Visual Pattern Analysis in Histopathology Images Using Bag of Features
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Caicedo, Juan C.; González, Fabio A.
This paper presents a framework to analyse visual patterns in a collection of medical images in a two stage procedure. First, a set of representative visual patterns from the image collection is obtained by constructing a visual-word dictionary under a bag-of-features approach. Second, an analysis of the relationships between visual patterns and semantic concepts in the image collection is performed. The most important visual patterns for each semantic concept are identified using correlation analysis. A matrix visualization of the structure and organization of the image collection is generated using a cluster analysis. The experimental evaluation was conducted on a histopathology image collection and results showed clear relationships between visual patterns and semantic concepts, that in addition, are of easy interpretation and understanding.
NASA Astrophysics Data System (ADS)
Dimopoulos, Kostas; Koulaidis, Vasilis; Sklaveniti, Spyridoula
2003-04-01
This paper aims at presenting the application of a grid for the analysis of the pedagogic functions of visual images included in school science textbooks and daily press articles about science and technology. The analysis is made using the dimensions of content specialisation (classification) and social-pedagogic relationships (framing) promoted by the images as well as the elaboration and abstraction of the corresponding visual code (formality), thus combining pedagogical and socio-semiotic perspectives. The grid is applied to the analysis of 2819 visual images collected from school science textbooks and another 1630 visual images additionally collected from the press. The results show that the science textbooks in comparison to the press material: a) use ten times more images, b) use more images so as to familiarise their readers with the specialised techno-scientific content and codes, and c) tend to create a sense of higher empowerment for their readers by using the visual mode. Furthermore, as the educational level of the school science textbooks (i.e., from primary to lower secondary level) rises, the content specialisation projected by the visual images and the elaboration and abstraction of the corresponding visual code also increases. The above results have implications for the terms and conditions for the effective exploitation of visual material as the educational level rises as well as for the effective incorporation of visual images from press material into science classes.
Rizzardi, Anthony E; Zhang, Xiaotun; Vogel, Rachel Isaksson; Kolb, Suzanne; Geybels, Milan S; Leung, Yuet-Kin; Henriksen, Jonathan C; Ho, Shuk-Mei; Kwak, Julianna; Stanford, Janet L; Schmechel, Stephen C
2016-07-11
Digital image analysis offers advantages over traditional pathologist visual scoring of immunohistochemistry, although few studies examining the correlation and reproducibility of these methods have been performed in prostate cancer. We evaluated the correlation between digital image analysis (continuous variable data) and pathologist visual scoring (quasi-continuous variable data), reproducibility of each method, and association of digital image analysis methods with outcomes using prostate cancer tissue microarrays (TMAs) stained for estrogen receptor-β2 (ERβ2). Prostate cancer TMAs were digitized and evaluated by pathologist visual scoring versus digital image analysis for ERβ2 staining within tumor epithelium. Two independent analysis runs were performed to evaluate reproducibility. Image analysis data were evaluated for associations with recurrence-free survival and disease specific survival following radical prostatectomy. We observed weak/moderate Spearman correlation between digital image analysis and pathologist visual scores of tumor nuclei (Analysis Run A: 0.42, Analysis Run B: 0.41), and moderate/strong correlation between digital image analysis and pathologist visual scores of tumor cytoplasm (Analysis Run A: 0.70, Analysis Run B: 0.69). For the reproducibility analysis, there was high Spearman correlation between pathologist visual scores generated for individual TMA spots across Analysis Runs A and B (Nuclei: 0.84, Cytoplasm: 0.83), and very high correlation between digital image analysis for individual TMA spots across Analysis Runs A and B (Nuclei: 0.99, Cytoplasm: 0.99). Further, ERβ2 staining was significantly associated with increased risk of prostate cancer-specific mortality (PCSM) when quantified by cytoplasmic digital image analysis (HR 2.16, 95 % CI 1.02-4.57, p = 0.045), nuclear image analysis (HR 2.67, 95 % CI 1.20-5.96, p = 0.016), and total malignant epithelial area analysis (HR 5.10, 95 % CI 1.70-15.34, p = 0.004). After adjusting for clinicopathologic factors, only total malignant epithelial area ERβ2 staining was significantly associated with PCSM (HR 4.08, 95 % CI 1.37-12.15, p = 0.012). Digital methods of immunohistochemical quantification are more reproducible than pathologist visual scoring in prostate cancer, suggesting that digital methods are preferable and especially warranted for studies involving large sample sizes.
Peng, Hanchuan; Tang, Jianyong; Xiao, Hang; Bria, Alessandro; Zhou, Jianlong; Butler, Victoria; Zhou, Zhi; Gonzalez-Bellido, Paloma T; Oh, Seung W; Chen, Jichao; Mitra, Ananya; Tsien, Richard W; Zeng, Hongkui; Ascoli, Giorgio A; Iannello, Giulio; Hawrylycz, Michael; Myers, Eugene; Long, Fuhui
2014-07-11
Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.
CLINICAL AUDIT OF IMAGE QUALITY IN RADIOLOGY USING VISUAL GRADING CHARACTERISTICS ANALYSIS.
Tesselaar, Erik; Dahlström, Nils; Sandborg, Michael
2016-06-01
The aim of this work was to assess whether an audit of clinical image quality could be efficiently implemented within a limited time frame using visual grading characteristics (VGC) analysis. Lumbar spine radiography, bedside chest radiography and abdominal CT were selected. For each examination, images were acquired or reconstructed in two ways. Twenty images per examination were assessed by 40 radiology residents using visual grading of image criteria. The results were analysed using VGC. Inter-observer reliability was assessed. The results of the visual grading analysis were consistent with expected outcomes. The inter-observer reliability was moderate to good and correlated with perceived image quality (r(2) = 0.47). The median observation time per image or image series was within 2 min. These results suggest that the use of visual grading of image criteria to assess the quality of radiographs provides a rapid method for performing an image quality audit in a clinical environment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pilot Task Profiles, Human Factors, And Image Realism
NASA Astrophysics Data System (ADS)
McCormick, Dennis
1982-06-01
Computer Image Generation (CIG) visual systems provide real time scenes for state-of-the-art flight training simulators. The visual system reauires a greater understanding of training tasks, human factors, and the concept of image realism to produce an effective and efficient training scene than is required by other types of visual systems. Image realism must be defined in terms of pilot visual information reauirements. Human factors analysis of training and perception is necessary to determine the pilot's information requirements. System analysis then determines how the CIG and display device can best provide essential information to the pilot. This analysis procedure ensures optimum training effectiveness and system performance.
OIPAV: an integrated software system for ophthalmic image processing, analysis and visualization
NASA Astrophysics Data System (ADS)
Zhang, Lichun; Xiang, Dehui; Jin, Chao; Shi, Fei; Yu, Kai; Chen, Xinjian
2018-03-01
OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.
Extraction of composite visual objects from audiovisual materials
NASA Astrophysics Data System (ADS)
Durand, Gwenael; Thienot, Cedric; Faudemay, Pascal
1999-08-01
An effective analysis of Visual Objects appearing in still images and video frames is required in order to offer fine grain access to multimedia and audiovisual contents. In previous papers, we showed how our method for segmenting still images into visual objects could improve content-based image retrieval and video analysis methods. Visual Objects are used in particular for extracting semantic knowledge about the contents. However, low-level segmentation methods for still images are not likely to extract a complex object as a whole but instead as a set of several sub-objects. For example, a person would be segmented into three visual objects: a face, hair, and a body. In this paper, we introduce the concept of Composite Visual Object. Such an object is hierarchically composed of sub-objects called Component Objects.
MassImager: A software for interactive and in-depth analysis of mass spectrometry imaging data.
He, Jiuming; Huang, Luojiao; Tian, Runtao; Li, Tiegang; Sun, Chenglong; Song, Xiaowei; Lv, Yiwei; Luo, Zhigang; Li, Xin; Abliz, Zeper
2018-07-26
Mass spectrometry imaging (MSI) has become a powerful tool to probe molecule events in biological tissue. However, it is a widely held viewpoint that one of the biggest challenges is an easy-to-use data processing software for discovering the underlying biological information from complicated and huge MSI dataset. Here, a user-friendly and full-featured MSI software including three subsystems, Solution, Visualization and Intelligence, named MassImager, is developed focusing on interactive visualization, in-situ biomarker discovery and artificial intelligent pathological diagnosis. Simplified data preprocessing and high-throughput MSI data exchange, serialization jointly guarantee the quick reconstruction of ion image and rapid analysis of dozens of gigabytes datasets. It also offers diverse self-defined operations for visual processing, including multiple ion visualization, multiple channel superposition, image normalization, visual resolution enhancement and image filter. Regions-of-interest analysis can be performed precisely through the interactive visualization between the ion images and mass spectra, also the overlaid optical image guide, to directly find out the region-specific biomarkers. Moreover, automatic pattern recognition can be achieved immediately upon the supervised or unsupervised multivariate statistical modeling. Clear discrimination between cancer tissue and adjacent tissue within a MSI dataset can be seen in the generated pattern image, which shows great potential in visually in-situ biomarker discovery and artificial intelligent pathological diagnosis of cancer. All the features are integrated together in MassImager to provide a deep MSI processing solution at the in-situ metabolomics level for biomarker discovery and future clinical pathological diagnosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Data, Analysis, and Visualization | Computational Science | NREL
Data, Analysis, and Visualization Data, Analysis, and Visualization Data management, data analysis . At NREL, our data management, data analysis, and scientific visualization capabilities help move the approaches to image analysis and computer vision. Data Management and Big Data Systems, software, and tools
Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F
2015-07-01
To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.
King, Andy J
2015-01-01
Researchers and practitioners have an increasing interest in visual components of health information and health communication messages. This study contributes to this evolving body of research by providing an account of the visual images and information featured in printed cancer communication materials. Using content analysis, 147 pamphlets and 858 images were examined to determine how frequently images are used in printed materials, what types of images are used, what information is conveyed visually, and whether or not current recommendations for the inclusion of visual content were being followed. Although visual messages were found to be common in printed health materials, existing recommendations about the inclusion of visual content were only partially followed. Results are discussed in terms of how relevant theoretical frameworks in the areas of behavior change and visual persuasion seem to be used in these materials, as well as how more theory-oriented research is necessary in visual messaging efforts.
Visual Communications and Image Processing
NASA Astrophysics Data System (ADS)
Hsing, T. Russell
1987-07-01
This special issue of Optical Engineering is concerned with visual communications and image processing. The increase in communication of visual information over the past several decades has resulted in many new image processing and visual communication systems being put into service. The growth of this field has been rapid in both commercial and military applications. The objective of this special issue is to intermix advent technology in visual communications and image processing with ideas generated from industry, universities, and users through both invited and contributed papers. The 15 papers of this issue are organized into four different categories: image compression and transmission, image enhancement, image analysis and pattern recognition, and image processing in medical applications.
Quantifying and visualizing variations in sets of images using continuous linear optimal transport
NASA Astrophysics Data System (ADS)
Kolouri, Soheil; Rohde, Gustavo K.
2014-03-01
Modern advancements in imaging devices have enabled us to explore the subcellular structure of living organisms and extract vast amounts of information. However, interpreting the biological information mined in the captured images is not a trivial task. Utilizing predetermined numerical features is usually the only hope for quantifying this information. Nonetheless, direct visual or biological interpretation of results obtained from these selected features is non-intuitive and difficult. In this paper, we describe an automatic method for modeling visual variations in a set of images, which allows for direct visual interpretation of the most significant differences, without the need for predefined features. The method is based on a linearized version of the continuous optimal transport (OT) metric, which provides a natural linear embedding for the image data set, in which linear combination of images leads to a visually meaningful image. This enables us to apply linear geometric data analysis techniques such as principal component analysis and linear discriminant analysis in the linearly embedded space and visualize the most prominent modes, as well as the most discriminant modes of variations, in the dataset. Using the continuous OT framework, we are able to analyze variations in shape and texture in a set of images utilizing each image at full resolution, that otherwise cannot be done by existing methods. The proposed method is applied to a set of nuclei images segmented from Feulgen stained liver tissues in order to investigate the major visual differences in chromatin distribution of Fetal-Type Hepatoblastoma (FHB) cells compared to the normal cells.
Cooper, Emily A.; Norcia, Anthony M.
2015-01-01
The nervous system has evolved in an environment with structure and predictability. One of the ubiquitous principles of sensory systems is the creation of circuits that capitalize on this predictability. Previous work has identified predictable non-uniformities in the distributions of basic visual features in natural images that are relevant to the encoding tasks of the visual system. Here, we report that the well-established statistical distributions of visual features -- such as visual contrast, spatial scale, and depth -- differ between bright and dark image components. Following this analysis, we go on to trace how these differences in natural images translate into different patterns of cortical input that arise from the separate bright (ON) and dark (OFF) pathways originating in the retina. We use models of these early visual pathways to transform natural images into statistical patterns of cortical input. The models include the receptive fields and non-linear response properties of the magnocellular (M) and parvocellular (P) pathways, with their ON and OFF pathway divisions. The results indicate that there are regularities in visual cortical input beyond those that have previously been appreciated from the direct analysis of natural images. In particular, several dark/bright asymmetries provide a potential account for recently discovered asymmetries in how the brain processes visual features, such as violations of classic energy-type models. On the basis of our analysis, we expect that the dark/bright dichotomy in natural images plays a key role in the generation of both cortical and perceptual asymmetries. PMID:26020624
Mraity, Hussien A A B; England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter
2016-01-01
The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.
England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter
2016-01-01
Objective: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Methods: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. Results: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). Conclusion: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. Advances in knowledge: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality. PMID:26943836
Chen, Song; Li, Xuena; Chen, Meijie; Yin, Yafu; Li, Na; Li, Yaming
2016-10-01
This study is aimed to compare the diagnostic power of using quantitative analysis or visual analysis with single time point imaging (STPI) PET/CT and dual time point imaging (DTPI) PET/CT for the classification of solitary pulmonary nodules (SPN) lesions in granuloma-endemic regions. SPN patients who received early and delayed (18)F-FDG PET/CT at 60min and 180min post-injection were retrospectively reviewed. Diagnoses are confirmed by pathological results or follow-ups. Three quantitative metrics, early SUVmax, delayed SUVmax and retention index(the percentage changes between the early SUVmax and delayed SUVmax), were measured for each lesion. Three 5-point scale score was given by blinded interpretations performed by physicians based on STPI PET/CT images, DTPI PET/CT images and CT images, respectively. ROC analysis was performed on three quantitative metrics and three visual interpretation scores. One-hundred-forty-nine patients were retrospectively included. The areas under curve (AUC) of the ROC curves of early SUVmax, delayed SUVmax, RI, STPI PET/CT score, DTPI PET/CT score and CT score are 0.73, 0.74, 0.61, 0.77 0.75 and 0.76, respectively. There were no significant differences between the AUCs in visual interpretation of STPI PET/CT images and DTPI PET/CT images, nor in early SUVmax and delayed SUVmax. The differences of sensitivity, specificity and accuracy between STPI PET/CT and DTPI PET/CT were not significantly different in either quantitative analysis or visual interpretation. In granuloma-endemic regions, DTPI PET/CT did not offer significant improvement over STPI PET/CT in differentiating malignant SPNs in both quantitative analysis and visual interpretation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.
Orbán, Levente L; Chartier, Sylvain
2015-01-01
Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.
The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS.
Martínez-Lapiscina, Elena H; Fraga-Pumar, Elena; Gabilondo, Iñigo; Martínez-Heras, Eloy; Torres-Torres, Ruben; Ortiz-Pérez, Santiago; Llufriu, Sara; Tercero, Ana; Andorra, Magi; Roca, Marc Figueras; Lampert, Erika; Zubizarreta, Irati; Saiz, Albert; Sanchez-Dalmau, Bernardo; Villoslada, Pablo
2014-12-15
Multiple Sclerosis (MS) is an immune-mediated disease of the Central Nervous System with two major underlying etiopathogenic processes: inflammation and neurodegeneration. The latter determines the prognosis of this disease. MS is the main cause of non-traumatic disability in middle-aged populations. The MS-VisualPath Cohort was set up to study the neurodegenerative component of MS using advanced imaging techniques by focusing on analysis of the visual pathway in a middle-aged MS population in Barcelona, Spain. We started the recruitment of patients in the early phase of MS in 2010 and it remains permanently open. All patients undergo a complete neurological and ophthalmological examination including measurements of physical and disability (Expanded Disability Status Scale; Multiple Sclerosis Functional Composite and neuropsychological tests), disease activity (relapses) and visual function testing (visual acuity, color vision and visual field). The MS-VisualPath protocol also assesses the presence of anxiety and depressive symptoms (Hospital Anxiety and Depression Scale), general quality of life (SF-36) and visual quality of life (25-Item National Eye Institute Visual Function Questionnaire with the 10-Item Neuro-Ophthalmic Supplement). In addition, the imaging protocol includes both retinal (Optical Coherence Tomography and Wide-Field Fundus Imaging) and brain imaging (Magnetic Resonance Imaging). Finally, multifocal Visual Evoked Potentials are used to perform neurophysiological assessment of the visual pathway. The analysis of the visual pathway with advance imaging and electrophysilogical tools in parallel with clinical information will provide significant and new knowledge regarding neurodegeneration in MS and provide new clinical and imaging biomarkers to help monitor disease progression in these patients.
Imaging Girls: Visual Methodologies and Messages for Girls' Education
ERIC Educational Resources Information Center
Magno, Cathryn; Kirk, Jackie
2008-01-01
This article describes the use of visual methodologies to examine images of girls used by development agencies to portray and promote their work in girls' education, and provides a detailed discussion of three report cover images. It details the processes of methodology and tool development for the visual analysis and presents initial 'readings'…
Automated daily quality control analysis for mammography in a multi-unit imaging center.
Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli
2018-01-01
Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.
Use of images in shelf life assessment of fruit salad.
Manzocco, Lara; Rumignani, Alberto; Lagazio, Corrado
2012-07-01
Fruit salads stored for different lengths of time as well as their images were used to estimate sensory shelf life by survival analysis. Shelf life estimates obtained using fruit salad images were longer than those achieved by analyzing the real product. This was attributed to the fact that images are 2-dimensional representations of real food, probably not comprehensive of all the visual information needed by the panelists to produce an acceptability/unacceptability judgment. Images were also subjected to image analysis and the analysis of the overall visual quality by a trained panel. These indices proved to be highly correlated to consumer rejection of the fruit salad and could be exploited for routine shelf life assessment of analogous products. To this regard, a failure criterion of 25% consumer rejection could be equivalent to a score 3 in a 5-point overall visual quality scale. Food images can be used to assess product shelf life. In the case of fruit salads, the overall visual quality assessed by a trained panel on product images and the percentage of brown pixels in digital images can be exploited to estimate shelf life corresponding to a selected consumer rejection. © 2012 Institute of Food Technologists®
Wang, Chen; Brancusi, Flavia; Valivullah, Zaheer M; Anderson, Michael G; Cunningham, Denise; Hedberg-Buenz, Adam; Power, Bradley; Simeonov, Dimitre; Gahl, William A; Zein, Wadih M; Adams, David R; Brooks, Brian
2018-01-01
To develop a sensitive scale of iris transillumination suitable for clinical and research use, with the capability of either quantitative analysis or visual matching of images. Iris transillumination photographic images were used from 70 study subjects with ocular or oculocutaneous albinism. Subjects represented a broad range of ocular pigmentation. A subset of images was subjected to image analysis and ranking by both expert and nonexpert reviewers. Quantitative ordering of images was compared with ordering by visual inspection. Images were binned to establish an 8-point scale. Ranking consistency was evaluated using the Kendall rank correlation coefficient (Kendall's tau). Visual ranking results were assessed using Kendall's coefficient of concordance (Kendall's W) analysis. There was a high degree of correlation among the image analysis, expert-based and non-expert-based image rankings. Pairwise comparisons of the quantitative ranking with each reviewer generated an average Kendall's tau of 0.83 ± 0.04 (SD). Inter-rater correlation was also high with Kendall's W of 0.96, 0.95, and 0.95 for nonexpert, expert, and all reviewers, respectively. The current standard for assessing iris transillumination is expert assessment of clinical exam findings. We adapted an image-analysis technique to generate quantitative transillumination values. Quantitative ranking was shown to be highly similar to a ranking produced by both expert and nonexpert reviewers. This finding suggests that the image characteristics used to quantify iris transillumination do not require expert interpretation. Inter-rater rankings were also highly similar, suggesting that varied methods of transillumination ranking are robust in terms of producing reproducible results.
Data Visualization and Animation Lab (DVAL) overview
NASA Technical Reports Server (NTRS)
Stacy, Kathy; Vonofenheim, Bill
1994-01-01
The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.
Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan
2017-06-01
Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3-100%) in the test set (n = 217) of manually labeled helminth eggs. In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images.
Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan
2017-01-01
ABSTRACT Background: Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Objective: Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. Methods: A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Results: Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3–100%) in the test set (n = 217) of manually labeled helminth eggs. Conclusions: In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images. PMID:28838305
Image pattern recognition supporting interactive analysis and graphical visualization
NASA Technical Reports Server (NTRS)
Coggins, James M.
1992-01-01
Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.
Applications of magnetic resonance image segmentation in neurology
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu
1999-05-01
After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.
Doesch, Christina; Papavassiliu, Theano; Michaely, Henrik J; Attenberger, Ulrike I; Glielmi, Christopher; Süselbeck, Tim; Fink, Christian; Borggrefe, Martin; Schoenberg, Stefan O
2013-09-01
The purpose of this study was to compare automated, motion-corrected, color-encoded (AMC) perfusion maps with qualitative visual analysis of adenosine stress cardiovascular magnetic resonance imaging for detection of flow-limiting stenoses. Myocardial perfusion measurements applying the standard adenosine stress imaging protocol and a saturation-recovery temporal generalized autocalibrating partially parallel acquisition (t-GRAPPA) turbo fast low angle shot (Turbo FLASH) magnetic resonance imaging sequence were performed in 25 patients using a 3.0-T MAGNETOM Skyra (Siemens Healthcare Sector, Erlangen, Germany). Perfusion studies were analyzed using AMC perfusion maps and qualitative visual analysis. Angiographically detected coronary artery (CA) stenoses greater than 75% or 50% or more with a myocardial perfusion reserve index less than 1.5 were considered as hemodynamically relevant. Diagnostic performance and time requirement for both methods were compared. Interobserver and intraobserver reliability were also assessed. A total of 29 CA stenoses were included in the analysis. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for detection of ischemia on a per-patient basis were comparable using the AMC perfusion maps compared to visual analysis. On a per-CA territory basis, the attribution of an ischemia to the respective vessel was facilitated using the AMC perfusion maps. Interobserver and intraobserver reliability were better for the AMC perfusion maps (concordance correlation coefficient, 0.94 and 0.93, respectively) compared to visual analysis (concordance correlation coefficient, 0.73 and 0.79, respectively). In addition, in comparison to visual analysis, the AMC perfusion maps were able to significantly reduce analysis time from 7.7 (3.1) to 3.2 (1.9) minutes (P < 0.0001). The AMC perfusion maps yielded a diagnostic performance on a per-patient and on a per-CA territory basis comparable with the visual analysis. Furthermore, this approach demonstrated higher interobserver and intraobserver reliability as well as a better time efficiency when compared to visual analysis.
Malware analysis using visualized image matrices.
Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu
2014-01-01
This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.
Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy.
Farid, Nikdokht; Girard, Holly M; Kemmotsu, Nobuko; Smith, Michael E; Magda, Sebastian W; Lim, Wei Y; Lee, Roland R; McDonald, Carrie R
2012-08-01
To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration-cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Quantitative MR imaging-derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%-89.5%) and specificity (92.2%-94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice.
An insect-inspired model for visual binding II: functional analysis and visual attention.
Northcutt, Brandon D; Higgins, Charles M
2017-04-01
We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.
Image segmentation evaluation for very-large datasets
NASA Astrophysics Data System (ADS)
Reeves, Anthony P.; Liu, Shuang; Xie, Yiting
2016-03-01
With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.
Visual Juxtaposition as Qualitative Inquiry in Educational Research
ERIC Educational Resources Information Center
Metcalfe, Amy Scott
2015-01-01
Visual juxtaposition is inquiry through contrast, facilitated by side-by-side positioning of two images, or images and text. When combined with a theoretical foundation that explores interactions between the material and discursive elements of visual data, juxtaposition creates opportunities for qualitative analysis that are not as readily…
A high-level 3D visualization API for Java and ImageJ.
Schmid, Benjamin; Schindelin, Johannes; Cardona, Albert; Longair, Mark; Heisenberg, Martin
2010-05-21
Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set. Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts. Our framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de.
NASA Astrophysics Data System (ADS)
Reznicek, R.
The present conference on flow visualization encompasses methods exploiting tracing particles, surface tracing methods, methods exploiting the effects of streaming fluid on passing radiation/field, computer-aided flow visualization, and applications to fluid mechanics, aerodynamics, flow devices, shock tubes, and heat/mass transfer. Specific issues include visualizing velocity distribution by stereo photography, dark-field Fourier quasiinterferometry, speckle tomography of an open flame, a fast eye for real-time image analysis, and velocity-field determination based on flow-image analysis. Also addressed are flows around rectangular prisms with oscillating flaps at the leading edges, the tomography of aerodynamic objects, the vapor-screen technique applied to a delta-wing aircraft, flash-lamp planar imaging, IR-thermography applications in convective heat transfer, and the visualization of marangoni effects in evaporating sessile drops.
A neotropical Miocene pollen database employing image-based search and semantic modeling.
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren
2014-08-01
Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.
NASA Astrophysics Data System (ADS)
Wihardi, Y.; Setiawan, W.; Nugraha, E.
2018-01-01
On this research we try to build CBIRS based on Learning Distance/Similarity Function using Linear Discriminant Analysis (LDA) and Histogram of Oriented Gradient (HoG) feature. Our method is invariant to depiction of image, such as similarity of image to image, sketch to image, and painting to image. LDA can decrease execution time compared to state of the art method, but it still needs an improvement in term of accuracy. Inaccuracy in our experiment happen because we did not perform sliding windows search and because of low number of negative samples as natural-world images.
Wait, Eric; Winter, Mark; Bjornsson, Chris; Kokovay, Erzsebet; Wang, Yue; Goderie, Susan; Temple, Sally; Cohen, Andrew R
2014-10-03
Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate. We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image analysis algorithms with an interactive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.
Computer-based analysis of microvascular alterations in a mouse model for Alzheimer's disease
NASA Astrophysics Data System (ADS)
Heinzer, Stefan; Müller, Ralph; Stampanoni, Marco; Abela, Rafael; Meyer, Eric P.; Ulmann-Schuler, Alexandra; Krucker, Thomas
2007-03-01
Vascular factors associated with Alzheimer's disease (AD) have recently gained increased attention. To investigate changes in vascular, particularly microvascular architecture, we developed a hierarchical imaging framework to obtain large-volume, high-resolution 3D images from brains of transgenic mice modeling AD. In this paper, we present imaging and data analysis methods which allow compiling unique characteristics from several hundred gigabytes of image data. Image acquisition is based on desktop micro-computed tomography (µCT) and local synchrotron-radiation µCT (SRµCT) scanning with a nominal voxel size of 16 µm and 1.4 µm, respectively. Two visualization approaches were implemented: stacks of Z-buffer projections for fast data browsing, and progressive-mesh based surface rendering for detailed 3D visualization of the large datasets. In a first step, image data was assessed visually via a Java client connected to a central database. Identified characteristics of interest were subsequently quantified using global morphometry software. To obtain even deeper insight into microvascular alterations, tree analysis software was developed providing local morphometric parameters such as number of vessel segments or vessel tortuosity. In the context of ever increasing image resolution and large datasets, computer-aided analysis has proven both powerful and indispensable. The hierarchical approach maintains the context of local phenomena, while proper visualization and morphometry provide the basis for detailed analysis of the pathology related to structure. Beyond analysis of microvascular changes in AD this framework will have significant impact considering that vascular changes are involved in other neurodegenerative diseases as well as in cancer, cardiovascular disease, asthma, and arthritis.
Malware Analysis Using Visualized Image Matrices
Im, Eul Gyu
2014-01-01
This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively. PMID:25133202
Toward semantic-based retrieval of visual information: a model-based approach
NASA Astrophysics Data System (ADS)
Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman
2002-07-01
This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.
NASA Astrophysics Data System (ADS)
Hunt, Gordon W.; Hemler, Paul F.; Vining, David J.
1997-05-01
Virtual colonscopy (VC) is a minimally invasive alternative to conventional fiberoptic endoscopy for colorectal cancer screening. The VC technique involves bowel cleansing, gas distension of the colon, spiral computed tomography (CT) scanning of a patient's abdomen and pelvis, and visual analysis of multiplanar 2D and 3D images created from the spiral CT data. Despite the ability of interactive computer graphics to assist a physician in visualizing 3D models of the colon, a correct diagnosis hinges upon a physician's ability to properly identify small and sometimes subtle polyps or masses within hundreds of multiplanar and 3D images. Human visual analysis is time-consuming, tedious, and often prone to error of interpretation.We have addressed the problem of visual analysis by creating a software system that automatically highlights potential lesions in the 2D and 3D images in order to expedite a physician's interpretation of the colon data.
Evaluating wood failure in plywood shear by optical image analysis
Charles W. McMillin
1984-01-01
This exploratory study evaulates the potential of using an automatic image analysis method to measure percent wood failure in plywood shear specimens. The results suggest that this method my be as accurate as the visual method in tracking long-term gluebond quality. With further refinement, the method could lead to automated equipment replacing the subjective visual...
Software for visualization, analysis, and manipulation of laser scan images
NASA Astrophysics Data System (ADS)
Burnsides, Dennis B.
1997-03-01
The recent introduction of laser surface scanning to scientific applications presents a challenge to computer scientists and engineers. Full utilization of this two- dimensional (2-D) and three-dimensional (3-D) data requires advances in techniques and methods for data processing and visualization. This paper explores the development of software to support the visualization, analysis and manipulation of laser scan images. Specific examples presented are from on-going efforts at the Air Force Computerized Anthropometric Research and Design (CARD) Laboratory.
Visual analytics for semantic queries of TerraSAR-X image content
NASA Astrophysics Data System (ADS)
Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai
2015-10-01
With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain the image content using semantic terms and the relations between them answering questions such as what is the percentage of urban area in a region? or what is the distribution of water bodies in a city?
Evaluating Alignment of Shapes by Ensemble Visualization
Raj, Mukund; Mirzargar, Mahsa; Preston, J. Samuel; Kirby, Robert M.; Whitaker, Ross T.
2016-01-01
The visualization of variability in surfaces embedded in 3D, which is a type of ensemble uncertainty visualization, provides a means of understanding the underlying distribution of a collection or ensemble of surfaces. Although ensemble visualization for isosurfaces has been described in the literature, we conduct an expert-based evaluation of various ensemble visualization techniques in a particular medical imaging application: the construction of atlases or templates from a population of images. In this work, we extend contour boxplot to 3D, allowing us to evaluate it against an enumeration-style visualization of the ensemble members and other conventional visualizations used by atlas builders, namely examining the atlas image and the corresponding images/data provided as part of the construction process. We present feedback from domain experts on the efficacy of contour boxplot compared to other modalities when used as part of the atlas construction and analysis stages of their work. PMID:26186768
Visual affective classification by combining visual and text features.
Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming
2017-01-01
Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task.
Visual affective classification by combining visual and text features
Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming
2017-01-01
Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task. PMID:28850566
Imag(in)ing the University: Visual Sociology and Higher Education
ERIC Educational Resources Information Center
Metcalfe, Amy Scott
2012-01-01
This study examines the potential of visual sociology to expand our knowledge of higher education through the use of visual data sources and methods of analysis. Photographs and archival material form the basis of the study. The images were analyzed as being part of the initiation and fulfillment stages of the social construction of collective…
Integrating advanced visualization technology into the planetary Geoscience workflow
NASA Astrophysics Data System (ADS)
Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb
2011-09-01
Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.
Visualization and Image Analysis of Yeast Cells.
Bagley, Steve
2016-01-01
When converting real-life data via visualization to numbers and then onto statistics the whole system needs to be considered so that conversion from the analogue to the digital is accurate and repeatable. Here we describe the points to consider when approaching yeast cell analysis visualization, processing, and analysis of a population by screening techniques.
Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori
2017-10-01
We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.
Information theoretical assessment of visual communication with subband coding
NASA Astrophysics Data System (ADS)
Rahman, Zia-ur; Fales, Carl L.; Huck, Friedrich O.
1994-09-01
A well-designed visual communication channel is one which transmits the most information about a radiance field with the fewest artifacts. The role of image processing, encoding and restoration is to improve the quality of visual communication channels by minimizing the error in the transmitted data. Conventionally this role has been analyzed strictly in the digital domain neglecting the effects of image-gathering and image-display devices on the quality of the image. This results in the design of a visual communication channel which is `suboptimal.' We propose an end-to-end assessment of the imaging process which incorporates the influences of these devices in the design of the encoder and the restoration process. This assessment combines Shannon's communication theory with Wiener's restoration filter and with the critical design factors of the image gathering and display devices, thus providing the metrics needed to quantify and optimize the end-to-end performance of the visual communication channel. Results show that the design of the image-gathering device plays a significant role in determining the quality of the visual communication channel and in designing the analysis filters for subband encoding.
Joint Prior Learning for Visual Sensor Network Noisy Image Super-Resolution
Yue, Bo; Wang, Shuang; Liang, Xuefeng; Jiao, Licheng; Xu, Caijin
2016-01-01
The visual sensor network (VSN), a new type of wireless sensor network composed of low-cost wireless camera nodes, is being applied for numerous complex visual analyses in wild environments, such as visual surveillance, object recognition, etc. However, the captured images/videos are often low resolution with noise. Such visual data cannot be directly delivered to the advanced visual analysis. In this paper, we propose a joint-prior image super-resolution (JPISR) method using expectation maximization (EM) algorithm to improve VSN image quality. Unlike conventional methods that only focus on upscaling images, JPISR alternatively solves upscaling mapping and denoising in the E-step and M-step. To meet the requirement of the M-step, we introduce a novel non-local group-sparsity image filtering method to learn the explicit prior and induce the geometric duality between images to learn the implicit prior. The EM algorithm inherently combines the explicit prior and implicit prior by joint learning. Moreover, JPISR does not rely on large external datasets for training, which is much more practical in a VSN. Extensive experiments show that JPISR outperforms five state-of-the-art methods in terms of both PSNR, SSIM and visual perception. PMID:26927114
Watershed identification of polygonal patterns in noisy SAR images.
Moreels, Pierre; Smrekar, Suzanne E
2003-01-01
This paper describes a new approach to pattern recognition in synthetic aperture radar (SAR) images. A visual analysis of the images provided by NASA's Magellan mission to Venus has revealed a number of zones showing polygonal-shaped faults on the surface of the planet. The goal of the paper is to provide a method to automate the identification of such zones. The high level of noise in SAR images and its multiplicative nature make automated image analysis difficult and conventional edge detectors, like those based on gradient images, inefficient. We present a scheme based on an improved watershed algorithm and a two-scale analysis. The method extracts potential edges in the SAR image, analyzes the patterns obtained, and decides whether or not the image contains a "polygon area". This scheme can also be applied to other SAR or visual images, for instance in observation of Mars and Jupiter's satellite Europa.
ERIC Educational Resources Information Center
Dimopoulos, Kostas; Koulaidis, Vasilis; Sklaveniti, Spyridoula
2003-01-01
Analyzes the pedagogic functions of visual images included in school science textbooks and daily press articles about science and technology. Indicates that the science textbooks (a) use 10 times more images, (b) use more images so as to familiarize their readers with the specialized techno-scientific content and codes, and (c) tend to create a…
A neotropical Miocene pollen database employing image-based search and semantic modeling1
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren
2014-01-01
• Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648
Connecting Swath Satellite Data With Imagery in Mapping Applications
NASA Astrophysics Data System (ADS)
Thompson, C. K.; Hall, J. R.; Penteado, P. F.; Roberts, J. T.; Zhou, A. Y.
2016-12-01
Visualizations of gridded science data products (referred to as Level 3 or Level 4) typically provide a straightforward correlation between image pixels and the source science data. This direct relationship allows users to make initial inferences based on imagery values, facilitating additional operations on the underlying data values, such as data subsetting and analysis. However, that same pixel-to-data relationship for ungridded science data products (referred to as Level 2) is significantly more challenging. These products, also referred to as "swath products", are in orbital "instrument space" and raster visualization pixels do not directly correlate to science data values. Interpolation algorithms are often employed during the gridding or projection of a science dataset prior to image generation, introducing intermediary values that separate the image from the source data values. NASA's Global Imagery Browse Services (GIBS) is researching techniques for efficiently serving "image-ready" data allowing client-side dynamic visualization and analysis capabilities. This presentation will cover some GIBS prototyping work designed to maintain connectivity between Level 2 swath data and its corresponding raster visualizations. Specifically, we discuss the DAta-to-Image-SYstem (DAISY), an indexing approach for Level 2 swath data, and the mechanisms whereby a client may dynamically visualize the data in raster form.
Temporal Lobe Epilepsy: Quantitative MR Volumetry in Detection of Hippocampal Atrophy
Farid, Nikdokht; Girard, Holly M.; Kemmotsu, Nobuko; Smith, Michael E.; Magda, Sebastian W.; Lim, Wei Y.; Lee, Roland R.
2012-01-01
Purpose: To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). Materials and Methods: This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration–cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Results: Quantitative MR imaging–derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%–89.5%) and specificity (92.2%–94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Conclusion: Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112638/-/DC1 PMID:22723496
Server-based Approach to Web Visualization of Integrated Three-dimensional Brain Imaging Data
Poliakov, Andrew V.; Albright, Evan; Hinshaw, Kevin P.; Corina, David P.; Ojemann, George; Martin, Richard F.; Brinkley, James F.
2005-01-01
The authors describe a client-server approach to three-dimensional (3-D) visualization of neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system architecture and implementation and give several examples of client applications that allow visualization and analysis of integrated language map data from single and multiple patients. PMID:15561787
Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.
2014-01-01
The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019
The visual communication in the optonometric scales.
Dantas, Rosane Arruda; Pagliuca, Lorita Marlena Freitag
2006-01-01
Communication through vision involves visual apprenticeship that demands ocular integrity, which results in the importance of the evaluation of visual acuity. The scale of images, formed by optotypes, is a method for the verification of visual acuity in kindergarten children. To identify the optotype the child needs to know the image in analysis. Given the importance of visual communication during the process of construction of the scale of images, one presents a bibliographic, analytical study aiming at thinking about the principles for the construction of those tables. One considers the draw inserted as an optotype as a non-verbal symbolic expression of the body and/or of the environment constructed based on the caption of experiences by the individual. One contests the indiscriminate use of images, for one understands that there must be previous knowledge. Despite the subjectivity of the optotypes, the scales continue valid if one adapts images to those of the universe of the children to be examined.
Sensor, signal, and image informatics - state of the art and current topics.
Lehmann, T M; Aach, T; Witte, H
2006-01-01
The number of articles published annually in the fields of biomedical signal and image acquisition and processing is increasing. Based on selected examples, this survey aims at comprehensively demonstrating the recent trends and developments. Four articles are selected for biomedical data acquisition covering topics such as dose saving in CT, C-arm X-ray imaging systems for volume imaging, and the replacement of dose-intensive CT-based diagnostic with harmonic ultrasound imaging. Regarding biomedical signal analysis (BSA), the four selected articles discuss the equivalence of different time-frequency approaches for signal analysis, an application to Cochlea implants, where time-frequency analysis is applied for controlling the replacement system, recent trends for fusion of different modalities, and the role of BSA as part of a brain machine interfaces. To cover the broad spectrum of publications in the field of biomedical image processing, six papers are focused. Important topics are content-based image retrieval in medical applications, automatic classification of tongue photographs from traditional Chinese medicine, brain perfusion analysis in single photon emission computed tomography (SPECT), model-based visualization of vascular trees, and virtual surgery, where enhanced visualization and haptic feedback techniques are combined with a sphere-filled model of the organ. The selected papers emphasize the five fields forming the chain of biomedical data processing: (1) data acquisition, (2) data reconstruction and pre-processing, (3) data handling, (4) data analysis, and (5) data visualization. Fields 1 and 2 form the sensor informatics, while fields 2 to 5 form signal or image informatics with respect to the nature of the data considered. Biomedical data acquisition and pre-processing, as well as data handling, analysis and visualization aims at providing reliable tools for decision support that improve the quality of health care. Comprehensive evaluation of the processing methods and their reliable integration in routine applications are future challenges in the field of sensor, signal and image informatics.
Computer-aided light sheet flow visualization using photogrammetry
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1994-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.
Computer-Aided Light Sheet Flow Visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Computer-aided light sheet flow visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A
2012-09-01
Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.
Cognitive approaches for patterns analysis and security applications
NASA Astrophysics Data System (ADS)
Ogiela, Marek R.; Ogiela, Lidia
2017-08-01
In this paper will be presented new opportunities for developing innovative solutions for semantic pattern classification and visual cryptography, which will base on cognitive and bio-inspired approaches. Such techniques can be used for evaluation of the meaning of analyzed patterns or encrypted information, and allow to involve such meaning into the classification task or encryption process. It also allows using some crypto-biometric solutions to extend personalized cryptography methodologies based on visual pattern analysis. In particular application of cognitive information systems for semantic analysis of different patterns will be presented, and also a novel application of such systems for visual secret sharing will be described. Visual shares for divided information can be created based on threshold procedure, which may be dependent on personal abilities to recognize some image details visible on divided images.
Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming
2015-01-01
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860
Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey
Xue, Yong; Chen, Shihui; Liu, Yong
2017-01-01
Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging. PMID:29114182
Zarb, Francis; McEntee, Mark F; Rainford, Louise
2015-06-01
To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.
Imaging of the human choroid with a 1.7 MHz A-scan rate FDML swept source OCT system
NASA Astrophysics Data System (ADS)
Gorczynska, I.; Migacz, J. V.; Jonnal, R.; Zawadzki, R. J.; Poddar, R.; Werner, J. S.
2017-02-01
We demonstrate OCT angiography (OCTA) and Doppler OCT imaging of the choroid in the eyes of two healthy volunteers and in a geographic atrophy case. We show that visualization of specific choroidal layers requires selection of appropriate OCTA methods. We investigate how imaging speed, B-scan averaging and scanning density influence visualization of various choroidal vessels. We introduce spatial power spectrum analysis of OCT en face angiographic projections as a method of quantitative analysis of choroicapillaris morphology. We explore the possibility of Doppler OCT imaging to provide information about directionality of blood flow in choroidal vessels. To achieve these goals, we have developed OCT systems utilizing an FDML laser operating at 1.7 MHz sweep rate, at 1060 nm center wavelength, and with 7.5 μm axial imaging resolution. A correlation mapping OCA method was implemented for visualization of the vessels. Joint Spectral and Time domain OCT (STdOCT) technique was used for Doppler OCT imaging.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
NASA Technical Reports Server (NTRS)
Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.
1993-01-01
The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).
Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1993-01-01
Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.
Image Analysis of DNA Fiber and Nucleus in Plants.
Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi
2016-01-01
Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.
NASA Technical Reports Server (NTRS)
Hasler, A. Fritz
1999-01-01
The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966, to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA''s visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science ETheater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites, HyperImage datasets, because they have such high resolution in the spectral, temporal, spatial, and dynamic range domains. The traditional numerical spreadsheet paradigm has been extended to develop a scientific visualization approach for processing HyperImage datasets and 3D model results interactively. The advantages of extending the powerful spreadsheet style of computation to multiple sets of images and organizing image processing were demonstrated using the Distributed Image SpreadSheet (DISS). The DISS is being used as a high performance testbed Next Generation Internet (NGI) VisAnalysis of: 1) El Nino SSTs and NDVI response 2) Latest GOES 10 5-min rapid Scans of 26 day 5000 frame movie of March & April 198 weather and tornadic storms 3) TRMM rainfall and lightning 4)GOES 9 satellite images/winds and NOAA aircraft radar of hurricane Luis, 5) lightning detector data merged with GOES image sequences, 6) Japanese GMS, TRMM, & ADEOS data 7) Chinese FY2 data 8) Meteosat & ERS/ATSR data 9) synchronized manipulation of multiple 3D numerical model views; etc. will be illustrated. The Image SpreadSheet has been highly successful in producing Earth science visualizations for public outreach.
A Study on Analysis of EEG Caused by Grating Stimulation Imaging
NASA Astrophysics Data System (ADS)
Urakawa, Hiroshi; Nishimura, Toshihiro; Tsubai, Masayoshi; Itoh, Kenji
Recently, many researchers have studied a visual perception. Focus is attended to studies of the visual perception phenomenon by using the grating stimulation images. The previous researches have suggested that a subset of retinal ganglion cells responds to motion in the receptive field center, but only if the wider surround moves with a different trajectory. We discuss the function of human retina, and measure and analysis EEG(electroencephalography) of a normal subject who looks on grating stimulation images. We confirmed the visual perception of human by EEG signal analysis. We also have obtained that a sinusoidal grating stimulation was given, asymmetry was observed the α wave element in EEG of the symmetric part in a left hemisphere and a right hemisphere of the brain. Therefore, it is presumed that projected image is even when the still picture is seen and the image projected onto retinas of right and left eyes is not even for the dynamic scene. It evaluated it by taking the envelope curve for the detected α wave, and using the average and standard deviation.
Remote sensing image ship target detection method based on visual attention model
NASA Astrophysics Data System (ADS)
Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong
2017-11-01
The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.
Visual System Involvement in Patients with Newly Diagnosed Parkinson Disease.
Arrigo, Alessandro; Calamuneri, Alessandro; Milardi, Demetrio; Mormina, Enricomaria; Rania, Laura; Postorino, Elisa; Marino, Silvia; Di Lorenzo, Giuseppe; Anastasi, Giuseppe Pio; Ghilardi, Maria Felice; Aragona, Pasquale; Quartarone, Angelo; Gaeta, Michele
2017-12-01
Purpose To assess intracranial visual system changes of newly diagnosed Parkinson disease in drug-naïve patients. Materials and Methods Twenty patients with newly diagnosed Parkinson disease and 20 age-matched control subjects were recruited. Magnetic resonance (MR) imaging (T1-weighted and diffusion-weighted imaging) was performed with a 3-T MR imager. White matter changes were assessed by exploring a white matter diffusion profile by means of diffusion-tensor imaging-based parameters and constrained spherical deconvolution-based connectivity analysis and by means of white matter voxel-based morphometry (VBM). Alterations in occipital gray matter were investigated by means of gray matter VBM. Morphologic analysis of the optic chiasm was based on manual measurement of regions of interest. Statistical testing included analysis of variance, t tests, and permutation tests. Results In the patients with Parkinson disease, significant alterations were found in optic radiation connectivity distribution, with decreased lateral geniculate nucleus V2 density (F, -8.28; P < .05), a significant increase in optic radiation mean diffusivity (F, 7.5; P = .014), and a significant reduction in white matter concentration. VBM analysis also showed a significant reduction in visual cortical volumes (P < .05). Moreover, the chiasmatic area and volume were significantly reduced (P < .05). Conclusion The findings show that visual system alterations can be detected in early stages of Parkinson disease and that the entire intracranial visual system can be involved. © RSNA, 2017 Online supplemental material is available for this article.
