A web-based solution for 3D medical image visualization
NASA Astrophysics Data System (ADS)
Hou, Xiaoshuai; Sun, Jianyong; Zhang, Jianguo
2015-03-01
In this presentation, we present a web-based 3D medical image visualization solution which enables interactive large medical image data processing and visualization over the web platform. To improve the efficiency of our solution, we adopt GPU accelerated techniques to process images on the server side while rapidly transferring images to the HTML5 supported web browser on the client side. Compared to traditional local visualization solution, our solution doesn't require the users to install extra software or download the whole volume dataset from PACS server. By designing this web-based solution, it is feasible for users to access the 3D medical image visualization service wherever the internet is available.
Image communication scheme based on dynamic visual cryptography and computer generated holography
NASA Astrophysics Data System (ADS)
Palevicius, Paulius; Ragulskis, Minvydas
2015-01-01
Computer generated holograms are often exploited to implement optical encryption schemes. This paper proposes the integration of dynamic visual cryptography (an optical technique based on the interplay of visual cryptography and time-averaging geometric moiré) with Gerchberg-Saxton algorithm. A stochastic moiré grating is used to embed the secret into a single cover image. The secret can be visually decoded by a naked eye if only the amplitude of harmonic oscillations corresponds to an accurately preselected value. The proposed visual image encryption scheme is based on computer generated holography, optical time-averaging moiré and principles of dynamic visual cryptography. Dynamic visual cryptography is used both for the initial encryption of the secret image and for the final decryption. Phase data of the encrypted image are computed by using Gerchberg-Saxton algorithm. The optical image is decrypted using the computationally reconstructed field of amplitudes.
Visual information mining in remote sensing image archives
NASA Astrophysics Data System (ADS)
Pelizzari, Andrea; Descargues, Vincent; Datcu, Mihai P.
2002-01-01
The present article focuses on the development of interactive exploratory tools for visually mining the image content in large remote sensing archives. Two aspects are treated: the iconic visualization of the global information in the archive and the progressive visualization of the image details. The proposed methods are integrated in the Image Information Mining (I2M) system. The images and image structure in the I2M system are indexed based on a probabilistic approach. The resulting links are managed by a relational data base. Both the intrinsic complexity of the observed images and the diversity of user requests result in a great number of associations in the data base. Thus new tools have been designed to visualize, in iconic representation the relationships created during a query or information mining operation: the visualization of the query results positioned on the geographical map, quick-looks gallery, visualization of the measure of goodness of the query, visualization of the image space for statistical evaluation purposes. Additionally the I2M system is enhanced with progressive detail visualization in order to allow better access for operator inspection. I2M is a three-tier Java architecture and is optimized for the Internet.
Image Location Estimation by Salient Region Matching.
Qian, Xueming; Zhao, Yisi; Han, Junwei
2015-11-01
Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.
A Graph Based Interface for Representing Volume Visualization Results
NASA Technical Reports Server (NTRS)
Patten, James M.; Ma, Kwan-Liu
1998-01-01
This paper discusses a graph based user interface for representing the results of the volume visualization process. As images are rendered, they are connected to other images in a graph based on their rendering parameters. The user can take advantage of the information in this graph to understand how certain rendering parameter changes affect a dataset, making the visualization process more efficient. Because the graph contains more information than is contained in an unstructured history of images, the image graph is also helpful for collaborative visualization and animation.
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators
Bai, Xiangzhi
2015-01-01
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.
Bai, Xiangzhi
2015-07-15
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.
NASA Astrophysics Data System (ADS)
Rahman, Md M.; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.
2015-03-01
This paper presents a novel approach to biomedical image retrieval by mapping image regions to local concepts and represent images in a weighted entropy-based concept feature space. The term concept refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist user in interactively select a Region-Of-Interest (ROI) and search for similar image ROIs. Further, a spatial verification step is used as a post-processing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval, is validated through experiments on a data set of 450 lung CT images extracted from journal articles from four different collections.
Toward semantic-based retrieval of visual information: a model-based approach
NASA Astrophysics Data System (ADS)
Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman
2002-07-01
This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.
Image Statistics and the Representation of Material Properties in the Visual Cortex
Baumgartner, Elisabeth; Gegenfurtner, Karl R.
2016-01-01
We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images. PMID:27582714
Image Statistics and the Representation of Material Properties in the Visual Cortex.
Baumgartner, Elisabeth; Gegenfurtner, Karl R
2016-01-01
We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.
Visual Tour Based on Panaromic Images for Indoor Places in Campus
NASA Astrophysics Data System (ADS)
Bakirman, T.
2012-07-01
In this paper, it is aimed to create a visual tour based on panoramic images for Civil Engineering Faculty in Yildiz Technical University. For this purpose, panoramic images should be obtained. Thus, photos taken with a tripod to have the same angle of view in every photo and panoramic images were created with stitching photos. Two different cameras with different focal length were used. With the panoramic images, visual tour with navigation tools created.
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques. PMID:29694429
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques.
Kirchoff, Bruce K; Leggett, Roxanne; Her, Va; Moua, Chue; Morrison, Jessica; Poole, Chamika
2011-01-01
Advances in digital imaging have made possible the creation of completely visual keys. By a visual key we mean a key based primarily on images, and that contains a minimal amount of text. Characters in visual keys are visually, not verbally defined. In this paper we create the first primarily visual key to a group of taxa, in this case the Fagaceae of the southeastern USA. We also modify our recently published set of best practices for image use in illustrated keys to make them applicable to visual keys. Photographs of the Fagaceae were obtained from internet and herbarium databases or were taken specifically for this project. The images were printed and then sorted into hierarchical groups. These hierarchical groups of images were used to create the 'couplets' in the key. A reciprocal process of key creation and testing was used to produce the final keys. Four keys were created, one for each of the parts-leaves, buds, fruits and bark. Species description pages consisting of multiple images were also created for each of the species in the key. Creation and testing of the key resulted in a modified list of best practices for image use visual keys. The inclusion of images into paper and electronic keys has greatly increased their ease of use. However, virtually all of these keys are still based upon verbally defined, atomistic characters. The creation of primarily visual keys allows us to overcome the well-known limitations of linguistic-based characters and create keys that are much easier to use, especially for botanical novices.
Visual improvement for bad handwriting based on Monte-Carlo method
NASA Astrophysics Data System (ADS)
Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua
2014-03-01
A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.
Method for the reduction of image content redundancy in large image databases
Tobin, Kenneth William; Karnowski, Thomas P.
2010-03-02
A method of increasing information content for content-based image retrieval (CBIR) systems includes the steps of providing a CBIR database, the database having an index for a plurality of stored digital images using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the images. A visual similarity parameter value is calculated based on a degree of visual similarity between features vectors of an incoming image being considered for entry into the database and feature vectors associated with a most similar of the stored images. Based on said visual similarity parameter value it is determined whether to store or how long to store the feature vectors associated with the incoming image in the database.
Visual attention based bag-of-words model for image classification
NASA Astrophysics Data System (ADS)
Wang, Qiwei; Wan, Shouhong; Yue, Lihua; Wang, Che
2014-04-01
Bag-of-words is a classical method for image classification. The core problem is how to count the frequency of the visual words and what visual words to select. In this paper, we propose a visual attention based bag-of-words model (VABOW model) for image classification task. The VABOW model utilizes visual attention method to generate a saliency map, and uses the saliency map as a weighted matrix to instruct the statistic process for the frequency of the visual words. On the other hand, the VABOW model combines shape, color and texture cues and uses L1 regularization logistic regression method to select the most relevant and most efficient features. We compare our approach with traditional bag-of-words based method on two datasets, and the result shows that our VABOW model outperforms the state-of-the-art method for image classification.
A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF
Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A.; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan
2016-01-01
With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. PMID:27315101
Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R
2015-10-01
This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.
Rahman, Md. Mahmudur; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.
2015-01-01
Abstract. This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term “concept” refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature. PMID:26730398
Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization
Chiu, Chung-Cheng; Ting, Chih-Chung
2016-01-01
Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412
NASA Astrophysics Data System (ADS)
Wolf, Ivo; Nolden, Marco; Schwarz, Tobias; Meinzer, Hans-Peter
2010-02-01
The Medical Imaging Interaction Toolkit (MITK) and the eXtensible Imaging Platform (XIP) both aim at facilitating the development of medical imaging applications, but provide support on different levels. MITK offers support from the toolkit level, whereas XIP comes with a visual programming environment. XIP is strongly based on Open Inventor. Open Inventor with its scene graph-based rendering paradigm was not specifically designed for medical imaging, but focuses on creating dedicated visualizations. MITK has a visualization concept with a model-view-controller like design that assists in implementing multiple, consistent views on the same data, which is typically required in medical imaging. In addition, MITK defines a unified means of describing position, orientation, bounds, and (if required) local deformation of data and views, supporting e.g. images acquired with gantry tilt and curved reformations. The actual rendering is largely delegated to the Visualization Toolkit (VTK). This paper presents an approach of how to integrate the visualization concept of MITK with XIP, especially into the XIP-Builder. This is a first step of combining the advantages of both platforms. It enables experimenting with algorithms in the XIP visual programming environment without requiring a detailed understanding of Open Inventor. Using MITK-based add-ons to XIP, any number of data objects (images, surfaces, etc.) produced by algorithms can simply be added to an MITK DataStorage object and rendered into any number of slice-based (2D) or 3D views. Both MITK and XIP are open-source C++ platforms. The extensions presented in this paper will be available from www.mitk.org.
Learning to rank using user clicks and visual features for image retrieval.
Yu, Jun; Tao, Dacheng; Wang, Meng; Rui, Yong
2015-04-01
The inconsistency between textual features and visual contents can cause poor image search results. To solve this problem, click features, which are more reliable than textual information in justifying the relevance between a query and clicked images, are adopted in image ranking model. However, the existing ranking model cannot integrate visual features, which are efficient in refining the click-based search results. In this paper, we propose a novel ranking model based on the learning to rank framework. Visual features and click features are simultaneously utilized to obtain the ranking model. Specifically, the proposed approach is based on large margin structured output learning and the visual consistency is integrated with the click features through a hypergraph regularizer term. In accordance with the fast alternating linearization method, we design a novel algorithm to optimize the objective function. This algorithm alternately minimizes two different approximations of the original objective function by keeping one function unchanged and linearizing the other. We conduct experiments on a large-scale dataset collected from the Microsoft Bing image search engine, and the results demonstrate that the proposed learning to rank models based on visual features and user clicks outperforms state-of-the-art algorithms.
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval
Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G.; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei
2016-01-01
Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency. PMID:27688597
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval.
Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei
2016-02-12
Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency.
2013-01-01
Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569
Visual affective classification by combining visual and text features.
Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming
2017-01-01
Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task.
Visual affective classification by combining visual and text features
Liu, Ningning; Wang, Kai; Jin, Xin; Gao, Boyang; Dellandréa, Emmanuel; Chen, Liming
2017-01-01
Affective analysis of images in social networks has drawn much attention, and the texts surrounding images are proven to provide valuable semantic meanings about image content, which can hardly be represented by low-level visual features. In this paper, we propose a novel approach for visual affective classification (VAC) task. This approach combines visual representations along with novel text features through a fusion scheme based on Dempster-Shafer (D-S) Evidence Theory. Specifically, we not only investigate different types of visual features and fusion methods for VAC, but also propose textual features to effectively capture emotional semantics from the short text associated to images based on word similarity. Experiments are conducted on three public available databases: the International Affective Picture System (IAPS), the Artistic Photos and the MirFlickr Affect set. The results demonstrate that the proposed approach combining visual and textual features provides promising results for VAC task. PMID:28850566
Hyperspectral image visualization based on a human visual model
NASA Astrophysics Data System (ADS)
Zhang, Hongqin; Peng, Honghong; Fairchild, Mark D.; Montag, Ethan D.
2008-02-01
Hyperspectral image data can provide very fine spectral resolution with more than 200 bands, yet presents challenges for visualization techniques for displaying such rich information on a tristimulus monitor. This study developed a visualization technique by taking advantage of both the consistent natural appearance of a true color image and the feature separation of a PCA image based on a biologically inspired visual attention model. The key part is to extract the informative regions in the scene. The model takes into account human contrast sensitivity functions and generates a topographic saliency map for both images. This is accomplished using a set of linear "center-surround" operations simulating visual receptive fields as the difference between fine and coarse scales. A difference map between the saliency map of the true color image and that of the PCA image is derived and used as a mask on the true color image to select a small number of interesting locations where the PCA image has more salient features than available in the visible bands. The resulting representations preserve hue for vegetation, water, road etc., while the selected attentional locations may be analyzed by more advanced algorithms.
A neotropical Miocene pollen database employing image-based search and semantic modeling.
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren
2014-08-01
Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.
Occam's razor: supporting visual query expression for content-based image queries
NASA Astrophysics Data System (ADS)
Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.
2005-01-01
This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).
Occam"s razor: supporting visual query expression for content-based image queries
NASA Astrophysics Data System (ADS)
Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.
2004-12-01
This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).
NASA Astrophysics Data System (ADS)
Wan, Qianwen; Panetta, Karen; Agaian, Sos
2017-05-01
Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.
Visual Contrast Enhancement Algorithm Based on Histogram Equalization
Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching
2015-01-01
Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods. PMID:26184219
Combining textual and visual information for image retrieval in the medical domain.
Gkoufas, Yiannis; Morou, Anna; Kalamboukis, Theodore
2011-01-01
In this article we have assembled the experience obtained from our participation in the imageCLEF evaluation task over the past two years. Exploitation on the use of linear combinations for image retrieval has been attempted by combining visual and textual sources of images. From our experiments we conclude that a mixed retrieval technique that applies both textual and visual retrieval in an interchangeably repeated manner improves the performance while overcoming the scalability limitations of visual retrieval. In particular, the mean average precision (MAP) has increased from 0.01 to 0.15 and 0.087 for 2009 and 2010 data, respectively, when content-based image retrieval (CBIR) is performed on the top 1000 results from textual retrieval based on natural language processing (NLP).
Image Fusion Algorithms Using Human Visual System in Transform Domain
NASA Astrophysics Data System (ADS)
Vadhi, Radhika; Swamy Kilari, Veera; Samayamantula, Srinivas Kumar
2017-08-01
The endeavor of digital image fusion is to combine the important visual parts from various sources to advance the visibility eminence of the image. The fused image has a more visual quality than any source images. In this paper, the Human Visual System (HVS) weights are used in the transform domain to select appropriate information from various source images and then to attain a fused image. In this process, mainly two steps are involved. First, apply the DWT to the registered source images. Later, identify qualitative sub-bands using HVS weights. Hence, qualitative sub-bands are selected from different sources to form high quality HVS based fused image. The quality of the HVS based fused image is evaluated with general fusion metrics. The results show the superiority among the state-of-the art resolution Transforms (MRT) such as Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), Contourlet Transform (CT), and Non Sub Sampled Contourlet Transform (NSCT) using maximum selection fusion rule.
On the Integration of Medium Wave Infrared Cameras for Vision-Based Navigation
2015-03-01
SWIR Short Wave Infrared VisualSFM Visual Structure from Motion WPAFB Wright Patterson Air Force Base xi ON THE INTEGRATION OF MEDIUM WAVE INFRARED...Structure from Motion Visual Structure from Motion ( VisualSFM ) is an application that performs incremental SfM using images fed into it of a scene [20...too drastically in between frames. When this happens, VisualSFM will begin creating a new model with images that do not fit to the old one. These new
NASA Astrophysics Data System (ADS)
Ma, Jinlei; Zhou, Zhiqiang; Wang, Bo; Zong, Hua
2017-05-01
The goal of infrared (IR) and visible image fusion is to produce a more informative image for human observation or some other computer vision tasks. In this paper, we propose a novel multi-scale fusion method based on visual saliency map (VSM) and weighted least square (WLS) optimization, aiming to overcome some common deficiencies of conventional methods. Firstly, we introduce a multi-scale decomposition (MSD) using the rolling guidance filter (RGF) and Gaussian filter to decompose input images into base and detail layers. Compared with conventional MSDs, this MSD can achieve the unique property of preserving the information of specific scales and reducing halos near edges. Secondly, we argue that the base layers obtained by most MSDs would contain a certain amount of residual low-frequency information, which is important for controlling the contrast and overall visual appearance of the fused image, and the conventional "averaging" fusion scheme is unable to achieve desired effects. To address this problem, an improved VSM-based technique is proposed to fuse the base layers. Lastly, a novel WLS optimization scheme is proposed to fuse the detail layers. This optimization aims to transfer more visual details and less irrelevant IR details or noise into the fused image. As a result, the fused image details would appear more naturally and be suitable for human visual perception. Experimental results demonstrate that our method can achieve a superior performance compared with other fusion methods in both subjective and objective assessments.
Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network
NASA Astrophysics Data System (ADS)
Ong, Jia Jan; Ang, L.-M.; Seng, K. P.
This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.
Zhou, Zhi; Arce, Gonzalo R; Di Crescenzo, Giovanni
2006-08-01
Visual cryptography encodes a secret binary image (SI) into n shares of random binary patterns. If the shares are xeroxed onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the n shares, however, have no visual meaning and hinder the objectives of visual cryptography. Extended visual cryptography [1] was proposed recently to construct meaningful binary images as shares using hypergraph colourings, but the visual quality is poor. In this paper, a novel technique named halftone visual cryptography is proposed to achieve visual cryptography via halftoning. Based on the blue-noise dithering principles, the proposed method utilizes the void and cluster algorithm [2] to encode a secret binary image into n halftone shares (images) carrying significant visual information. The simulation shows that the visual quality of the obtained halftone shares are observably better than that attained by any available visual cryptography method known to date.
Using component technologies for web based wavelet enhanced mammographic image visualization.
Sakellaropoulos, P; Costaridou, L; Panayiotakis, G
2000-01-01
The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.
Devi, B Pushpa; Singh, Kh Manglem; Roy, Sudipta
2016-01-01
This paper proposes a new watermarking algorithm based on the shuffled singular value decomposition and the visual cryptography for copyright protection of digital images. It generates the ownership and identification shares of the image based on visual cryptography. It decomposes the image into low and high frequency sub-bands. The low frequency sub-band is further divided into blocks of same size after shuffling it and then the singular value decomposition is applied to each randomly selected block. Shares are generated by comparing one of the elements in the first column of the left orthogonal matrix with its corresponding element in the right orthogonal matrix of the singular value decomposition of the block of the low frequency sub-band. The experimental results show that the proposed scheme clearly verifies the copyright of the digital images, and is robust to withstand several image processing attacks. Comparison with the other related visual cryptography-based algorithms reveals that the proposed method gives better performance. The proposed method is especially resilient against the rotation attack.
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-01-01
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-11-26
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.
Visual Motion Perception and Visual Attentive Processes.
1988-04-01
88-0551 Visual Motion Perception and Visual Attentive Processes George Spering , New YorkUnivesity A -cesson For DTIC TAB rant AFOSR 85-0364... Spering . HIPSt: A Unix-based image processing syslem. Computer Vision, Graphics, and Image Processing, 1984,25. 331-347. ’HIPS is the Human Information...Processing Laboratory’s Image Processing System. 1985 van Santen, Jan P. It, and George Spering . Elaborated Reichardt detectors. Journal of the Optical
Perceptual asymmetries in greyscales: object-based versus space-based influences.
Thomas, Nicole A; Elias, Lorin J
2012-05-01
Neurologically normal individuals exhibit leftward spatial biases, resulting from object- and space-based biases; however their relative contributions to the overall bias remain unknown. Relative position within the display has not often been considered, with similar spatial conditions being collapsed across. Study 1 used the greyscales task to investigate the influence of relative position and object- and space-based contributions. One image in each greyscale pair was shifted towards the left or the right. A leftward object-based bias moderated by a bias to the centre was expected. Results confirmed this as a left object-based bias occurred in the right visual field, where the left side of the greyscale pairs was located in the centre visual field. Further, only lower visual field images exhibited a significant left bias in the left visual field. The left bias was also stronger when images were partially overlapping in the right visual field, demonstrating the importance of examining proximity. The second study examined whether object-based biases were stronger when actual objects, with directional lighting biases, were used. Direction of luminosity was congruent or incongruent with spatial location. A stronger object-based bias emerged overall; however a leftward bias was seen in congruent conditions and a rightward bias was seen in incongruent conditions. In conditions with significant biases, the lower visual field image was chosen most often. Results show that object- and space-based biases both contribute; however stimulus type allows either space- or object-based biases to be stronger. A lower visual field bias also interacts with these biases, leading the left bias to be eliminated under certain conditions. The complex interaction occurring between frame of reference and visual field makes spatial location extremely important in determining the strength of the leftward bias. Copyright © 2010 Elsevier Srl. All rights reserved.
A neotropical Miocene pollen database employing image-based search and semantic modeling1
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren
2014-01-01
• Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
Landmark Image Retrieval by Jointing Feature Refinement and Multimodal Classifier Learning.
Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun; Ma, Shuai; Xiaoming Zhang; Senzhang Wang; Zhoujun Li; Shuai Ma; Ma, Shuai; Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun
2018-06-01
Landmark retrieval is to return a set of images with their landmarks similar to those of the query images. Existing studies on landmark retrieval focus on exploiting the geometries of landmarks for visual similarity matches. However, the visual content of social images is of large diversity in many landmarks, and also some images share common patterns over different landmarks. On the other side, it has been observed that social images usually contain multimodal contents, i.e., visual content and text tags, and each landmark has the unique characteristic of both visual content and text content. Therefore, the approaches based on similarity matching may not be effective in this environment. In this paper, we investigate whether the geographical correlation among the visual content and the text content could be exploited for landmark retrieval. In particular, we propose an effective multimodal landmark classification paradigm to leverage the multimodal contents of social image for landmark retrieval, which integrates feature refinement and landmark classifier with multimodal contents by a joint model. The geo-tagged images are automatically labeled for classifier learning. Visual features are refined based on low rank matrix recovery, and multimodal classification combined with group sparse is learned from the automatically labeled images. Finally, candidate images are ranked by combining classification result and semantic consistence measuring between the visual content and text content. Experiments on real-world datasets demonstrate the superiority of the proposed approach as compared to existing methods.
Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F
2015-07-01
To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.
Li, Qiang; Liu, Hao-Li; Chen, Wen-Shiang
2013-01-01
Previous studies developed ultrasound temperature-imaging methods based on changes in backscattered energy (CBE) to monitor variations in temperature during hyperthermia. In conventional CBE imaging, tracking and compensation of the echo shift due to temperature increase need to be done. Moreover, the CBE image does not enable visualization of the temperature distribution in tissues during nonuniform heating, which limits its clinical application in guidance of tissue ablation treatment. In this study, we investigated a CBE imaging method based on the sliding window technique and the polynomial approximation of the integrated CBE (ICBEpa image) to overcome the difficulties of conventional CBE imaging. We conducted experiments with tissue samples of pork tenderloin ablated by microwave irradiation to validate the feasibility of the proposed method. During ablation, the raw backscattered signals were acquired using an ultrasound scanner for B-mode and ICBEpa imaging. The experimental results showed that the proposed ICBEpa image can visualize the temperature distribution in a tissue with a very good contrast. Moreover, tracking and compensation of the echo shift were not necessary when using the ICBEpa image to visualize the temperature profile. The experimental findings suggested that the ICBEpa image, a new CBE imaging method, has a great potential in CBE-based imaging of hyperthermia and other thermal therapies. PMID:24260041
Achieving real-time capsule endoscopy (CE) video visualization through panoramic imaging
NASA Astrophysics Data System (ADS)
Yi, Steven; Xie, Jean; Mui, Peter; Leighton, Jonathan A.
2013-02-01
In this paper, we mainly present a novel and real-time capsule endoscopy (CE) video visualization concept based on panoramic imaging. Typical CE videos run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. To date, there is no commercially available tool capable of providing stabilized and processed CE video that is easy to analyze in real time. The burden on physicians' disease finding efforts is thus big. In fact, since the CE camera sensor has a limited forward looking view and low image frame rate (typical 2 frames per second), and captures very close range imaging on the GI tract surface, it is no surprise that traditional visualization method based on tracking and registration often fails to work. This paper presents a novel concept for real-time CE video stabilization and display. Instead of directly working on traditional forward looking FOV (field of view) images, we work on panoramic images to bypass many problems facing traditional imaging modalities. Methods on panoramic image generation based on optical lens principle leading to real-time data visualization will be presented. In addition, non-rigid panoramic image registration methods will be discussed.
Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa
2013-01-01
Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796
Generating descriptive visual words and visual phrases for large-scale image applications.
Zhang, Shiliang; Tian, Qi; Hua, Gang; Huang, Qingming; Gao, Wen
2011-09-01
Bag-of-visual Words (BoWs) representation has been applied for various problems in the fields of multimedia and computer vision. The basic idea is to represent images as visual documents composed of repeatable and distinctive visual elements, which are comparable to the text words. Notwithstanding its great success and wide adoption, visual vocabulary created from single-image local descriptors is often shown to be not as effective as desired. In this paper, descriptive visual words (DVWs) and descriptive visual phrases (DVPs) are proposed as the visual correspondences to text words and phrases, where visual phrases refer to the frequently co-occurring visual word pairs. Since images are the carriers of visual objects and scenes, a descriptive visual element set can be composed by the visual words and their combinations which are effective in representing certain visual objects or scenes. Based on this idea, a general framework is proposed for generating DVWs and DVPs for image applications. In a large-scale image database containing 1506 object and scene categories, the visual words and visual word pairs descriptive to certain objects or scenes are identified and collected as the DVWs and DVPs. Experiments show that the DVWs and DVPs are informative and descriptive and, thus, are more comparable with the text words than the classic visual words. We apply the identified DVWs and DVPs in several applications including large-scale near-duplicated image retrieval, image search re-ranking, and object recognition. The combination of DVW and DVP performs better than the state of the art in large-scale near-duplicated image retrieval in terms of accuracy, efficiency and memory consumption. The proposed image search re-ranking algorithm: DWPRank outperforms the state-of-the-art algorithm by 12.4% in mean average precision and about 11 times faster in efficiency.
Parts-based stereoscopic image assessment by learning binocular manifold color visual properties
NASA Astrophysics Data System (ADS)
Xu, Haiyong; Yu, Mei; Luo, Ting; Zhang, Yun; Jiang, Gangyi
2016-11-01
Existing stereoscopic image quality assessment (SIQA) methods are mostly based on the luminance information, in which color information is not sufficiently considered. Actually, color is part of the important factors that affect human visual perception, and nonnegative matrix factorization (NMF) and manifold learning are in line with human visual perception. We propose an SIQA method based on learning binocular manifold color visual properties. To be more specific, in the training phase, a feature detector is created based on NMF with manifold regularization by considering color information, which not only allows parts-based manifold representation of an image, but also manifests localized color visual properties. In the quality estimation phase, visually important regions are selected by considering different human visual attention, and feature vectors are extracted by using the feature detector. Then the feature similarity index is calculated and the parts-based manifold color feature energy (PMCFE) for each view is defined based on the color feature vectors. The final quality score is obtained by considering a binocular combination based on PMCFE. The experimental results on LIVE I and LIVE Π 3-D IQA databases demonstrate that the proposed method can achieve much higher consistency with subjective evaluations than the state-of-the-art SIQA methods.
Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1993-01-01
Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.
Visual Exploration of Genetic Association with Voxel-based Imaging Phenotypes in an MCI/AD Study
Kim, Sungeun; Shen, Li; Saykin, Andrew J.; West, John D.
2010-01-01
Neuroimaging genomics is a new transdisciplinary research field, which aims to examine genetic effects on brain via integrated analyses of high throughput neuroimaging and genomic data. We report our recent work on (1) developing an imaging genomic browsing system that allows for whole genome and entire brain analyses based on visual exploration and (2) applying the system to the imaging genomic analysis of an existing MCI/AD cohort. Voxel-based morphometry is used to define imaging phenotypes. ANCOVA is employed to evaluate the effect of the interaction of genotypes and diagnosis in relation to imaging phenotypes while controlling for relevant covariates. Encouraging experimental results suggest that the proposed system has substantial potential for enabling discovery of imaging genomic associations through visual evaluation and for localizing candidate imaging regions and genomic regions for refined statistical modeling. PMID:19963597
NASA Astrophysics Data System (ADS)
Müller, Henning; Kalpathy-Cramer, Jayashree; Kahn, Charles E., Jr.; Hersh, William
2009-02-01
Content-based visual information (or image) retrieval (CBIR) has been an extremely active research domain within medical imaging over the past ten years, with the goal of improving the management of visual medical information. Many technical solutions have been proposed, and application scenarios for image retrieval as well as image classification have been set up. However, in contrast to medical information retrieval using textual methods, visual retrieval has only rarely been applied in clinical practice. This is despite the large amount and variety of visual information produced in hospitals every day. This information overload imposes a significant burden upon clinicians, and CBIR technologies have the potential to help the situation. However, in order for CBIR to become an accepted clinical tool, it must demonstrate a higher level of technical maturity than it has to date. Since 2004, the ImageCLEF benchmark has included a task for the comparison of visual information retrieval algorithms for medical applications. In 2005, a task for medical image classification was introduced and both tasks have been run successfully for the past four years. These benchmarks allow an annual comparison of visual retrieval techniques based on the same data sets and the same query tasks, enabling the meaningful comparison of various retrieval techniques. The datasets used from 2004-2007 contained images and annotations from medical teaching files. In 2008, however, the dataset used was made up of 67,000 images (along with their associated figure captions and the full text of their corresponding articles) from two Radiological Society of North America (RSNA) scientific journals. This article describes the results of the medical image retrieval task of the ImageCLEF 2008 evaluation campaign. We compare the retrieval results of both visual and textual information retrieval systems from 15 research groups on the aforementioned data set. The results show clearly that, currently, visual retrieval alone does not achieve the performance necessary for real-world clinical applications. Most of the common visual retrieval techniques have a MAP (Mean Average Precision) of around 2-3%, which is much lower than that achieved using textual retrieval (MAP=29%). Advanced machine learning techniques, together with good training data, have been shown to improve the performance of visual retrieval systems in the past. Multimodal retrieval (basing retrieval on both visual and textual information) can achieve better results than purely visual, but only when carefully applied. In many cases, multimodal retrieval systems performed even worse than purely textual retrieval systems. On the other hand, some multimodal retrieval systems demonstrated significantly increased early precision, which has been shown to be a desirable behavior in real-world systems.
NASA Astrophysics Data System (ADS)
Wihardi, Y.; Setiawan, W.; Nugraha, E.
2018-01-01
On this research we try to build CBIRS based on Learning Distance/Similarity Function using Linear Discriminant Analysis (LDA) and Histogram of Oriented Gradient (HoG) feature. Our method is invariant to depiction of image, such as similarity of image to image, sketch to image, and painting to image. LDA can decrease execution time compared to state of the art method, but it still needs an improvement in term of accuracy. Inaccuracy in our experiment happen because we did not perform sliding windows search and because of low number of negative samples as natural-world images.
Remote sensing image ship target detection method based on visual attention model
NASA Astrophysics Data System (ADS)
Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong
2017-11-01
The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.
Survey of computer vision technology for UVA navigation
NASA Astrophysics Data System (ADS)
Xie, Bo; Fan, Xiang; Li, Sijian
2017-11-01
Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.
An adaptive block-based fusion method with LUE-SSIM for multi-focus images
NASA Astrophysics Data System (ADS)
Zheng, Jianing; Guo, Yongcai; Huang, Yukun
2016-09-01
Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.
Imaging Stem Cells Implanted in Infarcted Myocardium
Zhou, Rong; Acton, Paul D.; Ferrari, Victor A.
2008-01-01
Stem cell–based cellular cardiomyoplasty represents a promising therapy for myocardial infarction. Noninvasive imaging techniques would allow the evaluation of survival, migration, and differentiation status of implanted stem cells in the same subject over time. This review describes methods for cell visualization using several corresponding noninvasive imaging modalities, including magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and bioluminescent imaging. Reporter-based cell visualization is compared with direct cell labeling for short- and long-term cell tracking. PMID:17112999
Strauss, Mario; Lueders, Christian; Strauss, Gero; Stopp, Sebastian; Shi, Jiaxi; Lueth, Tim C
2008-01-01
While removing bone tissue of the mastoid, the facial nerve is at risk of being injured. In this contribution a model for nerve visualization in preoperative image data based on intraoperatively gained EMG signals is proposed. A neuro monitor can assist the surgeon locating and preserving the nerve. With the proposed model gained EMG signals can be spatially related to the patient resp. the image data. During navigation the detected nerve course will be visualized and hence permanently available for assessing the situs.
A color fusion method of infrared and low-light-level images based on visual perception
NASA Astrophysics Data System (ADS)
Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa
2014-11-01
The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.
