K; Jensen, Ole

    2016-05-01

    This study aimed to characterize alpha modulations in children with ADHD in relation to their attentional performance. The posterior alpha activity (8-12Hz) was measured in 30 typically developing children and 30 children with ADHD aged 7-10years, using EEG while they performed a visuospatial covert attention task. We focused the analyses on typically developing boys (N=9) and boys with ADHD (N=17). Alpha activity in typically developing boys was similar to previous results of healthy adults: it decreased in the hemisphere contralateral to the attended hemifield, whereas it relatively increased in the other hemisphere. However, in boys with ADHD this hemispheric lateralization in the alpha band was not obvious (group contrast, p=.018). A robust relation with behavioral performance was lacking in both groups. The ability to modulate alpha oscillations in visual regions with the allocation of spatial attention was clearly present in typically developing boys, but not in boys with ADHD. These results open up the possibility to further study the underlying mechanisms of ADHD by examining how differences in the fronto-striatal network might explain different abilities in modulating the alpha band activity. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Assessment of the Hemispheric Lateralization of Grapheme-Color Synesthesia with Stroop-Type Tests

    PubMed Central

    Ruiz, Mathieu J.; Hupé, Jean-Michel

    2015-01-01

    Grapheme-color synesthesia, the idiosyncratic, arbitrary association of colors to letters or numbers, develops in childhood once reading is mastered. Because language processing is strongly left-lateralized in most individuals, we hypothesized that grapheme-color synesthesia could be left-lateralized as well. We used synesthetic versions of the Stroop test with colored letters and numbers presented either in the right or the left visual field of thirty-four synesthetes. Interference by synesthetic colors was stronger for stimuli in the right hemifield (first experiment, color naming task). Synesthetes were also faster in the right hemifield when naming the synesthetic color of graphemes (second experiment). Overall, the lateralization effect was 7 ms (the 95% confidence interval was [1.5 12] ms), a delay compatible with an additional callosal transfer for stimuli presented in the left hemifield. Though weak, this effect suggests that the association of synesthetic colors to graphemes may be preferentially processed in the left hemisphere. We speculate that this left-lateralization could be a landmark of synesthetic grapheme-color associations, if not found for color associations learnt by non-synesthete adults. PMID:25793307

  11. Causal functional contributions and interactions in the attention network of the brain: an objective multi-perturbation analysis.

    PubMed

    Zavaglia, Melissa; Hilgetag, Claus C

    2016-06-01

    Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.

  12. Reading laterally: the cerebral hemispheric use of spatial frequencies in visual word recognition.

    PubMed

    Tadros, Karine; Dupuis-Roy, Nicolas; Fiset, Daniel; Arguin, Martin; Gosselin, Frédéric

    2013-01-04

    It is generally accepted that the left hemisphere (LH) is more capable for reading than the right hemisphere (RH). Left hemifield presentations (initially processed by the RH) lead to a globally higher error rate, slower word identification, and a significantly stronger word length effect (i.e., slower reaction times for longer words). Because the visuo-perceptual mechanisms of the brain for word recognition are primarily localized in the LH (Cohen et al., 2003), it is possible that this part of the brain possesses better spatial frequency (SF) tuning for processing the visual properties of words than the RH. The main objective of this study is to determine the SF tuning functions of the LH and RH for word recognition. Each word image was randomly sampled in the SF domain using the SF bubbles method (Willenbockel et al., 2010) and was presented laterally to the left or right visual hemifield. As expected, the LH requires less visual information than the RH to reach the same level of performance, illustrating the well-known LH advantage for word recognition. Globally, the SF tuning of both hemispheres is similar. However, these seemingly identical tuning functions hide important differences. Most importantly, we argue that the RH requires higher SFs to identify longer words because of crowding.

  13. Sustained visual-spatial attention produces costs and benefits in response time and evoked neural activity.

    PubMed

    Mangun, G R; Buck, L A

    1998-03-01

    This study investigated the simple reaction time (RT) and event-related potential (ERP) correlates of biasing attention towards a location in the visual field. RTs and ERPs were recorded to stimuli flashed randomly and with equal probability to the left and right visual hemifields in the three blocked, covert attention conditions: (i) attention divided equally to left and right hemifield locations; (ii) attention biased towards the left location; or (iii) attention biased towards the right location. Attention was biased towards left or right by instructions to the subjects, and responses were required to all stimuli. Relative to the divided attention condition, RTs were significantly faster for targets occurring where more attention was allocated (benefits), and slower to targets where less attention was allocated (costs). The early P1 (100-140 msec) component over the lateral occipital scalp regions showed attentional benefits. There were no amplitude modulations of the occipital N1 (125-180 msec) component with attention. Between 200 and 500 msec latency, a late positive deflection (LPD) showed both attentional costs and benefits. The behavioral findings show that when sufficiently induced to bias attention, human observers demonstrate RT benefits as well as costs. The corresponding P1 benefits suggest that the RT benefits of spatial attention may arise as the result of modulations of visual information processing in the extrastriate visual cortex.

  14. Deficits of spatial and task-related attentional selection in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Redel, P; Bublak, P; Sorg, C; Kurz, A; Förstl, H; Müller, H J; Schneider, W X; Perneczky, R; Finke, K

    2012-01-01

    Visual selective attention was assessed with a partial-report task in patients with probable Alzheimer's disease (AD), amnestic mild cognitive impairment (MCI), and healthy elderly controls. Based on Bundesen's "theory of visual attention" (TVA), two parameters were derived: top-down control of attentional selection, representing task-related attentional weighting for prioritizing relevant visual objects, and spatial distribution of attentional weights across the left and the right hemifield. Compared with controls, MCI patients showed significantly reduced top-down controlled selection, which was further deteriorated in AD subjects. Moreover, attentional weighting was significantly unbalanced across hemifields in MCI and tended to be more lateralized in AD. Across MCI and AD patients, carriers of the apolipoprotein E ε4 allele (ApoE4) displayed a leftward spatial bias, which was the more pronounced the younger the ApoE4-positive patients and the earlier disease onset. These results indicate that impaired top-down control may be linked to early dysfunction of fronto-parietal networks. An early temporo-parietal interhemispheric asymmetry might cause a pathological spatial bias which is associated with ApoE4 genotype and may therefore function as early cognitive marker of upcoming AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Selective enhancement of orientation tuning before saccades.

    PubMed

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  16. Backward masked fearful faces enhance contralateral occipital cortical activity for visual targets within the spotlight of attention

    PubMed Central

    Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza

    2011-01-01

    Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500

  17. Behavioural benefits of multisensory processing in ferrets.

    PubMed

    Hammond-Kenny, Amy; Bajo, Victoria M; King, Andrew J; Nodal, Fernando R

    2017-01-01

    Enhanced detection and discrimination, along with faster reaction times, are the most typical behavioural manifestations of the brain's capacity to integrate multisensory signals arising from the same object. In this study, we examined whether multisensory behavioural gains are observable across different components of the localization response that are potentially under the command of distinct brain regions. We measured the ability of ferrets to localize unisensory (auditory or visual) and spatiotemporally coincident auditory-visual stimuli of different durations that were presented from one of seven locations spanning the frontal hemifield. During the localization task, we recorded the head movements made following stimulus presentation, as a metric for assessing the initial orienting response of the ferrets, as well as the subsequent choice of which target location to approach to receive a reward. Head-orienting responses to auditory-visual stimuli were more accurate and faster than those made to visual but not auditory targets, suggesting that these movements were guided principally by sound alone. In contrast, approach-to-target localization responses were more accurate and faster to spatially congruent auditory-visual stimuli throughout the frontal hemifield than to either visual or auditory stimuli alone. Race model inequality analysis of head-orienting reaction times and approach-to-target response times indicates that different processes, probability summation and neural integration, respectively, are likely to be responsible for the effects of multisensory stimulation on these two measures of localization behaviour. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Hemispheric Visual Attentional Imbalance in Patients with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Pavlovskaya, Marina; Groswasser, Zeev; Keren, Ofer; Mordvinov, Eugene; Hochstein, Shaul

    2007-01-01

    We find a spatially asymmetric allocation of attention in patients with traumatic brain injury (TBI) despite the lack of obvious asymmetry in neurological indicators. Identification performance was measured for simple spatial patterns presented briefly to a locus 5 degrees into the left or right hemifield, after precuing attention to the same…

  19. Understanding disparities among diagnostic technologies in glaucoma.

    PubMed

    De Moraes, Carlos Gustavo V; Liebmann, Jeffrey M; Ritch, Robert; Hood, Donald C

    2012-07-01

    To investigate causes of disagreement among 3 glaucoma diagnostic techniques: standard automated achromatic perimetry (SAP), the multifocal visual evoked potential technique (mfVEP), and optical coherence tomography (OCT). In a prospective cross-sectional study, 138 eyes of 69 patients with glaucomatous optic neuropathy were tested using SAP, the mfVEP, and OCT. Eyes with the worse and better mean deviations (MDs) were analyzed separately. If the results of 2 tests were consistent for the presence of an abnormality in the same topographic site, that abnormality was considered a true glaucoma defect. If a third test missed that abnormality (false-negative result), the reasons for disparity were investigated. Eyes with worse MD (mean [SD], -6.8 [8.0] dB) had better agreements among tests than did eyes with better MD (-2.5 [3.5] dB, P<.01). For the 94 of 138 hemifields with abnormalities of the more advanced eyes, the 3 tests were consistent in showing the same hemifield abnormality in 50 hemifields (53%), and at least 2 tests were abnormal in 65 of the 94 hemifields (69%). The potential explanations for the false-negative results fell into 2 general categories: inherent limitations of each technique to detect distinct features of glaucoma and individual variability and the distribution of normative values used to define statistically significant abnormalities. All the cases of disparity could be explained by known limitations of each technique and interindividual variability, suggesting that the agreement among diagnostic tests may be better than summary statistics suggest and that disagreements between tests do not indicate discordance in the structure-function relationship.

  20. Parietal stimulation destabilizes spatial updating across saccadic eye movements.

    PubMed

    Morris, Adam P; Chambers, Christopher D; Mattingley, Jason B

    2007-05-22

    Saccadic eye movements cause sudden and global shifts in the retinal image. Rather than causing confusion, however, eye movements expand our sense of space and detail. In macaques, a stable representation of space is embodied by neural populations in intraparietal cortex that redistribute activity with each saccade to compensate for eye displacement, but little is known about equivalent updating mechanisms in humans. We combined noninvasive cortical stimulation with a double-step saccade task to examine the contribution of two human intraparietal areas to transsaccadic spatial updating. Right hemisphere stimulation over the posterior termination of the intraparietal sulcus (IPSp) broadened and shifted the distribution of second-saccade endpoints, but only when the first-saccade was directed into the contralateral hemifield. By interleaving trials with and without cortical stimulation, we show that the shift in endpoints was caused by an enduring effect of stimulation on neural functioning (e.g., modulation of neuronal gain). By varying the onset time of stimulation, we show that the representation of space in IPSp is updated immediately after the first-saccade. In contrast, stimulation of an adjacent IPS site had no such effects on second-saccades. These experiments suggest that stimulation of IPSp distorts an eye position or displacement signal that updates the representation of space at the completion of a saccade. Such sensory-motor integration in IPSp is crucial for the ongoing control of action, and may contribute to visual stability across saccades.

  1. Object integration requires attention: Visual search for Kanizsa figures in parietal extinction.

    PubMed

    Gögler, Nadine; Finke, Kathrin; Keller, Ingo; Müller, Hermann J; Conci, Markus

    2016-11-01

    The contribution of selective attention to object integration is a topic of debate: integration of parts into coherent wholes, such as in Kanizsa figures, is thought to arise either from pre-attentive, automatic coding processes or from higher-order processes involving selective attention. Previous studies have attempted to examine the role of selective attention in object integration either by employing visual search paradigms or by studying patients with unilateral deficits in selective attention. Here, we combined these two approaches to investigate object integration in visual search in a group of five patients with left-sided parietal extinction. Our search paradigm was designed to assess the effect of left- and right-grouped nontargets on detecting a Kanizsa target square. The results revealed comparable reaction time (RT) performance in patients and controls when they were presented with displays consisting of a single to-be-grouped item that had to be classified as target vs. nontarget. However, when display size increased to two items, patients showed an extinction-specific pattern of enhanced RT costs for nontargets that induced a partial shape grouping on the right, i.e., in the attended hemifield (relative to the ungrouped baseline). Together, these findings demonstrate a competitive advantage for right-grouped objects, which in turn indicates that in parietal extinction, attentional competition between objects particularly limits integration processes in the contralesional, i.e., left hemifield. These findings imply a crucial contribution of selective attentional resources to visual object integration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Features of the Retinotopic Representation in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata)

    PubMed Central

    Michael, Neethu; Löwel, Siegrid; Bischof, Hans-Joachim

    2015-01-01

    The visual wulst of the zebra finch comprises at least two retinotopic maps of the contralateral eye. As yet, it is not known how much of the visual field is represented in the wulst neuronal maps, how the organization of the maps is related to the retinal architecture, and how information from the ipsilateral eye is involved in the activation of the wulst. Here, we have used autofluorescent flavoprotein imaging and classical anatomical methods to investigate such characteristics of the most posterior map of the multiple retinotopic representations. We found that the visual wulst can be activated by visual stimuli from a large part of the visual field of the contralateral eye. Horizontally, the visual field representation extended from -5° beyond the beak tip up to +125° laterally. Vertically, a small strip from -10° below to about +25° above the horizon activated the visual wulst. Although retinal ganglion cells had a much higher density around the fovea and along a strip extending from the fovea towards the beak tip, these areas were not overrepresented in the wulst map. The wulst area activated from the foveal region of the ipsilateral eye, overlapped substantially with the middle of the three contralaterally activated regions in the visual wulst, and partially with the other two. Visual wulst activity evoked by stimulation of the frontal visual field was stronger with contralateral than with binocular stimulation. This confirms earlier electrophysiological studies indicating an inhibitory influence of the activation of the ipsilateral eye on wulst activity elicited by stimulating the contralateral eye. The lack of a foveal overrepresentation suggests that identification of objects may not be the primary task of the zebra finch visual wulst. Instead, this brain area may be involved in the processing of visual information necessary for spatial orientation. PMID:25853253

  3. Auditory spatial processing in the human cortex.

    PubMed

    Salminen, Nelli H; Tiitinen, Hannu; May, Patrick J C

    2012-12-01

    The auditory system codes spatial locations in a way that deviates from the spatial representations found in other modalities. This difference is especially striking in the cortex, where neurons form topographical maps of visual and tactile space but where auditory space is represented through a population rate code. In this hemifield code, sound source location is represented in the activity of two widely tuned opponent populations, one tuned to the right and the other to the left side of auditory space. Scientists are only beginning to uncover how this coding strategy adapts to various spatial processing demands. This review presents the current understanding of auditory spatial processing in the cortex. To this end, the authors consider how various implementations of the hemifield code may exist within the auditory cortex and how these may be modulated by the stimulation and task context. As a result, a coherent set of neural strategies for auditory spatial processing emerges.

  4. Visual-somatosensory integration in aging: Does stimulus location really matter?

    PubMed Central

    MAHONEY, JEANNETTE R.; WANG, CUILING; DUMAS, KRISTINA; HOLTZER, ROEE

    2014-01-01

    Individuals are constantly bombarded by sensory stimuli across multiple modalities that must be integrated efficiently. Multisensory integration (MSI) is said to be governed by stimulus properties including space, time, and magnitude. While there is a paucity of research detailing MSI in aging, we have demonstrated that older adults reveal the greatest reaction time (RT) benefi t when presented with simultaneous visual-somatosensory (VS) stimuli. To our knowledge, the differential RT benefit of visual and somatosensory stimuli presented within and across spatial hemifields has not been investigated in aging. Eighteen older adults (Mean = 74 years; 11 female), who were determined to be non-demented and without medical or psychiatric conditions that may affect their performance, participated in this study. Participants received eight randomly presented stimulus conditions (four unisensory and four multisensory) and were instructed to make speeded foot-pedal responses as soon as they detected any stimulation, regardless of stimulus type and location of unisensory inputs. Results from a linear mixed effect model, adjusted for speed of processing and other covariates, revealed that RTs to all multisensory pairings were significantly faster than those elicited to averaged constituent unisensory conditions (p < 0.01). Similarly, race model violation did not differ based on unisensory spatial location (p = 0.41). In summary, older adults demonstrate significant VS multisensory RT effects to stimuli both within and across spatial hemifields. PMID:24698637

  5. Transfer of an induced preferred retinal locus of fixation to everyday life visual tasks.

    PubMed

    Barraza-Bernal, Maria J; Rifai, Katharina; Wahl, Siegfried

    2017-12-01

    Subjects develop a preferred retinal locus of fixation (PRL) under simulation of central scotoma. If systematic relocations are applied to the stimulus position, PRLs manifest at a location in favor of the stimulus relocation. The present study investigates whether the induced PRL is transferred to important visual tasks in daily life, namely pursuit eye movements, signage reading, and text reading. Fifteen subjects with normal sight participated in the study. To develop a PRL, all subjects underwent a scotoma simulation in a prior study, where five subjects were trained to develop the PRL in the left hemifield, five different subjects on the right hemifield, and the remaining five subjects could naturally chose the PRL location. The position of this PRL was used as baseline. Under central scotoma simulation, subjects performed a pursuit task, a signage reading task, and a reading-text task. In addition, retention of the behavior was also studied. Results showed that the PRL position was transferred to the pursuit task and that the vertical location of the PRL was maintained on the text reading task. However, when reading signage, a function-driven change in PRL location was observed. In addition, retention of the PRL position was observed over weeks and months. These results indicate that PRL positions can be induced and may further transferred to everyday life visual tasks, without hindering function-driven changes in PRL position.

  6. Evidence for negative feature guidance in visual search is explained by spatial recoding.

    PubMed

    Beck, Valerie M; Hollingworth, Andrew

    2015-10-01

    Theories of attention and visual search explain how attention is guided toward objects with known target features. But can attention be directed away from objects with a feature known to be associated only with distractors? Most studies have found that the demand to maintain the to-be-avoided feature in visual working memory biases attention toward matching objects rather than away from them. In contrast, Arita, Carlisle, and Woodman (2012) claimed that attention can be configured to selectively avoid objects that match a cued distractor color, and they reported evidence that this type of negative cue generates search benefits. However, the colors of the search array items in Arita et al. (2012) were segregated by hemifield (e.g., blue items on the left, red on the right), which allowed for a strategy of translating the feature-cue information into a simple spatial template (e.g., avoid right, or attend left). In the present study, we replicated the negative cue benefit using the Arita et al. (2012), method (albeit within a subset of participants who reliably used the color cues to guide attention). Then, we eliminated the benefit by using search arrays that could not be grouped by hemifield. Our results suggest that feature-guided avoidance is implemented only indirectly, in this case by translating feature-cue information into a spatial template. (c) 2015 APA, all rights reserved).

  7. Reading performance after vision rehabilitation of subjects with homonymous visual field defects.

    PubMed

    Gall, Carolin; Sabel, Bernhard A

    2012-12-01

    To examine whether increased visual functioning after vision-restoration training (VRT) coincides with improved reading abilities. Prospective noncontrolled open-label trial. Controlled laboratory setting for all diagnostic procedures that were conducted before and after 6 months of home-based VRT with telemedicine support. Eleven subjects who had experienced a posterior-parietal stroke and have homonymous visual field defects. Six months of VRT (1 hour daily repeated light stimulation in the partially damaged visual field). VRT outcome measures were the number of detected light stimuli in eye-tracker controlled high-resolution perimetry and the spared visual field within the affected hemifield up to the relative and absolute defect visual field border (square degrees). Enlargements of spared visual field within the affected hemifield were correlated with changes of reading speed after VRT. After VRT, the number of detected light stimuli increased by 5.02 ± 4.31% (mean ± SD; P = .03). The spared visual field up to the relative defect visual field border increased from 18.09 ± 32.35 square degrees before to 137.40 ± 53.32 after VRT (P = .006), as well as for the absolute defect visual field border from 36.95 ± 33.77 square degrees before VRT to 152.02 ± 49.70 after VRT (P = .005). Reading speed increased from 108.95 ± 33.95 words per minute before VRT to 122.26 ± 30.35 after VRT (P = .017), which significantly correlated with increased spared visual field up to the relative defect visual field border (r = 0.73, P = .016). Measures of eye movement variability did not correlate with VRT outcome. VRT improved visual fields in parafoveal areas, which are most relevant for reading. This finding cannot be explained by changes in eye movement behavior. Because of a significant association between improvements of parafoveal vision and reading speed, we propose that patients with homonymous visual field defects who have reading deficits may benefit from visual stimulation by training. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Visual feature integration with an attention deficit.

    PubMed

    Arguin, M; Cavanagh, P; Joanette, Y

    1994-01-01

    Treisman's feature integration theory proposes that the perception of illusory conjunctions of correctly encoded visual features is due to the failure of an attentional process. This hypothesis was examined by studying brain-damaged subjects who had previously been shown to have difficulty in attending to contralesional stimulation. These subjects exhibited a massive feature integration deficit for contralesional stimulation relative to ipsilesional displays. In contrast, both normal age-matched controls and brain-damaged subjects who did not exhibit any evidence of an attention deficit showed comparable feature integration performance with left- and right-hemifield stimulation. These observations indicate the crucial function of attention for visual feature integration in normal perception.

  9. Sounds Activate Visual Cortex and Improve Visual Discrimination

    PubMed Central

    Störmer, Viola S.; Martinez, Antigona; McDonald, John J.; Hillyard, Steven A.

    2014-01-01

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. PMID:25031419

  10. Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs.

    PubMed

    Wykowska, Agnieszka; Schubö, Anna

    2011-03-01

    It is not clear how salient distractors affect visual processing. The debate concerning the issue of whether irrelevant salient items capture spatial attention [e.g., Theeuwes, J., Atchley, P., & Kramer, A. F. On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive performance (pp. 105-124). Cambridge, MA: MIT Press, 2000] or produce only nonspatial interference in the form of, for example, filtering costs [Folk, Ch. L., & Remington, R. Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14, 445-465, 2006] has not yet been settled. The present ERP study examined deployment of attention in visual search displays that contained an additional irrelevant singleton. Display-locked N2pc showed that attention was allocated to the target and not to the irrelevant singleton. However, the onset of the N2pc to the target was delayed when the irrelevant singleton was presented in the opposite hemifield relative to the same hemifield. Thus, although attention was successfully focused on the target, the irrelevant singleton produced some interference resulting in a delayed allocation of attention to the target. A subsequent probe discrimination task allowed for locking ERPs to probe onsets and investigating the dynamics of sensory gain control for probes appearing at relevant (target) or irrelevant (singleton distractor) positions. Probe-locked P1 showed sensory gain for probes positioned at the target location but no such effect for irrelevant singletons in the additional singleton condition. Taken together, the present data support the claim that irrelevant singletons do not capture attention. If they produce any interference, it is rather due to nonspatial filtering costs.

  11. Behavioral evidence for inter-hemispheric cooperation during a lexical decision task: a divided visual field experiment.

    PubMed

    Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica

    2013-01-01

    HIGHLIGHTSThe redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific processes and various levels of word processing.

  12. Visual Auras in Epilepsy and Migraine - An Analysis of Clinical Characteristics.

    PubMed

    Hartl, Elisabeth; Angel, Jose; Rémi, Jan; Schankin, Christoph J; Noachtar, Soheyl

    2017-06-01

    To evaluate the characteristics of visual auras (VA) in epilepsy and migraine. Both disorders are usually diagnosed on clinical grounds, but differentiation might be challenging in isolated auras or because of the similar presentation in migraine and epilepsy. A retrospective study of two cohorts was performed to compare the VA characteristics of 27 epilepsy patients and 27 age-matched migraine patients. The duration of VA was significantly shorter in epilepsy (median: 56s; 1st quartile Q1: 26s; 3rd quartile Q3: 130s) than in migraine (20 min; Q1: 10 min; Q3: 30 min) (P < .0001). A cutoff duration of ≥5 minutes identified all migraine patients (100% sensitivity, 92% specificity). VAs of epileptic etiology were characterized by restriction to a visual hemifield (74.1% vs 29.6% in migraine, P = .0024) with stereotypic affection of one hemifield (55.5% vs 7.4% in migraine, P = 0.0003). Centrifugal or centripetal spread of visual phenomena only occurred in migraine (37.0%), but not in epilepsy (P = 0.0007). If present, accompanying symptoms such as nausea/vomiting (19/27) or photo-/phonophobia (17/27) identify migrainous auras (vs 0/27 in the epilepsy patients; P < .0001). Headache presented in all migraine patients, but was also observed in six of the epilepsy patients during cephalic auras or the postictal phase (P < .0001). None of the visual migrainous auras evolved into an epileptic seizure, a concept called migralepsy. Several clinical characteristics differentiate VA of epileptic and migrainous origin - if presenting in classical manner. Additional EEG evaluations should be performed in patients with VA of unclear etiology and epileptic VA features added to current classifications to increase their discriminatory power. © 2017 American Headache Society.

  13. Behavioral evidence for inter-hemispheric cooperation during a lexical decision task: a divided visual field experiment

    PubMed Central

    Perrone-Bertolotti, Marcela; Lemonnier, Sophie; Baciu, Monica

    2013-01-01

    HIGHLIGHTS The redundant bilateral visual presentation of verbal stimuli decreases asymmetry and increases the cooperation between the two hemispheres.The increased cooperation between the hemispheres is related to semantic information during lexical processing.The inter-hemispheric interaction is represented by both inhibition and cooperation. This study explores inter-hemispheric interaction (IHI) during a lexical decision task by using a behavioral approach, the bilateral presentation of stimuli within a divided visual field experiment. Previous studies have shown that compared to unilateral presentation, the bilateral redundant (BR) presentation decreases the inter-hemispheric asymmetry and facilitates the cooperation between hemispheres. However, it is still poorly understood which type of information facilitates this cooperation. In the present study, verbal stimuli were presented unilaterally (left or right visual hemi-field successively) and bilaterally (left and right visual hemi-field simultaneously). Moreover, during the bilateral presentation of stimuli, we manipulated the relationship between target and distractors in order to specify the type of information which modulates the IHI. Thus, three types of information were manipulated: perceptual, semantic, and decisional, respectively named pre-lexical, lexical and post-lexical processing. Our results revealed left hemisphere (LH) lateralization during the lexical decision task. In terms of inter-hemisphere interaction, the perceptual and decision-making information increased the inter-hemispheric asymmetry, suggesting the inhibition of one hemisphere upon the other. In contrast, semantic information decreased the inter-hemispheric asymmetry, suggesting cooperation between the hemispheres. We discussed our results according to current models of IHI and concluded that cerebral hemispheres interact and communicate according to various excitatory and inhibitory mechanisms, all which depend on specific processes and various levels of word processing. PMID:23818879

  14. [Development of Non-Arteritic Anterior Ischaemic Optic Neuropathy in the Initially Unaffected Fellow Eye in Patients Treated with Systemic Corticosteroids].

    PubMed

    Pahor, Artur; Pahor, Dusica

    2017-11-01

    Background The objective of this prospective pilot study was to evaluate the results of systemic corticosteroid therapy in patient with non-arteritic anterior ischaemic neuropathy of the optical nerve (NAION) for an observation period of one year and to measure the NAION incidence in the initially healthy contralateral eye of these patients. Patients and Methods All patients diagnosed with acute NAION who were admitted to our ward during 2014 and who fulfilled all inclusion criteria for systemic corticosteroid therapy were included in the study. The inclusion criteria were corrected visual acuity of 0.3 or less and duration of illness of less than 2 weeks. All patients were examined by a rheumatologist and given a complete ophthalmological examination, including fluorescein angiography and examination of the visual field. Only 3 of the 23 patients fulfilled our inclusion criteria for corticoid treatment and were then treated. 10 patients served as controls. The treatment plan started with an initial dose of 80 mg prednisolone during the first two weeks. The dose was then tapered over 3 to 4 months. Results The mean best corrected visual acuity on admission was 0.12 and 0.35 after one year. The mean duration of treatment was 3.3 months. Treatment was discontinued after 5 to 6 months or 8 to 9 months after the initial examination. All patients then developed NAION on the contralateral eye. The mean visual acuity on the contralateral eye was 0.73. After 4 month follow-up, the visual acuity in two patients had decreased to 1.0 and in one patient was reduced from 0.8 to 0.4. No steroid treatment was initiated for the contralateral eye. No NAION was found in the contralateral eye in the control group. Conclusion Corticosteroid treatment improved vision in all patients with NAION in comparison with the untreated contralateral eye. In a single patient, visual acuity decreased in the contralateral eye. Our study confirmed that corticosteroid treatment may be a predisposing factor for the development of NAION am in the contralateral eye. Additional studies with more patients are needed to confirm our results. Georg Thieme Verlag KG Stuttgart · New York.

  15. Sounds activate visual cortex and improve visual discrimination.

    PubMed

    Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona; McDonald, John J; Hillyard, Steven A

    2014-07-16

    A recent study in humans (McDonald et al., 2013) found that peripheral, task-irrelevant sounds activated contralateral visual cortex automatically as revealed by an auditory-evoked contralateral occipital positivity (ACOP) recorded from the scalp. The present study investigated the functional significance of this cross-modal activation of visual cortex, in particular whether the sound-evoked ACOP is predictive of improved perceptual processing of a subsequent visual target. A trial-by-trial analysis showed that the ACOP amplitude was markedly larger preceding correct than incorrect pattern discriminations of visual targets that were colocalized with the preceding sound. Dipole modeling of the scalp topography of the ACOP localized its neural generators to the ventrolateral extrastriate visual cortex. These results provide direct evidence that the cross-modal activation of contralateral visual cortex by a spatially nonpredictive but salient sound facilitates the discriminative processing of a subsequent visual target event at the location of the sound. Recordings of event-related potentials to the targets support the hypothesis that the ACOP is a neural consequence of the automatic orienting of visual attention to the location of the sound. Copyright © 2014 the authors 0270-6474/14/349817-08$15.00/0.

  16. Hemispheric asymmetry of emotion words in a non-native mind: a divided visual field study.

    PubMed

    Jończyk, Rafał

    2015-05-01

    This study investigates hemispheric specialization for emotional words among proficient non-native speakers of English by means of the divided visual field paradigm. The motivation behind the study is to extend the monolingual hemifield research to the non-native context and see how emotion words are processed in a non-native mind. Sixty eight females participated in the study, all highly proficient in English. The stimuli comprised 12 positive nouns, 12 negative nouns, 12 non-emotional nouns and 36 pseudo-words. To examine the lateralization of emotion, stimuli were presented unilaterally in a random fashion for 180 ms in a go/no-go lexical decision task. The perceptual data showed a right hemispheric advantage for processing speed of negative words and a complementary role of the two hemispheres in the recognition accuracy of experimental stimuli. The data indicate that processing of emotion words in non-native language may require greater interhemispheric communication, but at the same time demonstrates a specific role of the right hemisphere in the processing of negative relative to positive valence. The results of the study are discussed in light of the methodological inconsistencies in the hemifield research as well as the non-native context in which the study was conducted.

  17. Do graphemes attract spatial attention in grapheme-color synesthesia?

    PubMed

    Volberg, G; Chockley, A S; Greenlee, M W

    2017-05-01

    Grapheme-color synesthetes perceive concurrent colors for some objectively achromatic graphemes (inducers). Using oscillatory responses in the electroencephalogram, we tested the hypothesis that inducers automatically attract spatial attention and, thus, favor a conscious experience of color. Achromatic inducers and real-colored non-inducers were presented to the left or to the right visual hemifield and orientation judgments were required for subsequently presented Gabor patches. The graphemes were irrelevant for the task so that the related brain response was purely stimulus-driven. Synesthetes (n =12), but not an equal number of controls, showed an early theta power increase for inducers presented to the right compared to the left hemifield, with sources in left fusiform gyrus. Alpha power asymmetries indicative of shifts of spatial attention were not observed. Together, synesthetes showed an increased responsiveness to inducers in grapheme processing areas. However, contrary to our hypothesis, inducers did not attract spatial attention in synesthetes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma

    PubMed Central

    Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Fukuchi, Takeo; Udagawa, Sachiko; Ohkubo, Shinji; Sugiyama, Kazuhisa; Matsumoto, Chota; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi

    2017-01-01

    Background/aims To assess the role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Methods Normal subjects and patients with glaucoma with mean deviation <–12 dB in both eyes (Humphrey Field Analyzer 24-2 SITA-S program) used a driving simulator (DS; Honda Motor, Tokyo). Two scenarios in which oncoming cars turned right crossing the driver's path were chosen. We compared the binocular integrated visual field (IVF) in the patients who were involved in collisions and those who were not. We performed a multivariate logistic regression analysis; the dependent parameter was collision involvement, and the independent parameters were age, visual acuity and mean sensitivity of the IVF subfields. Results The study included 43 normal subjects and 100 patients with advanced glaucoma. And, 5 of the 100 patients with advanced glaucoma experienced simulator sickness during the main test and were thus excluded. In total, 95 patients with advanced glaucoma and 43 normal subjects completed the main test of DS. Advanced glaucoma patients had significantly more collisions than normal patients in one or both DS scenarios (p<0.001). The patients with advanced glaucoma who were involved in collisions were older (p=0.050) and had worse visual acuity in the better eye (p<0.001) and had lower mean IVF sensitivity in the inferior hemifield, both 0°–12° and 13°–24° in comparison with who were not involved in collisions (p=0.012 and p=0.034). A logistic regression analysis revealed that collision involvement was significantly associated with decreased inferior IVF mean sensitivity from 13° to 24° (p=0.041), in addition to older age and lower visual acuity (p=0.018 and p<0.001). Conclusions Our data suggest that the inferior hemifield was associated with the incidence of motor vehicle collisions with oncoming cars in patients with advanced glaucoma. PMID:28400370

  19. Hemispheric asymmetry of liking for representational and abstract paintings.

    PubMed

    Nadal, Marcos; Schiavi, Susanna; Cattaneo, Zaira

    2017-10-13

    Although the neural correlates of the appreciation of aesthetic qualities have been the target of much research in the past decade, few experiments have explored the hemispheric asymmetries in underlying processes. In this study, we used a divided visual field paradigm to test for hemispheric asymmetries in men and women's preference for abstract and representational artworks. Both male and female participants liked representational paintings more when presented in the right visual field, whereas preference for abstract paintings was unaffected by presentation hemifield. We hypothesize that this result reflects a facilitation of the sort of visual processes relevant to laypeople's liking for art-specifically, local processing of highly informative object features-when artworks are presented in the right visual field, given the left hemisphere's advantage in processing such features.

  20. Salient, Irrelevant Sounds Reflexively Induce Alpha Rhythm Desynchronization in Parallel with Slow Potential Shifts in Visual Cortex.

    PubMed

    Störmer, Viola; Feng, Wenfeng; Martinez, Antigona; McDonald, John; Hillyard, Steven

    2016-03-01

    Recent findings suggest that a salient, irrelevant sound attracts attention to its location involuntarily and facilitates processing of a colocalized visual event [McDonald, J. J., Störmer, V. S., Martinez, A., Feng, W. F., & Hillyard, S. A. Salient sounds activate human visual cortex automatically. Journal of Neuroscience, 33, 9194-9201, 2013]. Associated with this cross-modal facilitation is a sound-evoked slow potential over the contralateral visual cortex termed the auditory-evoked contralateral occipital positivity (ACOP). Here, we further tested the hypothesis that a salient sound captures visual attention involuntarily by examining sound-evoked modulations of the occipital alpha rhythm, which has been strongly associated with visual attention. In two purely auditory experiments, lateralized irrelevant sounds triggered a bilateral desynchronization of occipital alpha-band activity (10-14 Hz) that was more pronounced in the hemisphere contralateral to the sound's location. The timing of the contralateral alpha-band desynchronization overlapped with that of the ACOP (∼240-400 msec), and both measures of neural activity were estimated to arise from neural generators in the ventral-occipital cortex. The magnitude of the lateralized alpha desynchronization was correlated with ACOP amplitude on a trial-by-trial basis and between participants, suggesting that they arise from or are dependent on a common neural mechanism. These results support the hypothesis that the sound-induced alpha desynchronization and ACOP both reflect the involuntary cross-modal orienting of spatial attention to the sound's location.

  1. A Sticky Situation.

    PubMed

    Weng, Christina Y; Khimani, Karima S; Foroozan, Rod; Gospe, Sidney M; Bhatti, M Tariq

    2018-04-26

    An 81-year-old man with bilateral progressively blurry vision and optic disc swelling was referred for evaluation. Examination and ancillary testing confirmed a diagnosis of bilateral vitreopapillary traction (VPT) accompanied by unilateral tractional retinoschisis in the right eye. Pars plana vitrectomy was performed to release the traction in both eyes. Visual acuity improved in the right eye and stabilized in the left eye. Retinoschisis in the right eye resolved. The visual field improved in both eyes, although the left eye demonstrated a persistent hemifield defect likely attributable to a prior optic neuropathy. Distinguishing VPT optic neuropathy (VPTON) from nonarteritic anterior ischemic optic neuropathy (NAION) is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Visuospatial Asymmetries Arise from Differences in the Onset Time of Perceptual Evidence Accumulation.

    PubMed

    Newman, Daniel P; Loughnane, Gerard M; Kelly, Simon P; O'Connell, Redmond G; Bellgrove, Mark A

    2017-03-22

    Healthy subjects tend to exhibit a bias of visual attention whereby left hemifield stimuli are processed more quickly and accurately than stimuli appearing in the right hemifield. It has long been held that this phenomenon arises from the dominant role of the right cerebral hemisphere in regulating attention. However, methods that would enable more precise understanding of the mechanisms underpinning visuospatial bias have remained elusive. We sought to finely trace the temporal evolution of spatial biases by leveraging a novel bilateral dot motion detection paradigm. In combination with electroencephalography, this paradigm enables researchers to isolate discrete neural signals reflecting the key neural processes needed for making these detection decisions. These include signals for spatial attention, early target selection, evidence accumulation, and motor preparation. Using this method, we established that three key neural markers accounted for unique between-subject variation in visuospatial bias: hemispheric asymmetry in posterior α power measured before target onset, which is related to the distribution of preparatory attention across the visual field; asymmetry in the peak latency of the early N2c target-selection signal; and, finally, asymmetry in the onset time of the subsequent neural evidence-accumulation process with earlier onsets for left hemifield targets. Our development of a single paradigm to dissociate distinct processing components that track the temporal evolution of spatial biases not only advances our understanding of the neural mechanisms underpinning normal visuospatial attention bias, but may also in the future aid differential diagnoses in disorders of spatial attention. SIGNIFICANCE STATEMENT The significance of this research is twofold. First, it shows that individual differences in how humans direct their attention between left and right space reflects physiological differences in how early the brain starts to accumulate evidence for the existence of a visual target. Second, the novel methods developed here may have particular relevance to disorders of attention, such as unilateral spatial neglect. In the case of spatial neglect, pathological inattention to left space could have multiple underlying causes, including biased attention, impaired decision formation, or a motor deficit related to one side of space. Our development of a single paradigm to dissociate each of these components may aid in supporting more precise differential diagnosis in such heterogeneous disorders. Copyright © 2017 the authors 0270-6474/17/373378-08$15.00/0.

  3. Dorsolateral prefrontal cortex bridges bilateral primary somatosensory cortices during cross-modal working memory.

    PubMed

    Zhao, Di; Ku, Yixuan

    2018-05-01

    Neural activity in the dorsolateral prefrontal cortex (DLPFC) has been suggested to integrate information from distinct sensory areas. However, how the DLPFC interacts with the bilateral primary somatosensory cortices (SIs) in tactile-visual cross-modal working memory has not yet been established. In the present study, we applied single-pulse transcranial magnetic stimulation (sp-TMS) over the contralateral DLPFC and bilateral SIs of human participants at various time points, while they performed a tactile-visual delayed matching-to-sample task with a 2-second delay. sp-TMS over the contralateral DLPFC or the contralateral SI at either an sensory encoding stage [i.e. 100 ms after the onset of a vibrotactile sample stimulus (200-ms duration)] or an early maintenance stage (i.e. 300 ms after the onset), significantly impaired the accuracy of task performance; sp-TMS over the contralateral DLPFC or the ipsilateral SI at a late maintenance stage (1600 ms and 1900 ms) also significantly disrupted the performance. Furthermore, at 300 ms after the onset of the vibrotactile sample stimulus, there was a significant correlation between the deteriorating effects of sp-TMS over the contralateral SI and the contralateral DLPFC. These results imply that the DLPFC and the bilateral SIs play causal roles at distinctive stages during cross-modal working memory, while the contralateral DLPFC communicates with the contralateral SI in the early delay, and cooperates with the ipsilateral SI in the late delay. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effect of task set-modulating attentional capture depends on the distractor cost in visual search: evidence from N2pc.

    PubMed

    Zhao, Dandan; Liang, Shengnan; Jin, Zhenlan; Li, Ling

    2014-07-09

    Previous studies have confirmed that attention can be modulated by the current task set while involuntarily captured by salient items. However, little is known on which factors the modulation of attentional capture is dependent on when the same stimuli with different task sets are presented. In the present study, participants conducted two visual search tasks with the same search arrays by varying target and distractor settings (color singleton as target, onset singleton as distractor, named as color task, and vice versa). Ipsilateral and contralateral color distractors resulted in two different relative saliences in two tasks, respectively. Both reaction times (RTs) and N2-posterior-contralateral (N2pc) results showed that there was no difference between ipsilateral and contralateral color distractors in the onset task. However, both RTs and the latency of N2pc showed a delay to the ipsilateral onset distractor compared with the contralateral onset distractor. Moreover, the N2pc observed under the contralateral distractor condition in the color task was reversed, and its amplitude was attenuated. On the basis of these results, we proposed a parameter called distractor cost (DC), computed by subtracting RTs under the contralateral distractor condition from the ipsilateral condition. The results suggest that an enhanced DC might be related to the modification of N2pc in searching for the color target. Taken together, these findings provide evidence that the effect of task set-modulating attentional capture in visual search is related to the DC.

  5. Abstraction and perceptual individuation in primed word identification are modulated by distortion and repetition: a dissociation.

    PubMed

    Sciama, Sonia C; Dowker, Ann

    2007-11-01

    One experiment investigated the effects of distortion and multiple prime repetition (super-repetition) on repetition priming using divided-visual-field word identification at test and mixed-case words (e.g., goAT). The experiment measured form-specificity (the effect of matching lettercase at study and test) for two non-conceptual study tasks. For an ideal typeface, super-repetition increased form-independent priming leaving form-specificity constant. The opposite pattern was found for a distorted typeface; super-repetition increased form-specificity, leaving form-independent priming constant. These priming effects did not depend on the study task or test hemifield for either typeface. An additional finding was that only the ideal typeface showed the usual advantage of right hemifield presentation. These results demonstrate that super-repetition produced abstraction for the ideal typeface and perceptual individuation for the distorted typeface; abstraction and perceptual individuation dissociated. We suggest that there is a fundamental duality between perceptual individuation and abstraction consistent with Tulving's (1984) distinction between episodic and semantic memory. This could reflect a duality of system or process.

  6. Hemifield memory for attractiveness.

    PubMed

    Deblieck, C; Zaidel, D W

    2003-07-01

    In order to determine whether or not facial attractiveness plays a role in hemispheric facial memory, 35 right-handed participants first assigned attractiveness ratings to faces and then performed a recognition test on those faces in the left visual half-field (LVF) and right visual half-field (RVF). We found significant interactions between the experimental factors and visual half-field. There were significant differences in the extreme ends of the rating scale, that is, the very unattractive versus the very attractive faces: Female participants remembered very attractive faces of both women and men, with memory being superior in the RVF than in the LVF. In contrast, the male participants remembered very unattractive faces of both women and men; RVF memory was better than the LVF for women faces while for men faces memory was superior in the LVF. The interactions with visual half-field suggest that hemispheric biases in remembering faces are influenced by degree of attractiveness.

  7. Differential hemispheric and visual stream contributions to ensemble coding of crowd emotion

    PubMed Central

    Im, Hee Yeon; Albohn, Daniel N.; Steiner, Troy G.; Cushing, Cody A.; Adams, Reginald B.; Kveraga, Kestutis

    2017-01-01

    In crowds, where scrutinizing individual facial expressions is inefficient, humans can make snap judgments about the prevailing mood by reading “crowd emotion”. We investigated how the brain accomplishes this feat in a set of behavioral and fMRI studies. Participants were asked to either avoid or approach one of two crowds of faces presented in the left and right visual hemifields. Perception of crowd emotion was improved when crowd stimuli contained goal-congruent cues and was highly lateralized to the right hemisphere. The dorsal visual stream was preferentially activated in crowd emotion processing, with activity in the intraparietal sulcus and superior frontal gyrus predicting perceptual accuracy for crowd emotion perception, whereas activity in the fusiform cortex in the ventral stream predicted better perception of individual facial expressions. Our findings thus reveal significant behavioral differences and differential involvement of the hemispheres and the major visual streams in reading crowd versus individual face expressions. PMID:29226255

  8. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma.

    PubMed

    Kunimatsu-Sanuki, Shiho; Iwase, Aiko; Araie, Makoto; Aoki, Yuki; Hara, Takeshi; Fukuchi, Takeo; Udagawa, Sachiko; Ohkubo, Shinji; Sugiyama, Kazuhisa; Matsumoto, Chota; Nakazawa, Toru; Yamaguchi, Takuhiro; Ono, Hiroshi

    2017-07-01

    To assess the role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma. Normal subjects and patients with glaucoma with mean deviation <-12 dB in both eyes (Humphrey Field Analyzer 24-2 SITA-S program) used a driving simulator (DS; Honda Motor, Tokyo). Two scenarios in which oncoming cars turned right crossing the driver's path were chosen. We compared the binocular integrated visual field (IVF) in the patients who were involved in collisions and those who were not. We performed a multivariate logistic regression analysis; the dependent parameter was collision involvement, and the independent parameters were age, visual acuity and mean sensitivity of the IVF subfields. The study included 43 normal subjects and 100 patients with advanced glaucoma. And, 5 of the 100 patients with advanced glaucoma experienced simulator sickness during the main test and were thus excluded. In total, 95 patients with advanced glaucoma and 43 normal subjects completed the main test of DS. Advanced glaucoma patients had significantly more collisions than normal patients in one or both DS scenarios (p<0.001). The patients with advanced glaucoma who were involved in collisions were older (p=0.050) and had worse visual acuity in the better eye (p<0.001) and had lower mean IVF sensitivity in the inferior hemifield, both 0°-12° and 13°-24° in comparison with who were not involved in collisions (p=0.012 and p=0.034). A logistic regression analysis revealed that collision involvement was significantly associated with decreased inferior IVF mean sensitivity from 13° to 24° (p=0.041), in addition to older age and lower visual acuity (p=0.018 and p<0.001). Our data suggest that the inferior hemifield was associated with the incidence of motor vehicle collisions with oncoming cars in patients with advanced glaucoma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Resilience to the contralateral visual field bias as a window into object representations

    PubMed Central

    Garcea, Frank E.; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z.

    2016-01-01

    Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998

  10. Bilateral implantation of +2.5 D multifocal intraocular lens and contralateral implantation of +2.5 D and +3.0 D multifocal intraocular lenses: Clinical outcomes.

    PubMed

    Nuijts, Rudy M M A; Jonker, Soraya M R; Kaufer, Robert A; Lapid-Gortzak, Ruth; Mendicute, Javier; Martinez, Cristina Peris; Schmickler, Stefanie; Kohnen, Thomas

    2016-02-01

    To assess the clinical visual outcomes of bilateral implantation of Restor +2.5 diopter (D) multifocal intraocular lenses (IOLs) and contralateral implantation of a Restor +2.5 D multifocal IOL in the dominant eye and Restor +3.0 D multifocal IOL in the fellow eye. Multicenter study at 8 investigative sites. Prospective randomized parallel-group patient-masked 2-arm study. This study comprised adults requiring bilateral cataract extraction followed by multifocal IOL implantation. The primary endpoint was corrected intermediate visual acuity (CIVA) at 60 cm, and the secondary endpoint was corrected near visual acuity (CNVA) at 40 cm. Both endpoints were measured 3 months after implantation with a noninferiority margin of Δ = 0.1 logMAR. In total, 103 patients completed the study (53 bilateral, 50 contralateral). At 3 months, the mean CIVA at 60 cm was 0.13 logMAR and 0.10 logMAR in the bilateral group and contralateral group, respectively (difference 0.04 logMAR), achieving noninferiority. Noninferiority was not attained for CNVA at 40 cm; mean values at 3 months for bilateral and contralateral implantation were 0.26 logMAR and 0.11 logMAR, respectively (difference 0.15 logMAR). Binocular defocus curves suggested similar performance in distance vision between the 2 groups. Treatment-emergent ocular adverse events rates were similar between the groups. Bilateral implantation of the +2.5 D multifocal IOL resulted in similar distance as contralateral implantation of the +2.5 D multifocal IOL and +3.0 D multifocal IOL for intermediate vision (60 cm), while noninferiority was not achieved for near distances (40 cm). Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Assessing visual requirements for social context-dependent activation of the songbird song system

    PubMed Central

    Hara, Erina; Kubikova, Lubica; Hessler, Neal A.; Jarvis, Erich D.

    2008-01-01

    Social context has been shown to have a profound influence on brain activation in a wide range of vertebrate species. Best studied in songbirds, when males sing undirected song, the level of neural activity and expression of immediate early genes (IEGs) in several song nuclei is dramatically higher or lower than when they sing directed song to other birds, particularly females. This differential social context-dependent activation is independent of auditory input and is not simply dependent on the motor act of singing. These findings suggested that the critical sensory modality driving social context-dependent differences in the brain could be visual cues. Here, we tested this hypothesis by examining IEG activation in song nuclei in hemispheres to which visual input was normal or blocked. We found that covering one eye blocked visually induced IEG expression throughout both contralateral visual pathways of the brain, and reduced activation of the contralateral ventral tegmental area, a non-visual midbrain motivation-related area affected by social context. However, blocking visual input had no effect on the social context-dependent activation of the contralateral song nuclei during female-directed singing. Our findings suggest that individual sensory modalities are not direct driving forces for the social context differences in song nuclei during singing. Rather, these social context differences in brain activation appear to depend more on the general sense that another individual is present. PMID:18826930

  12. Beyond time and space: The effect of a lateralized sustained attention task and brain stimulation on spatial and selective attention.

    PubMed

    Shalev, Nir; De Wandel, Linde; Dockree, Paul; Demeyere, Nele; Chechlacz, Magdalena

    2017-10-03

    The Theory of Visual Attention (TVA) provides a mathematical formalisation of the "biased competition" account of visual attention. Applying this model to individual performance in a free recall task allows the estimation of 5 independent attentional parameters: visual short-term memory (VSTM) capacity, speed of information processing, perceptual threshold of visual detection; attentional weights representing spatial distribution of attention (spatial bias), and the top-down selectivity index. While the TVA focuses on selection in space, complementary accounts of attention describe how attention is maintained over time, and how temporal processes interact with selection. A growing body of evidence indicates that different facets of attention interact and share common neural substrates. The aim of the current study was to modulate a spatial attentional bias via transfer effects, based on a mechanistic understanding of the interplay between spatial, selective and temporal aspects of attention. Specifically, we examined here: (i) whether a single administration of a lateralized sustained attention task could prime spatial orienting and lead to transferable changes in attentional weights (assigned to the left vs right hemi-field) and/or other attentional parameters assessed within the framework of TVA (Experiment 1); (ii) whether the effects of such spatial-priming on TVA parameters could be further enhanced by bi-parietal high frequency transcranial random noise stimulation (tRNS) (Experiment 2). Our results demonstrate that spatial attentional bias, as assessed within the TVA framework, was primed by sustaining attention towards the right hemi-field, but this spatial-priming effect did not occur when sustaining attention towards the left. Furthermore, we show that bi-parietal high-frequency tRNS combined with the rightward spatial-priming resulted in an increased attentional selectivity. To conclude, we present a novel, theory-driven method for attentional modulation providing important insights into how the spatial and temporal processes in attention interact with attentional selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of hemifield sector analysis protocol in multifocal visual evoked potential objective perimetry for the diagnosis and early detection of glaucomatous field defects.

    PubMed

    Mousa, Mohammad F; Cubbidge, Robert P; Al-Mansouri, Fatima; Bener, Abdulbari

    2014-02-01

    Multifocal visual evoked potential (mfVEP) is a newly introduced method used for objective visual field assessment. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard automated perimetry (SAP) visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey field analyzer (HFA) test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the hemifield sector analysis (HSA) protocol. Analysis of the HFA was done using the standard grading system. Analysis of mfVEP results showed that there was a statistically significant difference between the three groups in the mean signal to noise ratio (ANOVA test, p < 0.001 with a 95% confidence interval). The difference between superior and inferior hemispheres in all subjects were statistically significant in the glaucoma patient group in all 11 sectors (t-test, p < 0.001), partially significant in 5 / 11 (t-test, p < 0.01), and no statistical difference in most sectors of the normal group (1 / 11 sectors was significant, t-test, p < 0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86%, respectively, and for glaucoma suspect patients the values were 89% and 79%, respectively. The new HSA protocol used in the mfVEP testing can be applied to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.

  14. Evaluation of Hemifield Sector Analysis Protocol in Multifocal Visual Evoked Potential Objective Perimetry for the Diagnosis and Early Detection of Glaucomatous Field Defects

    PubMed Central

    Mousa, Mohammad F.; Cubbidge, Robert P.; Al-Mansouri, Fatima

    2014-01-01

    Purpose Multifocal visual evoked potential (mfVEP) is a newly introduced method used for objective visual field assessment. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard automated perimetry (SAP) visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. Methods Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey field analyzer (HFA) test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the hemifield sector analysis (HSA) protocol. Analysis of the HFA was done using the standard grading system. Results Analysis of mfVEP results showed that there was a statistically significant difference between the three groups in the mean signal to noise ratio (ANOVA test, p < 0.001 with a 95% confidence interval). The difference between superior and inferior hemispheres in all subjects were statistically significant in the glaucoma patient group in all 11 sectors (t-test, p < 0.001), partially significant in 5 / 11 (t-test, p < 0.01), and no statistical difference in most sectors of the normal group (1 / 11 sectors was significant, t-test, p < 0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86%, respectively, and for glaucoma suspect patients the values were 89% and 79%, respectively. Conclusions The new HSA protocol used in the mfVEP testing can be applied to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. PMID:24511212

  15. Exogenous attention facilitates location transfer of perceptual learning.

    PubMed

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity.

  16. An extended retinotopic map of mouse cortex

    PubMed Central

    Zhuang, Jun; Ng, Lydia; Williams, Derric; Valley, Matthew; Li, Yang; Garrett, Marina; Waters, Jack

    2017-01-01

    Visual perception and behavior are mediated by cortical areas that have been distinguished using architectonic and retinotopic criteria. We employed fluorescence imaging and GCaMP6 reporter mice to generate retinotopic maps, revealing additional regions of retinotopic organization that extend into barrel and retrosplenial cortices. Aligning retinotopic maps to architectonic borders, we found a mismatch in border location, indicating that architectonic borders are not aligned with the retinotopic transition at the vertical meridian. We also assessed the representation of visual space within each region, finding that four visual areas bordering V1 (LM, P, PM and RL) display complementary representations, with overlap primarily at the central hemifield. Our results extend our understanding of the organization of mouse cortex to include up to 16 distinct retinotopically organized regions. DOI: http://dx.doi.org/10.7554/eLife.18372.001 PMID:28059700

  17. Exogenous attention facilitates location transfer of perceptual learning

    PubMed Central

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity. PMID:26426818

  18. Hemispheric specialization and the perception of emotion: evidence from right-handers and from inverted and non-inverted left-handers.