A visual grading study for different administered activity levels in bone scintigraphy.
Gustafsson, Agnetha; Karlsson, Henrik; Nilsson, Kerstin A; Geijer, Håkan; Olsson, Anna
2015-05-01
The aim of the study is to assess the administered activity levels versus visual-based image quality using visual grading regression (VGR) including an assessment of the newly stated image criteria for whole-body bone scintigraphy. A total of 90 patients was included and grouped in three levels of administered activity: 400, 500 and 600 MBq. Six clinical image criteria regarding image quality was formulated by experienced nuclear medicine physicians. Visual grading was performed in all images, where three physicians rated the fulfilment of the image criteria on a four-step ordinal scale. The results were analysed using VGR. A count analysis was also made where the total number of counts in both views was registered. The administered activity of 600 MBq gives significantly better image quality than 400 MBq in five of six criteria (P<0·05). Comparing the administered activity of 600 MBq to 500 MBq, four criteria of six show significantly better image quality (P<0·05). The administered activity of 500 MBq gives no significantly better image quality than 400 Mbq (P<0·05). The count analysis shows that none of the three levels of administrated activity fulfil the recommendations by the EANM. There was a significant improvement in perceived image quality using an activity level of 600 MBq compared to lower activity levels in whole-body bone scintigraphy for the gamma camera equipment end set-up used in this study. This type of visual-based grading study seems to be a valuable tool and easy to implement in the clinical environment. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wan, Qianwen; Panetta, Karen; Agaian, Sos
2017-05-01
Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.
Student Visual Communication of Evolution
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.; Cook, Kristin
2017-06-01
Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.
Remote sensing image denoising application by generalized morphological component analysis
NASA Astrophysics Data System (ADS)
Yu, Chong; Chen, Xiong
2014-12-01
In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.
Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad
2018-02-01
Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to < 0.0001). Methods for assessing inflammation suggested a progression through the tubulointerstitial ACR grades, with statistically different results in borderline versus other ACR types, in all but the custom methods. Assessment of CD3-stained slides using various open source image analysis algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.
Image analysis for microelectronic retinal prosthesis.
Hallum, L E; Cloherty, S L; Lovell, N H
2008-01-01
By way of extracellular, stimulating electrodes, a microelectronic retinal prosthesis aims to render discrete, luminous spots-so-called phosphenes-in the visual field, thereby providing a phosphene image (PI) as a rudimentary remediation of profound blindness. As part thereof, a digital camera, or some other photosensitive array, captures frames, frames are analyzed, and phosphenes are actuated accordingly by way of modulated charge injections. Here, we present a method that allows the assessment of image analysis schemes for integration with a prosthetic device, that is, the means of converting the captured image (high resolution) to modulated charge injections (low resolution). We use the mutual-information function to quantify the amount of information conveyed to the PI observer (device implantee), while accounting for the statistics of visual stimuli. We demonstrate an effective scheme involving overlapping, Gaussian kernels, and discuss extensions of the method to account for shortterm visual memory in observers, and their perceptual errors of omission and commission.
Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S.T.C.
The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound,more » electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.« less
Visual quality analysis for images degraded by different types of noise
NASA Astrophysics Data System (ADS)
Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Ieremeyev, Oleg I.; Egiazarian, Karen O.; Astola, Jaakko T.
2013-02-01
Modern visual quality metrics take into account different peculiarities of the Human Visual System (HVS). One of them is described by the Weber-Fechner law and deals with the different sensitivity to distortions in image fragments with different local mean values (intensity, brightness). We analyze how this property can be incorporated into a metric PSNRHVS- M. It is shown that some improvement of its performance can be provided. Then, visual quality of color images corrupted by three types of i.i.d. noise (pure additive, pure multiplicative, and signal dependent, Poisson) is analyzed. Experiments with a group of observers are carried out for distorted color images created on the basis of TID2008 database. Several modern HVS-metrics are considered. It is shown that even the best metrics are unable to assess visual quality of distorted images adequately enough. The reasons for this deal with the observer's attention to certain objects in the test images, i.e., with semantic aspects of vision, which are worth taking into account in design of HVS-metrics.
Adaptive image inversion of contrast 3D echocardiography for enabling automated analysis.
Shaheen, Anjuman; Rajpoot, Kashif
2015-08-01
Contrast 3D echocardiography (C3DE) is commonly used to enhance the visual quality of ultrasound images in comparison with non-contrast 3D echocardiography (3DE). Although the image quality in C3DE is perceived to be improved for visual analysis, however it actually deteriorates for the purpose of automatic or semi-automatic analysis due to higher speckle noise and intensity inhomogeneity. Therefore, the LV endocardial feature extraction and segmentation from the C3DE images remains a challenging problem. To address this challenge, this work proposes an adaptive pre-processing method to invert the appearance of C3DE image. The image inversion is based on an image intensity threshold value which is automatically estimated through image histogram analysis. In the inverted appearance, the LV cavity appears dark while the myocardium appears bright thus making it similar in appearance to a 3DE image. Moreover, the resulting inverted image has high contrast and low noise appearance, yielding strong LV endocardium boundary and facilitating feature extraction for segmentation. Our results demonstrate that the inverse appearance of contrast image enables the subsequent LV segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
2013-09-01
existing MR scanning systems providing the ability to visualize structures that are impossible with current methods . Using techniques to concurrently...and unique system for analysis of affected brain regions and coupled with other imaging techniques and molecular measurements holds significant...scanning systems providing the ability to visualize structures that are impossible with current methods . Using techniques to concurrently stain
A GUI visualization system for airborne lidar image data to reconstruct 3D city model
NASA Astrophysics Data System (ADS)
Kawata, Yoshiyuki; Koizumi, Kohei
2015-10-01
A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.
NASA Astrophysics Data System (ADS)
Lausch, Anthony; Chen, Jeff; Ward, Aaron D.; Gaede, Stewart; Lee, Ting-Yim; Wong, Eugene
2014-11-01
Parametric response map (PRM) analysis is a voxel-wise technique for predicting overall treatment outcome, which shows promise as a tool for guiding personalized locally adaptive radiotherapy (RT). However, image registration error (IRE) introduces uncertainty into this analysis which may limit its use for guiding RT. Here we extend the PRM method to include an IRE-related PRM analysis confidence interval and also incorporate multiple graded classification thresholds to facilitate visualization. A Gaussian IRE model was used to compute an expected value and confidence interval for PRM analysis. The augmented PRM (A-PRM) was evaluated using CT-perfusion functional image data from patients treated with RT for glioma and hepatocellular carcinoma. Known rigid IREs were simulated by applying one thousand different rigid transformations to each image set. PRM and A-PRM analyses of the transformed images were then compared to analyses of the original images (ground truth) in order to investigate the two methods in the presence of controlled IRE. The A-PRM was shown to help visualize and quantify IRE-related analysis uncertainty. The use of multiple graded classification thresholds also provided additional contextual information which could be useful for visually identifying adaptive RT targets (e.g. sub-volume boosts). The A-PRM should facilitate reliable PRM guided adaptive RT by allowing the user to identify if a patient’s unique IRE-related PRM analysis uncertainty has the potential to influence target delineation.
MIXING QUANTIFICATION BY VISUAL IMAGING ANALYSIS
This paper reports on development of a method for quantifying two measures of mixing, the scale and intensity of segregation, through flow visualization, video recording, and software analysis. This non-intrusive method analyzes a planar cross section of a flowing system from an ...
Development of image processing techniques for applications in flow visualization and analysis
NASA Technical Reports Server (NTRS)
Disimile, Peter J.; Shoe, Bridget; Toy, Norman; Savory, Eric; Tahouri, Bahman
1991-01-01
A comparison between two flow visualization studies of an axi-symmetric circular jet issuing into still fluid, using two different experimental techniques, is described. In the first case laser induced fluorescence is used to visualize the flow structure, whilst smoke is utilized in the second. Quantitative information was obtained from these visualized flow regimes using two different digital imaging systems. Results are presented of the rate at which the jet expands in the downstream direction and these compare favorably with the more established data.
A novel visual saliency analysis model based on dynamic multiple feature combination strategy
NASA Astrophysics Data System (ADS)
Lv, Jing; Ye, Qi; Lv, Wen; Zhang, Libao
2017-06-01
The human visual system can quickly focus on a small number of salient objects. This process was known as visual saliency analysis and these salient objects are called focus of attention (FOA). The visual saliency analysis mechanism can be used to extract the salient regions and analyze saliency of object in an image, which is time-saving and can avoid unnecessary costs of computing resources. In this paper, a novel visual saliency analysis model based on dynamic multiple feature combination strategy is introduced. In the proposed model, we first generate multi-scale feature maps of intensity, color and orientation features using Gaussian pyramids and the center-surround difference. Then, we evaluate the contribution of all feature maps to the saliency map according to the area of salient regions and their average intensity, and attach different weights to different features according to their importance. Finally, we choose the largest salient region generated by the region growing method to perform the evaluation. Experimental results show that the proposed model cannot only achieve higher accuracy in saliency map computation compared with other traditional saliency analysis models, but also extract salient regions with arbitrary shapes, which is of great value for the image analysis and understanding.
Study of the cerrado vegetation in the Federal District area from orbital data. M.S. Thesis
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Aoki, H.; Dossantos, J. R.
1980-01-01
The physiognomic units of cerrado in the area of Distrito Federal (DF) were studied through the visual and automatic analysis of products provided by Multispectral Scanning System (MSS) of LANDSAT. The visual analysis of the multispectral images in black and white, at the 1:250,000 scale, was made based on the texture and tonal patterns. The automatic analysis of the compatible computer tapes (CCT) was made by means of IMAGE-100 system. The following conclusions were obtained: (1) the delimitation of cerrado vegetation forms can be made by the visual and automatic analysis; (2) in the visual analysis, the principal parameter used to discriminate the cerrado forms was the tonal pattern, independently of the year's seasons, and the channel 5 gave better information; (3) in the automatic analysis, the data of the four channels of MSS can be used in the discrimination of the cerrado forms; and (4) in the automatic analysis, the four channels combination possibilities gave more information in the separation of cerrado units when soil types were considered.
How does c-view image quality compare with conventional 2D FFDM?
Nelson, Jeffrey S; Wells, Jered R; Baker, Jay A; Samei, Ehsan
2016-05-01
The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to compare the intrinsic image quality of synthesized 2D c-view and 2D FFDM images in terms of resolution, contrast, and noise. Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than c-view according to both the average observer and automated scores. In addition, between 50% and 70% of c-view images failed to meet the nominal minimum ACR accreditation requirements-primarily due to fiber breaks. Software analysis demonstrated that c-view provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the c-view image (11 lp/mm FFDM, 5 lp/mm c-view) and loss in detection of small microcalcification objects. Spectral analysis of the anthropomorphic phantom showed higher total noise magnitude in the FFDM image compared with c-view. Whereas the FFDM image contained approximately white noise texture, the c-view image exhibited marked noise reduction at midfrequency and high frequency with far less noise suppression at low frequencies resulting in a mottled noise appearance. Their analysis demonstrates many instances where the c-view image quality differs from FFDM. Compared to FFDM, c-view offers a better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of c-view images in the clinical setting requires careful consideration, especially if considering the discontinuation of FFDM imaging. Not explicitly explored in this study is how the combination of DBT + c-view performs relative to DBT + FFDM or FFDM alone.
Blind subjects construct conscious mental images of visual scenes encoded in musical form.
Cronly-Dillon, J; Persaud, K C; Blore, R
2000-01-01
Blind (previously sighted) subjects are able to analyse, describe and graphically represent a number of high-contrast visual images translated into musical form de novo. We presented musical transforms of a random assortment of photographic images of objects and urban scenes to such subjects, a few of which depicted architectural and other landmarks that may be useful in navigating a route to a particular destination. Our blind subjects were able to use the sound representation to construct a conscious mental image that was revealed by their ability to depict a visual target by drawing it. We noted the similarity between the way the visual system integrates information from successive fixations to form a representation that is stable across eye movements and the way a succession of image frames (encoded in sound) which depict different portions of the image are integrated to form a seamless mental image. Finally, we discuss the profound resemblance between the way a professional musician carries out a structural analysis of a musical composition in order to relate its structure to the perception of musical form and the strategies used by our blind subjects in isolating structural features that collectively reveal the identity of visual form. PMID:11413637
Three-dimensional murine airway segmentation in micro-CT images
NASA Astrophysics Data System (ADS)
Shi, Lijun; Thiesse, Jacqueline; McLennan, Geoffrey; Hoffman, Eric A.; Reinhardt, Joseph M.
2007-03-01
Thoracic imaging for small animals has emerged as an important tool for monitoring pulmonary disease progression and therapy response in genetically engineered animals. Micro-CT is becoming the standard thoracic imaging modality in small animal imaging because it can produce high-resolution images of the lung parenchyma, vasculature, and airways. Segmentation, measurement, and visualization of the airway tree is an important step in pulmonary image analysis. However, manual analysis of the airway tree in micro-CT images can be extremely time-consuming since a typical dataset is usually on the order of several gigabytes in size. Automated and semi-automated tools for micro-CT airway analysis are desirable. In this paper, we propose an automatic airway segmentation method for in vivo micro-CT images of the murine lung and validate our method by comparing the automatic results to manual tracing. Our method is based primarily on grayscale morphology. The results show good visual matches between manually segmented and automatically segmented trees. The average true positive volume fraction compared to manual analysis is 91.61%. The overall runtime for the automatic method is on the order of 30 minutes per volume compared to several hours to a few days for manual analysis.
NASA Astrophysics Data System (ADS)
Dostal, P.; Krasula, L.; Klima, M.
2012-06-01
Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.
Local image statistics: maximum-entropy constructions and perceptual salience
Victor, Jonathan D.; Conte, Mary M.
2012-01-01
The space of visual signals is high-dimensional and natural visual images have a highly complex statistical structure. While many studies suggest that only a limited number of image statistics are used for perceptual judgments, a full understanding of visual function requires analysis not only of the impact of individual image statistics, but also, how they interact. In natural images, these statistical elements (luminance distributions, correlations of low and high order, edges, occlusions, etc.) are intermixed, and their effects are difficult to disentangle. Thus, there is a need for construction of stimuli in which one or more statistical elements are introduced in a controlled fashion, so that their individual and joint contributions can be analyzed. With this as motivation, we present algorithms to construct synthetic images in which local image statistics—including luminance distributions, pair-wise correlations, and higher-order correlations—are explicitly specified and all other statistics are determined implicitly by maximum-entropy. We then apply this approach to measure the sensitivity of the human visual system to local image statistics and to sample their interactions. PMID:22751397
Shenoy, Shailesh M
2016-07-01
A challenge in any imaging laboratory, especially one that uses modern techniques, is to achieve a sustainable and productive balance between using open source and commercial software to perform quantitative image acquisition, analysis and visualization. In addition to considering the expense of software licensing, one must consider factors such as the quality and usefulness of the software's support, training and documentation. Also, one must consider the reproducibility with which multiple people generate results using the same software to perform the same analysis, how one may distribute their methods to the community using the software and the potential for achieving automation to improve productivity.
Cloherty, Shaun L; Hietanen, Markus A; Suaning, Gregg J; Ibbotson, Michael R
2010-01-01
We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.
2001-10-25
Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for
NASA Technical Reports Server (NTRS)
Berthoz, A.; Pavard, B.; Young, L. R.
1975-01-01
The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.
Hiwatashi, Akio; Yoshiura, Takashi; Yamashita, Koji; Kamano, Hironori; Honda, Hiroshi
2012-09-01
Preoperative evaluation of small vessels without contrast material is sometimes difficult in patients with neurovascular compression disease. The purpose of this retrospective study was to evaluate whether 3D STIR MRI could simultaneously depict the lower cranial nerves--fifth through twelfth--and the blood vessels in the posterior fossa. The posterior fossae of 47 adults (26 women, 21 men) without gross pathologic changes were imaged with 3D STIR and turbo spin-echo heavily T2-weighted MRI sequences and with contrast-enhanced turbo field-echo MR angiography (MRA). Visualization of the cranial nerves on STIR images was graded on a 4-point scale and compared with visualization on T2-weighted images. Visualization of the arteries on STIR images was evaluated according to the segments in each artery and compared with that on MRA images. Visualization of the veins on STIR images was also compared with that on MRA images. Statistical analysis was performed with the Mann-Whitney U test. There were no significant differences between STIR and T2-weighted images with respect to visualization of the cranial nerves (p > 0.05). Identified on STIR and MRA images were 94 superior cerebellar arteries, 81 anteroinferior cerebellar arteries, and 79 posteroinferior cerebellar arteries. All veins evaluated were seen on STIR and MRA images. There were no significant differences between STIR and MRA images with respect to visualization of arteries and veins (p > 0.05). High-resolution STIR is a feasible method for simultaneous evaluation of the lower cranial nerves and the vessels in the posterior fossa without the use of contrast material.
Research and analysis of head-directed area-of-interest visual system concepts
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1983-01-01
An analysis and survey with conjecture supporting a preliminary data base design is presented. The data base is intended for use in a Computer Image Generator visual subsystem for a rotorcraft flight simulator that is used for rotorcraft systems development, not training. The approach taken was to attempt to identify the visual perception strategies used during terrain flight, survey environmental and image generation factors, and meld these into a preliminary data base design. This design is directed at Data Base developers, and hopefully will stimulate and aid their efforts to evolve such a Base that will support simulation of terrain flight operations.
Paediatric x-ray radiation dose reduction and image quality analysis.
Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H
2013-09-01
Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.
IMAGE EXPLORER: Astronomical Image Analysis on an HTML5-based Web Application
NASA Astrophysics Data System (ADS)
Gopu, A.; Hayashi, S.; Young, M. D.
2014-05-01
Large datasets produced by recent astronomical imagers cause the traditional paradigm for basic visual analysis - typically downloading one's entire image dataset and using desktop clients like DS9, Aladin, etc. - to not scale, despite advances in desktop computing power and storage. This paper describes Image Explorer, a web framework that offers several of the basic visualization and analysis functionality commonly provided by tools like DS9, on any HTML5 capable web browser on various platforms. It uses a combination of the modern HTML5 canvas, JavaScript, and several layers of lossless PNG tiles producted from the FITS image data. Astronomers are able to rapidly and simultaneously open up several images on their web-browser, adjust the intensity min/max cutoff or its scaling function, and zoom level, apply color-maps, view position and FITS header information, execute typically used data reduction codes on the corresponding FITS data using the FRIAA framework, and overlay tiles for source catalog objects, etc.
Multimedia Analysis plus Visual Analytics = Multimedia Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinchor, Nancy; Thomas, James J.; Wong, Pak C.
2010-10-01
Multimedia analysis has focused on images, video, and to some extent audio and has made progress in single channels excluding text. Visual analytics has focused on the user interaction with data during the analytic process plus the fundamental mathematics and has continued to treat text as did its precursor, information visualization. The general problem we address in this tutorial is the combining of multimedia analysis and visual analytics to deal with multimedia information gathered from different sources, with different goals or objectives, and containing all media types and combinations in common usage.
Biglands, John D; Ibraheem, Montasir; Magee, Derek R; Radjenovic, Aleksandra; Plein, Sven; Greenwood, John P
2018-05-01
This study sought to compare the diagnostic accuracy of visual and quantitative analyses of myocardial perfusion cardiovascular magnetic resonance against a reference standard of quantitative coronary angiography. Visual analysis of perfusion cardiovascular magnetic resonance studies for assessing myocardial perfusion has been shown to have high diagnostic accuracy for coronary artery disease. However, only a few small studies have assessed the diagnostic accuracy of quantitative myocardial perfusion. This retrospective study included 128 patients randomly selected from the CE-MARC (Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) study population such that the distribution of risk factors and disease status was proportionate to the full population. Visual analysis results of cardiovascular magnetic resonance perfusion images, by consensus of 2 expert readers, were taken from the original study reports. Quantitative myocardial blood flow estimates were obtained using Fermi-constrained deconvolution. The reference standard for myocardial ischemia was a quantitative coronary x-ray angiogram stenosis severity of ≥70% diameter in any coronary artery of >2 mm diameter, or ≥50% in the left main stem. Diagnostic performance was calculated using receiver-operating characteristic curve analysis. The area under the curve for visual analysis was 0.88 (95% confidence interval: 0.81 to 0.95) with a sensitivity of 81.0% (95% confidence interval: 69.1% to 92.8%) and specificity of 86.0% (95% confidence interval: 78.7% to 93.4%). For quantitative stress myocardial blood flow the area under the curve was 0.89 (95% confidence interval: 0.83 to 0.96) with a sensitivity of 87.5% (95% confidence interval: 77.3% to 97.7%) and specificity of 84.5% (95% confidence interval: 76.8% to 92.3%). There was no statistically significant difference between the diagnostic performance of quantitative and visual analyses (p = 0.72). Incorporating rest myocardial blood flow values to generate a myocardial perfusion reserve did not significantly increase the quantitative analysis area under the curve (p = 0.79). Quantitative perfusion has a high diagnostic accuracy for detecting coronary artery disease but is not superior to visual analysis. The incorporation of rest perfusion imaging does not improve diagnostic accuracy in quantitative perfusion analysis. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
High-speed imaging of submerged jet: visualization analysis using proper orthogonality decomposition
NASA Astrophysics Data System (ADS)
Liu, Yingzheng; He, Chuangxin
2016-11-01
In the present study, the submerged jet at low Reynolds numbers was visualized using laser induced fluoresce and high-speed imaging in a water tank. Well-controlled calibration was made to determine linear dependency region of the fluoresce intensity on its concentration. Subsequently, the jet fluid issuing from a circular pipe was visualized using a high-speed camera. The animation sequence of the visualized jet flow field was supplied for the snapshot proper orthogonality decomposition (POD) analysis. Spatio-temporally varying structures superimposed in the unsteady fluid flow were identified, e.g., the axisymmetric mode and the helical mode, which were reflected from the dominant POD modes. The coefficients of the POD modes give strong indication of temporal and spectral features of the corresponding unsteady events. The reconstruction using the time-mean visualization and the selected POD modes was conducted to reveal the convective motion of the buried vortical structures. National Natural Science Foundation of China.
Visual Exploration of Genetic Association with Voxel-based Imaging Phenotypes in an MCI/AD Study
Kim, Sungeun; Shen, Li; Saykin, Andrew J.; West, John D.
2010-01-01
Neuroimaging genomics is a new transdisciplinary research field, which aims to examine genetic effects on brain via integrated analyses of high throughput neuroimaging and genomic data. We report our recent work on (1) developing an imaging genomic browsing system that allows for whole genome and entire brain analyses based on visual exploration and (2) applying the system to the imaging genomic analysis of an existing MCI/AD cohort. Voxel-based morphometry is used to define imaging phenotypes. ANCOVA is employed to evaluate the effect of the interaction of genotypes and diagnosis in relation to imaging phenotypes while controlling for relevant covariates. Encouraging experimental results suggest that the proposed system has substantial potential for enabling discovery of imaging genomic associations through visual evaluation and for localizing candidate imaging regions and genomic regions for refined statistical modeling. PMID:19963597
Gutman, David A.; Dunn, William D.; Cobb, Jake; Stoner, Richard M.; Kalpathy-Cramer, Jayashree; Erickson, Bradley
2014-01-01
Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework to wrap around the REST application programming interface (API) and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance. PMID:24904399
Comprehensive model for predicting perceptual image quality of smart mobile devices.
Gong, Rui; Xu, Haisong; Luo, M R; Li, Haifeng
2015-01-01
An image quality model for smart mobile devices was proposed based on visual assessments of several image quality attributes. A series of psychophysical experiments were carried out on two kinds of smart mobile devices, i.e., smart phones and tablet computers, in which naturalness, colorfulness, brightness, contrast, sharpness, clearness, and overall image quality were visually evaluated under three lighting environments via categorical judgment method for various application types of test images. On the basis of Pearson correlation coefficients and factor analysis, the overall image quality could first be predicted by its two constituent attributes with multiple linear regression functions for different types of images, respectively, and then the mathematical expressions were built to link the constituent image quality attributes with the physical parameters of smart mobile devices and image appearance factors. The procedure and algorithms were applicable to various smart mobile devices, different lighting conditions, and multiple types of images, and performance was verified by the visual data.
NASA Astrophysics Data System (ADS)
Dong, Leng; Chen, Yan; Dias, Sarah; Stone, William; Dias, Joseph; Rout, John; Gale, Alastair G.
2017-03-01
Visual search techniques and FROC analysis have been widely used in radiology to understand medical image perceptual behaviour and diagnostic performance. The potential of exploiting the advantages of both methodologies is of great interest to medical researchers. In this study, eye tracking data of eight dental practitioners was investigated. The visual search measures and their analyses are considered here. Each participant interpreted 20 dental radiographs which were chosen by an expert dental radiologist. Various eye movement measurements were obtained based on image area of interest (AOI) information. FROC analysis was then carried out by using these eye movement measurements as a direct input source. The performance of FROC methods using different input parameters was tested. The results showed that there were significant differences in FROC measures, based on eye movement data, between groups with different experience levels. Namely, the area under the curve (AUC) score evidenced higher values for experienced group for the measurements of fixation and dwell time. Also, positive correlations were found for AUC scores between the eye movement data conducted FROC and rating based FROC. FROC analysis using eye movement measurements as input variables can act as a potential performance indicator to deliver assessment in medical imaging interpretation and assess training procedures. Visual search data analyses lead to new ways of combining eye movement data and FROC methods to provide an alternative dimension to assess performance and visual search behaviour in the area of medical imaging perceptual tasks.
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).
Digital diagnosis of medical images
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu
2001-08-01
The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.
Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.
Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis
2014-04-01
Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the system could help the physician in the assessment of cardiovascular image analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A software tool for automatic classification and segmentation of 2D/3D medical images
NASA Astrophysics Data System (ADS)
Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur
2013-02-01
Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.
The role of visual representations during the lexical access of spoken words
Lewis, Gwyneth; Poeppel, David
2015-01-01
Do visual representations contribute to spoken word recognition? We examine, using MEG, the effects of sublexical and lexical variables at superior temporal (ST) areas and the posterior middle temporal gyrus (pMTG) compared with that of word imageability at visual cortices. Embodied accounts predict early modulation of visual areas by imageability - concurrently with or prior to modulation of pMTG by lexical variables. Participants responded to speech stimuli varying continuously in imageability during lexical decision with simultaneous MEG recording. We employed the linguistic variables in a new type of correlational time course analysis to assess trial-by-trial activation in occipital, ST, and pMTG regions of interest (ROIs). The linguistic variables modulated the ROIs during different time windows. Critically, visual regions reflected an imageability effect prior to effects of lexicality on pMTG. This surprising effect supports a view on which sensory aspects of a lexical item are not a consequence of lexical activation. PMID:24814579
The role of visual representations during the lexical access of spoken words.
Lewis, Gwyneth; Poeppel, David
2014-07-01
Do visual representations contribute to spoken word recognition? We examine, using MEG, the effects of sublexical and lexical variables at superior temporal (ST) areas and the posterior middle temporal gyrus (pMTG) compared with that of word imageability at visual cortices. Embodied accounts predict early modulation of visual areas by imageability--concurrently with or prior to modulation of pMTG by lexical variables. Participants responded to speech stimuli varying continuously in imageability during lexical decision with simultaneous MEG recording. We employed the linguistic variables in a new type of correlational time course analysis to assess trial-by-trial activation in occipital, ST, and pMTG regions of interest (ROIs). The linguistic variables modulated the ROIs during different time windows. Critically, visual regions reflected an imageability effect prior to effects of lexicality on pMTG. This surprising effect supports a view on which sensory aspects of a lexical item are not a consequence of lexical activation. Copyright © 2014 Elsevier Inc. All rights reserved.
Visual appearance of wind turbine tower at long range measured using imaging system
NASA Astrophysics Data System (ADS)
Gustafsson, K. Ove S.; Möller, Sebastian
2013-10-01
Wind turbine towers affect the visual appearance of the landscape, as an example in the touristic woodland of Dalecarlia, and the fear is that the visual impact will be too negative to the important tourist trade. The landscape analysis, developed by municipalities around Lake Siljan, limited expansion of wind power, due to the strong visual impression of wind turbine towers. In order to facilitate the assessment of the visual impact of towers a view, from Tällberg, over the ring of height on the other side of Lake Siljan, has been photographed every ten minutes for a year (34,727 images, about 65% of the possible number during a year). Four towers are possible to see in the photos, three of them have been used in the assessment of visual impression. This contribution presents a method to assess visibility of wind turbine towers from photographs, describing the measuring situation (location and equipment) as well as the analytical method and results of the analysis. The towers are possible to see in about 48% of analyzed images taken during daytime with the used equipment. During the summer (winter) months the towers were apparent in 49% (46%) of the images. At least one red warning light was possible to see on towers in about 66% of the night images. One conclusion of this work is that the method to assess the visibility within digital photographs and translate it into the equivalent of a normal eye can only provide an upper limit for visibility of an object.
Experimental design and analysis of JND test on coded image/video
NASA Astrophysics Data System (ADS)
Lin, Joe Yuchieh; Jin, Lina; Hu, Sudeng; Katsavounidis, Ioannis; Li, Zhi; Aaron, Anne; Kuo, C.-C. Jay
2015-09-01
The visual Just-Noticeable-Difference (JND) metric is characterized by the detectable minimum amount of two visual stimuli. Conducting the subjective JND test is a labor-intensive task. In this work, we present a novel interactive method in performing the visual JND test on compressed image/video. JND has been used to enhance perceptual visual quality in the context of image/video compression. Given a set of coding parameters, a JND test is designed to determine the distinguishable quality level against a reference image/video, which is called the anchor. The JND metric can be used to save coding bitrates by exploiting the special characteristics of the human visual system. The proposed JND test is conducted using a binary-forced choice, which is often adopted to discriminate the difference in perception in a psychophysical experiment. The assessors are asked to compare coded image/video pairs and determine whether they are of the same quality or not. A bisection procedure is designed to find the JND locations so as to reduce the required number of comparisons over a wide range of bitrates. We will demonstrate the efficiency of the proposed JND test, report experimental results on the image and video JND tests.
Frequency domain analysis of knock images
NASA Astrophysics Data System (ADS)
Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin
2014-12-01
High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.
Digital image analysis techniques for fiber and soil mixtures.
DOT National Transportation Integrated Search
1999-05-01
The objective of image processing is to visually enhance, quantify, and/or statistically evaluate some aspect of an image not readily apparent in its original form. Processed digital image data can be analyzed in numerous ways. In order to summarize ...
Standardized Uptake Value Ratio-Independent Evaluation of Brain Amyloidosis.
Chincarini, Andrea; Sensi, Francesco; Rei, Luca; Bossert, Irene; Morbelli, Silvia; Guerra, Ugo Paolo; Frisoni, Giovanni; Padovani, Alessandro; Nobili, Flavio
2016-10-18
The assessment of in vivo18F images targeting amyloid deposition is currently carried on by visual rating with an optional quantification based on standardized uptake value ratio (SUVr) measurements. We target the difficulties of image reading and possible shortcomings of the SUVr methods by validating a new semi-quantitative approach named ELBA. ELBA involves a minimal image preprocessing and does not rely on small, specific regions of interest (ROIs). It evaluates the whole brain and delivers a geometrical/intensity score to be used for ranking and dichotomic assessment. The method was applied to adniimages 18F-florbetapir images from the ADNI database. Five expert readers provided visual assessment in blind and open sessions. The longitudinal trend and the comparison to SUVr measurements were also evaluated. ELBA performed with area under the roc curve (AUC) = 0.997 versus the visual assessment. The score was significantly correlated to the SUVr values (r = 0.86, p < 10-4). The longitudinal analysis estimated a test/retest error of ≃2.3%. Cohort and longitudinal analysis suggests that the ELBA method accurately ranks the brain amyloid burden. The expert readers confirmed its relevance in aiding the visual assessment in a significant number (85) of difficult cases. Despite the good performance, poor and uneven image quality constitutes the major limitation.
Roguev, Assen; Ryan, Colm J; Xu, Jiewei; Colson, Isabelle; Hartsuiker, Edgar; Krogan, Nevan
2018-02-01
This protocol describes computational analysis of genetic interaction screens, ranging from data capture (plate imaging) to downstream analyses. Plate imaging approaches using both digital camera and office flatbed scanners are included, along with a protocol for the extraction of colony size measurements from the resulting images. A commonly used genetic interaction scoring method, calculation of the S-score, is discussed. These methods require minimal computer skills, but some familiarity with MATLAB and Linux/Unix is a plus. Finally, an outline for using clustering and visualization software for analysis of resulting data sets is provided. © 2018 Cold Spring Harbor Laboratory Press.
NASA Astrophysics Data System (ADS)
Tiede, Dirk; Lang, Stefan
2010-11-01
In this paper we focus on the application of transferable, object-based image analysis algorithms for dwelling extraction in a camp for internally displaced people (IDP) in Darfur, Sudan along with innovative means for scientific visualisation of the results. Three very high spatial resolution satellite images (QuickBird: 2002, 2004, 2008) were used for: (1) extracting different types of dwellings and (2) calculating and visualizing added-value products such as dwelling density and camp structure. The results were visualized on virtual globes (Google Earth and ArcGIS Explorer) revealing the analysis results (analytical 3D views,) transformed into the third dimension (z-value). Data formats depend on virtual globe software including KML/KMZ (keyhole mark-up language) and ESRI 3D shapefiles streamed as ArcGIS Server-based globe service. In addition, means for improving overall performance of automated dwelling structures using grid computing techniques are discussed using examples from a similar study.
The effect of multispectral image fusion enhancement on human efficiency.
Bittner, Jennifer L; Schill, M Trent; Mohd-Zaid, Fairul; Blaha, Leslie M
2017-01-01
The visual system can be highly influenced by changes to visual presentation. Thus, numerous techniques have been developed to augment imagery in an attempt to improve human perception. The current paper examines the potential impact of one such enhancement, multispectral image fusion, where imagery captured in varying spectral bands (e.g., visible, thermal, night vision) is algorithmically combined to produce an output to strengthen visual perception. We employ ideal observer analysis over a series of experimental conditions to (1) establish a framework for testing the impact of image fusion over the varying aspects surrounding its implementation (e.g., stimulus content, task) and (2) examine the effectiveness of fusion on human information processing efficiency in a basic application. We used a set of rotated Landolt C images captured with a number of individual sensor cameras and combined across seven traditional fusion algorithms (e.g., Laplacian pyramid, principal component analysis, averaging) in a 1-of-8 orientation task. We found that, contrary to the idea of fused imagery always producing a greater impact on perception, single-band imagery can be just as influential. Additionally, efficiency data were shown to fluctuate based on sensor combination instead of fusion algorithm, suggesting the need for examining multiple factors to determine the success of image fusion. Our use of ideal observer analysis, a popular technique from the vision sciences, provides not only a standard for testing fusion in direct relation to the visual system but also allows for comparable examination of fusion across its associated problem space of application.
Model-based quantification of image quality
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Miller, Keith W.; Park, Stephen K.
1989-01-01
In 1982, Park and Schowengerdt published an end-to-end analysis of a digital imaging system quantifying three principal degradation components: (1) image blur - blurring caused by the acquisition system, (2) aliasing - caused by insufficient sampling, and (3) reconstruction blur - blurring caused by the imperfect interpolative reconstruction. This analysis, which measures degradation as the square of the radiometric error, includes the sample-scene phase as an explicit random parameter and characterizes the image degradation caused by imperfect acquisition and reconstruction together with the effects of undersampling and random sample-scene phases. In a recent paper Mitchell and Netravelli displayed the visual effects of the above mentioned degradations and presented subjective analysis about their relative importance in determining image quality. The primary aim of the research is to use the analysis of Park and Schowengerdt to correlate their mathematical criteria for measuring image degradations with subjective visual criteria. Insight gained from this research can be exploited in the end-to-end design of optical systems, so that system parameters (transfer functions of the acquisition and display systems) can be designed relative to each other, to obtain the best possible results using quantitative measurements.
Urakawa, Tomokazu; Ogata, Katsuya; Kimura, Takahiro; Kume, Yuko; Tobimatsu, Shozo
2015-01-01
Disambiguation of a noisy visual scene with prior knowledge is an indispensable task of the visual system. To adequately adapt to a dynamically changing visual environment full of noisy visual scenes, the implementation of knowledge-mediated disambiguation in the brain is imperative and essential for proceeding as fast as possible under the limited capacity of visual image processing. However, the temporal profile of the disambiguation process has not yet been fully elucidated in the brain. The present study attempted to determine how quickly knowledge-mediated disambiguation began to proceed along visual areas after the onset of a two-tone ambiguous image using magnetoencephalography with high temporal resolution. Using the predictive coding framework, we focused on activity reduction for the two-tone ambiguous image as an index of the implementation of disambiguation. Source analysis revealed that a significant activity reduction was observed in the lateral occipital area at approximately 120 ms after the onset of the ambiguous image, but not in preceding activity (about 115 ms) in the cuneus when participants perceptually disambiguated the ambiguous image with prior knowledge. These results suggested that knowledge-mediated disambiguation may be implemented as early as approximately 120 ms following an ambiguous visual scene, at least in the lateral occipital area, and provided an insight into the temporal profile of the disambiguation process of a noisy visual scene with prior knowledge. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Analysis of autostereoscopic three-dimensional images using multiview wavelets.
Saveljev, Vladimir; Palchikova, Irina
2016-08-10
We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images.
Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Klinko, Steve
2011-01-01
This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.
D'Angiulli, Amedeo; Runge, Matthew; Faulkner, Andrew; Zakizadeh, Jila; Chan, Aldrich; Morcos, Selvana
2013-01-01
The relationship between vivid visual mental images and unexpected recall (incidental recall) was replicated, refined, and extended. In Experiment 1, participants were asked to generate mental images from imagery-evoking verbal cues (controlled on several verbal properties) and then, on a trial-by-trial basis, rate the vividness of their images; 30 min later, participants were surprised with a task requiring free recall of the cues. Higher vividness ratings predicted better incidental recall of the cues than individual differences (whose effect was modest). Distributional analysis of image latencies through ex-Gaussian modeling showed an inverse relation between vividness and latency. However, recall was unrelated to image latency. The follow-up Experiment 2 showed that the processes underlying trial-by-trial vividness ratings are unrelated to the Vividness of Visual Imagery Questionnaire (VVIQ), as further supported by a meta-analysis of a randomly selected sample of relevant literature. The present findings suggest that vividness may act as an index of availability of long-term sensory traces, playing a non-epiphenomenal role in facilitating the access of those memories.
D’Angiulli, Amedeo; Runge, Matthew; Faulkner, Andrew; Zakizadeh, Jila; Chan, Aldrich; Morcos, Selvana
2013-01-01
The relationship between vivid visual mental images and unexpected recall (incidental recall) was replicated, refined, and extended. In Experiment 1, participants were asked to generate mental images from imagery-evoking verbal cues (controlled on several verbal properties) and then, on a trial-by-trial basis, rate the vividness of their images; 30 min later, participants were surprised with a task requiring free recall of the cues. Higher vividness ratings predicted better incidental recall of the cues than individual differences (whose effect was modest). Distributional analysis of image latencies through ex-Gaussian modeling showed an inverse relation between vividness and latency. However, recall was unrelated to image latency. The follow-up Experiment 2 showed that the processes underlying trial-by-trial vividness ratings are unrelated to the Vividness of Visual Imagery Questionnaire (VVIQ), as further supported by a meta-analysis of a randomly selected sample of relevant literature. The present findings suggest that vividness may act as an index of availability of long-term sensory traces, playing a non-epiphenomenal role in facilitating the access of those memories. PMID:23382719
ERIC Educational Resources Information Center
Kaya, Deniz
2017-01-01
The purpose of the study is to perform a less-dimensional thorough visualization process for the purpose of determining the images of the students on the concept of angle. The Ward clustering analysis combined with Self-Organizing Neural Network Map (SOM) has been used for the dimension process. The Conceptual Understanding Tool, which consisted…
NASA Technical Reports Server (NTRS)
Athale, R.; Lee, S. H.
1976-01-01
Various defects in mass-produced pictures transmitted to earth from a satellite are investigated. It is found that the following defects are readily detectable via Fourier spectrum analysis: (1) bit slip, (2) breakup causing loss of image, and (3) disabled track at the top of the imagery. The scratches made on the film during mass production, which are difficult to detect by visual observation, also show themselves readily in Fourier spectrum analysis. A relation is established between the number of scratches, their width and depth and the intensity of their Fourier spectra. Other defects that are found to be equally suitable for Fourier spectrum analysis or visual (image analysis) detection are synchronous loss without blurring of image, and density variation in gray scale. However, the Fourier spectrum analysis is found to be unsuitable for detection of such defects as pin holes, annotation error, synchronous loss with blurring of images, and missing image in the beginning of the work order. The design of an automated, real time system, which will reject defective films, is treated.
The challenges of studying visual expertise in medical image diagnosis.
Gegenfurtner, Andreas; Kok, Ellen; van Geel, Koos; de Bruin, Anique; Jarodzka, Halszka; Szulewski, Adam; van Merriënboer, Jeroen Jg
2017-01-01
Visual expertise is the superior visual skill shown when executing domain-specific visual tasks. Understanding visual expertise is important in order to understand how the interpretation of medical images may be best learned and taught. In the context of this article, we focus on the visual skill of medical image diagnosis and, more specifically, on the methodological set-ups routinely used in visual expertise research. We offer a critique of commonly used methods and propose three challenges for future research to open up new avenues for studying characteristics of visual expertise in medical image diagnosis. The first challenge addresses theory development. Novel prospects in modelling visual expertise can emerge when we reflect on cognitive and socio-cultural epistemologies in visual expertise research, when we engage in statistical validations of existing theoretical assumptions and when we include social and socio-cultural processes in expertise development. The second challenge addresses the recording and analysis of longitudinal data. If we assume that the development of expertise is a long-term phenomenon, then it follows that future research can engage in advanced statistical modelling of longitudinal expertise data that extends the routine use of cross-sectional material through, for example, animations and dynamic visualisations of developmental data. The third challenge addresses the combination of methods. Alternatives to current practices can integrate qualitative and quantitative approaches in mixed-method designs, embrace relevant yet underused data sources and understand the need for multidisciplinary research teams. Embracing alternative epistemological and methodological approaches for studying visual expertise can lead to a more balanced and robust future for understanding superior visual skills in medical image diagnosis as well as other medical fields. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
How does C-VIEW image quality compare with conventional 2D FFDM?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Jeffrey S., E-mail: nelson.jeffrey@duke.edu; Wells, Jered R.; Baker, Jay A.
Purpose: The FDA approved the use of digital breast tomosynthesis (DBT) in 2011 as an adjunct to 2D full field digital mammography (FFDM) with the constraint that all DBT acquisitions must be paired with a 2D image to assure adequate interpretative information is provided. Recently manufacturers have developed methods to provide a synthesized 2D image generated from the DBT data with the hope of sparing patients the radiation exposure from the FFDM acquisition. While this much needed alternative effectively reduces the total radiation burden, differences in image quality must also be considered. The goal of this study was to comparemore » the intrinsic image quality of synthesized 2D C-VIEW and 2D FFDM images in terms of resolution, contrast, and noise. Methods: Two phantoms were utilized in this study: the American College of Radiology mammography accreditation phantom (ACR phantom) and a novel 3D printed anthropomorphic breast phantom. Both phantoms were imaged using a Hologic Selenia Dimensions 3D system. Analysis of the ACR phantom includes both visual inspection and objective automated analysis using in-house software. Analysis of the 3D anthropomorphic phantom includes visual assessment of resolution and Fourier analysis of the noise. Results: Using ACR-defined scoring criteria for the ACR phantom, the FFDM images scored statistically higher than C-VIEW according to both the average observer and automated scores. In addition, between 50% and 70% of C-VIEW images failed to meet the nominal minimum ACR accreditation requirements—primarily due to fiber breaks. Software analysis demonstrated that C-VIEW provided enhanced visualization of medium and large microcalcification objects; however, the benefits diminished for smaller high contrast objects and all low contrast objects. Visual analysis of the anthropomorphic phantom showed a measureable loss of resolution in the C-VIEW image (11 lp/mm FFDM, 5 lp/mm C-VIEW) and loss in detection of small microcalcification objects. Spectral analysis of the anthropomorphic phantom showed higher total noise magnitude in the FFDM image compared with C-VIEW. Whereas the FFDM image contained approximately white noise texture, the C-VIEW image exhibited marked noise reduction at midfrequency and high frequency with far less noise suppression at low frequencies resulting in a mottled noise appearance. Conclusions: Their analysis demonstrates many instances where the C-VIEW image quality differs from FFDM. Compared to FFDM, C-VIEW offers a better depiction of objects of certain size and contrast, but provides poorer overall resolution and noise properties. Based on these findings, the utilization of C-VIEW images in the clinical setting requires careful consideration, especially if considering the discontinuation of FFDM imaging. Not explicitly explored in this study is how the combination of DBT + C-VIEW performs relative to DBT + FFDM or FFDM alone.« less
Structural brain alterations in primary open angle glaucoma: a 3T MRI study
Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang
2016-01-01
Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811
An evaluation of the use of oral contrast media in abdominopelvic CT.
Buttigieg, Erica Lauren; Grima, Karen Borg; Cortis, Kelvin; Soler, Sandro Galea; Zarb, Francis
2014-11-01
To evaluate the diagnostic efficacy of different oral contrast media (OCM) for abdominopelvic CT examinations performed for follow-up general oncological indications. The objectives were to establish anatomical image quality criteria for abdominopelvic CT; use these criteria to evaluate and compare image quality using positive OCM, neutral OCM and no OCM; and evaluate possible benefits for the medical imaging department. Forty-six adult patients attending a follow-up abdominopelvic CT for general oncological indications and who had a previous abdominopelvic CT with positive OCM (n = 46) were recruited and prospectively placed into either the water (n = 25) or no OCM (n = 21) group. Three radiologists performed absolute visual grading analysis (VGA) to assess image quality by grading the fulfilment of 24 anatomical image quality criteria. Visual grading characteristics (VGC) analysis of the data showed comparable image quality with regards to reproduction of abdominal structures, bowel discrimination, presence of artefacts, and visualization of the amount of intra-abdominal fat for the three OCM protocols. All three OCM protocols provided similar image quality for follow-up abdominopelvic CT for general oncological indications. • Positive oral contrast media are routinely used for abdominopelvic multidetector computed tomography • Experimental study comparing image quality using three different oral contrast materials • Three different oral contrast materials result in comparable CT image quality • Benefits for patients and medical imaging department.
Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Klinko, Steven J.
2004-01-01
A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.
Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.
Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta
2014-07-01
We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general.
Ors, Suna; Inci, Ercan; Turkay, Rustu; Kokurcan, Atilla; Hocaoglu, Elif
2017-12-01
To compare efficancy of three-dimentional SPACE (sampling perfection with application-optimized contrasts using different flip-angle evolutions) and CISS (constructive interference in steady state) sequences in the imaging of the cisternal segments of cranial nerves V-XII. Temporal MRI scans from 50 patients (F:M ratio, 27:23; mean age, 44.5±15.9 years) admitted to our hospital with vertigo, tinnitus, and hearing loss were retrospectively analyzed. All patients had both CISS and SPACE sequences. Quantitative analysis of SPACE and CISS sequences was performed by measuring the ventricle-to-parenchyma contrast-to-noise ratio (CNR). Qualitative analysis of differences in visualization capability, image quality, and severity of artifacts was also conducted. A score ranging 'no artefact' to 'severe artefacts and unreadable' was used for the assessment of artifacts and from 'not visualized' to 'completely visualized' for the assesment of image quality, respectively. The distribution of variables was controlled by the Kolmogorov-Smirnov test. Samples t-test and McNemar's test were used to determine statistical significance. Rates of visualization of posterior fossa cranial nerves in cases of complete visualization were as follows: nerve V (100% for both sequences), nerve VI (94% in SPACE, 86% in CISS sequences), nerves VII-VIII (100% for both sequences), IX-XI nerve complex (96%, 88%); nerve XII (58%, 46%) (p<0.05). SPACE sequences showed fewer artifacts than CISS sequences (p<0.002). Copyright © 2017 Elsevier B.V. All rights reserved.
Fine-grained visual marine vessel classification for coastal surveillance and defense applications
NASA Astrophysics Data System (ADS)
Solmaz, Berkan; Gundogdu, Erhan; Karaman, Kaan; Yücesoy, Veysel; Koç, Aykut
2017-10-01
The need for capabilities of automated visual content analysis has substantially increased due to presence of large number of images captured by surveillance cameras. With a focus on development of practical methods for extracting effective visual data representations, deep neural network based representations have received great attention due to their success in visual categorization of generic images. For fine-grained image categorization, a closely related yet a more challenging research problem compared to generic image categorization due to high visual similarities within subgroups, diverse applications were developed such as classifying images of vehicles, birds, food and plants. Here, we propose the use of deep neural network based representations for categorizing and identifying marine vessels for defense and security applications. First, we gather a large number of marine vessel images via online sources grouping them into four coarse categories; naval, civil, commercial and service vessels. Next, we subgroup naval vessels into fine categories such as corvettes, frigates and submarines. For distinguishing images, we extract state-of-the-art deep visual representations and train support-vector-machines. Furthermore, we fine tune deep representations for marine vessel images. Experiments address two scenarios, classification and verification of naval marine vessels. Classification experiment aims coarse categorization, as well as learning models of fine categories. Verification experiment embroils identification of specific naval vessels by revealing if a pair of images belongs to identical marine vessels by the help of learnt deep representations. Obtaining promising performance, we believe these presented capabilities would be essential components of future coastal and on-board surveillance systems.
GAFFE: a gaze-attentive fixation finding engine.
Rajashekar, U; van der Linde, I; Bovik, A C; Cormack, L K
2008-04-01
The ability to automatically detect visually interesting regions in images has many practical applications, especially in the design of active machine vision and automatic visual surveillance systems. Analysis of the statistics of image features at observers' gaze can provide insights into the mechanisms of fixation selection in humans. Using a foveated analysis framework, we studied the statistics of four low-level local image features: luminance, contrast, and bandpass outputs of both luminance and contrast, and discovered that image patches around human fixations had, on average, higher values of each of these features than image patches selected at random. Contrast-bandpass showed the greatest difference between human and random fixations, followed by luminance-bandpass, RMS contrast, and luminance. Using these measurements, we present a new algorithm that selects image regions as likely candidates for fixation. These regions are shown to correlate well with fixations recorded from human observers.
Fluorescence imaging of chromosomal DNA using click chemistry
NASA Astrophysics Data System (ADS)
Ishizuka, Takumi; Liu, Hong Shan; Ito, Kenichiro; Xu, Yan
2016-09-01
Chromosome visualization is essential for chromosome analysis and genetic diagnostics. Here, we developed a click chemistry approach for multicolor imaging of chromosomal DNA instead of the traditional dye method. We first demonstrated that the commercially available reagents allow for the multicolor staining of chromosomes. We then prepared two pro-fluorophore moieties that served as light-up reporters to stain chromosomal DNA based on click reaction and visualized the clear chromosomes in multicolor. We applied this strategy in fluorescence in situ hybridization (FISH) and identified, with high sensitivity and specificity, telomere DNA at the end of the chromosome. We further extended this approach to observe several basic stages of cell division. We found that the click reaction enables direct visualization of the chromosome behavior in cell division. These results suggest that the technique can be broadly used for imaging chromosomes and may serve as a new approach for chromosome analysis and genetic diagnostics.
Information theoretical assessment of visual communication with wavelet coding
NASA Astrophysics Data System (ADS)
Rahman, Zia-ur
1995-06-01
A visual communication channel can be characterized by the efficiency with which it conveys information, and the quality of the images restored from the transmitted data. Efficient data representation requires the use of constraints of the visual communication channel. Our information theoretic analysis combines the design of the wavelet compression algorithm with the design of the visual communication channel. Shannon's communication theory, Wiener's restoration filter, and the critical design factors of image gathering and display are combined to provide metrics for measuring the efficiency of data transmission, and for quantitatively assessing the visual quality of the restored image. These metrics are: a) the mutual information (Eta) between the radiance the radiance field and the restored image, and b) the efficiency of the channel which can be roughly measured by as the ratio (Eta) /H, where H is the average number of bits being used to transmit the data. Huck, et al. (Journal of Visual Communication and Image Representation, Vol. 4, No. 2, 1993) have shown that channels desinged to maximize (Eta) , also maximize. Our assessment provides a framework for designing channels which provide the highest possible visual quality for a given amount of data under the critical design limitations of the image gathering and display devices. Results show that a trade-off exists between the maximum realizable information of the channel and its efficiency: an increase in one leads to a decrease in the other. The final selection of which of these quantities to maximize is, of course, application dependent.
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques. PMID:29694429
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques.
An Inquiry into the Nature of Uncle Joe's Representation and Meaning.
ERIC Educational Resources Information Center
Muffoletto, Robert
2001-01-01
Addresses a "critical" or "reflective" visual literacy. Situates visual representations and their interpretation (the construction of meaning) within a context that raises questions about benefit and power. Explores four main topics: the image as text; analysis and meaning construction; visual literacy as a liberatory practice;…
Scientific Visualization: A Synthesis of Historical Data.
ERIC Educational Resources Information Center
Polland, Mark
Visualization is the process by which one is able to create and sustain mental images for observation, analysis, and experimentation. This study consists of a compilation of evidence from historical examples that were collected in order to document the importance and the uses of visualization within the realm of scientific investigation.…
Image/video understanding systems based on network-symbolic models
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-03-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.
In-line monitoring of pellet coating thickness growth by means of visual imaging.
Oman Kadunc, Nika; Sibanc, Rok; Dreu, Rok; Likar, Boštjan; Tomaževič, Dejan
2014-08-15
Coating thickness is the most important attribute of coated pharmaceutical pellets as it directly affects release profiles and stability of the drug. Quality control of the coating process of pharmaceutical pellets is thus of utmost importance for assuring the desired end product characteristics. A visual imaging technique is presented and examined as a process analytic technology (PAT) tool for noninvasive continuous in-line and real time monitoring of coating thickness of pharmaceutical pellets during the coating process. Images of pellets were acquired during the coating process through an observation window of a Wurster coating apparatus. Image analysis methods were developed for fast and accurate determination of pellets' coating thickness during a coating process. The accuracy of the results for pellet coating thickness growth obtained in real time was evaluated through comparison with an off-line reference method and a good agreement was found. Information about the inter-pellet coating uniformity was gained from further statistical analysis of the measured pellet size distributions. Accuracy and performance analysis of the proposed method showed that visual imaging is feasible as a PAT tool for in-line and real time monitoring of the coating process of pharmaceutical pellets. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hachaj, Tomasz; Ogiela, Marek R.
2012-10-01
The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.
Design of an aid to visual inspection workstation
NASA Astrophysics Data System (ADS)
Tait, Robert; Harding, Kevin
2016-05-01
Visual Inspection is the most common means for inspecting manufactured parts for random defects such as pits, scratches, breaks, corrosion or general wear. The reason for the need for visual inspection is the very random nature of what might be a defect. Some defects may be very rare, being seen once or twice a year, but May still be critical to part performance. Because of this random and rare nature, even the most sophisticated image analysis programs have not been able to recognize all possible defects. Key to any future automation of inspection is obtaining good sample images of what might be a defect. However, most visual check take no images and consequently generate no digital data or historical record beyond a simple count. Any additional tool to captures such images must be able to do so without taking addition time. This paper outlines the design of a potential visual inspection station that would be compatible with current visual inspection methods, but afford the means for reliable digital imaging and in many cases augmented capabilities to assist the inspection. Considerations in this study included: resolution, depth of field, feature highlighting, and ease of digital capture, annotations and inspection augmentation for repeatable registration as well as operator assistance and training.
The taste-visual cross-modal Stroop effect: An event-related brain potential study.
Xiao, X; Dupuis-Roy, N; Yang, X L; Qiu, J F; Zhang, Q L
2014-03-28
Event-related potentials (ERPs) were recorded to explore, for the first time, the electrophysiological correlates of the taste-visual cross-modal Stroop effect. Eighteen healthy participants were presented with a taste stimulus and a food image, and asked to categorize the image as "sweet" or "sour" by pressing the relevant button as quickly as possible. Accurate categorization of the image was faster when it was presented with a congruent taste stimulus (e.g., sour taste/image of lemon) than with an incongruent one (e.g., sour taste/image of ice cream). ERP analyses revealed a negative difference component (ND430-620) between 430 and 620ms in the taste-visual cross-modal Stroop interference. Dipole source analysis of the difference wave (incongruent minus congruent) indicated that two generators localized in the prefrontal cortex and the parahippocampal gyrus contributed to this taste-visual cross-modal Stroop effect. This result suggests that the prefrontal cortex is associated with the process of conflict control in the taste-visual cross-modal Stroop effect. Also, we speculate that the parahippocampal gyrus is associated with the process of discordant information in the taste-visual cross-modal Stroop effect. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
On the role of spatial phase and phase correlation in vision, illusion, and cognition
Gladilin, Evgeny; Eils, Roland
2015-01-01
Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of “cognition by phase correlation.” PMID:25954190
On the role of spatial phase and phase correlation in vision, illusion, and cognition.
Gladilin, Evgeny; Eils, Roland
2015-01-01
Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of "cognition by phase correlation."
Retinal Image Quality During Accommodation
López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.
2013-01-01
Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. PMID:23786386
Retinal image quality during accommodation.
López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N
2013-07-01
We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye's higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Lindemann, J P; Kern, R; Michaelis, C; Meyer, P; van Hateren, J H; Egelhaaf, M
2003-03-01
A high-speed panoramic visual stimulation device is introduced which is suitable to analyse visual interneurons during stimulation with rapid image displacements as experienced by fast moving animals. The responses of an identified motion sensitive neuron in the visual system of the blowfly to behaviourally generated image sequences are very complex and hard to predict from the established input circuitry of the neuron. This finding suggests that the computational significance of visual interneurons can only be assessed if they are characterised not only by conventional stimuli as are often used for systems analysis, but also by behaviourally relevant input.
NASA Astrophysics Data System (ADS)
Haigang, Sui; Zhina, Song
2016-06-01
Reliably ship detection in optical satellite images has a wide application in both military and civil fields. However, this problem is very difficult in complex backgrounds, such as waves, clouds, and small islands. Aiming at these issues, this paper explores an automatic and robust model for ship detection in large-scale optical satellite images, which relies on detecting statistical signatures of ship targets, in terms of biologically-inspired visual features. This model first selects salient candidate regions across large-scale images by using a mechanism based on biologically-inspired visual features, combined with visual attention model with local binary pattern (CVLBP). Different from traditional studies, the proposed algorithm is high-speed and helpful to focus on the suspected ship areas avoiding the separation step of land and sea. Largearea images are cut into small image chips and analyzed in two complementary ways: Sparse saliency using visual attention model and detail signatures using LBP features, thus accordant with sparseness of ship distribution on images. Then these features are employed to classify each chip as containing ship targets or not, using a support vector machine (SVM). After getting the suspicious areas, there are still some false alarms such as microwaves and small ribbon clouds, thus simple shape and texture analysis are adopted to distinguish between ships and nonships in suspicious areas. Experimental results show the proposed method is insensitive to waves, clouds, illumination and ship size.
Nguyen, Hien D; Ullmann, Jeremy F P; McLachlan, Geoffrey J; Voleti, Venkatakaushik; Li, Wenze; Hillman, Elizabeth M C; Reutens, David C; Janke, Andrew L
2018-02-01
Calcium is a ubiquitous messenger in neural signaling events. An increasing number of techniques are enabling visualization of neurological activity in animal models via luminescent proteins that bind to calcium ions. These techniques generate large volumes of spatially correlated time series. A model-based functional data analysis methodology via Gaussian mixtures is suggested for the clustering of data from such visualizations is proposed. The methodology is theoretically justified and a computationally efficient approach to estimation is suggested. An example analysis of a zebrafish imaging experiment is presented.
Artistic image analysis using graph-based learning approaches.
Carneiro, Gustavo
2013-08-01
We introduce a new methodology for the problem of artistic image analysis, which among other tasks, involves the automatic identification of visual classes present in an art work. In this paper, we advocate the idea that artistic image analysis must explore a graph that captures the network of artistic influences by computing the similarities in terms of appearance and manual annotation. One of the novelties of our methodology is the proposed formulation that is a principled way of combining these two similarities in a single graph. Using this graph, we show that an efficient random walk algorithm based on an inverted label propagation formulation produces more accurate annotation and retrieval results compared with the following baseline algorithms: bag of visual words, label propagation, matrix completion, and structural learning. We also show that the proposed approach leads to a more efficient inference and training procedures. This experiment is run on a database containing 988 artistic images (with 49 visual classification problems divided into a multiclass problem with 27 classes and 48 binary problems), where we show the inference and training running times, and quantitative comparisons with respect to several retrieval and annotation performance measures.
The Montage Image Mosaic Toolkit As A Visualization Engine.
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Lerias, Angela; Good, John; Mandel, Eric; Pepper, Joshua
2018-01-01
The Montage toolkit has since 2003 been used to aggregate FITS images into mosaics for science analysis. It is now finding application as an engine for image visualization. One important reason is that the functionality developed for creating mosaics is also valuable in image visualization. An equally important (though perhaps less obvious) reason is that Montage is portable and is built on standard astrophysics toolkits, making it very easy to integrate into new environments. Montage models and rectifies the sky background to a common level and thus reveals faint, diffuse features; it offers an adaptive image stretching method that preserves the dynamic range of a FITS image when represented in PNG format; it provides utilities for creating cutouts of large images and downsampled versions of large images that can then be visualized on desktops or in browsers; it contains a fast reprojection algorithm intended for visualization; and it resamples and reprojects images to a common grid for subsequent multi-color visualization.This poster will highlight these visualization capabilities with the following examples:1. Creation of down-sampled multi-color images of a 16-wavelength Infrared Atlas of the Galactic Plane, sampled at 1 arcsec when created2. Integration into web-based image processing environment: JS9 is an interactive image display service for web browsers, desktops and mobile devices. It exploits the flux-preserving reprojection algorithms in Montage to transform diverse images to common image parameters for display. Select Montage programs have been compiled to Javascript/WebAssembly using the Emscripten compiler, which allows our reprojection algorithms to run in browsers at close to native speed.3. Creation of complex sky coverage maps: an multicolor all-sky map that shows the sky coverage of the Kepler and K2, KELT and TESS projects, overlaid on an all-sky 2MASS image.Montage is funded by the National Science Foundation under Grant Number ACI-1642453. JS9 is funded by the Chandra X-ray Center (NAS8-03060) and NASA's Universe of Learning (STScI-509913).
Comparison of histomorphometrical data obtained with two different image analysis methods.
Ballerini, Lucia; Franke-Stenport, Victoria; Borgefors, Gunilla; Johansson, Carina B
2007-08-01
A common way to determine tissue acceptance of biomaterials is to perform histomorphometrical analysis on histologically stained sections from retrieved samples with surrounding tissue, using various methods. The "time and money consuming" methods and techniques used are often "in house standards". We address light microscopic investigations of bone tissue reactions on un-decalcified cut and ground sections of threaded implants. In order to screen sections and generate results faster, the aim of this pilot project was to compare results generated with the in-house standard visual image analysis tool (i.e., quantifications and judgements done by the naked eye) with a custom made automatic image analysis program. The histomorphometrical bone area measurements revealed no significant differences between the methods but the results of the bony contacts varied significantly. The raw results were in relative agreement, i.e., the values from the two methods were proportional to each other: low bony contact values in the visual method corresponded to low values with the automatic method. With similar resolution images and further improvements of the automatic method this difference should become insignificant. A great advantage using the new automatic image analysis method is that it is time saving--analysis time can be significantly reduced.
Rapid development of medical imaging tools with open-source libraries.
Caban, Jesus J; Joshi, Alark; Nagy, Paul
2007-11-01
Rapid prototyping is an important element in researching new imaging analysis techniques and developing custom medical applications. In the last ten years, the open source community and the number of open source libraries and freely available frameworks for biomedical research have grown significantly. What they offer are now considered standards in medical image analysis, computer-aided diagnosis, and medical visualization. A cursory review of the peer-reviewed literature in imaging informatics (indeed, in almost any information technology-dependent scientific discipline) indicates the current reliance on open source libraries to accelerate development and validation of processes and techniques. In this survey paper, we review and compare a few of the most successful open source libraries and frameworks for medical application development. Our dual intentions are to provide evidence that these approaches already constitute a vital and essential part of medical image analysis, diagnosis, and visualization and to motivate the reader to use open source libraries and software for rapid prototyping of medical applications and tools.
Principal components analysis of Jupiter VIMS spectra
Bellucci, G.; Formisano, V.; D'Aversa, E.; Brown, R.H.; Baines, K.H.; Bibring, J.-P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.N.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Mennella, V.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe; Chamberlain, M.C.; Hansen, G.; Hibbits, K.; Showalter, M.; Filacchione, G.
2004-01-01
During Cassini - Jupiter flyby occurred in December 2000, Visual-Infrared mapping spectrometer (VIMS) instrument took several image cubes of Jupiter at different phase angles and distances. We have analysed the spectral images acquired by the VIMS visual channel by means of a principal component analysis technique (PCA). The original data set consists of 96 spectral images in the 0.35-1.05 ??m wavelength range. The product of the analysis are new PC bands, which contain all the spectral variance of the original data. These new components have been used to produce a map of Jupiter made of seven coherent spectral classes. The map confirms previously published work done on the Great Red Spot by using NIMS data. Some other new findings, presently under investigation, are presented. ?? 2004 Published by Elsevier Ltd on behalf of COSPAR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sewell, Christopher Meyer
This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.
ERIC Educational Resources Information Center
Lemoni, Rea; Lefkaditou, Ageliki; Stamou, Anastasia G.; Schizas, Dimitrios; Stamou, George P.
2013-01-01
This paper explores the function of the visual syntax of images in Greek primary school textbooks. By using a model for the formal analysis of the visual material, which will allow us to disclose the mechanisms through which meanings are manifested, our aim is to investigate the discursive transition relating to the view of nature and the…
Dimensionality of visual complexity in computer graphics scenes
NASA Astrophysics Data System (ADS)
Ramanarayanan, Ganesh; Bala, Kavita; Ferwerda, James A.; Walter, Bruce
2008-02-01
How do human observers perceive visual complexity in images? This problem is especially relevant for computer graphics, where a better understanding of visual complexity can aid in the development of more advanced rendering algorithms. In this paper, we describe a study of the dimensionality of visual complexity in computer graphics scenes. We conducted an experiment where subjects judged the relative complexity of 21 high-resolution scenes, rendered with photorealistic methods. Scenes were gathered from web archives and varied in theme, number and layout of objects, material properties, and lighting. We analyzed the subject responses using multidimensional scaling of pooled subject responses. This analysis embedded the stimulus images in a two-dimensional space, with axes that roughly corresponded to "numerosity" and "material / lighting complexity". In a follow-up analysis, we derived a one-dimensional complexity ordering of the stimulus images. We compared this ordering with several computable complexity metrics, such as scene polygon count and JPEG compression size, and did not find them to be very correlated. Understanding the differences between these measures can lead to the design of more efficient rendering algorithms in computer graphics.
Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Klinko, Steve J.
2007-01-01
Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.
Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner
ERIC Educational Resources Information Center
Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.
2004-01-01
The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.
Image Based Biomarker of Breast Cancer Risk: Analysis of Risk Disparity among Minority Populations
2013-03-01
TITLE: Image Based Biomarker of Breast Cancer Risk: Analysis of Risk Disparity among Minority Populations PRINCIPAL INVESTIGATOR: Fengshan Liu...SUBTITLE 5a. CONTRACT NUMBER Image Based Biomarker of Breast Cancer Risk: Analysis of Risk Disparity among Minority Populations 5b. GRANT NUMBER...identifying the prevalence of women with incomplete visualization of the breast . We developed a code to estimate the breast cancer risks using the
HTML5 PivotViewer: high-throughput visualization and querying of image data on the web.
Taylor, Stephen; Noble, Roger
2014-09-15
Visualization and analysis of large numbers of biological images has generated a bottle neck in research. We present HTML5 PivotViewer, a novel, open source, platform-independent viewer making use of the latest web technologies that allows seamless access to images and associated metadata for each image. This provides a powerful method to allow end users to mine their data. Documentation, examples and links to the software are available from http://www.cbrg.ox.ac.uk/data/pivotviewer/. The software is licensed under GPLv2. © The Author 2014. Published by Oxford University Press.
Plaza-Puche, Ana B; Alió, Jorge L; MacRae, Scott; Zheleznyak, Len; Sala, Esperanza; Yoon, Geunyoung
2015-05-01
To investigate the correlations existing between a trifocal intraocular lens (IOL) and a varifocal IOL using the "ex vivo" optical bench through-focus image quality analysis and the clinical visual performance in real patients by study of the defocus curves. This prospective, consecutive, nonrandomized, comparative study included a total of 64 eyes of 42 patients. Three groups of eyes were differentiated according to the IOL implanted: 22 eyes implanted with the varifocal Lentis Mplus LS-313 IOL (Oculentis GmbH, Berlin, Germany); 22 eyes implanted with the trifocal FineVision IOL (Physiol, Liege, Belgium), and 20 eyes implanted with the monofocal Acrysof SA60AT IOL (Alcon Laboratories, Inc., Fort Worth, TX). Visual outcomes and defocus curve were evaluated postoperatively. Optical bench through-focus performance was quantified by computing an image quality metric and the cross-correlation coefficient between an unaberrated reference image and captured retinal images from a model eye with a 3.0-mm artificial pupil. Statistically significant differences among defocus curves of different IOLs were detected for the levels of defocus from -4.00 to -1.00 diopters (D) (P < .01). Significant correlations were found between the optical bench image quality metric results and logMAR visual acuity scale in all groups (Lentis Mplus group: r = -0.97, P < .01; FineVision group: r = -0.82, P < .01; Acrys of group: r = -0.99, P < .01). Linear predicting models were obtained. Significant correlations were found between logMAR visual acuity and image quality metric for the multifocal and monofocal IOLs analyzed. This finding enables surgeons to predict visual outcomes from the optical bench analysis. Copyright 2015, SLACK Incorporated.
Pandey, Anil Kumar; Saroha, Kartik; Sharma, Param Dev; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
In this study, we have developed a simple image processing application in MATLAB that uses suprathreshold stochastic resonance (SSR) and helps the user to visualize abdominopelvic tumor on the exported prediuretic positron emission tomography/computed tomography (PET/CT) images. A brainstorming session was conducted for requirement analysis for the program. It was decided that program should load the screen captured PET/CT images and then produces output images in a window with a slider control that should enable the user to view the best image that visualizes the tumor, if present. The program was implemented on personal computer using Microsoft Windows and MATLAB R2013b. The program has option for the user to select the input image. For the selected image, it displays output images generated using SSR in a separate window having a slider control. The slider control enables the user to view images and select one which seems to provide the best visualization of the area(s) of interest. The developed application enables the user to select, process, and view output images in the process of utilizing SSR to detect the presence of abdominopelvic tumor on prediuretic PET/CT image.
GoIFISH: a system for the quantification of single cell heterogeneity from IFISH images.
Trinh, Anne; Rye, Inga H; Almendro, Vanessa; Helland, Aslaug; Russnes, Hege G; Markowetz, Florian
2014-08-26
Molecular analysis has revealed extensive intra-tumor heterogeneity in human cancer samples, but cannot identify cell-to-cell variations within the tissue microenvironment. In contrast, in situ analysis can identify genetic aberrations in phenotypically defined cell subpopulations while preserving tissue-context specificity. GoIFISHGoIFISH is a widely applicable, user-friendly system tailored for the objective and semi-automated visualization, detection and quantification of genomic alterations and protein expression obtained from fluorescence in situ analysis. In a sample set of HER2-positive breast cancers GoIFISHGoIFISH is highly robust in visual analysis and its accuracy compares favorably to other leading image analysis methods. GoIFISHGoIFISH is freely available at www.sourceforge.net/projects/goifish/.
A database system to support image algorithm evaluation
NASA Technical Reports Server (NTRS)
Lien, Y. E.
1977-01-01
The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.
1984-08-20
neuropsychological data on the apraxias and the visual agnosias imply that motor and visual memories can be separately spared or destroyed after brain...agraphia Imagery dissociations 53 and (vice versa), and visual object agnosia without apraxia (and vice versa). We next asked him to *draw the letters in
Determination of Visual Figure and Ground in Dynamically Deforming Shapes
ERIC Educational Resources Information Center
Barenholtz, Elan; Feldman, Jacob
2006-01-01
Figure/ground assignment--determining which part of the visual image is foreground and which background--is a critical step in early visual analysis, upon which much later processing depends. Previous research on the assignment of figure and ground to opposing sides of a contour has almost exclusively involved static geometric factors--such as…
Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis
ERIC Educational Resources Information Center
Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying
2012-01-01
This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…
Blind image quality assessment via probabilistic latent semantic analysis.
Yang, Xichen; Sun, Quansen; Wang, Tianshu
2016-01-01
We propose a blind image quality assessment that is highly unsupervised and training free. The new method is based on the hypothesis that the effect caused by distortion can be expressed by certain latent characteristics. Combined with probabilistic latent semantic analysis, the latent characteristics can be discovered by applying a topic model over a visual word dictionary. Four distortion-affected features are extracted to form the visual words in the dictionary: (1) the block-based local histogram; (2) the block-based local mean value; (3) the mean value of contrast within a block; (4) the variance of contrast within a block. Based on the dictionary, the latent topics in the images can be discovered. The discrepancy between the frequency of the topics in an unfamiliar image and a large number of pristine images is applied to measure the image quality. Experimental results for four open databases show that the newly proposed method correlates well with human subjective judgments of diversely distorted images.
An overview of state-of-the-art image restoration in electron microscopy.
Roels, J; Aelterman, J; Luong, H Q; Lippens, S; Pižurica, A; Saeys, Y; Philips, W
2018-06-08
In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1992-01-01
Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.
Visual self-images of scientists and science in Greece.
Christidou, Vasilia; Kouvatas, Apostolos
2013-01-01
A popular and well-established image of scientists and science dominates in the public field, signifying a contradictory and multifaceted combination of stereotypes. This paper investigates crucial aspects of the visual self-image of Greek scientists and science as exposed in photographic material retrieved from relevant institutions' websites. In total 971 photos were analysed along dimensions corresponding to the image of scientists and science. Analysis demonstrates ambivalence in Greek scientists' self-images between traditional stereotypic characteristics and an intention to overcome them. Differences between the self-images of physics, chemistry and biology are determined, as well as between the "masculine" and "feminine" face of science. Implications concerning improvements in science and scientists' self-images and further research are presented.
Visual Data Analysis for Satellites
NASA Technical Reports Server (NTRS)
Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick
2008-01-01
The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.
Remote sensing of drought and salinity stressed turfgrass
NASA Astrophysics Data System (ADS)
Ikemura, Yoshiaki
The ability to detect early signs of stress in turfgrass stands using a rapid, inexpensive, and nondestructive method would be a valuable management tool. Studies were conducted to determine if digital image analysis and spectroradiometric readings obtained from drought- and salinity-stressed turfgrasses accurately reflected the varying degrees of stress and correlated strongly with visual ratings, relative water content (RWC) and leaf osmolality, standard methods for measuring stress in plants. Greenhouse drought and salinity experiments were conducted on hybrid bluegrass [Poa arachnifera (Torn.) x pratensis (L.)] cv. Reveille and bermudagrass [Cynodon dactylon (L.)] cv. Princess 77. Increasing drought and salinity stress led to decreased RWC, increased leaf osmolality, and decreased visual ratings for both species. Percent green cover and hue values obtained from digital image analysis, and Normalized Difference Vegetation Index (NDVI), calculated from spectroradiometric readings, were moderately to highly correlated with visual ratings, RWC, and leaf osmolality. Similarly, in a field validation study conducted on hybrid bluegrass, spectral reflectance ratios were moderately to highly correlated with visual ratings. In addition, percent green cover obtained from digital image analysis was strongly correlated with most of the spectral ratios, particularly the ratio of fluorescence peaks (r = -0.88 to -0.99), modified triangular vegetation index (MTVI) (r = 0.82 to 0.98), and NDVI (r = 0.84 to 0.99), suggesting that spectral reflectance and digital image analysis are equally effective at detecting changes in color brought on by stress. The two methods differed in their ability to distinguish between drought salinity stress. Hue values obtained from digital image analysis responded differently to increasing drought stress than to increasing salinity stress. Whereas the onset of drought stress was reflected by increased hue values followed by a decrease in values as drought stress increased, there was no increase in hue values at the onset of salinity stress. Thus, changes in hue could be a key to distinguish drought and salinity stress. Both digital image analysis and spectroradiometry effectively detected drought and salinity stress and may have applications in turfgrass management as rapid and quantitative methods to determine drought and salinity stress in turf.
Hyperspectral imaging for non-contact analysis of forensic traces.
Edelman, G J; Gaston, E; van Leeuwen, T G; Cullen, P J; Aalders, M C G
2012-11-30
Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers significant potential for the detection, visualization, identification and age estimation of forensic traces. The rapid, non-destructive and non-contact features of HSI mark its suitability as an analytical tool for forensic science. This paper provides an overview of the principles, instrumentation and analytical techniques involved in hyperspectral imaging. We describe recent advances in HSI technology motivating forensic science applications, e.g. the development of portable and fast image acquisition systems. Reported forensic science applications are reviewed. Challenges are addressed, such as the analysis of traces on backgrounds encountered in casework, concluded by a summary of possible future applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Componential distribution analysis of food using near infrared ray image
NASA Astrophysics Data System (ADS)
Yamauchi, Hiroki; Kato, Kunihito; Yamamoto, Kazuhiko; Ogawa, Noriko; Ohba, Kimie
2008-11-01
The components of the food related to the "deliciousness" are usually evaluated by componential analysis. The component content and type of components in the food are determined by this analysis. However, componential analysis is not able to analyze measurements in detail, and the measurement is time consuming. We propose a method to measure the two-dimensional distribution of the component in food using a near infrared ray (IR) image. The advantage of our method is to be able to visualize the invisible components. Many components in food have characteristics such as absorption and reflection of light in the IR range. The component content is measured using subtraction between two wavelengths of near IR light. In this paper, we describe a method to measure the component of food using near IR image processing, and we show an application to visualize the saccharose in the pumpkin.
NASA/NOAA: Earth Science Electronic Theater 1999
NASA Technical Reports Server (NTRS)
Hasler, A. Fritz
1999-01-01
The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites, HyperImage datasets, because they have such high resolution in the spectral, temporal, spatial, and dynamic range domains. The traditional numerical spreadsheet paradigm has been extended to develop a scientific visualization approach for processing HyperImage datasets and 3D model results interactively. The advantages of extending the powerful spreadsheet style of computation to multiple sets of images and organizing image processing were demonstrated using the Distributed image SpreadSheet (DISS). The DISS is being used as a high performance testbed Next Generation Internet (NGI) VisAnalysis of: 1) El Nino SSTs and NDVI response 2) Latest GOES 10 5-min rapid Scans of 26 day 5000 frame movie of March & April '98 weather and tornadic storms 3) TRMM rainfall and lightning 4)GOES 9 satellite images/winds and NOAA aircraft radar of hurricane Luis, 5) lightning detector data merged with GOES image sequences, 6) Japanese GMS, TRMM, & ADEOS data 7) Chinese FY2 data 8) Meteosat & ERS/ATSR data 9) synchronized manipulation of multiple 3D numerical model views; and others will be illustrated. The Image SpreadSheet has been highly successful in producing Earth science visualizations for public outreach. Many of these visualizations have been widely disseminated through the world wide web pages of the HPCC/LTP/RSD program which can be found at http://rsd.gsfc.nasa.gov/rsd The one min interval animations of Hurricane Luis on ABC Nightline and the color perspective rendering of Hurricane Fran published by TIME, LIFE, Newsweek, Popular Science, National Geographic, Scientific American, and the "Weekly Reader" are some of the examples which will be shown.
Assessing clutter reduction in parallel coordinates using image processing techniques
NASA Astrophysics Data System (ADS)
Alhamaydh, Heba; Alzoubi, Hussein; Almasaeid, Hisham
2018-01-01
Information visualization has appeared as an important research field for multidimensional data and correlation analysis in recent years. Parallel coordinates (PCs) are one of the popular techniques to visual high-dimensional data. A problem with the PCs technique is that it suffers from crowding, a clutter which hides important data and obfuscates the information. Earlier research has been conducted to reduce clutter without loss in data content. We introduce the use of image processing techniques as an approach for assessing the performance of clutter reduction techniques in PC. We use histogram analysis as our first measure, where the mean feature of the color histograms of the possible alternative orderings of coordinates for the PC images is calculated and compared. The second measure is the extracted contrast feature from the texture of PC images based on gray-level co-occurrence matrices. The results show that the best PC image is the one that has the minimal mean value of the color histogram feature and the maximal contrast value of the texture feature. In addition to its simplicity, the proposed assessment method has the advantage of objectively assessing alternative ordering of PC visualization.
Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study
NASA Technical Reports Server (NTRS)
Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia
2015-01-01
Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.
Partial Membership Latent Dirichlet Allocation for Soft Image Segmentation.
Chen, Chao; Zare, Alina; Trinh, Huy N; Omotara, Gbenga O; Cobb, James Tory; Lagaunne, Timotius A
2017-12-01
Topic models [e.g., probabilistic latent semantic analysis, latent Dirichlet allocation (LDA), and supervised LDA] have been widely used for segmenting imagery. However, these models are confined to crisp segmentation, forcing a visual word (i.e., an image patch) to belong to one and only one topic. Yet, there are many images in which some regions cannot be assigned a crisp categorical label (e.g., transition regions between a foggy sky and the ground or between sand and water at a beach). In these cases, a visual word is best represented with partial memberships across multiple topics. To address this, we present a partial membership LDA (PM-LDA) model and an associated parameter estimation algorithm. This model can be useful for imagery, where a visual word may be a mixture of multiple topics. Experimental results on visual and sonar imagery show that PM-LDA can produce both crisp and soft semantic image segmentations; a capability previous topic modeling methods do not have.
Gravity influences top-down signals in visual processing.
Cheron, Guy; Leroy, Axelle; Palmero-Soler, Ernesto; De Saedeleer, Caty; Bengoetxea, Ana; Cebolla, Ana-Maria; Vidal, Manuel; Dan, Bernard; Berthoz, Alain; McIntyre, Joseph
2014-01-01
Visual perception is not only based on incoming visual signals but also on information about a multimodal reference frame that incorporates vestibulo-proprioceptive input and motor signals. In addition, top-down modulation of visual processing has previously been demonstrated during cognitive operations including selective attention and working memory tasks. In the absence of a stable gravitational reference, the updating of salient stimuli becomes crucial for successful visuo-spatial behavior by humans in weightlessness. Here we found that visually-evoked potentials triggered by the image of a tunnel just prior to an impending 3D movement in a virtual navigation task were altered in weightlessness aboard the International Space Station, while those evoked by a classical 2D-checkerboard were not. Specifically, the analysis of event-related spectral perturbations and inter-trial phase coherency of these EEG signals recorded in the frontal and occipital areas showed that phase-locking of theta-alpha oscillations was suppressed in weightlessness, but only for the 3D tunnel image. Moreover, analysis of the phase of the coherency demonstrated the existence on Earth of a directional flux in the EEG signals from the frontal to the occipital areas mediating a top-down modulation during the presentation of the image of the 3D tunnel. In weightlessness, this fronto-occipital, top-down control was transformed into a diverging flux from the central areas toward the frontal and occipital areas. These results demonstrate that gravity-related sensory inputs modulate primary visual areas depending on the affordances of the visual scene.
WHIDE—a web tool for visual data mining colocation patterns in multivariate bioimages
Kölling, Jan; Langenkämper, Daniel; Abouna, Sylvie; Khan, Michael; Nattkemper, Tim W.
2012-01-01
Motivation: Bioimaging techniques rapidly develop toward higher resolution and dimension. The increase in dimension is achieved by different techniques such as multitag fluorescence imaging, Matrix Assisted Laser Desorption / Ionization (MALDI) imaging or Raman imaging, which record for each pixel an N-dimensional intensity array, representing local abundances of molecules, residues or interaction patterns. The analysis of such multivariate bioimages (MBIs) calls for new approaches to support users in the analysis of both feature domains: space (i.e. sample morphology) and molecular colocation or interaction. In this article, we present our approach WHIDE (Web-based Hyperbolic Image Data Explorer) that combines principles from computational learning, dimension reduction and visualization in a free web application. Results: We applied WHIDE to a set of MBI recorded using the multitag fluorescence imaging Toponome Imaging System. The MBI show field of view in tissue sections from a colon cancer study and we compare tissue from normal/healthy colon with tissue classified as tumor. Our results show, that WHIDE efficiently reduces the complexity of the data by mapping each of the pixels to a cluster, referred to as Molecular Co-Expression Phenotypes and provides a structural basis for a sophisticated multimodal visualization, which combines topology preserving pseudocoloring with information visualization. The wide range of WHIDE's applicability is demonstrated with examples from toponome imaging, high content screens and MALDI imaging (shown in the Supplementary Material). Availability and implementation: The WHIDE tool can be accessed via the BioIMAX website http://ani.cebitec.uni-bielefeld.de/BioIMAX/; Login: whidetestuser; Password: whidetest. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: tim.nattkemper@uni-bielefeld.de PMID:22390938
Developing Matlab scripts for image analysis and quality assessment
NASA Astrophysics Data System (ADS)
Vaiopoulos, A. D.
2011-11-01
Image processing is a very helpful tool in many fields of modern sciences that involve digital imaging examination and interpretation. Processed images however, often need to be correlated with the original image, in order to ensure that the resulting image fulfills its purpose. Aside from the visual examination, which is mandatory, image quality indices (such as correlation coefficient, entropy and others) are very useful, when deciding which processed image is the most satisfactory. For this reason, a single program (script) was written in Matlab language, which automatically calculates eight indices by utilizing eight respective functions (independent function scripts). The program was tested in both fused hyperspectral (Hyperion-ALI) and multispectral (ALI, Landsat) imagery and proved to be efficient. Indices were found to be in agreement with visual examination and statistical observations.
2012-01-01
Background The short inversion time inversion recovery (STIR) black-blood technique has been used to visualize myocardial edema, and thus to differentiate acute from chronic myocardial lesions. However, some cardiovascular magnetic resonance (CMR) groups have reported variable image quality, and hence the diagnostic value of STIR in routine clinical practice has been put into question. The aim of our study was to analyze image quality and diagnostic performance of STIR using a set of pulse sequence parameters dedicated to edema detection, and to discuss possible factors that influence image quality. We hypothesized that STIR imaging is an accurate and robust way of detecting myocardial edema in non-selected patients with acute myocardial infarction. Methods Forty-six consecutive patients with acute myocardial infarction underwent CMR (day 4.5, +/- 1.6) including STIR for the assessment of myocardial edema and late gadolinium enhancement (LGE) for quantification of myocardial necrosis. Thirty of these patients underwent a follow-up CMR at approximately six months (195 +/- 39 days). Both STIR and LGE images were evaluated separately on a segmental basis for image quality as well as for presence and extent of myocardial hyper-intensity, with both visual and semi-quantitative (threshold-based) analysis. LGE was used as a reference standard for localization and extent of myocardial necrosis (acute) or scar (chronic). Results Image quality of STIR images was rated as diagnostic in 99.5% of cases. At the acute stage, the sensitivity and specificity of STIR to detect infarcted segments on visual assessment was 95% and 78% respectively, and on semi-quantitative assessment was 99% and 83%, respectively. STIR differentiated acutely from chronically infarcted segments with a sensitivity of 95% by both methods and with a specificity of 99% by visual assessment and 97% by semi-quantitative assessment. The extent of hyper-intense areas on acute STIR images was 85% larger than those on LGE images, with a larger myocardial salvage index in reperfused than in non-reperfused infarcts (p = 0.035). Conclusions STIR with appropriate pulse sequence settings is accurate in detecting acute myocardial infarction (MI) and distinguishing acute from chronic MI with both visual and semi-quantitative analysis. Due to its unique technical characteristics, STIR should be regarded as an edema-weighted rather than a purely T2-weighted technique. PMID:22455461
Cultural Parallax and Content Analysis: Images of Black Women in High School History Textbooks
ERIC Educational Resources Information Center
Woyshner, Christine; Schocker, Jessica B.
2015-01-01
This study investigates the representation of Black women in high school history textbooks. To examine the extent to which Black women are represented visually and to explore how they are portrayed, the authors use a mixed-methods approach that draws on analytical techniques in content analysis and from visual culture studies. Their findings…
Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan
2012-01-01
Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578
Measuring and Predicting Tag Importance for Image Retrieval.
Li, Shangwen; Purushotham, Sanjay; Chen, Chen; Ren, Yuzhuo; Kuo, C-C Jay
2017-12-01
Textual data such as tags, sentence descriptions are combined with visual cues to reduce the semantic gap for image retrieval applications in today's Multimodal Image Retrieval (MIR) systems. However, all tags are treated as equally important in these systems, which may result in misalignment between visual and textual modalities during MIR training. This will further lead to degenerated retrieval performance at query time. To address this issue, we investigate the problem of tag importance prediction, where the goal is to automatically predict the tag importance and use it in image retrieval. To achieve this, we first propose a method to measure the relative importance of object and scene tags from image sentence descriptions. Using this as the ground truth, we present a tag importance prediction model to jointly exploit visual, semantic and context cues. The Structural Support Vector Machine (SSVM) formulation is adopted to ensure efficient training of the prediction model. Then, the Canonical Correlation Analysis (CCA) is employed to learn the relation between the image visual feature and tag importance to obtain robust retrieval performance. Experimental results on three real-world datasets show a significant performance improvement of the proposed MIR with Tag Importance Prediction (MIR/TIP) system over other MIR systems.
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Dela Cruz, Jennifer C.; Camba, Clarisse O.; Gozo, Angelo D.; Jimenez, Sheena Mariz B.; Tribiana, Aivje C.
2017-06-01
Acne vulgaris, commonly called as acne, is a skin problem that occurs when oil and dead skin cells clog up in a person's pores. This is because hormones change which makes the skin oilier. The problem is people really do not know the real assessment of sensitivity of their skin in terms of fluid development on their faces that tends to develop acne vulgaris, thus having more complications. This research aims to assess Acne Vulgaris using luminescent visualization system through optical imaging and integration of image processing algorithms. Specifically, this research aims to design a prototype for facial fluid analysis using luminescent visualization system through optical imaging and integration of fluorescent imaging system, and to classify different facial fluids present in each person. Throughout the process, some structures and layers of the face will be excluded, leaving only a mapped facial structure with acne regions. Facial fluid regions are distinguished from the acne region as they are characterized differently.
Cichy, Radoslaw Martin; Teng, Santani
2017-02-19
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.
Multispectral image analysis for object recognition and classification
NASA Astrophysics Data System (ADS)
Viau, C. R.; Payeur, P.; Cretu, A.-M.
2016-05-01
Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.
NASA Astrophysics Data System (ADS)
Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin
2016-05-01
One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.
Bayır, Şafak
2016-01-01
With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272
NASA Astrophysics Data System (ADS)
Marrugo, Andrés G.; Millán, María S.; Cristóbal, Gabriel; Gabarda, Salvador; Sorel, Michal; Sroubek, Filip
2012-06-01
Medical digital imaging has become a key element of modern health care procedures. It provides visual documentation and a permanent record for the patients, and most important the ability to extract information about many diseases. Modern ophthalmology thrives and develops on the advances in digital imaging and computing power. In this work we present an overview of recent image processing techniques proposed by the authors in the area of digital eye fundus photography. Our applications range from retinal image quality assessment to image restoration via blind deconvolution and visualization of structural changes in time between patient visits. All proposed within a framework for improving and assisting the medical practice and the forthcoming scenario of the information chain in telemedicine.
Automatic analysis of the micronucleus test in primary human lymphocytes using image analysis.
Frieauff, W; Martus, H J; Suter, W; Elhajouji, A
2013-01-01
The in vitro micronucleus test (MNT) is a well-established test for early screening of new chemical entities in industrial toxicology. For assessing the clastogenic or aneugenic potential of a test compound, micronucleus induction in cells has been shown repeatedly to be a sensitive and a specific parameter. Various automated systems to replace the tedious and time-consuming visual slide analysis procedure as well as flow cytometric approaches have been discussed. The ROBIAS (Robotic Image Analysis System) for both automatic cytotoxicity assessment and micronucleus detection in human lymphocytes was developed at Novartis where the assay has been used to validate positive results obtained in the MNT in TK6 cells, which serves as the primary screening system for genotoxicity profiling in early drug development. In addition, the in vitro MNT has become an accepted alternative to support clinical studies and will be used for regulatory purposes as well. The comparison of visual with automatic analysis results showed a high degree of concordance for 25 independent experiments conducted for the profiling of 12 compounds. For concentration series of cyclophosphamide and carbendazim, a very good correlation between automatic and visual analysis by two examiners could be established, both for the relative division index used as cytotoxicity parameter, as well as for micronuclei scoring in mono- and binucleated cells. Generally, false-positive micronucleus decisions could be controlled by fast and simple relocation of the automatically detected patterns. The possibility to analyse 24 slides within 65h by automatic analysis over the weekend and the high reproducibility of the results make automatic image processing a powerful tool for the micronucleus analysis in primary human lymphocytes. The automated slide analysis for the MNT in human lymphocytes complements the portfolio of image analysis applications on ROBIAS which is supporting various assays at Novartis.