Assessment of visual landscape quality using IKONOS imagery.
Ozkan, Ulas Yunus
2014-07-01
The assessment of visual landscape quality is of importance to the management of urban woodlands. Satellite remote sensing may be used for this purpose as a substitute for traditional survey techniques that are both labour-intensive and time-consuming. This study examines the association between the quality of the perceived visual landscape in urban woodlands and texture measures extracted from IKONOS satellite data, which features 4-m spatial resolution and four spectral bands. The study was conducted in the woodlands of Istanbul (the most important element of urban mosaic) lying along both shores of the Bosporus Strait. The visual quality assessment applied in this study is based on the perceptual approach and was performed via a survey of expressed preferences. For this purpose, representative photographs of real scenery were used to elicit observers' preferences. A slide show comprising 33 images was presented to a group of 153 volunteers (all undergraduate students), and they were asked to rate the visual quality of each on a 10-point scale (1 for very low visual quality, 10 for very high). Average visual quality scores were calculated for landscape. Texture measures were acquired using the two methods: pixel-based and object-based. Pixel-based texture measures were extracted from the first principle component (PC1) image. Object-based texture measures were extracted by using the original four bands. The association between image texture measures and perceived visual landscape quality was tested via Pearson's correlation coefficient. The analysis found a strong linear association between image texture measures and visual quality. The highest correlation coefficient was calculated between standard deviation of gray levels (SDGL) (one of the pixel-based texture measures) and visual quality (r = 0.82, P < 0.05). The results showed that perceived visual quality of urban woodland landscapes can be estimated by using texture measures extracted from satellite data in combination with appropriate modelling techniques.
ERIC Educational Resources Information Center
Gross, M. Melissa; Wright, Mary C.; Anderson, Olivia S.
2017-01-01
Research on the benefits of visual learning has relied primarily on lecture-based pedagogy, but the potential benefits of combining active learning strategies with visual and verbal materials on learning anatomy has not yet been explored. In this study, the differential effects of text-based and image-based active learning exercises on examination…
A unified framework for image retrieval using keyword and visual features.
Jing, Feng; Li, Mingling; Zhang, Hong-Jiang; Zhang, Bo
2005-07-01
In this paper, a unified image retrieval framework based on both keyword annotations and visual features is proposed. In this framework, a set of statistical models are built based on visual features of a small set of manually labeled images to represent semantic concepts and used to propagate keywords to other unlabeled images. These models are updated periodically when more images implicitly labeled by users become available through relevance feedback. In this sense, the keyword models serve the function of accumulation and memorization of knowledge learned from user-provided relevance feedback. Furthermore, two sets of effective and efficient similarity measures and relevance feedback schemes are proposed for query by keyword scenario and query by image example scenario, respectively. Keyword models are combined with visual features in these schemes. In particular, a new, entropy-based active learning strategy is introduced to improve the efficiency of relevance feedback for query by keyword. Furthermore, a new algorithm is proposed to estimate the keyword features of the search concept for query by image example. It is shown to be more appropriate than two existing relevance feedback algorithms. Experimental results demonstrate the effectiveness of the proposed framework.
Visualization and recommendation of large image collections toward effective sensemaking
NASA Astrophysics Data System (ADS)
Gu, Yi; Wang, Chaoli; Nemiroff, Robert; Kao, David; Parra, Denis
2016-03-01
In our daily lives, images are among the most commonly found data which we need to handle. We present iGraph, a graph-based approach for visual analytics of large image collections and their associated text information. Given such a collection, we compute the similarity between images, the distance between texts, and the connection between image and text to construct iGraph, a compound graph representation which encodes the underlying relationships among these images and texts. To enable effective visual navigation and comprehension of iGraph with tens of thousands of nodes and hundreds of millions of edges, we present a progressive solution that offers collection overview, node comparison, and visual recommendation. Our solution not only allows users to explore the entire collection with representative images and keywords but also supports detailed comparison for understanding and intuitive guidance for navigation. The visual exploration of iGraph is further enhanced with the implementation of bubble sets to highlight group memberships of nodes, suggestion of abnormal keywords or time periods based on text outlier detection, and comparison of four different recommendation solutions. For performance speedup, multiple graphics processing units and central processing units are utilized for processing and visualization in parallel. We experiment with two image collections and leverage a cluster driving a display wall of nearly 50 million pixels. We show the effectiveness of our approach by demonstrating experimental results and conducting a user study.
Perceptually lossless fractal image compression
NASA Astrophysics Data System (ADS)
Lin, Huawu; Venetsanopoulos, Anastasios N.
1996-02-01
According to the collage theorem, the encoding distortion for fractal image compression is directly related to the metric used in the encoding process. In this paper, we introduce a perceptually meaningful distortion measure based on the human visual system's nonlinear response to luminance and the visual masking effects. Blackwell's psychophysical raw data on contrast threshold are first interpolated as a function of background luminance and visual angle, and are then used as an error upper bound for perceptually lossless image compression. For a variety of images, experimental results show that the algorithm produces a compression ratio of 8:1 to 10:1 without introducing visual artifacts.
Visual Literacy for Libraries: A Practical, Standards-Based Guide
ERIC Educational Resources Information Center
Brown, Nicole E.; Bussert, Kaila; Hattwig, Denise; Medaille, Ann
2016-01-01
The importance of images and visual media in today's culture is changing what it means to be literate in the 21st century. Digital technologies have made it possible for almost anyone to create and share visual media. Yet the pervasiveness of images and visual media does not necessarily mean that individuals are able to critically view, use, and…
A foreground object features-based stereoscopic image visual comfort assessment model
NASA Astrophysics Data System (ADS)
Jin, Xin; Jiang, G.; Ying, H.; Yu, M.; Ding, S.; Peng, Z.; Shao, F.
2014-11-01
Since stereoscopic images provide observers with both realistic and discomfort viewing experience, it is necessary to investigate the determinants of visual discomfort. By considering that foreground object draws most attention when human observing stereoscopic images. This paper proposes a new foreground object based visual comfort assessment (VCA) metric. In the first place, a suitable segmentation method is applied to disparity map and then the foreground object is ascertained as the one having the biggest average disparity. In the second place, three visual features being average disparity, average width and spatial complexity of foreground object are computed from the perspective of visual attention. Nevertheless, object's width and complexity do not consistently influence the perception of visual comfort in comparison with disparity. In accordance with this psychological phenomenon, we divide the whole images into four categories on the basis of different disparity and width, and exert four different models to more precisely predict its visual comfort in the third place. Experimental results show that the proposed VCA metric outperformance other existing metrics and can achieve a high consistency between objective and subjective visual comfort scores. The Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are over 0.84 and 0.82, respectively.
Automatic face recognition in HDR imaging
NASA Astrophysics Data System (ADS)
Pereira, Manuela; Moreno, Juan-Carlos; Proença, Hugo; Pinheiro, António M. G.
2014-05-01
The gaining popularity of the new High Dynamic Range (HDR) imaging systems is raising new privacy issues caused by the methods used for visualization. HDR images require tone mapping methods for an appropriate visualization on conventional and non-expensive LDR displays. These visualization methods might result in completely different visualization raising several issues on privacy intrusion. In fact, some visualization methods result in a perceptual recognition of the individuals, while others do not even show any identity. Although perceptual recognition might be possible, a natural question that can rise is how computer based recognition will perform using tone mapping generated images? In this paper, a study where automatic face recognition using sparse representation is tested with images that result from common tone mapping operators applied to HDR images. Its ability for the face identity recognition is described. Furthermore, typical LDR images are used for the face recognition training.
A comparative study of multi-focus image fusion validation metrics
NASA Astrophysics Data System (ADS)
Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael
2016-05-01
Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).
NASA Astrophysics Data System (ADS)
Neriani, Kelly E.; Herbranson, Travis J.; Reis, George A.; Pinkus, Alan R.; Goodyear, Charles D.
2006-05-01
While vast numbers of image enhancing algorithms have already been developed, the majority of these algorithms have not been assessed in terms of their visual performance-enhancing effects using militarily relevant scenarios. The goal of this research was to apply a visual performance-based assessment methodology to evaluate six algorithms that were specifically designed to enhance the contrast of digital images. The image enhancing algorithms used in this study included three different histogram equalization algorithms, the Autolevels function, the Recursive Rational Filter technique described in Marsi, Ramponi, and Carrato1 and the multiscale Retinex algorithm described in Rahman, Jobson and Woodell2. The methodology used in the assessment has been developed to acquire objective human visual performance data as a means of evaluating the contrast enhancement algorithms. Objective performance metrics, response time and error rate, were used to compare algorithm enhanced images versus two baseline conditions, original non-enhanced images and contrast-degraded images. Observers completed a visual search task using a spatial-forcedchoice paradigm. Observers searched images for a target (a military vehicle) hidden among foliage and then indicated in which quadrant of the screen the target was located. Response time and percent correct were measured for each observer. Results of the study and future directions are discussed.
Creating a classification of image types in the medical literature for visual categorization
NASA Astrophysics Data System (ADS)
Müller, Henning; Kalpathy-Cramer, Jayashree; Demner-Fushman, Dina; Antani, Sameer
2012-02-01
Content-based image retrieval (CBIR) from specialized collections has often been proposed for use in such areas as diagnostic aid, clinical decision support, and teaching. The visual retrieval from broad image collections such as teaching files, the medical literature or web images, by contrast, has not yet reached a high maturity level compared to textual information retrieval. Visual image classification into a relatively small number of classes (20-100) on the other hand, has shown to deliver good results in several benchmarks. It is, however, currently underused as a basic technology for retrieval tasks, for example, to limit the search space. Most classification schemes for medical images are focused on specific areas and consider mainly the medical image types (modalities), imaged anatomy, and view, and merge them into a single descriptor or classification hierarchy. Furthermore, they often ignore other important image types such as biological images, statistical figures, flowcharts, and diagrams that frequently occur in the biomedical literature. Most of the current classifications have also been created for radiology images, which are not the only types to be taken into account. With Open Access becoming increasingly widespread particularly in medicine, images from the biomedical literature are more easily available for use. Visual information from these images and knowledge that an image is of a specific type or medical modality could enrich retrieval. This enrichment is hampered by the lack of a commonly agreed image classification scheme. This paper presents a hierarchy for classification of biomedical illustrations with the goal of using it for visual classification and thus as a basis for retrieval. The proposed hierarchy is based on relevant parts of existing terminologies, such as the IRMA-code (Image Retrieval in Medical Applications), ad hoc classifications and hierarchies used in imageCLEF (Image retrieval task at the Cross-Language Evaluation Forum) and NLM's (National Library of Medicine) OpenI. Furtheron, mappings to NLM's MeSH (Medical Subject Headings), RSNA's RadLex (Radiological Society of North America, Radiology Lexicon), and the IRMA code are also attempted for relevant image types. Advantages derived from such hierarchical classification for medical image retrieval are being evaluated through benchmarks such as imageCLEF, and R&D systems such as NLM's OpenI. The goal is to extend this hierarchy progressively and (through adding image types occurring in the biomedical literature) to have a terminology for visual image classification based on image types distinguishable by visual means and occurring in the medical open access literature.
Image fusion for visualization of hepatic vasculature and tumors
NASA Astrophysics Data System (ADS)
Chou, Jin-Shin; Chen, Shiuh-Yung J.; Sudakoff, Gary S.; Hoffmann, Kenneth R.; Chen, Chin-Tu; Dachman, Abraham H.
1995-05-01
We have developed segmentation and simultaneous display techniques to facilitate the visualization of the three-dimensional spatial relationships between organ structures and organ vasculature. We concentrate on the visualization of the liver based on spiral computed tomography images. Surface-based 3-D rendering and maximal intensity projection algorithms are used for data visualization. To extract the liver in the serial of images accurately and efficiently, we have developed a user-friendly interactive program with a deformable-model segmentation. Surface rendering techniques are used to visualize the extracted structures, adjacent contours are aligned and fitted with a Bezier surface to yield a smooth surface. Visualization of the vascular structures, portal and hepatic veins, is achieved by applying a MIP technique to the extracted liver volume. To integrate the extracted structures they are surface-rendered and their MIP images are aligned and a color table is designed for simultaneous display of the combined liver/tumor and vasculature images. By combining the 3-D surface rendering and MIP techniques, portal veins, hepatic veins, and hepatic tumor can be inspected simultaneously and their spatial relationships can be more easily perceived. The proposed technique will be useful for visualization of both hepatic neoplasm and vasculature in surgical planning for tumor resection or living-donor liver transplantation.
Extraction of composite visual objects from audiovisual materials
NASA Astrophysics Data System (ADS)
Durand, Gwenael; Thienot, Cedric; Faudemay, Pascal
1999-08-01
An effective analysis of Visual Objects appearing in still images and video frames is required in order to offer fine grain access to multimedia and audiovisual contents. In previous papers, we showed how our method for segmenting still images into visual objects could improve content-based image retrieval and video analysis methods. Visual Objects are used in particular for extracting semantic knowledge about the contents. However, low-level segmentation methods for still images are not likely to extract a complex object as a whole but instead as a set of several sub-objects. For example, a person would be segmented into three visual objects: a face, hair, and a body. In this paper, we introduce the concept of Composite Visual Object. Such an object is hierarchically composed of sub-objects called Component Objects.
[Constructing images and territories: thinking on the visuality and materiality of remote sensing].
Monteiro, Marko
2015-01-01
This article offers a reflection on the question of the image in science, thinking about how visual practices contribute towards the construction of knowledge and territories. The growing centrality of the visual in current scientific practices shows the need for reflection that goes beyond the image. The object of discussion will be the scientific images used in the monitoring and visualization of territory. The article looks into the relations between visuality and a number of other factors: the researchers that construct it; the infrastructure involved in the construction; and the institutions and policies that monitor the territory. It is argued that such image-relations do not just visualize but help to construct the territory based on specific forms. Exploring this process makes it possible to develop a more complex understanding of the forms through which sciences and technology help to construct realities.
Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.
Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin
2011-11-01
Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.
NASA Astrophysics Data System (ADS)
Sanghavi, Foram; Agaian, Sos
2017-05-01
The goal of this paper is to (a) test the nuclei based Computer Aided Cancer Detection system using Human Visual based system on the histopathology images and (b) Compare the results of the proposed system with the Local Binary Pattern and modified Fibonacci -p pattern systems. The system performance is evaluated using different parameters such as accuracy, specificity, sensitivity, positive predictive value, and negative predictive value on 251 prostate histopathology images. The accuracy of 96.69% was observed for cancer detection using the proposed human visual based system compared to 87.42% and 94.70% observed for Local Binary patterns and the modified Fibonacci p patterns.
Gutman, David A.; Dunn, William D.; Cobb, Jake; Stoner, Richard M.; Kalpathy-Cramer, Jayashree; Erickson, Bradley
2014-01-01
Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework to wrap around the REST application programming interface (API) and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance. PMID:24904399
Research ethics and the use of visual images in research with people with intellectual disability.
Boxall, Kathy; Ralph, Sue
2009-03-01
The aim of this paper is to encourage debate about the use of creative visual approaches in intellectual disability research and discussion about Internet publication of photographs. Image-based research with people with intellectual disability is explored within the contexts of tighter ethical regulation of social research, increased interest in the use of visual methodologies, and rapid escalation in the numbers of digital images posted on the World Wide Web. Concern is raised about the possibility that tighter ethical regulation of social research, combined with the multitude of ethical issues raised by the use of image-based approaches may be discouraging the use of creative visual approaches in intellectual disability research. Inclusion in research through the use of accessible research methods is also an ethical issue, particularly in relation to those people who have hitherto been underrepresented in research. Visual approaches which have the potential to include people with profound and multiple intellectual disabilities are also discussed.
Visualizing Chemistry with Infrared Imaging
ERIC Educational Resources Information Center
Xie, Charles
2011-01-01
Almost all chemical processes release or absorb heat. The heat flow in a chemical system reflects the process it is undergoing. By showing the temperature distribution dynamically, infrared (IR) imaging provides a salient visualization of the process. This paper presents a set of simple experiments based on IR imaging to demonstrate its enormous…
Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images
Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi
2016-01-01
Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704
Azizian, Mahdi; Khoshnam, Mahta; Najmaei, Nima; Patel, Rajni V
2014-09-01
Intra-operative imaging is widely used to provide visual feedback to a clinician when he/she performs a procedure. In visual servoing, surgical instruments and parts of tissue/body are tracked by processing the acquired images. This information is then used within a control loop to manoeuvre a robotic manipulator during a procedure. A comprehensive search of electronic databases was completed for the period 2000-2013 to provide a survey of the visual servoing applications in medical robotics. The focus is on medical applications where image-based tracking is used for closed-loop control of a robotic system. Detailed classification and comparative study of various contributions in visual servoing using endoscopic or direct visual images are presented and summarized in tables and diagrams. The main challenges in using visual servoing for medical robotic applications are identified and potential future directions are suggested. 'Supervised automation of medical robotics' is found to be a major trend in this field. Copyright © 2013 John Wiley & Sons, Ltd.