    PubMed

    Reuter-Lorenz, P A; Givis, R P; Moscovitch, M

    1983-01-01

    Right-handers and inverted and non-inverted left-handers viewed emotional expressions in one hemifield and, simultaneously, a neutral expression of the same poser in the other hemifield. Subjects were required to identify the side containing the affective face. Happy faces with open (i.e. salient) and closed mouth smiles and sad faces were used as stimuli. For right-handers and inverters reaction time was faster to right hemifield presentations for happy faces and to left hemifield presentations for sad faces. Non-inverters showed the reverse pattern. The saliency of the happy expressions had no effect on the magnitude and direction of asymmetry for any group. The data support the hypothesis of differential hemispheric specialization for positive and negative emotion and demonstrate opposite patterns of asymmetry in affect perception for inverted and non-inverted left-handers.

  19. Signal enhancement, not active suppression, follows the contingent capture of visual attention.

    PubMed

    Livingstone, Ashley C; Christie, Gregory J; Wright, Richard D; McDonald, John J

    2017-02-01

    Irrelevant visual cues capture attention when they possess a task-relevant feature. Electrophysiologically, this contingent capture of attention is evidenced by the N2pc component of the visual event-related potential (ERP) and an enlarged ERP positivity over the occipital hemisphere contralateral to the cued location. The N2pc reflects an early stage of attentional selection, but presently it is unclear what the contralateral ERP positivity reflects. One hypothesis is that it reflects the perceptual enhancement of the cued search-array item; another hypothesis is that it is time-locked to the preceding cue display and reflects active suppression of the cue itself. Here, we varied the time interval between a cue display and a subsequent target display to evaluate these competing hypotheses. The results demonstrated that the contralateral ERP positivity is tightly time-locked to the appearance of the search display rather than the cue display, thereby supporting the perceptual enhancement hypothesis and disconfirming the cue-suppression hypothesis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Endoscopic contralateral transmaxillary approach for pterygoid process osteotomy in total maxillectomy: A technical case report.

    PubMed

    Hanazawa, Toyoyuki; Yamasaki, Kazuki; Chazono, Hideaki; Okamoto, Yoshitaka

    2018-06-01

    An approach for total maxillectomy with endoscopic transection of the pterygoid process via the contralateral maxillary sinus is described. In total maxillectomy, the resection of the pterygoid process of the sphenoid is a key step for successful resection. However, a conventional craniofacial approach requires extensive incision in the face, elevation of the lateral cheek flap. Even after elevation of the lateral cheek flap, visualization of this region is not good. An endoscopic approach through the contralateral maxillary sinus improved visualization of the pterygoid process, and osteotomy using a diamond-drilling bar was successfully performed. This technique has the potential to widen the indication for total maxillectomy in malignant neoplasms of the maxillary sinus. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    PubMed

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  2. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention.

    PubMed

    Newman, Daniel P; Lockley, Steven W; Loughnane, Gerard M; Martins, Ana Carina P; Abe, Rafael; Zoratti, Marco T R; Kelly, Simon P; O'Neill, Megan H; Rajaratnam, Shantha M W; O'Connell, Redmond G; Bellgrove, Mark A

    2016-06-13

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention.

  3. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention

    PubMed Central

    Newman, Daniel P.; Lockley, Steven W.; Loughnane, Gerard M.; Martins, Ana Carina P.; Abe, Rafael; Zoratti, Marco T. R.; Kelly, Simon P.; O’Neill, Megan H.; Rajaratnam, Shantha M. W.; O’Connell, Redmond G.; Bellgrove, Mark A.

    2016-01-01

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention. PMID:27291291

  4. Dichotic and dichoptic digit perception in normal adults.

    PubMed

    Lawfield, Angela; McFarland, Dennis J; Cacace, Anthony T

    2011-06-01

    Verbally based dichotic-listening experiments and reproduction-mediated response-selection strategies have been used for over four decades to study perceptual/cognitive aspects of auditory information processing and make inferences about hemispheric asymmetries and language lateralization in the brain. Test procedures using dichotic digits have also been used to assess for disorders of auditory processing. However, with this application, limitations exist and paradigms need to be developed to improve specificity of the diagnosis. Use of matched tasks in multiple sensory modalities is a logical approach to address this issue. Herein, we use dichotic listening and dichoptic viewing of visually presented digits for making this comparison. To evaluate methodological issues involved in using matched tasks of dichotic listening and dichoptic viewing in normal adults. A multivariate assessment of the effects of modality (auditory vs. visual), digit-span length (1-3 pairs), response selection (recognition vs. reproduction), and ear/visual hemifield of presentation (left vs. right) on dichotic and dichoptic digit perception. Thirty adults (12 males, 18 females) ranging in age from 18 to 30 yr with normal hearing sensitivity and normal or corrected-to-normal visual acuity. A computerized, custom-designed program was used for all data collection and analysis. A four-way repeated measures analysis of variance (ANOVA) evaluated the effects of modality, digit-span length, response selection, and ear/visual field of presentation. The ANOVA revealed that performances on dichotic listening and dichoptic viewing tasks were dependent on complex interactions between modality, digit-span length, response selection, and ear/visual hemifield of presentation. Correlation analysis suggested a common effect on overall accuracy of performance but isolated only an auditory factor for a laterality index. The variables used in this experiment affected performances in the auditory modality to a greater extent than in the visual modality. The right-ear advantage observed in the dichotic-digits task was most evident when reproduction mediated response selection was used in conjunction with three-digit pairs. This effect implies that factors such as "speech related output mechanisms" and digit-span length (working memory) contribute to laterality effects in dichotic listening performance with traditional paradigms. Thus, the use of multiple-digit pairs to avoid ceiling effects and the application of verbal reproduction as a means of response selection may accentuate the role of nonperceptual factors in performance. Ideally, tests of perceptual abilities should be relatively free of such effects. American Academy of Audiology.

  5. Relationship between second-generation frequency doubling technology and standard automated perimetry in patients with glaucoma.

    PubMed

    Zarkovic, Andrea; Mora, Justin; McKelvie, James; Gamble, Greg

    2007-12-01

    The aim of the study was to establish the correlation between visual filed loss as shown by second-generation Frequency Doubling Technology (Humphrey Matrix) and Standard Automated Perimetry (Humphrey Field Analyser) in patients with glaucoma. Also, compared were the test duration and reliability. Forty right eyes from glaucoma patients from a private ophthalmology practice were included in this prospective study. All participants had tests within an 8-month period. Pattern deviation plots and mean deviation were compared to establish the correlation between the two perimetry tests. Overall correlation and correlation between hemifields, quadrants and individual test locations were assessed. Humphrey Field Analyser tests were slightly more reliable (37/40 vs. 34/40 for Matrix)) but overall of longer duration. There was good correlation (0.69) between mean deviations. Superior hemifields and superonasal quadrants had the highest correlation (0.88 [95% CI 0.79, 0.94]). Correlation between individual points was independent of distance from the macula. Generally, the Matrix and Humphrey Field Analyser perimetry correlate well; however, each machine utilizes a different method of analysing data and thus the direct comparison should be made with caution.

  6. Space-based and object-centered gaze cuing of attention in right hemisphere-damaged patients.

    PubMed

    Dalmaso, Mario; Castelli, Luigi; Priftis, Konstantinos; Buccheri, Marta; Primon, Daniela; Tronco, Silvia; Galfano, Giovanni

    2015-01-01

    Gaze cuing of attention is a well established phenomenon consisting of the tendency to shift attention to the location signaled by the averted gaze of other individuals. Evidence suggests that such phenomenon might follow intrinsic object-centered features of the head containing the gaze cue. In the present exploratory study, we aimed to investigate whether such object-centered component is present in neuropsychological patients with a lesion involving the right hemisphere, which is known to play a critical role both in orienting of attention and in face processing. To this purpose, we used a modified gaze-cuing paradigm in which a centrally placed head with averted gaze was presented either in the standard upright position or rotated 90° clockwise or anti-clockwise. Afterward, a to-be-detected target was presented either in the right or in the left hemifield. The results showed that gaze cuing of attention was present only when the target appeared in the left visual hemifield and was not modulated by head orientation. This suggests that gaze cuing of attention in right hemisphere-damaged patients can operate within different frames of reference.

  7. Space-based and object-centered gaze cuing of attention in right hemisphere-damaged patients

    PubMed Central

    Dalmaso, Mario; Castelli, Luigi; Priftis, Konstantinos; Buccheri, Marta; Primon, Daniela; Tronco, Silvia; Galfano, Giovanni

    2015-01-01

    Gaze cuing of attention is a well established phenomenon consisting of the tendency to shift attention to the location signaled by the averted gaze of other individuals. Evidence suggests that such phenomenon might follow intrinsic object-centered features of the head containing the gaze cue. In the present exploratory study, we aimed to investigate whether such object-centered component is present in neuropsychological patients with a lesion involving the right hemisphere, which is known to play a critical role both in orienting of attention and in face processing. To this purpose, we used a modified gaze-cuing paradigm in which a centrally placed head with averted gaze was presented either in the standard upright position or rotated 90° clockwise or anti-clockwise. Afterward, a to-be-detected target was presented either in the right or in the left hemifield. The results showed that gaze cuing of attention was present only when the target appeared in the left visual hemifield and was not modulated by head orientation. This suggests that gaze cuing of attention in right hemisphere-damaged patients can operate within different frames of reference. PMID:26300815

  8. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex.

    PubMed

    Tiitinen, Hannu; Salminen, Nelli H; Palomäki, Kalle J; Mäkinen, Ville T; Alku, Paavo; May, Patrick J C

    2006-03-20

    In an attempt to delineate the assumed 'what' and 'where' processing streams, we studied the processing of spatial sound in the human cortex by using magnetoencephalography in the passive and active recording conditions and two kinds of spatial stimuli: individually constructed, highly realistic spatial (3D) stimuli and stimuli containing interaural time difference (ITD) cues only. The auditory P1m, N1m, and P2m responses of the event-related field were found to be sensitive to the direction of sound source in the azimuthal plane. In general, the right-hemispheric responses to spatial sounds were more prominent than the left-hemispheric ones. The right-hemispheric P1m and N1m responses peaked earlier for sound sources in the contralateral than for sources in the ipsilateral hemifield and the peak amplitudes of all responses reached their maxima for contralateral sound sources. The amplitude of the right-hemispheric P2m response reflected the degree of spatiality of sound, being twice as large for the 3D than ITD stimuli. The results indicate that the right hemisphere is specialized in the processing of spatial cues in the passive recording condition. Minimum current estimate (MCE) localization revealed that temporal areas were activated both in the active and passive condition. This initial activation, taking place at around 100 ms, was followed by parietal and frontal activity at 180 and 200 ms, respectively. The latter activations, however, were specific to attentional engagement and motor responding. This suggests that parietal activation reflects active responding to a spatial sound rather than auditory spatial processing as such.

  9. Foveational Complexity in Single Word Identification: Contralateral Visual Pathways Are Advantaged over Ipsilateral Pathways

    ERIC Educational Resources Information Center

    Obregon, Mateo; Shillcock, Richard

    2012-01-01

    Recognition of a single word is an elemental task in innumerable cognitive psychology experiments, but involves unexpected complexity. We test a controversial claim that the human fovea is vertically divided, with each half projecting to either the contralateral or ipsilateral hemisphere, thereby influencing foveal word recognition. We report a…

  10. An unexpected target of spinal direct current stimulation: Interhemispheric connectivity in humans.

    PubMed

    Bocci, Tommaso; Caleo, Matteo; Vannini, Beatrice; Vergari, Maurizio; Cogiamanian, Filippo; Rossi, Simone; Priori, Alberto; Sartucci, Ferdinando

    2015-10-30

    Transcutaneous spinal Direct Current Stimulation (tsDCS) is a noninvasive technique based on the application of weak electrical currents over spinal cord. We studied the effects of tsDCS on interhemispheric motor connectivity and visual processing by evaluating changes in ipsilateral Silent Period (iSP), Transcallosal Conduction Time (TCT) and hemifield Visual Evoked Potentials (hVEPs), before (T0) and at a different intervals following sham, anodal and cathodal tsDCS (T9-T11 level, 2.0 mA, 20'). Motor Evoked Potentials (MEPs) were recorded from abductor pollicis brevis (APB), abductor hallucis (AH) and deltoid muscles. hVEPs were recorded bilaterally by reversal of a horizontal square wave grating with the display positioned in the right hemifield. Anodal tsDCS increased TCT (p < 0.001) and the interhemispheric delay for both the main VEP components (N1: p = 0.0003; P1: p < 0.0001), dampening at the same time iSP duration (APB: p < 0.0001; AH: p = 0.0005; deltoid: p < 0.0001), while cathodal stimulation elicited opposite effects (p < 0.0001). tsDCS modulates interhemispheric processing in a polarity-specific manner, with anodal stimulation leading to a functional disconnection between hemispheres. tsDCS would be a new promising therapeutic tool in managing a number of human diseases characterized by an impaired interhemispheric balance, or an early rehabilitation strategy in patients with acute brain lesions, when other non-invasive brain stimulation techniques (NIBS) are not indicated due to safety concerns. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Comparison of isolated-check visual evoked potential and standard automated perimetry in early glaucoma and high-risk ocular hypertension

    PubMed Central

    Chen, Xiang-Wu; Zhao, Ying-Xi

    2017-01-01

    AIM To compare the diagnostic performance of isolated-check visual evoked potential (icVEP) and standard automated perimetry (SAP), for evaluating the application values of icVEP in the detection of early glaucoma. METHODS Totally 144 subjects (288 eyes) were enrolled in this study. icVEP testing was performed with the Neucodia visual electrophysiological diagnostic system. A 15% positive-contrast (bright) condition pattern was used in this device to differentiate between glaucoma patients and healthy control subjects. Signal-to-noise ratios (SNR) were derived based on a multivariate statistic. The eyes were judged as abnormal if the test yielded an SNR≤1. SAP testing was performed with the Humphrey Field Analyzer II. The visual fields were deemed as abnormality if the glaucoma hemifield test results outside normal limits; or the pattern standard deviation with P<0.05; or the cluster of three or more non-edge points on the pattern deviation plot in a single hemifield with P<0.05, one of which must have a P<0.01. Disc photographs were graded as either glaucomatous optic neuropathy or normal by two experts who were masked to all other patient information. Moorfields regression analysis (MRA) used as a separate diagnostic classification was performed by Heidelberg retina tomograph (HRT). RESULTS When the disc photograph grader was used as diagnostic standard, the sensitivity for SAP and icVEP was 32.3% and 38.5% respectively and specificity was 82.3% and 77.8% respectively. When the MRA Classifier was used as the diagnostic standard, the sensitivity for SAP and icVEP was 48.6% and 51.4% respectively and specificity was 84.1% and 78.0% respectively. When the combined structural assessment was used as the diagnostic standard, the sensitivity for SAP and icVEP was 59.2% and 53.1% respectively and specificity was 84.2% and 84.6% respectivlely. There was no statistical significance between the sensitivity or specificity of SAP and icVEP, regardless of which diagnostic standard was based on. CONCLUSION The diagnostic performance of icVEP is not better than that of SAP in the detection of early glaucoma. PMID:28503434

  12. Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study.

    PubMed

    Kasten, Erich; Bunzenthal, Ulrike; Sabel, Bernhard A

    2006-11-25

    It has been argued that patients with visual field defects compensate for their deficit by making more frequent eye movements toward the hemianopic field and that visual field enlargements found after vision restoration therapy (VRT) may be an artefact of such eye movements. In order to determine if this was correct, we recorded eye movements in hemianopic subjects before and after VRT. Visual fields were measured in subjects with homonymous visual field defects (n=15) caused by trauma, cerebral ischemia or haemorrhage (lesion age >6 months). Visual field charts were plotted using both high-resolution perimetry (HRP) and conventional perimetry before and after a 3-month period of VRT, with eye movements being recorded with a 2D-eye tracker. This permitted quantification of eye positions and measurements of deviation from fixation. VRT lead to significant visual field enlargements as indicated by an increase of stimulus detection of 3.8% when tested using HRP and about 2.2% (OD) and 3.5% (OS) fewer misses with conventional perimetry. Eye movements were expressed as the standard deviations (S.D.) of the eye position recordings from fixation. Before VRT, the S.D. was +/-0.82 degrees horizontally and +/-1.16 degrees vertically; after VRT, it was +/-0.68 degrees and +/-1.39 degrees , respectively. A cluster analysis of the horizontal eye movements before VRT showed three types of subjects with (i) small (n=7), (ii) medium (n=7) or (iii) large fixation instability (n=1). Saccades were directed equally to the right or the left side; i.e., with no preference toward the blind hemifield. After VRT, many subjects showed a smaller variability of horizontal eye movements. Before VRT, 81.6% of the recorded eye positions were found within a range of 1 degrees horizontally from fixation, whereas after VRT, 88.3% were within that range. In the 2 degrees range, we found 94.8% before and 98.9% after VRT. Subjects moved their eyes 5 degrees or more 0.3% of the time before VRT versus 0.1% after VRT. Thus, in this study, subjects with homonymous visual field defects who were attempting to fixate a central target while their fields were being plotted, typically showed brief horizontal shifts with no preference toward or away from the blind hemifield. These eye movements were usually less than 1 degrees from fixation. Large saccades toward the blind field after VRT were very rare. VRT has no effect on either the direction or the amplitude of horizontal eye movements during visual field testing. These results argue against the theory that the visual field enlargements are artefacts induced by eye movements.

  13. Patients with schizophrenia do not preserve automatic grouping when mentally re-grouping figures: shedding light on an ignored difficulty.

    PubMed

    Giersch, Anne; van Assche, Mitsouko; Capa, Rémi L; Marrer, Corinne; Gounot, Daniel

    2012-01-01

    Looking at a pair of objects is easy when automatic grouping mechanisms bind these objects together, but visual exploration can also be more flexible. It is possible to mentally "re-group" two objects that are not only separate but belong to different pairs of objects. "Re-grouping" is in conflict with automatic grouping, since it entails a separation of each item from the set it belongs to. This ability appears to be impaired in patients with schizophrenia. Here we check if this impairment is selective, which would suggest a dissociation between grouping and "re-grouping," or if it impacts on usual, automatic grouping, which would call for a better understanding of the interactions between automatic grouping and "re-grouping." Sixteen outpatients with schizophrenia and healthy controls had to identify two identical and contiguous target figures within a display of circles and squares alternating around a fixation point. Eye-tracking was used to check central fixation. The target pair could be located in the same or separate hemifields. Identical figures were grouped by a connector (grouped automatically) or not (to be re-grouped). Attention modulation of automatic grouping was tested by manipulating the proportion of connected and unconnected targets, thus prompting subjects to focalize on either connected or unconnected pairs. Both groups were sensitive to automatic grouping in most conditions, but patients were unusually slowed down for connected targets while focalizing on unconnected pairs. In addition, this unusual effect occurred only when targets were presented within the same hemifield. Patients and controls differed on this asymmetry between within- and across-hemifield presentation, suggesting that patients with schizophrenia do not re-group figures in the same way as controls do. We discuss possible implications on how "re-grouping" ties in with ongoing, automatic perception in healthy volunteers.

  14. Patients with Schizophrenia Do Not Preserve Automatic Grouping When Mentally Re-Grouping Figures: Shedding Light on an Ignored Difficulty

    PubMed Central

    Giersch, Anne; van Assche, Mitsouko; Capa, Rémi L.; Marrer, Corinne; Gounot, Daniel

    2012-01-01

    Looking at a pair of objects is easy when automatic grouping mechanisms bind these objects together, but visual exploration can also be more flexible. It is possible to mentally “re-group” two objects that are not only separate but belong to different pairs of objects. “Re-grouping” is in conflict with automatic grouping, since it entails a separation of each item from the set it belongs to. This ability appears to be impaired in patients with schizophrenia. Here we check if this impairment is selective, which would suggest a dissociation between grouping and “re-grouping,” or if it impacts on usual, automatic grouping, which would call for a better understanding of the interactions between automatic grouping and “re-grouping.” Sixteen outpatients with schizophrenia and healthy controls had to identify two identical and contiguous target figures within a display of circles and squares alternating around a fixation point. Eye-tracking was used to check central fixation. The target pair could be located in the same or separate hemifields. Identical figures were grouped by a connector (grouped automatically) or not (to be re-grouped). Attention modulation of automatic grouping was tested by manipulating the proportion of connected and unconnected targets, thus prompting subjects to focalize on either connected or unconnected pairs. Both groups were sensitive to automatic grouping in most conditions, but patients were unusually slowed down for connected targets while focalizing on unconnected pairs. In addition, this unusual effect occurred only when targets were presented within the same hemifield. Patients and controls differed on this asymmetry between within- and across-hemifield presentation, suggesting that patients with schizophrenia do not re-group figures in the same way as controls do. We discuss possible implications on how “re-grouping” ties in with ongoing, automatic perception in healthy volunteers. PMID:22912621

  15. The word-length effect in acquired alexia, and real and virtual hemianopia.

    PubMed

    Sheldon, Claire A; Abegg, Mathias; Sekunova, Alla; Barton, Jason J S

    2012-04-01

    A word-length effect is often described in pure alexia, with reading time proportional to the number of letters in a word. Given the frequent association of right hemianopia with pure alexia, it is uncertain whether and how much of the word-length effect may be attributable to the hemifield loss. To isolate the contribution of the visual field defect, we simulated hemianopia in healthy subjects with a gaze-contingent paradigm during an eye-tracking experiment. We found a minimal word-length effect of 14 ms/letter for full-field viewing, which increased to 38 ms/letter in right hemianopia and to 31 ms/letter in left hemianopia. We found a correlation between mean reading time and the slope of the word-length effect in hemianopic conditions. The 95% upper prediction limits for the word-length effect were 51 ms/letter in subjects with full visual fields and 161 ms/letter with simulated right hemianopia. These limits, which can be considered diagnostic criteria for an alexic word-length effect, were consistent with the reading performance of six patients with diagnoses based independently on perimetric and imaging data: two patients with probable hemianopic dyslexia, and four with alexia and lesions of the left fusiform gyrus, two with and two without hemianopia. Two of these patients also showed reduction of the word-length effect over months, one with and one without a reading rehabilitation program. Our findings clarify the magnitude of the word-length effect that originates from hemianopia alone, and show that the criteria for a word-length effect indicative of alexia differ according to the degree of associated hemifield loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Perceptual Integration Deficits in Autism Spectrum Disorders Are Associated with Reduced Interhemispheric Gamma-Band Coherence.

    PubMed

    Peiker, Ina; David, Nicole; Schneider, Till R; Nolte, Guido; Schöttle, Daniel; Engel, Andreas K

    2015-12-16

    The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence across different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched controls, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of abnormal global and local synchronization in ASD. The weak central coherence account proposes a tendency of individuals with autism spectrum disorders (ASDs) to focus on details at the cost of an integrated coherent whole. Here, we provide evidence, at the behavioral and the neural level, that visual integration in object recognition is impaired in ASD, when details had to be integrated across both visual hemifields. We found enhanced interhemispheric gamma-band coherence in typically developed participants when communication between cortical hemispheres was required by the task. Importantly, participants with ASD failed to show this enhanced coherence between bilateral posterior superior temporal sulci. The findings suggest that visual integration is disturbed at the local and global synchronization scale, which might bear implications for object recognition in ASD. Copyright © 2015 the authors 0270-6474/15/3516352-10$15.00/0.

  17. Slump Test: Effect of Contralateral Knee Extension on Response Sensations in Asymptomatic Subjects and Cadaver Study.

    PubMed

    Shacklock, Michael; Yee, Brian; Van Hoof, Tom; Foley, Russ; Boddie, Keith; Lacey, Erin; Poley, J Bryan; Rade, Marinko; Kankaanpää, Markku; Kröger, Heikki; Airaksinen, Olavi

    2016-02-01

    Part 1: A randomized, single-blind study on the effect of contralateral knee extension on sensations produced by the slump test (ST) in asymptomatic subjects. Part 2: A cadaver study simulating the nerve root behavior of part 1. Part 1: Test if contralateral knee extension consistently reduces normal stretch sensations with the ST.Part 2: Ascertain in cadavers an explanation for the results. In asymptomatic subjects, contralateral knee extension reduces stretch sensations with the ST. In sciatica patients, contralateral SLR also can temporarily reduce sciatica. We studied this methodically in asymptomatic subjects before considering a clinical population. Part 1: Sixty-one asymptomatic subjects were tested in control (ST), sham, or intervention (contralateral ST) groups and their sensation response intensity compared.Part 2: Caudal tension was applied to the L5 nerve root of 3 cadavers and tension behavior of the contralateral neural tissue recorded visually. Part 1: Reduction of stretch sensations occurred in the intervention group but not in control and sham groups (P ≤ 0.001).Part 2: Tension in the contralateral lumbar nerve roots and dura reduced in a manner consistent with the responses in the intervention (contralateral ST) group. Part 1: In asymptomatic subjects, normal thigh stretch sensations with the ST reduced consistently with the contralateral ST, showing that this is normal and may now be compared with patients with sciatica.Part 2: Contralateral reduction in lumbar neural tension with unilateral application of tension-producing movements also occurred in cadavers, supporting the proposed explanatory hypothesis.

  18. Deletion of Ten-m3 Induces the Formation of Eye Dominance Domains in Mouse Visual Cortex

    PubMed Central

    Merlin, Sam; Horng, Sam; Marotte, Lauren R.; Sur, Mriganka; Sawatari, Atomu

    2013-01-01

    The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex. PMID:22499796

  19. Tinnitus Intensity Dependent Gamma Oscillations of the Contralateral Auditory Cortex

    PubMed Central

    van der Loo, Elsa; Gais, Steffen; Congedo, Marco; Vanneste, Sven; Plazier, Mark; Menovsky, Tomas; Van de Heyning, Paul; De Ridder, Dirk

    2009-01-01

    Background Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. Methods and Findings In unilateral tinnitus patients (N = 15; 10 right, 5 left) source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05). Conclusion Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception. PMID:19816597

  20. Visual field asymmetries in visual evoked responses

    PubMed Central

    Hagler, Donald J.

    2014-01-01

    Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP. PMID:25527151

  1. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI.

    PubMed

    Plow, Ela B; Cattaneo, Zaira; Carlson, Thomas A; Alvarez, George A; Pascual-Leone, Alvaro; Battelli, Lorella

    2014-01-01

    A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction.

  2. Same-session functional assessment of rat retina and brain with manganese-enhanced MRI

    PubMed Central

    Bissig, David; Berkowitz, Bruce A.

    2013-01-01

    Manganese-enhanced MRI (MEMRI) is a powerful non-invasive approach for objectively measuring either retina or binocular visual brain activity in vivo. In this study, we investigated the sensitivity of MEMRI to monocular stimulation using a new protocol for providing within-subject functional comparisons in the retina and brain in the same scanning session. Adult Sprague Dawley or Long–Evans rats had one eye covered with an opaque patch. After intraperitoneal Mn2+ administration on the following day, rats underwent visual stimulation for 8 h. Animals were then anesthetized, and the brain and each eye examined by MEMRI. Function was assessed through pairwise comparisons of the patched (dark-adapted) versus unpatched (light-exposed) eyes, and of differentially-stimulated brain structures – the dorsal lateral geniculate nucleus, superior colliculus, and visual cortical regions – contralateral to the patched versus unpatched eye. As expected, Mn2+ uptake was greater in the outer retina of dark-adapted, relative to light-exposed, eyes (P<0.05). Contralateral to the unpatched eye, significantly more Mn2+ uptake was found throughout the visual brain regions than in the corresponding structures contralateral to the patched eye (P<0.05). Notably, this regional pattern of activity corresponded well to previous work with monocular stimulation. No stimulation-dependent differences in Mn2+ uptake were observed in negative control brain regions (P>0.05). Post-hoc assessment of functional data by animal age and strain revealed no significant effects. These results demonstrate, for the first time, the acquisition of functional MRI data from the eye and visual brain regions in a single scanning session. PMID:21749922

  3. Bilateral Activity-Dependent Interactions in the Developing Corticospinal System

    PubMed Central

    Friel, Kathleen M.; Martin, John H.

    2009-01-01

    Activity-dependent competition between the corticospinal (CS) systems in each hemisphere drives postnatal development of motor skills and stable CS tract connections with contralateral spinal motor circuits. Unilateral restriction of motor cortex (M1) activity during an early postnatal critical period impairs contralateral visually guided movements later in development and in maturity. Silenced M1 develops aberrant connections with the contralateral spinal cord whereas the initially active M1, in the other hemisphere, develops bilateral connections. In this study, we determined whether the aberrant pattern of CS tract terminations and motor impairments produced by early postnatal M1 activity restriction could be abrogated by reducing activity-dependent synaptic competition from the initially active M1 later in development. We first inactivated M1 unilaterally between postnatal weeks 5–7. We next inactivated M1 on the other side from weeks 7–11 (alternate inactivation), to reduce the competitive advantage that this side may have over the initially inactivated side. Alternate inactivation redirected aberrant contralateral CS tract terminations from the initially silenced M1 to their normal spinal territories and reduced the density of aberrant ipsilateral terminations from the initially active side. Normal movement endpoint control during visually guided locomotion was fully restored. This reorganization of CS terminals reveals an unsuspected late plasticity after the critical period for establishing the pattern of CS terminations in the spinal cord. Our findings show that robust bilateral interactions between the developing CS systems on each side are important for achieving balance between contralateral and ipsilateral CS tract connections and visuomotor control. PMID:17928450

  4. The SCHEIE Visual Field Grading System

    PubMed Central

    Sankar, Prithvi S.; O’Keefe, Laura; Choi, Daniel; Salowe, Rebecca; Miller-Ellis, Eydie; Lehman, Amanda; Addis, Victoria; Ramakrishnan, Meera; Natesh, Vikas; Whitehead, Gideon; Khachatryan, Naira; O’Brien, Joan

    2017-01-01

    Objective No method of grading visual field (VF) defects has been widely accepted throughout the glaucoma community. The SCHEIE (Systematic Classification of Humphrey visual fields-Easy Interpretation and Evaluation) grading system for glaucomatous visual fields was created to convey qualitative and quantitative information regarding visual field defects in an objective, reproducible, and easily applicable manner for research purposes. Methods The SCHEIE grading system is composed of a qualitative and quantitative score. The qualitative score consists of designation in one or more of the following categories: normal, central scotoma, paracentral scotoma, paracentral crescent, temporal quadrant, nasal quadrant, peripheral arcuate defect, expansive arcuate, or altitudinal defect. The quantitative component incorporates the Humphrey visual field index (VFI), location of visual defects for superior and inferior hemifields, and blind spot involvement. Accuracy and speed at grading using the qualitative and quantitative components was calculated for non-physician graders. Results Graders had a median accuracy of 96.67% for their qualitative scores and a median accuracy of 98.75% for their quantitative scores. Graders took a mean of 56 seconds per visual field to assign a qualitative score and 20 seconds per visual field to assign a quantitative score. Conclusion The SCHEIE grading system is a reproducible tool that combines qualitative and quantitative measurements to grade glaucomatous visual field defects. The system aims to standardize clinical staging and to make specific visual field defects more easily identifiable. Specific patterns of visual field loss may also be associated with genetic variants in future genetic analysis. PMID:28932621

  5. Structural brain alterations in primary open angle glaucoma: a 3T MRI study

    PubMed Central

    Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang

    2016-01-01

    Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811

  6. Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field.

    PubMed

    Kline, Keith; Holcombe, Alex O; Eagleman, David M

    2004-10-01

    In stroboscopic conditions--such as motion pictures--rotating objects may appear to rotate in the reverse direction due to under-sampling (aliasing). A seemingly similar phenomenon occurs in constant sunlight, which has been taken as evidence that the visual system processes discrete "snapshots" of the outside world. But if snapshots are indeed taken of the visual field, then when a rotating drum appears to transiently reverse direction, its mirror image should always appeared to reverse direction simultaneously. Contrary to this hypothesis, we found that when observers watched a rotating drum and its mirror image, almost all illusory motion reversals occurred for only one image at a time. This result indicates that the motion reversal illusion cannot be explained by snapshots of the visual field. The same result is found when the two images are presented within one visual hemifield, further ruling out the possibility that discrete sampling of the visual field occurs separately in each hemisphere. The frequency distribution of illusory reversal durations approximates a gamma distribution, suggesting perceptual rivalry as a better explanation for illusory motion reversal. After adaptation of motion detectors coding for the correct direction, the activity of motion-sensitive neurons coding for motion in the reverse direction may intermittently become dominant and drive the perception of motion.

  7. Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory?

    PubMed

    Berggren, Nick; Eimer, Martin

    2016-12-01

    During the retention of visual information in working memory, event-related brain potentials show a sustained negativity over posterior visual regions contralateral to the side where memorized stimuli were presented. This contralateral delay activity (CDA) is generally believed to be a neural marker of working memory storage. In two experiments, we contrasted this storage account of the CDA with the alternative hypothesis that the CDA reflects the current focus of spatial attention on a subset of memorized items set up during the most recent encoding episode. We employed a sequential loading procedure where participants memorized four task-relevant items that were presented in two successive memory displays (M1 and M2). In both experiments, CDA components were initially elicited contralateral to task-relevant items in M1. Critically, the CDA switched polarity when M2 displays appeared on the opposite side. In line with the attentional activation account, these reversed CDA components exclusively reflected the number of items that were encoded from M2 displays, irrespective of how many M1 items were already held in working memory. On trials where M1 and M2 displays were presented on the same side and on trials where M2 displays appeared nonlaterally, CDA components elicited in the interval after M2 remained sensitive to a residual trace of M1 items, indicating that some activation of previously stored items was maintained across encoding episodes. These results challenge the hypothesis that CDA amplitudes directly reflect the total number of stored objects and suggest that the CDA is primarily sensitive to the activation of a subset of working memory representations within the current focus of spatial attention.

  8. Contralateral Associated Movements Correlate with Poorer Inhibitory Control, Attention and Visual Perception in Preschool Children.

    PubMed

    Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Zysset, Annina E; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Puder, Jardena J; Kriemler, Susi; Munsch, Simone; Jenni, Oskar G

    2017-10-01

    Contralateral associated movements (CAMs) frequently occur in complex motor tasks. We investigated whether and to what extent CAMs are associated with inhibitory control among preschool children in the Swiss Preschoolers' Health Study. Participants were 476 healthy, typically developing children (mean age = 3.88 years; 251 boys) evaluated on two consecutive afternoons. The children performed the Zurich Neuromotor Assessment, the statue subtest of the Neuropsychological Assessment for Children (NEPSY), and cognitive tests of the Intelligence and Development Scales-Preschool (IDS-P). CAMs were associated with poor inhibitory control on the statue test and poor selective attention and visual perception on the IDS-P. We attributed these findings to preschoolers' general immaturity of the central nervous system.

  9. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner

    PubMed Central

    Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.

    2013-01-01

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388

  10. Experience-enabled enhancement of adult visual cortex function.

    PubMed

    Tschetter, Wayne W; Alam, Nazia M; Yee, Christopher W; Gorz, Mario; Douglas, Robert M; Sagdullaev, Botir; Prusky, Glen T

    2013-03-20

    We previously reported in adult mice that visuomotor experience during monocular deprivation (MD) augmented enhancement of visual-cortex-dependent behavior through the non-deprived eye (NDE) during deprivation, and enabled enhanced function to persist after MD. We investigated the physiological substrates of this experience-enabled form of adult cortical plasticity by measuring visual behavior and visually evoked potentials (VEPs) in binocular visual cortex of the same mice before, during, and after MD. MD on its own potentiated VEPs contralateral to the NDE during MD and shifted ocular dominance (OD) in favor of the NDE in both hemispheres. Whereas we expected visuomotor experience during MD to augment these effects, instead enhanced responses contralateral to the NDE, and the OD shift ipsilateral to the NDE were attenuated. However, in the same animals, we measured NMDA receptor-dependent VEP potentiation ipsilateral to the NDE during MD, which persisted after MD. The results indicate that visuomotor experience during adult MD leads to enduring enhancement of behavioral function, not simply by amplifying MD-induced changes in cortical OD, but through an independent process of increasing NDE drive in ipsilateral visual cortex. Because the plasticity is resident in the mature visual cortex and selectively effects gain of visual behavior through experiential means, it may have the therapeutic potential to target and non-invasively treat eye- or visual-field-specific cortical impairment.

  11. Acute visual neglect and extinction: distinct functional state of the visuospatial attention system.

    PubMed

    Umarova, Roza M; Saur, Dorothee; Kaller, Christoph P; Vry, Magnus-Sebastian; Glauche, Volkmar; Mader, Irina; Hennig, Jürgen; Weiller, Cornelius

    2011-11-01

    The neural mechanisms underlying spatial neglect are still disputed. Abnormal left parietal hyperactivation is proposed to lead to the rightward attentional bias, a clinical hallmark of neglect. Extinction, another deficit of visuospatial attention, is regarded as either a 'mild' form of neglect or a distinct syndrome. Although both neglect and extinction are typical syndromes of acute right hemispheric stroke, all imaging studies investigating these syndromes were conducted at least several weeks after stroke onset, in a phase when brain reorganization has already progressed. The present study aimed at comparing the activation patterns in acute stroke patients with neglect and extinction during visuospatial processing. Using functional magnetic resonance imaging, we examined the functional state of the attention system in 33 patients with a first ever stroke (53 ± 5 h after stroke onset) and age-matched healthy subjects (n = 15). All patients had embolic infarcts within the territory of the right middle cerebral artery. Patients were divided into three groups: (i) normal visuospatial processing (control patients, n = 11); (ii) patients with visual extinction but with no signs of neglect (n = 9); and (iii) patients with visual neglect (n = 13). While undergoing functional magnetic resonance imaging, patients performed a Posner-like task for visuospatial attention with detection of the targets in the left and right visual hemifields. Patients with neglect showed the expected imbalance in the left versus right parietal activation, which however, was present also in control and extinction patients, thus representing an epiphenomenon of the acute structural lesion in the right hemisphere. Compared with control patients, neglect was characterized by reduced activation in the right parietal and lateral occipital cortex, as well as in the left frontal eye field. In contrast, the activation pattern in patients with extinction differed from all other groups by an increased activation of the left prefrontal cortex. In both patients with neglect and extinction, detection of targets in the left hemifield correlated with an activation in the left prefrontal and parietal cortex. Thus at least in acute stroke, a relative hyperactivation of the left parietal cortex is not a particular characteristic of neglect. The specific signature of neglect is represented by the dysfunction of the right parietal and lateral occipital cortex. The function of the left attentional centres might provide a compensatory role after critical right hemisphere lesions and be relevant for the contralesional spatial processing.

  12. Cooperative processing in primary somatosensory cortex and posterior parietal cortex during tactile working memory.

    PubMed

    Ku, Yixuan; Zhao, Di; Bodner, Mark; Zhou, Yong-Di

    2015-08-01

    In the present study, causal roles of both the primary somatosensory cortex (SI) and the posterior parietal cortex (PPC) were investigated in a tactile unimodal working memory (WM) task. Individual magnetic resonance imaging-based single-pulse transcranial magnetic stimulation (spTMS) was applied, respectively, to the left SI (ipsilateral to tactile stimuli), right SI (contralateral to tactile stimuli) and right PPC (contralateral to tactile stimuli), while human participants were performing a tactile-tactile unimodal delayed matching-to-sample task. The time points of spTMS were 300, 600 and 900 ms after the onset of the tactile sample stimulus (duration: 200 ms). Compared with ipsilateral SI, application of spTMS over either contralateral SI or contralateral PPC at those time points significantly impaired the accuracy of task performance. Meanwhile, the deterioration in accuracy did not vary with the stimulating time points. Together, these results indicate that the tactile information is processed cooperatively by SI and PPC in the same hemisphere, starting from the early delay of the tactile unimodal WM task. This pattern of processing of tactile information is different from the pattern in tactile-visual cross-modal WM. In a tactile-visual cross-modal WM task, SI and PPC contribute to the processing sequentially, suggesting a process of sensory information transfer during the early delay between modalities. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI

    PubMed Central

    Plow, Ela B.; Cattaneo, Zaira; Carlson, Thomas A.; Alvarez, George A.; Pascual-Leone, Alvaro; Battelli, Lorella

    2014-01-01

    A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction. PMID:24860462

  14. Early Outcomes of Endoscopic Contralateral Foraminal and Lateral Recess Decompression via an Interlaminar Approach in Patients with Unilateral Radiculopathy from Unilateral Foraminal Stenosis.

    PubMed

    Kim, Hyeun Sung; Patel, Ravish; Paudel, Byapak; Jang, Jee-Soo; Jang, Il-Tae; Oh, Seong-Hoon; Park, Jae Eun; Lee, Sol

    2017-12-01

    Percutaneous endoscopic contralateral interlaminar lumbar foraminotomy (PECILF) for lumbar degenerative spinal stenosis is an established procedure. Better preservation of contralateral facet joint compared with that of the approach side has been shown with uniportal bilateral decompression. The aim of this retrospective case series was to analyze the early clinical and radiologic outcomes of stand-alone contralateral foraminotomy and lateral recess decompression using PECILF. Twenty-six consecutive patients with unilateral lower limb radiculopathy underwent contralateral foraminotomy and lateral recess decompression using PECILF. Their clinical outcomes were evaluated with visual analog scale leg pain score, Oswestry Disability Index, and the MacNab criteria. Completeness of decompression was documented with a postoperative magnetic resonance imaging. Mean age for the study group was 62.9 ± 9.2 years and the male/female ratio was 4:9. A total of 30 levels were decompressed, with 18 patients (60%) undergoing decompression at L4-L5, 9 at L5-S1 (30%), 2 at L3-L4 (6.7%), and 1 at L2-L3 (3.3%). Mean estimated blood loss was 27 ± 15 mL per level. Mean operative duration was 48 ± 12 minutes/level. Visual analog scale leg score improved from 7.7 ± 1 to 1.8 ± 0.8 (P < 0.0001). Oswestry Disability Index improved from 64.4 ± 5.8 to 21 ± 4.5 (P < 0.0001). Mean follow-up of the study was 13.7 ± 2.7 months. According to the MacNab criteria, 10 patients (38.5%) had good results, 14 patients (53.8%) had excellent results, and 2 patients (7.7%) had fair results. One patient required revision surgery. Facet-preserving contralateral foraminotomy and lateral recess decompression with PECILF is effective for treatment of lateral recess and foraminal stenosis. Thorough decompression with acceptable early clinical outcomes and minimal perioperative morbidity can be obtained with the contralateral endoscopic approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Arterial spin labeling fMRI measurements of decreased blood flow in primary visual cortex correlates with decreased visual function in human glaucoma.

    PubMed

    Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M

    2012-05-01

    Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Limits on perceptual encoding can be predicted from known receptive field properties of human visual cortex.

    PubMed

    Cohen, Michael A; Rhee, Juliana Y; Alvarez, George A

    2016-01-01

    Human cognition has a limited capacity that is often attributed to the brain having finite cognitive resources, but the nature of these resources is usually not specified. Here, we show evidence that perceptual interference between items can be predicted by known receptive field properties of the visual cortex, suggesting that competition within representational maps is an important source of the capacity limitations of visual processing. Across the visual hierarchy, receptive fields get larger and represent more complex, high-level features. Thus, when presented simultaneously, high-level items (e.g., faces) will often land within the same receptive fields, while low-level items (e.g., color patches) will often not. Using a perceptual task, we found long-range interference between high-level items, but only short-range interference for low-level items, with both types of interference being weaker across hemifields. Finally, we show that long-range interference between items appears to occur primarily during perceptual encoding and not during working memory maintenance. These results are naturally explained by the distribution of receptive fields and establish a link between perceptual capacity limits and the underlying neural architecture. (c) 2015 APA, all rights reserved).

  17. Irrelevant learned reward associations disrupt voluntary spatial attention.

    PubMed

    MacLean, Mary H; Diaz, Gisella K; Giesbrecht, Barry

    2016-10-01

    Attention can be guided involuntarily by physical salience and by non-salient, previously learned reward associations that are currently task-irrelevant. Attention can be guided voluntarily by current goals and expectations. The current study examined, in two experiments, whether irrelevant reward associations could disrupt current, goal-driven, voluntary attention. In a letter-search task, attention was directed voluntarily (i.e., cued) on half the trials by a cue stimulus indicating the hemifield in which the target letter would appear with 100 % accuracy. On the other half of the trials, a cue stimulus was presented, but it did not provide information about the target hemifield (i.e., uncued). On both cued and uncued trials, attention could be involuntarily captured by the presence of a task-irrelevant, and physically non-salient, color, either within the cued or the uncued hemifield. Importantly, one week prior to the letter search task, the irrelevant color had served as a target feature that was predictive of reward in a separate training task. Target identification accuracy was better on cued compared to uncued trials. However, this effect was reduced when the irrelevant, and physically non-salient, reward-associated feature was present in the uncued hemifield. This effect was not observed in a second, control experiment in which the irrelevant color was not predictive of reward during training. Our results indicate that involuntary, value-driven capture can disrupt the voluntary control of spatial attention.

  18. Effects of inhibitory theta burst TMS to different brain sites involved in visuospatial attention - a combined neuronavigated cTBS and behavioural study.

    PubMed

    Platz, Thomas; Schüttauf, Johannes; Aschenbach, Julia; Mengdehl, Christine; Lotze, Martin

    2016-01-01

    The study sought to alter visual spatial attention in young healthy subjects by a neuronavigated inhibitory rTMS protocol (cTBS-600) to right brain areas thought to be involved in visual attentional processes, i.e. the temporoparietal junction (TPJ) and the posterior middle frontal gyrus (pMFG), and to test the reversibility of effects by an additional consecutive cTBS to the homologue left brain cortical areas. Healthy subjects showed a leftward bias of the egocentric perspective for both visual-perceptive and visual-exploratory tasks specifically for items presented in the left hemifield. cTBS to the right TPJ, and less systematically to the right pMFG reduced this bias for visuo-spatial and exploratory visuo-motor behaviour. Further, a consecutive cTBS to the left TPJ changed the bias again towards the left for a visual-perceptive task. The evidence supports the notion of an involvement of the right TPJ (and pMFG) in spatial visual attention. The observations further indicate that inhibitory non-invasive brain stimulation (cTBS) to the left TPJ has a potential for reversing a rightward bias of spatial attention when the right TPJ is dysfunctional. Accordingly, the findings could have implications for therapeutic rTMS development for right brain damaged patients with visual neglect.

  19. Functional visual acuity in patients with successfully treated amblyopia: a pilot study.

    PubMed

    Hoshi, Sujin; Hiraoka, Takahiro; Kotsuka, Junko; Sato, Yumiko; Izumida, Shinya; Kato, Atsuko; Ueno, Yuta; Fukuda, Shinichi; Oshika, Tetsuro

    2017-06-01

    The aim of this study was to use conventional visual acuity measurements to quantify the functional visual acuity (FVA) in eyes with successfully treated amblyopia, and to compare the findings with those for contralateral normal eyes. Nineteen patients (7 boys, 12 girls; age 7.5 ± 2.2 years) with successfully treated unilateral amblyopia and the same conventional decimal visual acuity in both eyes (better than 1.0) were enrolled. FVA, the visual maintenance ratio (VMR), maximum and minimum visual acuity, and the average response time were recorded for both eyes of all patients using an FVA measurement system. The differences in FVA values between eyes were analyzed. The mean LogMAR FVA scores, VMR (p < 0.001 for both), and the LogMAR maximum (p < 0.005) and minimum visual acuity (p < 0.001) were significantly poorer for the eyes with treated amblyopia than for the contralateral normal eyes. There was no significant difference in the average response time. Our results indicate that FVA and VMR were poorer for eyes with treated amblyopia than for normal eyes, even though the treatment for amblyopia was considered successful on the basis of conventional visual acuity measurements. These results suggest that visual function is impaired in eyes with amblyopia, regardless of treatment success, and that FVA measurements can provide highly valuable diagnosis and treatment information that is not readily provided by conventional visual acuity measurements.

  20. Local structure of subcellular input retinotopy in an identified visual interneuron

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Gabbiani, Fabrizio; Fabrizio Gabbiani's lab Team

    2015-03-01

    How does the spatial layout of the projections that a neuron receives impact its synaptic integration and computation? What is the mapping topography of subcellular wiring at the single neuron level? The LGMD (lobula giant movement detector) neuron in the locust is an identified neuron that responds preferentially to objects approaching on a collision course. It receives excitatory inputs from the entire visual hemifield through calcium-permeable nicotinic acetylcholine receptors. Previous work showed that the projection from the locust compound eye to the LGMD preserved retinotopy down to the level of a single ommatidium (facet) by employing in vivo widefield calcium imaging. Because widefield imaging relies on global excitation of the preparation and has a relatively low resolution, previous work could not investigate this retinotopic mapping at the level of individual thin dendritic branches. Our current work employs a custom-built two-photon microscope with sub-micron resolution in conjunction with a single-facet stimulation setup that provides visual stimuli to the single ommatidium of locust adequate to explore the local structure of this retinotopy at a finer level. We would thank NIMH for funding this research.

  1. Miniopen Transforaminal Lumbar Interbody Fusion with Unilateral Fixation: A Comparison between Ipsilateral and Contralateral Reherniation

    PubMed Central

    Liu, Fubing; Jiang, Chun

    2016-01-01

    The aim of this study was to evaluate the risk factors between ipsilateral and contralateral reherniation and to compare the effectiveness of miniopen transforaminal lumbar interbody fusion (TLIF) with unilateral fixation for each group. From November 2007 to December 2014, clinical and radiographic data of each group (ipsilateral or contralateral reherniation) were collected and compared. Functional assessment (Visual Analog Scale (VAS) score and Japanese Orthopaedic Association (JOA)) and radiographic evaluation (fusion status, disc height, lumbar lordosis (LL), and functional spine unit (FSU) angle) were applied to compare surgical effect for each group preoperatively and at final followup. MacNab questionnaire was applied to further evaluate the satisfactory rate after the discectomy and fusion. No difference except pain-free interval was found between ipsilateral and contralateral groups. There was a significant difference in operative time between two groups. No differences were found in clinical and radiographic data for assessment of surgical effect between two groups. The satisfactory rate was decreasing in both groups with time passing after discectomy. Difference in pain-free interval may be a distinction for ipsilateral and contralateral reherniation. Miniopen TLIF with unilateral pedicle screw fixation can be a recommendable way for single level reherniation regardless of ipsilateral or contralateral reherniation. PMID:27885358

  2. Visual Feedback of the Non-Moving Limb Improves Active Joint-Position Sense of the Impaired Limb in Spastic Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2011-01-01

    This study examined the active joint-position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual feedback, of the non-moving limb, on the joint-position sense. Participants were asked to match the position of one upper limb with that of the contralateral limb. The task…

  3. Reduced Performance of Prey Targeting in Pit Vipers with Contralaterally Occluded Infrared and Visual Senses

    PubMed Central

    Chen, Qin; Deng, Huanhuan; Brauth, Steven E.; Ding, Li; Tang, Yezhong

    2012-01-01

    Both visual and infrared (IR) senses are utilized in prey targeting by pit vipers. Visual and IR inputs project to the contralateral optic tectum where they activate both multimodal and bimodal neurons. A series of ocular and pit organ occlusion experiments using the short-tailed pit viper (Gloydius brevicaudus) were conducted to investigate the role of visual and IR information during prey targeting. Compared with unoccluded controls, snakes with either both eyes or pit organs occluded performed more poorly in hunting prey although such subjects still captured prey on 75% of trials. Subjects with one eye and one pit occluded on the same side of the face performed as well as those with bilateral occlusion although these subjects showed a significant targeting angle bias toward the unoccluded side. Performance was significantly poorer when only a single eye or pit was available. Interestingly, when one eye and one pit organ were occluded on opposite sides of the face, performance was poorest, the snakes striking prey on no more than half the trials. These results indicate that, visual and infrared information are both effective in prey targeting in this species, although interference between the two modalities occurs if visual and IR information is restricted to opposite sides of the brain. PMID:22606229

  4. Multiple foci of spatial attention in multimodal working memory.

    PubMed

    Katus, Tobias; Eimer, Martin

    2016-11-15

    The maintenance of sensory information in working memory (WM) is mediated by the attentional activation of stimulus representations that are stored in perceptual brain regions. Using event-related potentials (ERPs), we measured tactile and visual contralateral delay activity (tCDA/CDA components) in a bimodal WM task to concurrently track the attention-based maintenance of information stored in anatomically segregated (somatosensory and visual) brain areas. Participants received tactile and visual sample stimuli on both sides, and in different blocks, memorized these samples on the same side or on opposite sides. After a retention delay, memory was unpredictably tested for touch or vision. In the same side blocks, tCDA and CDA components simultaneously emerged over the same hemisphere, contralateral to the memorized tactile/visual sample set. In opposite side blocks, these two components emerged over different hemispheres, but had the same sizes and onset latencies as in the same side condition. Our results reveal distinct foci of tactile and visual spatial attention that were concurrently maintained on task-relevant stimulus representations in WM. The independence of spatially-specific biasing mechanisms for tactile and visual WM content suggests that multimodal information is stored in distributed perceptual brain areas that are activated through modality-specific processes that can operate simultaneously and largely independently of each other. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Does the corticoadrenal adenoma with ''pre-Cushing's syndrome'' exist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonnel, B.; Chatal, J.F.; Ozanne, P.

    1981-12-01

    An adrenal tumor was discovered fortuitously in a patient with no clinical features of Cushing's syndrome. On adrenal imaging, there was good uptake in the nodule but no visualization of the contralateral adrenal. The latter was seen, however, in a second scan performed under ACTH treatment. In the hormone assessment, basal cortisol and 17-hydroxycorticoids were normal and cortisol diurnal variation was near normal, but a dexamethasone suppression test and ACTH responses to metyrapone and insulin hypoglycemia were abnormal. Eight months after excision of a spongiocytic-type adenoma, the remaining adrenal was visible on scintigram and the hormonal tests were normal. Thismore » pattern suggests that the clinical Cushing's syndrome was enough to partially suppress ACTH and, consequently, visualization of the contralateral gland.« less

  6. Stimulus-driven changes in the direction of neural priming during visual word recognition.

    PubMed

    Pas, Maciej; Nakamura, Kimihiro; Sawamoto, Nobukatsu; Aso, Toshihiko; Fukuyama, Hidenao

    2016-01-15

    Visual object recognition is generally known to be facilitated when targets are preceded by the same or relevant stimuli. For written words, however, the beneficial effect of priming can be reversed when primes and targets share initial syllables (e.g., "boca" and "bono"). Using fMRI, the present study explored neuroanatomical correlates of this negative syllabic priming. In each trial, participants made semantic judgment about a centrally presented target, which was preceded by a masked prime flashed either to the left or right visual field. We observed that the inhibitory priming during reading was associated with a left-lateralized effect of repetition enhancement in the inferior frontal gyrus (IFG), rather than repetition suppression in the ventral visual region previously associated with facilitatory behavioral priming. We further performed a second fMRI experiment using a classical whole-word repetition priming paradigm with the same hemifield procedure and task instruction, and obtained well-known effects of repetition suppression in the left occipito-temporal cortex. These results therefore suggest that the left IFG constitutes a fast word processing system distinct from the posterior visual word-form system and that the directions of repetition effects can change with intrinsic properties of stimuli even when participants' cognitive and attentional states are kept constant. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Neural correlates of visuospatial consciousness in 3D default space: insights from contralateral neglect syndrome.