Improving spatial perception in 5-yr.-old Spanish children.
Jiménez, Andrés Canto; Sicilia, Antonio Oña; Vera, Juan Granda
2007-06-01
Assimilation of distance perception was studied in 70 Spanish primary school children. This assimilation involves the generation of projective images which are acquired through two mechanisms. One mechanism is spatial perception, wherein perceptual processes develop ensuring successful immersion in space and the acquisition of visual cues which a person may use to interpret images seen in the distance. The other mechanism is movement through space so that these images are produced. The present study evaluated the influence on improvements in spatial perception of using increasingly larger spaces for training sessions within a motor skills program. Visual parameters were measured in relation to the capture and tracking of moving objects or ocular motility and speed of detection or visual reaction time. Analysis showed that for the group trained in increasingly larger spaces, ocular motility and visual reaction time were significantly improved during. different phases of the program.
Manchester visual query language
NASA Astrophysics Data System (ADS)
Oakley, John P.; Davis, Darryl N.; Shann, Richard T.
1993-04-01
We report a database language for visual retrieval which allows queries on image feature information which has been computed and stored along with images. The language is novel in that it provides facilities for dealing with feature data which has actually been obtained from image analysis. Each line in the Manchester Visual Query Language (MVQL) takes a set of objects as input and produces another, usually smaller, set as output. The MVQL constructs are mainly based on proven operators from the field of digital image analysis. An example is the Hough-group operator which takes as input a specification for the objects to be grouped, a specification for the relevant Hough space, and a definition of the voting rule. The output is a ranked list of high scoring bins. The query could be directed towards one particular image or an entire image database, in the latter case the bins in the output list would in general be associated with different images. We have implemented MVQL in two layers. The command interpreter is a Lisp program which maps each MVQL line to a sequence of commands which are used to control a specialized database engine. The latter is a hybrid graph/relational system which provides low-level support for inheritance and schema evolution. In the paper we outline the language and provide examples of useful queries. We also describe our solution to the engineering problems associated with the implementation of MVQL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Mathew; Marshall, Matthew J.; Miller, Erin A.
2014-08-26
Understanding the interactions of structured communities known as “biofilms” and other complex matrixes is possible through the X-ray micro tomography imaging of the biofilms. Feature detection and image processing for this type of data focuses on efficiently identifying and segmenting biofilms and bacteria in the datasets. The datasets are very large and often require manual interventions due to low contrast between objects and high noise levels. Thus new software is required for the effectual interpretation and analysis of the data. This work specifies the evolution and application of the ability to analyze and visualize high resolution X-ray micro tomography datasets.
USDA-ARS?s Scientific Manuscript database
Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report the use of an infrared instrument equippe...
NASA Technical Reports Server (NTRS)
Poulton, C. E.
1975-01-01
Comparative statistics were presented on the capability of LANDSAT-1 and three of the Skylab remote sensing systems (S-190A, S-190B, S-192) for the recognition and inventory of analogous natural vegetations and landscape features important in resource allocation and management. Two analogous regions presenting vegetational zonation from salt desert to alpine conditions above the timberline were observed, emphasizing the visual interpretation mode in the investigation. An hierarchical legend system was used as the basic classification of all land surface features. Comparative tests were run on image identifiability with the different sensor systems, and mapping and interpretation tests were made both in monocular and stereo interpretation with all systems except the S-192. Significant advantage was found in the use of stereo from space when image analysis is by visual or visual-machine-aided interactive systems. Some cost factors in mapping from space are identified. The various image types are compared and an operational system is postulated.
Abdolell, Mohamed; Tsuruda, Kaitlyn; Lightfoot, Christopher B; Barkova, Eva; McQuaid, Melanie; Caines, Judy; Iles, Sian E
2016-01-01
Discussions of percent breast density (PD) and breast cancer risk implicitly assume that visual assessments of PD are comparable between vendors despite differences in technology and display algorithms. This study examines the extent to which visual assessments of PD differ between mammograms acquired from two vendors. Pairs of "for presentation" digital mammography images were obtained from two mammography units for 146 women who had a screening mammogram on one vendor unit followed by a diagnostic mammogram on a different vendor unit. Four radiologists independently visually assessed PD from single left mediolateral oblique view images from the two vendors. Analysis of variance, intra-class correlation coefficients (ICC), scatter plots, and Bland-Altman plots were used to evaluate PD assessments between vendors. The mean radiologist PD for each image was used as a consensus PD measure. Overall agreement of the PD assessments was excellent between the two vendors with an ICC of 0.95 (95% confidence interval: 0.93 to 0.97). Bland-Altman plots demonstrated narrow upper and lower limits of agreement between the vendors with only a small bias (2.3 percentage points). The results of this study support the assumption that visual assessment of PD is consistent across mammography vendors despite vendor-specific appearances of "for presentation" images.
Analysis of simulated image sequences from sensors for restricted-visibility operations
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar
1991-01-01
A real time model of the visible output from a 94 GHz sensor, based on a radiometric simulation of the sensor, was developed. A sequence of images as seen from an aircraft as it approaches for landing was simulated using this model. Thirty frames from this sequence of 200 x 200 pixel images were analyzed to identify and track objects in the image using the Cantata image processing package within the visual programming environment provided by the Khoros software system. The image analysis operations are described.
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2003-08-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. The ability of human brain to emulate knowledge structures in the form of networks-symbolic models is found. And that means an important shift of paradigm in our knowledge about brain from neural networks to "cortical software". Symbols, predicates and grammars naturally emerge in such active multilevel hierarchical networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type decision structure created via multilevel hierarchical compression of visual information. Mid-level vision processes like clustering, perceptual grouping, separation of figure from ground, are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models works similar to frames and agents, combines learning, classification, analogy together with higher-level model-based reasoning into a single framework. Such models do not require supercomputers. Based on such principles, and using methods of Computational intelligence, an Image Understanding system can convert images into the network-symbolic knowledge models, and effectively resolve uncertainty and ambiguity, providing unifying representation for perception and cognition. That allows creating new intelligent computer vision systems for robotic and defense industries.
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology
Di Ruberto, Cecilia; Kocher, Michel
2018-01-01
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images. PMID:29419781
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.
Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel
2018-02-08
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map
2014-01-01
We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970
Auer, Manfred; Peng, Hanchuan; Singh, Ambuj
2007-01-01
The 2006 International Workshop on Multiscale Biological Imaging, Data Mining and Informatics was held at Santa Barbara, on Sept 7–8, 2006. Based on the presentations at the workshop, we selected and compiled this collection of research articles related to novel algorithms and enabling techniques for bio- and biomedical image analysis, mining, visualization, and biology applications. PMID:17634090
Zhu, Yuankai; Feng, Jianhua; Wu, Shuang; Hou, Haifeng; Ji, Jianfeng; Zhang, Kai; Chen, Qing; Chen, Lin; Cheng, Haiying; Gao, Liuyan; Chen, Zexin; Zhang, Hong; Tian, Mei
2017-08-01
PET with 18 F-FDG has been used for presurgical localization of epileptogenic foci; however, in nonsurgical patients, the correlation between cerebral glucose metabolism and clinical severity has not been fully understood. The aim of this study was to evaluate the glucose metabolic profile using 18 F-FDG PET/CT imaging in patients with epilepsy. Methods: One hundred pediatric epilepsy patients who underwent 18 F-FDG PET/CT, MRI, and electroencephalography examinations were included. Fifteen age-matched controls were also included. 18 F-FDG PET images were analyzed by visual assessment combined with statistical parametric mapping (SPM) analysis. The absolute asymmetry index (|AI|) was calculated in patients with regional abnormal glucose metabolism. Results: Visual assessment combined with SPM analysis of 18 F-FDG PET images detected more patients with abnormal glucose metabolism than visual assessment only. The |AI| significantly positively correlated with seizure frequency ( P < 0.01) but negatively correlated with the time since last seizure ( P < 0.01) in patients with abnormal glucose metabolism. The only significant contributing variable to the |AI| was the time since last seizure, in patients both with hypometabolism ( P = 0.001) and with hypermetabolism ( P = 0.005). For patients with either hypometabolism ( P < 0.01) or hypermetabolism ( P = 0.209), higher |AI| values were found in those with drug resistance than with seizure remission. In the post-1-y follow-up PET studies, a significant change of |AI| (%) was found in patients with clinical improvement compared with those with persistence or progression ( P < 0.01). Conclusion: 18 F-FDG PET imaging with visual assessment combined with SPM analysis could provide cerebral glucose metabolic profiles in nonsurgical epilepsy patients. |AI| might be used for evaluation of clinical severity and progress in these patients. Patients with a prolonged period of seizure freedom may have more subtle (or no) metabolic abnormalities on PET. The clinical value of PET might be enhanced by timing the scan closer to clinical seizures. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
NASA Technical Reports Server (NTRS)
Herskovits, E. H.; Megalooikonomou, V.; Davatzikos, C.; Chen, A.; Bryan, R. N.; Gerring, J. P.
1999-01-01
PURPOSE: To determine whether there is an association between the spatial distribution of lesions detected at magnetic resonance (MR) imaging of the brain in children after closed-head injury and the development of secondary attention-deficit/hyperactivity disorder (ADHD). MATERIALS AND METHODS: Data obtained from 76 children without prior history of ADHD were analyzed. MR images were obtained 3 months after closed-head injury. After manual delineation of lesions, images were registered to the Talairach coordinate system. For each subject, registered images and secondary ADHD status were integrated into a brain-image database, which contains depiction (visualization) and statistical analysis software. Using this database, we assessed visually the spatial distributions of lesions and performed statistical analysis of image and clinical variables. RESULTS: Of the 76 children, 15 developed secondary ADHD. Depiction of the data suggested that children who developed secondary ADHD had more lesions in the right putamen than children who did not develop secondary ADHD; this impression was confirmed statistically. After Bonferroni correction, we could not demonstrate significant differences between secondary ADHD status and lesion burdens for the right caudate nucleus or the right globus pallidus. CONCLUSION: Closed-head injury-induced lesions in the right putamen in children are associated with subsequent development of secondary ADHD. Depiction software is useful in guiding statistical analysis of image data.
Avila, Manuel; Graterol, Eduardo; Alezones, Jesús; Criollo, Beisy; Castillo, Dámaso; Kuri, Victoria; Oviedo, Norman; Moquete, Cesar; Romero, Marbella; Hanley, Zaida; Taylor, Margie
2012-06-01
The appearance of rice grain is a key aspect in quality determination. Mainly, this analysis is performed by expert analysts through visual observation; however, due to the subjective nature of the analysis, the results may vary among analysts. In order to evaluate the concordance between analysts from Latin-American rice quality laboratories for rice grain appearance through digital images, an inter-laboratory test was performed with ten analysts and images of 90 grains captured with a high resolution scanner. Rice grains were classified in four categories including translucent, chalky, white belly, and damaged grain. Data was categorized using statistic parameters like mode and its frequency, the relative concordance, and the reproducibility parameter kappa. Additionally, a referential image gallery of typical grain for each category was constructed based on mode frequency. Results showed a Kappa value of 0.49, corresponding to a moderate reproducibility, attributable to subjectivity in the visual analysis of grain images. These results reveal the need for standardize the evaluation criteria among analysts to improve the confidence of the determination of rice grain appearance.
NASA Astrophysics Data System (ADS)
Kuvychko, Igor
2001-10-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.
Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V
2017-09-01
Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were significantly (p < 0.001) better visualized on post-contrast liposomal-Gd images. DCE-MRI with the conventional Gd agent demonstrated retrograde opacification of the placenta from fetal edge to the myometrium, consistent with the anatomy of the rat placenta. However, no consistent and reproducible visualization of the retroplacental space was demonstrated on the conventional Gd-enhanced images. The retroplacental space was only visualized on post-contrast T1w images acquired using the liposomal agent (SNR = 15.5 ± 3.4) as a sharply defined, hypo-enhanced interface. The retroplacental space was also visible as a similar hypo-enhancing interface on CE-CT images acquired using a liposomal CT contrast agent. Tissue analysis demonstrated undetectably low transplacental permeation of liposomal-Gd, and was confirmed by lack of permeation through a perfused human placental model. Contrast-enhanced T1w-MRI performed using liposomal-Gd enabled clear visualization of placental margins and delineation of the retroplacental space from the rest of the placenta; the space is undetectable on non-contrast imaging and on post-contrast T1w images acquired using a conventional, clinically approved Gd chelate contrast agent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco
2015-10-15
Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.
A knowledge based system for scientific data visualization
NASA Technical Reports Server (NTRS)
Senay, Hikmet; Ignatius, Eve
1992-01-01
A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.
High Performance Computing and Cutting-Edge Analysis Can Open New
Realms March 1, 2018 Two people looking at a 3D interactive graphical data the Visualization Center in capabilities to visualize complex, 3D images of the wakes from multiple wind turbines so that we can better
Programmable Remapper with Single Flow Architecture
NASA Technical Reports Server (NTRS)
Fisher, Timothy E. (Inventor)
1993-01-01
An apparatus for image processing comprising a camera for receiving an original visual image and transforming the original visual image into an analog image, a first converter for transforming the analog image of the camera to a digital image, a processor having a single flow architecture for receiving the digital image and producing, with a single algorithm, an output image, a second converter for transforming the digital image of the processor to an analog image, and a viewer for receiving the analog image, transforming the analog image into a transformed visual image for observing the transformations applied to the original visual image. The processor comprises one or more subprocessors for the parallel reception of a digital image for producing an output matrix of the transformed visual image. More particularly, the processor comprises a plurality of subprocessors for receiving in parallel and transforming the digital image for producing a matrix of the transformed visual image, and an output interface means for receiving the respective portions of the transformed visual image from the respective subprocessor for producing an output matrix of the transformed visual image.
Overview of machine vision methods in x-ray imaging and microtomography
NASA Astrophysics Data System (ADS)
Buzmakov, Alexey; Zolotov, Denis; Chukalina, Marina; Nikolaev, Dmitry; Gladkov, Andrey; Ingacheva, Anastasia; Yakimchuk, Ivan; Asadchikov, Victor
2018-04-01
Digital X-ray imaging became widely used in science, medicine, non-destructive testing. This allows using modern digital images analysis for automatic information extraction and interpretation. We give short review of scientific applications of machine vision in scientific X-ray imaging and microtomography, including image processing, feature detection and extraction, images compression to increase camera throughput, microtomography reconstruction, visualization and setup adjustment.
Multiple view image analysis of freefalling U.S. wheat grains for damage assessment
USDA-ARS?s Scientific Manuscript database
Currently, inspection of wheat in the United States for grade and class is performed by human visual analysis. This is a time consuming operation typically taking several minutes for each sample. Digital imaging research has addressed this issue over the past two decades, with success in recognition...
Shifting the Focus: Children's Image-Making Practices and Their Implications for Analysis
ERIC Educational Resources Information Center
Lomax, Helen Jayne
2012-01-01
This paper provides analytic focus on the productive and editorial contexts of children and young people's image-making, making visible its implications for the analysis of photographs. Drawing on participatory research in which children and young people worked alongside researchers to create a visual narrative of their lived experiences of…
Coggan, David D; Baker, Daniel H; Andrews, Timothy J
2016-01-01
Brain-imaging studies have found distinct spatial and temporal patterns of response to different object categories across the brain. However, the extent to which these categorical patterns of response reflect higher-level semantic or lower-level visual properties of the stimulus remains unclear. To address this question, we measured patterns of EEG response to intact and scrambled images in the human brain. Our rationale for using scrambled images is that they have many of the visual properties found in intact images, but do not convey any semantic information. Images from different object categories (bottle, face, house) were briefly presented (400 ms) in an event-related design. A multivariate pattern analysis revealed categorical patterns of response to intact images emerged ∼80-100 ms after stimulus onset and were still evident when the stimulus was no longer present (∼800 ms). Next, we measured the patterns of response to scrambled images. Categorical patterns of response to scrambled images also emerged ∼80-100 ms after stimulus onset. However, in contrast to the intact images, distinct patterns of response to scrambled images were mostly evident while the stimulus was present (∼400 ms). Moreover, scrambled images were able to account only for all the variance in the intact images at early stages of processing. This direct manipulation of visual and semantic content provides new insights into the temporal dynamics of object perception and the extent to which different stages of processing are dependent on lower-level or higher-level properties of the image.
Grimmer, Timo; Wutz, Carolin; Alexopoulos, Panagiotis; Drzezga, Alexander; Förster, Stefan; Förstl, Hans; Goldhardt, Oliver; Ortner, Marion; Sorg, Christian; Kurz, Alexander
2016-02-01
Biomarkers of Alzheimer disease (AD) can be imaged in vivo and can be used for diagnostic and prognostic purposes in people with cognitive decline and dementia. Indicators of amyloid deposition such as (11)C-Pittsburgh compound B ((11)C-PiB) PET are primarily used to identify or rule out brain diseases that are associated with amyloid pathology but have also been deployed to forecast the clinical course. Indicators of neuronal metabolism including (18)F-FDG PET demonstrate the localization and severity of neuronal dysfunction and are valuable for differential diagnosis and for predicting the progression from mild cognitive impairment (MCI) to dementia. It is a matter of debate whether to analyze these images visually or using automated techniques. Therefore, we compared the usefulness of both imaging methods and both analyzing strategies to predict dementia due to AD. In MCI participants, a baseline examination, including clinical and imaging assessments, and a clinical follow-up examination after a planned interval of 24 mo were performed. Of 28 MCI patients, 9 developed dementia due to AD, 2 developed frontotemporal dementia, and 1 developed moderate dementia of unknown etiology. The positive and negative predictive values and the accuracy of visual and fully automated analyses of (11)C-PiB for the prediction of progression to dementia due to AD were 0.50, 1.00, and 0.68, respectively, for the visual and 0.53, 1.00, and 0.71, respectively, for the automated analyses. Positive predictive value, negative predictive value, and accuracy of fully automated analyses of (18)F-FDG PET were 0.37, 0.78, and 0.50, respectively. Results of visual analyses were highly variable between raters but were superior to automated analyses. Both (18)F-FDG and (11)C-PiB imaging appear to be of limited use for predicting the progression from MCI to dementia due to AD in short-term follow-up, irrespective of the strategy of analysis. On the other hand, amyloid PET is extremely useful to rule out underlying AD. The findings of the present study favor a fully automated method of analysis for (11)C-PiB assessments and a visual analysis by experts for (18)F-FDG assessments. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Serial and semantic encoding of lists of words in schizophrenia patients with visual hallucinations.
Brébion, Gildas; Ohlsen, Ruth I; Pilowsky, Lyn S; David, Anthony S
2011-03-30
Previous research has suggested that visual hallucinations in schizophrenia are associated with abnormal salience of visual mental images. Since visual imagery is used as a mnemonic strategy to learn lists of words, increased visual imagery might impede the other commonly used strategies of serial and semantic encoding. We had previously published data on the serial and semantic strategies implemented by patients when learning lists of concrete words with different levels of semantic organisation (Brébion et al., 2004). In this paper we present a re-analysis of these data, aiming at investigating the associations between learning strategies and visual hallucinations. Results show that the patients with visual hallucinations presented less serial clustering in the non-organisable list than the other patients. In the semantically organisable list with typical instances, they presented both less serial and less semantic clustering than the other patients. Thus, patients with visual hallucinations demonstrate reduced use of serial and semantic encoding in the lists made up of fairly familiar concrete words, which enable the formation of mental images. Although these results are preliminary, we propose that this different processing of the lists stems from the abnormal salience of the mental images such patients experience from the word stimuli. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Research on flight stability performance of rotor aircraft based on visual servo control method
NASA Astrophysics Data System (ADS)
Yu, Yanan; Chen, Jing
2016-11-01
control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.
Korosoglou, G; Hansen, A; Bekeredjian, R; Filusch, A; Hardt, S; Wolf, D; Schellberg, D; Katus, H A; Kuecherer, H
2006-03-01
To evaluate whether myocardial parametric imaging (MPI) is superior to visual assessment for the evaluation of myocardial viability. Myocardial contrast echocardiography (MCE) was assessed in 11 pigs before, during, and after left anterior descending coronary artery occlusion and in 32 patients with ischaemic heart disease by using intravenous SonoVue administration. In experimental studies perfusion defect area assessment by MPI was compared with visually guided perfusion defect planimetry. Histological assessment of necrotic tissue was the standard reference. In clinical studies viability was assessed on a segmental level by (1) visual analysis of myocardial opacification; (2) quantitative estimation of myocardial blood flow in regions of interest; and (3) MPI. Functional recovery between three and six months after revascularisation was the standard reference. In experimental studies, compared with visually guided perfusion defect planimetry, planimetric assessment of infarct size by MPI correlated more significantly with histology (r2 = 0.92 versus r2 = 0.56) and had a lower intraobserver variability (4% v 15%, p < 0.05). In clinical studies, MPI had higher specificity (66% v 43%, p < 0.05) than visual MCE and good accuracy (81%) for viability detection. It was less time consuming (3.4 (1.6) v 9.2 (2.4) minutes per image, p < 0.05) than quantitative blood flow estimation by regions of interest and increased the agreement between observers interpreting myocardial perfusion (kappa = 0.87 v kappa = 0.75, p < 0.05). MPI is useful for the evaluation of myocardial viability both in animals and in patients. It is less time consuming than quantification analysis by regions of interest and less observer dependent than visual analysis. Thus, strategies incorporating this technique may be valuable for the evaluation of myocardial viability in clinical routine.
Deal, Samantha; Wambaugh, John; Judson, Richard; Mosher, Shad; Radio, Nick; Houck, Keith; Padilla, Stephanie
2016-09-01
One of the rate-limiting procedures in a developmental zebrafish screen is the morphological assessment of each larva. Most researchers opt for a time-consuming, structured visual assessment by trained human observer(s). The present studies were designed to develop a more objective, accurate and rapid method for screening zebrafish for dysmorphology. Instead of the very detailed human assessment, we have developed the computational malformation index, which combines the use of high-content imaging with a very brief human visual assessment. Each larva was quickly assessed by a human observer (basic visual assessment), killed, fixed and assessed for dysmorphology with the Zebratox V4 BioApplication using the Cellomics® ArrayScan® V(TI) high-content image analysis platform. The basic visual assessment adds in-life parameters, and the high-content analysis assesses each individual larva for various features (total area, width, spine length, head-tail length, length-width ratio, perimeter-area ratio). In developing the computational malformation index, a training set of hundreds of embryos treated with hundreds of chemicals were visually assessed using the basic or detailed method. In the second phase, we assessed both the stability of these high-content measurements and its performance using a test set of zebrafish treated with a dose range of two reference chemicals (trans-retinoic acid or cadmium). We found the measures were stable for at least 1 week and comparison of these automated measures to detailed visual inspection of the larvae showed excellent congruence. Our computational malformation index provides an objective manner for rapid phenotypic brightfield assessment of individual larva in a developmental zebrafish assay. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Modern Scientific Visualization is more than Just Pretty Pictures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E Wes; Rubel, Oliver; Wu, Kesheng
2008-12-05
While the primary product of scientific visualization is images and movies, its primary objective is really scientific insight. Too often, the focus of visualization research is on the product, not the mission. This paper presents two case studies, both that appear in previous publications, that focus on using visualization technology to produce insight. The first applies"Query-Driven Visualization" concepts to laser wakefield simulation data to help identify and analyze the process of beam formation. The second uses topological analysis to provide a quantitative basis for (i) understanding the mixing process in hydrodynamic simulations, and (ii) performing comparative analysis of data frommore » two different types of simulations that model hydrodynamic instability.« less
Fast interactive exploration of 4D MRI flow data
NASA Astrophysics Data System (ADS)
Hennemuth, A.; Friman, O.; Schumann, C.; Bock, J.; Drexl, J.; Huellebrand, M.; Markl, M.; Peitgen, H.-O.
2011-03-01
1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times.
Color image analysis technique for measuring of fat in meat: an application for the meat industry
NASA Astrophysics Data System (ADS)
Ballerini, Lucia; Hogberg, Anders; Lundstrom, Kerstin; Borgefors, Gunilla
2001-04-01
Intramuscular fat content in meat influences some important meat quality characteristics. The aim of the present study was to develop and apply image processing techniques to quantify intramuscular fat content in beefs together with the visual appearance of fat in meat (marbling). Color images of M. longissimus dorsi meat samples with a variability of intramuscular fat content and marbling were captured. Image analysis software was specially developed for the interpretation of these images. In particular, a segmentation algorithm (i.e. classification of different substances: fat, muscle and connective tissue) was optimized in order to obtain a proper classification and perform subsequent analysis. Segmentation of muscle from fat was achieved based on their characteristics in the 3D color space, and on the intrinsic fuzzy nature of these structures. The method is fully automatic and it combines a fuzzy clustering algorithm, the Fuzzy c-Means Algorithm, with a Genetic Algorithm. The percentages of various colors (i.e. substances) within the sample are then determined; the number, size distribution, and spatial distributions of the extracted fat flecks are measured. Measurements are correlated with chemical and sensory properties. Results so far show that advanced image analysis is useful for quantify the visual appearance of meat.
Matsumoto, Takao; Ishikawa, Ryo; Tohei, Tetsuya; Kimura, Hideo; Yao, Qiwen; Zhao, Hongyang; Wang, Xiaolin; Chen, Dapeng; Cheng, Zhenxiang; Shibata, Naoya; Ikuhara, Yuichi
2013-10-09
A state-of-the-art spherical aberration-corrected STEM was fully utilized to directly visualize the multiferroic domain structure in a hexagonal YMnO3 single crystal at atomic scale. With the aid of multivariate statistical analysis (MSA), we obtained unbiased and quantitative maps of ferroelectric domain structures with atomic resolution. Such a statistical image analysis of the transition region between opposite polarizations has confirmed atomically sharp transitions of ferroelectric polarization both in antiparallel (uncharged) and tail-to-tail 180° (charged) domain boundaries. Through the analysis, a correlated subatomic image shift of Mn-O layers with that of Y layers, exhibiting a double-arc shape of reversed curvatures, have been elucidated. The amount of image shift in Mn-O layers along the c-axis is statistically significant as small as 0.016 nm, roughly one-third of the evident image shift of 0.048 nm in Y layers. Interestingly, a careful analysis has shown that such a subatomic image shift in Mn-O layers vanishes at the tail-to-tail 180° domain boundaries. Furthermore, taking advantage of the annular bright field (ABF) imaging technique combined with MSA, the tilting of MnO5 bipyramids, the very core mechanism of multiferroicity of the material, is evaluated.
Computerized image analysis for acetic acid induced intraepithelial lesions
NASA Astrophysics Data System (ADS)
Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.
2008-03-01
Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.
Information theoretic analysis of canny edge detection in visual communication
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2011-06-01
In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.
An infrared/video fusion system for military robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, A.W.; Roberts, R.S.
1997-08-05
Sensory information is critical to the telerobotic operation of mobile robots. In particular, visual sensors are a key component of the sensor package on a robot engaged in urban military operations. Visual sensors provide the robot operator with a wealth of information including robot navigation and threat assessment. However, simple countermeasures such as darkness, smoke, or blinding by a laser, can easily neutralize visual sensors. In order to provide a robust visual sensing system, an infrared sensor is required to augment the primary visual sensor. An infrared sensor can acquire useful imagery in conditions that incapacitate a visual sensor. Amore » simple approach to incorporating an infrared sensor into the visual sensing system is to display two images to the operator: side-by-side visual and infrared images. However, dual images might overwhelm the operator with information, and result in degraded robot performance. A better solution is to combine the visual and infrared images into a single image that maximizes scene information. Fusing visual and infrared images into a single image demands balancing the mixture of visual and infrared information. Humans are accustom to viewing and interpreting visual images. They are not accustom to viewing or interpreting infrared images. Hence, the infrared image must be used to enhance the visual image, not obfuscate it.« less
Toyz: A framework for scientific analysis of large datasets and astronomical images
NASA Astrophysics Data System (ADS)
Moolekamp, F.; Mamajek, E.
2015-11-01
As the size of images and data products derived from astronomical data continues to increase, new tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own astronomical images taken with the Dark Energy Camera (DECam) we present Toyz, an open source Python package for viewing and analyzing images and data stored on a remote server or cluster. Users connect to the Toyz web application via a web browser, making it a convenient tool for students to visualize and interact with astronomical data without having to install any software on their local machines. In addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and create their own visualization tools that can be added on as extensions to the default Toyz framework.
Some distinguishing characteristics of contour and texture phenomena in images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1992-01-01
The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.
Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.
2008-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616
NASA Astrophysics Data System (ADS)
Dunckel, Anne E.; Cardenas, M. Bayani; Sawyer, Audrey H.; Bennett, Philip C.
2009-12-01
Microbial mats have spatially heterogeneous structured communities that manifest visually through vibrant color zonation often associated with environmental gradients. We report the first use of high-resolution thermal infrared imaging to map temperature at four hot springs within the El Tatio Geyser Field, Chile. Thermal images with millimeter resolution show drastic variability and pronounced patterning in temperature, with changes on the order of 30°C within a square decimeter. Paired temperature and visual images show that zones with specific coloration occur within distinct temperature ranges. Unlike previous studies where maximum, minimum, and optimal temperatures for microorganisms are based on isothermally-controlled laboratory cultures, thermal imaging allows for mapping thousands of temperature values in a natural setting. This allows for efficiently constraining natural temperature bounds for visually distinct mat zones. This approach expands current understanding of thermophilic microbial communities and opens doors for detailed analysis of biophysical controls on microbial ecology.
Searching for Images: The Analysis of Users' Queries for Image Retrieval in American History.
ERIC Educational Resources Information Center
Choi, Youngok; Rasmussen, Edie M.
2003-01-01
Studied users' queries for visual information in American history to identify the image attributes important for retrieval and the characteristics of users' queries for digital images, based on queries from 38 faculty and graduate students. Results of pre- and post-test questionnaires and interviews suggest principle categories of search terms.…
Atrioventricular junction (AVJ) motion tracking: a software tool with ITK/VTK/Qt.
Pengdong Xiao; Shuang Leng; Xiaodan Zhao; Hua Zou; Ru San Tan; Wong, Philip; Liang Zhong
2016-08-01
The quantitative measurement of the Atrioventricular Junction (AVJ) motion is an important index for ventricular functions of one cardiac cycle including systole and diastole. In this paper, a software tool that can conduct AVJ motion tracking from cardiovascular magnetic resonance (CMR) images is presented by using Insight Segmentation and Registration Toolkit (ITK), The Visualization Toolkit (VTK) and Qt. The software tool is written in C++ by using Visual Studio Community 2013 integrated development environment (IDE) containing both an editor and a Microsoft complier. The software package has been successfully implemented. From the software engineering practice, it is concluded that ITK, VTK, and Qt are very handy software systems to implement automatic image analysis functions for CMR images such as quantitative measure of motion by visual tracking.
[Comparison of digital and visual methods for Ki-67 assessment in invasive breast carcinomas].
Kushnarev, V A; Artemyeva, E S; Kudaybergenova, A G
2018-01-01
to compare two methods for quantitative assessment of the proliferative activity index (PAI): a visual estimation method by several investigators and digital image analysis (DIA). The use of the Ki-67 index in the daily clinical practice of a Morbid Anatomy Department is associated with the problem of reproducibility of quantitative assessment of the Ki-67 PAI. Due to the development of digital imaging techniques in morphology, new methods for PAI evaluation using the DIA are proposed. The Ki-67 PAI data obtained during visual assessment and digital image analysis were compared in 104 cases of grades 2-3 breast carcinoma. The histological sections were scanned using a Panoramic III scanner (3D Histech, Hungary) and digital images were obtained. DIA was carried out using the software 3D Histech QuantCenter (3D Histech, Hungary), by marking 3-10 zones. Evaluation of the obtained sections was done independently by two investigators engaged in cancer pathology. The level of agreement between visual and digital methods did not differ significantly (p>0.001). The authors selected a gray area in the range of 10-35% IPA, where the Ki-67 index showed a weak relationship between the analyzed groups (ICC, 0.47). The Ki67 index below 10% and above 35% showed a sufficient reproducibility in the same laboratory. The authors consider that the scanned digital form of a histological section, which can be evaluated using automated software analysis modules, is an independent and objective method to assess proliferative activity for Ki-67 index validation.
Approaches to quantitating the results of differentially dyed cottons
USDA-ARS?s Scientific Manuscript database
The differential dyeing (DD) method has served as a subjective method for visually determining immature cotton fibers. In an attempt to quantitate the results of the differential dyeing method, and thus offer an efficient means of elucidating cotton maturity without visual discretion, image analysi...
NASA Technical Reports Server (NTRS)
1977-01-01
A preliminary design for a helicopter/VSTOL wide angle simulator image generation display system is studied. The visual system is to become part of a simulator capability to support Army aviation systems research and development within the near term. As required for the Army to simulate a wide range of aircraft characteristics, versatility and ease of changing cockpit configurations were primary considerations of the study. Due to the Army's interest in low altitude flight and descents into and landing in constrained areas, particular emphasis is given to wide field of view, resolution, brightness, contrast, and color. The visual display study includes a preliminary design, demonstrated feasibility of advanced concepts, and a plan for subsequent detail design and development. Analysis and tradeoff considerations for various visual system elements are outlined and discussed.
A systematic review of visual image theory, assessment, and use in skin cancer and tanning research.
McWhirter, Jennifer E; Hoffman-Goetz, Laurie
2014-01-01
Visual images increase attention, comprehension, and recall of health information and influence health behaviors. Health communication campaigns on skin cancer and tanning often use visual images, but little is known about how such images are selected or evaluated. A systematic review of peer-reviewed, published literature on skin cancer and tanning was conducted to determine (a) what visual communication theories were used, (b) how visual images were evaluated, and (c) how visual images were used in the research studies. Seven databases were searched (PubMed/MEDLINE, EMBASE, PsycINFO, Sociological Abstracts, Social Sciences Full Text, ERIC, and ABI/INFORM) resulting in 5,330 citations. Of those, 47 met the inclusion criteria. Only one study specifically identified a visual communication theory guiding the research. No standard instruments for assessing visual images were reported. Most studies lacked, to varying degrees, comprehensive image description, image pretesting, full reporting of image source details, adequate explanation of image selection or development, and example images. The results highlight the need for greater theoretical and methodological attention to visual images in health communication research in the future. To this end, the authors propose a working definition of visual health communication.
Fernandez, Nicolas F.; Gundersen, Gregory W.; Rahman, Adeeb; Grimes, Mark L.; Rikova, Klarisa; Hornbeck, Peter; Ma’ayan, Avi
2017-01-01
Most tools developed to visualize hierarchically clustered heatmaps generate static images. Clustergrammer is a web-based visualization tool with interactive features such as: zooming, panning, filtering, reordering, sharing, performing enrichment analysis, and providing dynamic gene annotations. Clustergrammer can be used to generate shareable interactive visualizations by uploading a data table to a web-site, or by embedding Clustergrammer in Jupyter Notebooks. The Clustergrammer core libraries can also be used as a toolkit by developers to generate visualizations within their own applications. Clustergrammer is demonstrated using gene expression data from the cancer cell line encyclopedia (CCLE), original post-translational modification data collected from lung cancer cells lines by a mass spectrometry approach, and original cytometry by time of flight (CyTOF) single-cell proteomics data from blood. Clustergrammer enables producing interactive web based visualizations for the analysis of diverse biological data. PMID:28994825
Groen, Iris I. A.; Ghebreab, Sennay; Lamme, Victor A. F.; Scholte, H. Steven
2012-01-01
The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. PMID:23093921
Numerical image manipulation and display in solar astronomy
NASA Technical Reports Server (NTRS)
Levine, R. H.; Flagg, J. C.
1977-01-01
The paper describes the system configuration and data manipulation capabilities of a solar image display system which allows interactive analysis of visual images and on-line manipulation of digital data. Image processing features include smoothing or filtering of images stored in the display, contrast enhancement, and blinking or flickering images. A computer with a core memory of 28,672 words provides the capacity to perform complex calculations based on stored images, including computing histograms, selecting subsets of images for further analysis, combining portions of images to produce images with physical meaning, and constructing mathematical models of features in an image. Some of the processing modes are illustrated by some image sequences from solar observations.
Heiland, Max; Pohlenz, Philipp; Blessmann, Marco; Habermann, Christian R; Oesterhelweg, Lars; Begemann, Philipp C; Schmidgunst, Christian; Blake, Felix A S; Püschel, Klaus; Schmelzle, Rainer; Schulze, Dirk
2007-12-01
The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.
Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John
2016-01-01
Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.
3-D interactive visualisation tools for Hi spectral line imaging
NASA Astrophysics Data System (ADS)
van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.
2017-06-01
Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling.
Frontal–Occipital Connectivity During Visual Search
Pantazatos, Spiro P.; Yanagihara, Ted K.; Zhang, Xian; Meitzler, Thomas
2012-01-01
Abstract Although expectation- and attention-related interactions between ventral and medial prefrontal cortex and stimulus category-selective visual regions have been identified during visual detection and discrimination, it is not known if similar neural mechanisms apply to other tasks such as visual search. The current work tested the hypothesis that high-level frontal regions, previously implicated in expectation and visual imagery of object categories, interact with visual regions associated with object recognition during visual search. Using functional magnetic resonance imaging, subjects searched for a specific object that varied in size and location within a complex natural scene. A model-free, spatial-independent component analysis isolated multiple task-related components, one of which included visual cortex, as well as a cluster within ventromedial prefrontal cortex (vmPFC), consistent with the engagement of both top-down and bottom-up processes. Analyses of psychophysiological interactions showed increased functional connectivity between vmPFC and object-sensitive lateral occipital cortex (LOC), and results from dynamic causal modeling and Bayesian Model Selection suggested bidirectional connections between vmPFC and LOC that were positively modulated by the task. Using image-guided diffusion-tensor imaging, functionally seeded, probabilistic white-matter tracts between vmPFC and LOC, which presumably underlie this effective interconnectivity, were also observed. These connectivity findings extend previous models of visual search processes to include specific frontal–occipital neuronal interactions during a natural and complex search task. PMID:22708993
Neugebauer, Tomasz; Bordeleau, Eric; Burrus, Vincent; Brzezinski, Ryszard
2015-01-01
Data visualization methods are necessary during the exploration and analysis activities of an increasingly data-intensive scientific process. There are few existing visualization methods for raw nucleotide sequences of a whole genome or chromosome. Software for data visualization should allow the researchers to create accessible data visualization interfaces that can be exported and shared with others on the web. Herein, novel software developed for generating DNA data visualization interfaces is described. The software converts DNA data sets into images that are further processed as multi-scale images to be accessed through a web-based interface that supports zooming, panning and sequence fragment selection. Nucleotide composition frequencies and GC skew of a selected sequence segment can be obtained through the interface. The software was used to generate DNA data visualization of human and bacterial chromosomes. Examples of visually detectable features such as short and long direct repeats, long terminal repeats, mobile genetic elements, heterochromatic segments in microbial and human chromosomes, are presented. The software and its source code are available for download and further development. The visualization interfaces generated with the software allow for the immediate identification and observation of several types of sequence patterns in genomes of various sizes and origins. The visualization interfaces generated with the software are readily accessible through a web browser. This software is a useful research and teaching tool for genetics and structural genomics.
A survey of infrared and visual image fusion methods
NASA Astrophysics Data System (ADS)
Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Hai, Jinjin; He, Kangjian
2017-09-01
Infrared (IR) and visual (VI) image fusion is designed to fuse multiple source images into a comprehensive image to boost imaging quality and reduce redundancy information, which is widely used in various imaging equipment to improve the visual ability of human and robot. The accurate, reliable and complementary descriptions of the scene in fused images make these techniques be widely used in various fields. In recent years, a large number of fusion methods for IR and VI images have been proposed due to the ever-growing demands and the progress of image representation methods; however, there has not been published an integrated survey paper about this field in last several years. Therefore, we make a survey to report the algorithmic developments of IR and VI image fusion. In this paper, we first characterize the IR and VI image fusion based applications to represent an overview of the research status. Then we present a synthesize survey of the state of the art. Thirdly, the frequently-used image fusion quality measures are introduced. Fourthly, we perform some experiments of typical methods and make corresponding analysis. At last, we summarize the corresponding tendencies and challenges in IR and VI image fusion. This survey concludes that although various IR and VI image fusion methods have been proposed, there still exist further improvements or potential research directions in different applications of IR and VI image fusion.
Integrated approach to multimodal media content analysis
NASA Astrophysics Data System (ADS)
Zhang, Tong; Kuo, C.-C. Jay
1999-12-01
In this work, we present a system for the automatic segmentation, indexing and retrieval of audiovisual data based on the combination of audio, visual and textural content analysis. The video stream is demultiplexed into audio, image and caption components. Then, a semantic segmentation of the audio signal based on audio content analysis is conducted, and each segment is indexed as one of the basic audio types. The image sequence is segmented into shots based on visual information analysis, and keyframes are extracted from each shot. Meanwhile, keywords are detected from the closed caption. Index tables are designed for both linear and non-linear access to the video. It is shown by experiments that the proposed methods for multimodal media content analysis are effective. And that the integrated framework achieves satisfactory results for video information filtering and retrieval.
Yahata, Izumi; Kawase, Tetsuaki; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio
2017-01-01
The effects of visual speech (the moving image of the speaker's face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker's face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker's face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information.
HTML5 PivotViewer: high-throughput visualization and querying of image data on the web
Taylor, Stephen; Noble, Roger
2014-01-01
Motivation: Visualization and analysis of large numbers of biological images has generated a bottle neck in research. We present HTML5 PivotViewer, a novel, open source, platform-independent viewer making use of the latest web technologies that allows seamless access to images and associated metadata for each image. This provides a powerful method to allow end users to mine their data. Availability and implementation: Documentation, examples and links to the software are available from http://www.cbrg.ox.ac.uk/data/pivotviewer/. The software is licensed under GPLv2. Contact: stephen.taylor@imm.ox.ac.uk and roger@coritsu.com PMID:24849578
A visual analysis of gender bias in contemporary anatomy textbooks.
Parker, Rhiannon; Larkin, Theresa; Cockburn, Jon
2017-05-01
Empirical research has linked gender bias in medical education with negative attitudes and behaviors in healthcare providers. Yet it has been more than 20 years since research has considered the degree to which women and men are equally represented in anatomy textbooks. Furthermore, previous research has not explored beyond quantity of representation to also examine visual gender stereotypes and, in light of theoretical advancements in the area of intersectional research, the relationship between representations of gender and representations of ethnicity, body type, health, and age. This study aimed to determine the existence and representation of gender bias in the major anatomy textbooks used at Australian Medical Schools. A systematic visual content analysis was conducted on 6044 images in which sex/gender could be identified, sourced from 17 major anatomy textbooks published from 2008 to 2013. Further content analysis was performed on the 521 narrative images, which represent an unfolding story, found within the same textbooks. Results indicate that the representation of gender in images from anatomy textbooks remain predominantly male except within sex-specific sections. Further, other forms of bias were found to exist in: the visualization of stereotypical gendered emotions, roles and settings; the lack of ethnic, age, and body type diversity; and in the almost complete adherence to a sex/gender binary. Despite increased attention to gender issues in medicine, the visual representation of gender in medical curricula continues to be biased. The biased construction of gender in anatomy textbooks designed for medical education provides future healthcare providers with inadequate and unrealistic information about patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teng, Santani
2017-01-01
In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044019
Sieracki, M E; Reichenbach, S E; Webb, K L
1989-01-01
The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the method of choice. The tedium of making such measurements visually on the large numbers of cells required has prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing cells from a dark background. This is commonly done by visually choosing a threshold intensity value which most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method based on the cell image characteristics should be used. Since the optical nature of edges in images of light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or reflected light, it seemed that automatic segmentation of such images may require special considerations. We tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile (first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size. The method based on the minimum of the second derivative of the profile yielded the most accurate area estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model of the optical properties of fluorescing objects and the video acquisition system is described which explains how the second derivative best approximates the position of the edge. Images PMID:2516431
Nakanishi, Rine; Sankaran, Sethuraman; Grady, Leo; Malpeso, Jenifer; Yousfi, Razik; Osawa, Kazuhiro; Ceponiene, Indre; Nazarat, Negin; Rahmani, Sina; Kissel, Kendall; Jayawardena, Eranthi; Dailing, Christopher; Zarins, Christopher; Koo, Bon-Kwon; Min, James K; Taylor, Charles A; Budoff, Matthew J
2018-03-23
Our goal was to evaluate the efficacy of a fully automated method for assessing the image quality (IQ) of coronary computed tomography angiography (CCTA). The machine learning method was trained using 75 CCTA studies by mapping features (noise, contrast, misregistration scores, and un-interpretability index) to an IQ score based on manual ground truth data. The automated method was validated on a set of 50 CCTA studies and subsequently tested on a new set of 172 CCTA studies against visual IQ scores on a 5-point Likert scale. The area under the curve in the validation set was 0.96. In the 172 CCTA studies, our method yielded a Cohen's kappa statistic for the agreement between automated and visual IQ assessment of 0.67 (p < 0.01). In the group where good to excellent (n = 163), fair (n = 6), and poor visual IQ scores (n = 3) were graded, 155, 5, and 2 of the patients received an automated IQ score > 50 %, respectively. Fully automated assessment of the IQ of CCTA data sets by machine learning was reproducible and provided similar results compared with visual analysis within the limits of inter-operator variability. • The proposed method enables automated and reproducible image quality assessment. • Machine learning and visual assessments yielded comparable estimates of image quality. • Automated assessment potentially allows for more standardised image quality. • Image quality assessment enables standardization of clinical trial results across different datasets.
The Open Microscopy Environment: open image informatics for the biological sciences
NASA Astrophysics Data System (ADS)
Blackburn, Colin; Allan, Chris; Besson, Sébastien; Burel, Jean-Marie; Carroll, Mark; Ferguson, Richard K.; Flynn, Helen; Gault, David; Gillen, Kenneth; Leigh, Roger; Leo, Simone; Li, Simon; Lindner, Dominik; Linkert, Melissa; Moore, Josh; Moore, William J.; Ramalingam, Balaji; Rozbicki, Emil; Rustici, Gabriella; Tarkowska, Aleksandra; Walczysko, Petr; Williams, Eleanor; Swedlow, Jason R.