A dual-channel fusion system of visual and infrared images based on color transfer
NASA Astrophysics Data System (ADS)
Pei, Chuang; Jiang, Xiao-yu; Zhang, Peng-wei; Liang, Hao-cong
2013-09-01
A dual-channel fusion system of visual and infrared images based on color transfer The increasing availability and deployment of imaging sensors operating in multiple spectrums has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, most of these algorithms have gray or false color fusion results which are not adapt to human vision. Transfer color from a day-time reference image to get natural color fusion result is an effective way to solve this problem, but the computation cost of color transfer is expensive and can't meet the request of real-time image processing. We developed a dual-channel infrared and visual images fusion system based on TMS320DM642 digital signal processing chip. The system is divided into image acquisition and registration unit, image fusion processing unit, system control unit and image fusion result out-put unit. The image registration of dual-channel images is realized by combining hardware and software methods in the system. False color image fusion algorithm in RGB color space is used to get R-G fused image, then the system chooses a reference image to transfer color to the fusion result. A color lookup table based on statistical properties of images is proposed to solve the complexity computation problem in color transfer. The mapping calculation between the standard lookup table and the improved color lookup table is simple and only once for a fixed scene. The real-time fusion and natural colorization of infrared and visual images are realized by this system. The experimental result shows that the color-transferred images have a natural color perception to human eyes, and can highlight the targets effectively with clear background details. Human observers with this system will be able to interpret the image better and faster, thereby improving situational awareness and reducing target detection time.
Infrared image enhancement based on the edge detection and mathematical morphology
NASA Astrophysics Data System (ADS)
Zhang, Linlin; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Yu, Xiaomei; Hui, Mei; Chu, Xuhong; Gong, Cheng
2010-11-01
The development of the un-cooled infrared imaging technology from military necessity. At present, It is widely applied in industrial, medicine, scientific and technological research and so on. The infrared radiation temperature distribution of the measured object's surface can be observed visually. The collection of infrared images from our laboratory has following characteristics: Strong spatial correlation, Low contrast , Poor visual effect; Without color or shadows because of gray image , and has low resolution; Low definition compare to the visible light image; Many kinds of noise are brought by the random disturbances of the external environment. Digital image processing are widely applied in many areas, it can now be studied up close and in detail in many research field. It has become one kind of important means of the human visual continuation. Traditional methods for image enhancement cannot capture the geometric information of images and tend to amplify noise. In order to remove noise and improve visual effect. Meanwhile, To overcome the above enhancement issues. The mathematical model of FPA unit was constructed based on matrix transformation theory. According to characteristics of FPA, Image enhancement algorithm which combined with mathematical morphology and edge detection are established. First of all, Image profile is obtained by using the edge detection combine with mathematical morphological operators. And then, through filling the template profile by original image to get the ideal background image, The image noise can be removed on the base of the above method. The experiments show that utilizing the proposed algorithm can enhance image detail and the signal to noise ratio.
Evaluating Alignment of Shapes by Ensemble Visualization
Raj, Mukund; Mirzargar, Mahsa; Preston, J. Samuel; Kirby, Robert M.; Whitaker, Ross T.
2016-01-01
The visualization of variability in surfaces embedded in 3D, which is a type of ensemble uncertainty visualization, provides a means of understanding the underlying distribution of a collection or ensemble of surfaces. Although ensemble visualization for isosurfaces has been described in the literature, we conduct an expert-based evaluation of various ensemble visualization techniques in a particular medical imaging application: the construction of atlases or templates from a population of images. In this work, we extend contour boxplot to 3D, allowing us to evaluate it against an enumeration-style visualization of the ensemble members and other conventional visualizations used by atlas builders, namely examining the atlas image and the corresponding images/data provided as part of the construction process. We present feedback from domain experts on the efficacy of contour boxplot compared to other modalities when used as part of the atlas construction and analysis stages of their work. PMID:26186768
Wang, Jing; Li, Heng; Fu, Weizhen; Chen, Yao; Li, Liming; Lyu, Qing; Han, Tingting; Chai, Xinyu
2016-01-01
Retinal prostheses have the potential to restore partial vision. Object recognition in scenes of daily life is one of the essential tasks for implant wearers. Still limited by the low-resolution visual percepts provided by retinal prostheses, it is important to investigate and apply image processing methods to convey more useful visual information to the wearers. We proposed two image processing strategies based on Itti's visual saliency map, region of interest (ROI) extraction, and image segmentation. Itti's saliency model generated a saliency map from the original image, in which salient regions were grouped into ROI by the fuzzy c-means clustering. Then Grabcut generated a proto-object from the ROI labeled image which was recombined with background and enhanced in two ways--8-4 separated pixelization (8-4 SP) and background edge extraction (BEE). Results showed that both 8-4 SP and BEE had significantly higher recognition accuracy in comparison with direct pixelization (DP). Each saliency-based image processing strategy was subject to the performance of image segmentation. Under good and perfect segmentation conditions, BEE and 8-4 SP obtained noticeably higher recognition accuracy than DP, and under bad segmentation condition, only BEE boosted the performance. The application of saliency-based image processing strategies was verified to be beneficial to object recognition in daily scenes under simulated prosthetic vision. They are hoped to help the development of the image processing module for future retinal prostheses, and thus provide more benefit for the patients. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Web Image Search Re-ranking with Click-based Similarity and Typicality.
Yang, Xiaopeng; Mei, Tao; Zhang, Yong Dong; Liu, Jie; Satoh, Shin'ichi
2016-07-20
In image search re-ranking, besides the well known semantic gap, intent gap, which is the gap between the representation of users' query/demand and the real intent of the users, is becoming a major problem restricting the development of image retrieval. To reduce human effects, in this paper, we use image click-through data, which can be viewed as the "implicit feedback" from users, to help overcome the intention gap, and further improve the image search performance. Generally, the hypothesis visually similar images should be close in a ranking list and the strategy images with higher relevance should be ranked higher than others are widely accepted. To obtain satisfying search results, thus, image similarity and the level of relevance typicality are determinate factors correspondingly. However, when measuring image similarity and typicality, conventional re-ranking approaches only consider visual information and initial ranks of images, while overlooking the influence of click-through data. This paper presents a novel re-ranking approach, named spectral clustering re-ranking with click-based similarity and typicality (SCCST). First, to learn an appropriate similarity measurement, we propose click-based multi-feature similarity learning algorithm (CMSL), which conducts metric learning based on clickbased triplets selection, and integrates multiple features into a unified similarity space via multiple kernel learning. Then based on the learnt click-based image similarity measure, we conduct spectral clustering to group visually and semantically similar images into same clusters, and get the final re-rank list by calculating click-based clusters typicality and withinclusters click-based image typicality in descending order. Our experiments conducted on two real-world query-image datasets with diverse representative queries show that our proposed reranking approach can significantly improve initial search results, and outperform several existing re-ranking approaches.
Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.
Wang, Sheng; Ding, Miao; Xue, Boxin; Hou, Yingping; Sun, Yujie
2018-05-18
As one of the most powerful tools to visualize PPIs in living cells, bimolecular fluorescence complementation (BiFC) has gained great advancement during recent years, including deep tissue imaging with far-red or near-infrared fluorescent proteins or super-resolution imaging with photochromic fluorescent proteins. However, little progress has been made toward simultaneous detection and visualization of multiple PPIs in the same cell, mainly due to the spectral crosstalk. In this report, we developed novel BiFC assays based on large-Stokes-shift fluorescent proteins (LSS-FPs) to detect and visualize multiple PPIs in living cells. With the large excitation/emission spectral separation, LSS-FPs can be imaged together with normal Stokes shift fluorescent proteins to realize multicolor BiFC imaging using a simple illumination scheme. We also further demonstrated BiFC rainbow combining newly developed BiFC assays with previously established mCerulean/mVenus-based BiFC assays to achieve detection and visualization of four PPI pairs in the same cell. Additionally, we prove that with the complete spectral separation of mT-Sapphire and CyOFP1, LSS-FP-based BiFC assays can be readily combined with intensity-based FRET measurement to detect ternary protein complex formation with minimal spectral crosstalk. Thus, our newly developed LSS-FP-based BiFC assays not only expand the fluorescent protein toolbox available for BiFC but also facilitate the detection and visualization of multiple protein complex interactions in living cells.
NASA Astrophysics Data System (ADS)
Hotta, Aira; Sasaki, Takashi; Okumura, Haruhiko
2007-02-01
In this paper, we propose a novel display method to realize a high-resolution image in a central visual field for a hyper-realistic head dome projector. The method uses image processing based on the characteristics of human vision, namely, high central visual acuity and low peripheral visual acuity, and pixel shift technology, which is one of the resolution-enhancing technologies for projectors. The projected image with our method is a fine wide-viewing-angle image with high definition in the central visual field. We evaluated the psychological effects of the projected images with our method in terms of sensation of reality. According to the result, we obtained 1.5 times higher resolution in the central visual field and a greater sensation of reality by using our method.
An object-oriented framework for medical image registration, fusion, and visualization.
Zhu, Yang-Ming; Cochoff, Steven M
2006-06-01
An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.
Content-based image retrieval by matching hierarchical attributed region adjacency graphs
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Thies, Christian J.; Guld, Mark O.; Lehmann, Thomas M.
2004-05-01
Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the framework's general applicability to content-based image retrieval of medical images.
Research and analysis of head-directed area-of-interest visual system concepts
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1983-01-01
An analysis and survey with conjecture supporting a preliminary data base design is presented. The data base is intended for use in a Computer Image Generator visual subsystem for a rotorcraft flight simulator that is used for rotorcraft systems development, not training. The approach taken was to attempt to identify the visual perception strategies used during terrain flight, survey environmental and image generation factors, and meld these into a preliminary data base design. This design is directed at Data Base developers, and hopefully will stimulate and aid their efforts to evolve such a Base that will support simulation of terrain flight operations.
Fine-grained visual marine vessel classification for coastal surveillance and defense applications
NASA Astrophysics Data System (ADS)
Solmaz, Berkan; Gundogdu, Erhan; Karaman, Kaan; Yücesoy, Veysel; Koç, Aykut
2017-10-01
The need for capabilities of automated visual content analysis has substantially increased due to presence of large number of images captured by surveillance cameras. With a focus on development of practical methods for extracting effective visual data representations, deep neural network based representations have received great attention due to their success in visual categorization of generic images. For fine-grained image categorization, a closely related yet a more challenging research problem compared to generic image categorization due to high visual similarities within subgroups, diverse applications were developed such as classifying images of vehicles, birds, food and plants. Here, we propose the use of deep neural network based representations for categorizing and identifying marine vessels for defense and security applications. First, we gather a large number of marine vessel images via online sources grouping them into four coarse categories; naval, civil, commercial and service vessels. Next, we subgroup naval vessels into fine categories such as corvettes, frigates and submarines. For distinguishing images, we extract state-of-the-art deep visual representations and train support-vector-machines. Furthermore, we fine tune deep representations for marine vessel images. Experiments address two scenarios, classification and verification of naval marine vessels. Classification experiment aims coarse categorization, as well as learning models of fine categories. Verification experiment embroils identification of specific naval vessels by revealing if a pair of images belongs to identical marine vessels by the help of learnt deep representations. Obtaining promising performance, we believe these presented capabilities would be essential components of future coastal and on-board surveillance systems.
Cruz-Roa, Angel; Díaz, Gloria; Romero, Eduardo; González, Fabio A.
2011-01-01
Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively. PMID:22811960
Local spatio-temporal analysis in vision systems
NASA Astrophysics Data System (ADS)
Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David
1994-07-01
The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.
Perception-oriented fusion of multi-sensor imagery: visible, IR, and SAR
NASA Astrophysics Data System (ADS)
Sidorchuk, D.; Volkov, V.; Gladilin, S.
2018-04-01
This paper addresses the problem of image fusion of optical (visible and thermal domain) data and radar data for the purpose of visualization. These types of images typically contain a lot of complimentary information, and their joint visualization can be useful and more convenient for human user than a set of individual images. To solve the image fusion problem we propose a novel algorithm that utilizes some peculiarities of human color perception and based on the grey-scale structural visualization. Benefits of presented algorithm are exemplified by satellite imagery.
Rabbi, Md Shifat-E; Hasan, Md Kamrul
2017-02-01
Strain imaging though for solid lesions provides an effective way for determining their pathologic condition by displaying the tissue stiffness contrast, for fluid filled lesions such an imaging is yet an open problem. In this paper, we propose a novel speckle content based strain imaging technique for visualization and classification of fluid filled lesions in elastography after automatic identification of the presence of fluid filled lesions. Speckle content based strain, defined as a function of speckle density based on the relationship between strain and speckle density, gives an indirect strain value for fluid filled lesions. To measure the speckle density of the fluid filled lesions, two new criteria based on oscillation count of the windowed radio frequency signal and local variance of the normalized B-mode image are used. An improved speckle tracking technique is also proposed for strain imaging of the solid lesions and background. A wavelet-based integration technique is then proposed for combining the strain images from these two techniques for visualizing both the solid and fluid filled lesions from a common framework. The final output of our algorithm is a high quality composite strain image which can effectively visualize both solid and fluid filled breast lesions in addition to the speckle content of the fluid filled lesions for their discrimination. The performance of our algorithm is evaluated using the in vivo patient data and compared with recently reported techniques. The results show that both the solid and fluid filled lesions can be better visualized using our technique and the fluid filled lesions can be classified with good accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.
[Image processing system of visual prostheses based on digital signal processor DM642].
Xie, Chengcheng; Lu, Yanyu; Gu, Yun; Wang, Jing; Chai, Xinyu
2011-09-01
This paper employed a DSP platform to create the real-time and portable image processing system, and introduced a series of commonly used algorithms for visual prostheses. The results of performance evaluation revealed that this platform could afford image processing algorithms to be executed in real time.
MEMS-based system and image processing strategy for epiretinal prosthesis.
Xia, Peng; Hu, Jie; Qi, Jin; Gu, Chaochen; Peng, Yinghong
2015-01-01
Retinal prostheses have the potential to restore some level of visual function to the patients suffering from retinal degeneration. In this paper, an epiretinal approach with active stimulation devices is presented. The MEMS-based processing system consists of an external micro-camera, an information processor, an implanted electrical stimulator and a microelectrode array. The image processing strategy combining image clustering and enhancement techniques was proposed and evaluated by psychophysical experiments. The results indicated that the image processing strategy improved the visual performance compared with direct merging pixels to low resolution. The image processing methods assist epiretinal prosthesis for vision restoration.
Supervised pixel classification using a feature space derived from an artificial visual system
NASA Technical Reports Server (NTRS)
Baxter, Lisa C.; Coggins, James M.
1991-01-01
Image segmentation involves labelling pixels according to their membership in image regions. This requires the understanding of what a region is. Using supervised pixel classification, the paper investigates how groups of pixels labelled manually according to perceived image semantics map onto the feature space created by an Artificial Visual System. Multiscale structure of regions are investigated and it is shown that pixels form clusters based on their geometric roles in the image intensity function, not by image semantics. A tentative abstract definition of a 'region' is proposed based on this behavior.
A knowledge based system for scientific data visualization
NASA Technical Reports Server (NTRS)
Senay, Hikmet; Ignatius, Eve
1992-01-01
A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.
NASA Astrophysics Data System (ADS)
Haigang, Sui; Zhina, Song
2016-06-01
Reliably ship detection in optical satellite images has a wide application in both military and civil fields. However, this problem is very difficult in complex backgrounds, such as waves, clouds, and small islands. Aiming at these issues, this paper explores an automatic and robust model for ship detection in large-scale optical satellite images, which relies on detecting statistical signatures of ship targets, in terms of biologically-inspired visual features. This model first selects salient candidate regions across large-scale images by using a mechanism based on biologically-inspired visual features, combined with visual attention model with local binary pattern (CVLBP). Different from traditional studies, the proposed algorithm is high-speed and helpful to focus on the suspected ship areas avoiding the separation step of land and sea. Largearea images are cut into small image chips and analyzed in two complementary ways: Sparse saliency using visual attention model and detail signatures using LBP features, thus accordant with sparseness of ship distribution on images. Then these features are employed to classify each chip as containing ship targets or not, using a support vector machine (SVM). After getting the suspicious areas, there are still some false alarms such as microwaves and small ribbon clouds, thus simple shape and texture analysis are adopted to distinguish between ships and nonships in suspicious areas. Experimental results show the proposed method is insensitive to waves, clouds, illumination and ship size.