    PubMed

    Jerath, Ravinder; Crawford, Molly W

    2014-08-01

    One of the most compelling questions still unanswered in neuroscience is how consciousness arises. In this article, we examine visual processing, the parietal lobe, and contralateral neglect syndrome as a window into consciousness and how the brain functions as the mind and we introduce a mechanism for the processing of visual information and its role in consciousness. We propose that consciousness arises from integration of information from throughout the body and brain by the thalamus and that the thalamus reimages visual and other sensory information from throughout the cortex in a default three-dimensional space in the mind. We further suggest that the thalamus generates a dynamic default three-dimensional space by integrating processed information from corticothalamic feedback loops, creating an infrastructure that may form the basis of our consciousness. Further experimental evidence is needed to examine and support this hypothesis, the role of the thalamus, and to further elucidate the mechanism of consciousness. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The contralateral delay activity as a neural measure of visual working memory

    PubMed Central

    Luria, Roy; Balaban, Halely; Awh, Edward; Vogel, Edward K.

    2016-01-01

    The contralateral delay activity (CDA) is a negative slow wave sensitive to the number of objects maintained in visual working memory (VWM). In recent years, a growing number of labs started to use the CDA in order to investigate VWM, leading to many fascinating discoveries. Here, we discuss the recent developments and contribution of the CDA in various research fields. Importantly, we report two meta-analyses that unequivocally validate the relationship between the set-size increase in the CDA amplitude and the individual VWM capacity, and between the CDA and filtering efficiency. We further discuss how the CDA was used to study the role of VWM in visual search, multiple object tracking, grouping, binding, and whether VWM capacity allocation is determined by the items’ resolution or instead by the number of objects regardless of their complexity. In addition, we report how the CDA has been used to characterize specific VWM deficits in special populations. PMID:26802451

  9. Hemispheric Asymmetry of Visual Cortical Response by Means of Functional Transcranial Doppler

    PubMed Central

    Roje-Bedeković, Marina; Lovrenčić-Huzjan, Arijana; Bosnar-Puretić, Marijana; Šerić, Vesna; Demarin, Vida

    2012-01-01

    We assessed the visual evoked response and investigated side-to-side differences in mean blood flow velocities (MBFVs) by means of functional transcranial Doppler (fTCD) in 49 right-handed patients with severe internal carotid artery (ICA) stenosis and 30 healthy volunteers, simultaneously in both posterior cerebral arteries (PCAs) using 2 MHz probes, successively in the dark and during the white light stimulation. Statistically significant correlation (P = 0.001) was shown in healthy and in patients (P < 0.05) between MBFV in right PCA in physiological conditions and MBFV in right PCA during the white light stimulation and in the dark. The correlation between MBVF in right PCA and contralateral left PCA was not statistically significant (P > 0.05). The correlation between ipsilateral left PCA was significantly higher than the one with contralateral right PCA (P < 0.05). There is a clear trend towards the lateralisation of the visual evoked response in the right PCA. PMID:22135771

  10. Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Eyes With Glaucoma and Single-Hemifield Visual Field Loss.

    PubMed

    Chen, Chieh-Li; Bojikian, Karine D; Wen, Joanne C; Zhang, Qinqin; Xin, Chen; Mudumbai, Raghu C; Johnstone, Murray A; Chen, Philip P; Wang, Ruikang K

    2017-05-01

    Understanding the differences in vascular microcirculation of the peripapillary retinal nerve fiber layer (RNFL) between the hemispheres in eyes with glaucoma with single-hemifield visual field (VF) defects may provide insight into the pathophysiology of glaucoma. To investigate the changes in the microcirculation of the peripapillary RNFL of eyes with glaucoma by using optical microangiography. Eyes with glaucoma and single-hemifield VF defect and normal eyes underwent scanning using an optical microangiography system covering a 6.7 × 6.7-mm2 area centered at the optic nerve head. The RNFL microcirculation was measured within an annulus region centered at the optic nerve head divided into superior and inferior hemispheres. Blood flux index (the mean flow signal intensity in the vessels) and vessel area density (the percentage of the detected vessels in the annulus) were measured. Differences in microcirculation between the hemispheres in eyes with glaucoma and normal eyes and correlations among blood flow metrics, VF thresholds, and clinical optical coherence tomography structural measurements were assessed. Twenty-one eyes from 21 patients with glaucoma (7 men and 14 women; mean [SD] age, 63.7 [9.9] years) and 20 eyes from 20 healthy control individuals (9 men and 11 women; mean [SD] age, 68.3 [10.7] years) were studied. In eyes with glaucoma, the abnormal hemisphere showed a thinner RNFL (mean [SE] difference, 23.5 [4.5] μm; 95% CI, 15.1-32.0 µm; P < .001), lower RNFL blood flux index (mean [SE] difference, 0.04 [0.01]; 95% CI, 0.02-0.05; P < .001), and less vessel area density (mean [SE] difference, 0.08% [0.02%]; 95% CI, 0.05%-0.10%; P < .001) than did the normal hemisphere. Compared with normal eyes, reduced RNFL microcirculation was found in the normal hemisphere of eyes with glaucoma, measured by mean [SE] differences in blood flux index (0.06 [0.01]; 95% CI, 0.04-0.09; P < .001) and vessel area density (0.04% [0.02%]; 95% CI, 0.02%-0.08%; P = .003) but not in RNFL thickness (3.4 [4.7] μm; 95% CI, -6.2 to 12.9 µm; P = .48). Strong correlations were found between the blood flux index and VF mean deviation (Spearman ρ = 0.44; P = .045) and RNFL thickness (Spearman ρ = 0.65; P = .001) in the normal hemisphere of the eye with glaucoma. Reduced RNFL microcirculation was detected in the normal hemisphere of eyes with glaucoma, with strong correspondence with VF loss and RNFL thinning. Although the results suggest that vascular dysfunction precedes structural changes seen in glaucoma, longitudinal studies would be needed to confirm this finding.

  11. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.

    PubMed

    Heinen, Klaartje; Feredoes, Eva; Ruff, Christian C; Driver, Jon

    2017-05-01

    It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigate the causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm. We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were cued to maintain the focus of attention. These effects recovered ca. 20min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly, the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment following attention shifts. The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism?

    PubMed

    Poch, Claudia; Valdivia, María; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo

    2018-03-27

    Selective attention can enhance Working Memory (WM) performance by selecting relevant information, while preventing distracting items from encoding or from further maintenance. Alpha oscillatory modulations are a correlate of visuospatial attention. Specifically, an enhancement of alpha power is observed in the ipsilateral posterior cortex to the locus of attention, along with a suppression in the contralateral hemisphere. An influential model proposes that the alpha enhancement is functionally related to the suppression of information. However, whether ipsilateral alpha power represents a mechanism through which no longer relevant WM representations are inhibited has yet not been explored. Here we examined whether the amount of distractors to be suppressed during WM maintenance is functionally related to alpha power lateralized activity. We measure EEG activity while participants (N = 36) performed a retro-cue task in which the WM load was varied across the relevant/irrelevant post-cue hemifield. We found that alpha activity was lateralized respect to the locus of attention, but did not track post-cue irrelevant load. Additionally, non-lateralized alpha activity increased with post-cue relevant load. We propose that alpha lateralization associated to retro-cuing might be related to a general orienting mechanism toward relevant representation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Sequential roles of primary somatosensory cortex and posterior parietal cortex in tactile-visual cross-modal working memory: a single-pulse transcranial magnetic stimulation (spTMS) study.

    PubMed

    Ku, Yixuan; Zhao, Di; Hao, Ning; Hu, Yi; Bodner, Mark; Zhou, Yong-Di

    2015-01-01

    Both monkey neurophysiological and human EEG studies have shown that association cortices, as well as primary sensory cortical areas, play an essential role in sequential neural processes underlying cross-modal working memory. The present study aims to further examine causal and sequential roles of the primary sensory cortex and association cortex in cross-modal working memory. Individual MRI-based single-pulse transcranial magnetic stimulation (spTMS) was applied to bilateral primary somatosensory cortices (SI) and the contralateral posterior parietal cortex (PPC), while participants were performing a tactile-visual cross-modal delayed matching-to-sample task. Time points of spTMS were 300 ms, 600 ms, 900 ms after the onset of the tactile sample stimulus in the task. The accuracy of task performance and reaction time were significantly impaired when spTMS was applied to the contralateral SI at 300 ms. Significant impairment on performance accuracy was also observed when the contralateral PPC was stimulated at 600 ms. SI and PPC play sequential and distinct roles in neural processes of cross-modal associations and working memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner.

    PubMed

    Bressler, David W; Fortenbaugh, Francesca C; Robertson, Lynn C; Silver, Michael A

    2013-06-07

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Temporal profile of functional visual rehabilitative outcomes modulated by transcranial direct current stimulation.

    PubMed

    Plow, Ela B; Obretenova, Souzana N; Jackson, Mary Lou; Merabet, Lotfi B

    2012-07-01

    We have previously reported that transcranial direct current stimulation (tDCS) delivered to the occipital cortex enhances visual functional recovery when combined with three months of computer-based rehabilitative training in patients with hemianopia. The principal objective of this study was to evaluate the temporal sequence of effects of tDCS on visual recovery as they appear over the course of training and across different indicators of visual function. Primary objective outcome measures were 1) shifts in visual field border and 2) stimulus detection accuracy within the affected hemifield. These were compared between patients randomized to either vision restoration therapy (VRT) combined with active tDCS or VRT paired with sham tDCS. Training comprised two half-hour sessions, three times a week for three months. Primary outcome measures were collected at baseline (pretest), monthly interim intervals, and at posttest (three months). As secondary outcome measures, contrast sensitivity and reading performance were collected at pretest and posttest time points only. Active tDCS combined with VRT accelerated the recovery of stimulus detection as between-group differences appeared within the first month of training. In contrast, a shift in the visual field border was only evident at posttest (after three months of training). tDCS did not affect contrast sensitivity or reading performance. These results suggest that tDCS may differentially affect the magnitude and sequence of visual recovery in a manner that is task specific to the type of visual rehabilitative training strategy employed. © 2012 International Neuromodulation Society.

  16. Decreased visual detection during subliminal stimulation.

    PubMed

    Bareither, Isabelle; Villringer, Arno; Busch, Niko A

    2014-10-17

    What is the perceptual fate of invisible stimuli-are they processed at all and does their processing have consequences for the perception of other stimuli? As has been shown previously in the somatosensory system, even stimuli that are too weak to be consciously detected can influence our perception: Subliminal stimulation impairs perception of near-threshold stimuli and causes a functional deactivation in the somatosensory cortex. In a recent study, we showed that subliminal visual stimuli lead to similar responses, indicated by an increase in alpha-band power as measured with electroencephalography (EEG). In the current study, we investigated whether a behavioral inhibitory mechanism also exists within the visual system. We tested the detection of peripheral visual target stimuli under three different conditions: Target stimuli were presented alone or embedded in a concurrent train of subliminal stimuli either at the same location as the target or in the opposite hemifield. Subliminal stimuli were invisible due to their low contrast, not due to a masking procedure. We demonstrate that target detection was impaired by the subliminal stimuli, but only when they were presented at the same location as the target. This finding indicates that subliminal, low-intensity stimuli induce a similar inhibitory effect in the visual system as has been observed in the somatosensory system. In line with previous reports, we propose that the function underlying this effect is the inhibition of spurious noise by the visual system. © 2014 ARVO.

  17. Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex

    PubMed Central

    Jehee, Janneke F.M.; Ling, Sam; Swisher, Jascha D.; van Bergen, Ruben S.; Tong, Frank

    2013-01-01

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily one-hour training sessions. Training on average led to a two-fold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1–V4) using signal detection measures, both pre- and post-training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2–V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information. PMID:23175828

  18. Perceptual learning selectively refines orientation representations in early visual cortex.

    PubMed

    Jehee, Janneke F M; Ling, Sam; Swisher, Jascha D; van Bergen, Ruben S; Tong, Frank

    2012-11-21

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily 1 h training sessions. Training on average led to a twofold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1-V4) using signal detection measures, both before and after training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2-V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information.

  19. Attentional selection within and across hemispheres: implications for the perceptual load theory.

    PubMed

    Wei, Ping; Kang, Guanlan; Zhou, Xiaolin

    2013-03-01

    The perceptual load of a given task affects attentional selection, with the selection occurring earlier when the load is high and later when the load is low. Recent evidence suggests that local competitive interaction may underlie the perceptual load effect and determine to what extent a task-irrelevant distractor is processed. Here, we asked participants to search for a target bar among homogeneously oriented bars (the low load conditions) or heterogeneously oriented bars (the high load conditions) in the central display, while ignoring a congruent or incongruent flanker bar presented to the left or right side of the central display, or a bar presented at one of the six positions outer to the central display. Importantly, we differentiated conditions in which the target in the central display and the peripheral flanker was presented within the same hemifield or across different hemifields. Results showed a significant flanker effect for the low load condition, but not for the high load condition, when the target and the flanker were across hemifields. However, when the target and the flanker were presented within the same hemifield, there was no flanker effect for either low or high load conditions. These findings demonstrate that the ability to ignore the task-irrelevant distractor is affected by local competition within hemisphere and that the perceptual load theory needs to be supplemented with detailed analysis of cognitive processes and mechanisms underlying the consumption of attentional resources.

  20. Contralateral eye comparison on changes in visual field following laser in situ keratomileusis vs photorefractive keratectomy for myopia: a randomized clinical trial.

    PubMed

    Mostafaei, A; Sedgipour, M R; Sadeghi-Bazargani, H

    2009-12-01

    Study purpose was to compare the changes of Visual Field (VF) during laser in situ Keratomileusis (LASIK) VS photorefractive keratectomy (PRK). This randomized, double blind, study involved 54 eyes of 27 Myopia patients who underwent LASIK or PRK procedures for contralateral eyes in each patient. Using Humphrey 30-2 SITA standard, the Mean Defect (MD) and Pattern Standard Deviation (PSD) were evaluated preoperatively and three months after surgery. At the same examination optical zone size, papillary and corneal diameters were also evaluated. There was no clinically significant difference in PSD and MD measurements between treated eyes with LASIK or PRK in any zone pre and postoperatively. VF may not be affected by corneal changes induced by LASIK or PRK three months after surgery.

  1. New developments in stroke rehabilitation.

    PubMed

    Rocksmith, Eugenio R; Reding, Michael J

    2002-07-01

    There is increasing evidence that environmental and neuropharmacologic treatments enhance stroke recovery. Functional magnetic resonance imaging and transcranial magnetic stimulation have significantly broadened our understanding of the neuroanatomic relationships involved in recovery from brain injury due to stroke. These tools have also demonstrated the role for pharmacologic enhancement of cortical plasticity coupled with behavioral interventions. Robot-assisted therapy and partial body weight-supported treadmill gait training have demonstrated the role for technologic intervention in the modern neuro-rehabilitation setting. Current research using hemi-field ocular prisms and patching techniques suggest a role in the rehabilitation of hemianopsia and visual neglect. Finally, many advances have been made in the understanding of common stroke complications, such as depression, dysphagia, venous thromboembolic disease, incontinence, and spasticity.

  2. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Evidence for an attentional component of inhibition of return in visual search.

    PubMed

    Pierce, Allison M; Crouse, Monique D; Green, Jessica J

    2017-11-01

    Inhibition of return (IOR) is typically described as an inhibitory bias against returning attention to a recently attended location as a means of promoting efficient visual search. Most studies examining IOR, however, either do not use visual search paradigms or do not effectively isolate attentional processes, making it difficult to conclusively link IOR to a bias in attention. Here, we recorded ERPs during a simple visual search task designed to isolate the attentional component of IOR to examine whether an inhibitory bias of attention is observed and, if so, how it influences visual search behavior. Across successive visual search displays, we found evidence of both a broad, hemisphere-wide inhibitory bias of attention along with a focal, target location-specific facilitation. When the target appeared in the same visual hemifield in successive searches, responses were slower and the N2pc component was reduced, reflecting a bias of attention away from the previously attended side of space. When the target occurred at the same location in successive searches, responses were facilitated and the P1 component was enhanced, likely reflecting spatial priming of the target. These two effects are combined in the response times, leading to a reduction in the IOR effect for repeated target locations. Using ERPs, however, these two opposing effects can be isolated in time, demonstrating that the inhibitory biasing of attention still occurs even when response-time slowing is ameliorated by spatial priming. © 2017 Society for Psychophysiological Research.

  4. Inter-hemispheric wave propagation failures in traumatic brain injury are indicative of callosal damage.

    PubMed

    Spiegel, Daniel P; Laguë-Beauvais, Maude; Sharma, Gaurav; Farivar, Reza

    2015-04-01

    Approximately 3.2-5.3 million Americans live with the consequences of a traumatic brain injury (TBI), making TBI one of the most common causes of disability in the world. Visual deficits often accompany TBI but physiological and anatomical evidence for injury in mild TBI is lacking. Axons traversing the corpus callosum are particularly vulnerable to TBI. Hemifield representations of early visual areas are linked by bundles of fibers that together cross the corpus callosum while maintaining their topographic relations. Given the increased vulnerability of the long visual axons traversing the corpus callosum, we hypothesized that inter-hemispheric transmission for vision will be impaired following mild TBI. Using the travelling wave paradigm (Wilson, Blake, & Lee 2001), we measured inter-hemispheric transmission in terms of both speed and propagation failures in 14 mild TBI patients and 14 age-matched controls. We found that relative to intra-hemispheric waves, inter-hemispheric waves were faster and that the inter-hemispheric propagation failures were more common in TBI patients. Furthermore, the transmission failures were topographically distributed, with a bias towards greater failures for transmission across the upper visual field. We discuss the results in terms of increased local inhibition and topographically-selective axonal injury in mild TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Risk factor of contralateral radiculopathy following microendoscopy-assisted minimally invasive transforaminal lumbar interbody fusion.

    PubMed

    Yang, Yang; Liu, Zhong-Yu; Zhang, Liang-Ming; Dong, Jian-Wen; Xie, Pei-Gen; Chen, Rui-Qiang; Yang, Bu; Liu, Chang; Liu, Bin; Rong, Li-Min

    2017-12-08

    Microendoscopy-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is an advantageous method for treating lumbar degenerative disease; however, some patients show contralateral radiculopathy postoperatively. This study aims to investigate its risk factor. A total of 130 cases who underwent microendoscopy-assisted MIS-TLIF at L4-5 level were divided into symptomatic and asymptomatic groups according to the presence of postoperative contralateral radiculopathy. Both preoperative and postoperative radiographic parameters, as well as their changes were compared between the two groups, including lumbar lordosis (LL), surgical segmental angle (SSA), disc height (DH), contralateral foramen area (CFA) and contralateral canal area (CCA). Screw breach on contralateral L4 pedicle and decompression method (ipsilateral or bilateral canal decompression through unilateral route) were also analyzed as potential risk factors. Receiver operating characteristic (ROC) curve was drawn for the risk factor to determine the optimal threshold for predicting postoperative contralateral radiculopathy. Besides, clinical outcome assessment, involving Visual Analog Score (VAS) for back and leg, Japanese Orthopaedics Association Score (JOA) and Oswestry Disability Index (ODI), was also compared between the two groups before surgery and at final follow-up (at least 3 months after the surgery for asymptomatic patients or final treatments of contralateral radiculopathy for symptomatic cases). Postoperative contralateral radiculopathy occurred in 11 (8.5%) of the 130 patients. Both preoperative and postoperative CFA as well as its change were significantly decreased in symptomatic group compared with asymptomatic group (all P < 0.05). For the remaining four parameters (LL, SSA, DH, CCA), their preoperative, postoperative and change values showed no statistical difference between the two groups (all P > 0.05). Neither screw breach nor decompression method revealed statistical association with this complication (both P > 0.05). Based on ROC curve, the optimal threshold of preoperative CFA was 0.76 cm 2 . At final follow-up, significant improvement in VAS (back and leg), JOA and ODI was observed in both groups compared with preoperative baseline (all P < 0.05), while no difference was found between the two groups (all P > 0.05). Preoperative contralateral foramen stenosis is the risk factor of contralateral radiculopathy following microendoscopy-assisted MIS-TLIF. If preoperative CFA at L4-5 level is not larger than 0.76 cm 2 , prophylactic measures, including both indirect and direct decompression of contralateral foramen, are recommended.

  6. Modulation of early cortical processing during divided attention to non-contiguous locations

    PubMed Central

    Frey, Hans-Peter; Schmid, Anita M.; Murphy, Jeremy W.; Molholm, Sophie; Lalor, Edmund C.; Foxe, John J.

    2015-01-01

    We often face the challenge of simultaneously attending to multiple non-contiguous regions of space. There is ongoing debate as to how spatial attention is divided under these situations. While for several years the predominant view was that humans could divide the attentional spotlight, several recent studies argue in favor of a unitary spotlight that rhythmically samples relevant locations. Here, this issue was addressed using high-density electrophysiology in concert with the multifocal m-sequence technique to examine visual evoked responses to multiple simultaneous streams of stimulation. Concurrently, we assayed the topographic distribution of alpha-band oscillatory mechanisms, a measure of attentional suppression. Participants performed a difficult detection task that required simultaneous attention to two stimuli in contiguous (undivided) or non-contiguous parts of space. In the undivided condition, the classical pattern of attentional modulation was observed, with increased amplitude of the early visual evoked response and increased alpha amplitude ipsilateral to the attended hemifield. For the divided condition, early visual responses to attended stimuli were also enhanced and the observed multifocal topographic distribution of alpha suppression was in line with the divided attention hypothesis. These results support the existence of divided attentional spotlights, providing evidence that the corresponding modulation occurs during initial sensory processing timeframes in hierarchically early visual regions and that suppressive mechanisms of visual attention selectively target distracter locations during divided spatial attention. PMID:24606564

  7. Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma.

    PubMed

    Wang, Mengyu; Pasquale, Louis R; Shen, Lucy Q; Boland, Michael V; Wellik, Sarah R; De Moraes, Carlos Gustavo; Myers, Jonathan S; Wang, Hui; Baniasadi, Neda; Li, Dian; Silva, Rafaella Nascimento E; Bex, Peter J; Elze, Tobias

    2018-03-01

    To develop a visual field (VF) feature model to predict the reversal of glaucoma hemifield test (GHT) results to within normal limits (WNL) after 2 consecutive outside normal limits (ONL) results. Retrospective cohort study. Visual fields of 44 503 eyes from 26 130 participants. Eyes with 3 or more consecutive reliable VFs measured with the Humphrey Field Analyzer (Swedish interactive threshold algorithm standard 24-2) were included. Eyes with ONL GHT results for the 2 baseline VFs were selected. We extracted 3 categories of VF features from the baseline tests: (1) VF global indices (mean deviation [MD] and pattern standard deviation), (2) mismatch between baseline VFs, and (3) VF loss patterns (archetypes). Logistic regression was applied to predict the GHT results reversal. Cross-validation was applied to evaluate the model on testing data by the area under the receiver operating characteristic curve (AUC). We ascertained clinical glaucoma status on a patient subset (n = 97) to determine the usefulness of our model. Predictive models for GHT results reversal using VF features. For the 16 604 eyes with 2 initial ONL results, the prevalence of a subsequent WNL result increased from 0.1% for MD < -12 dB to 13.8% for MD ≥-3 dB. Compared with models with VF global indices, the AUC of predictive models increased from 0.669 (MD ≥-3 dB) and 0.697 (-6 dB ≤ MD < -3 dB) to 0.770 and 0.820, respectively, by adding VF mismatch features and computationally derived VF archetypes (P < 0.001 for both). The GHT results reversal was associated with a large mismatch between baseline VFs. Moreover, the GHT results reversal was associated more with VF archetypes of nonglaucomatous loss, severe widespread loss, and lens rim artifacts. For a subset of 97 eyes, using our model to predict absence of glaucoma based on clinical evidence after 2 ONL results yielded significantly better prediction accuracy (87.7%; P < 0.001) than predicting GHT results reversal (68.8%) with a prescribed specificity 67.7%. Using VF features may predict the GHT results reversal to WNL after 2 consecutive ONL results. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  8. Do rats use shape to solve “shape discriminations”?

    PubMed Central

    Minini, Loredana; Jeffery, Kathryn J.

    2006-01-01

    Visual discrimination tasks are increasingly used to explore the neurobiology of vision in rodents, but it remains unclear how the animals solve these tasks: Do they process shapes holistically, or by using low-level features such as luminance and angle acuity? In the present study we found that when discriminating triangles from squares, rats did not use shape but instead relied on local luminance differences in the lower hemifield. A second experiment prevented this strategy by using stimuli—squares and rectangles—that varied in size and location, and for which the only constant predictor of reward was aspect ratio (ratio of height to width: a simple descriptor of “shape”). Rats eventually learned to use aspect ratio but only when no other discriminand was available, and performance remained very poor even at asymptote. These results suggest that although rats can process both dimensions simultaneously, they do not naturally solve shape discrimination tasks this way. This may reflect either a failure to visually process global shape information or a failure to discover shape as the discriminative stimulus in a simultaneous discrimination. Either way, our results suggest that simultaneous shape discrimination is not a good task for studies of visual perception in rodents. PMID:16705141

  9. Maintenance of relational information in working memory leads to suppression of the sensory cortex.

    PubMed

    Ikkai, Akiko; Blacker, Kara J; Lakshmanan, Balaji M; Ewen, Joshua B; Courtney, Susan M

    2014-10-15

    Working memory (WM) for sensory-based information about individual objects and their locations appears to involve interactions between lateral prefrontal and sensory cortexes. The mechanisms and representations for maintenance of more abstract, nonsensory information in WM are unknown, particularly whether such actively maintained information can become independent of the sensory information from which it was derived. Previous studies of WM for individual visual items found increased electroencephalogram (EEG) alpha (8-13 Hz) power over posterior electrode sites, which appears to correspond to the suppression of cortical areas that represent irrelevant sensory information. Here, we recorded EEG while participants performed a visual WM task that involved maintaining either concrete spatial coordinates or abstract relational information. Maintenance of relational information resulted in higher alpha power in posterior electrodes. Furthermore, lateralization of alpha power due to a covert shift of attention to one visual hemifield was marginally weaker during storage of relational information than during storage of concrete information. These results suggest that abstract relational information is maintained in WM differently from concrete, sensory representations and that during maintenance of abstract information, posterior sensory regions become task irrelevant and are thus suppressed. Copyright © 2014 the American Physiological Society.

  10. Visual short-term memory capacity for simple and complex objects.

    PubMed

    Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto

    2010-03-01

    Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not related to storage limitations of VSTM, per se. We used ERPs to track neuronal activity specifically related to retention in VSTM by measuring the sustained posterior contralateral negativity during a change detection task (which required detecting if an item was changed between a memory and a test array). The sustained posterior contralateral negativity, during the retention interval, was larger for complex objects than for simple objects, suggesting that neurons mediating VSTM needed to work harder to maintain more complex objects. This, in turn, is consistent with the view that VSTM capacity depends on complexity.

  11. Subcortical functional reorganization due to early blindness.

    PubMed

    Coullon, Gaelle S L; Jiang, Fang; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-04-01

    Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a "visual" subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses. Copyright © 2015 the American Physiological Society.

  12. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    PubMed Central

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad; Rostrup, Egill; Hoffmann, Michael B.; Ashina, Messoud

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks. PMID:25985078

  13. A Competition Model of Exogenous Orienting in 3.5-Month-Old Infants.

    ERIC Educational Resources Information Center

    Dannemiller, James L.

    1998-01-01

    Four experiments examined exogenous orienting in 3.5-month-olds. Found that sensitivity to a small moving bar was lower when most of the red bars were in the visual field contra-lateral to this probe. The distribution of color within the visual field biased attention, making it either more or less likely that the infant detected a moving stimulus.…

  14. The Association Between Visual Assessment of Quality of Movement and Three-Dimensional Analysis of Pelvis, Hip, and Knee Kinematics During a Lateral Step Down Test.

    PubMed

    Rabin, Alon; Portnoy, Sigal; Kozol, Zvi

    2016-11-01

    Rabin, A, Portnoy, S, and Kozol, Z. The association between visual assessment of quality of movement and three-dimensional analysis of pelvis, hip, and knee kinematics during a lateral step down test. J Strength Cond Res 30(11): 3204-3211, 2016-Altered movement patterns including contralateral pelvic drop, increased hip adduction, knee abduction, and external rotation have been previously implicated in several lower extremity pathologies. Although various methods exist for assessing movement patterns, real-time visual observation is the most readily available method. The purpose of this study was to determine whether differing visual ratings of trunk, pelvis, and knee alignment, as well as overall quality of movement, are associated with differences in 3-dimensional trunk, pelvis, hip, or knee kinematics during a lateral step down test. Trunk, pelvis, and knee alignment of 30 healthy participants performing the lateral step down were visually rated as "good" or "faulty" based on previously established criteria. An additional categorization of overall quality of movement as either good or moderate was performed based on the aggregate score of each individual rating criterion. Three-dimensional motion analysis of trunk, pelvis, hip, and knee kinematics was simultaneously performed. A faulty pelvis alignment displayed a greater peak contralateral pelvic drop (effect size [ES], 1.65; p < 0.01) and a greater peak hip adduction (ES: 1.04, p = 0.01) compared with participants with a good pelvis alignment. Participants with a faulty knee alignment displayed greater peak knee external rotation compared with participants with a good knee alignment (ES, 0.78; p = 0.02). Participants with an overall moderate quality of movement displayed increased peak contralateral pelvic drop (ES, 1.07; p = 0.01) and peak knee external rotation (ES, 0.72; p = 0.04) compared with those with an overall good quality of movement. Visual rating of quality of movement during a lateral step down test, as performed by an experienced physical therapist, is associated with differences in several kinematics previously implicated in various pathologies.

  15. Complex regional pain syndrome (CRPS) or continuous unilateral distal experimental pain stimulation in healthy subjects does not bias visual attention towards one hemifield.

    PubMed

    Filippopulos, Filipp M; Grafenstein, Jessica; Straube, Andreas; Eggert, Thomas

    2015-11-01

    In natural life pain automatically draws attention towards the painful body part suggesting that it interacts with different attentional mechanisms such as visual attention. Complex regional pain syndrome (CRPS) patients who typically report on chronic distally located pain of one extremity may suffer from so-called neglect-like symptoms, which have also been linked to attentional mechanisms. The purpose of the study was to further evaluate how continuous pain conditions influence visual attention. Saccade latencies were recorded in two experiments using a common visual attention paradigm whereby orientating saccades to cued or uncued lateral visual targets had to be performed. In the first experiment saccade latencies of healthy subjects were measured under two conditions: one in which continuous experimental pain stimulation was applied to the index finger to imitate a continuous pain situation, and one without pain stimulation. In the second experiment saccade latencies of patients suffering from CRPS were compared to controls. The results showed that neither the continuous experimental pain stimulation during the experiment nor the chronic pain in CRPS led to an unilateral increase of saccade latencies or to a unilateral increase of the cue effect on latency. The results show that unilateral, continuously applied pain stimuli or chronic pain have no or only very limited influence on visual attention. Differently from patients with visual neglect, patients with CRPS did not show strong side asymmetries of saccade latencies or of cue effects on saccade latencies. Thus, neglect-like clinical symptoms of CRPS patients do not involve the allocation of visual attention.

  16. Temporal Profile of Functional Visual Rehabilitative Outcomes Modulated by Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Plow, Ela B.; Obretenova, Souzana N.; Jackson, Mary Lou; Merabet, Lotfi B.

    2012-01-01

    Objectives We have previously reported that transcranial direct current stimulation (tDCS) delivered to the occipital cortex enhances visual functional recovery when combined with 3 months of computer-based rehabilitative training in patients with hemianopia. The principal objective of this study was to evaluate the temporal sequence of effects of tDCS on visual recovery as they appear over the course of training and across different indicators of visual function. Methods Primary objective outcome measures were i) shifts in visual field border and ii) stimulus detection accuracy within the affected hemifield. These were compared between patients randomized to either vision restoration therapy (VRT) combined with active tDCS or VRT paired with sham tDCS. Training comprised of 2 half hour sessions, 3 times a week for 3 months. Primary outcome measures were collected at baseline (pretest), monthly interim intervals, and at posttest (3 months). As secondary outcome measures, contrast sensitivity and reading performance were collected at pretest and posttest time-points only. Results Active tDCS combined with VRT accelerated the recovery of stimulus detection as between-group differences appeared within the first month of training. In contrast, a shift in the visual field border was only evident at posttest (after 3 months of training). TDCS did not affect contrast sensitivity or reading performance. Conclusions These results suggest that tDCS may differentially affect the magnitude and sequence of visual recovery in a manner that is task- specific to the type of visual rehabilitative training strategy employed. PMID:22376226

  17. Neurotoxic lesions of ventrolateral prefrontal cortex impair object-in-place scene memory

    PubMed Central

    Wilson, Charles R E; Gaffan, David; Mitchell, Anna S; Baxter, Mark G

    2007-01-01

    Disconnection of the frontal lobe from the inferotemporal cortex produces deficits in a number of cognitive tasks that require the application of memory-dependent rules to visual stimuli. The specific regions of frontal cortex that interact with the temporal lobe in performance of these tasks remain undefined. One capacity that is impaired by frontal–temporal disconnection is rapid learning of new object-in-place scene problems, in which visual discriminations between two small typographic characters are learned in the context of different visually complex scenes. In the present study, we examined whether neurotoxic lesions of ventrolateral prefrontal cortex in one hemisphere, combined with ablation of inferior temporal cortex in the contralateral hemisphere, would impair learning of new object-in-place scene problems. Male macaque monkeys learned 10 or 20 new object-in-place problems in each daily test session. Unilateral neurotoxic lesions of ventrolateral prefrontal cortex produced by multiple injections of a mixture of ibotenate and N-methyl-d-aspartate did not affect performance. However, when disconnection from inferotemporal cortex was completed by ablating this region contralateral to the neurotoxic prefrontal lesion, new learning was substantially impaired. Sham disconnection (injecting saline instead of neurotoxin contralateral to the inferotemporal lesion) did not affect performance. These findings support two conclusions: first, that the ventrolateral prefrontal cortex is a critical area within the frontal lobe for scene memory; and second, the effects of ablations of prefrontal cortex can be confidently attributed to the loss of cell bodies within the prefrontal cortex rather than to interruption of fibres of passage through the lesioned area. PMID:17445247

  18. Differences in neural responses to ipsilateral stimuli in wide-view fields between face- and house-selective areas

    PubMed Central

    Li, Ting; Niu, Yan; Xiang, Jie; Cheng, Junjie; Liu, Bo; Zhang, Hui; Yan, Tianyi; Kanazawa, Susumu; Wu, Jinglong

    2018-01-01

    Category-selective brain areas exhibit varying levels of neural activity to ipsilaterally presented stimuli. However, in face- and house-selective areas, the neural responses evoked by ipsilateral stimuli in the peripheral visual field remain unclear. In this study, we displayed face and house images using a wide-view visual presentation system while performing functional magnetic resonance imaging (fMRI). The face-selective areas (fusiform face area (FFA) and occipital face area (OFA)) exhibited intense neural responses to ipsilaterally presented images, whereas the house-selective areas (parahippocampal place area (PPA) and transverse occipital sulcus (TOS)) exhibited substantially smaller and even negative neural responses to the ipsilaterally presented images. We also found that the category preferences of the contralateral and ipsilateral neural responses were similar. Interestingly, the face- and house-selective areas exhibited neural responses to ipsilateral images that were smaller than the responses to the contralateral images. Multi-voxel pattern analysis (MVPA) was implemented to evaluate the difference between the contralateral and ipsilateral responses. The classification accuracies were much greater than those expected by chance. The classification accuracies in the FFA were smaller than those in the PPA and TOS. The closer eccentricities elicited greater classification accuracies in the PPA and TOS. We propose that these ipsilateral neural responses might be interpreted by interhemispheric communication through intrahemispheric connectivity of white matter connection and interhemispheric connectivity via the corpus callosum and occipital white matter connection. Furthermore, the PPA and TOS likely have weaker interhemispheric communication than the FFA and OFA, particularly in the peripheral visual field. PMID:29451872

  19. Nerve Fiber Layer Thickness and Characteristics Associated with Glaucoma in Community Living Older Adults: Prelude to a Screening Trial?

    PubMed

    Klein, Barbara E K; Johnson, Chris A; Meuer, Stacy M; Lee, Kyungmoo; Wahle, Andreas; Lee, Kristine E; Kulkarni, Amruta; Sonka, Milan; Abràmoff, Michael D; Klein, Ronald

    2017-04-01

    To examine the associations of nerve fiber layer (NFL) thickness with other ocular characteristics in older adults. Participants in the Beaver Dam Eye Study (2008-2010) underwent spectral domain optical coherence tomography (SD-OCT) scans of the optic nerve head, imaging of optic discs, frequency doubling technology (FDT) perimetry, measurement of intraocular pressure (IOP), and an interview concerning their history of glaucoma and use of drops to lower eye pressure. Self-reported histories of glaucoma and the use of drops to lower eye pressure were obtained at follow-up examinations (2014-2016). NFL thickness measured on OCTs varied by location around the optic nerve. Age was associated with mean NFL thickness. Mean NFL was thinnest in eyes with larger cup/disc (C/D) ratios. Horizontal hemifield defects or other optic nerve-field defects were associated with thinner NFL. NFL in persons who reported taking eye drops for high intraocular pressure was thinner compared to those not taking drops. After accounting for the presence of high intraocular pressure, large C/D ratios or hemifield defects, eyes with thinner NFL in the arcades were more likely (OR = 2.3 for 30 micron thinner NFL, p = 0.04) to have incident glaucoma at examination 5 years later. Retinal NFL thickness was associated with a new history of self-reported glaucoma 5 years later. A trial testing the usefulness of NFL as part of a screening battery for predicting glaucoma in those previously undiagnosed might lead to improved case finding and, ultimately, to diminishing the risk of visual field loss.

  20. Initial Arcuate Defects within the Central 10 Degrees in Glaucoma

    PubMed Central

    Raza, Ali S.; de Moraes, Carlos Gustavo V.; Odel, Jeffrey G.; Greenstein, Vivienne C.; Liebmann, Jeffrey M.; Ritch, Robert

    2011-01-01

    Purpose. To better understand the relationship between the spatial patterns of functional (visual field [VF] loss) and structural (axon loss) abnormalities in patients with glaucomatous arcuate defects largely confined to the central 10° on achromatic perimetry. Methods. Eleven eyes (9 patients) with arcuate glaucomatous VF defects largely confined to the macula were selected from a larger group of patients with both 10-2 and 24-2 VF tests. Eyes were included if their 10-2 VF had an arcuate defect and if the 24-2 test was normal outside the central 10° (i.e., did not have a cluster of three contiguous points within a hemifield). For the structural analysis, plots of retinal nerve fiber layer (RNFL) thickness of the macula were obtained with frequency-domain optical coherence tomography (fdOCT). The optic disc locations of the RNFL defects were identified on peripapillary fdOCT scans. Results. The VF arcuate defects extended to within 1° of fixation on the 10-2 test and were present in the superior hemifield in 10 of the 11 eyes. The arcuate RNFL damage, seen in the macular fdOCT scans of all 11 eyes, involved the temporal and inferior temporal portions of the disc on the peripapillary scans. Conclusions. Glaucomatous arcuate defects of the macula's RNFL meet the disc temporal to the peak of the main arcuate bundles and produce a range of macular VF defects from clear arcuate scotomas to a papillofoveal horizontal step (“pistol barrel scotoma”). If RGC displacement is taken into consideration, the RNFL and VF defects can be compared directly. PMID:20881293

  1. Peripheral Prism Glasses: Effects of Dominance, Suppression and Background

    PubMed Central

    Ross, Nicole C.; Bowers, Alex R.; Optom, M.C.; Peli, Eli

    2012-01-01

    Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) place different images on corresponding peripheral retinal points, a rivalrous situation in which local suppression of the prism image could occur and thus limit device functionality. Detection with peripheral prisms has primarily been evaluated using conventional perimetry where binocular rivalry is unlikely to occur. We quantified detection over more visually complex backgrounds and examined the effects of ocular dominance. Methods Detection rates of 8 participants with HH or quadranopia and normal binocularity wearing unilateral peripheral prism glasses were determined for static perimetry targets briefly presented in the prism expansion area (in the blind hemifield) and the seeing hemifield, under monocular and binocular viewing, over uniform gray and more complex patterned backgrounds. Results Participants with normal binocularity had mixed sensory ocular dominance, demonstrated no difference in detection rates when prisms were fitted on the side of the HH or the opposite side (p>0.2), and had detection rates in the expansion area that were not different for monocular and binocular viewing over both backgrounds (p>0.4). However, two participants with abnormal binocularity and strong ocular dominance demonstrated reduced detection in the expansion area when prisms were fitted in front of the non-dominant eye. Conclusions We found little evidence of local suppression of the peripheral prism image for HH patients with normal binocularity. However, in cases of strong ocular dominance, consideration should be given to fitting prisms before the dominant eye. Although these results are promising, further testing in more realistic conditions including image motion is needed. PMID:22885783

  2. Functional interplay of top-down attention with affective codes during visual short-term memory maintenance.

    PubMed

    Kuo, Bo-Cheng; Lin, Szu-Hung; Yeh, Yei-Yu

    2018-06-01

    Visual short-term memory (VSTM) allows individuals to briefly maintain information over time for guiding behaviours. Because the contents of VSTM can be neutral or emotional, top-down influence in VSTM may vary with the affective codes of maintained representations. Here we investigated the neural mechanisms underlying the functional interplay of top-down attention with affective codes in VSTM using functional magnetic resonance imaging. Participants were instructed to remember both threatening and neutral objects in a cued VSTM task. Retrospective cues (retro-cues) were presented to direct attention to the hemifield of a threatening object (i.e., cue-to-threat) or a neutral object (i.e., cue-to-neutral) during VSTM maintenance. We showed stronger activity in the ventral occipitotemporal cortex and amygdala for attending threatening relative to neutral representations. Using multivoxel pattern analysis, we found better classification performance for cue-to-threat versus cue-to-neutral objects in early visual areas and in the amygdala. Importantly, retro-cues modulated the strength of functional connectivity between the frontoparietal and early visual areas. Activity in the frontoparietal areas became strongly correlated with the activity in V3a-V4 coding the threatening representations instructed to be relevant for the task. Together, these findings provide the first demonstration of top-down modulation of activation patterns in early visual areas and functional connectivity between the frontoparietal network and early visual areas for regulating threatening representations during VSTM maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Split-brain reveals separate but equal self-recognition in the two cerebral hemispheres.

    PubMed

    Uddin, Lucina Q; Rayman, Jan; Zaidel, Eran

    2005-09-01

    To assess the ability of the disconnected cerebral hemispheres to recognize images of the self, a split-brain patient (an individual who underwent complete cerebral commissurotomy to relieve intractable epilepsy) was tested using morphed self-face images presented to one visual hemifield (projecting to one hemisphere) at a time while making "self/other" judgments. The performance of the right and left hemispheres of this patient as assessed by a signal detection method was not significantly different, though a measure of bias did reveal hemispheric differences. The right and left hemispheres of this patient independently and equally possessed the ability to self-recognize, but only the right hemisphere could successfully recognize familiar others. This supports a modular concept of self-recognition and other-recognition, separately present in each cerebral hemisphere.

  4. The subtlety of simple eyes: the tuning of visual fields to perceptual challenges in birds

    PubMed Central

    Martin, Graham R.

    2014-01-01

    Birds show interspecific variation both in the size of the fields of individual eyes and in the ways that these fields are brought together to produce the total visual field. Variation is found in the dimensions of all main parameters: binocular region, cyclopean field and blind areas. There is a phylogenetic signal with respect to maximum width of the binocular field in that passerine species have significantly broader field widths than non-passerines; broadest fields are found among crows (Corvidae). Among non-passerines, visual fields show considerable variation within families and even within some genera. It is argued that (i) the main drivers of differences in visual fields are associated with perceptual challenges that arise through different modes of foraging, and (ii) the primary function of binocularity in birds lies in the control of bill position rather than in the control of locomotion. The informational function of binocular vision does not lie in binocularity per se (two eyes receiving slightly different information simultaneously about the same objects from which higher-order depth information is extracted), but in the contralateral projection of the visual field of each eye. Contralateral projection ensures that each eye receives information from a symmetrically expanding optic flow-field from which direction of travel and time to contact targets can be extracted, particularly with respect to the control of bill position. PMID:24395967

  5. Visual cortex activation in kinesthetic guidance of reaching.

    PubMed

    Darling, W G; Seitz, R J; Peltier, S; Tellmann, L; Butler, A J

    2007-06-01

    The purpose of this research was to determine the cortical circuit involved in encoding and controlling kinesthetically guided reaching movements. We used (15)O-butanol positron emission tomography in ten blindfolded able-bodied volunteers in a factorial experiment in which arm (left/right) used to encode target location and to reach back to the remembered location and hemispace of target location (left/right side of midsagittal plane) varied systematically. During encoding of a target the experimenter guided the hand to touch the index fingertip to an external target and then returned the hand to the start location. After a short delay the subject voluntarily moved the same hand back to the remembered target location. SPM99 analysis of the PET data contrasting left versus right hand reaching showed increased (P < 0.05, corrected) neural activity in the sensorimotor cortex, premotor cortex and posterior parietal lobule (PPL) contralateral to the moving hand. Additional neural activation was observed in prefrontal cortex and visual association areas of occipital and parietal lobes contralateral and ipsilateral to the reaching hand. There was no statistically significant effect of target location in left versus right hemispace nor was there an interaction of hand and hemispace effects. Structural equation modeling showed that parietal lobe visual association areas contributed to kinesthetic processing by both hands but occipital lobe visual areas contributed only during dominant hand kinesthetic processing. This visual processing may also involve visualization of kinesthetically guided target location and use of the same network employed to guide reaches to visual targets when reaching to kinesthetic targets. The present work clearly demonstrates a network for kinesthetic processing that includes higher visual processing areas in the PPL for both upper limbs and processing in occipital lobe visual areas for the dominant limb.

  6. Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.

    PubMed

    Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro

    2012-07-30

    Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Retinal projections in the electric catfish (Malapterurus electricus).

    PubMed

    Ebbesson, S O; O'Donnel, D

    1980-01-01

    The poorly developed visual system of the electric catfish was studied with silver-degeneration methods. Retinal projections were entirely contralateral to the hypothalamic optic nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, the pretectal nuclei including the cortical nucleus, and the optic tectum. The small size and lack of differentiation of the visual system in the electric catfish suggest a relatively small role for this sensory system in this species.

  8. Electrophysiological evidence that top-down knowledge controls working memory processing for subsequent visual search.

    PubMed

    Kawashima, Tomoya; Matsumoto, Eriko

    2016-03-23

    Items in working memory guide visual attention toward a memory-matching object. Recent studies have shown that when searching for an object this attentional guidance can be modulated by knowing the probability that the target will match an item in working memory. Here, we recorded the P3 and contralateral delay activity to investigate how top-down knowledge controls the processing of working memory items. Participants performed memory task (recognition only) and memory-or-search task (recognition or visual search) in which they were asked to maintain two colored oriented bars in working memory. For visual search, we manipulated the probability that target had the same color as memorized items (0, 50, or 100%). Participants knew the probabilities before the task. Target detection in 100% match condition was faster than that in 50% match condition, indicating that participants used their knowledge of the probabilities. We found that the P3 amplitude in 100% condition was larger than in other conditions and that contralateral delay activity amplitude did not vary across conditions. These results suggest that more attention was allocated to the memory items when observers knew in advance that their color would likely match a target. This led to better search performance despite using qualitatively equal working memory representations.

  9. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.

    PubMed

    Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.

  10. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate

    PubMed Central

    van de Ven, Vincent G.; Tong, Frank; Sack, Alexander T.

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. PMID:28384347

  11. The effects of neck flexion on cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in related sensory cortices

    PubMed Central

    2012-01-01

    Background A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices. Methods Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy. Results Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position. Conclusions Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections. PMID:23199306

  12. Multifocal Visual Evoked Potential in Eyes With Temporal Hemianopia From Chiasmal Compression: Correlation With Standard Automated Perimetry and OCT Findings.

    PubMed

    Sousa, Rafael M; Oyamada, Maria K; Cunha, Leonardo P; Monteiro, Mário L R

    2017-09-01

    To verify whether multifocal visual evoked potential (mfVEP) can differentiate eyes with temporal hemianopia due to chiasmal compression from healthy controls. To assess the relationship between mfVEP, standard automated perimetry (SAP), and Fourier domain-optical coherence tomography (FD-OCT) macular and peripapillary retinal nerve fiber layer (RNFL) thickness measurements. Twenty-seven eyes with permanent temporal visual field (VF) defects from chiasmal compression on SAP and 43 eyes of healthy controls were submitted to mfVEP and FD-OCT scanning. Multifocal visual evoked potential was elicited using a stimulus pattern of 60 sectors and the responses were averaged for the four quadrants and two hemifields. Optical coherence tomography macular measurements were averaged in quadrants and halves, while peripapillary RNFL thickness was averaged in four sectors around the disc. Visual field loss was estimated in four quadrants and each half of the 24-2 strategy test points. Multifocal visual evoked potential measurements in the two groups were compared using generalized estimated equations, and the correlations between mfVEP, VF, and OCT findings were quantified. Multifocal visual evoked potential-measured temporal P1 and N2 amplitudes were significantly smaller in patients than in controls. No significant difference in amplitude was observed for nasal parameters. A significant correlation was found between mfVEP amplitudes and temporal VF loss, and between mfVEP amplitudes and the corresponding OCT-measured macular and RNFL thickness parameters. Multifocal visual evoked potential amplitude parameters were able to differentiate eyes with temporal hemianopia from controls and were significantly correlated with VF and OCT findings, suggesting mfVEP is a useful tool for the detection of visual abnormalities in patients with chiasmal compression.

  13. Blindsight and Unconscious Vision: What They Teach Us about the Human Visual System

    PubMed Central

    Ajina, Sara; Bridge, Holly

    2017-01-01

    Damage to the primary visual cortex removes the major input from the eyes to the brain, causing significant visual loss as patients are unable to perceive the side of the world contralateral to the damage. Some patients, however, retain the ability to detect visual information within this blind region; this is known as blindsight. By studying the visual pathways that underlie this residual vision in patients, we can uncover additional aspects of the human visual system that likely contribute to normal visual function but cannot be revealed under physiological conditions. In this review, we discuss the residual abilities and neural activity that have been described in blindsight and the implications of these findings for understanding the intact system. PMID:27777337

  14. The crowding factor method applied to parafoveal vision

    PubMed Central

    Ghahghaei, Saeideh; Walker, Laura

    2016-01-01

    Crowding increases with eccentricity and is most readily observed in the periphery. During natural, active vision, however, central vision plays an important role. Measures of critical distance to estimate crowding are difficult in central vision, as these distances are small. Any overlap of flankers with the target may create an overlay masking confound. The crowding factor method avoids this issue by simultaneously modulating target size and flanker distance and using a ratio to compare crowded to uncrowded conditions. This method was developed and applied in the periphery (Petrov & Meleshkevich, 2011b). In this work, we apply the method to characterize crowding in parafoveal vision (<3.5 visual degrees) with spatial uncertainty. We find that eccentricity and hemifield have less impact on crowding than in the periphery, yet radial/tangential asymmetries are clearly preserved. There are considerable idiosyncratic differences observed between participants. The crowding factor method provides a powerful tool for examining crowding in central and peripheral vision, which will be useful in future studies that seek to understand visual processing under natural, active viewing conditions. PMID:27690170

  15. Lateralization of spatial rather than temporal attention underlies the left hemifield advantage in rapid serial visual presentation.

    PubMed

    Asanowicz, Dariusz; Kruse, Lena; Śmigasiewicz, Kamila; Verleger, Rolf

    2017-11-01

    In bilateral rapid serial visual presentation (RSVP), the second of two targets, T1 and T2, is better identified in the left visual field (LVF) than in the right visual field (RVF). This LVF advantage may reflect hemispheric asymmetry in temporal attention or/and in spatial orienting of attention. Participants performed two tasks: the "standard" bilateral RSVP task (Exp.1) and its unilateral variant (Exp.1 & 2). In the bilateral task, spatial location was uncertain, thus target identification involved stimulus-driven spatial orienting. In the unilateral task, the targets were presented block-wise in the LVF or RVF only, such that no spatial orienting was needed for target identification. Temporal attention was manipulated in both tasks by varying the T1-T2 lag. The results showed that the LVF advantage disappeared when involvement of stimulus-driven spatial orienting was eliminated, whereas the manipulation of temporal attention had no effect on the asymmetry. In conclusion, the results do not support the hypothesis of hemispheric asymmetry in temporal attention, and provide further evidence that the LVF advantage reflects right hemisphere predominance in stimulus-driven orienting of spatial attention. These conclusions fit evidence that temporal attention is implemented by bilateral parietal areas and spatial attention by the right-lateralized ventral frontoparietal network. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Comparison of Matrix Frequency-Doubling Technology (FDT) Perimetry with the SWEDISH Interactive Thresholding Algorithm (SITA) Standard Automated Perimetry (SAP) in Mild Glaucoma.

    PubMed

    Doozandeh, Azadeh; Irandoost, Farnoosh; Mirzajani, Ali; Yazdani, Shahin; Pakravan, Mohammad; Esfandiari, Hamed

    2017-01-01

    This study aimed to compare second-generation frequency-doubling technology (FDT) perimetry with standard automated perimetry (SAP) in mild glaucoma. Forty-seven eyes of 47 participants who had mild visual field defect by SAP were included in this study. All participants were examined using SITA 24-2 (SITA-SAP) and matrix 24-2 (Matrix-FDT). The correlations of global indices and the number of defects on pattern deviation (PD) plots were determined. Agreement between two sets regarding the stage of visual field damage was assessed. Pearson's correlation, intra-cluster comparison, paired t-test, and 95% limit of agreement were calculated. Although there was no significant difference between global indices, the agreement between the two devices regarding the global indices was weak (the limit of agreement for mean deviation was -6.08 to 6.08 and that for pattern standard deviation was -4.42 to 3.42). The agreement between SITA-SAP and Matrix-FDT regarding the Glaucoma Hemifield Test (GHT) and the number of defective points in each quadrant and staging of the visual field damage was also weak. Because the correlation between SITA-SAP and Matrix-FDT regarding global indices, GHT, number of defective points, and stage of the visual field damage in mild glaucoma is weak, Matrix-FDT cannot be used interchangeably with SITA-SAP in the early stages of glaucoma.