2016-07-01
Despite significant advances in biological imaging and analysis, major informatics challenges remain unsolved: file formats are proprietary, storage and analysis facilities are lacking, as are standards for sharing image data and results. While the open FITS file format is ubiquitous in astronomy, astronomical imaging shares many challenges with biological imaging, including the need to share large image sets using secure, cross-platform APIs, and the need for scalable applications for processing and visualization. The Open Microscopy Environment (OME) is an open-source software framework developed to address these challenges. OME tools include: an open data model for multidimensional imaging (OME Data Model); an open file format (OME-TIFF) and library (Bio-Formats) enabling free access to images (5D+) written in more than 145 formats from many imaging domains, including FITS; and a data management server (OMERO). The Java-based OMERO client-server platform comprises an image metadata store, an image repository, visualization and analysis by remote access, allowing sharing and publishing of image data. OMERO provides a means to manage the data through a multi-platform API. OMERO's model-based architecture has enabled its extension into a range of imaging domains, including light and electron microscopy, high content screening, digital pathology and recently into applications using non-image data from clinical and genomic studies. This is made possible using the Bio-Formats library. The current release includes a single mechanism for accessing image data of all types, regardless of original file format, via Java, C/C++ and Python and a variety of applications and environments (e.g. ImageJ, Matlab and R).
iScreen: Image-Based High-Content RNAi Screening Analysis Tools.
Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua
2015-09-01
High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.
Valm, Alex M; Mark Welch, Jessica L; Rieken, Christopher W; Hasegawa, Yuko; Sogin, Mitchell L; Oldenbourg, Rudolf; Dewhirst, Floyd E; Borisy, Gary G
2011-03-08
Microbes in nature frequently function as members of complex multitaxon communities, but the structural organization of these communities at the micrometer level is poorly understood because of limitations in labeling and imaging technology. We report here a combinatorial labeling strategy coupled with spectral image acquisition and analysis that greatly expands the number of fluorescent signatures distinguishable in a single image. As an imaging proof of principle, we first demonstrated visualization of Escherichia coli labeled by fluorescence in situ hybridization (FISH) with 28 different binary combinations of eight fluorophores. As a biological proof of principle, we then applied this Combinatorial Labeling and Spectral Imaging FISH (CLASI-FISH) strategy using genus- and family-specific probes to visualize simultaneously and differentiate 15 different phylotypes in an artificial mixture of laboratory-grown microbes. We then illustrated the utility of our method for the structural analysis of a natural microbial community, namely, human dental plaque, a microbial biofilm. We demonstrate that 15 taxa in the plaque community can be imaged simultaneously and analyzed and that this community was dominated by early colonizers, including species of Streptococcus, Prevotella, Actinomyces, and Veillonella. Proximity analysis was used to determine the frequency of inter- and intrataxon cell-to-cell associations which revealed statistically significant intertaxon pairings. Cells of the genera Prevotella and Actinomyces showed the most interspecies associations, suggesting a central role for these genera in establishing and maintaining biofilm complexity. The results provide an initial systems-level structural analysis of biofilm organization.
Visual Image Sensor Organ Replacement: Implementation
NASA Technical Reports Server (NTRS)
Maluf, A. David (Inventor)
2011-01-01
Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.
Rueckl, Martin; Lenzi, Stephen C; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W
2017-01-01
The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca 2+ -imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca 2+ imaging datasets, particularly when these have been acquired at different spatial scales.
Rueckl, Martin; Lenzi, Stephen C.; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W.
2017-01-01
The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca2+-imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca2+ imaging datasets, particularly when these have been acquired at different spatial scales. PMID:28706482
2006-05-01
tubes utilizing thin- filmed technology allowing for a higher SNR, and the F4949G goggles were tested. Twelve participants tested each goggle under six...LogMAR Visual Acuity as a Function of Illumination, Contrast, and NVG ........ 37 Repeated Measures Within-Subjects Analysis of Variance...auto-gated power supply and thin- filmed technology. The Pinnacle’sTM thin- filmed technology gave the image intensifier tube an increase in the signal-to
2013-05-29
not necessarily express the views of and should not be attributed to ESA. 1 and visual navigation to maneuver autonomously to reduce the size of the...successful orbit and three-dimensional imaging of an RSO, using passive visual -only navigation and real-time near-optimal guidance. The mission design...Kit ( STK ) in the Earth-centered Earth-fixed (ECF) co- ordinate system, loaded to Simulink and transformed to the BFF for calculation of the SRP
Kero, Tanja; Lindsjö, Lars; Sörensen, Jens; Lubberink, Mark
2016-08-01
(11)C-PIB PET is a promising non-invasive diagnostic tool for cardiac amyloidosis. Semiautomatic analysis of PET data is now available but it is not known how accurate these methods are for amyloid imaging. The aim of this study was to evaluate the feasibility of one semiautomatic software tool for analysis and visualization of (11)C-PIB left ventricular retention index (RI) in cardiac amyloidosis. Patients with systemic amyloidosis and cardiac involvement (n = 10) and healthy controls (n = 5) were investigated with dynamic (11)C-PIB PET. Two observers analyzed the PET studies with semiautomatic software to calculate the left ventricular RI of (11)C-PIB and to create parametric images. The mean RI at 15-25 min from the semiautomatic analysis was compared with RI based on manual analysis and showed comparable values (0.056 vs 0.054 min(-1) for amyloidosis patients and 0.024 vs 0.025 min(-1) in healthy controls; P = .78) and the correlation was excellent (r = 0.98). Inter-reader reproducibility also was excellent (intraclass correlation coefficient, ICC > 0.98). Parametric polarmaps and histograms made visual separation of amyloidosis patients and healthy controls fast and simple. Accurate semiautomatic analysis of cardiac (11)C-PIB RI in amyloidosis patients is feasible. Parametric polarmaps and histograms make visual interpretation fast and simple.
Visual Sensing for Urban Flood Monitoring
Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han
2015-01-01
With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201
NASA Astrophysics Data System (ADS)
Maragos, Petros
The topics discussed at the conference include hierarchical image coding, motion analysis, feature extraction and image restoration, video coding, and morphological and related nonlinear filtering. Attention is also given to vector quantization, morphological image processing, fractals and wavelets, architectures for image and video processing, image segmentation, biomedical image processing, and model-based analysis. Papers are presented on affine models for motion and shape recovery, filters for directly detecting surface orientation in an image, tracking of unresolved targets in infrared imagery using a projection-based method, adaptive-neighborhood image processing, and regularized multichannel restoration of color images using cross-validation. (For individual items see A93-20945 to A93-20951)
An edge-directed interpolation method for fetal spine MR images.
Yu, Shaode; Zhang, Rui; Wu, Shibin; Hu, Jiani; Xie, Yaoqin
2013-10-10
Fetal spinal magnetic resonance imaging (MRI) is a prenatal routine for proper assessment of fetus development, especially when suspected spinal malformations occur while ultrasound fails to provide details. Limited by hardware, fetal spine MR images suffer from its low resolution.High-resolution MR images can directly enhance readability and improve diagnosis accuracy. Image interpolation for higher resolution is required in clinical situations, while many methods fail to preserve edge structures. Edge carries heavy structural messages of objects in visual scenes for doctors to detect suspicions, classify malformations and make correct diagnosis. Effective interpolation with well-preserved edge structures is still challenging. In this paper, we propose an edge-directed interpolation (EDI) method and apply it on a group of fetal spine MR images to evaluate its feasibility and performance. This method takes edge messages from Canny edge detector to guide further pixel modification. First, low-resolution (LR) images of fetal spine are interpolated into high-resolution (HR) images with targeted factor by bi-linear method. Then edge information from LR and HR images is put into a twofold strategy to sharpen or soften edge structures. Finally a HR image with well-preserved edge structures is generated. The HR images obtained from proposed method are validated and compared with that from other four EDI methods. Performances are evaluated from six metrics, and subjective analysis of visual quality is based on regions of interest (ROI). All these five EDI methods are able to generate HR images with enriched details. From quantitative analysis of six metrics, the proposed method outperforms the other four from signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM) and mutual information (MI) with seconds-level time consumptions (TC). Visual analysis of ROI shows that the proposed method maintains better consistency in edge structures with the original images. The proposed method classifies edge orientations into four categories and well preserves structures. It generates convincing HR images with fine details and is suitable in real-time situations. Iterative curvature-based interpolation (ICBI) method may result in crisper edges, while the other three methods are sensitive to noise and artifacts.
Farragher, Tracey M; Shickle, Darren
2018-01-01
Objective To determine the prevalence of, associations with and diagnoses leading to mild visual impairment or worse (logMAR >0.3) in middle-aged adults in the UK Biobank study. Methods and analysis Prevalence estimates for monocular and binocular visual impairment were determined for the UK Biobank participants with fundus photographs and spectral domain optical coherence tomography images. Associations with socioeconomic, biometric, lifestyle and medical variables were investigated for cases with visual impairment and matched controls, using multinomial logistic regression models. Self-reported eye history and image grading results were used to identify the primary diagnoses leading to visual impairment for a sample of 25% of cases. Results For the 65 033 UK Biobank participants, aged 40–69 years and with fundus images, 6682 (10.3%) and 1677 (2.6%) had mild visual impairment or worse in one or both eyes, respectively. Increasing deprivation, age and ethnicity were independently associated with both monocular and binocular visual impairment. No primary diagnosis for the recorded level of visual impairment could be identified for 49.8% of eyes. The most common identifiable diagnoses leading to visual impairment were cataract, amblyopia, uncorrected refractive error and vitreoretinal interface abnormalities. Conclusions The prevalence of visual impairment in the UK Biobank study cohort is lower than for population-based studies from other industrialised countries. Monocular and binocular visual impairment are associated with increasing deprivation, age and ethnicity. The UK Biobank dataset does not allow confident identification of the causes of visual impairment, and the results may not be applicable to the wider UK population. PMID:29657974
Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree
ERIC Educational Resources Information Center
Chen, Wei-Bang
2012-01-01
The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…
USDA-ARS?s Scientific Manuscript database
Vegetative cover can be quantified quickly and consistently and often at lower cost with image analysis of color digital images than with visual assessments. Image-based mapping of vegetative cover for large-scale research and management decisions can now be considered with the accuracy of these met...
Generating descriptive visual words and visual phrases for large-scale image applications.
Zhang, Shiliang; Tian, Qi; Hua, Gang; Huang, Qingming; Gao, Wen
2011-09-01
Bag-of-visual Words (BoWs) representation has been applied for various problems in the fields of multimedia and computer vision. The basic idea is to represent images as visual documents composed of repeatable and distinctive visual elements, which are comparable to the text words. Notwithstanding its great success and wide adoption, visual vocabulary created from single-image local descriptors is often shown to be not as effective as desired. In this paper, descriptive visual words (DVWs) and descriptive visual phrases (DVPs) are proposed as the visual correspondences to text words and phrases, where visual phrases refer to the frequently co-occurring visual word pairs. Since images are the carriers of visual objects and scenes, a descriptive visual element set can be composed by the visual words and their combinations which are effective in representing certain visual objects or scenes. Based on this idea, a general framework is proposed for generating DVWs and DVPs for image applications. In a large-scale image database containing 1506 object and scene categories, the visual words and visual word pairs descriptive to certain objects or scenes are identified and collected as the DVWs and DVPs. Experiments show that the DVWs and DVPs are informative and descriptive and, thus, are more comparable with the text words than the classic visual words. We apply the identified DVWs and DVPs in several applications including large-scale near-duplicated image retrieval, image search re-ranking, and object recognition. The combination of DVW and DVP performs better than the state of the art in large-scale near-duplicated image retrieval in terms of accuracy, efficiency and memory consumption. The proposed image search re-ranking algorithm: DWPRank outperforms the state-of-the-art algorithm by 12.4% in mean average precision and about 11 times faster in efficiency.
NASA Technical Reports Server (NTRS)
Hasler, A. F.
1999-01-01
The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.
NASA Technical Reports Server (NTRS)
Hasler, A. Fritz; Allen, Jesse
1999-01-01
The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape in standard and HDTV that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.
Modeling visual problem solving as analogical reasoning.
Lovett, Andrew; Forbus, Kenneth
2017-01-01
We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Serial grouping of 2D-image regions with object-based attention in humans.
Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R
2016-06-13
After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas.
2011-01-01
Introduction The human epidermal growth factor receptor 2 (HER2) is an established biomarker for management of patients with breast cancer. While conventional testing of HER2 protein expression is based on semi-quantitative visual scoring of the immunohistochemistry (IHC) result, efforts to reduce inter-observer variation and to produce continuous estimates of the IHC data are potentiated by digital image analysis technologies. Methods HER2 IHC was performed on the tissue microarrays (TMAs) of 195 patients with an early ductal carcinoma of the breast. Digital images of the IHC slides were obtained by Aperio ScanScope GL Slide Scanner. Membrane connectivity algorithm (HER2-CONNECT™, Visiopharm) was used for digital image analysis (DA). A pathologist evaluated the images on the screen twice (visual evaluations: VE1 and VE2). HER2 fluorescence in situ hybridization (FISH) was performed on the corresponding sections of the TMAs. The agreement between the IHC HER2 scores, obtained by VE1, VE2, and DA was tested for individual TMA spots and patient's maximum TMA spot values (VE1max, VE2max, DAmax). The latter were compared with the FISH data. Correlation of the continuous variable of the membrane connectivity estimate with the FISH data was tested. Results The pathologist intra-observer agreement (VE1 and VE2) on HER2 IHC score was almost perfect: kappa 0.91 (by spot) and 0.88 (by patient). The agreement between visual evaluation and digital image analysis was almost perfect at the spot level (kappa 0.86 and 0.87, with VE1 and VE2 respectively) and at the patient level (kappa 0.80 and 0.86, with VE1max and VE2max, respectively). The DA was more accurate than VE in detection of FISH-positive patients by recruiting 3 or 2 additional FISH-positive patients to the IHC score 2+ category from the IHC 0/1+ category by VE1max or VE2max, respectively. The DA continuous variable of the membrane connectivity correlated with the FISH data (HER2 and CEP17 copy numbers, and HER2/CEP17 ratio). Conclusion HER2 IHC digital image analysis based on membrane connectivity estimate was in almost perfect agreement with the visual evaluation of the pathologist and more accurate in detection of HER2 FISH-positive patients. Most immediate benefit of integrating the DA algorithm into the routine pathology HER2 testing may be obtained by alerting/reassuring pathologists of potentially misinterpreted IHC 0/1+ versus 2+ cases. PMID:21943197
Laurinaviciene, Aida; Dasevicius, Darius; Ostapenko, Valerijus; Jarmalaite, Sonata; Lazutka, Juozas; Laurinavicius, Arvydas
2011-09-23
The human epidermal growth factor receptor 2 (HER2) is an established biomarker for management of patients with breast cancer. While conventional testing of HER2 protein expression is based on semi-quantitative visual scoring of the immunohistochemistry (IHC) result, efforts to reduce inter-observer variation and to produce continuous estimates of the IHC data are potentiated by digital image analysis technologies. HER2 IHC was performed on the tissue microarrays (TMAs) of 195 patients with an early ductal carcinoma of the breast. Digital images of the IHC slides were obtained by Aperio ScanScope GL Slide Scanner. Membrane connectivity algorithm (HER2-CONNECT, Visiopharm) was used for digital image analysis (DA). A pathologist evaluated the images on the screen twice (visual evaluations: VE1 and VE2). HER2 fluorescence in situ hybridization (FISH) was performed on the corresponding sections of the TMAs. The agreement between the IHC HER2 scores, obtained by VE1, VE2, and DA was tested for individual TMA spots and patient's maximum TMA spot values (VE1max, VE2max, DAmax). The latter were compared with the FISH data. Correlation of the continuous variable of the membrane connectivity estimate with the FISH data was tested. The pathologist intra-observer agreement (VE1 and VE2) on HER2 IHC score was almost perfect: kappa 0.91 (by spot) and 0.88 (by patient). The agreement between visual evaluation and digital image analysis was almost perfect at the spot level (kappa 0.86 and 0.87, with VE1 and VE2 respectively) and at the patient level (kappa 0.80 and 0.86, with VE1max and VE2max, respectively). The DA was more accurate than VE in detection of FISH-positive patients by recruiting 3 or 2 additional FISH-positive patients to the IHC score 2+ category from the IHC 0/1+ category by VE1max or VE2max, respectively. The DA continuous variable of the membrane connectivity correlated with the FISH data (HER2 and CEP17 copy numbers, and HER2/CEP17 ratio). HER2 IHC digital image analysis based on membrane connectivity estimate was in almost perfect agreement with the visual evaluation of the pathologist and more accurate in detection of HER2 FISH-positive patients. Most immediate benefit of integrating the DA algorithm into the routine pathology HER2 testing may be obtained by alerting/reassuring pathologists of potentially misinterpreted IHC 0/1+ versus 2+ cases.
Smet, M H; Breysem, L; Mussen, E; Bosmans, H; Marshall, N W; Cockmartin, L
2018-07-01
To evaluate the impact of digital detector, dose level and post-processing on neonatal chest phantom X-ray image quality (IQ). A neonatal phantom was imaged using four different detectors: a CR powder phosphor (PIP), a CR needle phosphor (NIP) and two wireless CsI DR detectors (DXD and DRX). Five different dose levels were studied for each detector and two post-processing algorithms evaluated for each vendor. Three paediatric radiologists scored the images using European quality criteria plus additional questions on vascular lines, noise and disease simulation. Visual grading characteristics and ordinal regression statistics were used to evaluate the effect of detector type, post-processing and dose on VGA score (VGAS). No significant differences were found between the NIP, DXD and CRX detectors (p>0.05) whereas the PIP detector had significantly lower VGAS (p< 0.0001). Processing did not influence VGAS (p=0.819). Increasing dose resulted in significantly higher VGAS (p<0.0001). Visual grading analysis (VGA) identified a detector air kerma/image (DAK/image) of ~2.4 μGy as an ideal working point for NIP, DXD and DRX detectors. VGAS tracked IQ differences between detectors and dose levels but not image post-processing changes. VGA showed a DAK/image value above which perceived IQ did not improve, potentially useful for commissioning. • A VGA study detects IQ differences between detectors and dose levels. • The NIP detector matched the VGAS of the CsI DR detectors. • VGA data are useful in setting initial detector air kerma level. • Differences in NNPS were consistent with changes in VGAS.
Kuo, Phillip Hsin; Avery, Ryan; Krupinski, Elizabeth; Lei, Hong; Bauer, Adam; Sherman, Scott; McMillan, Natalie; Seibyl, John; Zubal, George
2013-03-01
A fully automated objective striatal analysis (OSA) program that quantitates dopamine transporter uptake in subjects with suspected Parkinson's disease was applied to images from clinical (123)I-ioflupane studies. The striatal binding ratios or alternatively the specific binding ratio (SBR) of the lowest putamen uptake was computed, and receiver-operating-characteristic (ROC) analysis was applied to 94 subjects to determine the best discriminator using this quantitative method. Ninety-four (123)I-ioflupane SPECT scans were analyzed from patients referred to our clinical imaging department and were reconstructed using the manufacturer-supplied reconstruction and filtering parameters for the radiotracer. Three trained readers conducted independent visual interpretations and reported each case as either normal or showing dopaminergic deficit (abnormal). The same images were analyzed using the OSA software, which locates the striatal and occipital structures and places regions of interest on the caudate and putamen. Additionally, the OSA places a region of interest on the occipital region that is used to calculate the background-subtracted SBR. The lower SBR of the 2 putamen regions was taken as the quantitative report. The 33 normal (bilateral comma-shaped striata) and 61 abnormal (unilateral or bilateral dopaminergic deficit) studies were analyzed to generate ROC curves. Twenty-nine of the scans were interpreted as normal and 59 as abnormal by all 3 readers. For 12 scans, the 3 readers did not unanimously agree in their interpretations (discordant). The ROC analysis, which used the visual-majority-consensus interpretation from the readers as the gold standard, yielded an area under the curve of 0.958 when using 1.08 as the threshold SBR for the lowest putamen. The sensitivity and specificity of the automated quantitative analysis were 95% and 89%, respectively. The OSA program delivers SBR quantitative values that have a high sensitivity and specificity, compared with visual interpretations by trained nuclear medicine readers. Such a program could be a helpful aid for readers not yet experienced with (123)I-ioflupane SPECT images and if further adapted and validated may be useful to assess disease progression during pharmaceutical testing of therapies.
Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles
2017-05-26
Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.
Local spatio-temporal analysis in vision systems
NASA Astrophysics Data System (ADS)
Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David
1994-07-01
The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.
Liu, Jinping; Tang, Zhaohui; Xu, Pengfei; Liu, Wenzhong; Zhang, Jin; Zhu, Jianyong
2016-06-29
The topic of online product quality inspection (OPQI) with smart visual sensors is attracting increasing interest in both the academic and industrial communities on account of the natural connection between the visual appearance of products with their underlying qualities. Visual images captured from granulated products (GPs), e.g., cereal products, fabric textiles, are comprised of a large number of independent particles or stochastically stacking locally homogeneous fragments, whose analysis and understanding remains challenging. A method of image statistical modeling-based OPQI for GP quality grading and monitoring by a Weibull distribution(WD) model with a semi-supervised learning classifier is presented. WD-model parameters (WD-MPs) of GP images' spatial structures, obtained with omnidirectional Gaussian derivative filtering (OGDF), which were demonstrated theoretically to obey a specific WD model of integral form, were extracted as the visual features. Then, a co-training-style semi-supervised classifier algorithm, named COSC-Boosting, was exploited for semi-supervised GP quality grading, by integrating two independent classifiers with complementary nature in the face of scarce labeled samples. Effectiveness of the proposed OPQI method was verified and compared in the field of automated rice quality grading with commonly-used methods and showed superior performance, which lays a foundation for the quality control of GP on assembly lines.
Jiménez, J; López, A M; Cruz, J; Esteban, F J; Navas, J; Villoslada, P; Ruiz de Miras, J
2014-10-01
This study presents a Web platform (http://3dfd.ujaen.es) for computing and analyzing the 3D fractal dimension (3DFD) from volumetric data in an efficient, visual and interactive way. The Web platform is specially designed for working with magnetic resonance images (MRIs) of the brain. The program estimates the 3DFD by calculating the 3D box-counting of the entire volume of the brain, and also of its 3D skeleton. All of this is done in a graphical, fast and optimized way by using novel technologies like CUDA and WebGL. The usefulness of the Web platform presented is demonstrated by its application in a case study where an analysis and characterization of groups of 3D MR images is performed for three neurodegenerative diseases: Multiple Sclerosis, Intrauterine Growth Restriction and Alzheimer's disease. To the best of our knowledge, this is the first Web platform that allows the users to calculate, visualize, analyze and compare the 3DFD from MRI images in the cloud. Copyright © 2014 Elsevier Inc. All rights reserved.
CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.
Bray, Mark-Anthony; Carpenter, Anne E
2015-11-04
Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.
Scene and human face recognition in the central vision of patients with glaucoma
Aptel, Florent; Attye, Arnaud; Guyader, Nathalie; Boucart, Muriel; Chiquet, Christophe; Peyrin, Carole
2018-01-01
Primary open-angle glaucoma (POAG) firstly mainly affects peripheral vision. Current behavioral studies support the idea that visual defects of patients with POAG extend into parts of the central visual field classified as normal by static automated perimetry analysis. This is particularly true for visual tasks involving processes of a higher level than mere detection. The purpose of this study was to assess visual abilities of POAG patients in central vision. Patients were assigned to two groups following a visual field examination (Humphrey 24–2 SITA-Standard test). Patients with both peripheral and central defects and patients with peripheral but no central defect, as well as age-matched controls, participated in the experiment. All participants had to perform two visual tasks where low-contrast stimuli were presented in the central 6° of the visual field. A categorization task of scene images and human face images assessed high-level visual recognition abilities. In contrast, a detection task using the same stimuli assessed low-level visual function. The difference in performance between detection and categorization revealed the cost of high-level visual processing. Compared to controls, patients with a central visual defect showed a deficit in both detection and categorization of all low-contrast images. This is consistent with the abnormal retinal sensitivity as assessed by perimetry. However, the deficit was greater for categorization than detection. Patients without a central defect showed similar performances to the controls concerning the detection and categorization of faces. However, while the detection of scene images was well-maintained, these patients showed a deficit in their categorization. This suggests that the simple loss of peripheral vision could be detrimental to scene recognition, even when the information is displayed in central vision. This study revealed subtle defects in the central visual field of POAG patients that cannot be predicted by static automated perimetry assessment using Humphrey 24–2 SITA-Standard test. PMID:29481572
Digital to analog conversion and visual evaluation of Thematic Mapper data
McCord, James R.; Binnie, Douglas R.; Seevers, Paul M.
1985-01-01
As a part of the National Aeronautics and Space Administration Landsat D Image Data Quality Analysis Program, the Earth Resources Observation Systems Data Center (EDC) developed procedures to optimize the visual information content of Thematic Mapper data and evaluate the resulting photographic products by visual interpretation. A digital-to-analog transfer function was developed which would properly place the digital values on the most useable portion of a film response curve. Individual black-and-white transparencies generated using the resulting look-up tables were utilized in the production of color-composite images with varying band combinations. Four experienced photointerpreters ranked 2-cm-diameter (0. 75 inch) chips of selected image features of each band combination for ease of interpretability. A nonparametric rank-order test determined the significance of interpreter preference for the band combinations.
Digital to Analog Conversion and Visual Evaluation of Thematic Mapper Data
McCord, James R.; Binnie, Douglas R.; Seevers, Paul M.
1985-01-01
As a part of the National Aeronautics and Space Administration Landsat D Image Data Quality Analysis Program, the Earth Resources Observation Systems Data Center (EDC) developed procedures to optimize the visual information content of Thematic Mapper data and evaluate the resulting photographic products by visual interpretation. A digital-to-analog transfer function was developed which would properly place the digital values on the most useable portion of a film response curve. Individual black-and-white transparencies generated using the resulting look-up tables were utilized in the production of color-composite images with varying band combinations. Four experienced photointerpreters ranked 2-cm-diameter (0. 75 inch) chips of selected image features of each band combination for ease of interpretability. A nonparametric rank-order test determined the significance of interpreter preference for the band combinations.
Kim, Jahae; Cho, Sang-Geon; Song, Minchul; Kang, Sae-Ryung; Kwon, Seong Young; Choi, Kang-Ho; Choi, Seong-Min; Kim, Byeong-Chae; Song, Ho-Chun
2016-01-01
Abstract To compare diagnostic performance and confidence of a standard visual reading and combined 3-dimensional stereotactic surface projection (3D-SSP) results to discriminate between Alzheimer disease (AD)/mild cognitive impairment (MCI), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). [18F]fluorodeoxyglucose (FDG) PET brain images were obtained from 120 patients (64 AD/MCI, 38 DLB, and 18 FTD) who were clinically confirmed over 2 years follow-up. Three nuclear medicine physicians performed the diagnosis and rated diagnostic confidence twice; once by standard visual methods, and once by adding of 3D-SSP. Diagnostic performance and confidence were compared between the 2 methods. 3D-SSP showed higher sensitivity, specificity, accuracy, positive, and negative predictive values to discriminate different types of dementia compared with the visual method alone, except for AD/MCI specificity and FTD sensitivity. Correction of misdiagnosis after adding 3D-SSP images was greatest for AD/MCI (56%), followed by DLB (13%) and FTD (11%). Diagnostic confidence also increased in DLB (visual: 3.2; 3D-SSP: 4.1; P < 0.001), followed by AD/MCI (visual: 3.1; 3D-SSP: 3.8; P = 0.002) and FTD (visual: 3.5; 3D-SSP: 4.2; P = 0.022). Overall, 154/360 (43%) cases had a corrected misdiagnosis or improved diagnostic confidence for the correct diagnosis. The addition of 3D-SSP images to visual analysis helped to discriminate different types of dementia in FDG PET scans, by correcting misdiagnoses and enhancing diagnostic confidence in the correct diagnosis. Improvement of diagnostic accuracy and confidence by 3D-SSP images might help to determine the cause of dementia and appropriate treatment. PMID:27930593
Muir, Dylan R; Kampa, Björn M
2014-01-01
Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.
Muir, Dylan R.; Kampa, Björn M.
2015-01-01
Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories1. PMID:25653614
Richard Tran Mills; Jitendra Kumar; Forrest M. Hoffman; William W. Hargrove; Joseph P. Spruce; Steven P. Norman
2013-01-01
We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m à 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous...
The Effect of Multispectral Image Fusion Enhancement on Human Efficiency
2017-03-20
human visual system by applying a technique commonly used in visual percep- tion research : ideal observer analysis. Using this approach, we establish...applications, analytic tech- niques, and procedural methods used across studies. This paper uses ideal observer analysis to establish a frame- work that allows...augmented similarly to incorpo- rate research involving more complex stimulus content. Additionally, the ideal observer can be adapted for a number of
Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging
Lauzon, Carolyn B.; Asman, Andrew J.; Esparza, Michael L.; Burns, Scott S.; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W.; Davis, Nicole; Cutting, Laurie E.; Landman, Bennett A.
2013-01-01
Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low dimensional manifold reveal qualitative, but clear, QA-study associations and suggest that automated outlier/anomaly detection would be feasible. PMID:23637895
Simultaneous analysis and quality assurance for diffusion tensor imaging.
Lauzon, Carolyn B; Asman, Andrew J; Esparza, Michael L; Burns, Scott S; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E; Landman, Bennett A
2013-01-01
Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low dimensional manifold reveal qualitative, but clear, QA-study associations and suggest that automated outlier/anomaly detection would be feasible.
Cehreli, S Burcak; Polat-Ozsoy, Omur; Sar, Cagla; Cubukcu, H Evren; Cehreli, Zafer C
2012-04-01
The amount of the residual adhesive after bracket debonding is frequently assessed in a qualitative manner, utilizing the adhesive remnant index (ARI). This study aimed to investigate whether quantitative assessment of the adhesive remnant yields more precise results compared to qualitative methods utilizing the 4- and 5-point ARI scales. Twenty debonded brackets were selected. Evaluation and scoring of the adhesive remnant on bracket bases were made consecutively using: 1. qualitative assessment (visual scoring) and 2. quantitative measurement (image analysis) on digital photographs. Image analysis was made on scanning electron micrographs (SEM) and high-precision elemental maps of the adhesive remnant as determined by energy dispersed X-ray spectrometry. Evaluations were made in accordance with the original 4-point and the modified 5-point ARI scales. Intra-class correlation coefficients (ICCs) were calculated, and the data were evaluated using Friedman test followed by Wilcoxon signed ranks test with Bonferroni correction. ICC statistics indicated high levels of agreement for qualitative visual scoring among examiners. The 4-point ARI scale was compliant with the SEM assessments but indicated significantly less adhesive remnant compared to the results of quantitative elemental mapping. When the 5-point scale was used, both quantitative techniques yielded similar results with those obtained qualitatively. These results indicate that qualitative visual scoring using the ARI is capable of generating similar results with those assessed by quantitative image analysis techniques. In particular, visual scoring with the 5-point ARI scale can yield similar results with both the SEM analysis and elemental mapping.
Leonard, Annemarie K; Loughran, Elizabeth A; Klymenko, Yuliya; Liu, Yueying; Kim, Oleg; Asem, Marwa; McAbee, Kevin; Ravosa, Matthew J; Stack, M Sharon
2018-01-01
This chapter highlights methods for visualization and analysis of extracellular matrix (ECM) proteins, with particular emphasis on collagen type I, the most abundant protein in mammals. Protocols described range from advanced imaging of complex in vivo matrices to simple biochemical analysis of individual ECM proteins. The first section of this chapter describes common methods to image ECM components and includes protocols for second harmonic generation, scanning electron microscopy, and several histological methods of ECM localization and degradation analysis, including immunohistochemistry, Trichrome staining, and in situ zymography. The second section of this chapter details both a common transwell invasion assay and a novel live imaging method to investigate cellular behavior with respect to collagen and other ECM proteins of interest. The final section consists of common electrophoresis-based biochemical methods that are used in analysis of ECM proteins. Use of the methods described herein will enable researchers to gain a greater understanding of the role of ECM structure and degradation in development and matrix-related diseases such as cancer and connective tissue disorders. © 2018 Elsevier Inc. All rights reserved.
Chang, Yongjun; Paul, Anjan Kumar; Kim, Namkug; Baek, Jung Hwan; Choi, Young Jun; Ha, Eun Ju; Lee, Kang Dae; Lee, Hyoung Shin; Shin, DaeSeock; Kim, Nakyoung
2016-01-01
To develop a semiautomated computer-aided diagnosis (cad) system for thyroid cancer using two-dimensional ultrasound images that can be used to yield a second opinion in the clinic to differentiate malignant and benign lesions. A total of 118 ultrasound images that included axial and longitudinal images from patients with biopsy-confirmed malignant (n = 30) and benign (n = 29) nodules were collected. Thyroid cad software was developed to extract quantitative features from these images based on thyroid nodule segmentation in which adaptive diffusion flow for active contours was used. Various features, including histogram, intensity differences, elliptical fit, gray-level co-occurrence matrixes, and gray-level run-length matrixes, were evaluated for each region imaged. Based on these imaging features, a support vector machine (SVM) classifier was used to differentiate benign and malignant nodules. Leave-one-out cross-validation with sequential forward feature selection was performed to evaluate the overall accuracy of this method. Additionally, analyses with contingency tables and receiver operating characteristic (ROC) curves were performed to compare the performance of cad with visual inspection by expert radiologists based on established gold standards. Most univariate features for this proposed cad system attained accuracies that ranged from 78.0% to 83.1%. When optimal SVM parameters that were established using a grid search method with features that radiologists use for visual inspection were employed, the authors could attain rates of accuracy that ranged from 72.9% to 84.7%. Using leave-one-out cross-validation results in a multivariate analysis of various features, the highest accuracy achieved using the proposed cad system was 98.3%, whereas visual inspection by radiologists reached 94.9% accuracy. To obtain the highest accuracies, "axial ratio" and "max probability" in axial images were most frequently included in the optimal feature sets for the authors' proposed cad system, while "shape" and "calcification" in longitudinal images were most frequently included in the optimal feature sets for visual inspection by radiologists. The computed areas under curves in the ROC analysis were 0.986 and 0.979 for the proposed cad system and visual inspection by radiologists, respectively; no significant difference was detected between these groups. The use of thyroid cad to differentiate malignant from benign lesions shows accuracy similar to that obtained via visual inspection by radiologists. Thyroid cad might be considered a viable way to generate a second opinion for radiologists in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongjun; Paul, Anjan Kumar; Kim, Namkug, E-mail: namkugkim@gmail.com
Purpose: To develop a semiautomated computer-aided diagnosis (CAD) system for thyroid cancer using two-dimensional ultrasound images that can be used to yield a second opinion in the clinic to differentiate malignant and benign lesions. Methods: A total of 118 ultrasound images that included axial and longitudinal images from patients with biopsy-confirmed malignant (n = 30) and benign (n = 29) nodules were collected. Thyroid CAD software was developed to extract quantitative features from these images based on thyroid nodule segmentation in which adaptive diffusion flow for active contours was used. Various features, including histogram, intensity differences, elliptical fit, gray-level co-occurrencemore » matrixes, and gray-level run-length matrixes, were evaluated for each region imaged. Based on these imaging features, a support vector machine (SVM) classifier was used to differentiate benign and malignant nodules. Leave-one-out cross-validation with sequential forward feature selection was performed to evaluate the overall accuracy of this method. Additionally, analyses with contingency tables and receiver operating characteristic (ROC) curves were performed to compare the performance of CAD with visual inspection by expert radiologists based on established gold standards. Results: Most univariate features for this proposed CAD system attained accuracies that ranged from 78.0% to 83.1%. When optimal SVM parameters that were established using a grid search method with features that radiologists use for visual inspection were employed, the authors could attain rates of accuracy that ranged from 72.9% to 84.7%. Using leave-one-out cross-validation results in a multivariate analysis of various features, the highest accuracy achieved using the proposed CAD system was 98.3%, whereas visual inspection by radiologists reached 94.9% accuracy. To obtain the highest accuracies, “axial ratio” and “max probability” in axial images were most frequently included in the optimal feature sets for the authors’ proposed CAD system, while “shape” and “calcification” in longitudinal images were most frequently included in the optimal feature sets for visual inspection by radiologists. The computed areas under curves in the ROC analysis were 0.986 and 0.979 for the proposed CAD system and visual inspection by radiologists, respectively; no significant difference was detected between these groups. Conclusions: The use of thyroid CAD to differentiate malignant from benign lesions shows accuracy similar to that obtained via visual inspection by radiologists. Thyroid CAD might be considered a viable way to generate a second opinion for radiologists in clinical practice.« less
[Imaging Mass Spectrometry in Histopathologic Analysis].
Yamazaki, Fumiyoshi; Seto, Mitsutoshi
2015-04-01
Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) enables visualization of the distribution of a range of biomolecules by integrating biochemical information from mass spectrometry with positional information from microscopy. IMS identifies a target molecule. In addition, IMS enables global analysis of biomolecules containing unknown molecules by detecting the ratio of the molecular weight to electric charge without any target, which makes it possible to identify novel molecules. IMS generates data on the distribution of lipids and small molecules in tissues, which is difficult to visualize with either conventional counter-staining or immunohistochemistry. In this review, we firstly introduce the principle of imaging mass spectrometry and recent advances in the sample preparation method. Secondly, we present findings regarding biological samples, especially pathological ones. Finally, we discuss the limitations and problems of the IMS technique and clinical application, such as in drug development.
Anima: Modular Workflow System for Comprehensive Image Data Analysis
Rantanen, Ville; Valori, Miko; Hautaniemi, Sampsa
2014-01-01
Modern microscopes produce vast amounts of image data, and computational methods are needed to analyze and interpret these data. Furthermore, a single image analysis project may require tens or hundreds of analysis steps starting from data import and pre-processing to segmentation and statistical analysis; and ending with visualization and reporting. To manage such large-scale image data analysis projects, we present here a modular workflow system called Anima. Anima is designed for comprehensive and efficient image data analysis development, and it contains several features that are crucial in high-throughput image data analysis: programing language independence, batch processing, easily customized data processing, interoperability with other software via application programing interfaces, and advanced multivariate statistical analysis. The utility of Anima is shown with two case studies focusing on testing different algorithms developed in different imaging platforms and an automated prediction of alive/dead C. elegans worms by integrating several analysis environments. Anima is a fully open source and available with documentation at www.anduril.org/anima. PMID:25126541
Fractal analysis of radiologists' visual scanning pattern in screening mammography
NASA Astrophysics Data System (ADS)
Alamudun, Folami T.; Yoon, Hong-Jun; Hudson, Kathy; Morin-Ducote, Garnetta; Tourassi, Georgia
2015-03-01
Several researchers have investigated radiologists' visual scanning patterns with respect to features such as total time examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the complexity of the radiologists' visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant). The radiologists' scanpaths across the 4 mammographic views were mapped to a single 2-D image plane. Then, fractal analysis was applied on the composite 4- view scanpaths. For each case, the complexity of each radiologist's scanpath was measured using fractal dimension estimated with the box counting method. The association between the fractal dimension of the radiologists' visual scanpath, case pathology, case density, and radiologist experience was evaluated using fixed effects ANOVA. ANOVA showed that the complexity of the radiologists' visual search pattern in screening mammography is dependent on case specific attributes (breast parenchyma density and case pathology) as well as on reader attributes, namely experience level. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases. There is also substantial inter-observer variability which cannot be explained only by experience level.
Xie, Weilong; Yu, Kangfu; Pauls, K Peter; Navabi, Alireza
2012-04-01
The effectiveness of image analysis (IA) compared with an ordinal visual scale, for quantitative measurement of disease severity, its application in quantitative genetic studies, and its effect on the estimates of genetic parameters were investigated. Studies were performed using eight backcross-derived families of common bean (Phaseolus vulgaris) (n = 172) segregating for the molecular marker SU91, known to be associated with a quantitative trait locus (QTL) for resistance to common bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans. Even though both IA and visual assessments were highly repeatable, IA was more sensitive in detecting quantitative differences between bean genotypes. The CBB phenotypic difference between the two SU91 genotypic groups was consistently more than fivefold for IA assessments but generally only two- to threefold for visual assessments. Results suggest that the visual assessment results in overestimation of the effect of QTL in genetic studies. This may have been caused by lack of additivity and uneven intervals of the visual scale. Although visual assessment of disease severity is a useful tool for general selection in breeding programs, assessments using IA may be more suitable for phenotypic evaluations in quantitative genetic studies involving CBB resistance as well as other foliar diseases.
Analysis of Signs and Symbols of Caring and Nurturing in Photographs of Female Teachers
ERIC Educational Resources Information Center
Perlman, Edna Barromi
2014-01-01
This study explores how teachers visualize their professional persona. It is based on six case studies of female teachers in Israel, who photographed themselves at work, focusing on images of ideal situations of teaching. The study explores the self-perceptions of the teachers, which led to the construction of the images, by analysis of the signs…
[Quantitative data analysis for live imaging of bone.
Seno, Shigeto
Bone tissue is a hard tissue, it was difficult to observe the interior of the bone tissue alive. With the progress of microscopic technology and fluorescent probe technology in recent years, it becomes possible to observe various activities of various cells forming bone society. On the other hand, the quantitative increase in data and the diversification and complexity of the images makes it difficult to perform quantitative analysis by visual inspection. It has been expected to develop a methodology for processing microscopic images and data analysis. In this article, we introduce the research field of bioimage informatics which is the boundary area of biology and information science, and then outline the basic image processing technology for quantitative analysis of live imaging data of bone.
Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance
Yahata, Izumi; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio
2017-01-01
The effects of visual speech (the moving image of the speaker’s face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker’s face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker’s face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information. PMID:28141836
Visual scan-path analysis with feature space transient fixation moments
NASA Astrophysics Data System (ADS)
Dempere-Marco, Laura; Hu, Xiao-Peng; Yang, Guang-Zhong
2003-05-01
The study of eye movements provides useful insight into the cognitive processes underlying visual search tasks. The analysis of the dynamics of eye movements has often been approached from a purely spatial perspective. In many cases, however, it may not be possible to define meaningful or consistent dynamics without considering the features underlying the scan paths. In this paper, the definition of the feature space has been attempted through the concept of visual similarity and non-linear low dimensional embedding, which defines a mapping from the image space into a low dimensional feature manifold that preserves the intrinsic similarity of image patterns. This has enabled the definition of perceptually meaningful features without the use of domain specific knowledge. Based on this, this paper introduces a new concept called Feature Space Transient Fixation Moments (TFM). The approach presented tackles the problem of feature space representation of visual search through the use of TFM. We demonstrate the practical values of this concept for characterizing the dynamics of eye movements in goal directed visual search tasks. We also illustrate how this model can be used to elucidate the fundamental steps involved in skilled search tasks through the evolution of transient fixation moments.
Fractal Analysis of Radiologists Visual Scanning Pattern in Screening Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alamudun, Folami T; Yoon, Hong-Jun; Hudson, Kathy
2015-01-01
Several investigators have investigated radiologists visual scanning patterns with respect to features such as total time examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the complexity of the radiologists visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant). The radiologists scanpaths across the 4 mammographic views were mapped to a single 2-D image plane. Then,more » fractal analysis was applied on the derived scanpaths using the box counting method. For each case, the complexity of each radiologist s scanpath was estimated using fractal dimension. The association between gaze complexity, case pathology, case density, and radiologist experience was evaluated using 3 factor fixed effects ANOVA. ANOVA showed that case pathology, breast density, and experience level are all independent predictors of the visual scanning pattern complexity. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases as well as when breast parenchyma density changes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, S.D.; Smith, S.; Swank, P.R.
Visual cell profiles were used to analyze the distribution of atypical bronchial cells in sputum specimens from cigarette-smoking volunteers, cigarette-smoking asbestos workers and cigarette-smoking uranium miners. The preliminary results of these sputum visual cell profile studies have demonstrated distinctive distributions of bronchial cell atypias in progressive patterns of squamous metaplasia, mild, moderate and severe atypias and carcinoma, similar to those the authors have previously reported using cell image analysis techniques to determine an atypia status index (ASI). The information gained from this study will be helpful in further validating this ASI and subsequently achieving the ultimate goal of employing cellmore » image analysis for the rapid and precise identification of premalignant atypias in sputum.« less
Advanced Image Processing for Defect Visualization in Infrared Thermography
NASA Technical Reports Server (NTRS)
Plotnikov, Yuri A.; Winfree, William P.
1997-01-01
Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.
Visual just noticeable differences
NASA Astrophysics Data System (ADS)
Nankivil, Derek; Chen, Minghan; Wooley, C. Benjamin
2018-02-01
A visual just noticeable difference (VJND) is the amount of change in either an image (e.g. a photographic print) or in vision (e.g. due to a change in refractive power of a vision correction device or visually coupled optical system) that is just noticeable when compared with the prior state. Numerous theoretical and clinical studies have been performed to determine the amount of change in various visual inputs (power, spherical aberration, astigmatism, etc.) that result in a just noticeable visual change. Each of these approaches, in defining a VJND, relies on the comparison of two visual stimuli. The first stimulus is the nominal or baseline state and the second is the perturbed state that results in a VJND. Using this commonality, we converted each result to the change in the area of the modulation transfer function (AMTF) to provide a more fundamental understanding of what results in a VJND. We performed an analysis of the wavefront criteria from basic optics, the image quality metrics, and clinical studies testing various visual inputs, showing that fractional changes in AMTF resulting in one VJND range from 0.025 to 0.075. In addition, cycloplegia appears to desensitize the human visual system so that a much larger change in the retinal image is required to give a VJND. This finding may be of great import for clinical vision tests. Finally, we present applications of the VJND model for the determination of threshold ocular aberrations and manufacturing tolerances of visually coupled optical systems.
Resilience to the contralateral visual field bias as a window into object representations
Garcea, Frank E.; Kristensen, Stephanie; Almeida, Jorge; Mahon, Bradford Z.
2016-01-01
Viewing images of manipulable objects elicits differential blood oxygen level-dependent (BOLD) contrast across parietal and dorsal occipital areas of the human brain that support object-directed reaching, grasping, and complex object manipulation. However, it is unknown which object-selective regions of parietal cortex receive their principal inputs from the ventral object-processing pathway and which receive their inputs from the dorsal object-processing pathway. Parietal areas that receive their inputs from the ventral visual pathway, rather than from the dorsal stream, will have inputs that are already filtered through object categorization and identification processes. This predicts that parietal regions that receive inputs from the ventral visual pathway should exhibit object-selective responses that are resilient to contralateral visual field biases. To test this hypothesis, adult participants viewed images of tools and animals that were presented to the left or right visual fields during functional magnetic resonance imaging (fMRI). We found that the left inferior parietal lobule showed robust tool preferences independently of the visual field in which tool stimuli were presented. In contrast, a region in posterior parietal/dorsal occipital cortex in the right hemisphere exhibited an interaction between visual field and category: tool-preferences were strongest contralateral to the stimulus. These findings suggest that action knowledge accessed in the left inferior parietal lobule operates over inputs that are abstracted from the visual input and contingent on analysis by the ventral visual pathway, consistent with its putative role in supporting object manipulation knowledge. PMID:27160998
Li, Junjie; Zhang, Weixia; Chung, Ting-Fung; Slipchenko, Mikhail N; Chen, Yong P; Cheng, Ji-Xin; Yang, Chen
2015-07-23
We report a transient absorption (TA) imaging method for fast visualization and quantitative layer analysis of graphene and GO. Forward and backward imaging of graphene on various substrates under ambient condition was imaged with a speed of 2 μs per pixel. The TA intensity linearly increased with the layer number of graphene. Real-time TA imaging of GO in vitro with capability of quantitative analysis of intracellular concentration and ex vivo in circulating blood were demonstrated. These results suggest that TA microscopy is a valid tool for the study of graphene based materials.