NASA Astrophysics Data System (ADS)
Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim
2014-09-01
Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.
Image quality metrics for volumetric laser displays
NASA Astrophysics Data System (ADS)
Williams, Rodney D.; Donohoo, Daniel
1991-08-01
This paper addresses the extensions to the image quality metrics and related human factors research that are needed to establish the baseline standards for emerging volume display technologies. The existing and recently developed technologies for multiplanar volume displays are reviewed with an emphasis on basic human visual issues. Human factors image quality metrics and guidelines are needed to firmly establish this technology in the marketplace. The human visual requirements and the display design tradeoffs for these prototype laser-based volume displays are addressed and several critical image quality issues identified for further research. The American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSIHFS-100) and other international standards (ISO, DIN) can serve as a starting point, but this research base must be extended to provide new image quality metrics for this new technology for volume displays.
Serial grouping of 2D-image regions with object-based attention in humans.
Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R
2016-06-13
After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas.
[Medical Image Registration Method Based on a Semantic Model with Directional Visual Words].
Jin, Yufei; Ma, Meng; Yang, Xin
2016-04-01
Medical image registration is very challenging due to the various imaging modality,image quality,wide inter-patients variability,and intra-patient variability with disease progressing of medical images,with strict requirement for robustness.Inspired by semantic model,especially the recent tremendous progress in computer vision tasks under bag-of-visual-word framework,we set up a novel semantic model to match medical images.Since most of medical images have poor contrast,small dynamic range,and involving only intensities and so on,the traditional visual word models do not perform very well.To benefit from the advantages from the relative works,we proposed a novel visual word model named directional visual words,which performs better on medical images.Then we applied this model to do medical registration.In our experiment,the critical anatomical structures were first manually specified by experts.Then we adopted the directional visual word,the strategy of spatial pyramid searching from coarse to fine,and the k-means algorithm to help us locating the positions of the key structures accurately.Sequentially,we shall register corresponding images by the areas around these positions.The results of the experiments which were performed on real cardiac images showed that our method could achieve high registration accuracy in some specific areas.
ERIC Educational Resources Information Center
Price, Norman T.
2013-01-01
The availability and sophistication of visual display images, such as simulations, for use in science classrooms has increased exponentially however, it can be difficult for teachers to use these images to encourage and engage active student thinking. There is a need to describe flexible discussion strategies that use visual media to engage active…
The visual communication in the optonometric scales.
Dantas, Rosane Arruda; Pagliuca, Lorita Marlena Freitag
2006-01-01
Communication through vision involves visual apprenticeship that demands ocular integrity, which results in the importance of the evaluation of visual acuity. The scale of images, formed by optotypes, is a method for the verification of visual acuity in kindergarten children. To identify the optotype the child needs to know the image in analysis. Given the importance of visual communication during the process of construction of the scale of images, one presents a bibliographic, analytical study aiming at thinking about the principles for the construction of those tables. One considers the draw inserted as an optotype as a non-verbal symbolic expression of the body and/or of the environment constructed based on the caption of experiences by the individual. One contests the indiscriminate use of images, for one understands that there must be previous knowledge. Despite the subjectivity of the optotypes, the scales continue valid if one adapts images to those of the universe of the children to be examined.
Server-based Approach to Web Visualization of Integrated Three-dimensional Brain Imaging Data
Poliakov, Andrew V.; Albright, Evan; Hinshaw, Kevin P.; Corina, David P.; Ojemann, George; Martin, Richard F.; Brinkley, James F.
2005-01-01
The authors describe a client-server approach to three-dimensional (3-D) visualization of neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system architecture and implementation and give several examples of client applications that allow visualization and analysis of integrated language map data from single and multiple patients. PMID:15561787
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887
Jung, Minju; Hwang, Jungsik; Tani, Jun
2015-01-01
It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.
Zhu, Xinxin; Jin, Hui; Gao, Cuili; Gui, Rijun; Wang, Zonghua
2017-01-01
In this article, a facile aqueous synthesis of carbon dots (CDs) was developed by using natural kelp as a new carbon source. Through hydrothermal carbonization of kelp juice, fluorescent CDs were prepared and the CDs' surface was modified with polyethylenimine (PEI). The PEI-modified CDs were conjugated with fluorescein isothiocyanate (FITC) to fabricate CDs-FITC composites. To exploit broad applications, the CDs-FITC composites were developed as fluorescent sensing or imaging platforms of pH and Cu 2+ . Analytical performances of the composites-based fluorescence (FL) sensors were evaluated, including visual FL imaging of pH in glass bottle, ratiometric FL sensing of pH in yogurt samples, visual FL latent fingerprint and leaf imaging detection of [Cu 2+ ], dual-signal FL sensing of [Cu 2+ ] in yogurt and human serum samples. Experimental results from ratiometric, visual, dual-signal FL sensing and imaging applications confirmed the high feasibility, accuracy, stabilization and simplicity of CDs-FITC composites-based FL sensors for the detection of pH and Cu 2+ ions in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiong; Gluch, Jürgen; Krüger, Peter
A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have amore » direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. - Highlights: • The unstained whole pine pollen was visualized by high-resolution laboratory-based HXRM for the first time. • The comparison study of pollen grains by LM, SEM and high-resolution laboratory-based HXRM. • Phase contrast imaging provides significantly higher contrast of the raw images compared to absorption contrast imaging. • Surface and internal structure of the pine pollen including exine, intine and cellular structures are clearly visualized. • 3D volume data of unstained whole pollen grains are acquired and the specific volumes of the different layer are calculated.« less
View compensated compression of volume rendered images for remote visualization.
Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S
2009-07-01
Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.
Content-based multiple bitstream image transmission over noisy channels.
Cao, Lei; Chen, Chang Wen
2002-01-01
In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.
Wakui, Takashi; Matsumoto, Tsuyoshi; Matsubara, Kenta; Kawasaki, Tomoyuki; Yamaguchi, Hiroshi; Akutsu, Hidenori
2017-10-01
We propose an image analysis method for quality evaluation of human pluripotent stem cells based on biologically interpretable features. It is important to maintain the undifferentiated state of induced pluripotent stem cells (iPSCs) while culturing the cells during propagation. Cell culture experts visually select good quality cells exhibiting the morphological features characteristic of undifferentiated cells. Experts have empirically determined that these features comprise prominent and abundant nucleoli, less intercellular spacing, and fewer differentiating cellular nuclei. We quantified these features based on experts' visual inspection of phase contrast images of iPSCs and found that these features are effective for evaluating iPSC quality. We then developed an iPSC quality evaluation method using an image analysis technique. The method allowed accurate classification, equivalent to visual inspection by experts, of three iPSC cell lines.
Computer-aided light sheet flow visualization using photogrammetry
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1994-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.
Computer-Aided Light Sheet Flow Visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Computer-aided light sheet flow visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
ERIC Educational Resources Information Center
Humphreys, Glyn W.; Wulff, Melanie; Yoon, Eun Young; Riddoch, M. Jane
2010-01-01
Two experiments are reported that use patients with visual extinction to examine how visual attention is influenced by action information in images. In Experiment 1 patients saw images of objects that were either correctly or incorrectly colocated for action, with the objects held by hands that were congruent or incongruent with those used…
Bag-of-visual-ngrams for histopathology image classification
NASA Astrophysics Data System (ADS)
López-Monroy, A. Pastor; Montes-y-Gómez, Manuel; Escalante, Hugo Jair; Cruz-Roa, Angel; González, Fabio A.
2013-11-01
This paper describes an extension of the Bag-of-Visual-Words (BoVW) representation for image categorization (IC) of histophatology images. This representation is one of the most used approaches in several high-level computer vision tasks. However, the BoVW representation has an important limitation: the disregarding of spatial information among visual words. This information may be useful to capture discriminative visual-patterns in specific computer vision tasks. In order to overcome this problem we propose the use of visual n-grams. N-grams based-representations are very popular in the field of natural language processing (NLP), in particular within text mining and information retrieval. We propose building a codebook of n-grams and then representing images by histograms of visual n-grams. We evaluate our proposal in the challenging task of classifying histopathology images. The novelty of our proposal lies in the fact that we use n-grams as attributes for a classification model (together with visual-words, i.e., 1-grams). This is common practice within NLP, although, to the best of our knowledge, this idea has not been explored yet within computer vision. We report experimental results in a database of histopathology images where our proposed method outperforms the traditional BoVWs formulation.
[Spatial domain display for interference image dataset].
Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia
2011-11-01
The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.
Visual Images of Subjective Perception of Time in a Literary Text
ERIC Educational Resources Information Center
Nesterik, Ella V.; Issina, Gaukhar I.; Pecherskikh, Taliya F.; Belikova, Oxana V.
2016-01-01
The article is devoted to the subjective perception of time, or psychological time, as a text category and a literary image. It focuses on the visual images that are characteristic of different types of literary time--accelerated, decelerated and frozen (vanished). The research is based on the assumption that the category of subjective perception…
Active confocal imaging for visual prostheses
Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli
2014-01-01
There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other “sensory substitution devices” that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed that the concept of a confocal de-cluttered image can be realized effectively using light field imaging. PMID:25448710
Image/video understanding systems based on network-symbolic models
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-03-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.
Art for reward's sake: visual art recruits the ventral striatum.
Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R; Reddy, Srinivas; Sathian, K
2011-03-01
A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non-art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. Copyright © 2010 Elsevier Inc. All rights reserved.
ART FOR REWARD’S SAKE: VISUAL ART RECRUITS THE VENTRAL STRIATUM
Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M.; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R.; Reddy, Srinivas; Sathian, K.
2010-01-01
A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non -art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. PMID:21111833
Visual salience metrics for image inpainting
NASA Astrophysics Data System (ADS)
Ardis, Paul A.; Singhal, Amit
2009-01-01
Quantitative metrics for successful image inpainting currently do not exist, with researchers instead relying upon qualitative human comparisons to evaluate their methodologies and techniques. In an attempt to rectify this situation, we propose two new metrics to capture the notions of noticeability and visual intent in order to evaluate inpainting results. The proposed metrics use a quantitative measure of visual salience based upon a computational model of human visual attention. We demonstrate how these two metrics repeatably correlate with qualitative opinion in a human observer study, correctly identify the optimum uses for exemplar-based inpainting (as specified in the original publication), and match qualitative opinion in published examples.
Visual Sensing for Urban Flood Monitoring
Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han
2015-01-01
With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201
Depth estimation and camera calibration of a focused plenoptic camera for visual odometry
NASA Astrophysics Data System (ADS)
Zeller, Niclas; Quint, Franz; Stilla, Uwe
2016-08-01
This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced. In contrast to monocular visual odometry approaches, due to the calibration of the individual depth maps, the scale of the scene can be observed. Furthermore, due to the light-field information better tracking capabilities compared to the monocular case can be expected. As result, the depth information gained by the plenoptic camera based visual odometry algorithm proposed in this paper has superior accuracy and reliability compared to the depth estimated from a single light-field image.
Stephan-Otto, Christian; Siddi, Sara; Senior, Carl; Muñoz-Samons, Daniel; Ochoa, Susana; Sánchez-Laforga, Ana María; Brébion, Gildas
2017-01-01
Visual mental imagery might be critical in the ability to discriminate imagined from perceived pictures. Our aim was to investigate the neural bases of this specific type of reality-monitoring process in individuals with high visual imagery abilities. A reality-monitoring task was administered to twenty-six healthy participants using functional magnetic resonance imaging. During the encoding phase, 45 words designating common items, and 45 pictures of other common items, were presented in random order. During the recall phase, participants were required to remember whether a picture of the item had been presented, or only a word. Two subgroups of participants with a propensity for high vs. low visual imagery were contrasted. Activation of the amygdala, left inferior occipital gyrus, insula, and precuneus were observed when high visual imagers encoded words later remembered as pictures. At the recall phase, these same participants activated the middle frontal gyrus and inferior and superior parietal lobes when erroneously remembering pictures. The formation of visual mental images might activate visual brain areas as well as structures involved in emotional processing. High visual imagers demonstrate increased activation of a fronto-parietal source-monitoring network that enables distinction between imagined and perceived pictures.
Infrared and visible image fusion scheme based on NSCT and low-level visual features
NASA Astrophysics Data System (ADS)
Li, Huafeng; Qiu, Hongmei; Yu, Zhengtao; Zhang, Yafei
2016-05-01
Multi-scale transform (MST) is an efficient tool for image fusion. Recently, many fusion methods have been developed based on different MSTs, and they have shown potential application in many fields. In this paper, we propose an effective infrared and visible image fusion scheme in nonsubsampled contourlet transform (NSCT) domain, in which the NSCT is firstly employed to decompose each of the source images into a series of high frequency subbands and one low frequency subband. To improve the fusion performance we designed two new activity measures for fusion of the lowpass subbands and the highpass subbands. These measures are developed based on the fact that the human visual system (HVS) percept the image quality mainly according to its some low-level features. Then, the selection principles of different subbands are presented based on the corresponding activity measures. Finally, the merged subbands are constructed according to the selection principles, and the final fused image is produced by applying the inverse NSCT on these merged subbands. Experimental results demonstrate the effectiveness and superiority of the proposed method over the state-of-the-art fusion methods in terms of both visual effect and objective evaluation results.
NASA Astrophysics Data System (ADS)
Anavi, Yaron; Kogan, Ilya; Gelbart, Elad; Geva, Ofer; Greenspan, Hayit
2016-03-01
We explore the combination of text metadata, such as patients' age and gender, with image-based features, for X-ray chest pathology image retrieval. We focus on a feature set extracted from a pre-trained deep convolutional network shown in earlier work to achieve state-of-the-art results. Two distance measures are explored: a descriptor-based measure, which computes the distance between image descriptors, and a classification-based measure, which performed by a comparison of the corresponding SVM classification probabilities. We show that retrieval results increase once the age and gender information combined with the features extracted from the last layers of the network, with best results using the classification-based scheme. Visualization of the X-ray data is presented by embedding the high dimensional deep learning features in a 2-D dimensional space while preserving the pairwise distances using the t-SNE algorithm. The 2-D visualization gives the unique ability to find groups of X-ray images that are similar to the query image and among themselves, which is a characteristic we do not see in a 1-D traditional ranking.
Content-Based Medical Image Retrieval
NASA Astrophysics Data System (ADS)
Müller, Henning; Deserno, Thomas M.
This chapter details the necessity for alternative access concepts to the currently mainly text-based methods in medical information retrieval. This need is partly due to the large amount of visual data produced, the increasing variety of medical imaging data and changing user patterns. The stored visual data contain large amounts of unused information that, if well exploited, can help diagnosis, teaching and research. The chapter briefly reviews the history of image retrieval and its general methods before technologies that have been developed in the medical domain are focussed. We also discuss evaluation of medical content-based image retrieval (CBIR) systems and conclude with pointing out their strengths, gaps, and further developments. As examples, the MedGIFT project and the Image Retrieval in Medical Applications (IRMA) framework are presented.