  17. Tactile perceptual learning: learning curves and transfer to the contralateral finger.

    PubMed

    Kaas, Amanda L; van de Ven, Vincent; Reithler, Joel; Goebel, Rainer

    2013-02-01

    Tactile perceptual learning has been shown to improve performance on tactile tasks, but there is no agreement about the extent of transfer to untrained skin locations. The lack of such transfer is often seen as a behavioral index of the contribution of early somatosensory brain regions. Moreover, the time course of improvements has never been described explicitly. Sixteen subjects were trained on the Ludvigh task (a tactile vernier task) on four subsequent days. On the fifth day, transfer of learning to the non-trained contralateral hand was tested. In five subjects, we explored to what extent training effects were retained approximately 1.5 years after the final training session, expecting to find long-term retention of learning effects after training. Results showed that tactile perceptual learning mainly occurred offline, between sessions. Training effects did not transfer initially, but became fully available to the untrained contralateral hand after a few additional training runs. After 1.5 years, training effects were not fully washed out and could be recuperated within a single training session. Interpreted in the light of theories of visual perceptual learning, these results suggest that tactile perceptual learning is not fundamentally different from visual perceptual learning, but might proceed at a slower pace due to procedural and task differences, thus explaining the apparent divergence in the amount of transfer and long-term retention.

  18. Predictive Formula for Refraction of Autologous Lenticule Implantation for Hyperopia Correction.

    PubMed

    Li, Meng; Li, Meiyan; Sun, Ling; Ni, Katherine; Zhou, Xingtao

    2017-12-01

    To create a formula to predict refractive correction of autologous lenticule implantation for correction of hyperopia (with myopia in one eye and hyperopia in the contralateral eye). In this prospective study, 10 consecutive patients (20 eyes) who had myopia in one eye and hyperopia in the contralateral eye were included. The preoperative spherical equivalent was -3.31 ± 1.73 diopters (D) for the myopic eyes and +4.46 ± 1.97 D for the hyperopic eyes. For each patient, the myopic eye was treated with small incision lenticule extraction and the lenticule was subsequently implanted into the contralateral hyperopic eye. The average length of follow-up was 17 months. All of the operations were successful without complications. At the last visit, the efficacy index (postoperative uncorrected distance visual acuity/preoperative corrected distance visual acuity [CDVA]) of the hyperopic eyes was 0.94 ± 0.35 and the safety index (postoperative CDVA/preoperative CDVA) was 1.36 ± 0.38. No eyes lost any lines of visual acuity. Six of 10 (60%) of the implanted eyes were within ±1.00 D of the intended refractive target. A predictive formula was derived: Lenticule implantation achieved correction (D) (LAC) = 1.224 Lenticule refractive power (D) (LRP) - 0.063 (R 2 =0.92, P < .001). On corneal topography, there was a significant increase in the corneal anterior surface keratometry value postoperatively, whereas the posterior surface keratometry value remained stable (P > .05). Autologous lenticule implantation could provide a reliable method of correcting hyperopia. The refractive correction formula may require further verification and adjustment. [J Refract Surg. 2017;33(12):827-833.]. Copyright 2017, SLACK Incorporated.

  19. Modulation of early cortical processing during divided attention to non-contiguous locations.

    PubMed

    Frey, Hans-Peter; Schmid, Anita M; Murphy, Jeremy W; Molholm, Sophie; Lalor, Edmund C; Foxe, John J

    2014-05-01

    We often face the challenge of simultaneously attending to multiple non-contiguous regions of space. There is ongoing debate as to how spatial attention is divided under these situations. Whereas, for several years, the predominant view was that humans could divide the attentional spotlight, several recent studies argue in favor of a unitary spotlight that rhythmically samples relevant locations. Here, this issue was addressed by the use of high-density electrophysiology in concert with the multifocal m-sequence technique to examine visual evoked responses to multiple simultaneous streams of stimulation. Concurrently, we assayed the topographic distribution of alpha-band oscillatory mechanisms, a measure of attentional suppression. Participants performed a difficult detection task that required simultaneous attention to two stimuli in contiguous (undivided) or non-contiguous parts of space. In the undivided condition, the classic pattern of attentional modulation was observed, with increased amplitude of the early visual evoked response and increased alpha amplitude ipsilateral to the attended hemifield. For the divided condition, early visual responses to attended stimuli were also enhanced, and the observed multifocal topographic distribution of alpha suppression was in line with the divided attention hypothesis. These results support the existence of divided attentional spotlights, providing evidence that the corresponding modulation occurs during initial sensory processing time-frames in hierarchically early visual regions, and that suppressive mechanisms of visual attention selectively target distracter locations during divided spatial attention. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Custom vs conventional PRK: a prospective, randomized, contralateral eye comparison of postoperative visual function.

    PubMed

    Mifflin, Mark D; Hatch, Bryndon B; Sikder, Shameema; Bell, James; Kurz, Christopher J; Moshirfar, Majid

    2012-02-01

    To determine whether VISX S4 (VISX Inc) custom photorefractive keratectomy (PRK) results in better visual outcomes than VISX S4 conventional PRK. Photorefractive keratectomy was performed on 80 eyes from 40 patients in this randomized, prospective, contralateral eye study. Dominant eyes were randomized to one group with the fellow eye receiving the alternate treatment. Primary outcome measures included uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), contrast sensitivity, and root-mean-square (RMS) higher order aberrations. Mean UDVA was -0.023±0.099 (20/19) in the custom group and -0.044±0.080 (20/18) in the conventional group 6 months after surgery (P=.293). Mean CDVA was -0.073±0.067 (20/17) in the custom group and -0.079±0.071 (20/17) in the conventional group 6 months after surgery (P=.659). Total higher order aberration RMS and spherical aberration increased in both groups compared to preoperative values (P<.05). Coma increased in the conventional group (P<.05) whereas it was similar to preoperative values in the custom group. No significant differences were noted in induction of trefoil. Custom and conventional PRK were shown to be safe and effective with excellent visual acuity and contrast sensitivity performance at 6 and 12 months. Conventional PRK induced more coma than custom PRK; however, this did not seem to correlate with clinical outcomes. Copyright 2012, SLACK Incorporated.

  1. Imaging 'top-down' mobilization of visual information: a case study in a posterior split-brain patient.

    PubMed

    Naccache, Lionel; Sportiche, Sarah; Strauss, Mélanie; El Karoui, Imen; Sitt, Jacobo; Cohen, Laurent

    2014-01-01

    During visual perception, automatic bottom-up and controlled top-down processes occur simultaneously and interact in a complex way, making them difficult to isolate and characterize. In rare neurological conditions, such a dissociation can be achieved more easily. In the present work, we studied a patient (AC) with a posterior lesion of the corpus callosum (CC), using a combination of behavioural, structural MRI and high-density scalp EEG measures. Given the complete disruption of the posterior half of the CC, we speculated that inter-hemispheric transfer of visual information was only possible through top-down mobilization across the preserved anterior segment of the CC. We designed a matching-to-sample visual task during which this patient was randomly presented with two successive numerical targets (T1 and T2) flashed with either a short or a long stimulus-onset asynchrony (SOA), each presented within one visual hemifield (HF). Intra-hemispheric processing of visual stimuli was essentially preserved. In sharp contrast, patient's performance was massively impaired during inter-HFs trials with a short-SOA, confirming the lack of fast inter-hemispheric transfer. Crucially, patient AC spontaneously improved his performance in inter-HFs trials with a long-SOA. This behavioral improvement was correlated with a mid-frontal ERP effect occurring during the T1-T2 interval, concomitant with an increase of functional connectivity of this region with distant areas including occipital regions. These results put to light a slow, non-automatic, and frontally mediated route of inter-hemispheric transfer dependent on top-down control. © 2013 Published by Elsevier Ltd.

  2. Longitudinal and cross-sectional analyses of visual field progression in participants of the Ocular Hypertension Treatment Study.

    PubMed

    Artes, Paul H; Chauhan, Balwantray C; Keltner, John L; Cello, Kim E; Johnson, Chris A; Anderson, Douglas R; Gordon, Mae O; Kass, Michael A

    2010-12-01

    To assess agreement between longitudinal and cross-sectional analyses for determining visual field progression in data from the Ocular Hypertension Treatment Study. Visual field data from 3088 eyes of 1570 participants (median follow-up, 7 years) were analyzed. Longitudinal analyses were performed using change probability with total and pattern deviation, and cross-sectional analyses were performed using the glaucoma hemifield test, corrected pattern standard deviation, and mean deviation. The rates of mean deviation and general height change were compared to estimate the degree of diffuse loss in emerging glaucoma. Agreement on progression in longitudinal and cross-sectional analyses ranged from 50% to 61% and remained nearly constant across a wide range of criteria. In contrast, agreement on absence of progression ranged from 97.0% to 99.7%, being highest for the stricter criteria. Analyses of pattern deviation were more conservative than analyses of total deviation, with a 3 to 5 times lesser incidence of progression. Most participants developing field loss had both diffuse and focal changes. Despite considerable overall agreement, 40% to 50% of eyes identified as having progressed with either longitudinal or cross-sectional analyses were identified with only one of the analyses. Because diffuse change is part of early glaucomatous damage, pattern deviation analyses may underestimate progression in patients with ocular hypertension.

  3. Visually induced analgesia in a deep tissue experimental pain model: A randomised crossover experiment.

    PubMed

    van Selm, M J; Gibson, W I; Travers, M J; Moseley, G L; Hince, D; Wand, B M

    2018-04-20

    Visualizing one's own painful body part appears to have an effect on reported pain intensity. Furthermore, it seems that manipulating the size of the viewed image can determine the direction and extent of this phenomenon. When visual distortion has been applied to clinical populations, the analgesic effects have been in opposition to those observed in some experimental pain models. To help resolve this problem, we explored the effect of visualisation and magnification of the visual image on reported pain using a delayed onset muscle soreness (DOMS) pain model. We induced DOMS in the quadriceps of 20 healthy volunteers. Forty-eight hours later, participants performed a series of painful contractions of the DOMS-affected muscle under four randomised conditions: (1) Viewing the injured thigh; (2) Viewing the contralateral thigh; (3) Viewing a neutral object; and (4) Viewing the injured thigh through magnifying glasses. For each condition, participants rated their pain intensity during a series of painful contractions. We observed that direct visualisation of the injured thigh had no effect on pain intensity when compared to viewing the contralateral thigh or neutral object. However, magnification of the DOMS-affected leg during the performance of painful contractions caused participants to report more pain than when viewing the injured thigh normally. These results further demonstrate that the effect of visualisation varies between different pain conditions. These results may have implications for the integration of visual feedback into clinical practice. We present delayed onset muscle soreness as a model for exploring visually induced analgesia. Our findings suggest that this phenomenon is expressed differently in exogenous and endogenous experimental pain models. Further exploration may offer a potential pathway for the integration of visual analgesia into the management of clinical pain. © 2018 European Pain Federation - EFIC®.

  4. Visual Working Memory Capacity Can Be Increased by Training on Distractor Filtering Efficiency.

    PubMed

    Li, Cui-Hong; He, Xu; Wang, Yu-Juan; Hu, Zhe; Guo, Chun-Yan

    2017-01-01

    It is generally considered that working memory (WM) capacity is limited and that WM capacity affects cognitive processes. Distractor filtering efficiency has been suggested to be an important factor in determining the visual working memory (VWM) capacity of individuals. In the present study, we investigated whether training in visual filtering efficiency (FE) could improve VWM capacity, as measured by performance on the change detection task (CDT) and changes of contralateral delay activity (CDA) (contralateral delay activity) of different conditions, and evaluated the transfer effect of visual FE training on verbal WM and fluid intelligence, as indexed by performance on the verbal WM span task and Raven's Standard Progressive Matrices (RSPM) test, respectively. Participants were divided into high- and low-capacity groups based on their performance in a CDT designed to test VWM capacity, and then the low-capacity individuals received 20 days of FE training. The training significantly improved the group's performance in the CDT, and their CDA models of different conditions became more similar with high capacity group, and the effect generalized to improve verbal WM span. These gains were maintained at a 3-month follow-up test. Participants' RSPM scores were not changed by the training. These findings support the notion that WM capacity is determined, at least in part, by distractor FE and can be enhanced through training.

  5. Ten-m3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway

    PubMed Central

    Dharmaratne, Nuwan; Glendining, Kelly A.; Young, Timothy R.; Tran, Heidi; Sawatari, Atomu; Leamey, Catherine A.

    2012-01-01

    Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and contralateral axons to intrinsic guidance cues. Further, we show that Ten-m3 plays a critical role in this process and is particularly important for the mapping of the ipsilateral retinocollicular pathway. PMID:23028443

  6. [Neural correlates of priming in vision: evidence from neuropsychology and neuroimaging].

    PubMed

    Kristjánsson, Arni

    2005-04-01

    When we look around us, we are overall more likely to notice objects that we have recently looked at; an effect known as priming. For example, when the color or shape of a visual search target is repeated, observers find the target faster than otherwise. Here I summarize recent research undertaken to uncover the temporary changes in brain activity that accompany these priming effects. In light of the fact that priming seems to have a large effect on how attention is allocated, we investigated priming effects in a visual search task on patients suffering from the neurological disorder "hemispatial neglect" in which patients typically fail to notice display items in one of their visual hemifields. Priming of target color was relatively normal for these patients, while priming of target location seemed to require awareness of the briefly presented visual search target. An experiment with functional magnetic resonance imaging of normal observers revealed that both color and location priming had a strong modulatory influence on attentional mechanisms of the frontal and parietal cortex. Color priming was also correlated with changes in activity in visual cortex as well as color processing areas in the temporal lobe. Location priming was correlated with changes in activity near the temporo- parietal junction and lateral inferior frontal cortex, areas that have been connected with attentional capture; which ties well with our finding of deficits of location priming for the neglect patients who indeed have lesions in the temporo-parietal junction. Overall, the results confirm the tight coupling of visual attention and priming in vision, and also that the visual areas of the brain show some modulation of activity as priming develops.

  7. Ipsilateral visual illusion after unilateral posterior cerebral artery infarction: a report of two cases.

    PubMed

    Hong, Yoon Hee; Lim, Tae-Sung; Yong, Suk Woo; Moon, So Young

    2010-08-15

    In cases of unilateral posterior cerebral artery (PCA) infarction, abnormal visual perception in the ipsilateral visual field, which is usually believed to be intact, is not met frequently and may confuse doctors during evaluation. Recently, we observed two patients who presented with contralateral hemianopsia accompanied by ipsilateral visual illusions after acute unilateral PCA infarctions. Their visual illusion was characterized by zooming in, macropsia or micropsia. These symptoms appeared to be related to deficits in size constancy. Lesions of both patients commonly involved the ipsilateral forceps major. The consistent presentation observed in these two patients suggests that dominance of size constancy can be located in the left hemisphere in some individuals. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Cognitive rehabilitation with right hemifield eye-patching for patients with sub-acute stroke and visuo-spatial neglect: a randomized controlled trial.

    PubMed

    Aparicio-López, Celeste; García-Molina, Alberto; García-Fernández, Juan; Lopez-Blazquez, Raquel; Enseñat-Cantallops, Antonia; Sánchez-Carrión, Rocío; Muriel, Vega; Tormos, Jose María; Roig-Rovira, Teresa

    2015-01-01

    To assess whether, following a right-hemisphere stroke, the combined administration of computer-based cognitive rehabilitation and right hemifield eye-patching in patients with visuo-spatial neglect is more effective than computer-based cognitive rehabilitation alone. Twelve patients were randomized into two treatment groups: a single treatment group (n = 7) and a combination treatment group (n = 5). In both cases, the treatment consisted of a mean number of 15 sessions, each lasting 1 hour. Visuo-spatial neglect was assessed using a specific exploration protocol (Bell Cancellation Test, Figure Copying of Odgen, Line Bisection, Baking Tray Task and Reading Task). The functional effects of the treatment were assessed using the Catherine Bergego Scale. Significant between-group differences were observed when comparing the pre- and post-treatment scores for the Reading Task. No differences were observed in either group in the Catherine Bergego Scale administered at baseline and at the final intervention. The results obtained do not allow one to conclude that the combination treatment with cognitive rehabilitation and right hemifield eye-patching is more effective than cognitive rehabilitation alone. Although partial improvement in the performance of neuropsychological tests was observed, this improvement is not present at functional level.

  9. The Anatomical and Functional Organization of the Human Visual Pulvinar

    PubMed Central

    Pinsk, Mark A.; Kastner, Sabine

    2015-01-01

    The pulvinar is the largest nucleus in the primate thalamus and contains extensive, reciprocal connections with visual cortex. Although the anatomical and functional organization of the pulvinar has been extensively studied in old and new world monkeys, little is known about the organization of the human pulvinar. Using high-resolution functional magnetic resonance imaging at 3 T, we identified two visual field maps within the ventral pulvinar, referred to as vPul1 and vPul2. Both maps contain an inversion of contralateral visual space with the upper visual field represented ventrally and the lower visual field represented dorsally. vPul1 and vPul2 border each other at the vertical meridian and share a representation of foveal space with iso-eccentricity lines extending across areal borders. Additional, coarse representations of contralateral visual space were identified within ventral medial and dorsal lateral portions of the pulvinar. Connectivity analyses on functional and diffusion imaging data revealed a strong distinction in thalamocortical connectivity between the dorsal and ventral pulvinar. The two maps in the ventral pulvinar were most strongly connected with early and extrastriate visual areas. Given the shared eccentricity representation and similarity in cortical connectivity, we propose that these two maps form a distinct visual field map cluster and perform related functions. The dorsal pulvinar was most strongly connected with parietal and frontal areas. The functional and anatomical organization observed within the human pulvinar was similar to the organization of the pulvinar in other primate species. SIGNIFICANCE STATEMENT The anatomical organization and basic response properties of the visual pulvinar have been extensively studied in nonhuman primates. Yet, relatively little is known about the functional and anatomical organization of the human pulvinar. Using neuroimaging, we found multiple representations of visual space within the ventral human pulvinar and extensive topographically organized connectivity with visual cortex. This organization is similar to other nonhuman primates and provides additional support that the general organization of the pulvinar is consistent across the primate phylogenetic tree. These results suggest that the human pulvinar, like other primates, is well positioned to regulate corticocortical communication. PMID:26156987

  10. Learning to Read Vertical Text in Peripheral Vision

    PubMed Central

    Subramanian, Ahalya; Legge, Gordon E.; Wagoner, Gunther Harrison; Yu, Deyue

    2014-01-01

    Purpose English–language text is almost always written horizontally. Text can be formatted to run vertically, but this is seldom used. Several studies have found that horizontal text can be read faster than vertical text in the central visual field. No studies have investigated the peripheral visual field. Studies have also concluded that training can improve reading speed in the peripheral visual field for horizontal text. We aimed to establish whether the horizontal vertical differences are maintained and if training can improve vertical reading in the peripheral visual field. Methods Eight normally sighted young adults participated in the first study. Rapid Serial Visual Presentation (RSVP) reading speed was measured for horizontal and vertical text in the central visual field and at 10° eccentricity in the upper or lower (horizontal text), and right or left (vertical text) visual fields. Twenty-one normally sighted young adults split equally between 2 training and 1 control group participated in the second study. Training consisted of RSVP reading either using vertical text in the left visual field or horizontal text in the inferior visual field. Subjects trained daily over 4 days. Pre and post horizontal and vertical RSVP reading speeds were carried out for all groups. For the training groups these measurements were repeated 1 week and 1 month post training. Results Prior to training, RSVP reading speeds were faster for horizontal text in the central and peripheral visual fields when compared to vertical text. Training vertical reading improved vertical reading speeds by an average factor of 2.8. There was partial transfer of training to the opposite (right) hemifield. The training effects were retained for up to a month. Conclusions RSVP training can improve RSVP vertical text reading in peripheral vision. These findings may have implications for patients with macular degeneration or hemianopic field loss. PMID:25062130

  11. Early multisensory interactions affect the competition among multiple visual objects.

    PubMed

    Van der Burg, Erik; Talsma, Durk; Olivers, Christian N L; Hickey, Clayton; Theeuwes, Jan

    2011-04-01

    In dynamic cluttered environments, audition and vision may benefit from each other in determining what deserves further attention and what does not. We investigated the underlying neural mechanisms responsible for attentional guidance by audiovisual stimuli in such an environment. Event-related potentials (ERPs) were measured during visual search through dynamic displays consisting of line elements that randomly changed orientation. Search accuracy improved when a target orientation change was synchronized with an auditory signal as compared to when the auditory signal was absent or synchronized with a distractor orientation change. The ERP data show that behavioral benefits were related to an early multisensory interaction over left parieto-occipital cortex (50-60 ms post-stimulus onset), which was followed by an early positive modulation (80-100 ms) over occipital and temporal areas contralateral to the audiovisual event, an enhanced N2pc (210-250 ms), and a contralateral negative slow wave (CNSW). The early multisensory interaction was correlated with behavioral search benefits, indicating that participants with a strong multisensory interaction benefited the most from the synchronized auditory signal. We suggest that an auditory signal enhances the neural response to a synchronized visual event, which increases the chances of selection in a multiple object environment. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli

    PubMed Central

    Störmer, Viola S.; McDonald, John J.; Hillyard, Steven A.

    2009-01-01

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex. PMID:20007778

  13. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli.

    PubMed

    Störmer, Viola S; McDonald, John J; Hillyard, Steven A

    2009-12-29

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex.

  14. Consciousness wanted, attention found: Reasons for the advantage of the left visual field in identifying T2 among rapidly presented series.

    PubMed

    Verleger, Rolf; Śmigasiewicz, Kamila

    2015-09-01

    Everyday experience suggests that people are equally aware of events in both hemi-fields. However, when two streams of stimuli are rapidly presented left and right containing two targets, the second target is better identified in the left than in the right visual field. This might be considered evidence for a right-hemisphere advantage in generating conscious percepts. However, this putative asymmetry of conscious perception cannot be measured independently of participants' access to their conscious percepts, and there is actually evidence from split-brain patients for the reverse, left-hemisphere advantage in having access to conscious percepts. Several other topics were studied in search of the responsible mechanism, among others: Mutual inhibition of hemispheres, cooperation of hemispheres in perceiving midline stimuli, and asymmetries in processing various perceptual inputs. Directing attention by salient cues turned out to be one of the few mechanisms capable of modifying the left visual-field advantage in this paradigm. Thus, this left visual-field advantage is best explained by the notion of a right-hemisphere advantage in directing attention to salient events. Dovetailing with the pathological asymmetries of attention after right-hemisphere lesions and with asymmetries of brain activation when healthy participants shift their attention, the present results extend that body of evidence by demonstrating unusually large and reliable behavioral asymmetries for attention-directing processes in healthy participants. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Two-stage perceptual learning to break visual crowding.

    PubMed

    Zhu, Ziyun; Fan, Zhenzhi; Fang, Fang

    2016-01-01

    When a target is presented with nearby flankers in the peripheral visual field, it becomes harder to identify, which is referred to as crowding. Crowding sets a fundamental limit of object recognition in peripheral vision, preventing us from fully appreciating cluttered visual scenes. We trained adult human subjects on a crowded orientation discrimination task and investigated whether crowding could be completely eliminated by training. We discovered a two-stage learning process with this training task. In the early stage, when the target and flankers were separated beyond a certain distance, subjects acquired a relatively general ability to break crowding, as evidenced by the fact that the breaking of crowding could transfer to another crowded orientation, even a crowded motion stimulus, although the transfer to the opposite visual hemi-field was weak. In the late stage, like many classical perceptual learning effects, subjects' performance gradually improved and showed specificity to the trained orientation. We also found that, when the target and flankers were spaced too finely, training could only reduce, rather than completely eliminate, the crowding effect. This two-stage learning process illustrates a learning strategy for our brain to deal with the notoriously difficult problem of identifying peripheral objects in clutter. The brain first learned to solve the "easy and general" part of the problem (i.e., improving the processing resolution and segmenting the target and flankers) and then tackle the "difficult and specific" part (i.e., refining the representation of the target).

  16. Normal versus High Tension Glaucoma: A Comparison of Functional and Structural Defects

    PubMed Central

    Thonginnetra, Oraorn; Greenstein, Vivienne C.; Chu, David; Liebmann, Jeffrey M.; Ritch, Robert; Hood, Donald C.

    2009-01-01

    Purpose To compare visual field defects obtained with both multifocal visual evoked potential (mfVEP) and Humphrey visual field (HVF) techniques to topographic optic disc measurements in patients with normal tension glaucoma (NTG) and high tension glaucoma (HTG). Methods We studied 32 patients with NTG and 32 with HTG. All patients had reliable 24-2 HVFs with a mean deviation (MD) of −10 dB or better, a glaucomatous optic disc and an abnormal HVF in at least one eye. Multifocal VEPs were obtained from each eye and probability plots created. The mfVEP and HVF probability plots were divided into a central 10-degree (radius) and an outer arcuate subfield in both superior and inferior hemifields. Cluster analyses and counts of abnormal points were performed in each subfield. Optic disc images were obtained with the Heidelberg Retina Tomograph III (HRT III). Eleven stereometric parameters were calculated. Moorfields regression analysis (MRA) and the glaucoma probability score (GPS) were performed. Results There were no significant differences in MD and PSD values between NTG and HTG eyes. However, NTG eyes had a higher percentage of abnormal test points and clusters of abnormal points in the central subfields on both mfVEP and HVF than HTG eyes. For HRT III, there were no significant differences in the 11 stereometric parameters or in the MRA and GPS analyses of the optic disc images. Conclusions The visual field data suggest more localized and central defects for NTG than HTG. PMID:19223786

  17. Lateralization of spatial information processing in response monitoring

    PubMed Central

    Stock, Ann-Kathrin; Beste, Christian

    2014-01-01

    The current study aims at identifying how lateralized multisensory spatial information processing affects response monitoring and action control. In a previous study, we investigated multimodal sensory integration in response monitoring processes using a Simon task. Behavioral and neurophysiologic results suggested that different aspects of response monitoring are asymmetrically and independently allocated to the hemispheres: while efference-copy-based information on the motor execution of the task is further processed in the hemisphere that originally generated the motor command, proprioception-based spatial information is processed in the hemisphere contralateral to the effector. Hence, crossing hands (entering a “foreign” spatial hemifield) yielded an augmented bilateral activation during response monitoring since these two kinds of information were processed in opposing hemispheres. Because the traditional Simon task does not provide the possibility to investigate which aspect of the spatial configuration leads to the observed hemispheric allocation, we introduced a new “double crossed” condition that allows for the dissociation of internal/physiological and external/physical influences on response monitoring processes. Comparing behavioral and neurophysiologic measures of this new condition to those of the traditional Simon task setup, we could demonstrate that the egocentric representation of the physiological effector's spatial location accounts for the observed lateralization of spatial information in action control. The finding that the location of the physical effector had a very small influence on response monitoring measures suggests that this aspect is either less important and/or processed in different brain areas than egocentric physiological information. PMID:24550855

  18. Behavioral relevance of gamma-band activity for short-term memory-based auditory decision-making.

    PubMed

    Kaiser, Jochen; Heidegger, Tonio; Lutzenberger, Werner

    2008-06-01

    Oscillatory activity in the gamma-band range has been established as a correlate of cognitive processes, including perception, attention and memory. Only a few studies, however, have provided evidence for an association between gamma-band activity (GBA) and measures of behavioral performance. Here we focused on the comparison between sample and test stimuli S1 and S2 during an auditory spatial short-term memory task. Applying statistical probability mapping to magnetoencephalographic recordings from 28 human subjects, we identified GBA components distinguishing nonidentical from identical S1-S2 pairs. This activity was found at frequencies between 65 and 90 Hz and was localized over posterior cortical regions contralateral to the hemifield in which the stimuli were presented. The 10 best task performers showed higher amplitudes of this GBA component than the 10 worst performers. This group difference was most pronounced between about 150 and 300 ms after stimulus onset. Apparently the decision about whether test stimuli matched the stored representation of previously presented sample sounds relied partly on the oscillatory activation of networks representing differences between both stimuli. This result could be replicated by reanalyzing the combined data from two previous studies assessing short-term memory for sound duration and sound lateralization, respectively. Similarly to our main study, GBA amplitudes to nonmatching vs. matching S1-S2 pairs were higher in good performers than poor performers. The present findings demonstrate the behavioral relevance of GBA.

  19. Orienting asymmetries and physiological reactivity in dogs' response to human emotional faces.

    PubMed

    Siniscalchi, Marcello; d'Ingeo, Serenella; Quaranta, Angelo

    2018-06-19

    Recent scientific literature shows that emotional cues conveyed by human vocalizations and odours are processed in an asymmetrical way by the canine brain. In the present study, during feeding behaviour, dogs were suddenly presented with 2-D stimuli depicting human faces expressing the Ekman's six basic emotion (e.g. anger, fear, happiness, sadness, surprise, disgust, and neutral), simultaneously into the left and right visual hemifields. A bias to turn the head towards the left (right hemisphere) rather than the right side was observed with human faces expressing anger, fear, and happiness emotions, but an opposite bias (left hemisphere) was observed with human faces expressing surprise. Furthermore, dogs displayed higher behavioural and cardiac activity to picture of human faces expressing clear arousal emotional state. Overall, results demonstrated that dogs are sensitive to emotional cues conveyed by human faces, supporting the existence of an asymmetrical emotional modulation of the canine brain to process basic human emotions.

  20. Memory reorganization following anterior temporal lobe resection: a longitudinal functional MRI study

    PubMed Central

    Bonelli, Silvia B.; Thompson, Pamela J.; Yogarajah, Mahinda; Powell, Robert H. W.; Samson, Rebecca S.; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.

    2013-01-01

    Anterior temporal lobe resection controls seizures in 50–60% of patients with intractable temporal lobe epilepsy but may impair memory function, typically verbal memory following left, and visual memory following right anterior temporal lobe resection. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated the reorganization of memory function in patients with temporal lobe epilepsy before and after left or right anterior temporal lobe resection and the efficiency of postoperative memory networks. We studied 46 patients with unilateral medial temporal lobe epilepsy (25/26 left hippocampal sclerosis, 16/20 right hippocampal sclerosis) before and after anterior temporal lobe resection on a 3 T General Electric magnetic resonance imaging scanner. All subjects had neuropsychological testing and performed a functional magnetic resonance imaging memory encoding paradigm for words, pictures and faces, testing verbal and visual memory in a single scanning session, preoperatively and again 4 months after surgery. Event-related analysis revealed that patients with left temporal lobe epilepsy had greater activation in the left posterior medial temporal lobe when successfully encoding words postoperatively than preoperatively. Greater pre- than postoperative activation in the ipsilateral posterior medial temporal lobe for encoding words correlated with better verbal memory outcome after left anterior temporal lobe resection. In contrast, greater postoperative than preoperative activation in the ipsilateral posterior medial temporal lobe correlated with worse postoperative verbal memory performance. These postoperative effects were not observed for visual memory function after right anterior temporal lobe resection. Our findings provide evidence for effective preoperative reorganization of verbal memory function to the ipsilateral posterior medial temporal lobe due to the underlying disease, suggesting that it is the capacity of the posterior remnant of the ipsilateral hippocampus rather than the functional reserve of the contralateral hippocampus that is important for maintaining verbal memory function after anterior temporal lobe resection. Early postoperative reorganization to ipsilateral posterior or contralateral medial temporal lobe structures does not underpin better performance. Additionally our results suggest that visual memory function in right temporal lobe epilepsy is affected differently by right anterior temporal lobe resection than verbal memory in left temporal lobe epilepsy. PMID:23715092

  1. Collision avoidance in persons with homonymous visual field defects under virtual reality conditions.

    PubMed

    Papageorgiou, Eleni; Hardiess, Gregor; Ackermann, Hermann; Wiethoelter, Horst; Dietz, Klaus; Mallot, Hanspeter A; Schiefer, Ulrich

    2012-01-01

    The aim of the present study was to examine the effect of homonymous visual field defects (HVFDs) on collision avoidance of dynamic obstacles at an intersection under virtual reality (VR) conditions. Overall performance was quantitatively assessed as the number of collisions at a virtual intersection at two difficulty levels. HVFDs were assessed by binocular semi-automated kinetic perimetry within the 90° visual field, stimulus III4e and the area of sparing within the affected hemifield (A-SPAR in deg(2)) was calculated. The effect of A-SPAR, age, gender, side of brain lesion, time since brain lesion and presence of macular sparing on the number of collisions, as well as performance over time were investigated. Thirty patients (10 female, 20 male, age range: 19-71 years) with HVFDs due to unilateral vascular brain lesions and 30 group-age-matched subjects with normal visual fields were examined. The mean number of collisions was higher for patients and in the more difficult level they experienced more collisions with vehicles approaching from the blind side than the seeing side. Lower A-SPAR and increasing age were associated with decreasing performance. However, in agreement with previous studies, wide variability in performance among patients with identical visual field defects was observed and performance of some patients was similar to that of normal subjects. Both patients and healthy subjects displayed equal improvement of performance over time in the more difficult level. In conclusion, our results suggest that visual-field related parameters per se are inadequate in predicting successful collision avoidance. Individualized approaches which also consider compensatory strategies by means of eye and head movements should be introduced. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Delineating the Neural Signatures of Tracking Spatial Position and Working Memory during Attentive Tracking

    PubMed Central

    Drew, Trafton; Horowitz, Todd S.; Wolfe, Jeremy M.; Vogel, Edward K.

    2015-01-01

    In the attentive tracking task, observers track multiple objects as they move independently and unpredictably among visually identical distractors. Although a number of models of attentive tracking implicate visual working memory as the mechanism responsible for representing target locations, no study has ever directly compared the neural mechanisms of the two tasks. In the current set of experiments, we used electrophysiological recordings to delineate similarities and differences between the neural processing involved in working memory and attentive tracking. We found that the contralateral electrophysiological response to the two tasks was similarly sensitive to the number of items attended in both tasks but that there was also a unique contralateral negativity related to the process of monitoring target position during tracking. This signal was absent for periods of time during tracking tasks when objects briefly stopped moving. These results provide evidence that, during attentive tracking, the process of tracking target locations elicits an electrophysiological response that is distinct and dissociable from neural measures of the number of items being attended. PMID:21228175

  3. Functional mapping of the primate auditory system.

    PubMed

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  4. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    PubMed

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Multi-Area Stochastic Model for a Covert Visual Search Task.

    PubMed

    Schwemmer, Michael A; Feng, Samuel F; Holmes, Philip J; Gottlieb, Jacqueline; Cohen, Jonathan D

    2015-01-01

    Decisions typically comprise several elements. For example, attention must be directed towards specific objects, their identities recognized, and a choice made among alternatives. Pairs of competing accumulators and drift-diffusion processes provide good models of evidence integration in two-alternative perceptual choices, but more complex tasks requiring the coordination of attention and decision making involve multistage processing and multiple brain areas. Here we consider a task in which a target is located among distractors and its identity reported by lever release. The data comprise reaction times, accuracies, and single unit recordings from two monkeys' lateral interparietal area (LIP) neurons. LIP firing rates distinguish between targets and distractors, exhibit stimulus set size effects, and show response-hemifield congruence effects. These data motivate our model, which uses coupled sets of leaky competing accumulators to represent processes hypothesized to occur in feature-selective areas and limb motor and pre-motor areas, together with the visual selection process occurring in LIP. Model simulations capture the electrophysiological and behavioral data, and fitted parameters suggest that different connection weights between LIP and the other cortical areas may account for the observed behavioral differences between the animals.

  6. Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect.

    PubMed

    Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne

    2015-01-01

    Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields.

  7. Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect

    PubMed Central

    Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne

    2015-01-01

    Objectives Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Methods Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Results Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. Conclusions A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields. PMID:26247469

  8. Neuronal generator patterns at scalp elicited by lateralized aversive pictures reveal consecutive stages of motivated attention

    PubMed Central

    Kayser, Jürgen; Tenke, Craig E.; Abraham, Karen S.; Alschuler, Daniel M.; Alvarenga, Jorge E.; Skipper, Jamie; Warner, Virginia; Bruder, Gerard E.; Weissman, Myrna M.

    2016-01-01

    Event-related potential (ERP) studies have provided evidence for an allocation of attentional resources to enhance perceptual processing of motivationally salient stimuli. Emotional modulation affects several consecutive components associated with stages of affective-cognitive processing, beginning as early as 100-200 ms after stimulus onset. In agreement with the notion that the right parietotemporal region is critically involved during the perception of arousing affective stimuli, some ERP studies have reported asymmetric emotional ERP effects. However, it is difficult to separate emotional from non-emotional effects because differences in stimulus content unrelated to affective salience or task demands may also be associated with lateralized function or promote cognitive processing. Other concerns pertain to the operational definition and statistical independence of ERP component measures, their dependence on an EEG reference, and spatial smearing due to volume conduction, all of which impede the identification of distinct scalp activation patterns associated with affective processing. Building on prior research using a visual half-field paradigm with highly-controlled emotional stimuli (pictures of cosmetic surgery patients showing disordered [negative] or healed [neutral] facial areas before or after treatment), 72-channel ERPs recorded from 152 individuals (age 13-68 years; 81 female) were transformed into reference-free current source density (CSD) waveforms and submitted to temporal principal components analysis (PCA) to identify their underlying neuronal generator patterns. Using both nonparametric randomization tests and repeated measures ANOVA, robust effects of emotional content were found over parietooccipital regions for CSD factors corresponding to N2 sink (212 ms peak latency), P3 source (385 ms) and a late centroparietal source (630 ms), all indicative of greater positivity for negative than neutral stimuli. For the N2 sink, emotional effects were right-lateralized and modulated by hemifield, with larger amplitude and asymmetry for left hemifield (right hemisphere) presentations. For all three factors, more positive amplitudes at parietooccipital sites were associated with increased ratings of negative valence and greater arousal. Distributed inverse solutions of the CSD-PCA-based emotional effects implicated a sequence of maximal activations in right occipitotemporal cortex, bilateral posterior cingulate cortex, and bilateral inferior temporal cortex. These findings are consistent with hierarchical activations of the ventral visual pathway reflecting subsequent processing stages in response to motivationally salient stimuli. PMID:27263509

  9. Neuronal generator patterns at scalp elicited by lateralized aversive pictures reveal consecutive stages of motivated attention.

    PubMed

    Kayser, Jürgen; Tenke, Craig E; Abraham, Karen S; Alschuler, Daniel M; Alvarenga, Jorge E; Skipper, Jamie; Warner, Virginia; Bruder, Gerard E; Weissman, Myrna M

    2016-11-15

    Event-related potential (ERP) studies have provided evidence for an allocation of attentional resources to enhance perceptual processing of motivationally salient stimuli. Emotional modulation affects several consecutive components associated with stages of affective-cognitive processing, beginning as early as 100-200ms after stimulus onset. In agreement with the notion that the right parietotemporal region is critically involved during the perception of arousing affective stimuli, some ERP studies have reported asymmetric emotional ERP effects. However, it is difficult to separate emotional from non-emotional effects because differences in stimulus content unrelated to affective salience or task demands may also be associated with lateralized function or promote cognitive processing. Other concerns pertain to the operational definition and statistical independence of ERP component measures, their dependence on an EEG reference, and spatial smearing due to volume conduction, all of which impede the identification of distinct scalp activation patterns associated with affective processing. Building on prior research using a visual half-field paradigm with highly controlled emotional stimuli (pictures of cosmetic surgery patients showing disordered [negative] or healed [neutral] facial areas before or after treatment), 72-channel ERPs recorded from 152 individuals (ages 13-68years; 81 female) were transformed into reference-free current source density (CSD) waveforms and submitted to temporal principal components analysis (PCA) to identify their underlying neuronal generator patterns. Using both nonparametric randomization tests and repeated measures ANOVA, robust effects of emotional content were found over parietooccipital regions for CSD factors corresponding to N2 sink (212ms peak latency), P3 source (385ms) and a late centroparietal source (630ms), all indicative of greater positivity for negative than neutral stimuli. For the N2 sink, emotional effects were right-lateralized and modulated by hemifield, with larger amplitude and asymmetry for left hemifield (right hemisphere) presentations. For all three factors, more positive amplitudes at parietooccipital sites were associated with increased ratings of negative valence and greater arousal. Distributed inverse solutions of the CSD-PCA-based emotional effects implicated a sequence of maximal activations in right occipitotemporal cortex, bilateral posterior cingulate cortex, and bilateral inferior temporal cortex. These findings are consistent with hierarchical activations of the ventral visual pathway reflecting subsequent processing stages in response to motivationally salient stimuli. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Glaucoma diagnostic ability of ganglion cell-inner plexiform layer thickness differs according to the location of visual field loss.

    PubMed

    Shin, Hye-Young; Park, Hae-Young Lopilly; Jung, Kyoung-In; Choi, Jin-A; Park, Chan Kee

    2014-01-01

    To determine whether the ganglion cell-inner plexiform layer (GCIPL) or circumpapillary retinal nerve fiber layer (cpRNFL) is better at distinguishing eyes with early glaucoma from normal eyes on the basis of the the initial location of the visual field (VF) damage. Retrospective, observational study. Eighty-four patients with early glaucoma and 43 normal subjects were enrolled. The patients with glaucoma were subdivided into 2 groups according to the location of VF damage: (1) an isolated parafoveal scotoma (PFS, N = 42) within 12 points of a central 10 degrees in 1 hemifield or (2) an isolated peripheral nasal step (PNS, N = 42) within the nasal periphery outside 10 degrees of fixation in 1 hemifield. All patients underwent macular and optic disc scanning using Cirrus high-definition optical coherence tomography (Carl Zeiss Meditec, Dublin, CA). The GCIPL and cpRNFL thicknesses were compared between groups. Areas under the receiver operating characteristic curves (AUCs) were calculated. Comparison of diagnostic ability using AUCs. The average and minimum GCIPL of the PFS group were significantly thinner than those of the PNS group, whereas there was no significant difference in the average retinal nerve fiber layer (RNFL) thickness between the 2 groups. The AUCs of the average (0.962) and minimum GCIPL (0.973) thicknesses did not differ from that of the average RNFL thickness (0.972) for discriminating glaucomatous changes between normal and all glaucoma eyes (P =0.566 and 0.974, respectively). In the PFS group, the AUCs of the average (0.988) and minimum GCIPL (0.999) thicknesses were greater than that of the average RNFL thickness (0.961, P =0.307 and 0.125, respectively). However, the AUCs of the average (0.936) and minimum GCIPL (0.947) thicknesses were lower than that of the average RNFL thickness (0.984) in the PNS group (P =0.032 and 0.069, respectively). The GCIPL parameters were more valuable than the cpRNFL parameters for detecting glaucoma in eyes with parafoveal VF loss, and the cpRNFL parameters were better than the GCIPL parameters for detecting glaucoma in eyes with peripheral VF loss. Clinicians should know that the diagnostic capability of macular GCIPL parameters depends largely on the location of the VF loss. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  11. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses.

    PubMed

    Bokhari, Sabahat; Castaño, Adam; Pozniakoff, Ted; Deslisle, Susan; Latif, Farhana; Maurer, Mathew S

    2013-03-01

    Differentiating immunoglobulin light-chain (AL) from transthyretin-related cardiac amyloidoses (ATTR) is imperative given implications for prognosis, therapy, and genetic counseling. We validated the discriminatory ability of (99m)Tc-pyrophosphate ((99m)Tc-PYP) scintigraphy in AL versus ATTR. Forty-five subjects (12 AL, 16 ATTR wild type, and 17 ATTR mutants) underwent (99m)Tc-PYP planar and single-photon positive emission computed tomography cardiac imaging. Scans were performed by experienced nuclear cardiologists blinded to the subjects' cohort assignment. Cardiac retention was assessed with both a semiquantitative visual score (range, 0; no uptake to 3, diffuse uptake) and by quantitative analysis by drawing a region of interest over the heart corrected for contralateral counts and calculating a heart-to-contralateral ratio. Subjects with ATTR cardiac amyloid had a significantly higher semiquantitative cardiac visual score than the AL cohort (2.9±0.06 versus 0.8±0.27; P<0.0001) as well as a higher quantitative score (1.80±0.04 versus 1.21±0.04; P<0.0001). Using a heart-to-contralateral ratio >1.5 consistent with intensely diffuse myocardial tracer retention had a 97% sensitivity and 100% specificity with area under the curve 0.992, P<0.0001 for identifying ATTR cardiac amyloidosis. (99m)Tc-PYP cardiac imaging distinguishes AL from ATTR cardiac amyloidosis and may be a simple, widely available method for identifying subjects with ATTR cardiac amyloidosis, which should be studied in a larger prospective manner.

  12. A prospective, contralateral comparison of photorefractive keratectomy (PRK) versus thin-flap LASIK: assessment of visual function.

    PubMed

    Hatch, Bryndon B; Moshirfar, Majid; Ollerton, Andrew J; Sikder, Shameema; Mifflin, Mark D

    2011-01-01

    To compare differences in visual acuity, contrast sensitivity, complications, and higher-order ocular aberrations (HOAs) in eyes with stable myopia undergoing either photo-refractive keratectomy (PRK) or thin-flap laser in situ keratomileusis (LASIK) (intended flap thickness of 90 μm) using the VISX Star S4 CustomVue excimer laser and the IntraLase FS60 femtosecond laser at 1, 3, and 6 months postoperatively. In this prospective, masked, and randomized pilot study, refractive surgery was performed contralaterally on 52 eyes: 26 with PRK and 26 with thin-flap LASIK. Primary outcome measures were uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), contrast sensitivity, and complications. At 6 months, mean values for UDVA (logMAR) were -0.043 ± 0.668 and -0.061 ± 0.099 in the PRK and thin-flap LASIK groups, respectively (n = 25, P = 0.466). UDVA of 20/20 or better was achieved in 96% of eyes undergoing PRK and 92% of eyes undergoing thin-flap LASIK, whereas 20/15 vision or better was achieved in 73% of eyes undergoing PRK and 72% of eyes undergoing thin-flap LASIK (P > 0.600). Significant differences were not found between treatment groups in contrast sensitivity (P ≥ 0.156) or CDVA (P = 0.800) at postoperative 6 months. Types of complications differed between groups, notably 35% of eyes in the thin-flap LASIK group experiencing complications, including microstriae and 2 flap tears. Under well-controlled surgical conditions, PRK and thin-flap LASIK refractive surgeries achieve similar results in visual acuity, contrast sensitivity, and induction of HOAs, with differences in experienced complications.

  13. A prospective, contralateral comparison of photorefractive keratectomy (PRK) versus thin-flap LASIK: assessment of visual function

    PubMed Central

    Hatch, Bryndon B; Moshirfar, Majid; Ollerton, Andrew J; Sikder, Shameema; Mifflin, Mark D

    2011-01-01

    Purpose: To compare differences in visual acuity, contrast sensitivity, complications, and higher-order ocular aberrations (HOAs) in eyes with stable myopia undergoing either photo-refractive keratectomy (PRK) or thin-flap laser in situ keratomileusis (LASIK) (intended flap thickness of 90 μm) using the VISX Star S4 CustomVue excimer laser and the IntraLase FS60 femtosecond laser at 1, 3, and 6 months postoperatively. Methods: In this prospective, masked, and randomized pilot study, refractive surgery was performed contralaterally on 52 eyes: 26 with PRK and 26 with thin-flap LASIK. Primary outcome measures were uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), contrast sensitivity, and complications. Results: At 6 months, mean values for UDVA (logMAR) were −0.043 ± 0.668 and −0.061 ± 0.099 in the PRK and thin-flap LASIK groups, respectively (n = 25, P = 0.466). UDVA of 20/20 or better was achieved in 96% of eyes undergoing PRK and 92% of eyes undergoing thin-flap LASIK, whereas 20/15 vision or better was achieved in 73% of eyes undergoing PRK and 72% of eyes undergoing thin-flap LASIK (P > 0.600). Significant differences were not found between treatment groups in contrast sensitivity (P ≥ 0.156) or CDVA (P = 0.800) at postoperative 6 months. Types of complications differed between groups, notably 35% of eyes in the thin-flap LASIK group experiencing complications, including microstriae and 2 flap tears. Conclusion: Under well-controlled surgical conditions, PRK and thin-flap LASIK refractive surgeries achieve similar results in visual acuity, contrast sensitivity, and induction of HOAs, with differences in experienced complications. PMID:21573091

  14. Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing.

    PubMed

    Clark, Kait; Appelbaum, L Gregory; van den Berg, Berry; Mitroff, Stephen R; Woldorff, Marty G

    2015-04-01

    Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance. Copyright © 2015 the authors 0270-6474/15/355351-09$15.00/0.

  15. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials

    PubMed Central

    Christoffersen, Gert R. J.; Laugesen, Jakob L.; Møller, Per; Bredie, Wender L. P.; Schachtman, Todd R.; Liljendahl, Christina; Viemose, Ida

    2017-01-01

    Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject’s evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions—from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US. PMID:28983243

  16. Use-Dependent Dendritic Regrowth Is Limited after Unilateral Controlled Cortical Impact to the Forelimb Sensorimotor Cortex

    PubMed Central

    Jones, Theresa A.; Liput, Daniel J.; Maresh, Erin L.; Donlan, Nicole; Parikh, Toral J.; Marlowe, Dana

    2012-01-01

    Abstract Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3–28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI. PMID:22352953

  17. Decreasing an Offloading Device's Size and Offsetting Its Imposed Limb Length Discrepancy Lead to Improved Comfort and Gait.

    PubMed

    Crews, Ryan T; Candela, Joseph

    2018-04-17

    Patient adherence is a challenge in offloading diabetic foot ulcers (DFUs) with removable cast walkers (RCWs). The size and weight of an RCW, changes to gait, and imposed limb length discrepancies may all discourage adherence. This study sought to determine whether RCW size and provision of a contralateral limb lift affected users' comfort and gait. Twenty-five individuals at risk for DFUs completed several 20-m walking trials under five footwear conditions: bilateral standardized shoes, a knee-high RCW with shoe with or without an external shoe lift contralaterally, and an ankle-high RCW with shoe with or without an external shoe lift contralaterally. Perceived comfort ratings were assessed through the use of visual analog scales. Spatial and temporal parameters of gait were captured by an instrumented walkway, and plantar pressure was measured and recorded using pedobarographic insoles. The bilateral shoes condition was reported to be most comfortable; both RCW conditions without the lift were significantly less comfortable ( P < 0.01). In contrast to the ankle-high RCW, the knee-high RCW resulted in significantly slower walking (5.6%; P < 0.01) but greater offloading in multiple forefoot regions of the offloaded foot (6.8-8.1%; P < 0.01). Use of the contralateral shoe lift resulted in significantly less variability in walking velocity (52.8%; P < 0.01) and reduced stance time for the offloaded foot (2.6%; P = 0.01), but it also reduced offloading in multiple forefoot regions of the offloaded foot (3.7-6.0%; P < 0.01). Improved comfort and gait were associated with the ankle-high RCW and contralateral limb lift. Providing this combination to patients with active DFUs may increase offloading adherence and subsequently improve healing. © 2018 by the American Diabetes Association.

  18. Use-dependent dendritic regrowth is limited after unilateral controlled cortical impact to the forelimb sensorimotor cortex.

    PubMed

    Jones, Theresa A; Liput, Daniel J; Maresh, Erin L; Donlan, Nicole; Parikh, Toral J; Marlowe, Dana; Kozlowski, Dorothy A

    2012-05-01

    Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.

  19. GABA-mediated changes in inter-hemispheric beta frequency activity in early-stage Parkinson’s disease

    PubMed Central

    Hall, S.D.; Prokic, E.J.; McAllister, C.J.; Ronnqvist, K.C.; Williams, A.C.; Yamawaki, N.; Witton, C.; Woodhall, G.L.; Stanford, I.M.

    2014-01-01

    In Parkinson’s disease (PD), elevated beta (15–35 Hz) power in subcortical motor networks is widely believed to promote aspects of PD symptomatology, moreover, a reduction in beta power and coherence accompanies symptomatic improvement following effective treatment with l-DOPA. Previous studies have reported symptomatic improvements that correlate with changes in cortical network activity following GABAA receptor modulation. In this study we have used whole-head magnetoencephalography to characterize neuronal network activity, at rest and during visually cued finger abductions, in unilaterally symptomatic PD and age-matched control participants. Recordings were then repeated following administration of sub-sedative doses of the hypnotic drug zolpidem (0.05 mg/kg), which binds to the benzodiazepine site of the GABAA receptor. A beamforming based ‘virtual electrode’ approach was used to reconstruct oscillatory power in the primary motor cortex (M1), contralateral and ipsilateral to symptom presentation in PD patients or dominant hand in control participants. In PD patients, contralateral M1 showed significantly greater beta power than ipsilateral M1. Following zolpidem administration contralateral beta power was significantly reduced while ipsilateral beta power was significantly increased resulting in a hemispheric power ratio that approached parity. Furthermore, there was highly significant correlation between hemispheric beta power ratio and Unified Parkinson’s Disease Rating Scale (UPDRS). The changes in contralateral and ipsilateral beta power were reflected in pre-movement beta desynchronization and the late post-movement beta rebound. However, the absolute level of movement-related beta desynchronization was not altered. These results show that low-dose zolpidem not only reduces contralateral beta but also increases ipsilateral beta, while rebalancing the dynamic range of M1 network oscillations between the two hemispheres. These changes appear to underlie the symptomatic improvements afforded by low-dose zolpidem. PMID:25261686

  20. Salient sounds activate human visual cortex automatically.

    PubMed

    McDonald, John J; Störmer, Viola S; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A

    2013-05-22

    Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, this study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2-4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of colocalized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task.

  1. Salient sounds activate human visual cortex automatically

    PubMed Central

    McDonald, John J.; Störmer, Viola S.; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A.

    2013-01-01

    Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, the present study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2, 3, and 4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of co-localized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task. PMID:23699530

  2. Repeatability of normal multifocal VEP: implications for detecting progression.

    PubMed

    Fortune, Brad; Demirel, Shaban; Zhang, Xian; Hood, Donald C; Johnson, Chris A

    2006-04-01

    To assess the repeatability of the multifocal visual evoked potential (mfVEP) and to compare it with the repeatability of standard automated perimetry (SAP) in the same group of 50 normal controls retested after 1 year. Our second aim was to assess the repeatability of false alarm rates determined previously for the mfVEP using various cluster criteria. Fifty individuals with normal vision participated in this study (33 females and 17 males). The age range was 26.7 to 77.9 years and the group average age (+/- SD) was 51.4 (+/- 12.1) years. Pattern-reversal mfVEPs were obtained using a dartboard stimulus pattern in VERIS and two 8-minute runs per eye were averaged. The average number of days between the first and second mfVEP tests was 378 (+/- 58). SAP visual fields were obtained within 17.4 (+/- 20.3) days of the mfVEP using the SITA-standard threshold algorithm. Repeatability of mfVEPs and SAP total deviation values were evaluated by calculating point-wise limits of agreement (LOA). Specificity (1-false alarm rate) was evaluated for a range of cluster criteria, whereby the number and probability level of the points defining a cluster were varied. Point-wise LOA for the mfVEP signal-to-noise ratio (SNR) ranged from 2.0 to 4.3 dB, with an average of 2.9 dB across all 60 locations. For SAP, LOA ranged from 2.4 to 8.9 dB, with an average of 4.0 dB (excluding the points immediately above and below the blind spot). Clusters of abnormal points were not likely to repeat on either mfVEP or SAP. When an mfVEP abnormality was defined as the repeat presence (confirmation) of a 3-point (P < 0.05) cluster anywhere within a single hemifield, only 1 (of 200) monocular hemifield was deemed abnormal. Although the LOA of the mfVEP were similar throughout the field, the limited dynamic range of SNR at superior field locations will limit the ability to follow progression in "depth" at those locations. Repeatability of the mfVEP was slightly better than SAP visual fields in this group of controls with a 1-year retest interval. This suggests that progression in early stages should be more easily detectable by mfVEP. However, in certain field locations (eg, superior periphery), the relatively more narrow dynamic range of the SNR of the mfVEP may limit detection of progression to just 1 event. Confirmation of a 3-point cluster abnormality is highly suggestive of a true defect on the mfVEP.