Dual wavelength imaging allows analysis of membrane fusion of influenza virus inside cells.
Sakai, Tatsuya; Ohuchi, Masanobu; Imai, Masaki; Mizuno, Takafumi; Kawasaki, Kazunori; Kuroda, Kazumichi; Yamashina, Shohei
2006-02-01
Influenza virus hemagglutinin (HA) is a determinant of virus infectivity. Therefore, it is important to determine whether HA of a new influenza virus, which can potentially cause pandemics, is functional against human cells. The novel imaging technique reported here allows rapid analysis of HA function by visualizing viral fusion inside cells. This imaging was designed to detect fusion changing the spectrum of the fluorescence-labeled virus. Using this imaging, we detected the fusion between a virus and a very small endosome that could not be detected previously, indicating that the imaging allows highly sensitive detection of viral fusion.
Multifacet structure of observed reconstructed integral images.
Martínez-Corral, Manuel; Javidi, Bahram; Martínez-Cuenca, Raúl; Saavedra, Genaro
2005-04-01
Three-dimensional images generated by an integral imaging system suffer from degradations in the form of grid of multiple facets. This multifacet structure breaks the continuity of the observed image and therefore reduces its visual quality. We perform an analysis of this effect and present the guidelines in the design of lenslet imaging parameters for optimization of viewing conditions with respect to the multifacet degradation. We consider the optimization of the system in terms of field of view, observer position and pupil function, lenslet parameters, and type of reconstruction. Numerical tests are presented to verify the theoretical analysis.
Monitoring radiofrequency ablation with ultrasound Nakagami imaging.
Wang, Chiao-Yin; Geng, Xiaonan; Yeh, Ta-Sen; Liu, Hao-Li; Tsui, Po-Hsiang
2013-07-01
Radiofrequency ablation (RFA) is a widely used alternative modality in the treatment of liver tumors. Ultrasound B-mode imaging is an important tool to guide the insertion of the RFA electrode into the tissue. However, it is difficult to visualize the ablation zone because RFA induces the shadow effect in a B-scan. Based on the randomness of ultrasonic backscattering, this study proposes ultrasound Nakagami imaging, which is a well-established method for backscattered statistics analysis, as an approach to complement the conventional B-scan for evaluating the ablation region. Porcine liver samples (n = 6) were ablated using a RFA system and monitored by employing an ultrasound scanner equipped with a 7.5 MHz linear array transducer. During the stages of ablation (0-12 min) and postablation (12-24 min), the raw backscattered data were acquired at a sampling rate of 30 MHz for B-mode, Nakagami imaging, and polynomial approximation of Nakagami imaging. The contrast-to-noise ratio (CNR) was also calculated to compare the image contrasts of the B-mode and Nakagami images. The results demonstrated that the Nakagami image has the ability to visualize changes in the backscattered statistics in the ablation zone, including the shadow region during RFA. The average Nakagami parameter increased from 0.2 to 0.6 in the ablation stage, and then decreased to approximately 0.3 at the end of the postablation stage. Moreover, the CNR of the Nakagami image was threefold that of the B-mode image, showing that the Nakagami image has a better image contrast for monitoring RFA. Specifically, the use of the polynomial approximation equips the Nakagami image with an enhanced ability to estimate the range of the ablation region. This study demonstrated that ultrasound Nakagami imaging based on the analysis of backscattered statistics has the ability to visualize the RFA-induced ablation zone, even if the shadow effect exists in the B-scan.
Singh, U; Cui, Y; Dimaano, N; Mehta, S; Pruitt, S K; Yearley, J; Laterza, O F; Juco, J W; Dogdas, B
2018-06-04
Tumor infiltrating lymphocytes (TIL), especially T-cells, have both prognostic and therapeutic applications. The presence of CD8+ effector T-cells and the ratio of CD8+ cells to FOXP3+ regulatory T-cells have been used as biomarkers of disease prognosis to predict response to various immunotherapies. Blocking the interaction between inhibitory receptors on T-cells and their ligands with therapeutic antibodies including atezolizumab, nivolumab, pembrolizumab and tremelimumab increases the immune response against cancer cells and has shown significant improvement in clinical benefits and survival in several different tumor types. The improved clinical outcome is presumed to be associated with a higher tumor infiltration; therefore, it is thought that more accurate methods for measuring the amount of TIL could assist prognosis and predict treatment response. We have developed and validated quantitative immunohistochemistry (IHC) assays for CD3, CD8 and FOXP3 for immunophenotyping T-lymphocytes in tumor tissue. Various types of formalin fixed, paraffin embedded (FFPE) tumor tissues were immunolabeled with anti-CD3, anti-CD8 and anti-FOXP3 antibodies using an IHC autostainer. The tumor area of stained tissues, including the invasive margin of the tumor, was scored by a pathologist (visual scoring) and by computer-based quantitative image analysis. Two image analysis scores were obtained for the staining of each biomarker: the percent positive cells in the tumor area and positive cells/mm 2 tumor area. Comparison of visual vs. image analysis scoring methods using regression analysis showed high correlation and indicated that quantitative image analysis can be used to score the number of positive cells in IHC stained slides. To demonstrate that the IHC assays produce consistent results in normal daily testing, we evaluated the specificity, sensitivity and reproducibility of the IHC assays using both visual and image analysis scoring methods. We found that CD3, CD8 and FOXP3 IHC assays met the fit-for-purpose analytical acceptance validation criteria and that they can be used to support clinical studies.
Yokota, Hajime; Sakai, Koji; Tazoe, Jun; Goto, Mariko; Imai, Hiroshi; Teramukai, Satoshi; Yamada, Kei
2017-12-01
Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.
Hattab, Georges; Schlüter, Jan-Philip; Becker, Anke; Nattkemper, Tim W.
2017-01-01
In order to understand gene function in bacterial life cycles, time lapse bioimaging is applied in combination with different marker protocols in so called microfluidics chambers (i.e., a multi-well plate). In one experiment, a series of T images is recorded for one visual field, with a pixel resolution of 60 nm/px. Any (semi-)automatic analysis of the data is hampered by a strong image noise, low contrast and, last but not least, considerable irregular shifts during the acquisition. Image registration corrects such shifts enabling next steps of the analysis (e.g., feature extraction or tracking). Image alignment faces two obstacles in this microscopic context: (a) highly dynamic structural changes in the sample (i.e., colony growth) and (b) an individual data set-specific sample environment which makes the application of landmarks-based alignments almost impossible. We present a computational image registration solution, we refer to as ViCAR: (Vi)sual (C)ues based (A)daptive (R)egistration, for such microfluidics experiments, consisting of (1) the detection of particular polygons (outlined and segmented ones, referred to as visual cues), (2) the adaptive retrieval of three coordinates throughout different sets of frames, and finally (3) an image registration based on the relation of these points correcting both rotation and translation. We tested ViCAR with different data sets and have found that it provides an effective spatial alignment thereby paving the way to extract temporal features pertinent to each resulting bacterial colony. By using ViCAR, we achieved an image registration with 99.9% of image closeness, based on the average rmsd of 4.10−2 pixels, and superior results compared to a state of the art algorithm. PMID:28620411
Racadio, John M.; Abruzzo, Todd A.; Johnson, Neil D.; Patel, Manish N.; Kukreja, Kamlesh U.; den Hartog, Mark. J. H.; Hoornaert, Bart P.A.; Nachabe, Rami A.
2015-01-01
The purpose of this study was to reduce pediatric doses while maintaining or improving image quality scores without removing the grid from X‐ray beam. This study was approved by the Institutional Animal Care and Use Committee. Three piglets (5, 14, and 20 kg) were imaged using six different selectable detector air kerma (Kair) per frame values (100%, 70%, 50%, 35%, 25%, 17.5%) with and without the grid. Number of distal branches visualized with diagnostic confidence relative to the injected vessel defined image quality score. Five pediatric interventional radiologists evaluated all images. Image quality score and piglet Kair were statistically compared using analysis of variance and receiver operating curve analysis to define the preferred dose setting and use of grid for a visibility of 2nd and 3rd order vessel branches. Grid removal reduced both dose to subject and imaging quality by 26%. Third order branches could only be visualized with the grid present; 100% detector Kair was required for smallest pig, while 70% detector Kair was adequate for the two larger pigs. Second order branches could be visualized with grid at 17.5% detector Kair for all three pig sizes. Without the grid, 50%, 35%, and 35% detector Kair were required for smallest to largest pig, respectively. Grid removal reduces both dose and image quality score. Image quality scores can be maintained with less dose to subject with the grid in the beam as opposed to removed. Smaller anatomy requires more dose to the detector to achieve the same image quality score. PACS numbers: 87.53.Bn, 87.57.N‐, 87.57.cj, 87.59.cf, 87.59.Dj PMID:26699297
Piffer, Anne-Laure Le; Boissonnot, Michèle; Gobert, Frédéric; Zenger, Anita; Wolf, Sebastian; Wolf, Ute; Korobelnik, Jean-François; Rougier, Marie-Bénédicte
2014-09-01
To study and classify retinal lesions in patients with birdshot disease using wide-field autofluorescence imaging and correlate them according to patients' visual status. A multicentre study was carried out on 76 eyes of 39 patients with birdshot disease, analysing colour images and under autofluorescence using the wide-field Optomap(®) imaging system. This was combined with a complete clinical exam and analysis of the macula with OCT. In over 80% of the eyes, a chorioretinal lesion has been observed under autofluorescence with a direct correlation between the extent of the lesion and visual status. The presence of macular hypo-autofluorescence was correlated with a decreased visual acuity, due to the presence of a macular oedema, active clinical inflammation or an epiretinal membrane. The hypo-autofluorescence observed correlated with the duration of the disease and the degree of inflammation in the affected eye, indicating a secondary lesion in the pigment epithelium in relation to the choroid. The pigment epithelium was affected in a diffuse manner, as in almost 50% of the eyes the wider peripheral retina was affected. Wide-field autofluorescence imaging could appear to be a useful examination when monitoring patients, to look for areas of macular hypo-autofluorescence responsible for an irreversible loss of vision. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Iris Image Classification Based on Hierarchical Visual Codebook.
Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang
2014-06-01
Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.
DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool
Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary
2008-01-01
Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data. PMID:19352444
NASA Astrophysics Data System (ADS)
Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi
2016-03-01
Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.
Quantification of myocardial fibrosis by digital image analysis and interactive stereology
2014-01-01
Background Cardiac fibrosis disrupts the normal myocardial structure and has a direct impact on heart function and survival. Despite already available digital methods, the pathologist’s visual score is still widely considered as ground truth and used as a primary method in histomorphometric evaluations. The aim of this study was to compare the accuracy of digital image analysis tools and the pathologist’s visual scoring for evaluating fibrosis in human myocardial biopsies, based on reference data obtained by point counting performed on the same images. Methods Endomyocardial biopsy material from 38 patients diagnosed with inflammatory dilated cardiomyopathy was used. The extent of total cardiac fibrosis was assessed by image analysis on Masson’s trichrome-stained tissue specimens using automated Colocalization and Genie software, by Stereology grid count and manually by Pathologist’s visual score. Results A total of 116 slides were analyzed. The mean results obtained by the Colocalization software (13.72 ± 12.24%) were closest to the reference value of stereology (RVS), while the Genie software and Pathologist score gave a slight underestimation. RVS values correlated strongly with values obtained using the Colocalization and Genie (r > 0.9, p < 0.001) software as well as the pathologist visual score. Differences in fibrosis quantification by Colocalization and RVS were statistically insignificant. However, significant bias was found in the results obtained by using Genie versus RVS and pathologist score versus RVS with mean difference values of: -1.61% and 2.24%. Bland-Altman plots showed a bidirectional bias dependent on the magnitude of the measurement: Colocalization software overestimated the area fraction of fibrosis in the lower end, and underestimated in the higher end of the RVS values. Meanwhile, Genie software as well as the pathologist score showed more uniform results throughout the values, with a slight underestimation in the mid-range for both. Conclusion Both applied digital image analysis methods revealed almost perfect correlation with the criterion standard obtained by stereology grid count and, in terms of accuracy, outperformed the pathologist’s visual score. Genie algorithm proved to be the method of choice with the only drawback of a slight underestimation bias, which is considered acceptable for both clinical and research evaluations. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9857909611227193 PMID:24912374
Quantification of myocardial fibrosis by digital image analysis and interactive stereology.
Daunoravicius, Dainius; Besusparis, Justinas; Zurauskas, Edvardas; Laurinaviciene, Aida; Bironaite, Daiva; Pankuweit, Sabine; Plancoulaine, Benoit; Herlin, Paulette; Bogomolovas, Julius; Grabauskiene, Virginija; Laurinavicius, Arvydas
2014-06-09
Cardiac fibrosis disrupts the normal myocardial structure and has a direct impact on heart function and survival. Despite already available digital methods, the pathologist's visual score is still widely considered as ground truth and used as a primary method in histomorphometric evaluations. The aim of this study was to compare the accuracy of digital image analysis tools and the pathologist's visual scoring for evaluating fibrosis in human myocardial biopsies, based on reference data obtained by point counting performed on the same images. Endomyocardial biopsy material from 38 patients diagnosed with inflammatory dilated cardiomyopathy was used. The extent of total cardiac fibrosis was assessed by image analysis on Masson's trichrome-stained tissue specimens using automated Colocalization and Genie software, by Stereology grid count and manually by Pathologist's visual score. A total of 116 slides were analyzed. The mean results obtained by the Colocalization software (13.72 ± 12.24%) were closest to the reference value of stereology (RVS), while the Genie software and Pathologist score gave a slight underestimation. RVS values correlated strongly with values obtained using the Colocalization and Genie (r>0.9, p<0.001) software as well as the pathologist visual score. Differences in fibrosis quantification by Colocalization and RVS were statistically insignificant. However, significant bias was found in the results obtained by using Genie versus RVS and pathologist score versus RVS with mean difference values of: -1.61% and 2.24%. Bland-Altman plots showed a bidirectional bias dependent on the magnitude of the measurement: Colocalization software overestimated the area fraction of fibrosis in the lower end, and underestimated in the higher end of the RVS values. Meanwhile, Genie software as well as the pathologist score showed more uniform results throughout the values, with a slight underestimation in the mid-range for both. Both applied digital image analysis methods revealed almost perfect correlation with the criterion standard obtained by stereology grid count and, in terms of accuracy, outperformed the pathologist's visual score. Genie algorithm proved to be the method of choice with the only drawback of a slight underestimation bias, which is considered acceptable for both clinical and research evaluations. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9857909611227193.
Assessment of visual landscape quality using IKONOS imagery.
Ozkan, Ulas Yunus
2014-07-01
The assessment of visual landscape quality is of importance to the management of urban woodlands. Satellite remote sensing may be used for this purpose as a substitute for traditional survey techniques that are both labour-intensive and time-consuming. This study examines the association between the quality of the perceived visual landscape in urban woodlands and texture measures extracted from IKONOS satellite data, which features 4-m spatial resolution and four spectral bands. The study was conducted in the woodlands of Istanbul (the most important element of urban mosaic) lying along both shores of the Bosporus Strait. The visual quality assessment applied in this study is based on the perceptual approach and was performed via a survey of expressed preferences. For this purpose, representative photographs of real scenery were used to elicit observers' preferences. A slide show comprising 33 images was presented to a group of 153 volunteers (all undergraduate students), and they were asked to rate the visual quality of each on a 10-point scale (1 for very low visual quality, 10 for very high). Average visual quality scores were calculated for landscape. Texture measures were acquired using the two methods: pixel-based and object-based. Pixel-based texture measures were extracted from the first principle component (PC1) image. Object-based texture measures were extracted by using the original four bands. The association between image texture measures and perceived visual landscape quality was tested via Pearson's correlation coefficient. The analysis found a strong linear association between image texture measures and visual quality. The highest correlation coefficient was calculated between standard deviation of gray levels (SDGL) (one of the pixel-based texture measures) and visual quality (r = 0.82, P < 0.05). The results showed that perceived visual quality of urban woodland landscapes can be estimated by using texture measures extracted from satellite data in combination with appropriate modelling techniques.
The Effect of Images on Item Statistics in Multiple Choice Anatomy Examinations
ERIC Educational Resources Information Center
Notebaert, Andrew J.
2017-01-01
Although multiple choice examinations are often used to test anatomical knowledge, these often forgo the use of images in favor of text-based questions and answers. Because anatomy is reliant on visual resources, examinations using images should be used when appropriate. This study was a retrospective analysis of examination items that were text…
Progressive data transmission for anatomical landmark detection in a cloud.
Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D
2012-01-01
In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.
Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B
2011-07-01
Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.
Rossion, Bruno; Torfs, Katrien; Jacques, Corentin; Liu-Shuang, Joan
2015-01-16
We designed a fast periodic visual stimulation approach to identify an objective signature of face categorization incorporating both visual discrimination (from nonface objects) and generalization (across widely variable face exemplars). Scalp electroencephalographic (EEG) data were recorded in 12 human observers viewing natural images of objects at a rapid frequency of 5.88 images/s for 60 s. Natural images of faces were interleaved every five stimuli, i.e., at 1.18 Hz (5.88/5). Face categorization was indexed by a high signal-to-noise ratio response, specifically at an oddball face stimulation frequency of 1.18 Hz and its harmonics. This face-selective periodic EEG response was highly significant for every participant, even for a single 60-s sequence, and was generally localized over the right occipitotemporal cortex. The periodicity constraint and the large selection of stimuli ensured that this selective response to natural face images was free of low-level visual confounds, as confirmed by the absence of any oddball response for phase-scrambled stimuli. Without any subtraction procedure, time-domain analysis revealed a sequence of differential face-selective EEG components between 120 and 400 ms after oddball face image onset, progressing from medial occipital (P1-faces) to occipitotemporal (N1-faces) and anterior temporal (P2-faces) regions. Overall, this fast periodic visual stimulation approach provides a direct signature of natural face categorization and opens an avenue for efficiently measuring categorization responses of complex visual stimuli in the human brain. © 2015 ARVO.
An efficient visualization method for analyzing biometric data
NASA Astrophysics Data System (ADS)
Rahmes, Mark; McGonagle, Mike; Yates, J. Harlan; Henning, Ronda; Hackett, Jay
2013-05-01
We introduce a novel application for biometric data analysis. This technology can be used as part of a unique and systematic approach designed to augment existing processing chains. Our system provides image quality control and analysis capabilities. We show how analysis and efficient visualization are used as part of an automated process. The goal of this system is to provide a unified platform for the analysis of biometric images that reduce manual effort and increase the likelihood of a match being brought to an examiner's attention from either a manual or lights-out application. We discuss the functionality of FeatureSCOPE™ which provides an efficient tool for feature analysis and quality control of biometric extracted features. Biometric databases must be checked for accuracy for a large volume of data attributes. Our solution accelerates review of features by a factor of up to 100 times. Review of qualitative results and cost reduction is shown by using efficient parallel visual review for quality control. Our process automatically sorts and filters features for examination, and packs these into a condensed view. An analyst can then rapidly page through screens of features and flag and annotate outliers as necessary.
The Spectral Image Processing System (SIPS): Software for integrated analysis of AVIRIS data
NASA Technical Reports Server (NTRS)
Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.
1992-01-01
The Spectral Image Processing System (SIPS) is a software package developed by the Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, in response to a perceived need to provide integrated tools for analysis of imaging spectrometer data both spectrally and spatially. SIPS was specifically designed to deal with data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the High Resolution Imaging Spectrometer (HIRIS), but was tested with other datasets including the Geophysical and Environmental Research Imaging Spectrometer (GERIS), GEOSCAN images, and Landsat TM. SIPS was developed using the 'Interactive Data Language' (IDL). It takes advantage of high speed disk access and fast processors running under the UNIX operating system to provide rapid analysis of entire imaging spectrometer datasets. SIPS allows analysis of single or multiple imaging spectrometer data segments at full spatial and spectral resolution. It also allows visualization and interactive analysis of image cubes derived from quantitative analysis procedures such as absorption band characterization and spectral unmixing. SIPS consists of three modules: SIPS Utilities, SIPS_View, and SIPS Analysis. SIPS version 1.1 is described below.
Colony image acquisition and genetic segmentation algorithm and colony analyses
NASA Astrophysics Data System (ADS)
Wang, W. X.
2012-01-01
Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.
Analysis of Visual Interpretation of Satellite Data
NASA Astrophysics Data System (ADS)
Svatonova, H.
2016-06-01
Millions of people of all ages and expertise are using satellite and aerial data as an important input for their work in many different fields. Satellite data are also gradually finding a new place in education, especially in the fields of geography and in environmental issues. The article presents the results of an extensive research in the area of visual interpretation of image data carried out in the years 2013 - 2015 in the Czech Republic. The research was aimed at comparing the success rate of the interpretation of satellite data in relation to a) the substrates (to the selected colourfulness, the type of depicted landscape or special elements in the landscape) and b) to selected characteristics of users (expertise, gender, age). The results of the research showed that (1) false colour images have a slightly higher percentage of successful interpretation than natural colour images, (2) colourfulness of an element expected or rehearsed by the user (regardless of the real natural colour) increases the success rate of identifying the element (3) experts are faster in interpreting visual data than non-experts, with the same degree of accuracy of solving the task, and (4) men and women are equally successful in the interpretation of visual image data.
Visual saliency detection based on in-depth analysis of sparse representation
NASA Astrophysics Data System (ADS)
Wang, Xin; Shen, Siqiu; Ning, Chen
2018-03-01
Visual saliency detection has been receiving great attention in recent years since it can facilitate a wide range of applications in computer vision. A variety of saliency models have been proposed based on different assumptions within which saliency detection via sparse representation is one of the newly arisen approaches. However, most existing sparse representation-based saliency detection methods utilize partial characteristics of sparse representation, lacking of in-depth analysis. Thus, they may have limited detection performance. Motivated by this, this paper proposes an algorithm for detecting visual saliency based on in-depth analysis of sparse representation. A number of discriminative dictionaries are first learned with randomly sampled image patches by means of inner product-based dictionary atom classification. Then, the input image is partitioned into many image patches, and these patches are classified into salient and nonsalient ones based on the in-depth analysis of sparse coding coefficients. Afterward, sparse reconstruction errors are calculated for the salient and nonsalient patch sets. By investigating the sparse reconstruction errors, the most salient atoms, which tend to be from the most salient region, are screened out and taken away from the discriminative dictionaries. Finally, an effective method is exploited for saliency map generation with the reduced dictionaries. Comprehensive evaluations on publicly available datasets and comparisons with some state-of-the-art approaches demonstrate the effectiveness of the proposed algorithm.
Humans make efficient use of natural image statistics when performing spatial interpolation.
D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S
2013-12-16
Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.
PACS-based interface for 3D anatomical structure visualization and surgical planning
NASA Astrophysics Data System (ADS)
Koehl, Christophe; Soler, Luc; Marescaux, Jacques
2002-05-01
The interpretation of radiological image is routine but it remains a rather difficult task for physicians. It requires complex mental processes, that permit translation from 2D slices into 3D localization and volume determination of visible diseases. An easier and more extensive visualization and exploitation of medical images can be reached through the use of computer-based systems that provide real help from patient admission to post-operative followup. In this way, we have developed a 3D visualization interface linked to a PACS database that allows manipulation and interaction on virtual organs delineated from CT-scan or MRI. This software provides the 3D real-time surface rendering of anatomical structures, an accurate evaluation of volumes and distances and the improvement of radiological image analysis and exam annotation through a negatoscope tool. It also provides a tool for surgical planning allowing the positioning of an interactive laparoscopic instrument and the organ resection. The software system could revolutionize the field of computerized imaging technology. Indeed, it provides a handy and portable tool for pre-operative and intra-operative analysis of anatomy and pathology in various medical fields. This constitutes the first step of the future development of augmented reality and surgical simulation systems.
Visual enhancement of images of natural resources: Applications in geology
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Neto, G.; Araujo, E. O.; Mascarenhas, N. D. A.; Desouza, R. C. M.
1980-01-01
The principal components technique for use in multispectral scanner LANDSAT data processing results in optimum dimensionality reduction. A powerful tool for MSS IMAGE enhancement, the method provides a maximum impression of terrain ruggedness; this fact makes the technique well suited for geological analysis.
Visual Equivalence and Amodal Completion in Cuttlefish
Lin, I-Rong; Chiao, Chuan-Chin
2017-01-01
Modern cephalopods are notably the most intelligent invertebrates and this is accompanied by keen vision. Despite extensive studies investigating the visual systems of cephalopods, little is known about their visual perception and object recognition. In the present study, we investigated the visual processing of the cuttlefish Sepia pharaonis, including visual equivalence and amodal completion. Cuttlefish were trained to discriminate images of shrimp and fish using the operant conditioning paradigm. After cuttlefish reached the learning criteria, a series of discrimination tasks were conducted. In the visual equivalence experiment, several transformed versions of the training images, such as images reduced in size, images reduced in contrast, sketches of the images, the contours of the images, and silhouettes of the images, were used. In the amodal completion experiment, partially occluded views of the original images were used. The results showed that cuttlefish were able to treat the training images of reduced size and sketches as the visual equivalence. Cuttlefish were also capable of recognizing partially occluded versions of the training image. Furthermore, individual differences in performance suggest that some cuttlefish may be able to recognize objects when visual information was partly removed. These findings support the hypothesis that the visual perception of cuttlefish involves both visual equivalence and amodal completion. The results from this research also provide insights into the visual processing mechanisms used by cephalopods. PMID:28220075
A novel approach to segmentation and measurement of medical image using level set methods.
Chen, Yao-Tien
2017-06-01
The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ronald W.; Collins, Benjamin S.; Godfrey, Andrew T.
2016-12-09
In order to support engineering analysis of Virtual Environment for Reactor Analysis (VERA) model results, the Consortium for Advanced Simulation of Light Water Reactors (CASL) needs a tool that provides visualizations of HDF5 files that adhere to the VERAOUT specification. VERAView provides an interactive graphical interface for the visualization and engineering analyses of output data from VERA. The Python-based software provides instantaneous 2D and 3D images, 1D plots, and alphanumeric data from VERA multi-physics simulations.
Information theoretic analysis of edge detection in visual communication
NASA Astrophysics Data System (ADS)
Jiang, Bo; Rahman, Zia-ur
2010-08-01
Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the artifacts introduced into the process by the image gathering process. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. In this paper, we perform an end-to-end information theory based system analysis to assess edge detection methods. We evaluate the performance of the different algorithms as a function of the characteristics of the scene, and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded to have high performance only if the information rate from the scene to the edge approaches the maximum possible. This goal can be achieved only by jointly optimizing all processes. People generally use subjective judgment to compare different edge detection methods. There is not a common tool that can be used to evaluate the performance of the different algorithms, and to give people a guide for selecting the best algorithm for a given system or scene. Our information-theoretic assessment becomes this new tool to which allows us to compare the different edge detection operators in a common environment.
Image Perception Wavelet Simulation and Enhancement for the Visually Impaired.
1994-12-01
and Computational Harmonic Analysis, 1:54-81 (1993). 6. Cornsweet, Tom N. "The Staircase-Method in Psychophysics," The American Journal of Psychology ...of a Visual Model," Proceedings of the IEEE, 60(7):828-842 (July 1972). 33. Taylor, M. M. and C Douglas Creelman . "PEST: Efficient Estimates on
Visual Archaeology: Cultural Change Reflected by the Covers of "Uncle Tom's Cabin"
ERIC Educational Resources Information Center
Fee, Samuel B.; Fee, Tara R.
2012-01-01
In this paper, we describe the merits of "visual archaeology," or understanding the past through the analysis of images, as a method for teaching historical context. We begin by articulating the typical archaeological process for studying and analyzing material artifacts, and then describe the possibilities this process offers for…
Multidimensional Shape Similarity in the Development of Visual Object Classification
ERIC Educational Resources Information Center
Mash, Clay
2006-01-01
The current work examined age differences in the classification of novel object images that vary in continuous dimensions of structural shape. The structural dimensions employed are two that share a privileged status in the visual analysis and representation of objects: the shape of discrete prominent parts and the attachment positions of those…
NASA Technical Reports Server (NTRS)
Hasler, Fritz
1999-01-01
The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape in standard and HDTV that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.
Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz
2016-01-01
The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692
Rubel, Oliver; Bowen, Benjamin P
2018-01-01
Mass spectrometry imaging (MSI) is a transformative imaging method that supports the untargeted, quantitative measurement of the chemical composition and spatial heterogeneity of complex samples with broad applications in life sciences, bioenergy, and health. While MSI data can be routinely collected, its broad application is currently limited by the lack of easily accessible analysis methods that can process data of the size, volume, diversity, and complexity generated by MSI experiments. The development and application of cutting-edge analytical methods is a core driver in MSI research for new scientific discoveries, medical diagnostics, and commercial-innovation. However, the lack of means to share, apply, and reproduce analyses hinders the broad application, validation, and use of novel MSI analysis methods. To address this central challenge, we introduce the Berkeley Analysis and Storage Toolkit (BASTet), a novel framework for shareable and reproducible data analysis that supports standardized data and analysis interfaces, integrated data storage, data provenance, workflow management, and a broad set of integrated tools. Based on BASTet, we describe the extension of the OpenMSI mass spectrometry imaging science gateway to enable web-based sharing, reuse, analysis, and visualization of data analyses and derived data products. We demonstrate the application of BASTet and OpenMSI in practice to identify and compare characteristic substructures in the mouse brain based on their chemical composition measured via MSI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanekoff, Ingela T.; Heath, Brandi S.; Liyu, Andrey V.
2012-10-02
An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours. This is achieved by controlling the distance between the sample and the probe by mounting the sample holder onto an automated XYZ stage and defining the tilt of the sample plane. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSImore » QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MS/MS experiments enabled identification of lipids and metabolites in the tissue section. In addition, high dynamic range and sensitivity of the technique allowed us to generate ion images of low-abundance isobaric lipids. High-spatial resolution image acquired over a small region of the tissue section revealed the spatial distribution of an abundant brain metabolite, creatine, in the white and gray matter that is consistent with the literature data obtained using magnetic resonance spectroscopy.« less
Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Data Analysis and Visualization; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
2008-05-12
The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii)more » evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.« less
Sunwoo, Leonard; Yun, Tae Jin; You, Sung-Hye; Yoo, Roh-Eul; Kang, Koung Mi; Choi, Seung Hong; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sun-Won; Jung, Cheolkyu; Park, Chul-Kee
2016-01-01
To evaluate the diagnostic performance of cerebral blood flow (CBF) by using arterial spin labeling (ASL) perfusion magnetic resonance (MR) imaging to differentiate glioblastoma (GBM) from brain metastasis. The institutional review board of our hospital approved this retrospective study. The study population consisted of 128 consecutive patients who underwent surgical resection and were diagnosed as either GBM (n = 89) or brain metastasis (n = 39). All participants underwent preoperative MR imaging including ASL. For qualitative analysis, the tumors were visually graded into five categories based on ASL-CBF maps by two blinded reviewers. For quantitative analysis, the reviewers drew regions of interest (ROIs) on ASL-CBF maps upon the most hyperperfused portion within the tumor and upon peritumoral T2 hyperintensity area. Signal intensities of intratumoral and peritumoral ROIs for each subject were normalized by dividing the values by those of contralateral normal gray matter (nCBFintratumoral and nCBFperitumoral, respectively). Visual grading scales and quantitative parameters between GBM and brain metastasis were compared. In addition, the area under the receiver-operating characteristic curve was used to evaluate the diagnostic performance of ASL-driven CBF to differentiate GBM from brain metastasis. For qualitative analysis, GBM group showed significantly higher grade compared to metastasis group (p = 0.001). For quantitative analysis, both nCBFintratumoral and nCBFperitumoral in GBM were significantly higher than those in metastasis (both p < 0.001). The areas under the curve were 0.677, 0.714, and 0.835 for visual grading, nCBFintratumoral, and nCBFperitumoral, respectively (all p < 0.001). ASL perfusion MR imaging can aid in the differentiation of GBM from brain metastasis.
Borst, Gregoire; Niven, Elaine; Logie, Robert H
2012-04-01
Visual mental imagery and working memory are often assumed to play similar roles in high-order functions, but little is known of their functional relationship. In this study, we investigated whether similar cognitive processes are involved in the generation of visual mental images, in short-term retention of those mental images, and in short-term retention of visual information. Participants encoded and recalled visually or aurally presented sequences of letters under two interference conditions: spatial tapping or irrelevant visual input (IVI). In Experiment 1, spatial tapping selectively interfered with the retention of sequences of letters when participants generated visual mental images from aural presentation of the letter names and when the letters were presented visually. In Experiment 2, encoding of the sequences was disrupted by both interference tasks. However, in Experiment 3, IVI interfered with the generation of the mental images, but not with their retention, whereas spatial tapping was more disruptive during retention than during encoding. Results suggest that the temporary retention of visual mental images and of visual information may be supported by the same visual short-term memory store but that this store is not involved in image generation.
Jang, Jinhee; Kim, Tae-Won; Hwang, Eo-Jin; Choi, Hyun Seok; Koo, Jaseong; Shin, Yong Sam; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo
2017-01-01
The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD ( p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86-1.00). A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory.
Composition of a dewarped and enhanced document image from two view images.
Koo, Hyung Il; Kim, Jinho; Cho, Nam Ik
2009-07-01
In this paper, we propose an algorithm to compose a geometrically dewarped and visually enhanced image from two document images taken by a digital camera at different angles. Unlike the conventional works that require special equipment or assumptions on the contents of books or complicated image acquisition steps, we estimate the unfolded book or document surface from the corresponding points between two images. For this purpose, the surface and camera matrices are estimated using structure reconstruction, 3-D projection analysis, and random sample consensus-based curve fitting with the cylindrical surface model. Because we do not need any assumption on the contents of books, the proposed method can be applied not only to optical character recognition (OCR), but also to the high-quality digitization of pictures in documents. In addition to the dewarping for a structurally better image, image mosaic is also performed for further improving the visual quality. By finding better parts of images (with less out of focus blur and/or without specular reflections) from either of views, we compose a better image by stitching and blending them. These processes are formulated as energy minimization problems that can be solved using a graph cut method. Experiments on many kinds of book or document images show that the proposed algorithm robustly works and yields visually pleasing results. Also, the OCR rate of the resulting image is comparable to that of document images from a flatbed scanner.
Dynamic Stimuli And Active Processing In Human Visual Perception
NASA Astrophysics Data System (ADS)
Haber, Ralph N.
1990-03-01
Theories of visual perception traditionally have considered a static retinal image to be the starting point for processing; and has considered processing both to be passive and a literal translation of that frozen, two dimensional, pictorial image. This paper considers five problem areas in the analysis of human visually guided locomotion, in which the traditional approach is contrasted to newer ones that utilize dynamic definitions of stimulation, and an active perceiver: (1) differentiation between object motion and self motion, and among the various kinds of self motion (e.g., eyes only, head only, whole body, and their combinations); (2) the sources and contents of visual information that guide movement; (3) the acquisition and performance of perceptual motor skills; (4) the nature of spatial representations, percepts, and the perceived layout of space; and (5) and why the retinal image is a poor starting point for perceptual processing. These newer approaches argue that stimuli must be considered as dynamic: humans process the systematic changes in patterned light when objects move and when they themselves move. Furthermore, the processing of visual stimuli must be active and interactive, so that perceivers can construct panoramic and stable percepts from an interaction of stimulus information and expectancies of what is contained in the visual environment. These developments all suggest a very different approach to the computational analyses of object location and identification, and of the visual guidance of locomotion.
Unraveling Cell Processes: Interference Imaging Interwoven with Data Analysis
Brazhe, A. R.; Pavlov, A. N.; Erokhova, L. A.; Yusipovich, A. I.; Maksimov, G. V.; Mosekilde, E.; Sosnovtseva, O. V.
2006-01-01
The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of hemoglobin, and that interference imaging of neurons can show intracellular compartmentalization and submembrane structures. We investigate temporal and spatial variations of the refractive index for different cell types: isolated neurons, mast cells and erythrocytes. We show that the refractive dynamical properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1–0.6 Hz) result from plasma membrane processes and that higher frequency variations (20–26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we study the modulation of the 1 Hz rhythm in neurons and reveal its changes under depolarization and hyperpolarization of the plasma membrane. We conclude that interference microscopy combined with wavelet analysis is a useful technique for non-invasive cell studies, cell visualization, and investigation of plasma membrane properties. PMID:19669463
Geoscience data visualization and analysis using GeoMapApp
NASA Astrophysics Data System (ADS)
Ferrini, Vicki; Carbotte, Suzanne; Ryan, William; Chan, Samantha
2013-04-01
Increased availability of geoscience data resources has resulted in new opportunities for developing visualization and analysis tools that not only promote data integration and synthesis, but also facilitate quantitative cross-disciplinary access to data. Interdisciplinary investigations, in particular, frequently require visualizations and quantitative access to specialized data resources across disciplines, which has historically required specialist knowledge of data formats and software tools. GeoMapApp (www.geomapapp.org) is a free online data visualization and analysis tool that provides direct quantitative access to a wide variety of geoscience data for a broad international interdisciplinary user community. While GeoMapApp provides access to online data resources, it can also be packaged to work offline through the deployment of a small portable hard drive. This mode of operation can be particularly useful during field programs to provide functionality and direct access to data when a network connection is not possible. Hundreds of data sets from a variety of repositories are directly accessible in GeoMapApp, without the need for the user to understand the specifics of file formats or data reduction procedures. Available data include global and regional gridded data, images, as well as tabular and vector datasets. In addition to basic visualization and data discovery functionality, users are provided with simple tools for creating customized maps and visualizations and to quantitatively interrogate data. Specialized data portals with advanced functionality are also provided for power users to further analyze data resources and access underlying component datasets. Users may import and analyze their own geospatial datasets by loading local versions of geospatial data and can access content made available through Web Feature Services (WFS) and Web Map Services (WMS). Once data are loaded in GeoMapApp, a variety options are provided to export data and/or 2D/3D visualizations into common formats including grids, images, text files, spreadsheets, etc. Examples of interdisciplinary investigations that make use of GeoMapApp visualization and analysis functionality will be provided.
Korosoglou, G; Hansen, A; Bekeredjian, R; Filusch, A; Hardt, S; Wolf, D; Schellberg, D; Katus, H A; Kuecherer, H
2006-01-01
Objective To evaluate whether myocardial parametric imaging (MPI) is superior to visual assessment for the evaluation of myocardial viability. Methods and results Myocardial contrast echocardiography (MCE) was assessed in 11 pigs before, during, and after left anterior descending coronary artery occlusion and in 32 patients with ischaemic heart disease by using intravenous SonoVue administration. In experimental studies perfusion defect area assessment by MPI was compared with visually guided perfusion defect planimetry. Histological assessment of necrotic tissue was the standard reference. In clinical studies viability was assessed on a segmental level by (1) visual analysis of myocardial opacification; (2) quantitative estimation of myocardial blood flow in regions of interest; and (3) MPI. Functional recovery between three and six months after revascularisation was the standard reference. In experimental studies, compared with visually guided perfusion defect planimetry, planimetric assessment of infarct size by MPI correlated more significantly with histology (r2 = 0.92 versus r2 = 0.56) and had a lower intraobserver variability (4% v 15%, p < 0.05). In clinical studies, MPI had higher specificity (66% v 43%, p < 0.05) than visual MCE and good accuracy (81%) for viability detection. It was less time consuming (3.4 (1.6) v 9.2 (2.4) minutes per image, p < 0.05) than quantitative blood flow estimation by regions of interest and increased the agreement between observers interpreting myocardial perfusion (κ = 0.87 v κ = 0.75, p < 0.05). Conclusion MPI is useful for the evaluation of myocardial viability both in animals and in patients. It is less time consuming than quantification analysis by regions of interest and less observer dependent than visual analysis. Thus, strategies incorporating this technique may be valuable for the evaluation of myocardial viability in clinical routine. PMID:15939722
Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T
2014-01-01
Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.
A strategy to optimize CT pediatric dose with a visual discrimination model
NASA Astrophysics Data System (ADS)
Gutierrez, Daniel; Gudinchet, François; Alamo-Maestre, Leonor T.; Bochud, François O.; Verdun, Francis R.
2008-03-01
Technological developments of computed tomography (CT) have led to a drastic increase of its clinical utilization, creating concerns about patient exposure. To better control dose to patients, we propose a methodology to find an objective compromise between dose and image quality by means of a visual discrimination model. A GE LightSpeed-Ultra scanner was used to perform the acquisitions. A QRM 3D low contrast resolution phantom (QRM - Germany) was scanned using CTDI vol values in the range of 1.7 to 103 mGy. Raw data obtained with the highest CTDI vol were afterwards processed to simulate dose reductions by white noise addition. Noise realism of the simulations was verified by comparing normalized noise power spectra aspect and amplitudes (NNPS) and standard deviation measurements. Patient images were acquired using the Diagnostic Reference Levels (DRL) proposed in Switzerland. Noise reduction was then simulated, as for the QRM phantom, to obtain five different CTDI vol levels, down to 3.0 mGy. Image quality of phantom images was assessed with the Sarnoff JNDmetrix visual discrimination model and compared to an assessment made by means of the ROC methodology, taken as a reference. For patient images a similar approach was taken but using as reference the Visual Grading Analysis (VGA) method. A relationship between Sarnoff JNDmetrix and ROC results was established for low contrast detection in phantom images, demonstrating that the Sarnoff JNDmetrix can be used for qualification of images with highly correlated noise. Patient image qualification showed a threshold of conspicuity loss only for children over 35 kg.
USDA-ARS?s Scientific Manuscript database
Reliable, precise and accurate estimates of disease severity are important for predicting yield loss, monitoring and forecasting epidemics, for assessing crop germplasm for disease resistance, and for understanding fundamental biological processes including co-evolution. In some situations poor qual...
Image analysis of multiple moving wood pieces in real time
NASA Astrophysics Data System (ADS)
Wang, Weixing
2006-02-01
This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.
Open source bioimage informatics for cell biology.
Swedlow, Jason R; Eliceiri, Kevin W
2009-11-01
Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.
NASA Astrophysics Data System (ADS)
Stewart, P. A. E.
1987-05-01
Present and projected applications of penetrating radiation techniques to gas turbine research and development are considered. Approaches discussed include the visualization and measurement of metal component movement using high energy X-rays, the measurement of metal temperatures using epithermal neutrons, the measurement of metal stresses using thermal neutron diffraction, and the visualization and measurement of oil and fuel systems using either cold neutron radiography or emitting isotope tomography. By selecting the radiation appropriate to the problem, the desired data can be probed for and obtained through imaging or signal acquisition, and the necessary information can then be extracted with digital image processing or knowledge based image manipulation and pattern recognition.
Analysis of hyperspectral fluorescence images for poultry skin tumor inspection
NASA Astrophysics Data System (ADS)
Kong, Seong G.; Chen, Yud-Ren; Kim, Intaek; Kim, Moon S.
2004-02-01
We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain. Principal-component analysis provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. A small number of significant features are extracted from two major spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian membership functions successfully detects skin tumors on poultry carcasses. Spatial-filtering techniques are used to significantly reduce false positives.
Performance characteristics of a visual-search human-model observer with sparse PET image data
NASA Astrophysics Data System (ADS)
Gifford, Howard C.
2012-02-01
As predictors of human performance in detection-localization tasks, statistical model observers can have problems with tasks that are primarily limited by target contrast or structural noise. Model observers with a visual-search (VS) framework may provide a more reliable alternative. This framework provides for an initial holistic search that identifies suspicious locations for analysis by a statistical observer. A basic VS observer for emission tomography focuses on hot "blobs" in an image and uses a channelized nonprewhitening (CNPW) observer for analysis. In [1], we investigated this model for a contrast-limited task with SPECT images; herein, a statisticalnoise limited task involving PET images is considered. An LROC study used 2D image slices with liver, lung and soft-tissue tumors. Human and model observers read the images in coronal, sagittal and transverse display formats. The study thus measured the detectability of tumors in a given organ as a function of display format. The model observers were applied under several task variants that tested their response to structural noise both at the organ boundaries alone and over the organs as a whole. As measured by correlation with the human data, the VS observer outperformed the CNPW scanning observer.
Dong, Biqin; Almassalha, Luay M.; Stypula-Cyrus, Yolanda; Urban, Ben E.; Chandler, John E.; Nguyen, The-Quyen; Sun, Cheng; Zhang, Hao F.; Backman, Vadim
2016-01-01
Visualizing the nanoscale intracellular structures formed by nucleic acids, such as chromatin, in nonperturbed, structurally and dynamically complex cellular systems, will help expand our understanding of biological processes and open the next frontier for biological discovery. Traditional superresolution techniques to visualize subdiffractional macromolecular structures formed by nucleic acids require exogenous labels that may perturb cell function and change the very molecular processes they intend to study, especially at the extremely high label densities required for superresolution. However, despite tremendous interest and demonstrated need, label-free optical superresolution imaging of nucleotide topology under native nonperturbing conditions has never been possible. Here we investigate a photoswitching process of native nucleotides and present the demonstration of subdiffraction-resolution imaging of cellular structures using intrinsic contrast from unmodified DNA based on the principle of single-molecule photon localization microscopy (PLM). Using DNA-PLM, we achieved nanoscopic imaging of interphase nuclei and mitotic chromosomes, allowing a quantitative analysis of the DNA occupancy level and a subdiffractional analysis of the chromosomal organization. This study may pave a new way for label-free superresolution nanoscopic imaging of macromolecular structures with nucleotide topologies and could contribute to the development of new DNA-based contrast agents for superresolution imaging. PMID:27535934
Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H
2015-06-01
To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.
Forensic 3D Visualization of CT Data Using Cinematic Volume Rendering: A Preliminary Study.
Ebert, Lars C; Schweitzer, Wolf; Gascho, Dominic; Ruder, Thomas D; Flach, Patricia M; Thali, Michael J; Ampanozi, Garyfalia
2017-02-01
The 3D volume-rendering technique (VRT) is commonly used in forensic radiology. Its main function is to explain medical findings to state attorneys, judges, or police representatives. New visualization algorithms permit the generation of almost photorealistic volume renderings of CT datasets. The objective of this study is to present and compare a variety of radiologic findings to illustrate the differences between and the advantages and limitations of the current VRT and the physically based cinematic rendering technique (CRT). Seventy volunteers were shown VRT and CRT reconstructions of 10 different cases. They were asked to mark the findings on the images and rate them in terms of realism and understandability. A total of 48 of the 70 questionnaires were returned and included in the analysis. On the basis of most of the findings presented, CRT appears to be equal or superior to VRT with respect to the realism and understandability of the visualized findings. Overall, in terms of realism, the difference between the techniques was statistically significant (p < 0.05). Most participants perceived the CRT findings to be more understandable than the VRT findings, but that difference was not statistically significant (p > 0.05). CRT, which is similar to conventional VRT, is not primarily intended for diagnostic radiologic image analysis, and therefore it should be used primarily as a tool to deliver visual information in the form of radiologic image reports. Using CRT for forensic visualization might have advantages over using VRT if conveying a high degree of visual realism is of importance. Most of the shortcomings of CRT have to do with the software being an early prototype.