Nakashima, Ryoichi; Iwai, Ritsuko; Ueda, Sayako; Kumada, Takatsune
2015-01-01
When observers perceive several objects in a space, at the same time, they should effectively perceive their own position as a viewpoint. However, little is known about observers’ percepts of their own spatial location based on the visual scene information viewed from them. Previous studies indicate that two distinct visual spatial processes exist in the locomotion situation: the egocentric position perception and egocentric direction perception. Those studies examined such perceptions in information rich visual environments where much dynamic and static visual information was available. This study examined these two perceptions in information of impoverished environments, including only static lane edge information (i.e., limited information). We investigated the visual factors associated with static lane edge information that may affect these perceptions. Especially, we examined the effects of the two factors on egocentric direction and position perceptions. One is the “uprightness factor” that “far” visual information is seen at upper location than “near” visual information. The other is the “central vision factor” that observers usually look at “far” visual information using central vision (i.e., foveal vision) whereas ‘near’ visual information using peripheral vision. Experiment 1 examined the effect of the “uprightness factor” using normal and inverted road images. Experiment 2 examined the effect of the “central vision factor” using normal and transposed road images where the upper half of the normal image was presented under the lower half. Experiment 3 aimed to replicate the results of Experiments 1 and 2. Results showed that egocentric direction perception is interfered with image inversion or image transposition, whereas egocentric position perception is robust against these image transformations. That is, both “uprightness” and “central vision” factors are important for egocentric direction perception, but not for egocentric position perception. Therefore, the two visual spatial perceptions about observers’ own viewpoints are fundamentally dissociable. PMID:26648895
Floating aerial 3D display based on the freeform-mirror and the improved integral imaging system
NASA Astrophysics Data System (ADS)
Yu, Xunbo; Sang, Xinzhu; Gao, Xin; Yang, Shenwu; Liu, Boyang; Chen, Duo; Yan, Binbin; Yu, Chongxiu
2018-09-01
A floating aerial three-dimensional (3D) display based on the freeform-mirror and the improved integral imaging system is demonstrated. In the traditional integral imaging (II), the distortion originating from lens aberration warps elemental images and degrades the visual effect severely. To correct the distortion of the observed pixels and to improve the image quality, a directional diffuser screen (DDS) is introduced. However, the improved integral imaging system can hardly present realistic images with the large off-screen depth, which limits floating aerial visual experience. To display the 3D image in the free space, the off-axis reflection system with the freeform-mirror is designed. By combining the improved II and the designed freeform optical element, the floating aerial 3D image is presented.
Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A
2012-09-01
Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.
Content dependent selection of image enhancement parameters for mobile displays
NASA Astrophysics Data System (ADS)
Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo
2011-01-01
Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.
Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu
2018-01-01
Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.
Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang
2013-10-01
Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integrating visual learning within a model-based ATR system
NASA Astrophysics Data System (ADS)
Carlotto, Mark; Nebrich, Mark
2017-05-01
Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.
NASA Astrophysics Data System (ADS)
Fink, Wolfgang; You, Cindy X.; Tarbell, Mark A.
2010-01-01
It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (μAVS2) for real-time image processing. Truly standalone, μAVS2 is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on μAVS2 operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. μAVS2 imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, μAVS2 affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, μAVS2 can easily be reconfigured for other prosthetic systems. Testing of μAVS2 with actual retinal implant carriers is envisioned in the near future.
Fink, Wolfgang; You, Cindy X; Tarbell, Mark A
2010-01-01
It is difficult to predict exactly what blind subjects with camera-driven visual prostheses (e.g., retinal implants) can perceive. Thus, it is prudent to offer them a wide variety of image processing filters and the capability to engage these filters repeatedly in any user-defined order to enhance their visual perception. To attain true portability, we employ a commercial off-the-shelf battery-powered general purpose Linux microprocessor platform to create the microcomputer-based artificial vision support system (microAVS(2)) for real-time image processing. Truly standalone, microAVS(2) is smaller than a deck of playing cards, lightweight, fast, and equipped with USB, RS-232 and Ethernet interfaces. Image processing filters on microAVS(2) operate in a user-defined linear sequential-loop fashion, resulting in vastly reduced memory and CPU requirements during execution. MiccroAVS(2) imports raw video frames from a USB or IP camera, performs image processing, and issues the processed data over an outbound Internet TCP/IP or RS-232 connection to the visual prosthesis system. Hence, microAVS(2) affords users of current and future visual prostheses independent mobility and the capability to customize the visual perception generated. Additionally, microAVS(2) can easily be reconfigured for other prosthetic systems. Testing of microAVS(2) with actual retinal implant carriers is envisioned in the near future.
Flight simulator with spaced visuals
NASA Technical Reports Server (NTRS)
Gilson, Richard D. (Inventor); Thurston, Marlin O. (Inventor); Olson, Karl W. (Inventor); Ventola, Ronald W. (Inventor)
1980-01-01
A flight simulator arrangement wherein a conventional, movable base flight trainer is combined with a visual cue display surface spaced a predetermined distance from an eye position within the trainer. Thus, three degrees of motive freedom (roll, pitch and crab) are provided for a visual proprioceptive, and vestibular cue system by the trainer while the remaining geometric visual cue image alterations are developed by a video system. A geometric approach to computing runway image eliminates a need to electronically compute trigonometric functions, while utilization of a line generator and designated vanishing point at the video system raster permits facile development of the images of the longitudinal edges of the runway.
Fu, Kun; Jin, Junqi; Cui, Runpeng; Sha, Fei; Zhang, Changshui
2017-12-01
Recent progress on automatic generation of image captions has shown that it is possible to describe the most salient information conveyed by images with accurate and meaningful sentences. In this paper, we propose an image captioning system that exploits the parallel structures between images and sentences. In our model, the process of generating the next word, given the previously generated ones, is aligned with the visual perception experience where the attention shifts among the visual regions-such transitions impose a thread of ordering in visual perception. This alignment characterizes the flow of latent meaning, which encodes what is semantically shared by both the visual scene and the text description. Our system also makes another novel modeling contribution by introducing scene-specific contexts that capture higher-level semantic information encoded in an image. The contexts adapt language models for word generation to specific scene types. We benchmark our system and contrast to published results on several popular datasets, using both automatic evaluation metrics and human evaluation. We show that either region-based attention or scene-specific contexts improves systems without those components. Furthermore, combining these two modeling ingredients attains the state-of-the-art performance.
Image pattern recognition supporting interactive analysis and graphical visualization
NASA Technical Reports Server (NTRS)
Coggins, James M.
1992-01-01
Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.
NASA Astrophysics Data System (ADS)
Dostal, P.; Krasula, L.; Klima, M.
2012-06-01
Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.
Decomposition and extraction: a new framework for visual classification.
Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng
2014-08-01
In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.
Learning visual balance from large-scale datasets of aesthetically highly rated images
NASA Astrophysics Data System (ADS)
Jahanian, Ali; Vishwanathan, S. V. N.; Allebach, Jan P.
2015-03-01
The concept of visual balance is innate for humans, and influences how we perceive visual aesthetics and cognize harmony. Although visual balance is a vital principle of design and taught in schools of designs, it is barely quantified. On the other hand, with emergence of automantic/semi-automatic visual designs for self-publishing, learning visual balance and computationally modeling it, may escalate aesthetics of such designs. In this paper, we present how questing for understanding visual balance inspired us to revisit one of the well-known theories in visual arts, the so called theory of "visual rightness", elucidated by Arnheim. We define Arnheim's hypothesis as a design mining problem with the goal of learning visual balance from work of professionals. We collected a dataset of 120K images that are aesthetically highly rated, from a professional photography website. We then computed factors that contribute to visual balance based on the notion of visual saliency. We fitted a mixture of Gaussians to the saliency maps of the images, and obtained the hotspots of the images. Our inferred Gaussians align with Arnheim's hotspots, and confirm his theory. Moreover, the results support the viability of the center of mass, symmetry, as well as the Rule of Thirds in our dataset.
Lee, Kang-Hoon; Shin, Kyung-Seop; Lim, Debora; Kim, Woo-Chan; Chung, Byung Chang; Han, Gyu-Bum; Roh, Jeongkyu; Cho, Dong-Ho; Cho, Kiho
2015-07-01
The genomes of living organisms are populated with pleomorphic repetitive elements (REs) of varying densities. Our hypothesis that genomic RE landscapes are species/strain/individual-specific was implemented into the Genome Signature Imaging system to visualize and compute the RE-based signatures of any genome. Following the occurrence profiling of 5-nucleotide REs/words, the information from top-50 frequency words was transformed into a genome-specific signature and visualized as Genome Signature Images (GSIs), using a CMYK scheme. An algorithm for computing distances among GSIs was formulated using the GSIs' variables (word identity, frequency, and frequency order). The utility of the GSI-distance computation system was demonstrated with control genomes. GSI-based computation of genome-relatedness among 1766 microbes (117 archaea and 1649 bacteria) identified their clustering patterns; although the majority paralleled the established classification, some did not. The Genome Signature Imaging system, with its visualization and distance computation functions, enables genome-scale evolutionary studies involving numerous genomes with varying sizes. Copyright © 2015 Elsevier Inc. All rights reserved.
Physically-based in silico light sheet microscopy for visualizing fluorescent brain models
2015-01-01
Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404
Denoising imaging polarimetry by adapted BM3D method.
Tibbs, Alexander B; Daly, Ilse M; Roberts, Nicholas W; Bull, David R
2018-04-01
In addition to the visual information contained in intensity and color, imaging polarimetry allows visual information to be extracted from the polarization of light. However, a major challenge of imaging polarimetry is image degradation due to noise. This paper investigates the mitigation of noise through denoising algorithms and compares existing denoising algorithms with a new method, based on BM3D (Block Matching 3D). This algorithm, Polarization-BM3D (PBM3D), gives visual quality superior to the state of the art across all images and noise standard deviations tested. We show that denoising polarization images using PBM3D allows the degree of polarization to be more accurately calculated by comparing it with spectral polarimetry measurements.
Visual enhancement of unmixed multispectral imagery using adaptive smoothing
Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.
2004-01-01
Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.
NASA Astrophysics Data System (ADS)
Kleinmann, Johanna; Wueller, Dietmar
2007-01-01
Since the signal to noise measuring method as standardized in the normative part of ISO 15739:2002(E)1 does not quantify noise in a way that matches the perception of the human eye, two alternative methods have been investigated which may be appropriate to quantify the noise perception in a physiological manner: - the model of visual noise measurement proposed by Hung et al2 (as described in the informative annex of ISO 15739:20021) which tries to simulate the process of human vision by using the opponent space and contrast sensitivity functions and uses the CIEL*u*v*1976 colour space for the determination of a so called visual noise value. - The S-CIELab model and CIEDE2000 colour difference proposed by Fairchild et al 3 which simulates human vision approximately the same way as Hung et al2 but uses an image comparison afterwards based on CIEDE2000. With a psychophysical experiment based on just noticeable difference (JND), threshold images could be defined, with which the two approaches mentioned above were tested. The assumption is that if the method is valid, the different threshold images should get the same 'noise value'. The visual noise measurement model results in similar visual noise values for all the threshold images. The method is reliable to quantify at least the JND for noise in uniform areas of digital images. While the visual noise measurement model can only evaluate uniform colour patches in images, the S-CIELab model can be used on images with spatial content as well. The S-CIELab model also results in similar colour difference values for the set of threshold images, but with some limitations: for images which contain spatial structures besides the noise, the colour difference varies depending on the contrast of the spatial content.
Applications of magnetic resonance image segmentation in neurology
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu
1999-05-01
After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.
A method for real-time visual stimulus selection in the study of cortical object perception.
Leeds, Daniel D; Tarr, Michael J
2016-06-01
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.
A method for real-time visual stimulus selection in the study of cortical object perception
Leeds, Daniel D.; Tarr, Michael J.
2016-01-01
The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168
Localization Using Visual Odometry and a Single Downward-Pointing Camera
NASA Technical Reports Server (NTRS)
Swank, Aaron J.
2012-01-01
Stereo imaging is a technique commonly employed for vision-based navigation. For such applications, two images are acquired from different vantage points and then compared using transformations to extract depth information. The technique is commonly used in robotics for obstacle avoidance or for Simultaneous Localization And Mapping, (SLAM). Yet, the process requires a number of image processing steps and therefore tends to be CPU-intensive, which limits the real-time data rate and use in power-limited applications. Evaluated here is a technique where a monocular camera is used for vision-based odometry. In this work, an optical flow technique with feature recognition is performed to generate odometry measurements. The visual odometry sensor measurements are intended to be used as control inputs or measurements in a sensor fusion algorithm using low-cost MEMS based inertial sensors to provide improved localization information. Presented here are visual odometry results which demonstrate the challenges associated with using ground-pointing cameras for visual odometry. The focus is for rover-based robotic applications for localization within GPS-denied environments.
Serial grouping of 2D-image regions with object-based attention in humans
Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R
2016-01-01
After an initial stage of local analysis within the retina and early visual pathways, the human visual system creates a structured representation of the visual scene by co-selecting image elements that are part of behaviorally relevant objects. The mechanisms underlying this perceptual organization process are only partially understood. We here investigate the time-course of perceptual grouping of two-dimensional image-regions by measuring the reaction times of human participants and report that it is associated with the gradual spread of object-based attention. Attention spreads fastest over large and homogeneous areas and is slowed down at locations that require small-scale processing. We find that the time-course of the object-based selection process is well explained by a 'growth-cone' model, which selects surface elements in an incremental, scale-dependent manner. We discuss how the visual cortical hierarchy can implement this scale-dependent spread of object-based attention, leveraging the different receptive field sizes in distinct cortical areas. DOI: http://dx.doi.org/10.7554/eLife.14320.001 PMID:27291188
Real-time distortion correction for visual inspection systems based on FPGA
NASA Astrophysics Data System (ADS)
Liang, Danhua; Zhang, Zhaoxia; Chen, Xiaodong; Yu, Daoyin
2008-03-01
Visual inspection is a kind of new technology based on the research of computer vision, which focuses on the measurement of the object's geometry and location. It can be widely used in online measurement, and other real-time measurement process. Because of the defects of the traditional visual inspection, a new visual detection mode -all-digital intelligent acquisition and transmission is presented. The image processing, including filtering, image compression, binarization, edge detection and distortion correction, can be completed in the programmable devices -FPGA. As the wide-field angle lens is adopted in the system, the output images have serious distortion. Limited by the calculating speed of computer, software can only correct the distortion of static images but not the distortion of dynamic images. To reach the real-time need, we design a distortion correction system based on FPGA. The method of hardware distortion correction is that the spatial correction data are calculated first under software circumstance, then converted into the address of hardware storage and stored in the hardware look-up table, through which data can be read out to correct gray level. The major benefit using FPGA is that the same circuit can be used for other circularly symmetric wide-angle lenses without being modified.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
A novel false color mapping model-based fusion method of visual and infrared images
NASA Astrophysics Data System (ADS)
Qi, Bin; Kun, Gao; Tian, Yue-xin; Zhu, Zhen-yu
2013-12-01
A fast and efficient image fusion method is presented to generate near-natural colors from panchromatic visual and thermal imaging sensors. Firstly, a set of daytime color reference images are analyzed and the false color mapping principle is proposed according to human's visual and emotional habits. That is, object colors should remain invariant after color mapping operations, differences between infrared and visual images should be enhanced and the background color should be consistent with the main scene content. Then a novel nonlinear color mapping model is given by introducing the geometric average value of the input visual and infrared image gray and the weighted average algorithm. To determine the control parameters in the mapping model, the boundary conditions are listed according to the mapping principle above. Fusion experiments show that the new fusion method can achieve the near-natural appearance of the fused image, and has the features of enhancing color contrasts and highlighting the infrared brilliant objects when comparing with the traditional TNO algorithm. Moreover, it owns the low complexity and is easy to realize real-time processing. So it is quite suitable for the nighttime imaging apparatus.
Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S.T.C.
The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound,more » electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.« less
Cognitive approaches for patterns analysis and security applications
NASA Astrophysics Data System (ADS)
Ogiela, Marek R.; Ogiela, Lidia
2017-08-01
In this paper will be presented new opportunities for developing innovative solutions for semantic pattern classification and visual cryptography, which will base on cognitive and bio-inspired approaches. Such techniques can be used for evaluation of the meaning of analyzed patterns or encrypted information, and allow to involve such meaning into the classification task or encryption process. It also allows using some crypto-biometric solutions to extend personalized cryptography methodologies based on visual pattern analysis. In particular application of cognitive information systems for semantic analysis of different patterns will be presented, and also a novel application of such systems for visual secret sharing will be described. Visual shares for divided information can be created based on threshold procedure, which may be dependent on personal abilities to recognize some image details visible on divided images.
Mobile Visual Search Based on Histogram Matching and Zone Weight Learning
NASA Astrophysics Data System (ADS)
Zhu, Chuang; Tao, Li; Yang, Fan; Lu, Tao; Jia, Huizhu; Xie, Xiaodong
2018-01-01
In this paper, we propose a novel image retrieval algorithm for mobile visual search. At first, a short visual codebook is generated based on the descriptor database to represent the statistical information of the dataset. Then, an accurate local descriptor similarity score is computed by merging the tf-idf weighted histogram matching and the weighting strategy in compact descriptors for visual search (CDVS). At last, both the global descriptor matching score and the local descriptor similarity score are summed up to rerank the retrieval results according to the learned zone weights. The results show that the proposed approach outperforms the state-of-the-art image retrieval method in CDVS.