  3. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    PubMed

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  4. The Relation of Ocular Surface Irregularity and Visual Disturbance in Early Stage Acanthamoeba Keratitis.

    PubMed

    Matsumoto, Yukihiro; Kodama, Asako; Goto, Eiki; Kawakita, Tetsuya; Dogru, Murat; Tsubota, Kazuo

    2017-01-01

    To evaluate the relation between ocular surface irregularity and visual disturbance in early stage Acanthamoeba keratitis (AK). Fifteen patients with culture-proven AK underwent routine ophthalmic examinations, including best-corrected visual acuity (BCVA) measurement, slitlamp biomicroscope examination, and corneal fluorescein dye staining test, in both the eyes. We also evaluated the corneal sensitivity with Cochet-Bonnet esthesiometer, tear functions by Schirmer's test, and ocular surface irregularity by corneal topography and compared the results with the contralateral healthy eyes in this study. The mean logarithm of the minimum angle of resolution BCVA (0.71±0.77) was significantly lower in the eyes with AK (P=0.002). Epithelial disorders were present in all eyes, and radial keratoneuritis in 14 eyes (93.3%). The mean corneal sensitivity (39.3±24.1 mm) was significantly lower in eyes with AK compared with the healthy eyes (P=0.005). The mean Schirmer's test value (22.5±12.0 mm) in eyes with AK was significantly higher compared with the healthy eyes (P=0.01). The ocular surface irregularity indices (the surface regularity index, 2.47±0.42; the surface asymmetry index, 3.24±1.31) were significantly higher in eyes with AK compared with contralateral healthy eyes (P<0.0001 and P<0.0001, respectively). The ocular surface disease in AK is associated with decrease in corneal sensitivity and increase in Schirmer's test value and ocular surface irregularity indices. The visual disturbance in AK may owe not only to corneal haze but also to ocular surface irregularity.

  5. Development and Implementation of a New Telerehabilitation System for Audiovisual Stimulation Training in Hemianopia

    PubMed Central

    Tinelli, Francesca; Cioni, Giovanni; Purpura, Giulia

    2017-01-01

    Telerehabilitation, defined as the method by which communication technologies are used to provide remote rehabilitation, although still underused, could be as efficient and effective as the conventional clinical rehabilitation practices. In the literature, there are descriptions of the use of telerehabilitation in adult patients with various diseases, whereas it is seldom used in clinical practice with child and adolescent patients. We have developed a new audiovisual telerehabilitation (AVT) system, based on the multisensory capabilities of the human brain, to provide a new tool for adults and children with visual field defects in order to improve ocular movements toward the blind hemifield. The apparatus consists of a semicircular structure in which visual and acoustic stimuli are positioned. A camera is integrated into the mechanical structure in the center of the panel to control eye and head movements. Patients can use this training system with a customized software on a tablet. From hospital, the therapist has complete control over the training process, and the results of the training sessions are automatically available within a few minutes on the hospital website. In this paper, we report the AVT system protocol and the preliminary results on its use by three adult patients. All three showed improvements in visual detection abilities with long-term effects. In the future, we will test this apparatus with children and their families. Since interventions for impairments in the visual field have a substantial cost for individuals and for the welfare system, we expect that our research could have a profound socio-economic impact avoiding prolonged and intensive hospital stays. PMID:29209271

  6. Longitudinal and Cross-Sectional Analyses of Visual Field Progression in Participants of the Ocular Hypertension Treatment Study (OHTS)

    PubMed Central

    Chauhan, Balwantray C; Keltner, John L; Cello, Kim E; Johnson, Chris A; Anderson, Douglas R; Gordon, Mae O; Kass, Michael A

    2014-01-01

    Purpose Visual field progression can be determined by evaluating the visual field by serial examinations (longitudinal analysis), or by a change in classification derived from comparison to age-matched normal data in single examinations (cross-sectional analysis). We determined the agreement between these two approaches in data from the Ocular Hypertension Treatment Study (OHTS). Methods Visual field data from 3088 eyes of 1570 OHTS participants (median follow-up 7 yrs, 15 tests with static automated perimetry) were analysed. Longitudinal analyses were performed with change probability with total and pattern deviation, and cross-sectional analysis with Glaucoma Hemifield Test, Corrected Pattern Standard Deviation, and Mean Deviation. The rates of Mean Deviation and General Height change were compared to estimate the degree of diffuse loss in emerging glaucoma. Results The agreement on progression in longitudinal and cross-sectional analyses ranged from 50% to 61% and remained nearly constant across a wide range of criteria. In contrast, the agreement on absence of progression ranged from 97% to 99.7%, being highest for the stricter criteria. Analyses of pattern deviation were more conservative than total deviation, with a 3 to 5 times lesser incidence of progression. Most participants developing field loss had both diffuse and focal change. Conclusions Despite considerable overall agreement, between 40 to 50% of eyes identified as having progressed with either longitudinal or cross-sectional analyses were identified with only one of the analyses. Because diffuse change is part of early glaucomatous damage, pattern deviation analyses may underestimate progression in patients with ocular hypertension. PMID:21149774

  7. Spatial localization deficits and auditory cortical dysfunction in schizophrenia

    PubMed Central

    Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.

    2014-01-01

    Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608

  8. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes.

    PubMed

    El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N

    2003-11-01

    To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.

  9. Surgical planning and innervation in pontine gaze palsy with ipsilateral esotropia.

    PubMed

    Somer, Deniz; Cinar, Fatma Gul; Kaderli, Ahmet; Ornek, Firdevs

    2016-10-01

    To discuss surgical intervention strategies among patients with horizontal gaze palsy with concurrent esotropia. Five consecutive patients with dorsal pontine lesions are presented. Each patient had horizontal gaze palsy with symptomatic diplopia as a consequence of esotropia in primary gaze and an anomalous head turn to attain single binocular vision. Clinical findings in the first 2 patients led us to presume there was complete loss of rectus muscle function from rectus muscle palsy. Based on this assumption, medial rectus recessions with simultaneous partial vertical muscle transposition (VRT) on the ipsilateral eye of the gaze palsy and recession-resection surgery on the contralateral eye were performed, resulting in significant motility limitation. Sequential recession-resection surgery without simultaneous VRT on the 3rd patient created an unexpected motility improvement to the side of gaze palsy, an observation differentiating rectus muscle palsy from paresis. Recession combined with VRT approach in the esotropic eye was abandoned on subsequent patients. Simultaneous recession-resection surgery without VRT in the next 2 patients resulted in alleviation of head postures, resolution of esotropia, and also substantial motility improvements to the ipsilateral hemifield of gaze palsy without limitations in adduction and vertical deviations. Ocular misalignment and abnormal head posture as a result of conjugate gaze palsy can be successfully treated by basic recession-resection surgery, with the advantage of increasing versions to the ipsilateral side of the gaze palsy. Improved motility after surgery presumably represents paresis, not "paralysis," with residual innervation in rectus muscles. Copyright © 2016 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  10. Contralateral Autologous Corneal Transplantation Experience in Mexico City.

    PubMed

    Perez-Balbuena, Ana L; Ancona-Lezama, David; Delgado-Pelayo, Sarai; Martinez, Jaime D

    2017-01-01

    The aim of this study is to expand the limited knowledge regarding autologous contralateral penetrating keratoplasty. We report the retrospective outcomes of patients who received autokeratoplasty and contralateral opaque corneas in the donor eye at a tertiary care ophthalmology hospital in Mexico City. Eleven patients received autokeratoplasty and contralateral opaque corneas in the donor eye at our center from 2010 to 2015. The mean patient age at the time of surgery was 58 years (range, 35-85 yrs), with 4 female and 7 male patients. There were no surgical or immediate postsurgical complications in the autokeratoplasty eye. However, 1 patient had expulsive hemorrhage in the sightless eye. Follow-up duration ranged from 11 to 65 months (mean, 26 mo). During follow-up, 3 of the autokeratoplasty procedures failed because of endothelial attenuation. Identified known risk factors for failure of the eye with visual potential included the presence of an Ahmed glaucoma drainage device in 7/11 patients (63%), history of glaucoma in 8/11 (72%), past heterologous penetrating keratoplasty in 2/11 (18%), Vogt-Koyanagi-Harada syndrome in 1/11 (9%), and 4-quadrant corneal vascularization in 1/11 (9%). Autokeratoplasty is a good choice in cases having high risk factors and when fresh corneal tissue is not available. This is the largest study describing outcomes of patients who underwent autokeratoplasty. This technique offers no risk of immune rejection and no need for immunosuppression treatment. This study reports a good prognosis in cases having high risk factors for failure.

  11. Covert Shifts of Spatial Attention in the Macaque Monkey

    PubMed Central

    Caspari, Natalie; Janssens, Thomas; Mantini, Dante; Vandenberghe, Rik

    2015-01-01

    In the awake state, shifts of spatial attention alternate with periods of sustained attention at a fixed location or object. Human fMRI experiments revealed the critical role of the superior parietal lobule (SPL) in shifting spatial attention, a finding not predicted by human lesion studies and monkey electrophysiology. To investigate whether a potential homolog of the human SPL shifting region exists in monkeys (Macaca mulatta), we adopted an event-related fMRI paradigm that closely resembled a human experiment (Molenberghs et al., 2007). In this paradigm, a pair of relevant and irrelevant shapes was continuously present on the horizontal meridian. Subjects had to covertly detect a dimming of the relevant shape while ignoring the irrelevant dimmings. The events of interest consisted of the replacement of one stimulus pair by the next. During shift but not stay events, the relevant shape of the new pair appeared at the contralateral position relative to the previous one. Spatial shifting events activated parietal areas V6/V6A and medial intraparietal area, caudo-dorsal visual areas, the most posterior portion of the superior temporal sulcus, and several smaller frontal areas. These areas were not activated during passive stimulation with the same sensory stimuli. During stay events, strong direction-sensitive attention signals were observed in a distributed set of contralateral visual, temporal, parietal, and lateral prefrontal areas, the vast majority overlapping with the sensory stimulus representation. We suggest medial intraparietal area and V6/V6A as functional counterparts of human SPL because they contained the most widespread shift signals in the absence of contralateral stay activity, resembling the functional characteristics of the human SPL shifting area. PMID:25995460

  12. Transverse vs torsional ultrasound: prospective randomized contralaterally controlled study comparing two phacoemulsification-system handpieces.

    PubMed

    Assil, Kerry K; Harris, Lindsay; Cecka, Jeannie

    2015-01-01

    To compare surgical efficiency and multiple early clinical outcome variables in eyes undergoing phacoemulsification using either transversal or torsional ultrasound systems. Assil Eye Institute, Beverly Hills, CA, USA. Prospective, randomized, clinician-masked, contralaterally controlled single-center evaluation. Patients seeking cataract removal in both eyes with implantation of multifocal intraocular lenses were randomly assigned to one of two treatment rooms for phacoemulsification with either a transverse ultrasound system or torsional handpiece system. The contralateral eye was treated at a later date with the alternate device. A total of 54 eyes of 27 patients having similar degrees of cataract, astigmatism, and visual potential were included. All operative data were collected for analysis, and patients were followed for 3 months after surgery. Similar visual acuity was reported at all postoperative visits between the two groups. Mean phacoemulsification time and total power required were both significantly lower with the transverse system than with the torsional technique (P<0.05 for both). Similarly, mean total balanced salt solution used was significantly less with the transverse system vs torsional (P<0.05). Postoperative safety demonstrated significantly lower endothelial cell loss at 1 day and 1 month (P<0.05) with transverse vs torsional. Macular swelling was less at 1 week, 1 month, and 3 months with transverse vs torsional, although the difference did not achieve significance (P=0.1) at any single time point. Clinically detectable corneal edema was reported less frequently at all postoperative time points with the transverse system. The transverse ultrasound system was found to be possibly associated with less balanced salt-solution use, less phacoemulsification time, and less power required than the torsional phaco system. Postoperative data suggested that improved phaco efficiency may translate to a better overall safety profile for the patient.

  13. Gait asymmetries in unilateral symptomatic hip osteoarthritis and their association with radiographic severity and pain.

    PubMed

    Farkas, Gary J; Schlink, Bryan R; Fogg, Louis F; Foucher, Kharma C; Wimmer, Markus A; Shakoor, Najia

    2018-05-01

    Little is known about the loading patterns in unilateral hip osteoarthritis (OA) and their relationship to radiographic severity and pain. We aimed to examine the loading patterns at the hips of those with unilateral symptomatic hip OA and identify associations between radiographic severity and pain with loading alterations. Sixty-one subjects with symptomatic unilateral hip OA underwent gait analyses and evaluation for radiographic severity (Kellgren-Lawrence [KL]-grade) and pain (visual analogue scale) at bilateral hips. Hip OA subjects had greater range of motion and higher hip flexion, adduction, internal and external rotation moments at the contralateral, asymptomatic hip compared to the ipsilateral hip ( p < 0.05). Correlations were noted between increasing KL-grade and increasing asymmetry of contralateral to ipsilateral hip loading ( p < 0.05). There were no relationships with pain and loading asymmetry. Unilateral symptomatic hip OA subjects demonstrate asymmetry in loading between the hips, with relatively greater loads at the contralateral hip. These loading asymmetries were directly related to the radiographic severity of symptomatic hip OA and not with pain. Additional research is needed to determine the role of gait asymmetries in disease progression.

  14. The effects of a two-step transfer on a visuomotor adaptation task.

    PubMed

    Aiken, Christopher A; Pan, Zhujun; Van Gemmert, Arend W A

    2017-11-01

    The literature has shown robust effects of transfer-of-learning to the contralateral side and more recently transfer-of-learning effects to a new effector type on the ipsilateral side. Few studies have investigated the effects of transfer-of-learning when skills transfer to both a new effector type and the contralateral side (two-step transfer). The purpose of the current study was to investigate the effects of two-step transfer and to examine which aspects of the movement transfer and which aspects do not. Individuals practiced a 30° visual rotation task with either the dominant or non-dominant limb and with either the use of the fingers and wrist or elbow and shoulder. Following practice, participants performed the task with the untrained effector type on the contralateral side. Results showed that initial direction error and trajectory length transferred from the dominant to the non-dominant side and movement time transferred from the elbow and shoulder condition to the wrist and finger conditions irrespective of which limb was used during practice. The results offer a unique perspective on the current theoretical and practical implications for transfer-of-learning and are further discussed in this paper.

  15. Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles

    PubMed Central

    Treue, Stefan

    2018-01-01

    Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n < 60) yielded substantially higher decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798

  16. Behavioral Investigation on the Frames of Reference Involved in Visuomotor Transformations during Peripheral Arm Reaching

    PubMed Central

    Pelle, Gina; Perrucci, Mauro Gianni; Galati, Gaspare; Fattori, Patrizia; Galletti, Claudio; Committeri, Giorgia

    2012-01-01

    Background Several psychophysical experiments found evidence for the involvement of gaze-centered and/or body-centered coordinates in arm-movement planning and execution. Here we aimed at investigating the frames of reference involved in the visuomotor transformations for reaching towards visual targets in space by taking target eccentricity and performing hand into account. Methodology/Principal Findings We examined several performance measures while subjects reached, in complete darkness, memorized targets situated at different locations relative to the gaze and/or to the body, thus distinguishing between an eye-centered and a body-centered frame of reference involved in the computation of the movement vector. The errors seem to be mainly affected by the visual hemifield of the target, independently from its location relative to the body, with an overestimation error in the horizontal reaching dimension (retinal exaggeration effect). The use of several target locations within the perifoveal visual field allowed us to reveal a novel finding, that is, a positive linear correlation between horizontal overestimation errors and target retinal eccentricity. In addition, we found an independent influence of the performing hand on the visuomotor transformation process, with each hand misreaching towards the ipsilateral side. Conclusions While supporting the existence of an internal mechanism of target-effector integration in multiple frames of reference, the present data, especially the linear overshoot at small target eccentricities, clearly indicate the primary role of gaze-centered coding of target location in the visuomotor transformation for reaching. PMID:23272180

  17. Selective attention and avoidance on a pictorial cueing task during stress in clinically anxious and depressed participants.

    PubMed

    Ellenbogen, Mark A; Schwartzman, Alex E

    2009-02-01

    Although it is well established that attentional biases exist in anxious populations, the specific components of visual orienting towards and away from emotional stimuli are not well delineated. The present study was designed to examine these processes. We used a modified spatial cueing task to assess the speed of engagement and disengagement from supraliminal and masked pictorial cues depicting threat, dysphoria, or neutral content in 36 clinically anxious, 41 depressed and 41 control participants. Participants were randomly assigned to a stress or neutral condition. During stress, anxious participants were slow to disengage from masked left hemifield pictures depicting threat or dysphoria, but were quick to disengage from supraliminal threat pictures. Information processing in anxious participants during stress was characterized by early selective attention of emotional stimuli, occurring prior to full conscious awareness, followed by effortful avoidance of threat. Depressed participants were distinct from the anxious group, displaying selective attention for stimuli depicting dysphoria, but not threat, during the neutral condition. In sum, attentional biases in clinical populations are associated with difficulties in the disengagement component of visual orienting. Further, a vigilant-avoidant pattern of attentional bias may represent a strategic attempt to compensate for the early activation of a fear response.

  18. Perceived shifts of flashed stimuli by visible and invisible object motion.

    PubMed

    Watanabe, Katsumi; Sato, Takashi R; Shimojo, Shinsuke

    2003-01-01

    Perceived positions of flashed stimuli can be altered by motion signals in the visual field-position capture (Whitney and Cavanagh, 2000 Nature Neuroscience 3 954-959). We examined whether position capture of flashed stimuli depends on the spatial relationship between moving and flashed stimuli, and whether the phenomenal permanence of a moving object behind an occluding surface (tunnel effect; Michotte 1950 Acta Psychologica 7 293-322) can produce position capture. Observers saw two objects (circles) moving vertically in opposite directions, one in each visual hemifield. Two horizontal bars were simultaneously flashed at horizontally collinear positions with the fixation point at various timings. When the movement of the object was fully visible, the flashed bar appeared shifted in the motion direction of the circle. But this position-capture effect occurred only when the bar was presented ahead of or on the moving circle. Even when the motion trajectory was covered by an opaque surface and the bar was flashed after complete occlusion of the circle, the position-capture effect was still observed, though the positional asymmetry was less clear. These results show that movements of both visible and 'hidden' objects can modulate the perception of positions of flashed stimuli and suggest that a high-level representation of 'objects in motion' plays an important role in the position-capture effect.

  19. Exploring conflict- and target-related movement of visual attention.

    PubMed

    Wendt, Mike; Garling, Marco; Luna-Rodriguez, Aquiles; Jacobsen, Thomas

    2014-01-01

    Intermixing trials of a visual search task with trials of a modified flanker task, the authors investigated whether the presentation of conflicting distractors at only one side (left or right) of a target stimulus triggers shifts of visual attention towards the contralateral side. Search time patterns provided evidence for lateral attention shifts only when participants performed the flanker task under an instruction assumed to widen the focus of attention, demonstrating that instruction-based control settings of an otherwise identical task can impact performance in an unrelated task. Contrasting conditions with response-related and response-unrelated distractors showed that shifting attention does not depend on response conflict and may be explained as stimulus-conflict-related withdrawal or target-related deployment of attention.

  20. [Visual evoked potentials produced by monocular flash stimuli in the cerebral cortex of the rabbit. I. Typography].

    PubMed

    Pérez-Cobo, J C; Ruiz-Beramendi, M; Pérez-Arroyo, M

    1990-12-01

    The visually evoked potentials in the hemisphere contralateral to the stimulated eye in rabbit, can be described topographically as follows. While a positive wave (P1) begins forming in the anterior zones and in the V I binocular zone, the N0 wave, at times very large, is produced in a more occipital zone, which corresponds to the visual streak. Immediately afterwards, the positivity, P1, practically invades the whole of the hemisphere. After this, the N1 wave which is produced in the most posterior parts of the V I, begins forming. The whole phenomenon comes to an end when the P2 wave is generated in the most occipital zones.

  1. Attention-spreading based on hierarchical spatial representations for connected objects.

    PubMed

    Kasai, Tetsuko

    2010-01-01

    Attention selects objects or groups as the most fundamental unit, and this may be achieved through a process in which attention automatically spreads throughout their entire region. Previously, we found that a lateralized potential relative to an attended hemifield at occipito-temporal electrode sites reflects attention-spreading in response to connected bilateral stimuli [Kasai, T., & Kondo, M. Electrophysiological correlates of attention-spreading in visual grouping. NeuroReport, 18, 93-98, 2007]. The present study examined the nature of object representations by manipulating the extent of grouping through connectedness, while controlling the symmetrical structure of bilateral stimuli. The electrophysiological results of two experiments consistently indicated that attention was guided twice in association with perceptual grouping in the early phase (N1, 150-200 msec poststimulus) and with the unity of an object in the later phase (N2pc, 310/330-390 msec). This suggests that there are two processes in object-based spatial selection, and these are discussed with regard to their cognitive mechanisms and object representations.

  2. Asymmetrical number-space mapping in the avian brain.

    PubMed

    Rugani, Rosa; Vallortigara, Giorgio; Vallini, Barbara; Regolin, Lucia

    2011-03-01

    When trained to peck a selected position in a sagittally-oriented series of identical food containers, and then required to generalize to an identical series rotated by 90°, chicks identify as correct only the target position from the left end, while choosing the right one at chance. Here we show that when accustomed to systematic changes in inter-elements distances during training or faced with similar spatial changes at test, chicks identify as correct both the target positions from left and right ends. However, ordinal position is spontaneously encoded even when inter-element distances are kept fixed during training (in spite of the fact that distances between elements suffice for target identification without any numerical computation). We explain these findings in terms of intra-hemispheric coupling of bilateral numerical (ordinal) representation and unilateral (right hemispheric) spatial representation of the number line, producing differential allocation of attention in the left and right visual hemifields. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. The grouping benefit in extinction: overcoming the temporal order bias.

    PubMed

    Rappaport, Sarah J; Riddoch, M Jane; Humphreys, Glyn W

    2011-01-01

    Grouping between contra- and ipsilesional stimuli can alleviate the lateralised bias in spatial extinction (Gilchrist, Humphreys, & Riddoch, 1996; Ward, Goodrich, & Driver, 1994). In the current study we demonstrate for the first time that perceptual grouping can also modulate the spatio/temporal biases in temporal order judgements affecting the temporal as well as the spatial coding of stimuli. Perceived temporal order was assessed by presenting two coloured letter stimuli in either hemi-field temporally segregated by a range of onset-intervals. Items were either identical (grouping condition) or differed in both shape and colour (non-grouping condition). Observers were required to indicate which item appeared second. Patients with visual extinction had a bias against the contralesional item appearing first, but this was modulated by perceptual grouping. When both items were identical in shape and colour the temporal bias against reporting the contralesional item was reduced. The results suggest that grouping can alter the coding of temporal relations between stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Temporal Progression of Visual Injury from Blast Exposure

    DTIC Science & Technology

    2016-09-01

    significantly different levels of protein among the experimental groups and between the eye ipsilateral and contralateral to the injury in each animal...vitreous biomarkers from the experimental studies. We added additional animals to this group due to some concerns with the accuracy of a small...Scientific Interface 2007 Solomon R Pollack Award for Excellence in Graduate Bioengineering Research 2001-2003 Stephenson Fellowship Award 2000-2004

  5. Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.

    PubMed

    Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon

    2016-01-06

    Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright © 2016 the authors 0270-6474/16/360251-10$15.00/0.

  6. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.

    PubMed

    Kammer, T; Beck, S; Erb, M; Grodd, W

    2001-11-01

    To quantify phosphene thresholds evoked by transcranial magnetic stimulation (TMS) in the occipital cortex as a function of induced current direction. Phosphene thresholds were determined in 6 subjects. We compared two stimulator types (Medtronic-Dantec and Magstim) with monophasic pulses using the standard figure-of-eight coils and systematically varied hemisphere (left and right) and induced current direction (latero-medial and medio-lateral). Each measurement was made 3 times, with a new stimulation site chosen for each repetition. Only those stimulation sites were investigated where phosphenes were restricted to one visual hemifield. Coil positions were stereotactically registered. Functional magnetic resonance imaging (fMRI) of retinotopic areas was performed in 5 subjects to individually characterize the borders of visual areas; TMS stimulation sites were coregistered with respect to visual areas. Despite large interindividual variance we found a consistent pattern of phosphene thresholds. They were significantly lower if the direction of the induced current was oriented from lateral to medial in the occipital lobe rather than vice versa. No difference with respect to the hemisphere was found. Threshold values normalized to the square root of the stored energy in the stimulators were lower with the Medtronic-Dantec device than with the Magstim device. fMRI revealed that stimulation sites generating unilateral phosphenes were situated at V2 and V3. Variability of phosphene thresholds was low within a cortical patch of 2x2cm(2). Stimulation over V1 yields phosphenes in both visual fields. The excitability of visual cortical areas depends on the direction of the induced current with a preference for latero-medial currents. Although the coil positions used in this study were centered over visual areas V2 and V3, we cannot rule out the possibility that subcortical structures or V1 could actually be the main generator for phosphenes.

  7. Behavior and modeling of two-dimensional precedence effect in head-unrestrained cats

    PubMed Central

    Ruhland, Janet L.; Yin, Tom C. T.

    2015-01-01

    The precedence effect (PE) is an auditory illusion that occurs when listeners localize nearly coincident and similar sounds from different spatial locations, such as a direct sound and its echo. It has mostly been studied in humans and animals with immobile heads in the horizontal plane; speaker pairs were often symmetrically located in the frontal hemifield. The present study examined the PE in head-unrestrained cats for a variety of paired-sound conditions along the horizontal, vertical, and diagonal axes. Cats were trained with operant conditioning to direct their gaze to the perceived sound location. Stereotypical PE-like behaviors were observed for speaker pairs placed in azimuth or diagonally in the frontal hemifield as the interstimulus delay was varied. For speaker pairs in the median sagittal plane, no clear PE-like behavior occurred. Interestingly, when speakers were placed diagonally in front of the cat, certain PE-like behavior emerged along the vertical dimension. However, PE-like behavior was not observed when both speakers were located in the left hemifield. A Hodgkin-Huxley model was used to simulate responses of neurons in the medial superior olive (MSO) to sound pairs in azimuth. The novel simulation incorporated a low-threshold potassium current and frequency mismatches to generate internal delays. The model exhibited distinct PE-like behavior, such as summing localization and localization dominance. The simulation indicated that certain encoding of the PE could have occurred before information reaches the inferior colliculus, and MSO neurons with binaural inputs having mismatched characteristic frequencies may play an important role. PMID:26133795

  8. Glaucoma-Diagnostic Ability of Ganglion Cell-Inner Plexiform Layer Thickness Difference Across Temporal Raphe in Highly Myopic Eyes.

    PubMed

    Kim, Young Kook; Yoo, Byeong Wook; Jeoung, Jin Wook; Kim, Hee Chan; Kim, Hae Jin; Park, Ki Ho

    2016-11-01

    To evaluate the glaucoma-diagnostic ability of the ganglion cell-inner plexiform layer (GCIPL) thickness difference across the temporal raphe in highly myopic eyes. We consecutively enrolled a total of 195 highly myopic eyes (axial length [AL] >26.5 mm) of 195 subjects: 93 glaucoma patients along with and 102 nonglaucomatous subjects. Cirrus high-definition optical coherence tomography (OCT) was employed to scan all of the subjects' macular and optic discs. Using a MATLAB-based customized program (the GCIPL hemifield test), a positive test result was automatically declared if the following two conditions were met: (1) the horizontal line is detected for longer than one-half of the distance from the temporal inner elliptical annulus to the outer elliptical annulus, and (2) the average GCIPL thickness difference within 10 pixels of the reference line, both above and below, is 5 μm or more. The glaucoma-diagnostic ability was computed using the area under the receiver operating characteristic curve (AUC). Among the glaucomatous eyes, GCIPL hemifield test positivity was shown in 92.5% (86 of 93), significantly higher than that for the nonglaucomatous eyes (4.90%, 5 of 102; P <0.001). The value of AUC for the GCIPL hemifield test was excellent (0.938; sensitivity 92.50%, specificity 95.10%) and was the best compared with those for any of OCT parameters. In highly myopic eyes, determination of the presence or absence of GCIPL thickness difference across the temporal raphe via OCT macula scan can be a useful means of distinguishing the glaucomatous damage.

  9. Competition between Visual Events Modulates the Influence of Salience during Free-Viewing of Naturalistic Videos

    PubMed Central

    Nardo, Davide; Console, Paola; Reverberi, Carlo; Macaluso, Emiliano

    2016-01-01

    In daily life the brain is exposed to a large amount of external signals that compete for processing resources. The attentional system can select relevant information based on many possible combinations of goal-directed and stimulus-driven control signals. Here, we investigate the behavioral and physiological effects of competition between distinctive visual events during free-viewing of naturalistic videos. Nineteen healthy subjects underwent functional magnetic resonance imaging (fMRI) while viewing short video-clips of everyday life situations, without any explicit goal-directed task. Each video contained either a single semantically-relevant event on the left or right side (Lat-trials), or multiple distinctive events in both hemifields (Multi-trials). For each video, we computed a salience index to quantify the lateralization bias due to stimulus-driven signals, and a gaze index (based on eye-tracking data) to quantify the efficacy of the stimuli in capturing attention to either side. Behaviorally, our results showed that stimulus-driven salience influenced spatial orienting only in presence of multiple competing events (Multi-trials). fMRI results showed that the processing of competing events engaged the ventral attention network, including the right temporoparietal junction (R TPJ) and the right inferior frontal cortex. Salience was found to modulate activity in the visual cortex, but only in the presence of competing events; while the orienting efficacy of Multi-trials affected activity in both the visual cortex and posterior parietal cortex (PPC). We conclude that in presence of multiple competing events, the ventral attention system detects semantically-relevant events, while regions of the dorsal system make use of saliency signals to select relevant locations and guide spatial orienting. PMID:27445760

  10. Signal/noise analysis to compare tests for measuring visual field loss and its progression.

    PubMed

    Artes, Paul H; Chauhan, Balwantray C

    2009-10-01

    To describe a methodology for establishing signal-to-noise ratios (SNRs) for different perimetric techniques, and to compare SNRs of frequency-doubling technology (FDT2) perimetry and standard automated perimetry (SAP). Fifteen patients with open-angle glaucoma (median MD, -2.6 dB, range +0.2 to -16.1 dB) were tested six times with FDT2 and SAP (SITA Standard program 24-2) within a 4-week period. Signals were estimated from the average superior-inferior difference between the mean deviation (MD) values in five mirror-pair sectors of the Glaucoma Hemifield Test, and noise from the dispersion of these differences over the six repeated tests. SNRs of FDT2 and SAP were compared by mixed-effects modeling. There was moderate correlation between the signals of FDT2 and SAP (r(2) = 0.68, P < 0.001), but no correlation of noise (r(2) = 0.01, P = 0.16). Although both signal as well as noise estimates were higher with FDT2 compared with SAP, 60% to 70% of sector pairs showed higher SNRs with FDT2. The SNRs of FDT2 were between 20% and 40% higher than those of SAP (P = 0.01). There were no meaningful differences between parametric and nonparametric estimates of signal, noise, or SNR. The higher SNRs of FDT2 suggest that this technique is at least as efficient as SAP at detecting localized visual field losses. Signal/noise analyses may provide a useful approach for comparing visual field tests independent of their decibel scales and may provide an initial indication of sensitivity to visual field change over time.

  11. The relationship between 3D morphology of optic disc and spatial patterns of visual field loss in glaucoma

    NASA Astrophysics Data System (ADS)

    Wang, Mengyu; Wang, Hui; Baniasadi, Neda; Elze, Tobias

    2017-02-01

    Purpose: Optic disc tilt defined over 3D optic disc morphology has been shown to be associated with the location of initial glaucomatous damages. In this work, we study the impact of optic cup depth (OCD) on spatial patterns of visual field loss in glaucoma. Methods: Pairs of reliable Cirrus OCT scans around optic disc and Humphrey visual fields of glaucoma patients without visually significant cataract and age-related macular degeneration were selected. The most recent visit of a randomly selected eye of each patient was chosen. The OCD was automatically calculated on the superior-inferior cross sectional image passing through the optic disc center. The correlations between the mean pattern deviation (PD) of each sector in glaucoma hemifield test (GHT) and Garway-Heath scheme and OCD were evaluated for all severities glaucoma and mild glaucoma (mean deviation >= -5 dB), respectively. Results: 424 eyes of 424 patients passed the data reliability criteria with 346 mild glaucoma patients. For all severities glaucoma, there was no significant correlation between the mean sector PD and OCD. For mild glaucoma, OCD was uniquely correlated to the mean PD of the inferior pericentral sector (r=-0.18, p=0.01) in GHT, which was independent of mean deviation and retinal nerve fiber layer thickness (p<0.001 for both). Conclusion: OCD was uniquely correlated to the vision loss of the inferior pericentral sector in GHT and Garway- Health scheme for mild glaucoma. Future advancement of OCT imaging techniques may provide better clinical diagnosis for early glaucoma by focusing on 3D morphological variation of the optic disc.

  12. Motivated attention and family risk for depression: Neuronal generator patterns at scalp elicited by lateralized aversive pictures reveal blunted emotional responsivity.

    PubMed

    Kayser, Jürgen; Tenke, Craig E; Abraham, Karen S; Alschuler, Daniel M; Alvarenga, Jorge E; Skipper, Jamie; Warner, Virginia; Bruder, Gerard E; Weissman, Myrna M

    2017-01-01

    Behavioral and electrophysiologic evidence suggests that major depression (MDD) involves right parietotemporal dysfunction, a region activated by arousing affective stimuli. Building on prior event-related potential (ERP) findings (Kayser et al. 2016 NeuroImage 142:337-350), this study examined whether these abnormalities also characterize individuals at clinical high risk for MDD. We systematically explored the impact of family risk status and personal history of depression and anxiety on three distinct stages of emotional processing comprising the late positive potential (LPP). ERPs (72 channels) were recorded from 74 high and 53 low risk individuals (age 13-59 years, 58 male) during a visual half-field paradigm using highly-controlled pictures of cosmetic surgery patients showing disordered (negative) or healed (neutral) facial areas before or after treatment. Reference-free current source density (CSD) transformations of ERP waveforms were quantified by temporal principal components analysis (tPCA). Component scores of prominent CSD-tPCA factors sensitive to emotional content were analyzed via permutation tests and repeated measures ANOVA for mixed factorial designs with unstructured covariance matrix, including gender, age and clinical covariates. Factor-based distributed inverse solutions provided descriptive estimates of emotional brain activations at group level corresponding to hierarchical activations along ventral visual processing stream. Risk status affected emotional responsivity (increased positivity to negative-than-neutral stimuli) overlapping early N2 sink (peak latency 212 ms), P3 source (385 ms), and a late centroparietal source (630 ms). High risk individuals had reduced right-greater-than-left emotional lateralization involving occipitotemporal cortex (N2 sink) and bilaterally reduced emotional effects involving posterior cingulate (P3 source) and inferior temporal cortex (630 ms) when compared to those at low risk. While the early emotional effects were enhanced for left hemifield (right hemisphere) presentations, hemifield modulations did not differ between risk groups, suggesting top-down rather than bottom-up effects of risk. Groups did not differ in their stimulus valence or arousal ratings. Similar effects were seen for individuals with a lifetime history of depression or anxiety disorder in comparison to those without. However, there was no evidence that risk status and history of MDD or anxiety disorder interacted in their impact on emotional responsivity, suggesting largely independent attenuation of attentional resource allocation to enhance perceptual processing of motivationally salient stimuli. These findings further suggest that a deficit in motivated attention preceding conscious awareness may be a marker of risk for depression.

  13. Bilateral totally extraperitoneal (TEP) repair of the ultrasound-diagnosed asymptomatic contralateral inguinal hernia.

    PubMed

    Malouf, Phillip A; Descallar, Joseph; Berney, Christophe R

    2018-02-01

    The aim of this series is to determine the clinical utility of routine ultrasound (US) of the contralateral, clinically normal groin when a unilateral inguinal hernia is referred for hernia repair-specifically assessing the morbidity and short-term change in quality-of-life (QoL) due to repair of this occult contralateral hernia when also repairing the symptomatic side. TEP inguinal hernia repair affords the opportunity to repair any groin hernia through the same small incisions. US detects 96.6% of groin hernias with 84.4% specificity. 234 consecutive male patients with clinically unilateral and clinically bilateral hernia were enrolled; those with a clinically unilateral hernia were sent for groin US and if positive, a bilateral TEP groin hernia repair was performed (USBH). If negative, a unilateral TEP groin hernia repair was performed (UNIH). Carolina's comfort scales (CCS) and visual analogue scores (VAS) were recorded at 2 and 6 weeks postoperatively, while a modified CCS (MCCS) was recorded for all patients preoperatively. Bilateral TEP repair resulted in higher VAS scores than unilateral repair at 2 weeks but not 6 weeks. CCS were worse in the USBH group than UNIH group at 2 weeks but were similar by 6 weeks. Complications' rates were similar amongst all 3 groups. Factors contributing to worse scores were: smaller hernia, complications, worse preoperative MCCS results, recurrent hernia and bilateral rather than unilateral repair. Bilateral TEP for the clinically unilateral groin hernia with an occult contralateral groin hernia can be performed without increased morbidity, accepting a minor and very temporary impairment of QoL.

  14. Retinal ganglion cell complex and peripapillary retinal nerve fiber layer thicknesses following carotid endarterectomy.

    PubMed

    Guclu, Orkut; Guclu, Hande; Huseyin, Serhat; Korkmaz, Selcuk; Yuksel, Volkan; Canbaz, Suat; Pelitli Gurlu, Vuslat

    2018-06-23

    To examine changes in retinal ganglion cell complex (GCC) and peripapillary retinal nerve fiber layer (RNFL) thicknesses by optical coherence tomography (OCT) in contralateral and ipsilatateral eyes of carotid artery stenosis (CAS) patients before and after carotid endarterectomy (CEA). Forty-two consecutive patients diagnosed with CAS (70-99% stenosis rate) who underwent CEA were included in this prospective cross-sectional study. The indication for CEA was based on the Asymptomatic Carotid Atherosclerosis Study. Doppler ultrasonography and computed tomography angiography were performed to calculate CAS. All the subjects underwent an ophthalmological examination, including best corrected visual acuity (BCVA), intraocular pressure (IOP) measurements, biomicroscopy, fundoscopy, and OCT before and after the surgery. The mean preoperative intraocular pressure was 15.2 ± 2.1 mmHg in the ipsilateral eye and 15.8 ± 2.7 in the contralateral eye. The mean postoperative intraocular pressure in the ipsilateral and contralateral eye was 18.6 ± 3.0 and 19.3 ± 3.8, respectively. The intraocular pressure was significantly higher in postoperative eyes (p = 0.0001). There was a statistically significant decrease in peripapillary RNFL thickness in superior quadrants postoperatively in ipsilateral eyes. The retinal GCC layer thickness was not significantly different before and after CEA in ipsilateral and contralateral eyes. Carotid endarterectomy results in thinning of the superior peripapillary RNFL thickness. To the best of our knowledge, this is the first study to examine peripapillary RNFL and GCC thicknesses before and after CEA.

  15. The Mirror Illusion Increases Motor Cortex Excitability in Children With and Without Hemiparesis.

    PubMed

    Grunt, Sebastian; Newman, Christopher J; Saxer, Stefanie; Steinlin, Maja; Weisstanner, Christian; Kaelin-Lang, Alain

    2017-03-01

    Mirror therapy provides a visual illusion of a normal moving limb by using the mirror reflection of the unaffected arm instead of viewing the paretic limb and is used in rehabilitation to improve hand function. Little is known about the mechanism underlying its effect in children with hemiparesis. To investigate the effect of the mirror illusion (MI) on the excitability of the primary motor cortex (M1) in children and adolescents. Twelve patients with hemiparesis (10-20 years) and 8 typically developing subjects (8-17 years) participated. Corticospinal reorganization was classified as contralateral (projection from contralateral hemisphere to affected hand) or ipsilateral (projection from ipsilateral hemisphere to affected hand). M1 excitability of the hemisphere projecting to the affected (nondominant in typically developing subjects) hand was obtained during 2 different conditions using single-pulse transcranial magnetic stimulation (TMS). Each condition (without/with mirror) consisted of a unimanual and a bimanual task. Motor-evoked potentials (MEPs) were recorded from the abductor pollicis brevis and flexor digitorum superficialis muscles. MEP amplitudes were significantly increased during the mirror condition ( P = .005) in typically developing subjects and in patients with contralateral reorganization. No significant effect of MI was found in subjects with ipsilateral reorganization. MI increased M1 excitability during active movements only. This increase was not correlated to hand function. MI increases the excitability of M1 in hemiparetic patients with contralateral corticospinal organization and in typically developing subjects. This finding provides neurophysiological evidence supporting the application of mirror therapy in selected children and adolescents with hemiparesis.

  16. Subcortical functional reorganization due to early blindness

    PubMed Central

    Jiang, Fang; Fine, Ione; Watkins, Kate E.; Bridge, Holly

    2015-01-01

    Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a “visual” subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses. PMID:25673746

  17. Visual Search Elicits the Electrophysiological Marker of Visual Working Memory

    PubMed Central

    Emrich, Stephen M.; Al-Aidroos, Naseem; Pratt, Jay; Ferber, Susanne

    2009-01-01

    Background Although limited in capacity, visual working memory (VWM) plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA), which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements. Methodology/Principal Findings The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency. Conclusions/Significance We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors. PMID:19956663

  18. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey.

    PubMed

    Ohtsuka, K; Noda, H

    1995-11-01

    1. We previously described discharge properties of cerebellar output cells in the fastigial nucleus during ipsilateral and contralateral saccades. Fastigial cells exhibited unique responses depending on the direction of saccades and were involved in execution of accurate targeting saccades. Purkinje cells in the oculomotor vermis (lobules VIc and VII) are thought to modulate these discharges of fastigial cells. In this study we reexamine discharge properties of Purkinje cells on the basis of this hypothesis. 2. Initially we physiologically identified the right and left sides of the oculomotor vermis. Saccade-related discharges of 79 Purkinje cells were recorded from both sides of the vermis during visually guided saccades toward the sides ipsilateral and contralateral to the recording side in two trained macaque monkeys. To clarify the correlation of Purkinje cell discharge with burst activities in the fastigial nucleus during saccadic eye movements, we analyzed our data by employing methods used in the study of fastigial neurons. 3. Among the 79 cells, 56 (71%) showed burst discharges during saccades (saccadic burst cells). Of the 56 cells, 29 exhibited a peak of burst discharges in both the contralateral and ipsilateral directions (bidirectional cells). The remaining 27 saccadic burst cells showed a peak of burst discharges during either contralateral or ipsilateral saccades (unidirectional cells). Among the 79 cells, 14 (18%) exhibited a pause of discharges during contralateral saccades (pause cells). Among the 79 cells, 9 (11%) showed burst discharge during contralateral saccades followed by tonic discharge that was correlated with eye position (burst tonic cells). 4. The timing of bursts in bidirectional cells with respect to saccade onset was dependent on the direction of saccade. During ipsilateral saccades, Purkinje cells exhibited a long lead burst that built up gradually, peaked near the onset of the saccade, and terminated sharply near midsaccade. The mean lead time relative to saccade onset was 29.3 +/- 24.5 (SD) ms. During contralateral saccades, Purkinje cells exhibited a short lead/late burst that built up sharply, peaked near midsaccade, and terminated gradually after the end of the saccade. The mean lead time relative to saccade onset was 10.7 +/- 20.8 ms. The burst onset time during contralateral saccades and the burst offset time during ipsilateral saccades preceded the saccade offset time by about the same interval regardless of the saccade amplitude. 5. In pause cells the pause preceded saccade onset by 17.5 +/- 10.6 ms. The duration of the pause was not correlated with the duration of saccades. There was little trial-to-trial variability in the onset time of the pause with respect to the onset of saccades, whereas there was large trial-to-trial variability in the offset time of the pause with respect to the offset of saccades. In addition, the mean onset time of the pause for each cell had a relatively narrow distribution. 6. The burst lead time of burst tonic cells relative to saccade onset was 9.5 +/- 3.9 ms. The tonic discharge rate of burst tonic cells was a nonlinear function of eye position. The regression of each cell was fit to two lines. The regression coefficient ranged from 0.95 to 0.99 (mean = 0.97). 7. Axons of Purkinje cells in the oculomotor vermis are thought to project exclusively to saccadic burst cells in the fastigial oculomotor region (FOR), which is located in the caudal portion of the fastigial nucleus. Our previous studies indicated that FOR cells provide temporal signals for controlling targeting saccades. The present results suggest that Purkinje cells in the oculomotor vermis modify the temporal signals of FOR cells for saccades in different directions and amplitudes. The modification of FOR cell activity by Purkinje cells is thought to be essential for the function of the cerebellum in the control of saccadic eye movements.

  19. The relationship between trans-femoral prosthesis alignment and the center trajectory of plantar pressure in the frontal plane

    PubMed Central

    Nomura, Tomohiro; Watanabe, Kota; Nosaka, Toshiya; Matsubara, Hiroyuki; Akiyama, Masaharu; Inui, Kimiharu

    2016-01-01

    [Purpose] It is difficult to identify by visual observation whether alignment abnormalities in trans-femoral prostheses in the frontal plane are attributable to the adduction angle or the abnormal alignment of the positions of the medial and lateral sides of the socket in relation to the foot. Therefore, we focused on the trajectory of the center of plantar pressure during walking, and we proposed a method for differentiating these two alignment abnormalities. [Subjects and Methods] We recruited 4 trans-femoral unilateral amputees. Bench alignment was achieved initially. We compared the amplitude of the trajectory of the center of plantar pressure when walking under 2 conditions: 1) when changing the adduction angle and 2) when changing the positional relationship between the socket and the foot. [Results] It was not possible to distinguish between the 2 types of malalignment on the prosthesis side. There was a significant difference when changing the positional relationship on the contralateral side. Thereby, the plantar pressure of the contralateral side could be used to distinguish between the 2 types of malalignment. [Conclusion] The results of this study suggested that trans-femoral prosthesis malalignment could be evaluated through the plantar pressure of the contralateral side in amputees. PMID:27065546

  20. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.

    PubMed

    Sheremata, Summer L; Somers, David C; Shomstein, Sarah

    2018-02-07

    Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. Cognitive mechanisms and neural activity underlying these tasks show a large degree of overlap. To examine whether activity within the posterior parietal cortex (PPC) reflects object maintenance across distraction or sustained attention per se, it is necessary to control for attentional demands inherent in VSTM tasks. We demonstrate that activity in PPC reflects VSTM demands even after controlling for attention; remembering items across distraction modulates relationships between parietal and other areas differently than during periods of sustained attention. Our study fills a gap in the literature by directly comparing and controlling for overlap between visual attention and VSTM tasks. Copyright © 2018 the authors 0270-6474/18/381511-09$15.00/0.

  1. Stimulation of the substantia nigra influences the specification of memory-guided saccades

    PubMed Central

    Mahamed, Safraaz; Garrison, Tiffany J.; Shires, Joel

    2013-01-01

    In the absence of sensory information, we rely on past experience or memories to guide our actions. Because previous experimental and clinical reports implicate basal ganglia nuclei in the generation of movement in the absence of sensory stimuli, we ask here whether one output nucleus of the basal ganglia, the substantia nigra pars reticulata (nigra), influences the specification of an eye movement in the absence of sensory information to guide the movement. We manipulated the level of activity of neurons in the nigra by introducing electrical stimulation to the nigra at different time intervals while monkeys made saccades to different locations in two conditions: one in which the target location remained visible and a second in which the target location appeared only briefly, requiring information stored in memory to specify the movement. Electrical manipulation of the nigra occurring during the delay period of the task, when information about the target was maintained in memory, altered the direction and the occurrence of subsequent saccades. Stimulation during other intervals of the memory task or during the delay period of the visually guided saccade task had less effect on eye movements. On stimulated trials, and only when the visual stimulus was absent, monkeys occasionally (∼20% of the time) failed to make saccades. When monkeys made saccades in the absence of a visual stimulus, stimulation of the nigra resulted in a rotation of the endpoints ipsilaterally (∼2°) and increased the reaction time of contralaterally directed saccades. When the visual stimulus was present, stimulation of the nigra resulted in no significant rotation and decreased the reaction time of contralaterally directed saccades slightly. Based on these measurements, stimulation during the delay period of the memory-guided saccade task influenced the metrics of saccades much more than did stimulation during the same period of the visually guided saccade task. Because these effects occurred with manipulation of nigral activity well before the initiation of saccades and in trials in which the visual stimulus was absent, we conclude that information from the basal ganglia influences the specification of an action as it is evolving primarily during performance of memory-guided saccades. When visual information is available to guide the specification of the saccade, as occurs during visually guided saccades, basal ganglia information is less influential. PMID:24259551

  2. Comparison of efficacy and safety of laser in situ keratomileusis using 2 femtosecond laser platforms in contralateral eyes.

    PubMed

    Rosman, Mohamad; Hall, Reece C; Chan, Cordelia; Ang, Andy; Koh, Jane; Htoon, Hla Myint; Tan, Donald T H; Mehta, Jodhbir S

    2013-07-01

    To compare the efficacy, predictability, and refractive outcomes of laser in situ keratomileusis (LASIK) using 2 femtosecond platforms for flap creation. Multisurgeon single center. Clinical trial. Bilateral femtosecond LASIK was performed using the Wavelight Allegretto Eye-Q 400 Hz excimer laser system. The Visumax femtosecond platform (Group 1) was used to create the LASIK flap in 1 eye, while the Intralase femtosecond platform (Group 2) was used to create the LASIK flap in the contralateral eye. The preoperative, 1-month, and 3-month postoperative visual acuities, refraction, and contrast sensitivity in the 2 groups were compared. The study enrolled 45 patients. Three months after femtosecond LASIK, 79.5% of eyes in Group 1 and 82.1% in Group 2 achieved an uncorrected distance visual acuity of 20/20 (P=.808). The mean efficacy index was 0.97 in Group 1 and 0.98 in Group 2 at 3 months (P=.735); 89.7% of eyes in Group 1 and 84.6% of eyes in Group 2 were within ± 0.50 diopter of emmetropia at 3 months (P=.498). No eye in either group lost more than 2 lines of corrected distance visual acuity. The mean safety index at 3 months was 1.11 in Group 1 and 1.10 in Group 2 (P=.570). The results of LASIK with both femtosecond lasers were similar, and both platforms produced efficacious and predictable LASIK outcomes. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Force adaptation transfers to untrained workspace regions in children: evidence for developing inverse dynamic motor models.

    PubMed

    Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor

    2002-03-01

    When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.

  4. Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools

    PubMed Central

    Vingerhoets, Guy

    2014-01-01

    Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement. PMID:24634664

  5. Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools.

    PubMed

    Vingerhoets, Guy

    2014-01-01

    Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement.

  6. The effects of self-focus on attentional biases in social anxiety:An ERP study.

    PubMed

    Judah, Matt R; Grant, DeMond M; Carlisle, Nancy B

    2016-06-01

    Cognitive theories of social anxiety disorder suggest that biased attention plays a key role in maintaining symptoms. These biases include self-focus and attention to socially threatening stimuli in the environment. The goal of this study was to utilize ERPs that are elicited by a change detection task to examine biases in selective attention (i.e., N2pc) and working memory maintenance (i.e., contralateral delay activity; CDA). Additionally, the effect of self-focus was examined using false heart rate feedback. In support of the manipulation, self-focus cues resulted in greater self-reported self-consciousness and task interference, enhanced anterior P2 amplitude and reduced SPN amplitude. Moreover, P2 amplitude for self-focus cues was correlated with reduced task performance for socially anxious subjects only. The difference in P2 amplitude between self-focus and standard cues was correlated with social anxiety independent of depression. As hypothesized, socially anxious participants (n = 20) showed early selection and maintenance of disgust faces relative to neutral faces as indicated by the N2pc and CDA components. Nonanxious controls (n = 22) did not show these biases. During self-focus cues, controls showed marginal evidence of biased selection for disgust faces, whereas socially anxious subjects showed no bias in this condition. Controls showed an ipsilateral delay activity after being cued to attend to one hemifield. Overall, this study supports early and persistent attentional bias for social threat in socially anxious individuals. Furthermore, self-focus may disrupt these biases. These findings and supplementary data are discussed in light of cognitive models of social anxiety disorder, recent empirical findings, and treatment.

  7. Considering Apical Scotomas, Confusion, and Diplopia When Prescribing Prisms for Homonymous Hemianopia

    PubMed Central

    Apfelbaum, Henry L.; Ross, Nicole C.; Bowers, Alex R.; Peli, Eli

    2013-01-01

    Purpose: While prisms are commonly prescribed for homonymous hemianopia to extend or expand the visual field, they cause potentially troubling visual side effects, including nonveridical location of perceived images, diplopia, and visual confusion. In addition, the field behind a prism at its apex is lost to an apical scotoma equal in magnitude to the amount of prism shift. The perceptual consequences of apical scotomas and the other effects of various designs were examined to consider parameters and designs that can mitigate the impact of these effects. Methods: Various configurations of sector and peripheral prisms were analyzed, in various directions of gaze, and their visual effects were illustrated using simulated perimetry. A novel “percept” diagram was developed that yielded insights into the patient's view through the prisms. The predictions were verified perimetrically with patients. Results: The diagrams distinguish between potentially beneficial field expansion via visual confusion and the pericentrally disturbing and useless effect of diplopia, and their relationship to prism power and gaze direction. They also illustrate the nonexpanding substitution of field segments of some popular prism designs. Conclusions: Yoked sector prisms have no effect at primary gaze or when gaze is directed toward the seeing hemifield, and they introduce pericentral field loss when gaze is shifted into them. When fitted unilaterally, sector prisms also have an effect only when the gaze is directed into the prism and may cause a pericentral scotoma and/or central diplopia. Peripheral prisms are effective at essentially all gaze angles. Since gaze is not directed into them, they avoid problematic pericentral effects. We derive useful recommendations for prism power and position parameters, including novel ways of fitting prisms asymmetrically. Translational Relevance: Clinicians will find these novel diagrams, diagramming techniques, and analyses valuable when prescribing prismatic aids for hemianopia and when designing new prism devices for patients with various types of field loss. PMID:24049719

  8. Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex.

    PubMed

    Eger, E; Pinel, P; Dehaene, S; Kleinschmidt, A

    2015-05-01

    Macaque electrophysiology has revealed neurons responsive to number in lateral (LIP) and ventral (VIP) intraparietal areas. Recently, fMRI pattern recognition revealed information discriminative of individual numbers in human parietal cortex but without precisely localizing the relevant sites or testing for subregions with different response profiles. Here, we defined the human functional equivalents of LIP (feLIP) and VIP (feVIP) using neurophysiologically motivated localizers. We applied multivariate pattern recognition to investigate whether both regions represent numerical information and whether number codes are position specific or invariant. In a delayed number comparison paradigm with laterally presented numerosities, parietal cortex discriminated between numerosities better than early visual cortex, and discrimination generalized across hemifields in parietal, but not early visual cortex. Activation patterns in the 2 parietal regions of interest did not differ in the coding of position-specific or position-independent number information, but in the expression of a numerical distance effect which was more pronounced in feLIP. Thus, the representation of number in parietal cortex is at least partially position invariant. Both feLIP and feVIP contain information about individual numerosities in humans, but feLIP hosts a coarser representation of numerosity than feVIP, compatible with either broader tuning or a summation code. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Outcomes of an anatomic total shoulder arthroplasty with a contralateral reverse total shoulder arthroplasty.