MOPEX: a software package for astronomical image processing and visualization
NASA Astrophysics Data System (ADS)
Makovoz, David; Roby, Trey; Khan, Iffat; Booth, Hartley
2006-06-01
We present MOPEX - a software package for astronomical image processing and display. The package is a combination of command-line driven image processing software written in C/C++ with a Java-based GUI. The main image processing capabilities include creating mosaic images, image registration, background matching, point source extraction, as well as a number of minor image processing tasks. The combination of the image processing and display capabilities allows for much more intuitive and efficient way of performing image processing. The GUI allows for the control over the image processing and display to be closely intertwined. Parameter setting, validation, and specific processing options are entered by the user through a set of intuitive dialog boxes. Visualization feeds back into further processing by providing a prompt feedback of the processing results. The GUI also allows for further analysis by accessing and displaying data from existing image and catalog servers using a virtual observatory approach. Even though originally designed for the Spitzer Space Telescope mission, a lot of functionalities are of general usefulness and can be used for working with existing astronomical data and for new missions. The software used in the package has undergone intensive testing and benefited greatly from effective software reuse. The visualization part has been used for observation planning for both the Spitzer and Herschel Space Telescopes as part the tool Spot. The visualization capabilities of Spot have been enhanced and integrated with the image processing functionality of the command-line driven MOPEX. The image processing software is used in the Spitzer automated pipeline processing, which has been in operation for nearly 3 years. The image processing capabilities have also been tested in off-line processing by numerous astronomers at various institutions around the world. The package is multi-platform and includes automatic update capabilities. The software package has been developed by a small group of software developers and scientists at the Spitzer Science Center. It is available for distribution at the Spitzer Science Center web page.
NASA Astrophysics Data System (ADS)
Robbins, William L.; Conklin, James J.
1995-10-01
Medical images (angiography, CT, MRI, nuclear medicine, ultrasound, x ray) play an increasingly important role in the clinical development and regulatory review process for pharmaceuticals and medical devices. Since medical images are increasingly acquired and archived digitally, or are readily digitized from film, they can be visualized, processed and analyzed in a variety of ways using digital image processing and display technology. Moreover, with image-based data management and data visualization tools, medical images can be electronically organized and submitted to the U.S. Food and Drug Administration (FDA) for review. The collection, processing, analysis, archival, and submission of medical images in a digital format versus an analog (film-based) format presents both challenges and opportunities for the clinical and regulatory information management specialist. The medical imaging 'core laboratory' is an important resource for clinical trials and regulatory submissions involving medical imaging data. Use of digital imaging technology within a core laboratory can increase efficiency and decrease overall costs in the image data management and regulatory review process.
Three-dimensional Talairach-Tournoux brain atlas
NASA Astrophysics Data System (ADS)
Fang, Anthony; Nowinski, Wieslaw L.; Nguyen, Bonnie T.; Bryan, R. Nick
1995-04-01
The Talairach-Tournoux Stereotaxic Atlas of the human brain is a frequently consulted resource in stereotaxic neurosurgery and computer-based neuroradiology. Its primary application lies in the 2-D analysis and interpretation of neurological images. However, for the purpose of the analysis and visualization of shapes and forms, accurate mensuration of volumes, or 3-D models matching, a 3-D representation of the atlas is essential. This paper proposes and describes, along with its difficulties, a 3-D geometric extension of the atlas. We introduce a `zero-potential' surface smoothing technique, along with a space-dependent convolution kernel and space-dependent normalization. The mesh-based atlas structures are hierarchically organized, and anatomically conform to the original atlas. Structures and their constituents can be independently selected and manipulated in real-time within an integrated system. The extended atlas may be navigated by itself, or interactively registered with patient data with the proportional grid system (piecewise linear) transformation. Visualization of the geometric atlas along with patient data gives a remarkable visual `feel' of the biological structures, not usually perceivable to the untrained eyes in conventional 2-D atlas to image analysis.
Multi-class ERP-based BCI data analysis using a discriminant space self-organizing map.
Onishi, Akinari; Natsume, Kiyohisa
2014-01-01
Emotional or non-emotional image stimulus is recently applied to event-related potential (ERP) based brain computer interfaces (BCI). Though the classification performance is over 80% in a single trial, a discrimination between those ERPs has not been considered. In this research we tried to clarify the discriminability of four-class ERP-based BCI target data elicited by desk, seal, spider images and letter intensifications. A conventional self organizing map (SOM) and newly proposed discriminant space SOM (ds-SOM) were applied, then the discriminabilites were visualized. We also classify all pairs of those ERPs by stepwise linear discriminant analysis (SWLDA) and verify the visualization of discriminabilities. As a result, the ds-SOM showed understandable visualization of the data with a shorter computational time than the traditional SOM. We also confirmed the clear boundary between the letter cluster and the other clusters. The result was coherent with the classification performances by SWLDA. The method might be helpful not only for developing a new BCI paradigm, but also for the big data analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes; Frank, Randy; Fulcomer, Sam
Scientific visualization is the transformation of abstract information into images, and it plays an integral role in the scientific process by facilitating insight into observed or simulated phenomena. Visualization as a discipline spans many research areas from computer science, cognitive psychology and even art. Yet the most successful visualization applications are created when close synergistic interactions with domain scientists are part of the algorithmic design and implementation process, leading to visual representations with clear scientific meaning. Visualization is used to explore, to debug, to gain understanding, and as an analysis tool. Visualization is literally everywhere--images are present in this report,more » on television, on the web, in books and magazines--the common theme is the ability to present information visually that is rapidly assimilated by human observers, and transformed into understanding or insight. As an indispensable part a modern science laboratory, visualization is akin to the biologist's microscope or the electrical engineer's oscilloscope. Whereas the microscope is limited to small specimens or use of optics to focus light, the power of scientific visualization is virtually limitless: visualization provides the means to examine data that can be at galactic or atomic scales, or at any size in between. Unlike the traditional scientific tools for visual inspection, visualization offers the means to ''see the unseeable.'' Trends in demographics or changes in levels of atmospheric CO{sub 2} as a function of greenhouse gas emissions are familiar examples of such unseeable phenomena. Over time, visualization techniques evolve in response to scientific need. Each scientific discipline has its ''own language,'' verbal and visual, used for communication. The visual language for depicting electrical circuits is much different than the visual language for depicting theoretical molecules or trends in the stock market. There is no ''one visualization too'' that can serve as a panacea for all science disciplines. Instead, visualization researchers work hand in hand with domain scientists as part of the scientific research process to define, create, adapt and refine software that ''speaks the visual language'' of each scientific domain.« less
Deep visual-semantic for crowded video understanding
NASA Astrophysics Data System (ADS)
Deng, Chunhua; Zhang, Junwen
2018-03-01
Visual-semantic features play a vital role for crowded video understanding. Convolutional Neural Networks (CNNs) have experienced a significant breakthrough in learning representations from images. However, the learning of visualsemantic features, and how it can be effectively extracted for video analysis, still remains a challenging task. In this study, we propose a novel visual-semantic method to capture both appearance and dynamic representations. In particular, we propose a spatial context method, based on the fractional Fisher vector (FV) encoding on CNN features, which can be regarded as our main contribution. In addition, to capture temporal context information, we also applied fractional encoding method on dynamic images. Experimental results on the WWW crowed video dataset demonstrate that the proposed method outperform the state of the art.
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
Tugwell, J R; England, A; Hogg, P
2017-08-01
Physical and technical differences exist between imaging on an x-ray tabletop and imaging on a trolley. This study evaluates how trolley imaging impacts image quality and radiation dose for an antero-posterior (AP) pelvis projection whilst subsequently exploring means of optimising this imaging examination. An anthropomorphic pelvis phantom was imaged on a commercially available trolley under various conditions. Variables explored included two mattresses, two image receptor holder positions, three source to image distances (SIDs) and four mAs values. Image quality was evaluated using relative visual grading analysis with the reference image acquired on the x-ray tabletop. Contrast to noise ratio (CNR) was calculated. Effective dose was established using Monte Carlo simulation. Optimisation scores were derived as a figure of merit by dividing effective dose with visual image quality scores. Visual image quality reduced significantly (p < 0.05) whilst effective dose increased significantly (p < 0.05) for images acquired on the trolley using identical acquisition parameters to the reference image. The trolley image with the highest optimisation score was acquired using 130 cm SID, 20 mAs, the standard mattress and platform not elevated. A difference of 12.8 mm was found between the image with the lowest and highest magnification factor (18%). The acquisition parameters used for AP pelvis on the x-ray tabletop are not transferable to trolley imaging and should be modified accordingly to compensate for the differences that exist. Exposure charts should be developed for trolley imaging to ensure optimal image quality at lowest possible dose. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Serial grouping of 2D-image regions with object-based attention in humans
Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R
2016-01-01
After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188
Hahn, Wolfram; Fricke-Zech, Susanne; Fialka-Fricke, Julia; Dullin, Christian; Zapf, Antonia; Gruber, Rudolf; Sennhenn-kirchner, Sabine; Kubein-Meesenburg, Dietmar; Sadat-Khonsari, Reza
2009-09-01
An investigation was conducted to compare the image quality of prototype flat-panel volume computed tomography (fpVCT) and multislice computed tomography (MSCT) of suture structures. Bone samples were taken from the midpalatal suture of 5 young (16 weeks) and 5 old (200 weeks) Sus scrofa domestica and fixed in formalin solution. An fpVCT prototype and an MSCT were used to obtain images of the specimens. The facial reformations were assessed by 4 observers using a 1 (excellent) to 5 (poor) rating scale for the weighted criteria visualization of the suture structure. A linear mixed model was used for statistical analysis. Results with P < .05 were considered to be statistically significant. The visualization of the suture of young specimens was significantly better than that of older animals (P < .001). The visualization of the suture with fpVCT was significantly better than that with MSCT (P < .001). Compared with MSCT, fpVCT produces superior results in the visualization of the midpalatal suture in a Sus scrofa domestica model.
Li, Junjie; Zhang, Weixia; Chung, Ting-Fung; Slipchenko, Mikhail N.; Chen, Yong P.; Cheng, Ji-Xin; Yang, Chen
2015-01-01
We report a transient absorption (TA) imaging method for fast visualization and quantitative layer analysis of graphene and GO. Forward and backward imaging of graphene on various substrates under ambient condition was imaged with a speed of 2 μs per pixel. The TA intensity linearly increased with the layer number of graphene. Real-time TA imaging of GO in vitro with capability of quantitative analysis of intracellular concentration and ex vivo in circulating blood were demonstrated. These results suggest that TA microscopy is a valid tool for the study of graphene based materials. PMID:26202216
Visual Search with Image Modification in Age-Related Macular Degeneration
Wiecek, Emily; Jackson, Mary Lou; Dakin, Steven C.; Bex, Peter
2012-01-01
Purpose. AMD results in loss of central vision and a dependence on low-resolution peripheral vision. While many image enhancement techniques have been proposed, there is a lack of quantitative comparison of the effectiveness of enhancement. We developed a natural visual search task that uses patients' eye movements as a quantitative and functional measure of the efficacy of image modification. Methods. Eye movements of 17 patients (mean age = 77 years) with AMD were recorded while they searched for target objects in natural images. Eight different image modification methods were implemented and included manipulations of local image or edge contrast, color, and crowding. In a subsequent task, patients ranked their preference of the image modifications. Results. Within individual participants, there was no significant difference in search duration or accuracy across eight different image manipulations. When data were collapsed across all image modifications, a multivariate model identified six significant predictors for normalized search duration including scotoma size and acuity, as well as interactions among scotoma size, age, acuity, and contrast (P < 0.05). Additionally, an analysis of image statistics showed no correlation with search performance across all image modifications. Rank ordering of enhancement methods based on participants' preference revealed a trend that participants preferred the least modified images (P < 0.05). Conclusions. There was no quantitative effect of image modification on search performance. A better understanding of low- and high-level components of visual search in natural scenes is necessary to improve future attempts at image enhancement for low vision patients. Different search tasks may require alternative image modifications to improve patient functioning and performance. PMID:22930725
Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?
Awan, Ruqayya; Al-Maadeed, Somaya; Al-Saady, Rafif
2018-01-01
The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images.
Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?
Al-Maadeed, Somaya; Al-Saady, Rafif
2018-01-01
The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images. PMID:29874262
Maeda, Ichiro; Abe, Kayoko; Koizumi, Hirotaka; Nakajima, Chika; Tajima, Shinya; Aoki, Hiromi; Tsuchiya, Junichi; Tsuchiya, Seiko; Tsuchiya, Kyoko; Shimo, Arata; Tsugawa, Koichiro; Ueno, Takahiko; Tatsunami, Shinobu; Takagi, Masayuki
2016-09-01
In recent papers, Ki67 labeling index (LI) has been used to classify breast cancer patients into the low and high Ki67LI groups for comparison studies, which showed significant differences in many prognostic factors. It has not been clarified whether image analysis software can be used for calculating LI in breast cancer. In our study, we examined whether Ki67LI in breast cancer calculated using image analysis software correlates with that measured on the basis of visual. Fifty patients were randomly selected among breast cancer patients who underwent surgical operation from March, 2010 to May, 2010 in our hospital without preoperative chemotherapy. In this study, for the virtual slide system (VSS: VS120-L100, Olympus, Tokyo, Japan), the high-resolution VSs of all the 50 patients were prepared as samples. The image analysis software use for calculating LI was Tissuemorph Digital Pathology (Tissuemorph DP: Visiopharm, Hoersholm, Denmark). The calculated LI was extracted from 3 to 5 views containing hot spots. The LI calculated using Tissuemorph DP was designed as LI/image/T. The digital image of 3 to 5 LI/image/T views was printed out, and on the digital photograph, we counted visually the number of Ki67-immunopositive cells in exactly the same area, and the percentage of Ki67-immunopositive cells was designed as LI/direct. Moreover, a pathologist's assistant (PA) determined the tumor area in the same specimen using VSS and calculated LI using Tissuemorph DP, which was designed as LI/image/PA. The chief pathologist (CP) similarly calculated LI which was designed as LI/image/CP. We evaluated the degree of agreement between different data sets "LI/image/T and LI/direct" and "LI/image/T, LI/image/CP, and LI/image/PA" by using interclass correlation coefficient (ICC). The average counts of cells were as follows: LI/direct, 3209.7 ± 1970.4 (SD); LI/image/T, 2601.6 ± 1697.1; LI/image/PA, 2886.5 ± 2027.5; LI/image/CP, 18805.5 ± 22293.4. The values of LI/direct and LI/image/T showed almost perfect agreement as showed by an ICC of 0.885 (95 % CI, 0.806-0.933; p < 0.001). The agreement among three investigators was almost perfect. The obtained ICC was 0.825 (95 % CI, 0.739-0.890; p < 0.001) among the data of LI/image/T, LI/image/CP and LI/image/PA. There were five cases that immunopositivity for Ki67 showed a more than 10 % disagreement between LI/direct and LI/image/T. The merits of calculating Ki67 LI using Tissuemorph DP are as follows. First, the staining intensity of the cells to be counted can be adjusted. Second, the portion of a tumor including "hot spots" for counting can be chosen. Third, many cancer cells can be counted more rapidly using Tissuemorph DP than by visual observation. However, it is important that pathologist should check and carry out the final decision of the data, when Ki67 LI using Tissuemorph DP is calculated.
Welker, Kirk M; De Jesus, Reordan O; Watson, Robert E; Machulda, Mary M; Jack, Clifford R
2012-10-01
To test the hypothesis that leukoaraiosis alters functional activation during a semantic decision language task. With institutional review board approval and written informed consent, 18 right-handed, cognitively healthy elderly participants with an aggregate leukoaraiosis lesion volume of more than 25 cm(3) and 18 age-matched control participants with less than 5 cm(3) of leukoaraiosis underwent functional MR imaging to allow comparison of activation during semantic decisions with that during visual perceptual decisions. Brain statistical maps were derived from the general linear model. Spatially normalized group t maps were created from individual contrast images. A cluster extent threshold of 215 voxels was used to correct for multiple comparisons. Intergroup random effects analysis was performed. Language laterality indexes were calculated for each participant. In control participants, semantic decisions activated the bilateral visual cortex, left posteroinferior temporal lobe, left posterior cingulate gyrus, left frontal lobe expressive language regions, and left basal ganglia. Visual perceptual decisions activated the right parietal and posterior temporal lobes. Participants with leukoaraiosis showed reduced activation in all regions associated with semantic decisions; however, activation associated with visual perceptual decisions increased in extent. Intergroup analysis showed significant activation decreases in the left anterior occipital lobe (P=.016), right posterior temporal lobe (P=.048), and right basal ganglia (P=.009) in particpants with leukoariosis. Individual participant laterality indexes showed a strong trend (P=.059) toward greater left lateralization in the leukoaraiosis group. Moderate leukoaraiosis is associated with atypical functional activation during semantic decision tasks. Consequently, leukoaraiosis is an important confounding variable in functional MR imaging studies of elderly individuals. © RSNA, 2012.
Valous, Nektarios A; Drakakis, Konstantinos; Sun, Da-Wen
2010-10-01
The visual texture of pork ham slices reveals information about the different qualities and perceived image heterogeneity, which is encapsulated as spatial variations in geometry and spectral characteristics. Detrended Fluctuation Analysis (DFA) detects long-range correlations in nonstationary spatial sequences, by a self-similarity scaling exponent alpha. In the current work, the aim is to investigate the usefulness of alpha, using different colour channels (R, G, B, L*, a*, b*, H, S, V, and Grey), as a quantitative descriptor of visual texture in sliced ham surface patterns for the detection of long-range correlations in unidimensional spatial series of greyscale intensity pixel values at 0 degrees , 30 degrees , 45 degrees , 60 degrees , and 90 degrees rotations. Images were acquired from three qualities of pre-sliced pork ham, typically consumed in Ireland (200 slices per quality). Results indicated that the DFA approach can be used to characterize and quantify the textural appearance of the three ham qualities, for different image orientations, with a global scaling exponent. The spatial series extracted from the ham images display long-range dependence, indicating an average behaviour around 1/f-noise. Results indicate that alpha has a universal character in quantifying the visual texture of ham surface intensity patterns, with no considerable crossovers that alter the behaviour of the fluctuations. Fractal correlation properties can thus be a useful metric for capturing information embedded in the visual texture of hams. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Zhou, Zhi; Arce, Gonzalo R; Di Crescenzo, Giovanni
2006-08-01
Visual cryptography encodes a secret binary image (SI) into n shares of random binary patterns. If the shares are xeroxed onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the n shares, however, have no visual meaning and hinder the objectives of visual cryptography. Extended visual cryptography [1] was proposed recently to construct meaningful binary images as shares using hypergraph colourings, but the visual quality is poor. In this paper, a novel technique named halftone visual cryptography is proposed to achieve visual cryptography via halftoning. Based on the blue-noise dithering principles, the proposed method utilizes the void and cluster algorithm [2] to encode a secret binary image into n halftone shares (images) carrying significant visual information. The simulation shows that the visual quality of the obtained halftone shares are observably better than that attained by any available visual cryptography method known to date.
NASA Astrophysics Data System (ADS)
Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.
2006-05-01
Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally within the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging-terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on the limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.
NASA Technical Reports Server (NTRS)
Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.
2006-01-01
Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.
ERIC Educational Resources Information Center
McCandless, Trevor
2015-01-01
School prospectuses and promotional videos appeal to parents by presenting idealised images of the education a school provides. These educational idealisations visually realise the form of discipline a school is expected to provide, depending on the social habitus of the parents. This paper presents a content analysis of the images used in 33 sets…
MacDougall, Preston J; Henze, Christopher E; Volkov, Anatoliy
2016-11-01
We present a unique platform for molecular visualization and design that uses novel subatomic feature detection software in tandem with 3D hyperwall visualization technology. We demonstrate the fleshing-out of pharmacophores in drug molecules, as well as reactive sites in catalysts, focusing on subatomic features. Topological analysis with picometer resolution, in conjunction with interactive volume-rendering of the Laplacian of the electronic charge density, leads to new insight into docking and catalysis. Visual data-mining is done efficiently and in parallel using a 4×4 3D hyperwall (a tiled array of 3D monitors driven independently by slave GPUs but displaying high-resolution, synchronized and functionally-related images). The visual texture of images for a wide variety of molecular systems are intuitive to experienced chemists but also appealing to neophytes, making the platform simultaneously useful as a tool for advanced research as well as for pedagogical and STEM education outreach purposes. Copyright © 2016. Published by Elsevier Inc.
Specimen preparation, imaging, and analysis protocols for knife-edge scanning microscopy.
Choe, Yoonsuck; Mayerich, David; Kwon, Jaerock; Miller, Daniel E; Sung, Chul; Chung, Ji Ryang; Huffman, Todd; Keyser, John; Abbott, Louise C
2011-12-09
Major advances in high-throughput, high-resolution, 3D microscopy techniques have enabled the acquisition of large volumes of neuroanatomical data at submicrometer resolution. One of the first such instruments producing whole-brain-scale data is the Knife-Edge Scanning Microscope (KESM), developed and hosted in the authors' lab. KESM has been used to section and image whole mouse brains at submicrometer resolution, revealing the intricate details of the neuronal networks (Golgi), vascular networks (India ink), and cell body distribution (Nissl). The use of KESM is not restricted to the mouse nor the brain. We have successfully imaged the octopus brain, mouse lung, and rat brain. We are currently working on whole zebra fish embryos. Data like these can greatly contribute to connectomics research; to microcirculation and hemodynamic research; and to stereology research by providing an exact ground-truth. In this article, we will describe the pipeline, including specimen preparation (fixing, staining, and embedding), KESM configuration and setup, sectioning and imaging with the KESM, image processing, data preparation, and data visualization and analysis. The emphasis will be on specimen preparation and visualization/analysis of obtained KESM data. We expect the detailed protocol presented in this article to help broaden the access to KESM and increase its utilization.
Is Fourier analysis performed by the visual system or by the visual investigator.
Ochs, A L
1979-01-01
A numerical Fourier transform was made of the pincushion grid illusion and the spectral components orthogonal to the illusory lines were isolated. Their inverse transform creates a picture of the illusion. The spatial-frequency response of cortical, simple receptive field neurons similarly filters the grid. A complete set of these neurons thus approximates a two-dimensional Fourier analyzer. One cannot conclude, however, that the brain actually uses frequency-domain information to interpret visual images.
Fan, Jianping; Gao, Yuli; Luo, Hangzai
2008-03-01
In this paper, we have developed a new scheme for achieving multilevel annotations of large-scale images automatically. To achieve more sufficient representation of various visual properties of the images, both the global visual features and the local visual features are extracted for image content representation. To tackle the problem of huge intraconcept visual diversity, multiple types of kernels are integrated to characterize the diverse visual similarity relationships between the images more precisely, and a multiple kernel learning algorithm is developed for SVM image classifier training. To address the problem of huge interconcept visual similarity, a novel multitask learning algorithm is developed to learn the correlated classifiers for the sibling image concepts under the same parent concept and enhance their discrimination and adaptation power significantly. To tackle the problem of huge intraconcept visual diversity for the image concepts at the higher levels of the concept ontology, a novel hierarchical boosting algorithm is developed to learn their ensemble classifiers hierarchically. In order to assist users on selecting more effective hypotheses for image classifier training, we have developed a novel hyperbolic framework for large-scale image visualization and interactive hypotheses assessment. Our experiments on large-scale image collections have also obtained very positive results.
Texture analysis based on the Hermite transform for image classification and segmentation
NASA Astrophysics Data System (ADS)
Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus
2012-06-01
Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.
Vlek, S L; van Dam, D A; Rubinstein, S M; de Lange-de Klerk, E S M; Schoonmade, L J; Tuynman, J B; Meijerink, W J H J; Ankersmit, M
2017-07-01
Near-infrared imaging with indocyanine green (ICG) has been extensively investigated during laparoscopic cholecystectomy (LC). However, methods vary between studies, especially regarding patient selection, dosage and timing. The aim of this systematic review was to evaluate the potential of the near-infrared imaging technique with ICG to identify biliary structures during LC. A comprehensive systematic literature search was performed. Prospective trials examining the use of ICG during LC were included. Primary outcome was biliary tract visualization. Risk of bias was assessed using ROBINS-I. Secondly, a meta-analysis was performed comparing ICG to intraoperative cholangiography (IOC) for identification of biliary structures. GRADE was used to assess the quality of the evidence. Nineteen studies were included. Based upon the pooled data from 13 studies, cystic duct (Lusch et al. in J Endourol 28:261-266, 2014) visualization was 86.5% (95% CI 71.2-96.6%) prior to dissection of Calot's triangle with a 2.5-mg dosage of ICG and 96.5% (95% CI 93.9-98.4%) after dissection. The results were not appreciably different when the dosage was based upon bodyweight. There is moderate quality evidence that the CD is more frequently visualized using ICG than IOC (RR 1.16; 95% CI 1.00-1.35); however, this difference was not statistically significant. This systematic review provides equal results for biliary tract visualization with near-infrared imaging with ICG during LC compared to IOC. Near-infrared imaging with ICG has the potential to replace IOC for biliary mapping. However, methods of near-infrared imaging with ICG vary. Future research is necessary for optimization and standardization of the near-infrared ICG technique.
NASA Astrophysics Data System (ADS)
Goh, Sheng-Yang M.; Irimia, Andrei; Vespa, Paul M.; Van Horn, John D.
2016-03-01
In traumatic brain injury (TBI) and intracerebral hemorrhage (ICH), the heterogeneity of lesion sizes and types necessitates a variety of imaging modalities to acquire a comprehensive perspective on injury extent. Although it is advantageous to combine imaging modalities and to leverage their complementary benefits, there are difficulties in integrating information across imaging types. Thus, it is important that efforts be dedicated to the creation and sustained refinement of resources for multimodal data integration. Here, we propose a novel approach to the integration of neuroimaging data acquired from human patients with TBI/ICH using various modalities; we also demonstrate the integrated use of multimodal magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data for TBI analysis based on both visual observations and quantitative metrics. 3D models of healthy-appearing tissues and TBIrelated pathology are generated, both of which are derived from multimodal imaging data. MRI volumes acquired using FLAIR, SWI, and T2 GRE are used to segment pathology. Healthy tissues are segmented using user-supervised tools, and results are visualized using a novel graphical approach called a `connectogram', where brain connectivity information is depicted within a circle of radially aligned elements. Inter-region connectivity and its strength are represented by links of variable opacities drawn between regions, where opacity reflects the percentage longitudinal change in brain connectivity density. Our method for integrating, analyzing and visualizing structural brain changes due to TBI and ICH can promote knowledge extraction and enhance the understanding of mechanisms underlying recovery.
Visual information mining in remote sensing image archives
NASA Astrophysics Data System (ADS)
Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.
2002-01-01
The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.
Probabilistic Modeling and Visualization of the Flexibility in Morphable Models
NASA Astrophysics Data System (ADS)
Lüthi, M.; Albrecht, T.; Vetter, T.
Statistical shape models, and in particular morphable models, have gained widespread use in computer vision, computer graphics and medical imaging. Researchers have started to build models of almost any anatomical structure in the human body. While these models provide a useful prior for many image analysis task, relatively little information about the shape represented by the morphable model is exploited. We propose a method for computing and visualizing the remaining flexibility, when a part of the shape is fixed. Our method, which is based on Probabilistic PCA, not only leads to an approach for reconstructing the full shape from partial information, but also allows us to investigate and visualize the uncertainty of a reconstruction. To show the feasibility of our approach we performed experiments on a statistical model of the human face and the femur bone. The visualization of the remaining flexibility allows for greater insight into the statistical properties of the shape.
Running the figure to the ground: figure-ground segmentation during visual search.
Ralph, Brandon C W; Seli, Paul; Cheng, Vivian O Y; Solman, Grayden J F; Smilek, Daniel
2014-04-01
We examined how figure-ground segmentation occurs across multiple regions of a visual array during a visual search task. Stimuli consisted of arrays of black-and-white figure-ground images in which roughly half of each image depicted a meaningful object, whereas the other half constituted a less meaningful shape. The colours of the meaningful regions of the targets and distractors were either the same (congruent) or different (incongruent). We found that incongruent targets took longer to locate than congruent targets (Experiments 1, 2, and 3) and that this segmentation-congruency effect decreased when the number of search items was reduced (Experiment 2). Furthermore, an analysis of eye movements revealed that participants spent more time scrutinising the target before confirming its identity on incongruent trials than on congruent trials (Experiment 3). These findings suggest that the distractor context influences target segmentation and detection during visual search. Copyright © 2014 Elsevier B.V. All rights reserved.
Positive Contrast Visualization of Nitinol Devices using Susceptibility Gradient Mapping
Vonken, Evert-jan P.A.; Schär, Michael; Stuber, Matthias
2008-01-01
MRI visualization of devices is traditionally based on the signal loss due to T2* effects originating from the local susceptibility differences. To visualize nitinol devices with positive contrast a recently introduced post processing method is adapted to map the induced susceptibility gradients. This method operates on regular gradient echo MR images and maps the shift in k-space in a (small) neighborhood of every voxel by Fourier analysis followed by a center of mass calculation. The quantitative map of the local shifts generates the positive contrast image of the devices, while areas without susceptibility gradients render a background with noise only. The positive signal response of this method depends only on the choice of the voxel neighborhood size. The properties of the method are explained and the visualization of a nitinol wire and two stents are shown for illustration. PMID:18727096
NASA Astrophysics Data System (ADS)
Herold, Julia; Abouna, Sylvie; Zhou, Luxian; Pelengaris, Stella; Epstein, David B. A.; Khan, Michael; Nattkemper, Tim W.
2009-02-01
In the last years, bioimaging has turned from qualitative measurements towards a high-throughput and highcontent modality, providing multiple variables for each biological sample analyzed. We present a system which combines machine learning based semantic image annotation and visual data mining to analyze such new multivariate bioimage data. Machine learning is employed for automatic semantic annotation of regions of interest. The annotation is the prerequisite for a biological object-oriented exploration of the feature space derived from the image variables. With the aid of visual data mining, the obtained data can be explored simultaneously in the image as well as in the feature domain. Especially when little is known of the underlying data, for example in the case of exploring the effects of a drug treatment, visual data mining can greatly aid the process of data evaluation. We demonstrate how our system is used for image evaluation to obtain information relevant to diabetes study and screening of new anti-diabetes treatments. Cells of the Islet of Langerhans and whole pancreas in pancreas tissue samples are annotated and object specific molecular features are extracted from aligned multichannel fluorescence images. These are interactively evaluated for cell type classification in order to determine the cell number and mass. Only few parameters need to be specified which makes it usable also for non computer experts and allows for high-throughput analysis.
Efficiency analysis of color image filtering
NASA Astrophysics Data System (ADS)
Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Abramov, Sergey K.; Egiazarian, Karen O.; Astola, Jaakko T.
2011-12-01
This article addresses under which conditions filtering can visibly improve the image quality. The key points are the following. First, we analyze filtering efficiency for 25 test images, from the color image database TID2008. This database allows assessing filter efficiency for images corrupted by different noise types for several levels of noise variance. Second, the limit of filtering efficiency is determined for independent and identically distributed (i.i.d.) additive noise and compared to the output mean square error of state-of-the-art filters. Third, component-wise and vector denoising is studied, where the latter approach is demonstrated to be more efficient. Fourth, using of modern visual quality metrics, we determine that for which levels of i.i.d. and spatially correlated noise the noise in original images or residual noise and distortions because of filtering in output images are practically invisible. We also demonstrate that it is possible to roughly estimate whether or not the visual quality can clearly be improved by filtering.
Chiao, Chuan-Chin; Wickiser, J Kenneth; Allen, Justine J; Genter, Brock; Hanlon, Roger T
2011-05-31
Camouflage is a widespread phenomenon throughout nature and an important antipredator tactic in natural selection. Many visual predators have keen color perception, and thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of hyperspectral imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and trichromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies of biological coloration and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.
Yang, Zengling; Mei, Jiaqi; Liu, Zhiqiang; Huang, Guangqun; Huang, Guan; Han, Lujia
2018-06-19
Understanding the biochemical heterogeneity of plant tissue linked to crop straw anatomy is attractive to plant researchers and researchers in the field of biomass refinery. This study provides an in situ analysis and semiquantitative visualization of major components distribution in internodal transverse sections of wheat straw based on Fourier transform infrared (FTIR) microspectroscopic imaging, with a fast non-negativity-constrained least squares (fast NNLS) fitting. This paper investigates changes in biochemical components of tissue during stages of elongation, booting, heading, flowering, grain-filling, milk-ripening, dough, and full-ripening. Visualization analysis was carried out with reference spectra for five components (microcrystalline cellulose, xylan, lignin, pectin, and starch) of wheat straw. Our result showed that (a) the cellulose and lignin distribution is consistent with that from tissue-dyeing with safranin O-fast green and (b) the distribution of cellulose, lignin, and starch is consistent with chemical images for characteristic wavelength at 1432, 1507, and 987 cm -1 , respectively, showing no interference from the other components analyzed. With the validation from biochemical images using characteristic wavelength and tissue-dyeing techniques, further semiquantitative analysis in local tissues based on fast NNLS was carried out, and the result showed that (a) the contents of cellulose in various tissues are very different, with most in parenchyma tissue and least in the epidermis and (b) during plant development, the fluctuation of each component in tissues follows nearly the same trend, especially within vascular bundles and parenchyma tissue. Thus, FTIR microspectroscopic imaging combined with suitable chemometric methods can be successfully applied to study chemical distributions within the internodes transverse sections of wheat straw, providing semiquantitative chemical information.
A visualization system for CT based pulmonary fissure analysis
NASA Astrophysics Data System (ADS)
Pu, Jiantao; Zheng, Bin; Park, Sang Cheol
2009-02-01
In this study we describe a visualization system of pulmonary fissures depicted on CT images. The purpose is to provide clinicians with an intuitive perception of a patient's lung anatomy through an interactive examination of fissures, enhancing their understanding and accurate diagnosis of lung diseases. This system consists of four key components: (1) region-of-interest segmentation; (2) three-dimensional surface modeling; (3) fissure type classification; and (4) an interactive user interface, by which the extracted fissures are displayed flexibly in different space domains including image space, geometric space, and mixed space using simple toggling "on" and "off" operations. In this system, the different visualization modes allow users not only to examine the fissures themselves but also to analyze the relationship between fissures and their surrounding structures. In addition, the users can adjust thresholds interactively to visualize the fissure surface under different scanning and processing conditions. Such a visualization tool is expected to facilitate investigation of structures near the fissures and provide an efficient "visual aid" for other applications such as treatment planning and assessment of therapeutic efficacy as well as education of medical professionals.
Dedicated computer system AOTK for image processing and analysis of horse navicular bone
NASA Astrophysics Data System (ADS)
Zaborowicz, M.; Fojud, A.; Koszela, K.; Mueller, W.; Górna, K.; Okoń, P.; Piekarska-Boniecka, H.
2017-07-01
The aim of the research was made the dedicated application AOTK (pol. Analiza Obrazu Trzeszczki Kopytowej) for image processing and analysis of horse navicular bone. The application was produced by using specialized software like Visual Studio 2013 and the .NET platform. To implement algorithms of image processing and analysis were used libraries of Aforge.NET. Implemented algorithms enabling accurate extraction of the characteristics of navicular bones and saving data to external files. Implemented in AOTK modules allowing the calculations of distance selected by user, preliminary assessment of conservation of structure of the examined objects. The application interface is designed in a way that ensures user the best possible view of the analyzed images.
Automated in vivo 3D high-definition optical coherence tomography skin analysis system.
Ai Ping Yow; Jun Cheng; Annan Li; Srivastava, Ruchir; Jiang Liu; Wong, Damon Wing Kee; Hong Liang Tey
2016-08-01
The in vivo assessment and visualization of skin structures can be performed through the use of high resolution optical coherence tomography imaging, also known as HD-OCT. However, the manual assessment of such images can be exhaustive and time consuming. In this paper, we present an analysis system to automatically identify and quantify the skin characteristics such as the topography of the surface of the skin and thickness of the epidermis in HD-OCT images. Comparison of this system with manual clinical measurements demonstrated its potential for automatic objective skin analysis and diseases diagnosis. To our knowledge, this is the first report of an automated system to process and analyse HD-OCT skin images.
Vendemia, Nicholas; Chao, Jerry; Ivanidze, Jana; Sanelli, Pina; Spinelli, Henry M
2011-01-01
Medpor (Porex Surgical, Inc, Newnan, GA) is composed of porous polyethylene and is commonly used in craniofacial reconstruction. When complications such as seroma or abscess formation arise, diagnostic modalities are limited because Medpor is radiolucent on conventional radiologic studies. This poses a problem in situations where imaging is necessary to distinguish the implant from surrounding tissues. To present a clinically useful method for imaging Medpor with conventional computed tomographic (CT) scanning. Eleven patients (12 total implants) who have undergone reconstructive surgery with Medpor were included in the study. A retrospective review of CT scans done between 1 and 16 months postoperatively was performed using 3 distinct CT window settings. Measurements of implant dimensions and Hounsfield units were recorded and qualitatively assessed. Of the 3 distinct window settings studied, namely, "bone" (W1100/L450), "soft tissue"; (W500/L50), and "implant" (W800/L200), the implant window proved the most ideal, allowing the investigators to visualize and evaluate Medpor in all cases. Qualitative analysis revealed that Medpor implants were able to be distinguished from surrounding tissue in both the implant and soft tissue windows, with a density falling between that of fat and fluid. In 1 case, Medpor could not be visualized in the soft tissue window, although it could be visualized in the implant window. Quantitative analysis demonstrated a mean (SD) density of -38.7 (7.4) Hounsfield units. Medpor may be optimally visualized on conventional CT scans using the implant window settings W800/L200, which can aid in imaging Medpor and diagnosing implant-related complications.
Detection of pigment network in dermatoscopy images using texture analysis
Anantha, Murali; Moss, Randy H.; Stoecker, William V.
2011-01-01
Dermatoscopy, also known as dermoscopy or epiluminescence microscopy (ELM), is a non-invasive, in vivo technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. ELM offers a completely new range of visual features. One such prominent feature is the pigment network. Two texture-based algorithms are developed for the detection of pigment network. These methods are applicable to various texture patterns in dermatoscopy images, including patterns that lack fine lines such as cobblestone, follicular, or thickened network patterns. Two texture algorithms, Laws energy masks and the neighborhood gray-level dependence matrix (NGLDM) large number emphasis, were optimized on a set of 155 dermatoscopy images and compared. Results suggest superiority of Laws energy masks for pigment network detection in dermatoscopy images. For both methods, a texel width of 10 pixels or approximately 0.22 mm is found for dermatoscopy images. PMID:15249068
Image processing and 3D visualization in forensic pathologic examination
NASA Astrophysics Data System (ADS)
Oliver, William R.; Altschuler, Bruce R.
1996-02-01
The use of image processing is becoming increasingly important in the evaluation of violent crime. While much work has been done in the use of these techniques for forensic purposes outside of forensic pathology, its use in the pathologic examination of wounding has been limited. We are investigating the use of image processing and three-dimensional visualization in the analysis of patterned injuries and tissue damage. While image processing will never replace classical understanding and interpretation of how injuries develop and evolve, it can be a useful tool in helping an observer notice features in an image, may help provide correlation of surface to deep tissue injury, and provide a mechanism for the development of a metric for analyzing how likely it may be that a given object may have caused a given wound. We are also exploring methods of acquiring three-dimensional data for such measurements, which is the subject of a second paper.
Schlieren technique in soap film flows
NASA Astrophysics Data System (ADS)
Auliel, M. I.; Hebrero, F. Castro; Sosa, R.; Artana, G.
2017-05-01
We propose the use of the Schlieren technique as a tool to analyse the flows in soap film tunnels. The technique enables to visualize perturbations of the film produced by the interposition of an object in the flow. The variations of intensity of the image are produced as a consequence of the deviations of the light beam traversing the deformed surfaces of the film. The quality of the Schlieren image is compared to images produced by the conventional interferometric technique. The analysis of Schlieren images of a cylinder wake flow indicates that this technique enables an easy visualization of vortex centers. Post-processing of series of two successive images of a grid turbulent flow with a dense motion estimator is used to derive the velocity fields. The results obtained with this self-seeded flow show good agreement with the statistical properties of the 2D turbulent flows reported on the literature.
NASA Astrophysics Data System (ADS)
Rao, D. V.; Takeda, T.; Kawakami, T.; Uesugi, K.; Tsuchiya, Y.; Wu, J.; Lwin, T. T.; Itai, Y.; Zeniya, T.; Yuasa, T.; Akatsuka, T.
2004-05-01
Microtomographic images of rat's lumbar vertebra of different age groups varying from 8, 56 and 78 weeks were obtained at 30 keV using synchrotron X-rays with a spatial resolution of 12 μm. The images are analyzed in terms of 3D visualization and micro-architecture. Density histogram of rat's lumbar vertebra is compared with test phantoms. Rat's lumbar volume and phantom volume are studied at different concentrations of hydroxyapatite with slice number. With the use of 2D slices, 3D images are reconstructed, in order to know the evolution and a state of decline of bone microstructure with aging. Cross-sectional μ-CT images shows that the bone of young rat has a fine trabecular microstructure while that of the old rat has large meshed structure.
Spectral mapping tools from the earth sciences applied to spectral microscopy data.
Harris, A Thomas
2006-08-01
Spectral imaging, originating from the field of earth remote sensing, is a powerful tool that is being increasingly used in a wide variety of applications for material identification. Several workers have used techniques like linear spectral unmixing (LSU) to discriminate materials in images derived from spectral microscopy. However, many spectral analysis algorithms rely on assumptions that are often violated in microscopy applications. This study explores algorithms originally developed as improvements on early earth imaging techniques that can be easily translated for use with spectral microscopy. To best demonstrate the application of earth remote sensing spectral analysis tools to spectral microscopy data, earth imaging software was used to analyze data acquired with a Leica confocal microscope with mechanical spectral scanning. For this study, spectral training signatures (often referred to as endmembers) were selected with the ENVI (ITT Visual Information Solutions, Boulder, CO) "spectral hourglass" processing flow, a series of tools that use the spectrally over-determined nature of hyperspectral data to find the most spectrally pure (or spectrally unique) pixels within the data set. This set of endmember signatures was then used in the full range of mapping algorithms available in ENVI to determine locations, and in some cases subpixel abundances of endmembers. Mapping and abundance images showed a broad agreement between the spectral analysis algorithms, supported through visual assessment of output classification images and through statistical analysis of the distribution of pixels within each endmember class. The powerful spectral analysis algorithms available in COTS software, the result of decades of research in earth imaging, are easily translated to new sources of spectral data. Although the scale between earth imagery and spectral microscopy is radically different, the problem is the same: mapping material locations and abundances based on unique spectral signatures. (c) 2006 International Society for Analytical Cytology.
The effect of human image in B2C website design: an eye-tracking study
NASA Astrophysics Data System (ADS)
Wang, Qiuzhen; Yang, Yi; Wang, Qi; Ma, Qingguo
2014-09-01
On B2C shopping websites, effective visual designs can bring about consumers' positive emotional experience. From this perspective, this article developed a research model to explore the impact of human image as a visual element on consumers' online shopping emotions and subsequent attitudes towards websites. This study conducted an eye-tracking experiment to collect both eye movement data and questionnaire data to test the research model. Questionnaire data analysis showed that product pictures combined with human image induced positive emotions among participants, thus promoting their attitudes towards online shopping websites. Specifically, product pictures with human image first produced higher levels of image appeal and perceived social presence, thus stimulating higher levels of enjoyment and subsequent positive attitudes towards the websites. Moreover, a moderating effect of product type was demonstrated on the relationship between the presence of human image and the level of image appeal. Specifically, human image significantly increased the level of image appeal when integrated in entertainment product pictures while this relationship was not significant in terms of utilitarian products. Eye-tracking data analysis further supported these results and provided plausible explanations. The presence of human image significantly increased the pupil size of participants regardless of product types. For entertainment products, participants paid more attention to product pictures integrated with human image whereas for utilitarian products more attention was paid to functional information of products than to product pictures no matter whether or not integrated with human image.
Pursey, Kirrilly M.; Stanwell, Peter; Callister, Robert J.; Brain, Katherine; Collins, Clare E.; Burrows, Tracy L.
2014-01-01
Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies. PMID:25988110
Pursey, Kirrilly M; Stanwell, Peter; Callister, Robert J; Brain, Katherine; Collins, Clare E; Burrows, Tracy L
2014-01-01
Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies.
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators
Bai, Xiangzhi
2015-01-01
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.
Bai, Xiangzhi
2015-07-15
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.
[Evoked potentials in the human visual cortex when observing whole figures and their elements].
Slavutskaia, A V; Mikhaĭlova, E S
2010-01-01
Evoked potentials changes were analyzed in 32 subjects in a task of observing whole and disintegrated images. In the occipital and parietal regions, reactions to a disintegrated image appeared early (within the period of P1 development), and their characteristics were determined by the magnitude of the response to the whole image. In the occipital cortex, a low-amplitude P1 (the 1st group of subjects) increased in response to image disintegration, whereas in cases of a high P1 amplitude (the 2nd group), the tendency to its reduction was observed. In the parietal regions, the effects were distinct only in the 1st group of subjects and different in the right and left hemispheres: in the left hemisphere, the P1 amplitude increased when simpler elements appeared in the image, in the right hemisphere, a change in the spatial disposition of details was more significant. In the inferior temporal cortex, the amplitude of the later wave N1 decreased in response to disintegration, the effect being significant only in the 2nd group of subjects. The appearance of simpler elements in the image resulted in a P3 wave increase in both groups. The results point to topographic and temporal specificity of the reactions of the visual cortex to image disintegration and suggest the existence of various strategies of the visual image analysis at the early stages.
High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes.
Walk, Elyse L; McLaughlin, Sarah L; Weed, Scott A
2015-07-25
High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease.