A visual grading study for different administered activity levels in bone scintigraphy.
Gustafsson, Agnetha; Karlsson, Henrik; Nilsson, Kerstin A; Geijer, Håkan; Olsson, Anna
2015-05-01
The aim of the study is to assess the administered activity levels versus visual-based image quality using visual grading regression (VGR) including an assessment of the newly stated image criteria for whole-body bone scintigraphy. A total of 90 patients was included and grouped in three levels of administered activity: 400, 500 and 600 MBq. Six clinical image criteria regarding image quality was formulated by experienced nuclear medicine physicians. Visual grading was performed in all images, where three physicians rated the fulfilment of the image criteria on a four-step ordinal scale. The results were analysed using VGR. A count analysis was also made where the total number of counts in both views was registered. The administered activity of 600 MBq gives significantly better image quality than 400 MBq in five of six criteria (P<0·05). Comparing the administered activity of 600 MBq to 500 MBq, four criteria of six show significantly better image quality (P<0·05). The administered activity of 500 MBq gives no significantly better image quality than 400 Mbq (P<0·05). The count analysis shows that none of the three levels of administrated activity fulfil the recommendations by the EANM. There was a significant improvement in perceived image quality using an activity level of 600 MBq compared to lower activity levels in whole-body bone scintigraphy for the gamma camera equipment end set-up used in this study. This type of visual-based grading study seems to be a valuable tool and easy to implement in the clinical environment. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Cross-Modal Retrieval With CNN Visual Features: A New Baseline.
Wei, Yunchao; Zhao, Yao; Lu, Canyi; Wei, Shikui; Liu, Luoqi; Zhu, Zhenfeng; Yan, Shuicheng
2017-02-01
Recently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval. To further enhance the representational ability of CNN visual features, based on the pretrained CNN model on ImageNet, a fine-tuning step is performed by using the open source Caffe CNN library for each target data set. Besides, we propose a deep semantic matching method to address the cross-modal retrieval problem with respect to samples which are annotated with one or multiple labels. Extensive experiments on five popular publicly available data sets well demonstrate the superiority of CNN visual features for cross-modal retrieval.
Quantifying and visualizing variations in sets of images using continuous linear optimal transport
NASA Astrophysics Data System (ADS)
Kolouri, Soheil; Rohde, Gustavo K.
2014-03-01
Modern advancements in imaging devices have enabled us to explore the subcellular structure of living organisms and extract vast amounts of information. However, interpreting the biological information mined in the captured images is not a trivial task. Utilizing predetermined numerical features is usually the only hope for quantifying this information. Nonetheless, direct visual or biological interpretation of results obtained from these selected features is non-intuitive and difficult. In this paper, we describe an automatic method for modeling visual variations in a set of images, which allows for direct visual interpretation of the most significant differences, without the need for predefined features. The method is based on a linearized version of the continuous optimal transport (OT) metric, which provides a natural linear embedding for the image data set, in which linear combination of images leads to a visually meaningful image. This enables us to apply linear geometric data analysis techniques such as principal component analysis and linear discriminant analysis in the linearly embedded space and visualize the most prominent modes, as well as the most discriminant modes of variations, in the dataset. Using the continuous OT framework, we are able to analyze variations in shape and texture in a set of images utilizing each image at full resolution, that otherwise cannot be done by existing methods. The proposed method is applied to a set of nuclei images segmented from Feulgen stained liver tissues in order to investigate the major visual differences in chromatin distribution of Fetal-Type Hepatoblastoma (FHB) cells compared to the normal cells.
Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B
2011-07-01
Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.
Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco
2015-10-15
Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian
2018-01-01
In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.
Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.
Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta
2014-07-01
We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general.
A ganglion-cell-based primary image representation method and its contribution to object recognition
NASA Astrophysics Data System (ADS)
Wei, Hui; Dai, Zhi-Long; Zuo, Qing-Song
2016-10-01
A visual stimulus is represented by the biological visual system at several levels: in the order from low to high levels, they are: photoreceptor cells, ganglion cells (GCs), lateral geniculate nucleus cells and visual cortical neurons. Retinal GCs at the early level need to represent raw data only once, but meet a wide number of diverse requests from different vision-based tasks. This means the information representation at this level is general and not task-specific. Neurobiological findings have attributed this universal adaptation to GCs' receptive field (RF) mechanisms. For the purposes of developing a highly efficient image representation method that can facilitate information processing and interpretation at later stages, here we design a computational model to simulate the GC's non-classical RF. This new image presentation method can extract major structural features from raw data, and is consistent with other statistical measures of the image. Based on the new representation, the performances of other state-of-the-art algorithms in contour detection and segmentation can be upgraded remarkably. This work concludes that applying sophisticated representation schema at early state is an efficient and promising strategy in visual information processing.
Data augmentation-assisted deep learning of hand-drawn partially colored sketches for visual search
Muhammad, Khan; Baik, Sung Wook
2017-01-01
In recent years, image databases are growing at exponential rates, making their management, indexing, and retrieval, very challenging. Typical image retrieval systems rely on sample images as queries. However, in the absence of sample query images, hand-drawn sketches are also used. The recent adoption of touch screen input devices makes it very convenient to quickly draw shaded sketches of objects to be used for querying image databases. This paper presents a mechanism to provide access to visual information based on users’ hand-drawn partially colored sketches using touch screen devices. A key challenge for sketch-based image retrieval systems is to cope with the inherent ambiguity in sketches due to the lack of colors, textures, shading, and drawing imperfections. To cope with these issues, we propose to fine-tune a deep convolutional neural network (CNN) using augmented dataset to extract features from partially colored hand-drawn sketches for query specification in a sketch-based image retrieval framework. The large augmented dataset contains natural images, edge maps, hand-drawn sketches, de-colorized, and de-texturized images which allow CNN to effectively model visual contents presented to it in a variety of forms. The deep features extracted from CNN allow retrieval of images using both sketches and full color images as queries. We also evaluated the role of partial coloring or shading in sketches to improve the retrieval performance. The proposed method is tested on two large datasets for sketch recognition and sketch-based image retrieval and achieved better classification and retrieval performance than many existing methods. PMID:28859140
Chen, Yang; Ren, Xiaofeng; Zhang, Guo-Qiang; Xu, Rong
2013-01-01
Visual information is a crucial aspect of medical knowledge. Building a comprehensive medical image base, in the spirit of the Unified Medical Language System (UMLS), would greatly benefit patient education and self-care. However, collection and annotation of such a large-scale image base is challenging. To combine visual object detection techniques with medical ontology to automatically mine web photos and retrieve a large number of disease manifestation images with minimal manual labeling effort. As a proof of concept, we first learnt five organ detectors on three detection scales for eyes, ears, lips, hands, and feet. Given a disease, we used information from the UMLS to select affected body parts, ran the pretrained organ detectors on web images, and combined the detection outputs to retrieve disease images. Compared with a supervised image retrieval approach that requires training images for every disease, our ontology-guided approach exploits shared visual information of body parts across diseases. In retrieving 2220 web images of 32 diseases, we reduced manual labeling effort to 15.6% while improving the average precision by 3.9% from 77.7% to 81.6%. For 40.6% of the diseases, we improved the precision by 10%. The results confirm the concept that the web is a feasible source for automatic disease image retrieval for health image database construction. Our approach requires a small amount of manual effort to collect complex disease images, and to annotate them by standard medical ontology terms.
Location-Driven Image Retrieval for Images Collected by a Mobile Robot
NASA Astrophysics Data System (ADS)
Tanaka, Kanji; Hirayama, Mitsuru; Okada, Nobuhiro; Kondo, Eiji
Mobile robot teleoperation is a method for a human user to interact with a mobile robot over time and distance. Successful teleoperation depends on how well images taken by the mobile robot are visualized to the user. To enhance the efficiency and flexibility of the visualization, an image retrieval system on such a robot’s image database would be very useful. The main difference of the robot’s image database from standard image databases is that various relevant images exist due to variety of viewing conditions. The main contribution of this paper is to propose an efficient retrieval approach, named location-driven approach, utilizing correlation between visual features and real world locations of images. Combining the location-driven approach with the conventional feature-driven approach, our goal can be viewed as finding an optimal classifier between relevant and irrelevant feature-location pairs. An active learning technique based on support vector machine is extended for this aim.
Stephan-Otto, Christian; Siddi, Sara; Senior, Carl; Muñoz-Samons, Daniel; Ochoa, Susana; Sánchez-Laforga, Ana María; Brébion, Gildas
2017-01-01
Background Visual mental imagery might be critical in the ability to discriminate imagined from perceived pictures. Our aim was to investigate the neural bases of this specific type of reality-monitoring process in individuals with high visual imagery abilities. Methods A reality-monitoring task was administered to twenty-six healthy participants using functional magnetic resonance imaging. During the encoding phase, 45 words designating common items, and 45 pictures of other common items, were presented in random order. During the recall phase, participants were required to remember whether a picture of the item had been presented, or only a word. Two subgroups of participants with a propensity for high vs. low visual imagery were contrasted. Results Activation of the amygdala, left inferior occipital gyrus, insula, and precuneus were observed when high visual imagers encoded words later remembered as pictures. At the recall phase, these same participants activated the middle frontal gyrus and inferior and superior parietal lobes when erroneously remembering pictures. Conclusions The formation of visual mental images might activate visual brain areas as well as structures involved in emotional processing. High visual imagers demonstrate increased activation of a fronto-parietal source-monitoring network that enables distinction between imagined and perceived pictures. PMID:28046076
NASA Astrophysics Data System (ADS)
Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.
2017-02-01
Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.
Blind image quality assessment via probabilistic latent semantic analysis.
Yang, Xichen; Sun, Quansen; Wang, Tianshu
2016-01-01
We propose a blind image quality assessment that is highly unsupervised and training free. The new method is based on the hypothesis that the effect caused by distortion can be expressed by certain latent characteristics. Combined with probabilistic latent semantic analysis, the latent characteristics can be discovered by applying a topic model over a visual word dictionary. Four distortion-affected features are extracted to form the visual words in the dictionary: (1) the block-based local histogram; (2) the block-based local mean value; (3) the mean value of contrast within a block; (4) the variance of contrast within a block. Based on the dictionary, the latent topics in the images can be discovered. The discrepancy between the frequency of the topics in an unfamiliar image and a large number of pristine images is applied to measure the image quality. Experimental results for four open databases show that the newly proposed method correlates well with human subjective judgments of diversely distorted images.
Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A.; Klinko, Steve J.
2007-01-01
Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.
Method of simulation and visualization of FDG metabolism based on VHP image
NASA Astrophysics Data System (ADS)
Cui, Yunfeng; Bai, Jing
2005-04-01
FDG ([18F] 2-fluoro-2-deoxy-D-glucose) is the typical tracer used in clinical PET (positron emission tomography) studies. The FDG-PET is an important imaging tool for early diagnosis and treatment of malignant tumor and functional disease. The main purpose of this work is to propose a method that represents FDG metabolism in human body through the simulation and visualization of 18F distribution process dynamically based on the segmented VHP (Visible Human Project) image dataset. First, the plasma time-activity curve (PTAC) and the tissues time-activity curves (TTAC) are obtained from the previous studies and the literatures. According to the obtained PTAC and TTACs, a set of corresponding values are assigned to the segmented VHP image, Thus a set of dynamic images are derived to show the 18F distribution in the concerned tissues for the predetermined sampling schedule. Finally, the simulated FDG distribution images are visualized in 3D and 2D formats, respectively, incorporated with principal interaction functions. As compared with original PET image, our visualization result presents higher resolution because of the high resolution of VHP image data, and show the distribution process of 18F dynamically. The results of our work can be used in education and related research as well as a tool for the PET operator to design their PET experiment program.
Vergara, Gaston R; Vijayakumar, Sathya; Kholmovski, Eugene G; Blauer, Joshua J E; Guttman, Mike A; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W; Daccarett, Marcos; McGann, Christopher J; Macleod, Rob S; Marrouche, Nassir F
2011-02-01
Magnetic resonance imaging (MRI) allows visualization of location and extent of radiofrequency (RF) ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT -RI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. The purpose of this study was to develop a 3-Tesla RT MRI-based catheter ablation and lesion visualization system. RF energy was delivered to six pigs under RT MRI guidance. A novel MRI-compatible mapping and ablation catheter was used. Under RT MRI, this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bipolar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2W) half Fourier acquisition with single-shot turbo spin echo (HASTE) sequence during ablation. RT visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or the lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement MRI and macroscopic tissue examination. MRI-compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT MRI guidance. Recording electrograms during RT imaging also is feasible. RT visualization of lesion as it forms during RF energy delivery is possible and was demonstrated using T2W HASTE imaging. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Modeling Image Patches with a Generic Dictionary of Mini-Epitomes
Papandreou, George; Chen, Liang-Chieh; Yuille, Alan L.
2015-01-01
The goal of this paper is to question the necessity of features like SIFT in categorical visual recognition tasks. As an alternative, we develop a generative model for the raw intensity of image patches and show that it can support image classification performance on par with optimized SIFT-based techniques in a bag-of-visual-words setting. Key ingredient of the proposed model is a compact dictionary of mini-epitomes, learned in an unsupervised fashion on a large collection of images. The use of epitomes allows us to explicitly account for photometric and position variability in image appearance. We show that this flexibility considerably increases the capacity of the dictionary to accurately approximate the appearance of image patches and support recognition tasks. For image classification, we develop histogram-based image encoding methods tailored to the epitomic representation, as well as an “epitomic footprint” encoding which is easy to visualize and highlights the generative nature of our model. We discuss in detail computational aspects and develop efficient algorithms to make the model scalable to large tasks. The proposed techniques are evaluated with experiments on the challenging PASCAL VOC 2007 image classification benchmark. PMID:26321859
Visual System Involvement in Patients with Newly Diagnosed Parkinson Disease.
Arrigo, Alessandro; Calamuneri, Alessandro; Milardi, Demetrio; Mormina, Enricomaria; Rania, Laura; Postorino, Elisa; Marino, Silvia; Di Lorenzo, Giuseppe; Anastasi, Giuseppe Pio; Ghilardi, Maria Felice; Aragona, Pasquale; Quartarone, Angelo; Gaeta, Michele
2017-12-01
Purpose To assess intracranial visual system changes of newly diagnosed Parkinson disease in drug-naïve patients. Materials and Methods Twenty patients with newly diagnosed Parkinson disease and 20 age-matched control subjects were recruited. Magnetic resonance (MR) imaging (T1-weighted and diffusion-weighted imaging) was performed with a 3-T MR imager. White matter changes were assessed by exploring a white matter diffusion profile by means of diffusion-tensor imaging-based parameters and constrained spherical deconvolution-based connectivity analysis and by means of white matter voxel-based morphometry (VBM). Alterations in occipital gray matter were investigated by means of gray matter VBM. Morphologic analysis of the optic chiasm was based on manual measurement of regions of interest. Statistical testing included analysis of variance, t tests, and permutation tests. Results In the patients with Parkinson disease, significant alterations were found in optic radiation connectivity distribution, with decreased lateral geniculate nucleus V2 density (F, -8.28; P < .05), a significant increase in optic radiation mean diffusivity (F, 7.5; P = .014), and a significant reduction in white matter concentration. VBM analysis also showed a significant reduction in visual cortical volumes (P < .05). Moreover, the chiasmatic area and volume were significantly reduced (P < .05). Conclusion The findings show that visual system alterations can be detected in early stages of Parkinson disease and that the entire intracranial visual system can be involved. © RSNA, 2017 Online supplemental material is available for this article.
NASA Astrophysics Data System (ADS)
Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza
2018-02-01
An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.
Advanced biologically plausible algorithms for low-level image processing
NASA Astrophysics Data System (ADS)
Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan
1999-08-01
At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.
Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity.
Napoletano, Paolo; Piccoli, Flavio; Schettini, Raimondo
2018-01-12
Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.
Retinex enhancement of infrared images.
Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili
2008-01-01
With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.
Combined photoacoustic and magneto-acoustic imaging.