    PubMed

    Cox, Ryan M; Padegimas, Eric M; Abboud, Joseph A; Getz, Charles L; Lazarus, Mark D; Ramsey, Matthew L; Williams, Gerald R; Horneff, John G

    2018-06-01

    It is common for patients to require staged bilateral shoulder arthroplasties. There is a unique cohort of patients who require an anatomic total shoulder arthroplasty (TSA) and a contralateral reverse shoulder arthroplasty (RSA). This study compared the outcomes of patients with a TSA in 1 shoulder and an RSA in the contralateral shoulder. Our institutional database was queried to identify all patients with a TSA and a contralateral RSA. Data collection included patient demographics, preoperative and latest follow-up shoulder range of motion, radiographic analysis, and postoperative complications. Identified patients were assessed at follow-up visits or contacted by phone for functional outcome scores. Nineteen patients met our inclusion/exclusion criteria. There was statistically significant greater internal rotation in the TSA shoulder (P= .044) but no significant difference in forward elevation (P = .573) or external rotation (P= .368). There was no radiographic evidence of humeral or glenoid component loosening of any arthroplasty implants. There were no significant differences between TSA and RSA shoulders for the American Shoulder and Elbow Surgeons Standardized Shoulder Assessment (P= .381), Simple Shoulder Test (P = .352), Single Assessment Numerical Evaluation (P = .709), and visual analog scale satisfaction (P= .448) or pain scores (P= .305). Thirteen patients (68.4%) preferred the RSA side, 1 patient (5.3%; z = 4.04, P < .001) patient preferred the TSA side, and 5 patients expressed no preference. Despite known limitations and differences between TSA and RSA designs, patients who have received both implants are highly satisfied with both. The only parameter in which the TSA had superior outcomes was internal rotation. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. From Capture to Inhibition: How does Irrelevant Information Influence Visual Search? Evidence from a Spatial Cuing Paradigm

    PubMed Central

    Mertes, Christine; Wascher, Edmund; Schneider, Daniel

    2016-01-01

    Even though information is spatially and temporally irrelevant, it can influence the processing of subsequent information. The present study used a spatial cuing paradigm to investigate the origins of this persisting influence by means of event-related potentials (ERPs) of the EEG. An irrelevant color cue that was either contingent (color search) or non-contingent (shape search) on attentional sets was presented prior to a target array with different stimulus-onset asynchronies (SOA; 200, 400, 800 ms). Behavioral results indicated that color cues captured attention only when they shared target-defining properties. These same-location effects persisted over time but were pronounced when cue and target array were presented in close succession. N2 posterior contralateral (N2pc) showed that the color cue generally drew attention, but was strongest in the contingent condition. A subsequently emerging contralateral posterior positivity referred to the irrelevant cue (i.e., distractor positivity, Pd) was unaffected by the attentional set and therefore interpreted as an inhibitory process required to enable a re-direction of the attentional focus. Contralateral delay activity (CDA) was only observable in the contingent condition, indicating the transfer of spatial information into working memory and thus providing an explanation for the same-location effect for longer SOAs. Inhibition of this irrelevant information was reflected by a second contralateral positivity triggered through target presentation. The results suggest that distracting information is actively maintained when it resembles a sought-after object. However, two independent attentional processes are at work to compensate for attentional distraction: the timely inhibition of attentional capture and the active inhibition of mental representation of irrelevant information. PMID:27242493

  11. Transverse vs torsional ultrasound: prospective randomized contralaterally controlled study comparing two phacoemulsification-system handpieces

    PubMed Central

    Assil, Kerry K; Harris, Lindsay; Cecka, Jeannie

    2015-01-01

    Purpose To compare surgical efficiency and multiple early clinical outcome variables in eyes undergoing phacoemulsification using either transversal or torsional ultrasound systems. Setting Assil Eye Institute, Beverly Hills, CA, USA. Design Prospective, randomized, clinician-masked, contralaterally controlled single-center evaluation. Patients and methods Patients seeking cataract removal in both eyes with implantation of multifocal intraocular lenses were randomly assigned to one of two treatment rooms for phacoemulsification with either a transverse ultrasound system or torsional handpiece system. The contralateral eye was treated at a later date with the alternate device. A total of 54 eyes of 27 patients having similar degrees of cataract, astigmatism, and visual potential were included. All operative data were collected for analysis, and patients were followed for 3 months after surgery. Results Similar visual acuity was reported at all postoperative visits between the two groups. Mean phacoemulsification time and total power required were both significantly lower with the transverse system than with the torsional technique (P<0.05 for both). Similarly, mean total balanced salt solution used was significantly less with the transverse system vs torsional (P<0.05). Postoperative safety demonstrated significantly lower endothelial cell loss at 1 day and 1 month (P<0.05) with transverse vs torsional. Macular swelling was less at 1 week, 1 month, and 3 months with transverse vs torsional, although the difference did not achieve significance (P=0.1) at any single time point. Clinically detectable corneal edema was reported less frequently at all postoperative time points with the transverse system. Conclusion The transverse ultrasound system was found to be possibly associated with less balanced salt-solution use, less phacoemulsification time, and less power required than the torsional phaco system. Postoperative data suggested that improved phaco efficiency may translate to a better overall safety profile for the patient. PMID:26345628

  12. Distinct neural markers of TVA-based visual processing speed and short-term storage capacity parameters.

    PubMed

    Wiegand, Iris; Töllner, Thomas; Habekost, Thomas; Dyrholm, Mads; Müller, Hermann J; Finke, Kathrin

    2014-08-01

    An individual's visual attentional capacity is characterized by 2 central processing resources, visual perceptual processing speed and visual short-term memory (vSTM) storage capacity. Based on Bundesen's theory of visual attention (TVA), independent estimates of these parameters can be obtained from mathematical modeling of performance in a whole report task. The framework's neural interpretation (NTVA) further suggests distinct brain mechanisms underlying these 2 functions. Using an interindividual difference approach, the present study was designed to establish the respective ERP correlates of both parameters. Participants with higher compared to participants with lower processing speed were found to show significantly reduced visual N1 responses, indicative of higher efficiency in early visual processing. By contrast, for participants with higher relative to lower vSTM storage capacity, contralateral delay activity over visual areas was enhanced while overall nonlateralized delay activity was reduced, indicating that holding (the maximum number of) items in vSTM relies on topographically specific sustained activation within the visual system. Taken together, our findings show that the 2 main aspects of visual attentional capacity are reflected in separable neurophysiological markers, validating a central assumption of NTVA. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. The role of oscillatory brain activity in object processing and figure-ground segmentation in human vision.

    PubMed

    Kinsey, K; Anderson, S J; Hadjipapas, A; Holliday, I E

    2011-03-01

    The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Frontal Non-Invasive Neurostimulation Modulates Antisaccade Preparation in Non-Human Primates

    PubMed Central

    Valero-Cabre, Antoni; Wattiez, Nicolas; Monfort, Morgane; François, Chantal; Rivaud-Péchoux, Sophie; Gaymard, Bertrand; Pouget, Pierre

    2012-01-01

    A combination of oculometric measurements, invasive electrophysiological recordings and microstimulation have proven instrumental to study the role of the Frontal Eye Field (FEF) in saccadic activity. We hereby gauged the ability of a non-invasive neurostimulation technology, Transcranial Magnetic Stimulation (TMS), to causally interfere with frontal activity in two macaque rhesus monkeys trained to perform a saccadic antisaccade task. We show that online single pulse TMS significantly modulated antisaccade latencies. Such effects proved dependent on TMS site (effects on FEF but not on an actively stimulated control site), TMS modality (present under active but not sham TMS on the FEF area), TMS intensity (intensities of at least 40% of the TMS machine maximal output required), TMS timing (more robust for pulses delivered at 150 ms than at 100 post target onset) and visual hemifield (relative latency decreases mainly for ipsilateral AS). Our results demonstrate the feasibility of using TMS to causally modulate antisaccade-associated computations in the non-human primate brain and support the use of this approach in monkeys to study brain function and its non-invasive neuromodulation for exploratory and therapeutic purposes. PMID:22701691

  15. A novel method for the induction of experimental glaucoma using magnetic microspheres.

    PubMed

    Samsel, Paulina A; Kisiswa, Lilian; Erichsen, Jonathan T; Cross, Stephen D; Morgan, James E

    2011-03-25

    The development of a method for the sustained elevation of intraocular pressure in experimental glaucoma based on the anterior chamber injection of paramagnetic microbeads. Unilateral glaucoma was induced in adult male Norwegian Brown rats by the injection of paramagnetic polystyrene microspheres. A handheld 0.45 Tesla magnet was used to draw the beads into the iridocorneal angle to impede aqueous drainage via the trabecular meshwork. Elevated intraocular pressures (IOPs) were induced in 61 rats, resulting in a mean elevation of 5.8 mm Hg ± 1.0 (SEM) relative to the contralateral control eye. The mean duration of sustained IOP elevation (defined as >5 mm Hg relative to the control eye for at least 7 consecutive days) after a single injection was 12.8 days ± 0.9 (SEM, maximum duration 27 days). In all eyes, the visual axis remained clear from the time of injection, with minimal inflammation after injection. Retinal ganglion cell loss was determined in 21 animals (mean integral IOP, 194.5 mm Hg days ± 87.5 [SEM]) as 36.4% ± 2.4 (SEM) compared with the contralateral, untreated eye. The use of paramagnetic microbeads for the occlusion of the iridocorneal angle produces a sustained elevation of IOP with fewer injections and avoids the risk of visual axis occlusion. It represents a simple and effective method for the induction of experimental glaucoma.

  16. Selective binocular vision loss in two subterranean caviomorph rodents: Spalacopus cyanus and Ctenomys talarum

    PubMed Central

    Vega-Zuniga, T.; Medina, F. S.; Marín, G.; Letelier, J. C.; Palacios, A. G.; Němec, P.; Schleich, C. E.; Mpodozis, J.

    2017-01-01

    To what extent can the mammalian visual system be shaped by visual behavior? Here we analyze the shape of the visual fields, the densities and distribution of cells in the retinal ganglion-cell layer and the organization of the visual projections in two species of facultative non-strictly subterranean rodents, Spalacopus cyanus and Ctenomys talarum, aiming to compare these traits with those of phylogenetically closely related species possessing contrasting diurnal/nocturnal visual habits. S. cyanus shows a definite zone of frontal binocular overlap and a corresponding area centralis, but a highly reduced amount of ipsilateral retinal projections. The situation in C. talarum is more extreme as it lacks of a fronto-ventral area of binocular superposition, has no recognizable area centralis and shows no ipsilateral retinal projections except to the suprachiasmatic nucleus. In both species, the extension of the monocular visual field and of the dorsal region of binocular overlap as well as the whole set of contralateral visual projections, appear well-developed. We conclude that these subterranean rodents exhibit, paradoxically, diurnal instead of nocturnal visual specializations, but at the same time suffer a specific regression of the anatomical substrate for stereopsis. We discuss these findings in light of the visual ecology of subterranean lifestyles. PMID:28150809

  17. Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study.

    PubMed

    van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T

    2012-01-04

    The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.

  18. Callosal Influence on Visual Receptive Fields Has an Ocular, an Orientation-and Direction Bias.

    PubMed

    Conde-Ocazionez, Sergio A; Jungen, Christiane; Wunderle, Thomas; Eriksson, David; Neuenschwander, Sergio; Schmidt, Kerstin E

    2018-01-01

    One leading hypothesis on the nature of visual callosal connections (CC) is that they replicate features of intrahemispheric lateral connections. However, CC act also in the central part of the binocular visual field. In agreement, early experiments in cats indicated that they provide the ipsilateral eye part of binocular receptive fields (RFs) at the vertical midline (Berlucchi and Rizzolatti, 1968), and play a key role in stereoscopic function. But until today callosal inputs to receptive fields activated by one or both eyes were never compared simultaneously, because callosal function has been often studied by cutting or lesioning either corpus callosum or optic chiasm not allowing such a comparison. To investigate the functional contribution of CC in the intact cat visual system we recorded both monocular and binocular neuronal spiking responses and receptive fields in the 17/18 transition zone during reversible deactivation of the contralateral hemisphere. Unexpectedly from many of the previous reports, we observe no change in ocular dominance during CC deactivation. Throughout the transition zone, a majority of RFs shrink, but several also increase in size. RFs are significantly more affected for ipsi- as opposed to contralateral stimulation, but changes are also observed with binocular stimulation. Noteworthy, RF shrinkages are tiny and not correlated to the profound decreases of monocular and binocular firing rates. They depend more on orientation and direction preference than on eccentricity or ocular dominance of the receiving neuron's RF. Our findings confirm that in binocularly viewing mammals, binocular RFs near the midline are constructed via the direct geniculo-cortical pathway. They also support the idea that input from the two eyes complement each other through CC: Rather than linking parts of RFs separated by the vertical meridian, CC convey a modulatory influence, reflecting the feature selectivity of lateral circuits, with a strong cardinal bias.

  19. Visual area of the lateral suprasylvian gyrus (Clare—Bishop area) of the cat

    PubMed Central

    Hubel, David H.; Wiesel, Torsten N.

    1969-01-01

    On anatomical and physiological grounds a zone of cat cortex deep in the medial bank of the suprasylvian sulcus (the Clare—Bishop area) is known to receive strong visual projections both from the lateral geniculate body and area 17. We have mapped receptive fields of single cells in this area in eight cats. Active responses to visual stimuli were found over most of the medial bank of the suprasylvian sulcus extending to the depths and over to the lowest part of the lateral bank. The area is clearly topographically arranged. The first responsive cells, recorded over the lateral convexity and 2-3 mm down the medial bank, had receptive fields in the far periphery of the contralateral visual fields. The receptive fields tended to be large, but showed considerable variation in size and scatter in their positions. As the electrode advanced down the bank, fields of successively recorded cells gradually tended to move inwards, so that in the depths of the sulcus the inner borders of many of the fields reached the vertical mid line. Here the fields were smaller, though they still varied very much in size. Receptive fields were larger than in 17, 18, or 19, but otherwise were not obviously different from the complex and lower-order hypercomplex fields in those areas. No simple fields, or concentric fields of the retino-geniculate type, were seen. Cells with common receptive-field orientation were grouped together, but whether or not the grouping occurs in columns was not established. Most cells were driven independently by the two eyes. Fields in the two eyes seemed to be identical in organization. Cells dominated by the contralateral eye were much more common than ipsilaterally dominated ones, but when cells with parafoveal and peripheral fields were considered separately, the asymmetry was seen to apply mainly to cells with peripheral fields. PMID:5770897

  20. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    PubMed

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  1. Cognitive Science Program. Hierarchical Distributed Networks in the Neuropsychology of Selective Attention.

    DTIC Science & Technology

    1985-05-15

    The -. . . . . . . . . . ..- L 12 example, Hughes & Zimba (1985) have argued that attention acts simply by inhibiting the hemifield to which one is...and control of attention. Brain 104, 1981, 861-872. Hughes, H.C. & Zimba , L.D. Spatial maps of directed attention. Paper presented to the Psychonmics

  2. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial.

    PubMed

    Bennett, Jean; Wellman, Jennifer; Marshall, Kathleen A; McCague, Sarah; Ashtari, Manzar; DiStefano-Pappas, Julie; Elci, Okan U; Chung, Daniel C; Sun, Junwei; Wright, J Fraser; Cross, Dominique R; Aravand, Puya; Cyckowski, Laura L; Bennicelli, Jeannette L; Mingozzi, Federico; Auricchio, Alberto; Pierce, Eric A; Ruggiero, Jason; Leroy, Bart P; Simonelli, Francesca; High, Katherine A; Maguire, Albert M

    2016-08-13

    Safety and efficacy have been shown in a phase 1 dose-escalation study involving a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the contralateral eye in patients enrolled in the phase 1 study. In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1.5 × 10(11) vector genomes) in a total volume of 300 μL was subretinally injected into the contralateral, previously uninjected, eyes of 11 children and adults (aged 11-46 years at second administration) with inherited retinal dystrophy caused by RPE65 mutations, 1.71-4.58 years after the initial subretinal injection. We assessed safety, immune response, retinal and visual function, functional vision, and activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. This study is registered with ClinicalTrials.gov, number NCT01208389. No adverse events related to the AAV were reported, and those related to the procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, pooled analysis of ten participants showed improvements in mean mobility and full-field light sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0.0003, white light full-field sensitivity p<0.0001), but no significant change was seen in the previously injected eyes over the same time period (mobility p=0.7398, white light full-field sensitivity p=0.6709). Changes in visual acuity from baseline to year 3 were not significant in pooled analysis in the second eyes or the previously injected eyes (p>0.49 for all time-points compared with baseline). To our knowledge, AAV2-hRPE65v2 is the first successful gene therapy administered to the contralateral eye. The results highlight the use of several outcome measures and help to delineate the variables that contribute to maximal benefit from gene augmentation therapy in this disease. Center for Cellular and Molecular Therapeutics at The Children's Hospital of Philadelphia, Spark Therapeutics, US National Institutes of Health, Foundation Fighting Blindness, Institute for Translational Medicine and Therapeutics, Research to Prevent Blindness, Center for Advanced Retinal and Ocular Therapeutics, Mackall Foundation Trust, F M Kirby Foundation, and The Research Foundation-Flanders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutatons: a follow-on phase 1 trial

    PubMed Central

    Bennett, Jean; Wellman, Jennifer; Marshall, Kathleen A; McCague, Sarah; Ashtari, Manzar; DiStefano-Pappas, Julie; Elci, Okan U; Chung, Daniel C; Sun, Junwei; Wright, J Fraser; Cross, Dominique R; Aravand, Puya; Cyckowski, Laura L; Bennicelli, Jeannette L; Mingozzi, Federico; Auricchio, Alberto; Pierce, Eric A; Ruggiero, Jason; Leroy, Bart P; Simonelli, Francesca; High, Katherine A; Maguire, Albert M

    2017-01-01

    Summary Background Safety and efficacy have been shown in a phase 1 dose-escalation study involving a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the contralateral eye in patients enrolled in the phase 1 study. Methods In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1·5 × 1011 vector genomes) in a total volume of 300 μL was subretinally injected into the contralateral, previously uninjected, eyes of 11 children and adults (aged 11–46 years at second administration) with inherited retinal dystrophy caused by RPE65 mutations, 1·71–4·58 years after the initial subretinal injection. We assessed safety, immune response, retinal and visual function, functional vision, and activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. This study is registered with ClinicalTrials.gov, number NCT01208389. Findings No adverse events related to the AAV were reported, and those related to the procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, pooled analysis of ten participants showed improvements in mean mobility and full-field light sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0·0003, white light full-field sensitivity p<0·0001), but no significant change was seen in the previously injected eyes over the same time period (mobility p=0·7398, white light full-field sensitivity p=0·6709). Changes in visual acuity from baseline to year 3 were not significant in pooled analysis in the second eyes or the previously injected eyes (p>0·49 for all time-points compared with baseline). Interpretation To our knowledge, AAV2-hRPE65v2 is the first successful gene therapy administered to the contralateral eye. The results highlight the use of several outcome measures and help to delineate the variables that contribute to maximal benefit from gene augmentation therapy in this disease. Funding Center for Cellular and Molecular Therapeutics at The Children’s Hospital of Philadelphia, Spark Therapeutics, US National Institutes of Health, Foundation Fighting Blindness, Institute for Translational Medicine and Therapeutics, Research to Prevent Blindness, Center for Advanced Retinal and Ocular Therapeutics, Mackall Foundation Trust, F M Kirby Foundation, and The Research Foundation—Flanders. PMID:27375040

  4. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres

    PubMed Central

    Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.

    2016-01-01

    A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865

  5. Virtually simulated social pressure influences early visual processing more in low compared to high autonomous participants.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2014-02-01

    In a previous study, we showed that virtually simulated social group pressure could influence early stages of perception after only 100  ms. In the present EEG study, we investigated the influence of social pressure on visual perception in participants with high (HA) and low (LA) levels of autonomy. Ten HA and ten LA individuals were asked to accomplish a visual discrimination task in an adapted paradigm of Solomon Asch. Results indicate that LA participants adapted to the incorrect group opinion more often than HA participants (42% vs. 30% of the trials, respectively). LA participants showed a larger posterior P1 component contralateral to targets presented in the right visual field when conforming to the correct compared to conforming to the incorrect group decision. In conclusion, our ERP data suggest that the group context can have early effects on our perception rather than on conscious decision processes in LA, but not HA participants. Copyright © 2013 Society for Psychophysiological Research.

  6. Visualization of tumor blockage and rerouting of lymphatic drainage in penile cancer patients by use of SPECT/CT.

    PubMed

    Leijte, Joost A P; van der Ploeg, Iris M C; Valdés Olmos, Renato A; Nieweg, Omgo E; Horenblas, Simon

    2009-03-01

    The reliability of sentinel node biopsy is dependent on the accurate visualization and identification of the sentinel node(s). It has been suggested that extensive metastatic involvement of a sentinel node can lead to blocked inflow and rerouting of lymph fluid to a "neo-sentinel node" that may not yet contain tumor cells, causing a false-negative result. However, there is little evidence to support this hypothesis. Recently introduced hybrid SPECT/CT scanners provide both tomographic lymphoscintigraphy and anatomic detail. Such a scanner enabled the present study of the concept of tumor blockage and rerouting of lymphatic drainage in patients with palpable groin metastases. Seventeen patients with unilateral palpable and cytologically proven metastases in the groin underwent bilateral conventional lymphoscintigraphy and SPECT/CT before sentinel node biopsy of the contralateral groin. The pattern of lymphatic drainage in the 17 palpable groin metastases was evaluated for signs of tumor blockage or rerouting. On the CT images, the palpable node metastases could be identified in all 17 groins. Four of the 17 palpable node metastases (24%) showed uptake of radioactivity on the SPECT/CT images. In 10 groins, rerouting of lymphatic drainage to a neo-sentinel node was seen; one neo-sentinel node was located in the contralateral groin. A complete absence of lymphatic drainage was seen in the remaining 3 groins. The concept of tumor blockage and rerouting was visualized in 76% of the groins with palpable metastases. Precise physical examination and preoperative ultrasound with fine-needle aspiration cytology may identify nodes with considerable tumor invasion at an earlier stage and thereby reduce the incidence of false-negative results.

  7. Intraocular straylight and contrast sensitivity after contralateral wavefront-guided LASIK and wavefront-guided PRK for myopia.

    PubMed

    Barreto, Jackson; Barboni, Mirella T S; Feitosa-Santana, Claudia; Sato, João R; Bechara, Samir J; Ventura, Dora F; Alves, Milton Ruiz

    2010-08-01

    To compare intraocular straylight measurements and contrast sensitivity after wavefront-guided LASIK (WFG LASIK) in one eye and wavefront-guided photorefractive keratectomy (WFG PRK) in the fellow eye for myopia and myopic astigmatism correction. A prospective, randomized study of 22 eyes of 11 patients who underwent simultaneous WFG LASIK and WFG PRK (contralateral eye). Both groups were treated with the NIDEK Advanced Vision Excimer Laser System, and a microkeratome was used for flap creation in the WFG LASIK group. High and low contrast visual acuity, wavefront analysis, contrast sensitivity, and retinal straylight measurements were performed preoperatively and at 3, 6, and 12 months postoperatively. A third-generation straylight meter, C-Quant (Oculus Optikgeräte GmbH), was used for measuring intraocular straylight. Twelve months postoperatively, mean uncorrected distance visual acuity was -0.06 +/- 0.07 logMAR in the WFG LASIK group and -0.10 +/- 0.10 logMAR in the WFG PRK group. Mean preoperative intraocular straylight was 0.94 +/- 0.12 logs for the WFG LASIK group and 0.96 +/- 0.11 logs for the WFG PRK group. After 12 months, the mean straylight value was 1.01 +/- 0.1 log s for the WFG LASIK group and 0.97 +/- 0.12 log s for the WFG PRK group. No difference was found between techniques after 12 months (P = .306). No significant difference in photopic and mesopic contrast sensitivity between groups was noted. Intraocular straylight showed no statistically significant increase 1 year after WFG LASIK and WFG PRK. Higher order aberrations increased significantly after surgery for both groups. Nevertheless, WFG LASIK and WFG PRK yielded excellent visual acuity and contrast sensitivity performance without significant differences between techniques.

  8. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception

    PubMed Central

    Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou

    2017-01-01

    The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs. PMID:28348530

  9. More target features in visual working memory leads to poorer search guidance: Evidence from contralateral delay activity

    PubMed Central

    Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J.

    2014-01-01

    The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewed two photorealistic objects and were cued to remember one. CDA was measured during a delay following preview offset but before onset of a four-object search array. One of the targets was always present, and observers were asked to make an eye movement to it and press a button. We found lower magnitude CDA on trials when the initial search saccade was directed to the target (strong guidance) compared to when it was not (weak guidance). This difference also tended to be larger shortly before search-display onset and was largely unaffected by VWM item-capacity limits or number of previews. Moreover, the difference between mean strong- and weak-guidance CDA was proportional to the increase in search time between mean strong-and weak-guidance trials (as measured by time-to-target and reaction-time difference scores). Contrary to most search models, our data suggest that trials resulting in the maintenance of more target features results in poor search guidance to a target. We interpret these counterintuitive findings as evidence for strong search guidance using a small set of highly discriminative target features that remain after pruning from a larger set of features, with the load imposed on VWM varying with this feature-consolidation process. PMID:24599946

  10. More target features in visual working memory leads to poorer search guidance: evidence from contralateral delay activity.

    PubMed

    Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J

    2014-03-05

    The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewed two photorealistic objects and were cued to remember one. CDA was measured during a delay following preview offset but before onset of a four-object search array. One of the targets was always present, and observers were asked to make an eye movement to it and press a button. We found lower magnitude CDA on trials when the initial search saccade was directed to the target (strong guidance) compared to when it was not (weak guidance). This difference also tended to be larger shortly before search-display onset and was largely unaffected by VWM item-capacity limits or number of previews. Moreover, the difference between mean strong- and weak-guidance CDA was proportional to the increase in search time between mean strong-and weak-guidance trials (as measured by time-to-target and reaction-time difference scores). Contrary to most search models, our data suggest that trials resulting in the maintenance of more target features results in poor search guidance to a target. We interpret these counterintuitive findings as evidence for strong search guidance using a small set of highly discriminative target features that remain after pruning from a larger set of features, with the load imposed on VWM varying with this feature-consolidation process.

  11. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception.

    PubMed

    Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou

    2017-01-01

    The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs.

  12. Minimally invasive resection of lumbar intraspinal synovial cysts via a contralateral approach: review of 13 cases.

    PubMed

    Sukkarieh, Hamdi G; Hitchon, Patrick W; Awe, Olatilewa; Noeller, Jennifer

    2015-10-01

    The authors sought to determine patient-related outcomes after minimally invasive surgical (MIS) lumbar intraspinal synovial cyst excision via a tubular working channel and a contralateral facet-sparing approach. All the patients with a symptomatic lumbar intraspinal synovial cyst who underwent surgery at the University of Iowa Hospitals and Clinics with an MIS excision via a contralateral approach were treated between July 2010 and August 2014. There was a total of 13 cases. Each patient was evaluated with preoperative neurological examinations, lumbar spine radiography, MRI, and visual analog scale (VAS) scores. The patients were evaluated postoperatively with neurological examinations and VAS and Macnab scores. The primary outcomes were improvement in VAS and Macnab scores. Secondary outcomes were average blood loss, hospital stay duration, and operative times. There were 5 males and 8 females. The mean age was 66 years, and the mean body mass index was 28.5 kg/m(2). Sixty-nine percent (9 of 13) of the cysts were at L4-5. Most patients had low-back pain and radicular pain, and one-third of them had Grade 1 spondylolisthesis. The mean (± SD) follow-up duration was 20.8 ± 16.9 months. The mean Macnab score was 3.4 ± 1.0, and the VAS score decreased from 7.8 preoperatively to 2.9 postoperatively. The mean operative time was 123 ± 30 minutes, with a mean estimated blood loss of 44 ± 29 ml. Hospital stay averaged 1.5 ± 0.7 days. There were no complications noted in this series. The MIS excision of lumbar intraspinal synovial cysts via a contralateral approach offers excellent exposure to the cyst and spares the facet joint at the involved level, thus minimizing risk of instability, blood loss, operative time, and hospital stay. Prospective randomized trials with longer follow-up times and larger cohorts are needed to conclusively determine the superiority of the contralateral MIS approach over others, including open or ipsilateral minimally invasive surgery.

  13. F-18 choline PET does not detect increased metabolism in F-18 fluoroethyltyrosine-negative low-grade gliomas.

    PubMed

    Roelcke, Ulrich; Bruehlmeier, Matthias; Hefti, Martin; Hundsberger, Thomas; Nitzsche, Egbert U

    2012-01-01

    Positron emission tomography (PET) with radiolabeled amino acids provides information on biopsy target and chemotherapy response in patients with low-grade gliomas (LGG). In this article, we addressed whether PET with F-18 choline (CHO) detects increased metabolism in F-18 fluoroethyltyrosine (FET)-negative LGG patients. Six LGG patients with nongadolinium-enhancing (magnetic resonance) FET-negative LGG were imaged with CHO PET. Regions of interest were positioned over tumor and contralateral brain. Uptake of FET and CHO was quantified as count ratio of tumor to contralateral brain. The mean FET uptake ratio for FET-negative LGG was 0.95 ± 0.03 (mean ± standard deviation). Five tumors did not show increased uptake ratios for CHO (0.96 ± 0.12). Slightly increased CHO uptake was found in 1 patient (1.24), which, however, was not associated with tumor visualization. Amino acid and choline uptake appear to behave similar in nongadolinium-enhancing LGG. For clinical purposes, CHO PET is not superior to FET PET.

  14. Identification of Eye-Specific Domains and Their Relation to Callosal Connections in Primary Visual Cortex of Long Evans Rats

    PubMed Central

    Laing, R.J.; Turecek, J.; Takahata, T.; Olavarria, J.F.

    2015-01-01

    Ocular dominance columns (ODCs) exist in many primates and carnivores, but it is believed that they do not exist in rodents. Using a combination of transneuronal tracing, in situ hybridization for Zif268 and electrophysiological recordings, we show that inputs from both eyes are largely segregated in the binocular region of V1 in Long Evans rats. We also show that, interposed between this binocular region and the lateral border of V1, there lies a strip of cortex that is strongly dominated by the contralateral eye. Finally, we show that callosal connections colocalize primarily with ipsilateral eye domains in the binocular region and with contralateral eye input in the lateral cortical strip, mirroring the relationship between patchy callosal connections and specific sets of ODCs described previously in the cat. Our results suggest that development of cortical modular architecture is more conserved among rodents, carnivores, and primates than previously thought. PMID:24969475

  15. Acupuncture for lateral epicondylitis (tennis elbow): study protocol for a randomized, practitioner-assessor blinded, controlled pilot clinical trial.

    PubMed

    Shin, Kyung-Min; Kim, Joo-Hee; Lee, Seunghoon; Shin, Mi-Suk; Kim, Tae-Hun; Park, Hyo-Ju; Lee, Min-Hee; Hong, Kwon-Eui; Lee, Seungdeok; Choi, Sun-Mi

    2013-06-14

    Lateral epicondylitis is the most frequent cause of pain around the elbow joint. It causes pain in the region of the elbow joint and results in dysfunction of the elbow and deterioration of the quality of life. The purpose of this study is to compare the effects of ipsilateral acupuncture, contralateral acupuncture and sham acupuncture on lateral epicondylitis. Forty-five subjects with lateral epicondylitis will be randomized into three groups: the ipsilateral acupuncture group, contralateral acupuncture group and the sham acupuncture group. The inclusion criteria will be as follows: (1) age between 19 and 65 years with pain due to one-sided lateral epicondylitis that persisted for at least four weeks, (2) with tenderness on pressure limited to regions around the elbow joint, (3) complaining of pain during resistive extension of the middle finger or the wrist, (4) with average pain of NRS 4 or higher during the last one week at a screening visit and (5) voluntarily agree to this study and sign a written consent. Acupuncture treatment will be given 10 times in total for 4 weeks to all groups. Follow up observations will be conducted after the completion of the treatment, 8 weeks and 12 weeks after the random assignment. Ipsilateral acupuncture group and contralateral acupuncture group will receive acupuncture on LI4, TE5, LI10, LI11, LU5, LI12 and two Ashi points. The sham acupuncture group will receive treatment on acupuncture points not related to the lateral epicondylitis using a non-invasive method. The needles will be maintained for 20 minutes. The primary outcome will be differences in the visual analogue scale (VAS) for elbow pain between the groups. The secondary outcome will be differences in patient-rated tennis elbow evaluation (PRTEE), pain-free/maximum grip strength (Dynamometer), pressure pain threshold, clinically relevant improvement, patient global assessment, and the EQ-5D. The data will be analyzed with the paired t-test and ANCOVA (P <0.05). The results of this study will allow evaluation of contralateral acupuncture from two aspects. First, if the contralateral acupuncture shows the effects similar to ipsilateral acupuncture, this will establish clinical basis for contralateral acupuncture. Second, if the effects of contralateral acupuncture are not comparable to the effects of ipsilateral acupuncture, but are shown to be similar to the effects of the sham acupuncture, we can establish the basis for using the same acupoints of the unaffected side as a control in acupuncture clinical studies. This trial has been registered with the 'Clinical Research Information Service (CRIS)', Republic of Korea: KCT0000628.

  16. Acupuncture for lateral epicondylitis (tennis elbow): study protocol for a randomized, practitioner-assessor blinded, controlled pilot clinical trial

    PubMed Central

    2013-01-01

    Background Lateral epicondylitis is the most frequent cause of pain around the elbow joint. It causes pain in the region of the elbow joint and results in dysfunction of the elbow and deterioration of the quality of life. The purpose of this study is to compare the effects of ipsilateral acupuncture, contralateral acupuncture and sham acupuncture on lateral epicondylitis. Methods/design Forty-five subjects with lateral epicondylitis will be randomized into three groups: the ipsilateral acupuncture group, contralateral acupuncture group and the sham acupuncture group. The inclusion criteria will be as follows: (1) age between 19 and 65 years with pain due to one-sided lateral epicondylitis that persisted for at least four weeks, (2) with tenderness on pressure limited to regions around the elbow joint, (3) complaining of pain during resistive extension of the middle finger or the wrist, (4) with average pain of NRS 4 or higher during the last one week at a screening visit and (5) voluntarily agree to this study and sign a written consent. Acupuncture treatment will be given 10 times in total for 4 weeks to all groups. Follow up observations will be conducted after the completion of the treatment, 8 weeks and 12 weeks after the random assignment. Ipsilateral acupuncture group and contralateral acupuncture group will receive acupuncture on LI4, TE5, LI10, LI11, LU5, LI12 and two Ashi points. The sham acupuncture group will receive treatment on acupuncture points not related to the lateral epicondylitis using a non-invasive method. The needles will be maintained for 20 minutes. The primary outcome will be differences in the visual analogue scale (VAS) for elbow pain between the groups. The secondary outcome will be differences in patient-rated tennis elbow evaluation (PRTEE), pain-free/maximum grip strength (Dynamometer), pressure pain threshold, clinically relevant improvement, patient global assessment, and the EQ-5D. The data will be analyzed with the paired t-test and ANCOVA (P <0.05). Discussion The results of this study will allow evaluation of contralateral acupuncture from two aspects. First, if the contralateral acupuncture shows the effects similar to ipsilateral acupuncture, this will establish clinical basis for contralateral acupuncture. Second, if the effects of contralateral acupuncture are not comparable to the effects of ipsilateral acupuncture, but are shown to be similar to the effects of the sham acupuncture, we can establish the basis for using the same acupoints of the unaffected side as a control in acupuncture clinical studies. Trial registration This trial has been registered with the ‘Clinical Research Information Service (CRIS)’, Republic of Korea: KCT0000628. PMID:23768129

  17. Neural activity reveals perceptual grouping in working memory.

    PubMed

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  18. Caffeine Improves Left Hemisphere Processing of Positive Words

    PubMed Central

    Kuchinke, Lars; Lux, Vanessa

    2012-01-01

    A positivity advantage is known in emotional word recognition in that positive words are consistently processed faster and with fewer errors compared to emotionally neutral words. A similar advantage is not evident for negative words. Results of divided visual field studies, where stimuli are presented in either the left or right visual field and are initially processed by the contra-lateral brain hemisphere, point to a specificity of the language-dominant left hemisphere. The present study examined this effect by showing that the intake of caffeine further enhanced the recognition performance of positive, but not negative or neutral stimuli compared to a placebo control group. Because this effect was only present in the right visual field/left hemisphere condition, and based on the close link between caffeine intake and dopaminergic transmission, this result points to a dopaminergic explanation of the positivity advantage in emotional word recognition. PMID:23144893

  19. Dichoptic training enables the adult amblyopic brain to learn.

    PubMed

    Li, Jinrong; Thompson, Benjamin; Deng, Daming; Chan, Lily Y L; Yu, Minbin; Hess, Robert F

    2013-04-22

    Adults with amblyopia, a common visual cortex disorder caused primarily by binocular disruption during an early critical period, do not respond to conventional therapy involving occlusion of one eye. But it is now clear that the adult human visual cortex has a significant degree of plasticity, suggesting that something must be actively preventing the adult brain from learning to see through the amblyopic eye. One possibility is an inhibitory signal from the contralateral eye that suppresses cortical inputs from the amblyopic eye. Such a gating mechanism could explain the apparent lack of plasticity within the adult amblyopic visual cortex. Here we provide direct evidence that alleviating suppression of the amblyopic eye through dichoptic stimulus presentation induces greater levels of plasticity than forced use of the amblyopic eye alone. This indicates that suppression is a key gating mechanism that prevents the amblyopic brain from learning to see. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Interhemispheric integration in visual search

    PubMed Central

    Shipp, Stewart

    2011-01-01

    The search task of Luck, Hillyard, Mangun and Gazzaniga (1989) was optimised to test for the presence of a bilateral field advantage in the visual search capabilities of normal subjects. The modified design used geometrically regular arrays of 2, 4 or 8 items restricted to hemifields delineated by the vertical or horizontal meridian; the target, if present, appeared at one of two fixed positions per quadrant at an eccentricity of 11 deg. Group and individual performance data were analysed in terms of the slope of response time against display-size functions (‘RT slope’). Averaging performance across all conditions save display mode (bilateral vs. unilateral) revealed a significant bilateral advantage in the form of a 21% increase in apparent item scanning speed for target detection; in the absence of a target, bilateral displays gave a 5% increase in speed that was not significant. Factor analysis by ANOVA confirmed this main effect of display mode, and also revealed several higher order interactions with display geometry, indicating that the bilateral advantage was masked at certain target positions by a crowding-like effect. In a numerical model of search efficiency (i.e. RT slope), bilateral advantage was parameterised by an interhemispheric ‘transfer factor’ (T) that governs the strength of the ipsilateral representation of distractors, and modifies the level of intrahemispheric competition with the target. The factor T was found to be higher in superior field than inferior field; this result held for the modelled data of each individual subject, as well as the group, representing a uniform tendency for the bilateral advantage to be more prominent in inferior field. In fact statistical analysis and modelling of search efficiency showed that the geometrical display factors (target polar and quadrantic location, and associated crowding effects) were all remarkably consistent across subjects. Greater variability was inferred within a fixed, decisional component of response time, with individual subjects capable of opposite hemifield biases. The results are interpretable by a guided search model of spatial attention – a first, parallel stage guiding selection by a second, serial stage – with the proviso that the first stage is relatively insular within each hemisphere. The bilateral advantage in search efficiency can then be attributed to a relative gain in target weight within the initial parallel stage, owing to a reduction in distractor competition mediated specifically by intrahemispheric circuitry. In the absence of a target there is no effective guidance, and hence no basis for a bilateral advantage to enhance search efficiency; the equivalence of scanning speed for the two display modes (bilateral and unilateral) implies a unitary second-stage process mediated via efficient interhemispheric integration. PMID:21640738

  1. Interhemispheric integration in visual search.

    PubMed

    Shipp, Stewart

    2011-07-01

    The search task of Luck, Hillyard, Mangun and Gazzaniga (1989) was optimised to test for the presence of a bilateral field advantage in the visual search capabilities of normal subjects. The modified design used geometrically regular arrays of 2, 4 or 8 items restricted to hemifields delineated by the vertical or horizontal meridian; the target, if present, appeared at one of two fixed positions per quadrant at an eccentricity of 11 deg. Group and individual performance data were analysed in terms of the slope of response time against display-size functions ('RT slope'). Averaging performance across all conditions save display mode (bilateral vs. unilateral) revealed a significant bilateral advantage in the form of a 21% increase in apparent item scanning speed for target detection; in the absence of a target, bilateral displays gave a 5% increase in speed that was not significant. Factor analysis by ANOVA confirmed this main effect of display mode, and also revealed several higher order interactions with display geometry, indicating that the bilateral advantage was masked at certain target positions by a crowding-like effect. In a numerical model of search efficiency (i.e. RT slope), bilateral advantage was parameterised by an interhemispheric 'transfer factor' (T) that governs the strength of the ipsilateral representation of distractors, and modifies the level of intrahemispheric competition with the target. The factor T was found to be higher in superior field than inferior field; this result held for the modelled data of each individual subject, as well as the group, representing a uniform tendency for the bilateral advantage to be more prominent in inferior field. In fact statistical analysis and modelling of search efficiency showed that the geometrical display factors (target polar and quadrantic location, and associated crowding effects) were all remarkably consistent across subjects. Greater variability was inferred within a fixed, decisional component of response time, with individual subjects capable of opposite hemifield biases. The results are interpretable by a guided search model of spatial attention - a first, parallel stage guiding selection by a second, serial stage - with the proviso that the first stage is relatively insular within each hemisphere. The bilateral advantage in search efficiency can then be attributed to a relative gain in target weight within the initial parallel stage, owing to a reduction in distractor competition mediated specifically by intrahemispheric circuitry. In the absence of a target there is no effective guidance, and hence no basis for a bilateral advantage to enhance search efficiency; the equivalence of scanning speed for the two display modes (bilateral and unilateral) implies a unitary second-stage process mediated via efficient interhemispheric integration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Neurosteroid allopregnanolone reduces ipsilateral visual cortex potentiation following unilateral optic nerve injury.

    PubMed

    Sergeeva, Elena G; Espinosa-Garcia, Claudia; Atif, Fahim; Pardue, Machelle T; Stein, Donald G

    2018-05-02

    In adult mice with unilateral optic nerve crush injury (ONC), we studied visual response plasticity in the visual cortex following stimulation with sinusoidal grating. We examined visually evoked potentials (VEP) in the primary visual cortex ipsilateral and contralateral to the crushed nerve. We found that unilateral ONC induces enhancement of visual response on the side ipsilateral to the injury that is evoked by visual stimulation to the intact eye. This enhancement was associated with supranormal spatial frequency thresholds in the intact eye when tested using optomotor response. To probe whether injury-induced disinhibition caused the potentiation, we treated animals with the neurosteroid allopregnanolone, a potent agonist of the GABA A receptor, one hour after crush and on post-injury days 3, 8, 13, and 18. Allopregnanolone diminished enhancement of the VEP and this effect was associated with the upregulated synthesis of the δ-subunit of the GABA A receptor. Our study shows a new aspect of experience-dependent plasticity following unilateral ONC. This hyper-activity in the ipsilateral visual cortex is prevented by upregulation of GABA inhibition with allopregnanolone. Our findings suggest the therapeutic potential of allopregnanolone for modulation of plasticity in certain eye and brain disorders and a possible role for disinhibition in ipsilateral hyper-activity following unilateral ONC. Copyright © 2018. Published by Elsevier Inc.

  3. Could visual neglect induce amblyopia?

    PubMed

    Bier, J C; Vokaer, M; Fery, P; Garbusinski, J; Van Campenhoudt, G; Blecic, S A; Bartholomé, E J

    2004-12-01

    Oculomotor nerve disease is a common cause of diplopia. When strabismus is present, absence of diplopia has to induce the research of either uncovering of visual fields or monocular suppression, amblyopia or blindness. We describe the case of a 41-year-old woman presenting with right oculomotor paresis and left object-centred visual neglect due to a right fronto-parietal haemorrhage expanding to the right peri-mesencephalic cisterna caused by the rupture of a right middle cerebral artery aneurysm. She never complained of diplopia despite binocular vision and progressive recovery of strabismus, excluding uncovering of visual fields. Since all other causes were excluded in this case, we hypothesise that the absence of diplopia was due to the object-centred visual neglect. Partial internal right oculomotor paresis causes an ocular deviation in abduction; the image being perceived deviated contralaterally to the left. Thus, in our case, the neglect of the left image is equivalent to a right monocular functional blindness. However, bell cancellation test clearly worsened when assessed in left monocular vision confirming that eye patching can worsen attentional visual neglect. In conclusion, our case argues for the possibility of a functional monocular blindness induced by visual neglect. We think that in presence of strabismus, absence of diplopia should induce the search for hemispatial visual neglect when supratentorial lesions are suspected.

  4. Differential impact of partial cortical blindness on gaze strategies when sitting and walking - an immersive virtual reality study

    PubMed Central

    Iorizzo, Dana B.; Riley, Meghan E.; Hayhoe, Mary; Huxlin, Krystel R.

    2011-01-01

    The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ~80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ~90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. PMID:21414339

  5. Differential impact of partial cortical blindness on gaze strategies when sitting and walking - an immersive virtual reality study.

    PubMed

    Iorizzo, Dana B; Riley, Meghan E; Hayhoe, Mary; Huxlin, Krystel R

    2011-05-25

    The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ∼80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ∼90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Detecting early functional damage in glaucoma suspect and ocular hypertensive patients with the multifocal VEP technique.

    PubMed

    Thienprasiddhi, Phamornsak; Greenstein, Vivienne C; Chu, David H; Xu, Li; Liebmann, Jeffrey M; Ritch, Robert; Hood, Donald C

    2006-08-01

    To determine whether the multifocal visual evoked potential (mfVEP) technique can detect early functional damage in ocular hypertensive (OHT) and glaucoma suspect (GS) patients with normal standard achromatic automated perimetry (SAP) results. Twenty-five GS patients (25 eyes), 25 patients with OHT (25 eyes), and 50 normal controls (50 eyes) were enrolled in this study. All GS, OHT and normal control eyes had normal SAP as defined by a pattern standard deviation and mean deviation within the 95% confidence interval and a glaucoma hemifield test within normal limits on the Humphrey visual field 24-2 program. Eyes with GS had optic disc changes consistent with glaucoma with or without raised intraocular pressure (IOP), and eyes with OHT showed no evidence of glaucomatous optic neuropathy and IOPs >or=22 mm Hg. Monocular mfVEPs were obtained from both eyes of each subject using a pattern-reversal dartboard array with 60 sectors. The entire display had a radius of 22.3 degrees. The mfVEPs, for each eye, were defined as abnormal when either the monocular or interocular probability plot had a cluster of 3 or more contiguous points with P<0.05 and at least 2 of these points with P<0.01. The mfVEP results were abnormal in 4% of the eyes from normal subjects. Abnormal mfVEPs were detected in 20% of the eyes of GS patients and 16% of the eyes of OHT patients. Significantly more mfVEP abnormalities were detected in GS patients than in normal controls. However, there was no significant difference in mfVEP results between OHT patients and normal controls. The mfVEP technique can detect visual field deficits in a minority of eyes with glaucomatous optic disks and normal SAP results.

  7. Effects of lenses with different power profiles on eye shape in chickens.

    PubMed

    Tepelus, Tudor Cosmin; Vazquez, Daniel; Seidemann, Anne; Uttenweiler, Dietmar; Schaeffel, Frank

    2012-02-01

    Defocus imposed to the periphery of the visual field can affect the development of foveal/central refractive errors. To make use of this observation, lenses can be designed to reduce myopia progression, but it is important to know which power profiles of the lenses are most effective. We have studied this question in chickens. Sixty male white leghorn chickens were used. From day 7 after hatching, they were treated for 5 days either with full field -7D or +7D lenses, with -7D lenses with a 4mm central hole, with hemi-field lenses of the same power, or with two different types of radial refractive gradient (RRG) lenses with increasing positive power from the center to the periphery, which were designed by Rodenstock GmbH, Munich, Germany. A macro file was written for "ImageJ" to trace and average the outlines of several excised eyes after treatment. Shapes of fellow control eyes and lens-treated eyes were compared in the horizontal and vertical meridians. Refractions were determined at -45°, 0°, and 45° over the horizontal visual field, at the beginning and at the end of experiments, using automated infrared photoretinoscopy. (1) Eye length, as determined by the new automated eye shape tracing technique, was well correlated with A-scan ultrasound data. (2) The effects of previously tested lens designs were reproduced with the new tracing technique. Full field lenses were by far the most effective (-7D: external axial length +0.24mm with an increase in eye volume of about 6%, +7D: -0.08 mm, with a decrease in eye volume of about 2%). Hemi-field lenses and negative lenses with a 4mm central hole induced conspicuous local changes in eye shape. (3) The first type of RRG lenses with a plano zone of about 4mm (equivalent to about ± 12.52° in the visual field for a vertex distance of 5mm) had no apparent effect on central refractions but induced small hyperopic shifts in the periphery, more significant in the temporal retina (+1.70 ± 1.70 D, p<0.001, paired t-test to untreated fellow eyes). The second type of RRG lenses with a small plano zone of 2mm (equivalent to ± 6.34°) induced peripheral hyperopia but also changed the central refraction (temporal retina +1.50 ± 1.17D, p<0.001, central retina +0.77 ± 1.15 D, p<0.01, nasal retina +1.47±1.35D, p<0.001, paired t-test to untreated control eyes). In the afoveate chick, RRG lenses have an effect on central refraction and eye growth only if the central plano zone is small (<4mm). For the second type of RRG lens with a central plano zone of about 2mm, inhibitory effects on eye growth were detected in both the center and periphery even though the optical power of the lenses in the periphery was low. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Mental rotation impairs attention shifting and short-term memory encoding: neurophysiological evidence against the response-selection bottleneck model of dual-task performance.

    PubMed

    Pannebakker, Merel M; Jolicœur, Pierre; van Dam, Wessel O; Band, Guido P H; Ridderinkhof, K Richard; Hommel, Bernhard

    2011-09-01

    Dual tasks and their associated delays have often been used to examine the boundaries of processing in the brain. We used the dual-task procedure and recorded event-related potentials (ERPs) to investigate how mental rotation of a first stimulus (S1) influences the shifting of visual-spatial attention to a second stimulus (S2). Visual-spatial attention was monitored by using the N2pc component of the ERP. In addition, we examined the sustained posterior contralateral negativity (SPCN) believed to index the retention of information in visual short-term memory. We found modulations of both the N2pc and the SPCN, suggesting that engaging mechanisms of mental rotation impairs the deployment of visual-spatial attention and delays the passage of a representation of S2 into visual short-term memory. Both results suggest interactions between mental rotation and visual-spatial attention in capacity-limited processing mechanisms indicating that response selection is not pivotal in dual-task delays and all three processes are likely to share a common resource like executive control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Radiographic Risk Factors for Contralateral Rupture in Dogs with Unilateral Cranial Cruciate Ligament Rupture

    PubMed Central

    Chuang, Connie; Ramaker, Megan A.; Kaur, Sirjaut; Csomos, Rebecca A.; Kroner, Kevin T.; Bleedorn, Jason A.; Schaefer, Susan L.; Muir, Peter

    2014-01-01

    Background Complete cranial cruciate ligament rupture (CR) is a common cause of pelvic limb lameness in dogs. Dogs with unilateral CR often develop contralateral CR over time. Although radiographic signs of contralateral stifle joint osteoarthritis (OA) influence risk of subsequent contralateral CR, this risk has not been studied in detail. Methodology/Principal Findings We conducted a retrospective longitudinal cohort study of client-owned dogs with unilateral CR to determine how severity of radiographic stifle synovial effusion and osteophytosis influence risk of contralateral CR over time. Detailed survival analysis was performed for a cohort of 85 dogs after case filtering of an initial sample population of 513 dogs. This population was stratified based on radiographic severity of synovial effusion (graded on a scale of 0, 1, and 2) and severity of osteophytosis (graded on a scale of 0, 1, 2, and 3) of both index and contralateral stifle joints using a reproducible scoring method. Severity of osteophytosis in the index and contralateral stifles was significantly correlated. Rupture of the contralateral cranial cruciate ligament was significantly influenced by radiographic OA in both the index and contralateral stifles at diagnosis. Odds ratio for development of contralateral CR in dogs with severe contralateral radiographic stifle effusion was 13.4 at one year after diagnosis and 11.4 at two years. Odds ratio for development of contralateral CR in dogs with severe contralateral osteophytosis was 9.9 at one year after diagnosis. These odds ratios were associated with decreased time to contralateral CR. Breed, age, body weight, gender, and tibial plateau angle did not significantly influence time to contralateral CR. Conclusion Subsequent contralateral CR is significantly influenced by severity of radiographic stifle effusion and osteophytosis in the contralateral stifle, suggesting that synovitis and arthritic joint degeneration are significant factors in the disease mechanism underlying the arthropathy. PMID:25254499

  10. Temporal Dynamics of Visual Attention Measured with Event-Related Potentials

    PubMed Central

    Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi

    2013-01-01

    How attentional modulation on brain activities determines behavioral performance has been one of the most important issues in cognitive neuroscience. This issue has been addressed by comparing the temporal relationship between attentional modulations on neural activities and behavior. Our previous study measured the time course of attention with amplitude and phase coherence of steady-state visual evoked potential (SSVEP) and found that the modulation latency of phase coherence rather than that of amplitude was consistent with the latency of behavioral performance. In this study, as a complementary report, we compared the time course of visual attention shift measured by event-related potentials (ERPs) with that by target detection task. We developed a novel technique to compare ERPs with behavioral results and analyzed the EEG data in our previous study. Two sets of flickering stimulus at different frequencies were presented in the left and right visual hemifields, and a target or distracter pattern was presented randomly at various moments after an attention-cue presentation. The observers were asked to detect targets on the attended stimulus after the cue. We found that two ERP components, P300 and N2pc, were elicited by the target presented at the attended location. Time-course analyses revealed that attentional modulation of the P300 and N2pc amplitudes increased gradually until reaching a maximum and lasted at least 1.5 s after the cue onset, which is similar to the temporal dynamics of behavioral performance. However, attentional modulation of these ERP components started later than that of behavioral performance. Rather, the time course of attentional modulation of behavioral performance was more closely associated with that of the concurrently recorded SSVEPs analyzed. These results suggest that neural activities reflected not by either the P300 or N2pc, but by the SSVEPs, are the source of attentional modulation of behavioral performance. PMID:23976966

  11. Spatial attention facilitates assembly of the briefest percepts: Electrophysiological evidence from color fusion.

    PubMed

    Akyürek, Elkan G; van Asselt, E Manon

    2015-12-01

    When two different color stimuli are presented in rapid succession, the resulting percept is sometimes that of a mixture of both colors, due to a perceptual process called color fusion. Although color fusion might seem to occur very early in the visual pathway, and only happens across the briefest of stimulus presentation intervals (< 50 ms), the present study showed that spatial attention can alter the fusion process. In a series of experiments, spatial cues were presented that either validly indicated the location of a pair of (different) color stimuli in successive stimulus arrays, or did not, pointing toward isoluminant gray distractors in the other visual hemifield. Increased color fusion was observed for valid cues across a range of stimulus durations, at the expense of individual color reports. By contrast, perception of repeated, same-color stimulus pairs did not change, suggesting that the enhancement was specific to fusion, not color discrimination per se. Electrophysiological measures furthermore showed that the amplitude of the N1, N2pc, and P3 components of the ERP were differentially modulated during the perception of individual and fused colors, as a function of cueing and stimulus duration. Fusion itself, collapsed across cueing conditions, was reflected uniquely in N1 amplitude. Overall, the results suggest that spatial attention enhances color fusion and decreases competition between stimuli, constituting an adaptive slowdown in service of temporal integration. © 2015 Society for Psychophysiological Research.