Video content parsing based on combined audio and visual information
NASA Astrophysics Data System (ADS)
Zhang, Tong; Kuo, C.-C. Jay
1999-08-01
While previous research on audiovisual data segmentation and indexing primarily focuses on the pictorial part, significant clues contained in the accompanying audio flow are often ignored. A fully functional system for video content parsing can be achieved more successfully through a proper combination of audio and visual information. By investigating the data structure of different video types, we present tools for both audio and visual content analysis and a scheme for video segmentation and annotation in this research. In the proposed system, video data are segmented into audio scenes and visual shots by detecting abrupt changes in audio and visual features, respectively. Then, the audio scene is categorized and indexed as one of the basic audio types while a visual shot is presented by keyframes and associate image features. An index table is then generated automatically for each video clip based on the integration of outputs from audio and visual analysis. It is shown that the proposed system provides satisfying video indexing results.
High resolution OCT image generation using super resolution via sparse representation
NASA Astrophysics Data System (ADS)
Asif, Muhammad; Akram, Muhammad Usman; Hassan, Taimur; Shaukat, Arslan; Waqar, Razi
2017-02-01
In this paper we propose a technique for obtaining a high resolution (HR) image from a single low resolution (LR) image -using joint learning dictionary - on the basis of image statistic research. It suggests that with an appropriate choice of an over-complete dictionary, image patches can be well represented as a sparse linear combination. Medical imaging for clinical analysis and medical intervention is being used for creating visual representations of the interior of a body, as well as visual representation of the function of some organs or tissues (physiology). A number of medical imaging techniques are in use like MRI, CT scan, X-rays and Optical Coherence Tomography (OCT). OCT is one of the new technologies in medical imaging and one of its uses is in ophthalmology where it is being used for analysis of the choroidal thickness in the eyes in healthy and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies. We have proposed a technique for enhancing the OCT images which can be used for clearly identifying and analyzing the particular diseases. Our method uses dictionary learning technique for generating a high resolution image from a single input LR image. We train two joint dictionaries, one with OCT images and the second with multiple different natural images, and compare the results with previous SR technique. Proposed method for both dictionaries produces HR images which are comparatively superior in quality with the other proposed method of SR. Proposed technique is very effective for noisy OCT images and produces up-sampled and enhanced OCT images.
Visual Literacy and Visual Thinking.
ERIC Educational Resources Information Center
Hortin, John A.
It is proposed that visual literacy be defined as the ability to understand (read) and use (write) images and to think and learn in terms of images. This definition includes three basic principles: (1) visuals are a language and thus analogous to verbal language; (2) a visually literate person should be able to understand (read) images and use…
3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events
NASA Technical Reports Server (NTRS)
Brown, Richard; Navard, Andrew; Spruce, Joseph
2010-01-01
An analytical, advanced imaging method has been developed for the initial monitoring and identification of foam debris and similar anomalies that occur post-launch in reference to the space shuttle s external tank (ET). Remote sensing technologies have been used to perform image enhancement and analysis on high-resolution, true-color images collected with the DCS 760 Kodak digital camera located in the right umbilical well of the space shuttle. Improvements to the camera, using filters, have added sharpness/definition to the image sets; however, image review/analysis of the ET has been limited by the fact that the images acquired by umbilical cameras during launch are two-dimensional, and are usually nonreferenceable between frames due to rotation translation of the ET as it falls away from the space shuttle. Use of stereo pairs of these images can enable strong visual indicators that can immediately portray depth perception of damaged areas or movement of fragments between frames is not perceivable in two-dimensional images. A stereoscopic image visualization system has been developed to allow 3D depth perception of stereo-aligned image pairs taken from in-flight umbilical and handheld digital shuttle cameras. This new system has been developed to augment and optimize existing 2D monitoring capabilities. Using this system, candidate sequential image pairs are identified for transformation into stereo viewing pairs. Image orientation is corrected using control points (similar points) between frames to place the two images in proper X-Y viewing perspective. The images are then imported into the WallView stereo viewing software package. The collected control points are used to generate a transformation equation that is used to re-project one image and effectively co-register it to the other image. The co-registered, oriented image pairs are imported into a WallView image set and are used as a 3D stereo analysis slide show. Multiple sequential image pairs can be used to allow forensic review of temporal phenomena between pairs. The observer, while wearing linear polarized glasses, is able to review image pairs in passive 3D stereo.
SU-E-J-92: CERR: New Tools to Analyze Image Registration Precision.
Apte, A; Wang, Y; Oh, J; Saleh, Z; Deasy, J
2012-06-01
To present new tools in CERR (The Computational Environment for Radiotherapy Research) to analyze image registration and other software updates/additions. CERR continues to be a key environment (cited more than 129 times to date) for numerous RT-research studies involving outcomes modeling, prototyping algorithms for segmentation, and registration, experiments with phantom dosimetry, IMRT research, etc. Image registration is one of the key technologies required in many research studies. CERR has been interfaced with popular image registration frameworks like Plastimatch and ITK. Once the images have been autoregistered, CERR provides tools to analyze the accuracy of registration using the following innovative approaches (1)Distance Discordance Histograms (DDH), described in detail in a separate paper and (2)'MirrorScope', explained as follows: for any view plane the 2-d image is broken up into a 2d grid of medium-sized squares. Each square contains a right-half, which is the reference image, and a left-half, which is the mirror flipped version of the overlay image. The user can increase or decrease the size of this grid to control the resolution of the analysis. Other updates to CERR include tools to extract image and dosimetric features programmatically and storage in a central database and tools to interface with Statistical analysis software like SPSS and Matlab Statistics toolbox. MirrorScope was compared on various examples, including 'perfect' registration examples and 'artificially translated' registrations. for 'perfect' registration, the patterns obtained within each circles are symmetric, and are easily, visually recognized as aligned. For registrations that are off, the patterns obtained in the circles located in the regions of imperfections show unsymmetrical patterns that are easily recognized. The new updates to CERR further increase its utility for RT-research. Mirrorscope is a visually intuitive method of monitoring the accuracy of image registration that improves on the visual confusion of standard methods. © 2012 American Association of Physicists in Medicine.
Polarization analysis for magnetic field imaging at RADEN in J-PARC/MLF
NASA Astrophysics Data System (ADS)
Shinohara, Takenao; Hiroi, Kosuke; Su, Yuhua; Kai, Tetsuya; Nakatani, Takeshi; Oikawa, Kenichi; Segawa, Mariko; Hayashida, Hirotoshi; Parker, Joseph D.; Matsumoto, Yoshihiro; Zhang, Shuoyuan; Kiyanagi, Yoshiaki
2017-06-01
Polarized neutron imaging is an attractive method for visualizing magnetic fields in a bulk object or in free space. In this technique polarization of neutrons transmitted through a sample is analyzed position by position to produce an image of the polarization distribution. In particular, the combination of three-dimensional spin analysis and the use of a pulsed neutron beam is very effective for the quantitative evaluation of both field strength and direction by means of the analysis of the wavelength dependent polarization vector. Recently a new imaging instrument “RADEN” has been constructed at the beam line of BL22 of the Materials and Life Science Experimental Facility (MLF) at J-PARC, which is dedicated to energy-resolved neutron imaging experiments. We have designed a polarization analysis apparatus for magnetic field imaging at the RADEN instrument and have evaluated its performance.
Image Location Estimation by Salient Region Matching.
Qian, Xueming; Zhao, Yisi; Han, Junwei
2015-11-01
Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.
Accurate micro-computed tomography imaging of pore spaces in collagen-based scaffold.
Zidek, Jan; Vojtova, Lucy; Abdel-Mohsen, A M; Chmelik, Jiri; Zikmund, Tomas; Brtnikova, Jana; Jakubicek, Roman; Zubal, Lukas; Jan, Jiri; Kaiser, Jozef
2016-06-01
In this work we have used X-ray micro-computed tomography (μCT) as a method to observe the morphology of 3D porous pure collagen and collagen-composite scaffolds useful in tissue engineering. Two aspects of visualizations were taken into consideration: improvement of the scan and investigation of its sensitivity to the scan parameters. Due to the low material density some parts of collagen scaffolds are invisible in a μCT scan. Therefore, here we present different contrast agents, which increase the contrast of the scanned biopolymeric sample for μCT visualization. The increase of contrast of collagenous scaffolds was performed with ceramic hydroxyapatite microparticles (HAp), silver ions (Ag(+)) and silver nanoparticles (Ag-NPs). Since a relatively small change in imaging parameters (e.g. in 3D volume rendering, threshold value and μCT acquisition conditions) leads to a completely different visualized pattern, we have optimized these parameters to obtain the most realistic picture for visual and qualitative evaluation of the biopolymeric scaffold. Moreover, scaffold images were stereoscopically visualized in order to better see the 3D biopolymer composite scaffold morphology. However, the optimized visualization has some discontinuities in zoomed view, which can be problematic for further analysis of interconnected pores by commonly used numerical methods. Therefore, we applied the locally adaptive method to solve discontinuities issue. The combination of contrast agent and imaging techniques presented in this paper help us to better understand the structure and morphology of the biopolymeric scaffold that is crucial in the design of new biomaterials useful in tissue engineering.
NASA Astrophysics Data System (ADS)
Utomo, Edy Setiyo; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
The aim of this research was to describe the mathematical visualization process of Junior High School students in solving contextual problems based on cognitive style. Mathematical visualization process in this research was seen from aspects of image generation, image inspection, image scanning, and image transformation. The research subject was the students in the eighth grade based on GEFT test (Group Embedded Figures Test) adopted from Within to determining the category of cognitive style owned by the students namely field independent or field dependent and communicative. The data collection was through visualization test in contextual problem and interview. The validity was seen through time triangulation. The data analysis referred to the aspect of mathematical visualization through steps of categorization, reduction, discussion, and conclusion. The results showed that field-independent and field-dependent subjects were difference in responding to contextual problems. The field-independent subject presented in the form of 2D and 3D, while the field-dependent subject presented in the form of 3D. Both of the subjects had different perception to see the swimming pool. The field-independent subject saw from the top, while the field-dependent subject from the side. The field-independent subject chose to use partition-object strategy, while the field-dependent subject chose to use general-object strategy. Both the subjects did transformation in an object rotation to get the solution. This research is reference to mathematical curriculum developers of Junior High School in Indonesia. Besides, teacher could develop the students' mathematical visualization by using technology media or software, such as geogebra, portable cabri in learning.
DOT National Transportation Integrated Search
2006-05-08
This paper describes the integration of wavelet analysis and time-domain beamforming : of microphone array output signals for analyzing the acoustic emissions from airplane : generated wake vortices. This integrated process provides visual and quanti...
Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang
2015-04-01
To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Page segmentation using script identification vectors: A first look
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, J.; Cannon, M.; Kelly, P.
1997-07-01
Document images in which different scripts, such as Chinese and Roman, appear on a single page pose a problem for optical character recognition (OCR) systems. This paper explores the use of script identification vectors in the analysis of multilingual document images. A script identification vector is calculated for each connected component in a document. The vector expresses the closest distance between the component and templates developed for each of thirteen scripts, including Arabic, Chinese, Cyrillic, and Roman. The authors calculate the first three principal components within the resulting thirteen-dimensional space for each image. By mapping these components to red, green,more » and blue, they can visualize the information contained in the script identification vectors. The visualization of several multilingual images suggests that the script identification vectors can be used to segment images into script-specific regions as large as several paragraphs or as small as a few characters. The visualized vectors also reveal distinctions within scripts, such as font in Roman documents, and kanji vs. kana in Japanese. Results are best for documents containing highly dissimilar scripts such as Roman and Japanese. Documents containing similar scripts, such as Roman and Cyrillic will require further investigation.« less
Optical spectral imaging of degeneration of articular cartilage
NASA Astrophysics Data System (ADS)
Kinnunen, Jussi; Jurvelin, Jukka S.; Mäkitalo, Jaana; Hauta-Kasari, Markku; Vahimaa, Pasi; Saarakkala, Simo
2010-07-01
Osteoarthritis (OA) is a common musculoskeletal disorder often diagnosed during arthroscopy. In OA, visual color changes of the articular cartilage surface are typically observed. We demonstrate in vitro the potential of visible light spectral imaging (420 to 720 nm) to quantificate these color changes. Intact bovine articular cartilage samples (n=26) are degraded both enzymatically using the collagenase and mechanically using the emery paper (P60 grit, 269 μm particle size). Spectral images are analyzed by using standard CIELAB color coordinates and the principal component analysis (PCA). After collagenase digestion, changes in the CIELAB coordinates and projection of the spectra to PCA eigenvector are statistically significant (p<0.05). After mechanical degradation, the grinding tracks could not be visualized in the RGB presentation, i.e., in the visual appearance of the sample to the naked eye under the D65 illumination. However, after projecting to the chosen eigenvector, the grinding tracks are revealed. The tracks are also seen by using only one wavelength, i.e., 469 nm, however, the contrast in the projection image is 1.6 to 2.5 times higher. Our results support the idea that the spectral imaging can be used for evaluation of the integrity of the cartilage surface.
The Use of Uas for Rapid 3d Mapping in Geomatics Education
NASA Astrophysics Data System (ADS)
Teo, Tee-Ann; Tian-Yuan Shih, Peter; Yu, Sz-Cheng; Tsai, Fuan
2016-06-01
With the development of technology, UAS is an advance technology to support rapid mapping for disaster response. The aim of this study is to develop educational modules for UAS data processing in rapid 3D mapping. The designed modules for this study are focused on UAV data processing from available freeware or trial software for education purpose. The key modules include orientation modelling, 3D point clouds generation, image georeferencing and visualization. The orientation modelling modules adopts VisualSFM to determine the projection matrix for each image station. Besides, the approximate ground control points are measured from OpenStreetMap for absolute orientation. The second module uses SURE and the orientation files from previous module for 3D point clouds generation. Then, the ground point selection and digital terrain model generation can be archived by LAStools. The third module stitches individual rectified images into a mosaic image using Microsoft ICE (Image Composite Editor). The last module visualizes and measures the generated dense point clouds in CloudCompare. These comprehensive UAS processing modules allow the students to gain the skills to process and deliver UAS photogrammetric products in rapid 3D mapping. Moreover, they can also apply the photogrammetric products for analysis in practice.
An, Gao; Hong, Li; Zhou, Xiao-Bing; Yang, Qiong; Li, Mei-Qing; Tang, Xiang-Yang
2017-03-01
We investigated and compared the functionality of two 3D visualization software provided by a CT vendor and a third-party vendor, respectively. Using surgical anatomical measurement as baseline, we evaluated the accuracy of 3D visualization and verified their utility in computer-aided anatomical analysis. The study cohort consisted of 50 adult cadavers fixed with the classical formaldehyde method. The computer-aided anatomical analysis was based on CT images (in DICOM format) acquired by helical scan with contrast enhancement, using a CT vendor provided 3D visualization workstation (Syngo) and a third-party 3D visualization software (Mimics) that was installed on a PC. Automated and semi-automated segmentations were utilized in the 3D visualization workstation and software, respectively. The functionality and efficiency of automated and semi-automated segmentation methods were compared. Using surgical anatomical measurement as a baseline, the accuracy of 3D visualization based on automated and semi-automated segmentations was quantitatively compared. In semi-automated segmentation, the Mimics 3D visualization software outperformed the Syngo 3D visualization workstation. No significant difference was observed in anatomical data measurement by the Syngo 3D visualization workstation and the Mimics 3D visualization software (P>0.05). Both the Syngo 3D visualization workstation provided by a CT vendor and the Mimics 3D visualization software by a third-party vendor possessed the needed functionality, efficiency and accuracy for computer-aided anatomical analysis. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mobile phone imaging and cloud-based analysis for standardized malaria detection and reporting.
Scherr, Thomas F; Gupta, Sparsh; Wright, David W; Haselton, Frederick R
2016-06-27
Rapid diagnostic tests (RDTs) have been widely deployed in low-resource settings. These tests are typically read by visual inspection, and accurate record keeping and data aggregation remains a substantial challenge. A successful malaria elimination campaign will require new strategies that maximize the sensitivity of RDTs, reduce user error, and integrate results reporting tools. In this report, an unmodified mobile phone was used to photograph RDTs, which were subsequently uploaded into a globally accessible database, REDCap, and then analyzed three ways: with an automated image processing program, visual inspection, and a commercial lateral flow reader. The mobile phone image processing detected 20.6 malaria parasites/microliter of blood, compared to the commercial lateral flow reader which detected 64.4 parasites/microliter. Experienced observers visually identified positive malaria cases at 12.5 parasites/microliter, but encountered reporting errors and false negatives. Visual interpretation by inexperienced users resulted in only an 80.2% true negative rate, with substantial disagreement in the lower parasitemia range. We have demonstrated that combining a globally accessible database, such as REDCap, with mobile phone based imaging of RDTs provides objective, secure, automated, data collection and result reporting. This simple combination of existing technologies would appear to be an attractive tool for malaria elimination campaigns.
NASA Astrophysics Data System (ADS)
Wu, Chia-Hua; Lee, Suiang-Shyan; Lin, Ja-Chen
2017-06-01
This all-in-one hiding method creates two transparencies that have several decoding options: visual decoding with or without translation flipping and computer decoding. In visual decoding, two less-important (or fake) binary secret images S1 and S2 can be revealed. S1 is viewed by the direct stacking of two transparencies. S2 is viewed by flipping one transparency and translating the other to a specified coordinate before stacking. Finally, important/true secret files can be decrypted by a computer using the information extracted from transparencies. The encoding process to hide this information includes the translated-flip visual cryptography, block types, the ways to use polynomial-style sharing, and linear congruential generator. If a thief obtained both transparencies, which are stored in distinct places, he still needs to find the values of keys used in computer decoding to break through after viewing S1 and/or S2 by stacking. However, the thief might just try every other kind of stacking and finally quit finding more secrets; for computer decoding is totally different from stacking decoding. Unlike traditional image hiding that uses images as host media, our method hides fine gray-level images in binary transparencies. Thus, our host media are transparencies. Comparisons and analysis are provided.
Mobile phone imaging and cloud-based analysis for standardized malaria detection and reporting
NASA Astrophysics Data System (ADS)
Scherr, Thomas F.; Gupta, Sparsh; Wright, David W.; Haselton, Frederick R.
2016-06-01
Rapid diagnostic tests (RDTs) have been widely deployed in low-resource settings. These tests are typically read by visual inspection, and accurate record keeping and data aggregation remains a substantial challenge. A successful malaria elimination campaign will require new strategies that maximize the sensitivity of RDTs, reduce user error, and integrate results reporting tools. In this report, an unmodified mobile phone was used to photograph RDTs, which were subsequently uploaded into a globally accessible database, REDCap, and then analyzed three ways: with an automated image processing program, visual inspection, and a commercial lateral flow reader. The mobile phone image processing detected 20.6 malaria parasites/microliter of blood, compared to the commercial lateral flow reader which detected 64.4 parasites/microliter. Experienced observers visually identified positive malaria cases at 12.5 parasites/microliter, but encountered reporting errors and false negatives. Visual interpretation by inexperienced users resulted in only an 80.2% true negative rate, with substantial disagreement in the lower parasitemia range. We have demonstrated that combining a globally accessible database, such as REDCap, with mobile phone based imaging of RDTs provides objective, secure, automated, data collection and result reporting. This simple combination of existing technologies would appear to be an attractive tool for malaria elimination campaigns.
Classification of CT examinations for COPD visual severity analysis
NASA Astrophysics Data System (ADS)
Tan, Jun; Zheng, Bin; Wang, Xingwei; Pu, Jiantao; Gur, David; Sciurba, Frank C.; Leader, J. Ken
2012-03-01
In this study we present a computational method of CT examination classification into visual assessed emphysema severity. The visual severity categories ranged from 0 to 5 and were rated by an experienced radiologist. The six categories were none, trace, mild, moderate, severe and very severe. Lung segmentation was performed for every input image and all image features are extracted from the segmented lung only. We adopted a two-level feature representation method for the classification. Five gray level distribution statistics, six gray level co-occurrence matrix (GLCM), and eleven gray level run-length (GLRL) features were computed for each CT image depicted segment lung. Then we used wavelets decomposition to obtain the low- and high-frequency components of the input image, and again extract from the lung region six GLCM features and eleven GLRL features. Therefore our feature vector length is 56. The CT examinations were classified using the support vector machine (SVM) and k-nearest neighbors (KNN) and the traditional threshold (density mask) approach. The SVM classifier had the highest classification performance of all the methods with an overall sensitivity of 54.4% and a 69.6% sensitivity to discriminate "no" and "trace visually assessed emphysema. We believe this work may lead to an automated, objective method to categorically classify emphysema severity on CT exam.
The Statistics of Visual Representation
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.
2002-01-01
The experience of retinex image processing has prompted us to reconsider fundamental aspects of imaging and image processing. Foremost is the idea that a good visual representation requires a non-linear transformation of the recorded (approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we investigate the connection between numerical and visual phenomena. Specifically the questions explored are: (1) Is there a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal visual image? And (3) what are its statistical properties?
Web-based visualization of very large scientific astronomy imagery
NASA Astrophysics Data System (ADS)
Bertin, E.; Pillay, R.; Marmo, C.
2015-04-01
Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.
1980-02-01
ADOAA82 342 OKLAHOMA UNIV NORMAN COLL OF EDUCATION F/B 5/9 TASK ANALYSIS SCHEMA BASED ON COGNITIVE STYLE AND SUPPLANFATION--ETC(U) FEB GO F B AUSBURN...separately- perceived fragments) 6. Tasks requiring use of a. Visual/haptic (pre- kinesthetic or tactile ference for kinesthetic stimuli stimuli; ability...to transform kinesthetic stimuli into visual images; ability to learn directly from tactile or kinesthet - ic impressions) b. Field independence/de
Murakoshi, Takuma; Masuda, Tomohiro; Utsumi, Ken; Tsubota, Kazuo; Wada, Yuji
2013-01-01
Previous studies have reported the effects of statistics of luminance distribution on visual freshness perception using pictures which included the degradation process of food samples. However, these studies did not examine the effect of individual differences between the same kinds of food. Here we elucidate whether luminance distribution would continue to have a significant effect on visual freshness perception even if visual stimuli included individual differences in addition to the degradation process of foods. We took pictures of the degradation of three fishes over 3.29 hours in a controlled environment, then cropped square patches of their eyes from the original images as visual stimuli. Eleven participants performed paired comparison tests judging the visual freshness of the fish eyes at three points of degradation. Perceived freshness scores (PFS) were calculated using the Bradley-Terry Model for each image. The ANOVA revealed that the PFS for each fish decreased as the degradation time increased; however, the differences in the PFS between individual fish was larger for the shorter degradation time, and smaller for the longer degradation time. A multiple linear regression analysis was conducted in order to determine the relative importance of the statistics of luminance distribution of the stimulus images in predicting PFS. The results show that standard deviation and skewness in luminance distribution have a significant influence on PFS. These results show that even if foodstuffs contain individual differences, visual freshness perception and changes in luminance distribution correlate with degradation time.
Applications of image processing and visualization in the evaluation of murder and assault
NASA Astrophysics Data System (ADS)
Oliver, William R.; Rosenman, Julian G.; Boxwala, Aziz; Stotts, David; Smith, John; Soltys, Mitchell; Symon, James; Cullip, Tim; Wagner, Glenn
1994-09-01
Recent advances in image processing and visualization are of increasing use in the investigation of violent crime. The Digital Image Processing Laboratory at the Armed Forces Institute of Pathology in collaboration with groups at the University of North Carolina at Chapel Hill are actively exploring visualization applications including image processing of trauma images, 3D visualization, forensic database management and telemedicine. Examples of recent applications are presented. Future directions of effort include interactive consultation and image manipulation tools for forensic data exploration.
[Use of blue and green systems of image visualization in roentgenology].
Riuduger, Iu G
2004-01-01
The main peculiarities of two image visualization systems related with the specificity of intensifying screens and of radiographic films in each of them are discussed. Specific features of kinetic development of modern orthochromatic general-purpose radiographic films were studied versus those of the traditional films; differences related with radiation hardness of some of the intensifying screen manufactured in Russia were investigated. Some practical advice was suggested on the basis of a conducted analysis of the "green" system specificity; such advice provides for reorienting the X-ray examination room, in Russia, for gadolinium screens and modern radiography films.
Sountsov, Pavel; Santucci, David M; Lisman, John E
2011-01-01
Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated.
Sountsov, Pavel; Santucci, David M.; Lisman, John E.
2011-01-01
Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled, or rotated. PMID:22125522
Enhanced visualization of MR angiogram with modified MIP and 3D image fusion
NASA Astrophysics Data System (ADS)
Kim, JongHyo; Yeon, Kyoung M.; Han, Man Chung; Lee, Dong Hyuk; Cho, Han I.
1997-05-01
We have developed a 3D image processing and display technique that include image resampling, modification of MIP, volume rendering, and fusion of MIP image with volumetric rendered image. This technique facilitates the visualization of the 3D spatial relationship between vasculature and surrounding organs by overlapping the MIP image on the volumetric rendered image of the organ. We applied this technique to a MR brain image data to produce an MRI angiogram that is overlapped with 3D volume rendered image of brain. MIP technique was used to visualize the vasculature of brain, and volume rendering was used to visualize the other structures of brain. The two images are fused after adjustment of contrast and brightness levels of each image in such a way that both the vasculature and brain structure are well visualized either by selecting the maximum value of each image or by assigning different color table to each image. The resultant image with this technique visualizes both the brain structure and vasculature simultaneously, allowing the physicians to inspect their relationship more easily. The presented technique will be useful for surgical planning for neurosurgery.
Tu, Joanna H; Foote, Katharina G; Lujan, Brandon J; Ratnam, Kavitha; Qin, Jia; Gorin, Michael B; Cunningham, Emmett T; Tuten, William S; Duncan, Jacque L; Roorda, Austin
2017-09-01
Confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images provide a sensitive measure of cone structure. However, the relationship between structural findings of diminished cone reflectivity and visual function is unclear. We used fundus-referenced testing to evaluate visual function in regions of apparent cone loss identified using confocal AOSLO images. A patient diagnosed with acute bilateral foveolitis had spectral-domain optical coherence tomography (SD-OCT) (Spectralis HRA + OCT system [Heidelberg Engineering, Vista, CA, USA]) images indicating focal loss of the inner segment-outer segment junction band with an intact, but hyper-reflective, external limiting membrane. Five years after symptom onset, visual acuity had improved from 20/80 to 20/25, but the retinal appearance remained unchanged compared to 3 months after symptoms began. We performed structural assessments using SD-OCT, directional OCT (non-standard use of a prototype on loan from Carl Zeiss Meditec) and AOSLO (custom-built system). We also administered fundus-referenced functional tests in the region of apparent cone loss, including analysis of preferred retinal locus (PRL), AOSLO acuity, and microperimetry with tracking SLO (TSLO) (prototype system). To determine AOSLO-corrected visual acuity, the scanning laser was modulated with a tumbling E consistent with 20/30 visual acuity. Visual sensitivity was assessed in and around the lesion using TSLO microperimetry. Complete eye examination, including standard measures of best-corrected visual acuity, visual field tests, color fundus photos, and fundus auto-fluorescence were also performed. Despite a lack of visible cone profiles in the foveal lesion, fundus-referenced vision testing demonstrated visual function within the lesion consistent with cone function. The PRL was within the lesion of apparent cone loss at the fovea. AOSLO visual acuity tests were abnormal, but measurable: for trials in which the stimulus remained completely within the lesion, the subject got 48% correct, compared to 78% correct when the stimulus was outside the lesion. TSLO microperimetry revealed reduced, but detectible, sensitivity thresholds within the lesion. Fundus-referenced visual testing proved useful to identify functional cones despite apparent photoreceptor loss identified using AOSLO and SD-OCT. While AOSLO and SD-OCT appear to be sensitive for the detection of abnormal or absent photoreceptors, changes in photoreceptors that are identified with these imaging tools do not correlate completely with visual function in every patient. Fundus-referenced vision testing is a useful tool to indicate the presence of cones that may be amenable to recovery or response to experimental therapies despite not being visible on confocal AOSLO or SD-OCT images.
Compiled visualization with IPI method for analysing of liquid liquid mixing process
NASA Astrophysics Data System (ADS)
Jasikova, Darina; Kotek, Michal; Kysela, Bohus; Sulc, Radek; Kopecky, Vaclav
2018-06-01
The article deals with the research of mixing process using visualization techniques and IPI method. Characteristics of the size distribution and the evolution of two liquid-liquid phase's disintegration were studied. A methodology has been proposed for visualization and image analysis of data acquired during the initial phase of the mixing process. IPI method was used for subsequent detailed study of the disintegrated droplets. The article describes advantages of usage of appropriate method, presents the limits of each method, and compares them.
Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L
2018-06-12
Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging.
Ploemen, Ivo H J; Prudêncio, Miguel; Douradinha, Bruno G; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J F; Hermsen, Cornelus C; Sauerwein, Robert W; Baptista, Fernanda G; Mota, Maria M; Waters, Andrew P; Que, Ivo; Lowik, Clemens W G M; Khan, Shahid M; Janse, Chris J; Franke-Fayard, Blandine M D
2009-11-18
The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luc(con), expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1-5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium.
Visualisation and Quantitative Analysis of the Rodent Malaria Liver Stage by Real Time Imaging
Douradinha, Bruno G.; Ramesar, Jai; Fonager, Jannik; van Gemert, Geert-Jan; Luty, Adrian J. F.; Hermsen, Cornelus C.; Sauerwein, Robert W.; Baptista, Fernanda G.; Mota, Maria M.; Waters, Andrew P.; Que, Ivo; Lowik, Clemens W. G. M.; Khan, Shahid M.; Janse, Chris J.; Franke-Fayard, Blandine M. D.
2009-01-01
The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium. PMID:19924309
Multi-brain fusion and applications to intelligence analysis
NASA Astrophysics Data System (ADS)
Stoica, A.; Matran-Fernandez, A.; Andreou, D.; Poli, R.; Cinel, C.; Iwashita, Y.; Padgett, C.
2013-05-01
In a rapid serial visual presentation (RSVP) images are shown at an extremely rapid pace. Yet, the images can still be parsed by the visual system to some extent. In fact, the detection of specific targets in a stream of pictures triggers a characteristic electroencephalography (EEG) response that can be recognized by a brain-computer interface (BCI) and exploited for automatic target detection. Research funded by DARPA's Neurotechnology for Intelligence Analysts program has achieved speed-ups in sifting through satellite images when adopting this approach. This paper extends the use of BCI technology from individual analysts to collaborative BCIs. We show that the integration of information in EEGs collected from multiple operators results in performance improvements compared to the single-operator case.
The magnifying glass - A feature space local expansion for visual analysis. [and image enhancement
NASA Technical Reports Server (NTRS)
Juday, R. D.
1981-01-01
The Magnifying Glass Transformation (MGT) technique is proposed, as a multichannel spectral operation yielding visual imagery which is enhanced in a specified spectral vicinity, guided by the statistics of training samples. An application example is that in which the discrimination among spectral neighbors within an interactive display may be increased without altering distant object appearances or overall interpretation. A direct histogram specification technique is applied to the channels within the multispectral image so that a subset of the spectral domain occupies an increased fraction of the domain. The transformation is carried out by obtaining the training information, establishing the condition of the covariance matrix, determining the influenced solid, and initializing the lookup table. Finally, the image is transformed.
Open source bioimage informatics for cell biology
Swedlow, Jason R.; Eliceiri, Kevin W.
2009-01-01
Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery. PMID:19833518
The Zombie Plot: A Simple Graphic Method for Visualizing the Efficacy of a Diagnostic Test.
Richardson, Michael L
2016-08-09
One of the most important jobs of a radiologist is to pick the most appropriate imaging test for a particular clinical situation. Making a proper selection sometimes requires statistical analysis. The objective of this article is to introduce a simple graphic technique, an ROC plot that has been divided into zones of mostly bad imaging efficacy (ZOMBIE, hereafter referred to as the "zombie plot"), that transforms information about imaging efficacy from the numeric domain into the visual domain. The numeric rationale for the use of zombie plots is given, as are several examples of the clinical use of these plots. Two online calculators are described that simplify the process of producing a zombie plot.
Realistic tissue visualization using photoacoustic image
NASA Astrophysics Data System (ADS)
Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong
2018-02-01
Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.
NASA Astrophysics Data System (ADS)
Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.
2014-03-01
Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.
Bråtane, Bernt Tore; Bastan, Birgul; Fisher, Marc; Bouley, James; Henninger, Nils
2009-07-07
Though diffusion weighted imaging (DWI) is frequently used for identifying the ischemic lesion in focal cerebral ischemia, the understanding of spatiotemporal evolution patterns observed with different analysis methods remains imprecise. DWI and calculated apparent diffusion coefficient (ADC) maps were serially obtained in rat stroke models (MCAO): permanent, 90 min, and 180 min temporary MCAO. Lesion volumes were analyzed in a blinded and randomized manner by 2 investigators using (i) a previously validated ADC threshold, (ii) visual determination of hypointense regions on ADC maps, and (iii) visual determination of hyperintense regions on DWI. Lesion volumes were correlated with 24 hour 2,3,5-triphenyltetrazoliumchloride (TTC)-derived infarct volumes. TTC-derived infarct volumes were not significantly different from the ADC and DWI-derived lesion volumes at the last imaging time points except for significantly smaller DWI lesions in the pMCAO model (p=0.02). Volumetric calculation based on TTC-derived infarct also correlated significantly stronger to volumetric calculation based on last imaging time point derived lesions on ADC maps than DWI (p<0.05). Following reperfusion, lesion volumes on the ADC maps significantly reduced but no change was observed on DWI. Visually determined lesion volumes on ADC maps and DWI by both investigators correlated significantly with threshold-derived lesion volumes on ADC maps with the former method demonstrating a stronger correlation. There was also a better interrater agreement for ADC map analysis than for DWI analysis. Ischemic lesion determination by ADC was more accurate in final infarct prediction, rater independent, and provided exclusive information on ischemic lesion reversibility.
Modeling semantic aspects for cross-media image indexing.
Monay, Florent; Gatica-Perez, Daniel
2007-10-01
To go beyond the query-by-example paradigm in image retrieval, there is a need for semantic indexing of large image collections for intuitive text-based image search. Different models have been proposed to learn the dependencies between the visual content of an image set and the associated text captions, then allowing for the automatic creation of semantic indices for unannotated images. The task, however, remains unsolved. In this paper, we present three alternatives to learn a Probabilistic Latent Semantic Analysis model (PLSA) for annotated images, and evaluate their respective performance for automatic image indexing. Under the PLSA assumptions, an image is modeled as a mixture of latent aspects that generates both image features and text captions, and we investigate three ways to learn the mixture of aspects. We also propose a more discriminative image representation than the traditional Blob histogram, concatenating quantized local color information and quantized local texture descriptors. The first learning procedure of a PLSA model for annotated images is a standard EM algorithm, which implicitly assumes that the visual and the textual modalities can be treated equivalently. The other two models are based on an asymmetric PLSA learning, allowing to constrain the definition of the latent space on the visual or on the textual modality. We demonstrate that the textual modality is more appropriate to learn a semantically meaningful latent space, which translates into improved annotation performance. A comparison of our learning algorithms with respect to recent methods on a standard dataset is presented, and a detailed evaluation of the performance shows the validity of our framework.
On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision
Linder, Ewert; Grote, Anne; Varjo, Sami; Linder, Nina; Lebbad, Marianne; Lundin, Mikael; Diwan, Vinod; Hannuksela, Jari; Lundin, Johan
2013-01-01
Background Microscopy, being relatively easy to perform at low cost, is the universal diagnostic method for detection of most globally important parasitic infections. As quality control is hard to maintain, misdiagnosis is common, which affects both estimates of parasite burdens and patient care. Novel techniques for high-resolution imaging and image transfer over data networks may offer solutions to these problems through provision of education, quality assurance and diagnostics. Imaging can be done directly on image sensor chips, a technique possible to exploit commercially for the development of inexpensive “mini-microscopes”. Images can be transferred for analysis both visually and by computer vision both at point-of-care and at remote locations. Methods/Principal Findings Here we describe imaging of helminth eggs using mini-microscopes constructed from webcams and mobile phone cameras. The results show that an inexpensive webcam, stripped off its optics to allow direct application of the test sample on the exposed surface of the sensor, yields images of Schistosoma haematobium eggs, which can be identified visually. Using a highly specific image pattern recognition algorithm, 4 out of 5 eggs observed visually could be identified. Conclusions/Significance As proof of concept we show that an inexpensive imaging device, such as a webcam, may be easily modified into a microscope, for the detection of helminth eggs based on on-chip imaging. Furthermore, algorithms for helminth egg detection by machine vision can be generated for automated diagnostics. The results can be exploited for constructing simple imaging devices for low-cost diagnostics of urogenital schistosomiasis and other neglected tropical infectious diseases. PMID:24340107
Vaccine Images on Twitter: Analysis of What Images are Shared
Dredze, Mark
2018-01-01
Background Visual imagery plays a key role in health communication; however, there is little understanding of what aspects of vaccine-related images make them effective communication aids. Twitter, a popular venue for discussions related to vaccination, provides numerous images that are shared with tweets. Objective The objectives of this study were to understand how images are used in vaccine-related tweets and provide guidance with respect to the characteristics of vaccine-related images that correlate with the higher likelihood of being retweeted. Methods We collected more than one million vaccine image messages from Twitter and characterized various properties of these images using automated image analytics. We fit a logistic regression model to predict whether or not a vaccine image tweet was retweeted, thus identifying characteristics that correlate with a higher likelihood of being shared. For comparison, we built similar models for the sharing of vaccine news on Facebook and for general image tweets. Results Most vaccine-related images are duplicates (125,916/237,478; 53.02%) or taken from other sources, not necessarily created by the author of the tweet. Almost half of the images contain embedded text, and many include images of people and syringes. The visual content is highly correlated with a tweet’s textual topics. Vaccine image tweets are twice as likely to be shared as nonimage tweets. The sentiment of an image and the objects shown in the image were the predictive factors in determining whether an image was retweeted. Conclusions We are the first to study vaccine images on Twitter. Our findings suggest future directions for the study and use of vaccine imagery and may inform communication strategies around vaccination. Furthermore, our study demonstrates an effective study methodology for image analysis. PMID:29615386
Vaccine Images on Twitter: Analysis of What Images are Shared.
Chen, Tao; Dredze, Mark
2018-04-03
Visual imagery plays a key role in health communication; however, there is little understanding of what aspects of vaccine-related images make them effective communication aids. Twitter, a popular venue for discussions related to vaccination, provides numerous images that are shared with tweets. The objectives of this study were to understand how images are used in vaccine-related tweets and provide guidance with respect to the characteristics of vaccine-related images that correlate with the higher likelihood of being retweeted. We collected more than one million vaccine image messages from Twitter and characterized various properties of these images using automated image analytics. We fit a logistic regression model to predict whether or not a vaccine image tweet was retweeted, thus identifying characteristics that correlate with a higher likelihood of being shared. For comparison, we built similar models for the sharing of vaccine news on Facebook and for general image tweets. Most vaccine-related images are duplicates (125,916/237,478; 53.02%) or taken from other sources, not necessarily created by the author of the tweet. Almost half of the images contain embedded text, and many include images of people and syringes. The visual content is highly correlated with a tweet's textual topics. Vaccine image tweets are twice as likely to be shared as nonimage tweets. The sentiment of an image and the objects shown in the image were the predictive factors in determining whether an image was retweeted. We are the first to study vaccine images on Twitter. Our findings suggest future directions for the study and use of vaccine imagery and may inform communication strategies around vaccination. Furthermore, our study demonstrates an effective study methodology for image analysis. ©Tao Chen, Mark Dredze. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 03.04.2018.
ERIC Educational Resources Information Center
Jakobi, Patricia
1999-01-01
Analysis of Web site images of aging to identify positive and negative representations can help teach students about social perceptions of older adults. Another learning experience involves consideration of the needs of older adults in Web site design. (SK)
Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee
2016-04-01
Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.
NASA Astrophysics Data System (ADS)
Law, E.; Bui, B.; Chang, G.; Goodale, C. E.; Kim, R.; Malhotra, S.; Ramirez, P.; Rodriguez, L.; Sadaqathulla, S.; Nall, M.; Muery, K.
2012-12-01
The Lunar Mapping and Modeling Portal (LMMP), is a multi-center project led by NASA's Marshall Space Flight Center. The LMMP is a web-based Portal and a suite of interactive visualization and analysis tools to enable lunar scientists, engineers, and mission planners to access mapped lunar data products from past and current lunar missions, e.g., Lunar Reconnaissance Orbiter, Apollo, Lunar Orbiter, Lunar Prospector, and Clementine. The Portal allows users to search, view and download a vast number of the most recent lunar digital products including image mosaics, digital elevation models, and in situ lunar resource maps such as iron and hydrogen abundance. The Portal also provides a number of visualization and analysis tools that perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution. In this talk, we will give a brief overview of the project. After that, we will highlight various key features and Lunar data products. We will further demonstrate image viewing and layering of lunar map images via our web portal as well as mobile devices.
An Analysis of Eruptions Detected by the LMSAL Eruption Patrol
NASA Astrophysics Data System (ADS)
Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.
2014-12-01
Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Ohara, T.
1982-01-01
The central-western part of Rio Grande do Sul Shield was geologically mapped to test the use of MSS-LANDSAT data in the study of mineralized regions. Visual interpretation of the images a the scale of 1:500,000 consisted, in the identification and analysis of the different tonal and textural patterns in each spectral band. After the structural geologic mapping of the area, using visual interpretation techniques, the statistical data obtained were evaluated, specially data concerning size and direction of fractures. The IMAGE-100 system was used to enlarge and enhance certain imagery. The LANDSAT MSS data offer several advantages over conventional white and black aerial photographs for geological studies. Its multispectral characteristic (band 6 and false color composition of bands 4, 5 and 7 were best suitable for the study). Coverage of a large imaging area of about 35,000 sq km, giving a synoptical view, is very useful for perceiving the regional geological setting.
Image communication scheme based on dynamic visual cryptography and computer generated holography
NASA Astrophysics Data System (ADS)
Palevicius, Paulius; Ragulskis, Minvydas
2015-01-01
Computer generated holograms are often exploited to implement optical encryption schemes. This paper proposes the integration of dynamic visual cryptography (an optical technique based on the interplay of visual cryptography and time-averaging geometric moiré) with Gerchberg-Saxton algorithm. A stochastic moiré grating is used to embed the secret into a single cover image. The secret can be visually decoded by a naked eye if only the amplitude of harmonic oscillations corresponds to an accurately preselected value. The proposed visual image encryption scheme is based on computer generated holography, optical time-averaging moiré and principles of dynamic visual cryptography. Dynamic visual cryptography is used both for the initial encryption of the secret image and for the final decryption. Phase data of the encrypted image are computed by using Gerchberg-Saxton algorithm. The optical image is decrypted using the computationally reconstructed field of amplitudes.
Celebrity, Illusion, and Middle School Culture
ERIC Educational Resources Information Center
Briggs, Judith
2007-01-01
Visual images create desire. As artifacts from contemporary visual culture, visual images inform everyone about society, telling everyone who they are and what they value. They register subliminally within everyone's psyches and alter everyone's perceptions, sometimes without everyone's knowledge. Visual images seem to keep coming and often…
Mehle, Andraž; Kitak, Domen; Podrekar, Gregor; Likar, Boštjan; Tomaževič, Dejan
2018-05-09
Agglomeration of pellets in fluidized bed coating processes is an undesirable phenomenon that affects the yield and quality of the product. In scope of PAT guidance, we present a system that utilizes visual imaging for in-line monitoring of the agglomeration degree. Seven pilot-scale Wurster coating processes were executed under various process conditions, providing a wide spectrum of process outcomes. Images of pellets were acquired during the coating processes in a contactless manner through an observation window of the coating apparatus. Efficient image analysis methods were developed for automatic recognition of discrete pellets and agglomerates in the acquired images. In-line obtained agglomeration degree trends revealed the agglomeration dynamics in distinct phases of the coating processes. We compared the in-line estimated agglomeration degree in the end point of each process to the results obtained by the off-line sieve analysis reference method. A strong positive correlation was obtained (coefficient of determination R 2 =0.99), confirming the feasibility of the approach. The in-line estimated agglomeration degree enables early detection of agglomeration and provides means for timely interventions to retain it in an acceptable range. Copyright © 2018 Elsevier B.V. All rights reserved.
Experimenter's Laboratory for Visualized Interactive Science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Rodier, Daniel R.; Klemp, Marjorie K.
1994-01-01
ELVIS (Experimenter's Laboratory for Visualized Interactive Science) is an interactive visualization environment that enables scientists, students, and educators to visualize and analyze large, complex, and diverse sets of scientific data. It accomplishes this by presenting the data sets as 2-D, 3-D, color, stereo, and graphic images with movable and multiple light sources combined with displays of solid-surface, contours, wire-frame, and transparency. By simultaneously rendering diverse data sets acquired from multiple sources, formats, and resolutions and by interacting with the data through an intuitive, direct-manipulation interface, ELVIS provides an interactive and responsive environment for exploratory data analysis.
Edge directed image interpolation with Bamberger pyramids
NASA Astrophysics Data System (ADS)
Rosiles, Jose Gerardo
2005-08-01
Image interpolation is a standard feature in digital image editing software, digital camera systems and printers. Classical methods for resizing produce blurred images with unacceptable quality. Bamberger Pyramids and filter banks have been successfully used for texture and image analysis. They provide excellent multiresolution and directional selectivity. In this paper we present an edge-directed image interpolation algorithm which takes advantage of the simultaneous spatial-directional edge localization at the subband level. The proposed algorithm outperform classical schemes like bilinear and bicubic schemes from the visual and numerical point of views.
NASA Astrophysics Data System (ADS)
Zhao, Yiqun; Wang, Zhihui
2015-12-01
The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.
Kamei, Ryotaro; Watanabe, Yuji; Sagiyama, Koji; Isoda, Takuro; Togao, Osamu; Honda, Hiroshi
2018-05-23
To investigate the optimal monochromatic color combination for fusion imaging of FDG-PET and diffusion-weighted MR images (DW) regarding lesion conspicuity of each image. Six linear monochromatic color-maps of red, blue, green, cyan, magenta, and yellow were assigned to each of the FDG-PET and DW images. Total perceptual color differences of the lesions were calculated based on the lightness and chromaticity measured with the photometer. Visual lesion conspicuity was also compared among the PET-only, DW-only and PET-DW-double positive portions with mean conspicuity scores. Statistical analysis was performed with a one-way analysis of variance and Spearman's rank correlation coefficient. Among all the 12 possible monochromatic color-map combinations, the 3 combinations of red/cyan, magenta/green, and red/green produced the highest conspicuity scores. Total color differences between PET-positive and double-positive portions correlated with conspicuity scores (ρ = 0.2933, p < 0.005). Lightness differences showed a significant negative correlation with conspicuity scores between the PET-only and DWI-only positive portions. Chromaticity differences showed a marginally significant correlation with conspicuity scores between DWI-positive and double-positive portions. Monochromatic color combinations can facilitate the visual evaluation of FDG-uptake and diffusivity as well as registration accuracy on the FDG-PET/DW fusion images, when red- and green-colored elements are assigned to FDG-PET and DW images, respectively.