  12. Intermodal Attention Shifts in Multimodal Working Memory.

    PubMed

    Katus, Tobias; Grubert, Anna; Eimer, Martin

    2017-04-01

    Attention maintains task-relevant information in working memory (WM) in an active state. We investigated whether the attention-based maintenance of stimulus representations that were encoded through different modalities is flexibly controlled by top-down mechanisms that depend on behavioral goals. Distinct components of the ERP reflect the maintenance of tactile and visual information in WM. We concurrently measured tactile (tCDA) and visual contralateral delay activity (CDA) to track the attentional activation of tactile and visual information during multimodal WM. Participants simultaneously received tactile and visual sample stimuli on the left and right sides and memorized all stimuli on one task-relevant side. After 500 msec, an auditory retrocue indicated whether the sample set's tactile or visual content had to be compared with a subsequent test stimulus set. tCDA and CDA components that emerged simultaneously during the encoding phase were consistently reduced after retrocues that marked the corresponding (tactile or visual) modality as task-irrelevant. The absolute size of cue-dependent modulations was similar for the tCDA/CDA components and did not depend on the number of tactile/visual stimuli that were initially encoded into WM. Our results suggest that modality-specific maintenance processes in sensory brain regions are flexibly modulated by top-down influences that optimize multimodal WM representations for behavioral goals.

  13. Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift

    PubMed Central

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L.

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory. PMID:22761923

  14. Saccade generation by the frontal eye fields in rhesus monkeys is separable from visual detection and bottom-up attention shift.

    PubMed

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.

  15. Eye coding mechanisms in early human face event-related potentials.

    PubMed

    Rousselet, Guillaume A; Ince, Robin A A; van Rijsbergen, Nicola J; Schyns, Philippe G

    2014-11-10

    In humans, the N170 event-related potential (ERP) is an integrated measure of cortical activity that varies in amplitude and latency across trials. Researchers often conjecture that N170 variations reflect cortical mechanisms of stimulus coding for recognition. Here, to settle the conjecture and understand cortical information processing mechanisms, we unraveled the coding function of N170 latency and amplitude variations in possibly the simplest socially important natural visual task: face detection. On each experimental trial, 16 observers saw face and noise pictures sparsely sampled with small Gaussian apertures. Reverse-correlation methods coupled with information theory revealed that the presence of the eye specifically covaries with behavioral and neural measurements: the left eye strongly modulates reaction times and lateral electrodes represent mainly the presence of the contralateral eye during the rising part of the N170, with maximum sensitivity before the N170 peak. Furthermore, single-trial N170 latencies code more about the presence of the contralateral eye than N170 amplitudes and early latencies are associated with faster reaction times. The absence of these effects in control images that did not contain a face refutes alternative accounts based on retinal biases or allocation of attention to the eye location on the face. We conclude that the rising part of the N170, roughly 120-170 ms post-stimulus, is a critical time-window in human face processing mechanisms, reflecting predominantly, in a face detection task, the encoding of a single feature: the contralateral eye. © 2014 ARVO.

  16. Contralateral posterior interhemispheric approach to deep medial parietooccipital vascular malformations: surgical technique and results.

    PubMed

    Burkhardt, Jan-Karl; Winkler, Ethan A; Lawton, Michael T

    2017-07-21

    OBJECTIVE Deep medial parietooccipital arteriovenous malformations (AVMs) and cerebral cavernous malformations (CCMs) are traditionally resected through an ipsilateral posterior interhemispheric approach (IPIA), which creates a deep, perpendicular perspective with limited access to the lateral margins of the lesion. The contralateral posterior interhemispheric approach (CPIA) flips the positioning, with the midline positioned horizontally for retraction due to gravity, but with the AVM on the upper side and the approach from the contralateral, lower side. The aim of this paper was to analyze whether the perpendicular angle of attack that is used in IPIA would convert to a parallel angle of attack with the CPIA, with less retraction, improved working angles, and no significant increase in risk. METHODS A retrospective review of pre- and postoperative clinical and radiographic data was performed in 8 patients who underwent a CPIA. RESULTS Three AVMs and 5 CCMs were resected using the CPIA, with an average nidus size of 2.3 cm and CCM diameter of 1.7 cm. All lesions were resected completely, as confirmed on postoperative catheter angiography or MRI. All patients had good neurological outcomes, with either stable or improved modified Rankin Scale scores at last follow-up. CONCLUSIONS The CPIA is a safe alternative approach to the IPIA for deep medial parietooccipital vascular malformations that extend 2 cm or more off the midline. Contralaterality and retraction due to gravity optimize the interhemispheric corridor, the surgical trajectory to the lesion, and the visualization of the lateral margin, without resection or retraction of adjacent normal cortex. Although the falx is a physical barrier to accessing the lesion, it stabilizes the ipsilateral hemisphere while gravity delivers the dissected lesion through the transfalcine window. Patient positioning, CSF drainage, venous preservation, and meticulous dissection of the deep margins are critical to the safety of this approach.

  17. Long-Lasting Cortical Reorganization as the Result of Motor Imagery of Throwing a Ball in a Virtual Tennis Court

    PubMed Central

    Cebolla, Ana M.; Petieau, Mathieu; Cevallos, Carlos; Leroy, Axelle; Dan, Bernard; Cheron, Guy

    2015-01-01

    In order to characterize the neural signature of a motor imagery (MI) task, the present study investigates for the first time the oscillation characteristics including both of the time-frequency measurements, event related spectral perturbation and intertrial coherence (ITC) underlying the variations in the temporal measurements (event related potentials, ERP) directly related to a MI task. We hypothesize that significant variations in both of the time-frequency measurements underlie the specific changes in the ERP directly related to MI. For the MI task, we chose a simple everyday task (throwing a tennis ball), that does not require any particular motor expertise, set within the controlled virtual reality scenario of a tennis court. When compared to the rest condition a consistent, long-lasting negative fronto-central ERP wave was accompanied by significant changes in both time frequency measurements suggesting long-lasting cortical activity reorganization. The ERP wave was characterized by two peaks at about 300 ms (N300) and 1000 ms (N1000). The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas. The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally. During the transition from N300 to N1000, a contralateral alpha (mu) as well as post-central and parieto-theta rhythms occurred. The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here. PMID:26648903

  18. The Deceptively Simple N170 Reflects Network Information Processing Mechanisms Involving Visual Feature Coding and Transfer Across Hemispheres.

    PubMed

    Ince, Robin A A; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J; Rousselet, Guillaume A; Schyns, Philippe G

    2016-08-22

    A key to understanding visual cognition is to determine "where", "when", and "how" brain responses reflect the processing of the specific visual features that modulate categorization behavior-the "what". The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. © The Author 2016. Published by Oxford University Press.

  19. Multichannel optical mapping: investigation of depth information

    NASA Astrophysics Data System (ADS)

    Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio

    2001-06-01

    Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.

  20. Monocular Patching May Induce Ipsilateral “Where” Spatial Bias

    PubMed Central

    Chen, Peii; Erdahl, Lillian; Barrett, Anna M.

    2009-01-01

    Spatial bias is an asymmetry of perception and/or representation of spatial information —“where” bias —, or of spatially directed actions — “aiming” bias. A monocular patch may induce contralateral “where” spatial bias (the Sprague effect; Sprague (1966) Science, 153, 1544–1547). However, an ipsilateral patch-induced spatial bias may be observed if visual occlusion results in top-down, compensatory re-allocation of spatial perceptual or representational resources toward the region of visual deprivation. Tactile distraction from a monocular patch may also contribute to an ipsilateral bias. To examine these hypotheses, neurologically normal adults bisected horizontal lines at baseline without a patch, while wearing a monocular patch, and while wearing tactile-only and visual-only monocular occlusion. We fractionated “where” and “aiming” spatial bias components using a video apparatus to reverse visual feedback for half of the test trials. The results support monocular patch-induced ipsilateral “where” spatial errors, which are not consistent with the Sprague effect. Further, the present findings suggested that the induced ipsilateral bias may be primarily induced by visual deprivation, consistent with compensatory “where” resource re-allocation. PMID:19100274

  1. Shape and color conjunction stimuli are represented as bound objects in visual working memory.

    PubMed

    Luria, Roy; Vogel, Edward K

    2011-05-01

    The integrated object view of visual working memory (WM) argues that objects (rather than features) are the building block of visual WM, so that adding an extra feature to an object does not result in any extra cost to WM capacity. Alternative views have shown that complex objects consume additional WM storage capacity so that it may not be represented as bound objects. Additionally, it was argued that two features from the same dimension (i.e., color-color) do not form an integrated object in visual WM. This led some to argue for a "weak" object view of visual WM. We used the contralateral delay activity (the CDA) as an electrophysiological marker of WM capacity, to test those alternative hypotheses to the integrated object account. In two experiments we presented complex stimuli and color-color conjunction stimuli, and compared performance in displays that had one object but varying degrees of feature complexity. The results supported the integrated object account by showing that the CDA amplitude corresponded to the number of objects regardless of the number of features within each object, even for complex objects or color-color conjunction stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). I. Retinal projections.

    PubMed

    Luiten, P G

    1981-03-10

    The central projections of the retina in the nurse shark were studied by anterograde transport of horseradish peroxidase and tritiated proline. With regard to efferent retinal fibers, both techniques gave completely identical results. Projections were found to pretectal area, dorsal thalamus, basal optic nucleus, and optic tectum, all at the contralateral side. The retinal target cells in the dorsal thalamus are restricted to the ventrolateral optic nucleus and the posterior optic nucleus. No evidence was found for an earlier-reported projection to the lateral geniculate nucleus. The present findings show that the ventrolateral optic nucleus exhibits homological features of the dorsal lateral geniculate nucleus in other vertebrate groups, whereas the lateral geniculate nucleus of the nurse shark is much more comparable to the nucleus rotundus of teleosts and birds and would be more appropriately so named. The application of the HRP technique also allowed us to study afferents to the retina by retrograde transport of tracer. Retrogradely labeled cells were observed in the contralateral optic tectum and are apparently similar to those reported for teleosts and birds.

  3. Longitudinal in vivo transcutaneous observation of Raman signals from breast cancer during chemotherapy in small animal model

    NASA Astrophysics Data System (ADS)

    Seong, Myeongsu; Myoung, NoSoung; Yim, Sang-Youp; Kim, Jae G.

    2015-02-01

    Because mammography, the gold standard of breast cancer screening and monitoring treatment efficacy, has limitations, there is a necessity to have a new method for breast cancer patients. Raman spectroscopy is considered as one of the best alternative approaches due to its ability of visualizing (bio)chemical information of a matter. In this study, we hypothesized that the change of biochemical composition occurs earlier than morphological change in breast cancer during chemotherapy, and attempted to prove it by employing fiber-optic Raman spectroscopy for longitudinal Raman measurement in small animal breast cancer model. To confirm the hypothesis, we measured Raman spectra of a tumor breast and the contralateral breast during chemotherapy for 4 fisher 344 female rats longitudinally. Principal component analysis and Raman spectral differences between breast tumor and contralateral normal breast did not show a clear difference between them which may have been caused by interference from skin. Thus, spatially-offset Raman spectroscopy will be employed in order to acquire the Raman signal directly from tumor while suppressing Raman signal from skin for the future study.

  4. Identification of Eye-Specific Domains and Their Relation to Callosal Connections in Primary Visual Cortex of Long Evans Rats.

    PubMed

    Laing, R J; Turecek, J; Takahata, T; Olavarria, J F

    2015-10-01

    Ocular dominance columns (ODCs) exist in many primates and carnivores, but it is believed that they do not exist in rodents. Using a combination of transneuronal tracing, in situ hybridization for Zif268 and electrophysiological recordings, we show that inputs from both eyes are largely segregated in the binocular region of V1 in Long Evans rats. We also show that, interposed between this binocular region and the lateral border of V1, there lies a strip of cortex that is strongly dominated by the contralateral eye. Finally, we show that callosal connections colocalize primarily with ipsilateral eye domains in the binocular region and with contralateral eye input in the lateral cortical strip, mirroring the relationship between patchy callosal connections and specific sets of ODCs described previously in the cat. Our results suggest that development of cortical modular architecture is more conserved among rodents, carnivores, and primates than previously thought. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Preoperative ultrasonographic evaluation of the contralateral patent processus vaginalis at the level of the internal inguinal ring is useful for predicting contralateral inguinal hernias in children: a prospective analysis.

    PubMed

    Kaneda, H; Furuya, T; Sugito, K; Goto, S; Kawashima, H; Inoue, M; Hosoda, T; Masuko, T; Ohashi, K; Ikeda, T; Koshinaga, T; Hoshino, M; Goto, H

    2015-08-01

    The current study aimed to verify the usefulness of preoperative ultrasonographic evaluation of contralateral patent processus vaginalis (PPV) at the level of the internal inguinal ring. This was a prospective study of patients undergoing unilateral inguinal hernia repair at two institutions during 2010-2011. The sex, age at initial operation, birth weight, initial operation side, and the preoperative diameter of the contralateral PPV as determined using ultrasonography (US) were recorded. We analyzed the incidence of contralateral inguinal hernia, risk factors, and the usefulness of the preoperative major diameter of the contralateral PPV. The follow-up period was 36 months. All 105 patients who underwent unilateral hernia repair completed 36 months of follow-up, during which 11 patients (10.5 %) developed a contralateral hernia. The following covariates were not associated with contralateral hernia development: sex (p = 0.350), age (p = 0.185), birth weight (p = 0.939), and initial operation side (p = 0.350). The preoperative major diameter of the contralateral PPV determined using US was significantly wider among patients with a contralateral hernia than those without a contralateral hernia (p = 0.001). When the 105 patients were divided into two groups according to cut-off values of the preoperative major diameter of the contralateral PPV (wide group, >2.0 mm; narrow group, ≤2.0 mm), a significant association was observed between the preoperative major diameter of the contralateral PPV and patient outcomes (p = 0.001). We used US and confirmed the usefulness of a preoperative evaluation of the major diameter of the contralateral PPV at the level of the internal inguinal ring in pediatric patients with unilateral inguinal hernias.

  6. A sublethal dose of a neonicotinoid insecticide disrupts visual processing and collision avoidance behaviour in Locusta migratoria.

    PubMed

    Parkinson, Rachel H; Little, Jacelyn M; Gray, John R

    2017-04-20

    Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of these effects are not fully understood. A visual motion sensitive neuron in the locust, the Descending Contralateral Movement Detector (DCMD), integrates visual information and is involved in eliciting escape behaviours. The DCMD receives coded input from the compound eyes and monosynaptically excites motorneurons involved in flight and jumping. We show that imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g locust body weight). Effects on DCMD firing translate to deficits in collision avoidance behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD prevents the ability to fly and walk. We show that, at ecologically-relevant doses, IMD causes significant and lasting impairment of an important pathway involved with visual sensory coding and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide directly impairs an important, taxonomically conserved, motion-sensitive visual network.

  7. Design of a noninvasive face mask for ocular occlusion in rats and assessment in a visual discrimination paradigm.

    PubMed

    Hager, Audrey M; Dringenberg, Hans C

    2012-12-01

    The rat visual system is structured such that the large (>90 %) majority of retinal ganglion axons reach the contralateral lateral geniculate nucleus (LGN) and visual cortex (V1). This anatomical design allows for the relatively selective activation of one cerebral hemisphere under monocular viewing conditions. Here, we describe the design of a harness and face mask allowing simple and noninvasive monocular occlusion in rats. The harness is constructed from synthetic fiber (shoelace-type material) and fits around the girth region and neck, allowing for easy adjustments to fit rats of various weights. The face mask consists of soft rubber material that is attached to the harness by Velcro strips. Eyeholes in the mask can be covered by additional Velcro patches to occlude either one or both eyes. Rats readily adapt to wearing the device, allowing behavioral testing under different types of viewing conditions. We show that rats successfully acquire a water-maze-based visual discrimination task under monocular viewing conditions. Following task acquisition, interocular transfer was assessed. Performance with the previously occluded, "untrained" eye was impaired, suggesting that training effects were partially confined to one cerebral hemisphere. The method described herein provides a simple and noninvasive means to restrict visual input for studies of visual processing and learning in various rodent species.

  8. Simultaneous shape repulsion and global assimilation in the perception of aspect ratio

    PubMed Central

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Although local interactions involving orientation and spatial frequency are well understood, less is known about spatial interactions involving higher level pattern features. We examined interactive coding of aspect ratio, a prevalent two-dimensional feature. We measured perception of two simultaneously flashed ellipses by randomly post-cueing one of them and having observers indicate its aspect ratio. Aspect ratios interacted in two ways. One manifested as an aspect-ratio-repulsion effect. For example, when a slightly tall ellipse and a taller ellipse were simultaneously flashed, the less tall ellipse appeared flatter and the taller ellipse appeared even taller. This repulsive interaction was long range, occurring even when the ellipses were presented in different visual hemifields. The other interaction manifested as a global assimilation effect. An ellipse appeared taller when it was a part of a global vertical organization than when it was a part of a global horizontal organization. The repulsion and assimilation effects temporally dissociated as the former slightly strengthened, and the latter disappeared when the ellipse-to-mask stimulus onset asynchrony was increased from 40 to 140 ms. These results are consistent with the idea that shape perception emerges from rapid lateral and hierarchical neural interactions. PMID:21248223

  9. Modulation of Posterior Alpha Activity by Spatial Attention Allows for Controlling A Continuous Brain-Computer Interface.

    PubMed

    Horschig, Jörn M; Oosterheert, Wouter; Oostenveld, Robert; Jensen, Ole

    2015-11-01

    Here we report that the modulation of alpha activity by covert attention can be used as a control signal in an online brain-computer interface, that it is reliable, and that it is robust. Subjects were instructed to orient covert visual attention to the left or right hemifield. We decoded the direction of attention from the magnetoencephalogram by a template matching classifier and provided the classification outcome to the subject in real-time using a novel graphical user interface. Training data for the templates were obtained from a Posner-cueing task conducted just before the BCI task. Eleven subjects participated in four sessions each. Eight of the subjects achieved classification rates significantly above chance level. Subjects were able to significantly increase their performance from the first to the second session. Individual patterns of posterior alpha power remained stable throughout the four sessions and did not change with increased performance. We conclude that posterior alpha power can successfully be used as a control signal in brain-computer interfaces. We also discuss several ideas for further improving the setup and propose future research based on solid hypotheses about behavioral consequences of modulating neuronal oscillations by brain computer interfacing.

  10. Alterations to multisensory and unisensory integration by stimulus competition

    PubMed Central

    Rowland, Benjamin A.; Stanford, Terrence R.; Stein, Barry E.

    2011-01-01

    In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations. PMID:21957224

  11. Alterations to multisensory and unisensory integration by stimulus competition.

    PubMed

    Pluta, Scott R; Rowland, Benjamin A; Stanford, Terrence R; Stein, Barry E

    2011-12-01

    In environments containing sensory events at competing locations, selecting a target for orienting requires prioritization of stimulus values. Although the superior colliculus (SC) is causally linked to the stimulus selection process, the manner in which SC multisensory integration operates in a competitive stimulus environment is unknown. Here we examined how the activity of visual-auditory SC neurons is affected by placement of a competing target in the opposite hemifield, a stimulus configuration that would, in principle, promote interhemispheric competition for access to downstream motor circuitry. Competitive interactions between the targets were evident in how they altered unisensory and multisensory responses of individual neurons. Responses elicited by a cross-modal stimulus (multisensory responses) proved to be substantially more resistant to competitor-induced depression than were unisensory responses (evoked by the component modality-specific stimuli). Similarly, when a cross-modal stimulus served as the competitor, it exerted considerably more depression than did its individual component stimuli, in some cases producing more depression than predicted by their linear sum. These findings suggest that multisensory integration can help resolve competition among multiple targets by enhancing orientation to the location of cross-modal events while simultaneously suppressing orientation to events at alternate locations.

  12. A prospective, contralateral eye study comparing thin-flap LASIK (sub-Bowman keratomileusis) with photorefractive keratectomy.

    PubMed

    Slade, Stephen G; Durrie, Daniel S; Binder, Perry S

    2009-06-01

    To determine the differences in the visual results, pain response, biomechanical effect, quality of vision, and higher-order aberrations, among other parameters, in eyes undergoing either photorefractive keratectomy (PRK) or thin-flap LASIK/sub-Bowman keratomileusis (SBK; intended flap thickness of +/-100 microm and 8.5-mm diameter) at 1, 3, and 6 months after surgery. A contralateral eye pilot study. Fifty patients (100 eyes) were enrolled at 2 sites. The mean preoperative spherical refraction was -3.66 diopters (D) and the mean cylinder was -0.66 D for all eyes. Eyes in the PRK group underwent 8.5-mm ethanol-assisted PRK, whereas in eyes in the SBK group, an 8.5-mm, (intended) 100-microm flap was created with a 60-kHz IntraLase femtosecond laser (Advanced Medical Optics, Santa Ana, CA). All eyes underwent a customized laser ablation using an Alcon LADARVision 4000 CustomCornea excimer laser (Alcon Laboratories, Fort Worth, TX). Preoperative and postoperative tests included best spectacle-corrected visual acuity, uncorrected visual acuity (UCVA), corneal topography, wavefront aberrometry, retinal image quality, and contrast sensitivity. Patients completed subjective questionnaires at each visit. One- and 3-month UCVA results showed a statistically significant difference: SBK, 88% 20/20 or better vs. 48% 20/20 or better for PRK. At 6 months, UCVA was 94% 20/20 or better for PRK and 92% for SBK. At 1 and 3 months, the SBK group had lower higher-order aberrations (coma and spherical aberration; P

  13. Influences of Long-Term Memory-Guided Attention and Stimulus-Guided Attention on Visuospatial Representations within Human Intraparietal Sulcus.

    PubMed

    Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C

    2015-08-12

    Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has been linked to retrieval of vivid memories regardless of space. Here, we investigate possible underlying mechanisms in healthy individuals. We demonstrate two forms of dynamic changes in parietal spatial representations: an asymmetric one for stimulus-guided attention and a symmetric one for long-term memory-guided attention. Copyright © 2015 the authors 0270-6474/15/3511358-06$15.00/0.

  14. Linking pain and the body: neural correlates of visually induced analgesia.

    PubMed

    Longo, Matthew R; Iannetti, Gian Domenico; Mancini, Flavia; Driver, Jon; Haggard, Patrick

    2012-02-22

    The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this "visually induced analgesia" using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called "pain matrix"), and (2) an extensive set of posterior brain areas activated by the visual perception of the body ("visual body network"). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain.

  15. Enhancement of vision by monocular deprivation in adult mice.

    PubMed

    Prusky, Glen T; Alam, Nazia M; Douglas, Robert M

    2006-11-08

    Plasticity of vision mediated through binocular interactions has been reported in mammals only during a "critical" period in juvenile life, wherein monocular deprivation (MD) causes an enduring loss of visual acuity (amblyopia) selectively through the deprived eye. Here, we report a different form of interocular plasticity of vision in adult mice in which MD leads to an enhancement of the optokinetic response (OKR) selectively through the nondeprived eye. Over 5 d of MD, the spatial frequency sensitivity of the OKR increased gradually, reaching a plateau of approximately 36% above pre-deprivation baseline. Eye opening initiated a gradual decline, but sensitivity was maintained above pre-deprivation baseline for 5-6 d. Enhanced function was restricted to the monocular visual field, notwithstanding the dependence of the plasticity on binocular interactions. Activity in visual cortex ipsilateral to the deprived eye was necessary for the characteristic induction of the enhancement, and activity in visual cortex contralateral to the deprived eye was necessary for its maintenance after MD. The plasticity also displayed distinct learning-like properties: Active testing experience was required to attain maximal enhancement and for enhancement to persist after MD, and the duration of enhanced sensitivity after MD was extended by increasing the length of MD, and by repeating MD. These data show that the adult mouse visual system maintains a form of experience-dependent plasticity in which the visual cortex can modulate the normal function of subcortical visual pathways.

  16. Risk of contralateral avascular necrosis (AVN) after total hip arthroplasty (THA) for non-traumatic AVN.

    PubMed

    Goker, Berna; Block, Joel A

    2006-01-01

    The risk of developing bilateral disease progressing to total hip arthroplasty (THA) among patients who undergo unilateral THA for non-traumatic avascular necrosis (AVN) remains poorly understood. An analysis of the time-course to contralateral THA, as well as the effects of underlying AVN risk factors, is presented. Forty-seven consecutive patients who underwent THA for AVN were evaluated. Peri-operative and annual post-operative antero-posterior pelvis radiographs were examined for evidence of contralateral involvement. Patient age, weight, height, underlying AVN risk factor(s), date of onset of contralateral hip pain if occurred, and date of contralateral THA if performed, were recorded. Bone scan, computerized tomography and magnetic resonance imaging data were utilized when available. Twenty-one patients (46.6%) underwent contralateral THA for AVN within a median of 9 months after the initial THA (range 0-93, interquartile range 28.5 months). The median follow-up for patients without contralateral THA was 75 months (range 3-109, interquartile range 69 months). Thirty-four patients had radiographic findings of contralateral AVN at study entry; 25 were symptomatic bilaterally at entry and 7 developed contralateral symptoms within a mean time of 12 months (median 10 months, interquartile range 12 months). None of the 13 patients who were free of radiographic evidence of contralateral AVN at study entry developed evidence of AVN during the follow-up. AVN associated with glucocorticoid use was more likely to manifest as bilateral disease than either idiopathic AVN or ethanol-associated AVN (P=0.02 and P=0.03 respectively). Radiographically-evident AVN in the contralateral hip at THA is unlikely to remain asymptomatic for a prolonged period of time. Conversely, asymptomatic contralateral hips without radiographic evidence of AVN are unlikely to develop clinically significant AVN.

  17. Adaptive functional change of the contralateral kidney after partial nephrectomy.

    PubMed

    Choi, Se Young; Yoo, Sangjun; You, Dalsan; Jeong, In Gab; Song, Cheryn; Hong, Bumsik; Hong, Jun Hyuk; Ahn, Hanjong; Kim, Choung-Soo

    2017-08-01

    Partial nephrectomy aims to maintain renal function by nephron sparing; however, functional changes in the contralateral kidney remain unknown. We evaluate the functional change in the contralateral kidney using a diethylene triamine penta-acetic acid (DTPA) renal scan and determine factors predicting contralateral kidney function after partial nephrectomy. A total of 699 patients underwent partial nephrectomy, with a DTPA scan before and after surgery to assess the separate function of each kidney. Patients were divided into three groups according to initial contralateral glomerular filtration rate (GFR; group 1 : <30 ml·min -1 ·1.73 m -2 , group 2 : 30-45 ml·min -1 ·1.73 m -2 , and group 3 : ≥45 ml·min -1 ·1.73 m -2 ). Multiple-regression analysis was used to identify the factors associated with increased GFR of the contralateral kidney over a 4-yr postoperative period. Patients in group 1 had a higher mean age and hypertension history, worse American Society of Anesthesiologists score, and larger tumor size than in the other two groups. The ipsilateral GFR changes at 4 yr after partial nephrectomy were -18.9, -3.6, and 3.9% in groups 1 , 2 , and 3 , respectively, whereas the contralateral GFR changes were 10.8, 25.7, and 38.8%. Age [β: -0.105, 95% confidence interval (CI): -0.213; -0.011, P < 0.05] and preoperative contralateral GFR (β: -0.256, 95% CI: -0.332; -0.050, P < 0.01) were significant predictive factors for increased GFR of the contralateral kidney after 4 yr. The contralateral kidney compensated for the functional loss of the ipsilateral kidney. The increase of GFR in contralateral kidney is more prominent in younger patients with decreased contralateral renal function. Copyright © 2017 the American Physiological Society.

  18. Intraoperative aberrometry versus standard preoperative biometry and a toric IOL calculator for bilateral toric IOL implantation with a femtosecond laser: One-month results.

    PubMed

    Woodcock, Michael G; Lehmann, Robert; Cionni, Robert J; Breen, Michael; Scott, Maria C

    2016-06-01

    To compare astigmatic outcomes in patients with bilateral cataracts having toric intraocular lens (IOL) implantation with intraoperative aberrometry measurements in 1 eye and standard power calculation and a toric IOL calculator with inked axis marking in the contralateral eye. Twelve sites in the United States. Prospective cohort study. The eye with the more visually significant cataract was randomized to intraoperative aberrometry measurements (Ocular Response Analyzer with Verifeye) or standard preoperative biometry and use of a toric calculator with the contralateral eye automatically assigned to the other group. The primary effectiveness outcome was the proportion of eyes with a postoperative refractive astigmatism of 0.50 diopter (D) or less at 1 month. Of the 130 patients (260 eyes) enrolled, 124 (248 eyes) were randomized; 121 (242 eyes) completed the trial. The percentage of eyes with astigmatism of 0.50 D or less at 1 month was higher in the intraoperative aberrometry group than in the standard group (89.2% versus 76.6%) (P = .006). The mean postoperative refractive astigmatism was lower in the intraoperative aberrometry group (0.29 D ± 0.28 [SD] versus 0.36 ± 0.35 D) (P = .041). Secondary effectiveness endpoints, including manifest refraction spherical equivalent prediction error, uncorrected distance visual acuity, and corrected distance visual acuity, were similar. Compared with standard methods, the use of the intraoperative aberrometry system increased the proportion of eyes with postoperative refractive astigmatism of 0.50 D or less and reduced the mean postoperative refractive astigmatism at 1 month. Other efficacy outcomes were similar. Drs. Woodcock, Lehmann, and Cionni are consultants to Alcon Laboratories, Inc. Dr. Breen is an employee of Alcon Laboratories, Inc. Dr. Scott has no financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Contralateral Cruciate Survival in Dogs with Unilateral Non-Contact Cranial Cruciate Ligament Rupture

    PubMed Central

    Muir, Peter; Schwartz, Zeev; Malek, Sarah; Kreines, Abigail; Cabrera, Sady Y.; Buote, Nicole J.; Bleedorn, Jason A.; Schaefer, Susan L.; Holzman, Gerianne; Hao, Zhengling

    2011-01-01

    Background Non-contact cranial cruciate ligament rupture (CrCLR) is an important cause of lameness in client-owned dogs and typically occurs without obvious injury. There is a high incidence of bilateral rupture at presentation or subsequent contralateral rupture in affected dogs. Although stifle synovitis increases risk of contralateral CrCLR, relatively little is known about risk factors for subsequent contralateral rupture, or whether therapeutic intervention may modify this risk. Methodology/Principal Findings We conducted a longitudinal study examining survival of the contralateral CrCL in client-owned dogs with unilateral CrCLR in a large baseline control population (n = 380), and a group of dogs that received disease-modifying therapy with arthroscopic lavage, intra-articular hyaluronic acid and oral doxycycline (n = 16), and were followed for one year. Follow-up in treated dogs included analysis of mobility, radiographic evaluation of stifle effusion and arthritis, and quantification of biomarkers of synovial inflammation. We found that median survival of the contralateral CrCL was 947 days. Increasing tibial plateau angle decreased contralateral ligament survival, whereas increasing age at diagnosis increased survival. Contralateral ligament survival was reduced in neutered dogs. Our disease-modifying therapy did not significantly influence contralateral ligament survival. Correlative analysis of clinical and biomarker variables with development of subsequent contralateral rupture revealed few significant results. However, increased expression of T lymphocyte-associated genes in the index unstable stifle at diagnosis was significantly related to development of subsequent non-contact contralateral CrCLR. Conclusion Subsequent contralateral CrCLR is common in client-owned dogs, with a median ligament survival time of 947 days. In this naturally occurring model of non-contact cruciate ligament rupture, cranial tibial translation is preceded by development of synovial inflammation. However, treatment with arthroscopic lavage, intra-articular hyaluronic acid and oral doxycycline does not significantly influence contralateral CrCL survival. PMID:21998650

  20. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data

    PubMed Central

    Harrison, Charlotte; Jackson, Jade; Oh, Seung-Mock; Zeringyte, Vaida

    2016-01-01

    Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and estimated the spatial scales of patterns driving decoding. Both orientation and eye of origin could be decoded significantly above chance in early visual areas (V1–V3). Contrary to predictions based on a columnar origin of response biases, decoding performance for eye of origin in V2 and V3 was not significantly lower than that in V1, nor did decoding performance for orientation and eye of origin differ significantly. Instead, response biases for both features showed large-scale organization, evident as a radial bias for orientation, and a nasotemporal bias for eye preference. To determine whether these patterns could drive classification, we quantified the effect on classification performance of binning voxels according to visual field position. Consistent with large-scale biases driving classification, binning by polar angle yielded significantly better decoding performance for orientation than random binning in V1–V3. Similarly, binning by hemifield significantly improved decoding performance for eye of origin. Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree of spatial correlation with the corresponding patterns in V1, suggesting that response biases in these areas originate in V1. Together, these findings indicate that multivariate classification results need not reflect the underlying columnar organization of neuronal response selectivities in early visual areas. NEW & NOTEWORTHY Large-scale response biases can account for decoding of orientation and eye of origin in human early visual areas V1–V3. For eye of origin this pattern is a nasotemporal bias; for orientation it is a radial bias. Differences in decoding performance across areas and stimulus features are not well predicted by differences in columnar-scale organization of each feature. Large-scale biases in extrastriate areas are spatially correlated with those in V1, suggesting biases originate in primary visual cortex. PMID:27903637

  1. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.

    PubMed

    Higgins, Nathan C; McLaughlin, Susan A; Rinne, Teemu; Stecker, G Christopher

    2017-09-05

    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.

  2. Evidence for cue-independent spatial representation in the human auditory cortex during active listening

    PubMed Central

    McLaughlin, Susan A.; Rinne, Teemu; Stecker, G. Christopher

    2017-01-01

    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues—particularly interaural time and level differences (ITD and ILD)—that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and—critically—for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues. PMID:28827357

  3. Diffusion tensor tractography detection of functional pathway for the spread of epileptiform activity between temporal lobe and Rolandic region.

    PubMed

    Bhardwaj, Ratan D; Mahmoodabadi, Sina Zarei; Otsubo, Hiroshi; Snead, O Carter; Rutka, James T; Widjaja, Elysa

    2010-02-01

    The aim of the study was to assess the connectivity between magnetoencephalographic (MEG) dipoles in the temporal lobe and Rolandic region in children with temporal lobe epilepsy using diffusion tensor imaging (DTI) tractography. Six pediatric patients with intractable focal epilepsy had MEG performed, which showed MEG dipoles over both temporal and Rolandic regions in a unilateral hemisphere. DTI tractography was performed on each patient. Six control subjects were studied for comparison. Two volumes of interest (VOIs) that encompassed the MEG dipoles were drawn, one placed in temporal lobe and the other in Rolandic region. Similar VOIs were placed in the contralateral side in the patients and on both sides in controls. Fractional anisotropy (FA) and trace of the external capsules were compared between patients and controls. In all patients, a tractography pathway traversing through the external capsule, connecting the temporal and Rolandic MEG dipoles, was visualized. However, on the contralateral hemisphere in each patient, there was no evidence of a similar fiber tract. There was no corresponding tractography pathway identified in either hemisphere within the controls. There were no significant differences in FA and trace between the seizure focus side and contralateral side in the patients. There was no significant difference in FA, but a difference in trace between patients and controls. We have found aberrant tractography pathway traversing through the external capsule, connecting two distant foci of epileptiform activity. Chronic interictal epileptogenic discharge could play a causal role in the de novo organization of these tracts.

  4. Unintended activity in homologous muscle during intended unilateral contractions increases with greater task difficulty.

    PubMed

    Watanabe, Hironori; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2017-10-01

    The present study aimed to examine (1) the effect of task difficulty on unintended muscle activation (UIMA) levels in contralateral homologous muscle, (2) the difference between young and old adults in degree of UIMA with respect to task difficulty, and (3) temporal correlations between intended and contralateral unintended muscle activity at low frequency during unilateral intended force-matching tasks. Twelve young (21.8 ± 2.4 years) and twelve old (69.9 ± 5.3 years) adult men performed steady isometric abductions with the left index finger at 20-80% of maximal voluntary contraction force. Two task difficulties were set by adjusting the spacing between two bars centered about the target force used for visual feedback on a monitor. The amplitude of surface electromyogram (aEMG) for both hands was calculated and normalized with respect to the maximal value. To determine if oscillations between intended and unintended muscle activities were correlated, cross-correlation function (CCF) of rectified EMG for both hands at low frequency was calculated for samples deemed adequate. The unintended aEMG (right hand) had significant main effects in task difficulty, age, and target force (all P < 0.05) without any interactions. Distinct significant peaks in CCF (0.38 on average, P < 0.05) with small time lags were present between rectified EMGs of intended and unintended muscles in 14 of the 17 samples. The current results indicate that UIMA increases with greater task difficulty regardless of age, and temporal correlations exist between intended and contralateral unintended muscle activities at low frequency.

  5. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude

    PubMed Central

    Davare, Marco; Zénon, Alexandre; Desmurget, Michel; Olivier, Etienne

    2015-01-01

    To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the “reaching circuit” remains unknown. Here we used transcranial magnetic stimulation (TMS) in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS) or dorsal premotor cortex (PMd), in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; targets were either visible for the whole trial (Target-ON) or flashed for 200 ms (Target-OFF). Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks—two parameters typically used to probe the planned movement amplitude—irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160–100 ms before movement onset for mIPS and 100–40 ms for left PMd. TMS applied over right PMd had no significant effect. These results demonstrate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric organization. PMID:25999837

  6. Contralateral Masking in Bilateral Cochlear Implant Patients: A Model of Medial Olivocochlear Function Loss

    PubMed Central

    Aronoff, Justin M.; Padilla, Monica; Fu, Qian-Jie; Landsberger, David M.

    2015-01-01

    Contralateral masking is the phenomenon where a masker presented to one ear affects the ability to detect a signal in the opposite ear. For normal hearing listeners, contralateral masking results in masking patterns that are both sharper and dramatically smaller in magnitude than ipsilateral masking. The goal of this study was to investigate whether medial olivocochlear (MOC) efferents are needed for the sharpness and relatively small magnitude of the contralateral masking function. To do this, bilateral cochlear implant patients were tested because, by directly stimulating the auditory nerve, cochlear implants circumvent the effects of the MOC efferents. The results indicated that, as with normal hearing listeners, the contralateral masking function was sharper than the ipsilateral masking function. However, although there was a reduction in the magnitude of the contralateral masking function compared to the ipsilateral masking function, it was relatively modest. This is in sharp contrast to the results of normal hearing listeners where the magnitude of the contralateral masking function is greatly reduced. These results suggest that MOC function may not play a large role in the sharpness of the contralateral masking function but may play a considerable role in the magnitude of the contralateral masking function. PMID:25798581

  7. Contralateral radiculopathy after transforaminal lumbar interbody fusion in the treatment of lumbar degenerative diseases: A Case Series.

    PubMed

    Hu, Hong-Tao; Ren, Liang; Sun, Xian-Ze; Liu, Feng-Yu; Yu, Jin-He; Gu, Zhen-Fang

    2018-04-01

    Transforaminal lumbar interbody fusion (TLIF) is an effective treatment for patients with degenerative lumbar disc disorder. Contralateral radiculopathy, as a complication of TLIF, has been recognized in this institution, but is rarely reported in the literature. In this article, we report 2 cases of contralateral radiculopathy after TLIF in our institution and its associated complications. In the 2 cases, the postoperative computed tomography (CT) and magnetic resonance image (MRI) showed obvious upward movement of the superior articular process, leading to contralateral foraminal stenosis. Revision surgery was done at once to partially resect the opposite superior facet and to relieve nerve root compression. After revision surgery, the contralateral radiculopathy disappeared. Contralateral radiculopathy is an avoidable potential complication. It is very important to create careful preoperative plans and to conscientiously plan the use of intraoperative techniques. In case of postoperative contralateral leg pain, the patients should be examined by CT and MRI. If CT and MRI show that the superior articular process significantly migrated upwards, which leads to contralateral foraminal stenosis, revision surgery should be done at once to partially resect the contralateral superior facet so as to relieve nerve root compression and avoid possible long-term impairment.

  8. Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations.

    PubMed

    Peterson, Dwight J; Gözenman, Filiz; Arciniega, Hector; Berryhill, Marian E

    2015-10-01

    Recent studies have demonstrated that factors influencing perception, such as Gestalt grouping cues, can influence the storage of information in visual working memory (VWM). In some cases, stationary cues, such as stimulus similarity, lead to superior VWM performance. However, the neural correlates underlying these benefits to VWM performance remain unclear. One neural index, the contralateral delay activity (CDA), is an event-related potential that shows increased amplitude according to the number of items held in VWM and asymptotes at an individual's VWM capacity limit. Here, we applied the CDA to determine whether previously reported behavioral benefits supplied by similarity, proximity, and uniform connectedness were reflected as a neural savings such that the CDA amplitude was reduced when these cues were present. We implemented VWM change-detection tasks with arrays including similarity and proximity (Experiment 1); uniform connectedness (Experiments 2a and 2b); and similarity/proximity and uniform connectedness (Experiment 3). The results indicated that when there was a behavioral benefit to VWM, this was echoed by a reduction in CDA amplitude, which suggests more efficient processing. However, not all perceptual grouping cues provided a VWM benefit in the same measure (e.g., accuracy) or of the same magnitude. We also found unexpected interactions between cues. We observed a mixed bag of effects, suggesting that these powerful perceptual grouping benefits are not as predictable in VWM. The current findings indicate that when grouping cues produce behavioral benefits, there is a parallel reduction in the neural resources required to maintain grouped items within VWM.

  9. Familiarity Speeds Up Visual Short-term Memory Consolidation: Electrophysiological Evidence from Contralateral Delay Activities.

    PubMed

    Xie, Weizhen; Zhang, Weiwei

    2018-01-01

    To test how preexisting long-term memory influences visual STM, this study takes advantage of individual differences in participants' prior familiarity with Pokémon characters and uses an ERP component, the contralateral delay activity (CDA), to assess whether observers' prior stimulus familiarity affects STM consolidation and storage capacity. In two change detection experiments, consolidation speed, as indexed by CDA fractional area latency and/or early-window (500-800 msec) amplitude, was significantly associated with individual differences in Pokémon familiarity. In contrast, the number of remembered Pokémon stimuli, as indexed by Cowan's K and late-window (1500-2000 msec) CDA amplitude, was significantly associated with individual differences in Pokémon familiarity when STM consolidation was incomplete because of a short presentation of Pokémon stimuli (500 msec, Experiment 2), but not when STM consolidation was allowed to complete given sufficient encoding time (1000 msec, Experiment 1). Similar findings were obtained in between-group analyses when participants were separated into high-familiarity and low-familiarity groups based on their Pokémon familiarity ratings. Together, these results suggest that stimulus familiarity, as a proxy for the strength of preexisting long-term memory, primarily speeds up STM consolidation, which may subsequently lead to an increase in the number of remembered stimuli if consolidation is incomplete. These findings thus highlight the importance of research assessing how effects on representations (e.g., STM capacity) are in general related to (or even caused by) effects on processes (e.g., STM consolidation) in cognition.

  10. Perceptual load, voluntary attention, and aging: an event-related potential study

    PubMed Central

    Wang, Yan; Fu, Shimin; Greenwood, Pamela; Luo, Yuejia; Parasuraman, Raja

    2012-01-01

    The locus of attentional selection is known to vary with perceptual load (Lavie et al., 2004). Under voluntary attention, perceptual load modulates selective visual processing at an early cortical stage, as reflected in the posterior P1 and N1 components of the event-related potentials (ERPs). Adult aging also affects both behavioral and ERP signs of attentional selection. However, it is not known whether perceptual load modulates this relationship. Accordingly, in the present study ERPs were recorded in a voluntary attention task. Young and old participants were asked to discriminate the direction of a target line embedded within a display of four lines that appeared in the left or right visual field. Participants responded faster and more accurately to valid relative to invalid trials and to low-load relative to high-load condition. Older participants responded more slowly and with lower accuracy than young participants in all conditions. The amplitudes of the posterior contralateral P1 and N1 components in valid trials were larger than that in invalid trials in all conditions. N1 amplitude was larger under the high load condition than that in the low load condition. Moreover, in the high perceptual load condition, the old group had a larger N1 than the young group at contralateral sites. The findings suggest that under voluntary attention, perceptual load and aging modulates attentional selection at an early but not the earliest stage, during the N1 (120–200ms) time range. Increased N1 amplitude in older adults may reflect increased demands on target discrimination in high perceptual load. PMID:22248536

  11. Neuronal network-based mathematical modeling of perceived verticality in acute unilateral vestibular lesions: from nerve to thalamus and cortex.

    PubMed

    Glasauer, S; Dieterich, M; Brandt, T

    2018-05-29

    Acute unilateral lesions of vestibular graviceptive pathways from the otolith organs and semicircular canals via vestibular nuclei and the thalamus to the parieto-insular vestibular cortex regularly cause deviations of perceived verticality in the frontal roll plane. These tilts are ipsilateral in peripheral and in ponto-medullary lesions and contralateral in ponto-mesencephalic lesions. Unilateral lesions of the vestibular thalamus or cortex cause smaller tilts of the perceived vertical, which may be either ipsilateral or contralateral. Using a neural network model, we previously explained why unilateral vestibular midbrain lesions rarely manifest with rotational vertigo. We here extend this approach, focussing on the direction-specific deviations of perceived verticality in the roll plane caused by acute unilateral vestibular lesions from the labyrinth to the cortex. Traditionally, the effect of unilateral peripheral lesions on perceived verticality has been attributed to a lesion-based bias of the otolith system. We here suggest, on the basis of a comparison of model simulations with patient data, that perceived visual tilt after peripheral lesions is caused by the effect of a torsional semicircular canal bias on the central gravity estimator. We further argue that the change of gravity coding from a peripheral/brainstem vectorial representation in otolith coordinates to a distributed population coding at thalamic and cortical levels can explain why unilateral thalamic and cortical lesions have a variable effect on perceived verticality. Finally, we propose how the population-coding network for gravity direction might implement the elements required for the well-known perceptual underestimation of the subjective visual vertical in tilted body positions.

  12. Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations

    PubMed Central

    Peterson, Dwight J.; Gözenman, Filiz; Arciniega, Hector; Berryhill, Marian E.

    2015-01-01

    Recent studies have demonstrated that factors influencing perception, such as Gestalt grouping cues, can influence the storage of information in visual working memory (VWM). In some cases, stationary cues such as stimulus similarity lead to superior VWM performance. However, the neural correlates underlying these benefits to VWM performance remain unclear. One neural index, the contralateral delay activity (CDA) is an event-related potential that shows increased amplitude according to the number of items held in VWM and asymptotes at an individual’s VWM capacity limit. Here, we applied the CDA to determine whether previously reported behavioral benefits supplied by similarity, proximity and uniform connectedness were reflected as a neural savings such that the CDA amplitude was reduced when these cues were present. We implemented VWM change detection tasks with arrays including similarity and proximity (Experiment 1); uniform connectedness (Experiments 2a and 2b); similarity/proximity and uniform connectedness (Experiment 3). The results indicated that when there was a behavioral benefit to VWM, this was echoed by a reduction in CDA amplitude, which suggests more efficient processing. However, not all perceptual grouping cues provided a VWM benefit in the same measure (e.g., accuracy) or of the same magnitude. We also found unexpected interactions between cues. We observed a mixed bag of effects, suggesting that these powerful perceptual grouping benefits are not as predictable in VWM. The current findings indicate that, when grouping cues produce behavioral benefits, there is a parallel reduction in the neural resources required to maintain grouped items within VWM. PMID:26018644

  13. Eye Dominance Predicts fMRI Signals in Human Retinotopic Cortex

    PubMed Central

    Mendola, Janine D.; Conner, Ian P.

    2009-01-01

    There have been many attempts to define eye dominance in normal subjects, but limited consensus exists, and relevant physiological data is scarce. In this study, we consider two different behavioral methods for assignment of eye dominance, and how well they predict fMRI signals evoked by monocular stimulation. Sighting eye dominance was assessed with two standard tests, the Porta Test, and a ‘hole in hand’ variation of the Miles Test. Acuity dominance was tested with a standard eye chart and with a computerized test of grating acuity. We found limited agreement between the sighting and acuity methods for assigning dominance in our individual subjects. We then compared the fMRI response generated by dominant eye stimulation to that generated by non-dominant eye, according to both methods, in 7 normal subjects. The stimulus consisted of a high contrast hemifield stimulus alternating with no stimulus in a blocked paradigm. In separate scans, we used standard techniques to label the borders of visual areas V1, V2, V3, VP, V4, V3A, and MT. These regions of interest (ROIs) were used to analyze each visual area separately. We found that percent change in fMRI BOLD signal was stronger for the dominant eye as defined by the acuity method, and this effect was significant for areas located in the ventral occipital territory (V1v, V2v, VP, V4). In contrast, assigning dominance based on sighting produced no significant interocular BOLD differences. We conclude that interocular BOLD differences in normal subjects exist, and may be predicted by acuity measures. PMID:17194544

  14. Peripheral prism glasses: effects of moving and stationary backgrounds.

    PubMed

    Shen, Jieming; Peli, Eli; Bowers, Alex R

    2015-04-01

    Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance and partial suppression of the prism image, thereby limiting device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared with monocular viewing. Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than in monocular (prism eye) viewing on the motion background (medians, 13 and 58%, respectively, p = 0.008) but not the still frame background (medians, 63 and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in one HH and one normally sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations.

  15. Stimulus competition mediates the joint effects of spatial and feature-based attention

    PubMed Central

    White, Alex L.; Rolfs, Martin; Carrasco, Marisa

    2015-01-01

    Distinct attentional mechanisms enhance the sensory processing of visual stimuli that appear at task-relevant locations and have task-relevant features. We used a combination of psychophysics and computational modeling to investigate how these two types of attention—spatial and feature based—interact to modulate sensitivity when combined in one task. Observers monitored overlapping groups of dots for a target change in color saturation, which they had to localize as being in the upper or lower visual hemifield. Pre-cues indicated the target's most likely location (left/right), color (red/green), or both location and color. We measured sensitivity (d′) for every combination of the location cue and the color cue, each of which could be valid, neutral, or invalid. When three competing saturation changes occurred simultaneously with the target change, there was a clear interaction: The spatial cueing effect was strongest for the cued color, and the color cueing effect was strongest at the cued location. In a second experiment, only the target dot group changed saturation, such that stimulus competition was low. The resulting cueing effects were statistically independent and additive: The color cueing effect was equally strong at attended and unattended locations. We account for these data with a computational model in which spatial and feature-based attention independently modulate the gain of sensory responses, consistent with measurements of cortical activity. Multiple responses then compete via divisive normalization. Sufficient competition creates interactions between the two cueing effects, although the attentional systems are themselves independent. This model helps reconcile seemingly disparate behavioral and physiological findings. PMID:26473316

  16. Peripheral Prism Glasses: Effects of Moving and Stationary Backgrounds

    PubMed Central

    Shen, Jieming; Peli, Eli; Bowers, Alex R.

    2015-01-01

    Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance (partial local suppression) of the prism image and limit device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared to monocular viewing. Methods Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. Results With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than monocular (prism eye) viewing on the motion background (medians 13% and 58%, respectively, p = 0.008), but not the still frame background (63% and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in 1 HH and 1 normally-sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conclusions Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations. PMID:25785533

  17. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    PubMed

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Adaptive remodeling at the pedicle due to pars fracture: a finite element analysis study.

    PubMed

    İnceoğlu, Serkan; Mageswaran, Prasath; Modic, Michael T; Benzel, Edward C

    2014-09-01

    Spondylolysis is a common condition among the general population and a major cause of back pain in young athletes. This condition can be difficult to detect with plain radiography and has been reported to lead to contralateral pars fracture or pedicle fracture in the terminal stages. Interestingly, some patients with late-stage spondylolysis are observed to have radiographic or CT evidence of a sclerotic pedicle on the side contralateral to the spondylolysis. Although computational studies have shown stress elevation in the contralateral pedicle after a pars fracture, it is not known if these changes would cause sclerotic changes in the contralateral pedicle. The objective of this study was to investigate the adaptive remodeling process at the pedicle due to a contralateral spondylolysis using finite element analysis. A multiscale finite element model of a vertebra was obtained by combining a continuum model of the posterior elements with a voxel-based pedicle section. Extension loading conditions were applied with or without a fracture at the contralateral pars to analyze the stresses in the contralateral pedicle. A remodeling algorithm was used to simulate and assess density changes in the contralateral pedicle. The remodeling algorithm demonstrated an increase in bone formation around the perimeter of the contralateral pedicle with some localized loss of mass in the region of cancellous bone. The authors' results indicated that a pars fracture results in sclerotic changes in the contralateral pedicle. Such a remodeling process could increase overall bone mass. However, focal bone loss in the region of the cancellous bone of the pedicle might predispose the pedicle to microfractures. This phenomenon explains, at least in part, the origin of pedicle stress fractures in the sclerotic contralateral pedicles of patients with unilateral spondylolysis.

  19. The value of preoperative 18F-FDG PET/CT for the assessing contralateral neck in head and neck cancer patients with unilateral node metastasis (N1-3).

    PubMed

    Joo, Y-H; Yoo, I-R; Cho, K-J; Park, J-O; Nam, I-C; Kim, C-S; Kim, S-Y; Kim, M-S

    2014-12-01

    The purpose of this study was to determine whether preoperative (18) F-FDG PET/CT is useful in assessing contralateral lymph node metastasis in the neck. A retrospective review of medical records was performed. Patients treated at a single institute. One hundred and fifty-seven patients whose pathology results were positive for unilateral node metastasis (N1-3) involvement and underwent preoperative (18) F-FDG PET/CT for head and neck squamous cell carcinoma (HNSCC) were reviewed. Prognostic factors and nodal SUVmax were studied to identify the risk of contralateral disease. Thirty-six (22.9%) patients had contralateral cervical lymph node metastases. The (18) F-FDG PET/CT had a sensitivity of 80% and a specificity of 96% in identifying the contralateral cervical lymph node metastases on a level-by-level basis. The median SUVmax values of the ipsilateral and contralateral lymph nodes were 3.99 ± 3.36 (range, 0-20.4) and 2.94 ± 2.04 (range, 0-8.7), respectively (P = 0.001). There was a significant difference in the median SUVmax of contralateral nodes between the benign and malignant cervical lymph nodes (2.31 ± 0.62 versus 3.28 ± 2.43, P = 0.014). The cut-off value of contralateral median SUVmax in the context of contralateral cervical metastasis was 2.5 with the sensitivity of 75% and the specificity of 94%. A median contralateral lymph node SUVmax  ≥ 2.5 was associated with 5-year disease-specific survival (P = 0.038). (18) F-FDG PET/CT median SUVmax cut-off values of contralateral lymph nodes ≥2.5 were associated with contralateral cervical lymph node metastases and 5-year disease-specific survival in HNSCC patients with unilateral metastases. © 2014 John Wiley & Sons Ltd.

  20. Spatial attention increases high-frequency gamma synchronisation in human medial visual cortex.

    PubMed

    Koelewijn, Loes; Rich, Anina N; Muthukumaraswamy, Suresh D; Singh, Krish D

    2013-10-01

    Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Top-down dimensional weight set determines the capture of visual attention: evidence from the PCN component.

    PubMed

    Töllner, Thomas; Müller, Hermann J; Zehetleitner, Michael

    2012-07-01

    Visual search for feature singletons is slowed when a task-irrelevant, but more salient distracter singleton is concurrently presented. While there is a consensus that this distracter interference effect can be influenced by internal system settings, it remains controversial at what stage of processing this influence starts to affect visual coding. Advocates of the "stimulus-driven" view maintain that the initial sweep of visual processing is entirely driven by physical stimulus attributes and that top-down settings can bias visual processing only after selection of the most salient item. By contrast, opponents argue that top-down expectancies can alter the initial selection priority, so that focal attention is "not automatically" shifted to the location exhibiting the highest feature contrast. To precisely trace the allocation of focal attention, we analyzed the Posterior-Contralateral-Negativity (PCN) in a task in which the likelihood (expectancy) with which a distracter occurred was systematically varied. Our results show that both high (vs. low) distracter expectancy and experiencing a distracter on the previous trial speed up the timing of the target-elicited PCN. Importantly, there was no distracter-elicited PCN, indicating that participants did not shift attention to the distracter before selecting the target. This pattern unambiguously demonstrates that preattentive vision is top-down modifiable.

  2. Changes in brain morphology in albinism reflect reduced visual acuity.

    PubMed

    Bridge, Holly; von dem Hagen, Elisabeth A H; Davies, George; Chambers, Claire; Gouws, Andre; Hoffmann, Michael; Morland, Antony B

    2014-07-01

    Albinism, in humans and many animal species, has a major impact on the visual system, leading to reduced acuity, lack of binocular function and nystagmus. In addition to the lack of a foveal pit, there is a disruption to the routing of the nerve fibers crossing at the optic chiasm, resulting in excessive crossing of fibers to the contralateral hemisphere. However, very little is known about the effect of this misrouting on the structure of the post-chiasmatic visual pathway, and the occipital lobes in particular. Whole-brain analyses of cortical thickness in a large cohort of subjects with albinism showed an increase in cortical thickness, relative to control subjects, particularly in posterior V1, corresponding to the foveal representation. Furthermore, mean cortical thickness across entire V1 was significantly greater in these subjects compared to controls and negatively correlated with visual acuity in albinism. Additionally, the group with albinism showed decreased gyrification in the left ventral occipital lobe. While the increase in cortical thickness in V1, also found in congenitally blind subjects, has been interpreted to reflect a lack of pruning, the decreased gyrification in the ventral extrastriate cortex may reflect the reduced input to the foveal regions of the ventral visual stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Manipulating the disengage operation of covert visual spatial attention.

    PubMed

    Danckert, J; Maruff, P

    1997-05-01

    Processes of covert visual spatial attention have been closely linked to the programming of saccadic eye movements. In particular, it has been hypothesized that the reduction in saccadic latency that occurs in the gap paradigm is due to the prior disengagement of covert visual spatial attention. This explanation has received considerable criticism. No study as yet as attempted to demonstrate a facilitation of the disengagement of attention from a covertly attended object. If such facilitation were possible, it would support the hypothesis that the predisengagement of covert attention is necessary for the generation of express saccades. In two experiments using covert orienting of visual attention tasks (COVAT), with a high probability that targets would appear contralateral to the cued location, we attempted to facilitate the disengagement of covert attention by extinguishing peripheral cues prior to the appearance of targets. We hypothesized that the gap between cue offset and target onset would facilitate disengagement of attention from a covertly attended object. For both experiments, responses to targets appearing after a gap were slower than were responses in the no-gap condition. These results suggest that the prior offset of a covertly attended object does not facilitate the disengagement of attention.

  4. Exploring associations between gaze patterns and putative human mirror neuron system activity.

    PubMed

    Donaldson, Peter H; Gurvich, Caroline; Fielding, Joanne; Enticott, Peter G

    2015-01-01

    The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  5. The impact of visual gaze direction on auditory object tracking.

    PubMed

    Pomper, Ulrich; Chait, Maria

    2017-07-05

    Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention while participants detected targets presented from one of three loudspeakers. We observed increased response times when gaze was directed away from the locus of auditory attention. Further, we found an increase in occipital alpha-band power contralateral to the direction of gaze, indicative of a suppression of distracting input. Finally, this condition also led to stronger central theta-band power, which correlated with the observed effect in response times, indicative of differences in top-down processing. Our data suggest that a misalignment between gaze and auditory attention both reduce behavioural performance and modulate underlying neural processes. The involvement of central theta-band and occipital alpha-band effects are in line with compensatory neural mechanisms such as increased cognitive control and the suppression of task irrelevant inputs.

  6. Visual object agnosia is associated with a breakdown of object-selective responses in the lateral occipital cortex.

    PubMed

    Ptak, Radek; Lazeyras, François; Di Pietro, Marie; Schnider, Armin; Simon, Stéphane R

    2014-07-01

    Patients with visual object agnosia fail to recognize the identity of visually presented objects despite preserved semantic knowledge. Object agnosia may result from damage to visual cortex lying close to or overlapping with the lateral occipital complex (LOC), a brain region that exhibits selectivity to the shape of visually presented objects. Despite this anatomical overlap the relationship between shape processing in the LOC and shape representations in object agnosia is unknown. We studied a patient with object agnosia following isolated damage to the left occipito-temporal cortex overlapping with the LOC. The patient showed intact processing of object structure, yet often made identification errors that were mainly based on the global visual similarity between objects. Using functional Magnetic Resonance Imaging (fMRI) we found that the damaged as well as the contralateral, structurally intact right LOC failed to show any object-selective fMRI activity, though the latter retained selectivity for faces. Thus, unilateral damage to the left LOC led to a bilateral breakdown of neural responses to a specific stimulus class (objects and artefacts) while preserving the response to a different stimulus class (faces). These findings indicate that representations of structure necessary for the identification of objects crucially rely on bilateral, distributed coding of shape features. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.

    PubMed

    Debats, Nienke B; Ridderikhoff, Arne; de Boer, Betteco J; Peper, C Lieke E

    2013-08-01

    Sensorimotor biases were examined for intentional (tracking task) and unintentional (distractor task) rhythmic coordination. The tracking task involved unimanual tracking of either an oscillating visual signal or the passive movements of the contralateral hand (proprioceptive signal). In both conditions the required coordination patterns (isodirectional and mirror-symmetric) were defined relative to the body midline and the hands were not visible. For proprioceptive tracking the two patterns did not differ in stability, whereas for visual tracking the isodirectional pattern was performed more stably than the mirror-symmetric pattern. However, when visual feedback about the unimanual hand movements was provided during visual tracking, the isodirectional pattern ceased to be dominant. Together these results indicated that the stability of the coordination patterns did not depend on the modality of the target signal per se, but on the combination of sensory signals that needed to be processed (unimodal vs. cross-modal). The distractor task entailed rhythmic unimanual movements during which a rhythmic visual or proprioceptive distractor signal had to be ignored. The observed biases were similar as for intentional coordination, suggesting that intentionality did not affect the underlying sensorimotor processes qualitatively. Intentional tracking was characterized by active sensory pursuit, through muscle activity in the passively moved arm (proprioceptive tracking task) and rhythmic eye movements (visual tracking task). Presumably this pursuit afforded predictive information serving the coordination process. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Improved detection following Neuro-Eye Therapy in patients with post-geniculate brain damage.

    PubMed

    Sahraie, Arash; Macleod, Mary-Joan; Trevethan, Ceri T; Robson, Siân E; Olson, John A; Callaghan, Paula; Yip, Brigitte

    2010-09-01

    Damage to the optic radiation or the occipital cortex results in loss of vision in the contralateral visual field, termed partial cortical blindness or hemianopia. Previously, we have demonstrated that stimulation in the field defect using visual stimuli with optimal properties for blindsight detection can lead to increases in visual sensitivity within the blind field of a group of patients. The present study was aimed to extend the previous work by investigating the effect of positive feedback on recovery of visual sensitivity. Patients' abilities for detection of a range of spatial frequencies within their field defect were determined using a temporal two-alternative forced-choice technique, before and after a period of visual training (n = 4). Patients underwent Neuro-Eye Therapy which involved detection of temporally modulated spatial grating patches at specific retinal locations within their field defect. Three patients showed improved detection ability following visual training. Based on our previous studies, we had hypothesised that should the occipital brain lesion extend anteriorly to the thalamus, little recovery would be expected. Here, we describe one such case who showed no improvements after extensive training. The present study provides further evidence that recovery (a) can be gradual and may require a large number of training sessions (b) can be accelerated using positive feedback and (c) may be less likely to take place if the occipital damage extends anteriorly to the thalamus.

  9. Auditory and visual interhemispheric communication in musicians and non-musicians.

    PubMed

    Woelfle, Rebecca; Grahn, Jessica A

    2013-01-01

    The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.

  10. Visual field defects of the contralateral eye of non-arteritic ischemic anterior optic neuropathy: are they related to sleep apnea?

    PubMed

    Aptel, Florent; Aryal-Charles, Nischal; Tamisier, Renaud; Pépin, Jean-Louis; Lesoin, Antoine; Chiquet, Christophe

    2017-06-01

    To evaluate whether obstructive sleep apnea (OSA) is responsible for the visual field defects found in the fellow eyes of patients with non-arteritic ischemic optic neuropathy (NAION). Prospective cross-sectional study. The visual fields of the fellow eyes of NAION subjects with OSA were compared to the visual fields of control OSA patients matched for OSA severity. All patients underwent comprehensive ophthalmological and general examination including Humphrey 24.2 SITA-Standard visual field and polysomnography. Visual field defects were classified according the Ischemic Optic Neuropathy Decompression Trial (IONDT) classification. From a cohort of 78 consecutive subjects with NAION, 34 unaffected fellow eyes were compared to 34 control eyes of subjects matched for OSA severity (apnea-hypopnea index [AHI] 35.5 ± 11.6 vs 35.4 ± 9.4 events per hour, respectively, p = 0.63). After adjustment for age and body mass index, all visual field parameters were significantly different between the NAION fellow eyes and those of the control OSA groups, including mean deviation (-4.5 ± 3.7 vs -1.3 ± 1.8 dB, respectively, p < 0.05), visual field index (91.6 ± 10 vs 97.4 ± 3.5%, respectively, p = 0.002), pattern standard deviation (3.7 ± 2.3 vs 2.5 ± 2 dB, respectively, p = 0.015), and number of subjects with at least one defect on the IONDT classification (20 vs 10, respectively, p < 0.05). OSA alone does not explain the visual field defects frequently found in the fellow eyes of NAION patients.

  11. Evaluation of baseline structural factors for predicting glaucomatous visual-field progression using optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy.

    PubMed

    Sehi, M; Bhardwaj, N; Chung, Y S; Greenfield, D S

    2012-12-01

    The objective of this study is to assess whether baseline optic nerve head (ONH) topography and retinal nerve fiber layer thickness (RNFLT) are predictive of glaucomatous visual-field progression in glaucoma suspect (GS) and glaucomatous eyes, and to calculate the level of risk associated with each of these parameters. Participants with ≥28 months of follow-up were recruited from the longitudinal Advanced Imaging for Glaucoma Study. All eyes underwent standard automated perimetry (SAP), confocal scanning laser ophthalmoscopy (CSLO), time-domain optical coherence tomography (TDOCT), and scanning laser polarimetry using enhanced corneal compensation (SLPECC) every 6 months. Visual-field progression was assessed using pointwise linear-regression analysis of SAP sensitivity values (progressor) and defined as significant sensitivity loss of >1 dB/year at ≥2 adjacent test locations in the same hemifield at P<0.01. Cox proportional hazard ratios (HR) were calculated to determine the predictive ability of baseline ONH and RNFL parameters for SAP progression using univariate and multivariate models. Seventy-three eyes of 73 patients (43 GS and 30 glaucoma, mean age 63.2±9.5 years) were enrolled (mean follow-up 51.5±11.3 months). Four of 43 GS (9.3%) and 6 of 30 (20%) glaucomatous eyes demonstrated progression. Mean time to progression was 50.8±11.4 months. Using multivariate models, abnormal CSLO temporal-inferior Moorfields classification (HR=3.76, 95% confidence interval (CI): 1.02-6.80, P=0.04), SLPECC inferior RNFLT (per -1 μm, HR=1.38, 95% CI: 1.02-2.2, P=0.02), and TDOCT inferior RNFLT (per -1 μm, HR=1.11, 95% CI: 1.04-1.2, P=0.001) had significant HRs for SAP progression. Abnormal baseline ONH topography and reduced inferior RNFL are predictive of SAP progression in GS and glaucomatous eyes.

  12. Evaluation of baseline structural factors for predicting glaucomatous visual-field progression using optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy

    PubMed Central

    Sehi, M; Bhardwaj, N; Chung, Y S; Greenfield, D S

    2012-01-01

    Purpose The objective of this study is to assess whether baseline optic nerve head (ONH) topography and retinal nerve fiber layer thickness (RNFLT) are predictive of glaucomatous visual-field progression in glaucoma suspect (GS) and glaucomatous eyes, and to calculate the level of risk associated with each of these parameters. Methods Participants with ≥28 months of follow-up were recruited from the longitudinal Advanced Imaging for Glaucoma Study. All eyes underwent standard automated perimetry (SAP), confocal scanning laser ophthalmoscopy (CSLO), time-domain optical coherence tomography (TDOCT), and scanning laser polarimetry using enhanced corneal compensation (SLPECC) every 6 months. Visual-field progression was assessed using pointwise linear-regression analysis of SAP sensitivity values (progressor) and defined as significant sensitivity loss of >1 dB/year at ≥2 adjacent test locations in the same hemifield at P<0.01. Cox proportional hazard ratios (HR) were calculated to determine the predictive ability of baseline ONH and RNFL parameters for SAP progression using univariate and multivariate models. Results Seventy-three eyes of 73 patients (43 GS and 30 glaucoma, mean age 63.2±9.5 years) were enrolled (mean follow-up 51.5±11.3 months). Four of 43 GS (9.3%) and 6 of 30 (20%) glaucomatous eyes demonstrated progression. Mean time to progression was 50.8±11.4 months. Using multivariate models, abnormal CSLO temporal-inferior Moorfields classification (HR=3.76, 95% confidence interval (CI): 1.02–6.80, P=0.04), SLPECC inferior RNFLT (per −1 μm, HR=1.38, 95% CI: 1.02–2.2, P=0.02), and TDOCT inferior RNFLT (per −1 μm, HR=1.11, 95% CI: 1.04–1.2, P=0.001) had significant HRs for SAP progression. Conclusion Abnormal baseline ONH topography and reduced inferior RNFL are predictive of SAP progression in GS and glaucomatous eyes. PMID:23060026

  13. Visual Field Abnormalities among Adolescent Boys with Hearing Impairments

    PubMed Central

    KHORRAMI-NEJAD, Masoud; HERAVIAN, Javad; SEDAGHAT, Mohamad-Reza; MOMENI-MOGHADAM, Hamed; SOBHANI-RAD, Davood; ASKARIZADEH, Farshad

    2016-01-01

    The aim of this study was to compare the visual field (VF) categorizations (based on the severity of VF defects) between adolescent boys with hearing impairments and those with normal hearing. This cross-sectional study involved the evaluation of the VF of 64 adolescent boys with hearing impairments and 68 age-matched boys with normal hearing at high schools in Tehran, Iran, in 2013. All subjects had an intelligence quotient (IQ) > 70. The hearing impairments were classified based on severity and time of onset. Participants underwent a complete eye examination, and the VFs were investigated using automated perimetry with a Humphrey Visual Field Analyzer. This device was used to determine their foveal threshold (FT), mean deviation (MD), and Glaucoma Hemifield Test (GHT) results. Most (50%) of the boys with hearing impairments had profound hearing impairments. There was no significant between-group difference in age (P = 0.49) or IQ (P = 0.13). There was no between-group difference in the corrected distance visual acuity (P = 0.183). According to the FT, MD, and GHT results, the percentage of boys with abnormal VFs in the hearing impairment group was significantly greater than that in the normal hearing group: 40.6% vs. 22.1%, 59.4% vs. 19.1%, and 31.2% vs. 8.8%, respectively (P < 0.0001). The mean MD in the hearing impairment group was significantly worse than that in the normal hearing group (-0.79 ± 2.04 and -4.61 ± 6.52 dB, respectively, P < 0.0001), and the mean FT was also significantly worse (38.97 ± 1.66 vs. 35.30 ± 1.43 dB, respectively, P <0.0001). Moreover, there was a significant between-group difference in the GHT results (P < 0.0001). Thus, there were higher percentages of boys with VF abnormalities and higher mean MD, FT, and GHT results among those with hearing impairments compared to those with normal hearing. These findings emphasize the need for detailed VF assessments for patients with hearing impairments. PMID:28293650

  14. The effect of midline crossing of lateral supraglottic cancer on contralateral cervical lymph node metastasis.

    PubMed

    Yılmaz, Taner; Süslü, Nilda; Atay, Gamze; Günaydın, Rıza Önder; Bajin, Münir Demir; Özer, Serdar

    2015-05-01

    The degree of midline crossing of lateral supraglottic cancer does not significantly change its rate of contralateral cervical metastasis. The rate of occult metastasis is too high to take the risk of contralateral regional recurrence. We support routine bilateral neck dissection even in lateral supraglottic cancers with no or minimal midline crossing. Data on the rate of contralateral cervical metastasis of laterally located supraglottic cancer, the effect of its degree of midline crossing on contralateral cervical metastasis, and its treatment are still controversial. This was a retrospective cohort, chart review involving 305 surgically treated patients with T1-3 squamous cell carcinoma of the supraglottic larynx. In all, 184 patients had bilateral neck dissection; 86 N0 contralateral necks were followed up. Thirty-five patients who needed postoperative radiation therapy because of the primary tumor or ipsilateral neck dissection specimen also received radiation therapy to the contralateral neck. The degree of midline crossing at the epiglottis was measured on a laryngectomy specimen with a ruler and expressed as 'no,' '<5 mm' or '≥5 mm.' The rates of occult and overall contralateral metastasis in our series were 16% and 28%, respectively. There was no statistically significant difference between contralateral neck metastasis and recurrence rates in the neck dissection, follow-up, and irradiation groups according to the degree of midline crossing.

  15. Choosing the appropriate side for subcutaneous port catheter placement in patients with mastectomy: ipsilateral or contralateral?

    PubMed

    Nas, Omer Fatih; Hacikurt, Kadir; Kaya, Ahmet; Dogan, Nurullah; Sanal, Bekir; Ozkaya, Guven; Dundar, Halit Ziya; Erdogan, Cuneyt

    2017-06-01

    To evaluate long-term clinical follow-up results of implanting subcutaneous port catheters (SPCs) on ipsilateral or contralateral with mastectomy side in patients with axillary lymph node dissection. A total of 73 patients composed of ipsilateral (34 catheters) and contralateral (39 catheters) groups, with SPCs were included. All patients had lumpectomy or modified radical mastectomy for breast cancer. Ipsilateral and contralateral groups had similar patient characteristics. Five late complications were seen in the ipsilateral group and 2 late complications in the contralateral group. No statistical significant difference was seen between two groups in regard to late complications. Four complications of the ipsilateral group were classified as major group C and 1 as major group D, while 1 complication of the contralateral group was classified as minor group B and 1 as major group C according to Society of Interventional Radiology (SIR) classification. No statistical significant difference was seen between complication rates of two groups in regard to SIR classification. SPC related complications do not differ in regard to ipsilateral or contralateral side selection on mastectomized patients with breast cancer and lymph node dissection. SPCs can be implanted on ipsilateral or contralateral sides of the operation in these patients.

  16. Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase.

    PubMed

    Li, Hongjie; Wu, Xiaoyan; Bai, Yanrui; Huang, Yan; He, Wenting; Dong, Zhifang

    2012-05-01

    It is well documented that bilateral hippocampal lesions or unilateral hippocampal lesion at birth causes impairment of contralateral LTP and long-term memory. However, effects of unilateral hippocampal lesion in adults on contralateral in vivo LTP and memory are not clear. We here examined the influence of unilateral electrolytic dorsal hippocampal lesion in adult rats on contralateral LTP in vivo and spatial memory during different postoperative phases. We found that acute unilateral hippocampal lesion had no effect on contralateral LTP. However, contralateral LTP was impaired at 1 week after lesion, and was restored to the control level at postoperative week 4. Similarly, spatial memory was also impaired at postoperative week 1, and was restored at postoperative week 4. In addition, the rats at postoperative week 1 showed stronger spatial exploratory behavior in a novel open-field environment. The sham operation had no effects on contralateral LTP, spatial memory and exploration at either postoperative week 1 or week 4. These results suggest that unilateral dorsal hippocampal lesion in adult rats causes transient contralateral LTP impairment and spatial memory deficit. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Incidence Rate and Risk Factors for Contralateral Eye Involvement among Patients with AIDS and Cytomegalovirus Retinitis Treated with Local Therapy.

    PubMed

    Sittivarakul, Wantanee; Benjhawaleemas, Thanyapat; Aui-Aree, Nipat; Jirarattanasopa, Pichai; Liabsuetrakul, Tippawan

    2016-10-01

    To calculate the incidence of, and to identify the risk factors for developing contralateral eye involvement among patients with AIDS and unilateral cytomegalovirus retinitis (CMV retinitis), who were treated, in the era of highly-active antiretroviral therapy (HAART), with repetitive intravitreal ganciclovir injections. The clinical records of 119 patients were included. The main outcome measurement was the occurrence of contralateral eye involvement. Over a mean follow-up period of 1.6 years, the overall incidence rate of contralateral involvement was 0.17/person-year. The cumulative incidence of contralateral involvement at 6 months and 1 year was 23.8% and 28.4%, respectively. Receiving HAART at the visit before the event was associated with a decreased risk of developing contralateral retinitis (hazard ratio [HR] = 0.26, P = 0.002). The use of HAART, associated with subsequent immune recovery, significantly reduced the incidence of contralateral eye involvement by approximately 75% among patients in our setting.

  18. Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation.

    PubMed

    Wang, Xing; Chaudhry, Sharjeel A; Hou, Wensheng; Jia, Xiaofeng

    2017-02-05

    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.

  19. Effect of optic neuritis on progressive axonal damage in multiple sclerosis patients.

    PubMed

    Garcia-Martin, E; Pueyo, V; Ara, J R; Almarcegui, C; Martin, J; Pablo, L; Dolz, I; Sancho, E; Fernandez, F J

    2011-07-01

    The objective of this research was to study the effect of optic neuritis (ON) on axonal damage in multiple sclerosis (MS) patients. Specifically, we compared changes over 2 years in the retinal nerve fibre layer (RNFL) between affected and contralateral eyes in MS patients with a prior history of ON. Thirty-four patients with one unilateral definitive episode of ON were included and underwent a complete ophthalmic examination, optical coherence tomography (OCT), scanning laser polarimetry, visual evoked potentials (VEP) and pattern electroretinogram (pERG). All patients were re-evaluated at 12 and 24 months. Parameters were compared between ON-affected and contralateral eyes in an initial exploration and over the course of the follow-up. Correlations between parameter changes were analysed. RNFL thickness and functional parameters showed more affection in ON eyes (p ≤ 0.05), but changes in measurements during the study were similar between both groups of eyes. Progressive axonal loss can be detected in the optic nerve, but ON is not a risk factor for increased chronic damage in MS patients without ophthalmic relapses. Loss of the RNFL is caused by progressive degeneration associated with the disease.

  20. Clavicular hook plate for grade-III acromioclavicular dislocation.

    PubMed

    Steinbacher, Gilbert; Sallent, Andrea; Seijas, Roberto; Boffa, Juan Manuel; Espinosa, Wenceslao; Cugat, Ramón

    2014-12-01

    To review the outcomes of clavicular hook plate fixation for grade-III acromioclavicular (AC) dislocation in young athletes. Medical records of 14 male and 5 female athletes aged 18 to 49 (mean, 29) years who underwent fixation with a 3.5-mm-thick, 15-mm-long clavicular hook plate for acute grade-III AC dislocation were reviewed. The visual analogue score for pain and the Constant shoulder score were assessed. The mean follow-up was 4.2 years. The mean visual analogue score for pain was 1.8 (range, 1-3). The Constant shoulder score was excellent (≥ 90) in 14 patients and good (83-89) in 5 patients. All patients achieved range of motion equal to that of the contralateral side at week 5. Sports activities were resumed by month 6 at the latest. The clavicular hook plate for grade- III AC dislocation enables quick return to sports activities and achieves good-to-excellent functional outcome.

  1. Retrospective attention enhances visual working memory in the young but not the old: an ERP study

    PubMed Central

    Duarte, Audrey; Hearons, Patricia; Jiang, Yashu; Delvin, Mary Courtney; Newsome, Rachel N.; Verhaeghen, Paul

    2013-01-01

    Behavioral evidence from the young suggests spatial cues that orient attention toward task relevant items in visual working memory (VWM) enhance memory capacity. Whether older adults can also use retrospective cues (“retro-cues”) to enhance VWM capacity is unknown. In the current event-related potential (ERP) study, young and old adults performed a VWM task in which spatially informative retro-cues were presented during maintenance. Young but not older adults’ VWM capacity benefitted from retro-cueing. The contralateral delay activity (CDA) ERP index of VWM maintenance was attenuated after the retro-cue, which effectively reduced the impact of memory load. CDA amplitudes were reduced prior to retro-cue onset in the old only. Despite a preserved ability to delete items from VWM, older adults may be less able to use retrospective attention to enhance memory capacity when expectancy of impending spatial cues disrupts effective VWM maintenance. PMID:23445536

  2. Emotion Separation Is Completed Early and It Depends on Visual Field Presentation

    PubMed Central

    Liu, Lichan; Ioannides, Andreas A.

    2010-01-01

    It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well within 100 ms after image onset, and that this separation is processed differently depending on where in the visual field the stimulus is presented. Seven right-handed males participated in a face affect recognition experiment in which they viewed happy, fearful and neutral faces. Blocks of images were shown either at the center or in one of the four quadrants of the visual field. For centrally presented faces, the emotions were separated fast, first in the right superior temporal sulcus (STS; 35–48 ms), followed by the right amygdala (57–64 ms) and medial pre-frontal cortex (83–96 ms). For faces presented in the periphery, the emotions were separated first in the ipsilateral amygdala and contralateral STS. We conclude that amygdala and STS likely play a different role in early visual processing, recruiting distinct neural networks for action: the amygdala alerts sub-cortical centers for appropriate autonomic system response for fight or flight decisions, while the STS facilitates more cognitive appraisal of situations and links appropriate cortical sites together. It is then likely that different problems may arise when either network fails to initiate or function properly. PMID:20339549

  3. Attention Effects on Form Discrimination at Different Eccentricities

    DTIC Science & Technology

    1989-01-01

    and Zimba (1985) also were not suggestive of a fixed-velocity movement of attention, althouqh their study was not designed to test this hypothesis. In...opposite hemifield as the foveal or peripheral precue. Similar results occurred at the vertical meridian and at the horizontal meridian (Hughes & Zimba ...M. S. (1981). Dissociation of spatial information for stimulus localization and the control of attention. Brain, 104, 861-872. Hughes, H. C., & Zimba

  4. Adolescents and female patients are at increased risk for contralateral anterior cruciate ligament reconstruction: a cohort study from the Swedish National Knee Ligament Register based on 17,682 patients.

    PubMed

    Snaebjörnsson, Thorkell; Hamrin Senorski, Eric; Sundemo, David; Svantesson, Eleonor; Westin, Olof; Musahl, Volker; Alentorn-Geli, Eduard; Samuelsson, Kristian

    2017-12-01

    The impact of different surgical techniques in index ACL reconstruction for patients undergoing contralateral ACL reconstruction was investigated. The study was based on data from the Swedish National Knee Ligament Register. Patients undergoing index ACL reconstruction and subsequent contralateral ACL reconstruction using hamstring graft under the study period were included. The following variables were evaluated: age at index surgery, gender, concomitant meniscal or cartilage injury registered at index injury, transportal femoral bone tunnel drilling and transtibial femoral bone tunnel drilling. The end-point of primary contralateral ACL surgery was analysed as well as the time-to-event outcomes using survivorship methods including Kaplan-Meier estimation and Cox proportional hazards regression models. A total of 17,682 patients [n = 10,013 males (56.6%) and 7669 females (43.4%)] undergoing primary ACL reconstruction from 1 January 2005 through 31 December 2014 were included in the study. A total of 526 (3.0%) patients [n = 260 males (49.4%) and 266 females (50.6%)] underwent primary contralateral ACL reconstruction after index ACL reconstruction during the study period. Females had a 33.7% greater risk of contralateral ACL surgery [HR 1.337 (95% CI 1.127-1.586); (P = 0 0.001)]. The youngest age group (13-15 years) showed an increased risk of contralateral ACL surgery compared with the reference (36-49) age group [HR 2.771 (95% CI 1.456-5.272); (P = 0.002)]. Decreased risk of contralateral ACL surgery was seen amongst patients with concomitant cartilage injury at index surgery [HR 0.765 (95% CI 0.623-0.939); (P = 0.010)]. No differences in terms of the risk of contralateral ACL surgery were found between anatomic and non-anatomic techniques of primary single-bundle ACL reconstruction, comparing transportal anatomic technique to transtibial non-anatomic, anatomic and partial-anatomic. Age and gender were identified as risk factors for contralateral ACL reconstruction; hence young individuals and females were more prone to undergo contralateral ACL reconstruction. Patients with concomitant cartilage injury at index ACL reconstruction had lower risk for contralateral ACL reconstruction. No significant differences between various ACL reconstruction techniques could be related to increased risk of contralateral ACL reconstruction. Retrospective Cohort Study, Level III.

  5. Qualitative and quantitative radiological analysis of non-contrast CT is a strong indicator in patients with acute pyelonephritis.

    PubMed

    El-Merhi, Fadi; Mohamad, May; Haydar, Ali; Naffaa, Lena; Nasr, Rami; Deeb, Ibrahim Al-Sheikh; Hamieh, Nadine; Tayara, Ziad; Saade, Charbel

    2018-04-01

    To evaluate the performance of non-contrast computed tomography (CT) by reporting the difference in attenuation between normal and inflamed renal parenchyma in patients clinically diagnosed with acute pyelonephritis (APN). This is a retrospective study concerned with non-contrast CT evaluation of 74 patients, admitted with a clinical diagnosis of APN and failed to respond to 48h antibiotics treatment. Mean attenuation values in Hounsfield units (HU) were measured in the upper, middle and lower segments of the inflamed and the normal kidney of the same patient. Independent t-test was performed for statistical analysis. Image evaluation included receiver operating characteristic (ROC), visual grading characteristic (VGC) and kappa analyses. The mean attenuation in the upper, middle and lower segments of the inflamed renal cortex was 32%, 25%, and 29% lower than the mean attenuation of the corresponding cortical segments of the contralateral normal kidney, respectively (p<0.01). The mean attenuation in the upper, middle, and lower segments of the inflamed renal medulla was 48%, 21%, and 30%, lower than the mean attenuation of the corresponding medullary segments of the contralateral normal kidney (p<0.02). The mean attenuation between the inflamed and non-inflamed renal cortex and medulla was 29% and 30% lower respectively (p<0.001). The AUCROC (p<0.001) analysis demonstrated significantly higher scores for pathology detection, irrespective of image quality, compared to clinical and laboratory results with an increased inter-reader agreement from poor to substantial. Non-contrast CT showed a significant decrease in the parenchymal density of the kidney affected with APN in comparison to the contralateral normal kidney of the same patient. This can be incorporated in the diagnostic criteria of APN in NCCT in the emergency setting. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Manual and Instrument Applied Cervical Manipulation for Mechanical Neck Pain: A Randomized Controlled Trial.

    PubMed

    Gorrell, Lindsay M; Beath, Kenneth; Engel, Roger M

    2016-06-01

    The purpose of this study was to compare the effects of 2 different cervical manipulation techniques for mechanical neck pain (MNP). Participants with MNP of at least 1 month's duration (n = 65) were randomly allocated to 3 groups: (1) stretching (control), (2) stretching plus manually applied manipulation (MAM), and (3) stretching plus instrument-applied manipulation (IAM). MAM consisted of a single high-velocity, low-amplitude cervical chiropractic manipulation, whereas IAM involved the application of a single cervical manipulation using an (Activator IV) adjusting instrument. Preintervention and postintervention measurements were taken of all outcomes measures. Pain was the primary outcome and was measured using visual analogue scale and pressure pain thresholds. Secondary outcomes included cervical range of motion, hand grip-strength, and wrist blood pressure. Follow-up subjective pain scores were obtained via telephone text message 7 days postintervention. Subjective pain scores decreased at 7-day follow-up in the MAM group compared with control (P = .015). Cervical rotation bilaterally (ipsilateral: P = .002; contralateral: P = .015) and lateral flexion on the contralateral side to manipulation (P = .001) increased following MAM. Hand grip-strength on the contralateral side to manipulation (P = .013) increased following IAM. No moderate or severe adverse events were reported. Mild adverse events were reported on 6 occasions (control, 4; MAM, 1; IAM, 1). This study demonstrates that a single cervical manipulation is capable of producing immediate and short-term benefits for MNP. The study also demonstrates that not all manipulative techniques have the same effect and that the differences may be mediated by neurological or biomechanical factors inherent to each technique. Copyright © 2016. Published by Elsevier Inc.

  7. Inhibition of return in the covert deployment of attention: evidence from human electrophysiology.

    PubMed

    McDonald, John J; Hickey, Clayton; Green, Jessica J; Whitman, Jennifer C

    2009-04-01

    People are slow to react to objects that appear at recently attended locations. This delay-known as inhibition of return (IOR)-is believed to aid search of the visual environment by discouraging inspection of recently inspected objects. However, after two decades of research, there is no evidence that IOR reflects an inhibition in the covert deployment of attention. Here, observers participated in a modified visual-search task that enabled us to measure IOR and an ERP component called the posterior contralateral N2 (N2pc) that reflects the covert deployment of attention. The N2pc was smaller when a target appeared at a recently attended location than when it appeared at a recently unattended location. This reduction was due to modulation of neural processing in the visual cortex and the right parietal lobe. Importantly, there was no evidence for a delay in the N2pc. We conclude that in our task, the inhibitory processes underlying IOR reduce the probability of shifting attention to recently attended locations but do not delay the covert deployment of attention itself.

  8. Impact of contra-lateral breast reshaping on mammographic surveillance in women undergoing breast reconstruction following mastectomy for breast cancer.

    PubMed

    Nava, Maurizio B; Rocco, Nicola; Catanuto, Giuseppe; Falco, Giuseppe; Capalbo, Emanuela; Marano, Luigi; Bordoni, Daniele; Spano, Andrea; Scaperrotta, Gianfranco

    2015-08-01

    The ultimate goal of breast reconstruction is to achieve symmetry with the contra-lateral breast. Contra-lateral procedures with wide parenchymal rearrangements are suspected to impair mammographic surveillance. This study aims to evaluate the impact on mammographic detection of mastopexies and breast reductions for contralateral adjustment in breast reconstruction. We retrospectively evaluated 105 women affected by uni-lateral breast cancer who underwent mastectomy and immediate two-stage reconstruction between 2002 and 2007. We considered three groups according to the contra-lateral reshaping technique: mastopexy or breast reduction with inferior dermoglandular flap (group 1); mastopexy or breast reduction without inferior dermoglandular flap (group 2); no contra-lateral reshaping (group 3). We assessed qualitative mammographic variations and breast density in the three groups. Statistically significant differences have been found when comparing reshaped groups with non reshaped groups regarding parenchymal distortions, skin thickening and stromal edema, but these differences did not affect cancer surveillance. The surveillance mammography diagnostic accuracy in contra-lateral cancer detection was not significantly different between the three groups (p = 0.56), such as the need for MRI for equivocal findings at mammographic contra-lateral breast (p = 0.77) and the need for core-biopsies to confirm mammographic suspect of contra-lateral breast cancer (p = 0.90). This study confirms previous reports regarding the safety of mastopexies and breast reductions when performed in the setting of contra-lateral breast reshaping after breast reconstruction. Mammographic accuracy, sensitivity and specificity are not affected by the glandular re-arrangement. These results provide a further validation of the safety of current reconstructive paradigms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Influence of using a single facial vein as outflow in full-face transplantation: A three-dimensional computed tomographic study.

    PubMed

    Rodriguez-Lorenzo, Andres; Audolfsson, Thorir; Wong, Corrine; Cheng, Angela; Arbique, Gary; Nowinski, Daniel; Rozen, Shai

    2015-10-01

    The aim of this study was to evaluate the contribution of a single unilateral facial vein in the venous outflow of total-face allograft using three-dimensional computed tomographic imaging techniques to further elucidate the mechanisms of venous complications following total-face transplant. Full-face soft-tissue flaps were harvested from fresh adult human cadavers. A single facial vein was identified and injected distally to the submandibular gland with a radiopaque contrast (barium sulfate/gelatin mixture) in every specimen. Following vascular injections, three-dimensional computed tomographic venographies of the faces were performed. Images were viewed using TeraRecon Software (Teracon, Inc., San Mateo, CA, USA) allowing analysis of the venous anatomy and perfusion in different facial subunits by observing radiopaque filling venous patterns. Three-dimensional computed tomographic venographies demonstrated a venous network with different degrees of perfusion in subunits of the face in relation to the facial vein injection side: 100% of ipsilateral and contralateral forehead units, 100% of ipsilateral and 75% of contralateral periorbital units, 100% of ipsilateral and 25% of contralateral cheek units, 100% of ipsilateral and 75% of contralateral nose units, 100% of ipsilateral and 75% of contralateral upper lip units, 100% of ipsilateral and 25% of contralateral lower lip units, and 50% of ipsilateral and 25% of contralateral chin units. Venographies of the full-face grafts revealed better perfusion in the ipsilateral hemifaces from the facial vein in comparison with the contralateral hemifaces. Reduced perfusion was observed mostly in the contralateral cheek unit and contralateral lower face including the lower lip and chin units. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Contralateral delay activity tracks object identity information in visual short term memory.

    PubMed

    Gao, Zaifeng; Xu, Xiaotian; Chen, Zhibo; Yin, Jun; Shen, Mowei; Shui, Rende

    2011-08-11

    Previous studies suggested that ERP component contralateral delay activity (CDA) tracks the number of objects containing identity information stored in visual short term memory (VSTM). Later MEG and fMRI studies implied that its neural source lays in superior IPS. However, since the memorized stimuli in previous studies were displayed in distinct spatial locations, hence possibly CDA tracks the object-location information instead. Moreover, a recent study implied the activation in superior IPS reflected the location load. The current research thus explored whether CDA tracks the object-location load or the object-identity load, and its neural sources. Participants were asked to remember one color, four identical colors or four distinct colors. The four-identical-color condition was the critical one because it contains the same amount of identity information as that of one color while the same amount of location information as that of four distinct colors. To ensure the participants indeed selected four colors in the four-identical-color condition, we also split the participants into two groups (low- vs. high-capacity), analyzed late positive component (LPC) in the prefrontal area, and collected participant's subjective-report. Our results revealed that most of the participants selected four identical colors. Moreover, regardless of capacity-group, there was no difference on CDA between one color and four identical colors yet both were lower than 4 distinct colors. Besides, the source of CDA was located in the superior parietal lobule, which is very close to the superior IPS. These results support the statement that CDA tracks the object identity information in VSTM. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.

    PubMed

    Shen, Guohua; Zhang, Jing; Wang, Mengxing; Lei, Du; Yang, Guang; Zhang, Shanmin; Du, Xiaoxia

    2014-06-01

    Multivariate pattern classification analysis (MVPA) has been applied to functional magnetic resonance imaging (fMRI) data to decode brain states from spatially distributed activation patterns. Decoding upper limb movements from non-invasively recorded human brain activation is crucial for implementing a brain-machine interface that directly harnesses an individual's thoughts to control external devices or computers. The aim of this study was to decode the individual finger movements from fMRI single-trial data. Thirteen healthy human subjects participated in a visually cued delayed finger movement task, and only one slight button press was performed in each trial. Using MVPA, the decoding accuracy (DA) was computed separately for the different motor-related regions of interest. For the construction of feature vectors, the feature vectors from two successive volumes in the image series for a trial were concatenated. With these spatial-temporal feature vectors, we obtained a 63.1% average DA (84.7% for the best subject) for the contralateral primary somatosensory cortex and a 46.0% average DA (71.0% for the best subject) for the contralateral primary motor cortex; both of these values were significantly above the chance level (20%). In addition, we implemented searchlight MVPA to search for informative regions in an unbiased manner across the whole brain. Furthermore, by applying searchlight MVPA to each volume of a trial, we visually demonstrated the information for decoding, both spatially and temporally. The results suggest that the non-invasive fMRI technique may provide informative features for decoding individual finger movements and the potential of developing an fMRI-based brain-machine interface for finger movement. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Electrophysiological recordings in humans reveal reduced location-specific attentional-shift activity prior to recentering saccades

    PubMed Central

    Boehler, C. Nicolas; Zhang, Helen H.; Schoenfeld, Mircea A.; Woldorff, Marty G.

    2012-01-01

    Being able to effectively explore the visual world is of fundamental importance, and it has been suggested that the straight-ahead gaze position within the egocentric reference frame (“primary position”) might play a special role in this context. In the present study we employed human electroencephalography (EEG) to examine neural activity related to the spatial guidance of saccadic eye movements. Moreover, we sought to investigate whether such activity would be modulated by the spatial relation of saccade direction to the primary gaze position (recentering saccades). Participants executed endogenously cued saccades between five equidistant locations along the horizontal meridian. This design allowed for the comparison of isoamplitude saccades from the same starting position that were oriented either toward the primary position (centripetal) or further away from it (centrifugal). By back-averaging time-locked to the saccade onset on each trial, we identified a parietally distributed, negative-polarity EEG deflection contralateral to the direction of the upcoming saccade. Importantly, this contralateral presaccadic negativity, which appeared to reflect the location-specific attentional guidance of the eye movement, was attenuated for recentering saccades relative to isoamplitude centrifugal saccades. This differential electrophysiological signature was paralleled by faster saccadic reaction times and was substantially more apparent when time-locking the data to the onset of the saccade rather than to the onset of the cue, suggesting a tight temporal association with saccade initiation. The diminished level of this presaccadic component for recentering saccades may reflect the preferential coding of the straight-ahead gaze position, in which both the eye-centered and head-centered reference frames are perfectly aligned and from which the visual world can be effectively explored. PMID:22157127

  13. Contralateral pulmonary metastases in lung cancer

    PubMed Central

    Onuigbo, Wilson I. B.

    1974-01-01

    Onuigbo, W. I. B. (1974).Thorax, 29, 132-133. Contralateral pulmonary metastases in lung cancer. It has long been known that lung cancer may attack many organs and yet spare the opposite lung. In 100 cases of this tumour studied at necropsy, only 22 showed contralateral pulmonary spread. Contralateral deposits are generally small and may be related to damaged tissues. Although tissue unsuitability is supposed to underlie the limitation of metastases in recipient organs, this does not apply to the contralateral lung. Since lung tissue is readily accessible to bloodborne cancer cells, research should be directed towards explaining the paradoxical paucity of the metastases. PMID:4825544

  14. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    PubMed

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional, and demonstrate that expectations about when mnemonic items are most relevant can dynamically and reversibly prioritize these items in time. Moreover, we uncover a neural substrate of such dynamic prioritization in contralateral visual brain areas and show that this substrate predicts working memory retrieval times on a trial-by-trial basis. This places the experimental study of working memory, and its neuronal underpinnings, in a more dynamic and ecologically valid context, and provides new insights into the neural implementation of attentional prioritization within working memory. Copyright © 2017 van Ede et al.

  15. The Blue Arc Entoptic Phenomenon in Glaucoma (An American Ophthalmological Thesis)

    PubMed Central

    Pasquale, Louis R.; Brusie, Steven

    2013-01-01

    Purpose: To determine whether the blue arc entoptic phenomenon, a positive visual response originating from the retina with a shape that conforms to the topology of the nerve fiber layer, is depressed in glaucoma. Methods: We recruited a cross-sectional, nonconsecutive sample of 202 patients from a single institution in a prospective manner. Subjects underwent full ophthalmic examination, including standard automated perimetry (Humphrey Visual Field 24–2) or frequency doubling technology (Screening C 20–5) perimetry. Eligible patients viewed computer-generated stimuli under conditions chosen to optimize perception of the blue arcs. Unmasked testers instructed patients to report whether they were able to perceive blue arcs but did not reveal what response was expected. We created multivariable logistic regression models to ascertain the demographic and clinical parameters associated with perceiving the blue arcs. Results: In multivariable analyses, each 0.1 unit increase in cup-disc ratio was associated with 36% reduced likelihood of perceiving the blue arcs (odds ratio [OR] = 0.66 [95% confidence interval (CI): 0.53–0.83], P<.001). A smaller mean defect was associated with an increased likelihood of perceiving the blue arcs (OR=1.79 [95% CI: 1.40–2.28]); P<.001), while larger pattern standard deviation (OR=0.72 [95% CI: 0.57–0.91]; P=.005) and abnormal glaucoma hemifield test (OR=0.25 [0.10–0.65]; P=.006) were associated with a reduced likelihood of perceiving them. Older age and media opacity were also associated with an inability to perceive the blue arcs. Conclusion: In this study, the inability to perceive the blue arcs correlated with structural and functional features associated with glaucoma, although older age and media opacity were also predictors of this entoptic response. PMID:24167324

  16. Diagnostic Consistency and Relation Between Optical Coherence Tomography and Standard Automated Perimetry in Primary Open-Angle Glaucoma.

    PubMed

    Toprak, Ibrahim; Yaylalı, Volkan; Yildirim, Cem

    2017-01-01

    To assess diagnostic consistency and relation between spectral-domain optical coherence tomography (SD-OCT) and standard automated perimetry (SAP) in patients with primary open-angle glaucoma (POAG). This retrospective study comprised 51 eyes of 51 patients with a confirmed diagnosis of POAG. The qualitative and quantitative SD-OCT parameters (retinal nerve fiber layer thicknesses [RNFL; average, superior, inferior, nasal and temporal], RNFL symmetry, rim area, disc area, average and vertical cup/disc [C/D] ratio and cup volume) were compared with parameters of SAP (mean deviation, pattern standard deviation, visual field index, and glaucoma hemifield test reports). Fifty-one eyes of 51 patients with POAG were recruited. Twenty-nine eyes (56.9%) had consistent RNFL and visual field (VF) damage. However, nine patients (17.6%) showed isolated RNFL damage on SD-OCT and 13 patients (25.5%) had abnormal VF test with normal RNFL. In patients with VF defect, age, average C/D ratio, vertical C/D ratio, and cup volume were significantly higher and rim area was lower when compared to those of the patients with normal VF. In addition to these parameters, worsening in average, superior, inferior, and temporal RNFL thicknesses and RNFL symmetry was significantly associated with consistent SD-OCT and SAP outcomes. In routine practice, patients with POAG can be manifested with inconsistent reports between SD-OCT and SAP. An older age, higher C/D ratio, larger cup volume, and lower rim area on SD-OCT appears to be associated with detectable VF damage. Moreover, additional worsening in RNFL parameters might reinforce diagnostic consistency between SD-OCT and SAP.

  17. Determination of hemispheric emotional valence in individual subjects: a new approach with research and therapeutic implications.

    PubMed

    Schiffer, Fredric; Teicher, Martin H; Anderson, Carl; Tomoda, Akemi; Polcari, Ann; Navalta, Carryl P; Andersen, Susan L

    2007-03-06

    Much has been theorized about the emotional properties of the hemispheres. Our review of the dominant hypotheses put forth by Schore, Joseph, Davidson, and Harmon-Jones on hemispheric emotional valences (HEV) shows that none are supported by robust data. Instead, we propose that individual's hemispheres are organized to have differing HEVs that can be lateralized in either direction. Probe auditory evoked potentials (AEP) recorded during a neutral and an upsetting memory were used to assess HEV in 28 (20 F) right-handed subjects who were either victims of childhood maltreatment (N = 12) or healthy controls. In a sub-population, we determined HEV by emotional response to lateral visual field stimulation (LVFS), in which vision is limited to one, then the other hemifield. We compare a number of morphometric and functional brain measures between individuals who have right-negative versus left-negative HEV. Using AEPs to determine HEV, we found 62% of controls and 67% of maltreated subjects had right negative HEV. There was a strong interaction between HEV-laterality and gender, which together accounted for 60% of individual variability in total grey matter volume (GMV). HEV-laterality was associated with differences in hippocampal volume, amygdala/hippocampal ratios, and measures of verbal, visual and global memory. HEV-laterality was associated also with different constellations of symptoms comparing maltreated subjects to controls. Emotional response to LVFS provided a convenient and complementary measure of HEV-laterality that correlated significantly with the HEVs determined by AEPs. Our findings suggest that HEV-laterality, like handedness or gender, is an important individual difference with significant implications for brain and behavioral research, and for guiding lateralized treatments such as rTMS.

  18. What does the dot-probe task measure? A reverse correlation analysis of electrocortical activity.

    PubMed

    Thigpen, Nina N; Gruss, L Forest; Garcia, Steven; Herring, David R; Keil, Andreas

    2018-06-01

    The dot-probe task is considered a gold standard for assessing the intrinsic attentive selection of one of two lateralized visual cues, measured by the response time to a subsequent, lateralized response probe. However, this task has recently been associated with poor reliability and conflicting results. To resolve these discrepancies, we tested the underlying assumption of the dot-probe task-that fast probe responses index heightened cue selection-using an electrophysiological measure of selective attention. Specifically, we used a reverse correlation approach in combination with frequency-tagged steady-state visual potentials (ssVEPs). Twenty-one participants completed a modified dot-probe task in which each member of a pair of lateralized face cues, varying in emotional expression (angry-angry, neutral-angry, neutral-neutral), flickered at one of two frequencies (15 or 20 Hz), to evoke ssVEPs. One cue was then replaced by a response probe, and participants indicated the probe orientation (0° or 90°). We analyzed the ssVEP evoked by the cues as a function of response speed to the subsequent probe (i.e., a reverse correlation analysis). Electrophysiological measures of cue processing varied with probe hemifield location: Faster responses to left probes were associated with weak amplification of the preceding left cue, apparent only in a median split analysis. By contrast, faster responses to right probes were systematically and parametrically predicted by diminished visuocortical selection of the preceding right cue. Together, these findings highlight the poor validity of the dot-probe task, in terms of quantifying intrinsic, nondirected attentive selection irrespective of probe/cue location. © 2018 Society for Psychophysiological Research.

  19. The blue arc entoptic phenomenon in glaucoma (an American ophthalmological thesis).

    PubMed

    Pasquale, Louis R; Brusie, Steven

    2013-09-01

    To determine whether the blue arc entoptic phenomenon, a positive visual response originating from the retina with a shape that conforms to the topology of the nerve fiber layer, is depressed in glaucoma. We recruited a cross-sectional, nonconsecutive sample of 202 patients from a single institution in a prospective manner. Subjects underwent full ophthalmic examination, including standard automated perimetry (Humphrey Visual Field 24-2) or frequency doubling technology (Screening C 20-5) perimetry. Eligible patients viewed computer-generated stimuli under conditions chosen to optimize perception of the blue arcs. Unmasked testers instructed patients to report whether they were able to perceive blue arcs but did not reveal what response was expected. We created multivariable logistic regression models to ascertain the demographic and clinical parameters associated with perceiving the blue arcs. In multivariable analyses, each 0.1 unit increase in cup-disc ratio was associated with 36% reduced likelihood of perceiving the blue arcs (odds ratio [OR] = 0.66 [95% confidence interval (CI): 0.53-0.83], P<.001). A smaller mean defect was associated with an increased likelihood of perceiving the blue arcs (OR=1.79 [95% CI: 1.40-2.28]); P<.001), while larger pattern standard deviation (OR=0.72 [95% CI: 0.57-0.91]; P=.005) and abnormal glaucoma hemifield test (OR=0.25 [0.10-0.65]; P=.006) were associated with a reduced likelihood of perceiving them. Older age and media opacity were also associated with an inability to perceive the blue arcs. In this study, the inability to perceive the blue arcs correlated with structural and functional features associated with glaucoma, although older age and media opacity were also predictors of this entoptic response.

  20. Status of the contralateral rotator cuff in patients undergoing rotator cuff repair.

    PubMed

    Ro, Kyung-Han; Park, Jong-Hoon; Lee, Soon-Hyuck; Song, Dong-Ik; Jeong, Ha-Joon; Jeong, Woong-Kyo

    2015-05-01

    Although the prevalence of rotator cuff tear (RCT) in the general population has been analyzed, little information is available on the status of the opposite-side rotator cuff in patients who have undergone arthroscopic rotator cuff repair. To identify the characteristics of the contralateral shoulder and to identify factors associated with RCT of the contralateral shoulder in patients who underwent surgery for symptomatic RCT. The hypothesis was that the prevalence of RCT in the contralateral shoulder would be higher in patients with increasingly larger cuff tears requiring surgical intervention. Case series; Level of evidence, 4. The study cohort consisted of 140 patients with RCT who underwent arthroscopic rotator cuff repair. Opposite-shoulder rotator cuff tendons of all patients were evaluated by ultrasonography. Demographic information and factors related to contralateral RCT were investigated, and risk factors associated with contralateral RCT were assessed. Of the 140 patients who underwent arthroscopic rotator cuff repair, 54 (38.6%) had an RCT of the contralateral shoulder. Of 51 patients with partial-thickness and small-sized full-thickness tears of the operated shoulder, 35 (68.6%) had no tears; 14 (27.5%) had partial-thickness tears; and 2 (3.9%) had small-sized full-thickness tears of the contralateral shoulder. Of 75 patients with medium-sized full-thickness tears, 43 (57.3%) had no tears; 12 (16%) had partial-thickness tears; and 20 (26.7%) had full-thickness tears of the contralateral shoulder. Of 14 patients with large to massive full-thickness tears, 8 (57.1%) had no tears; 1 (7.1%) had a partial-thickness tear; and 5 (35.7%) had full-thickness tears of the contralateral shoulder. The prevalence of RCT of the contralateral shoulder differed significantly among groups classified by tear size (P=.007). The mean American Shoulder and Elbow Surgeons score was significantly lower in the RCT than in the nontear group (55.8±16.9 vs 61.6±13.3; P=.03). Of 29 subjects with symptomatic tears involving the nondominant arm, 17 (58.6%) had contralateral asymptomatic RCT, compared with 37 of 111 (33.3%) subjects with symptomatic tears involving the dominant arm (P=.007). The prevalence of RCT of the contralateral asymptomatic shoulder tends to be higher in patients with more symptomatic RCT on one side, in patients with medium-sized or larger RCT in the operated shoulder, and in patients with symptomatic RCT in the nondominant arm. © 2015 The Author(s).

Top