Qu, Min; Mallidi, Srivalleesha; Mehrmohammadi, Mohammad; Ma, Li Leo; Johnston, Keith P; Sokolov, Konstantin; Emelianov, Stanislav
2009-01-01
Ultrasound is a widely used modality with excellent spatial resolution, low cost, portability, reliability and safety. In clinical practice and in the biomedical field, molecular ultrasound-based imaging techniques are desired to visualize tissue pathologies, such as cancer. In this paper, we present an advanced imaging technique - combined photoacoustic and magneto-acoustic imaging - capable of visualizing the anatomical, functional and biomechanical properties of tissues or organs. The experiments to test the combined imaging technique were performed using dual, nanoparticle-based contrast agents that exhibit the desired optical and magnetic properties. The results of our study demonstrate the feasibility of the combined photoacoustic and magneto-acoustic imaging that takes the advantages of each imaging techniques and provides high sensitivity, reliable contrast and good penetrating depth. Therefore, the developed imaging technique can be used in wide range of biomedical and clinical application.
Lee, Kai-Hui; Chiu, Pei-Ling
2013-10-01
Conventional visual cryptography (VC) suffers from a pixel-expansion problem, or an uncontrollable display quality problem for recovered images, and lacks a general approach to construct visual secret sharing schemes for general access structures. We propose a general and systematic approach to address these issues without sophisticated codebook design. This approach can be used for binary secret images in non-computer-aided decryption environments. To avoid pixel expansion, we design a set of column vectors to encrypt secret pixels rather than using the conventional VC-based approach. We begin by formulating a mathematic model for the VC construction problem to find the column vectors for the optimal VC construction, after which we develop a simulated-annealing-based algorithm to solve the problem. The experimental results show that the display quality of the recovered image is superior to that of previous papers.
Research on flight stability performance of rotor aircraft based on visual servo control method
NASA Astrophysics Data System (ADS)
Yu, Yanan; Chen, Jing
2016-11-01
control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.
A Regression-Based Family of Measures for Full-Reference Image Quality Assessment
NASA Astrophysics Data System (ADS)
Oszust, Mariusz
2016-12-01
The advances in the development of imaging devices resulted in the need of an automatic quality evaluation of displayed visual content in a way that is consistent with human visual perception. In this paper, an approach to full-reference image quality assessment (IQA) is proposed, in which several IQA measures, representing different approaches to modelling human visual perception, are efficiently combined in order to produce objective quality evaluation of examined images, which is highly correlated with evaluation provided by human subjects. In the paper, an optimisation problem of selection of several IQA measures for creating a regression-based IQA hybrid measure, or a multimeasure, is defined and solved using a genetic algorithm. Experimental evaluation on four largest IQA benchmarks reveals that the multimeasures obtained using the proposed approach outperform state-of-the-art full-reference IQA techniques, including other recently developed fusion approaches.
Advanced Image Processing for Defect Visualization in Infrared Thermography
NASA Technical Reports Server (NTRS)
Plotnikov, Yuri A.; Winfree, William P.
1997-01-01
Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.
No-reference quality assessment based on visual perception
NASA Astrophysics Data System (ADS)
Li, Junshan; Yang, Yawei; Hu, Shuangyan; Zhang, Jiao
2014-11-01
The visual quality assessment of images/videos is an ongoing hot research topic, which has become more and more important for numerous image and video processing applications with the rapid development of digital imaging and communication technologies. The goal of image quality assessment (IQA) algorithms is to automatically assess the quality of images/videos in agreement with human quality judgments. Up to now, two kinds of models have been used for IQA, namely full-reference (FR) and no-reference (NR) models. For FR models, IQA algorithms interpret image quality as fidelity or similarity with a perfect image in some perceptual space. However, the reference image is not available in many practical applications, and a NR IQA approach is desired. Considering natural vision as optimized by the millions of years of evolutionary pressure, many methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychological features of the human visual system (HVS). To reach this goal, researchers try to simulate HVS with image sparsity coding and supervised machine learning, which are two main features of HVS. A typical HVS captures the scenes by sparsity coding, and uses experienced knowledge to apperceive objects. In this paper, we propose a novel IQA approach based on visual perception. Firstly, a standard model of HVS is studied and analyzed, and the sparse representation of image is accomplished with the model; and then, the mapping correlation between sparse codes and subjective quality scores is trained with the regression technique of least squaresupport vector machine (LS-SVM), which gains the regressor that can predict the image quality; the visual metric of image is predicted with the trained regressor at last. We validate the performance of proposed approach on Laboratory for Image and Video Engineering (LIVE) database, the specific contents of the type of distortions present in the database are: 227 images of JPEG2000, 233 images of JPEG, 174 images of White Noise, 174 images of Gaussian Blur, 174 images of Fast Fading. The database includes subjective differential mean opinion score (DMOS) for each image. The experimental results show that the proposed approach not only can assess many kinds of distorted images quality, but also exhibits a superior accuracy and monotonicity.
Chang, Yongjun; Paul, Anjan Kumar; Kim, Namkug; Baek, Jung Hwan; Choi, Young Jun; Ha, Eun Ju; Lee, Kang Dae; Lee, Hyoung Shin; Shin, DaeSeock; Kim, Nakyoung
2016-01-01
To develop a semiautomated computer-aided diagnosis (cad) system for thyroid cancer using two-dimensional ultrasound images that can be used to yield a second opinion in the clinic to differentiate malignant and benign lesions. A total of 118 ultrasound images that included axial and longitudinal images from patients with biopsy-confirmed malignant (n = 30) and benign (n = 29) nodules were collected. Thyroid cad software was developed to extract quantitative features from these images based on thyroid nodule segmentation in which adaptive diffusion flow for active contours was used. Various features, including histogram, intensity differences, elliptical fit, gray-level co-occurrence matrixes, and gray-level run-length matrixes, were evaluated for each region imaged. Based on these imaging features, a support vector machine (SVM) classifier was used to differentiate benign and malignant nodules. Leave-one-out cross-validation with sequential forward feature selection was performed to evaluate the overall accuracy of this method. Additionally, analyses with contingency tables and receiver operating characteristic (ROC) curves were performed to compare the performance of cad with visual inspection by expert radiologists based on established gold standards. Most univariate features for this proposed cad system attained accuracies that ranged from 78.0% to 83.1%. When optimal SVM parameters that were established using a grid search method with features that radiologists use for visual inspection were employed, the authors could attain rates of accuracy that ranged from 72.9% to 84.7%. Using leave-one-out cross-validation results in a multivariate analysis of various features, the highest accuracy achieved using the proposed cad system was 98.3%, whereas visual inspection by radiologists reached 94.9% accuracy. To obtain the highest accuracies, "axial ratio" and "max probability" in axial images were most frequently included in the optimal feature sets for the authors' proposed cad system, while "shape" and "calcification" in longitudinal images were most frequently included in the optimal feature sets for visual inspection by radiologists. The computed areas under curves in the ROC analysis were 0.986 and 0.979 for the proposed cad system and visual inspection by radiologists, respectively; no significant difference was detected between these groups. The use of thyroid cad to differentiate malignant from benign lesions shows accuracy similar to that obtained via visual inspection by radiologists. Thyroid cad might be considered a viable way to generate a second opinion for radiologists in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yongjun; Paul, Anjan Kumar; Kim, Namkug, E-mail: namkugkim@gmail.com
Purpose: To develop a semiautomated computer-aided diagnosis (CAD) system for thyroid cancer using two-dimensional ultrasound images that can be used to yield a second opinion in the clinic to differentiate malignant and benign lesions. Methods: A total of 118 ultrasound images that included axial and longitudinal images from patients with biopsy-confirmed malignant (n = 30) and benign (n = 29) nodules were collected. Thyroid CAD software was developed to extract quantitative features from these images based on thyroid nodule segmentation in which adaptive diffusion flow for active contours was used. Various features, including histogram, intensity differences, elliptical fit, gray-level co-occurrencemore » matrixes, and gray-level run-length matrixes, were evaluated for each region imaged. Based on these imaging features, a support vector machine (SVM) classifier was used to differentiate benign and malignant nodules. Leave-one-out cross-validation with sequential forward feature selection was performed to evaluate the overall accuracy of this method. Additionally, analyses with contingency tables and receiver operating characteristic (ROC) curves were performed to compare the performance of CAD with visual inspection by expert radiologists based on established gold standards. Results: Most univariate features for this proposed CAD system attained accuracies that ranged from 78.0% to 83.1%. When optimal SVM parameters that were established using a grid search method with features that radiologists use for visual inspection were employed, the authors could attain rates of accuracy that ranged from 72.9% to 84.7%. Using leave-one-out cross-validation results in a multivariate analysis of various features, the highest accuracy achieved using the proposed CAD system was 98.3%, whereas visual inspection by radiologists reached 94.9% accuracy. To obtain the highest accuracies, “axial ratio” and “max probability” in axial images were most frequently included in the optimal feature sets for the authors’ proposed CAD system, while “shape” and “calcification” in longitudinal images were most frequently included in the optimal feature sets for visual inspection by radiologists. The computed areas under curves in the ROC analysis were 0.986 and 0.979 for the proposed CAD system and visual inspection by radiologists, respectively; no significant difference was detected between these groups. Conclusions: The use of thyroid CAD to differentiate malignant from benign lesions shows accuracy similar to that obtained via visual inspection by radiologists. Thyroid CAD might be considered a viable way to generate a second opinion for radiologists in clinical practice.« less
Facial recognition using multisensor images based on localized kernel eigen spaces.
Gundimada, Satyanadh; Asari, Vijayan K
2009-06-01
A feature selection technique along with an information fusion procedure for improving the recognition accuracy of a visual and thermal image-based facial recognition system is presented in this paper. A novel modular kernel eigenspaces approach is developed and implemented on the phase congruency feature maps extracted from the visual and thermal images individually. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The proposed localized nonlinear feature selection procedure helps to overcome the bottlenecks of illumination variations, partial occlusions, expression variations and variations due to temperature changes that affect the visual and thermal face recognition techniques. AR and Equinox databases are used for experimentation and evaluation of the proposed technique. The proposed feature selection procedure has greatly improved the recognition accuracy for both the visual and thermal images when compared to conventional techniques. Also, a decision level fusion methodology is presented which along with the feature selection procedure has outperformed various other face recognition techniques in terms of recognition accuracy.
Novel approach to multispectral image compression on the Internet
NASA Astrophysics Data System (ADS)
Zhu, Yanqiu; Jin, Jesse S.
2000-10-01
Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.
Kuzmina, Margarita; Manykin, Eduard; Surina, Irina
2004-01-01
An oscillatory network of columnar architecture located in 3D spatial lattice was recently designed by the authors as oscillatory model of the brain visual cortex. Single network oscillator is a relaxational neural oscillator with internal dynamics tunable by visual image characteristics - local brightness and elementary bar orientation. It is able to demonstrate either activity state (stable undamped oscillations) or "silence" (quickly damped oscillations). Self-organized nonlocal dynamical connections of oscillators depend on oscillator activity levels and orientations of cortical receptive fields. Network performance consists in transfer into a state of clusterized synchronization. At current stage grey-level image segmentation tasks are carried out by 2D oscillatory network, obtained as a limit version of the source model. Due to supplemented network coupling strength control the 2D reduced network provides synchronization-based image segmentation. New results on segmentation of brightness and texture images presented in the paper demonstrate accurate network performance and informative visualization of segmentation results, inherent in the model.
Universal and adapted vocabularies for generic visual categorization.
Perronnin, Florent
2008-07-01
Generic Visual Categorization (GVC) is the pattern classification problem which consists in assigning labels to an image based on its semantic content. This is a challenging task as one has to deal with inherent object/scene variations as well as changes in viewpoint, lighting and occlusion. Several state-of-the-art GVC systems use a vocabulary of visual terms to characterize images with a histogram of visual word counts. We propose a novel practical approach to GVC based on a universal vocabulary, which describes the content of all the considered classes of images, and class vocabularies obtained through the adaptation of the universal vocabulary using class-specific data. The main novelty is that an image is characterized by a set of histograms - one per class - where each histogram describes whether the image content is best modeled by the universal vocabulary or the corresponding class vocabulary. This framework is applied to two types of local image features: low-level descriptors such as the popular SIFT and high-level histograms of word co-occurrences in a spatial neighborhood. It is shown experimentally on two challenging datasets (an in-house database of 19 categories and the PASCAL VOC 2006 dataset) that the proposed approach exhibits state-of-the-art performance at a modest computational cost.
Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen
2017-07-01
Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.
Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan
2017-06-01
Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3-100%) in the test set (n = 217) of manually labeled helminth eggs. In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images.
Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan
2017-01-01
ABSTRACT Background: Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Objective: Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. Methods: A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Results: Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3–100%) in the test set (n = 217) of manually labeled helminth eggs. Conclusions: In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images. PMID:28838305
The Role of Visualization in Learning from Computer-Based Images. Research Report
ERIC Educational Resources Information Center
Piburn, Michael D.; Reynolds, Stephen J.; McAuliffe, Carla; Leedy, Debra E.; Birk, James P.; Johnson, Julia K.
2005-01-01
Among the sciences, the practice of geology is especially visual. To assess the role of spatial ability in learning geology, we designed an experiment using: (1) web-based versions of spatial visualization tests, (2) a geospatial test, and (3) multimedia instructional modules built around QuickTime Virtual Reality movies. Students in control and…
Watershed identification of polygonal patterns in noisy SAR images.
Moreels, Pierre; Smrekar, Suzanne E
2003-01-01
This paper describes a new approach to pattern recognition in synthetic aperture radar (SAR) images. A visual analysis of the images provided by NASA's Magellan mission to Venus has revealed a number of zones showing polygonal-shaped faults on the surface of the planet. The goal of the paper is to provide a method to automate the identification of such zones. The high level of noise in SAR images and its multiplicative nature make automated image analysis difficult and conventional edge detectors, like those based on gradient images, inefficient. We present a scheme based on an improved watershed algorithm and a two-scale analysis. The method extracts potential edges in the SAR image, analyzes the patterns obtained, and decides whether or not the image contains a "polygon area". This scheme can also be applied to other SAR or visual images, for instance in observation of Mars and Jupiter's satellite Europa.
NASA Astrophysics Data System (ADS)
Yu, Xuelian; Chen, Qian; Gu, Guohua; Ren, Jianle; Sui, Xiubao
2015-02-01
Designing objective quality assessment of color-fused image is a very demanding and challenging task. We propose four no-reference metrics based on human visual system characteristics for objectively evaluating the quality of false color fusion image. The perceived edge metric (PEM) is defined based on visual perception model and color image gradient similarity between the fused image and the source images. The perceptual contrast metric (PCM) is established associating multi-scale contrast and varying contrast sensitivity filter (CSF) with color components. The linear combination of the standard deviation and mean value over the fused image construct the image colorfulness metric (ICM). The color comfort metric (CCM) is designed by the average saturation and the ratio of pixels with high and low saturation. The qualitative and quantitative experimental results demonstrate that the proposed metrics have a good agreement with subjective perception.
The Ecological Approach to Text Visualization.
ERIC Educational Resources Information Center
Wise, James A.
1999-01-01
Presents both theoretical and technical bases on which to build a "science of text visualization." The Spatial Paradigm for Information Retrieval and Exploration (SPIRE) text-visualization system, which images information from free-text documents as natural terrains, serves as an example of the "ecological approach" in its visual metaphor, its…
Wang, Chen; Brancusi, Flavia; Valivullah, Zaheer M; Anderson, Michael G; Cunningham, Denise; Hedberg-Buenz, Adam; Power, Bradley; Simeonov, Dimitre; Gahl, William A; Zein, Wadih M; Adams, David R; Brooks, Brian
2018-01-01
To develop a sensitive scale of iris transillumination suitable for clinical and research use, with the capability of either quantitative analysis or visual matching of images. Iris transillumination photographic images were used from 70 study subjects with ocular or oculocutaneous albinism. Subjects represented a broad range of ocular pigmentation. A subset of images was subjected to image analysis and ranking by both expert and nonexpert reviewers. Quantitative ordering of images was compared with ordering by visual inspection. Images were binned to establish an 8-point scale. Ranking consistency was evaluated using the Kendall rank correlation coefficient (Kendall's tau). Visual ranking results were assessed using Kendall's coefficient of concordance (Kendall's W) analysis. There was a high degree of correlation among the image analysis, expert-based and non-expert-based image rankings. Pairwise comparisons of the quantitative ranking with each reviewer generated an average Kendall's tau of 0.83 ± 0.04 (SD). Inter-rater correlation was also high with Kendall's W of 0.96, 0.95, and 0.95 for nonexpert, expert, and all reviewers, respectively. The current standard for assessing iris transillumination is expert assessment of clinical exam findings. We adapted an image-analysis technique to generate quantitative transillumination values. Quantitative ranking was shown to be highly similar to a ranking produced by both expert and nonexpert reviewers. This finding suggests that the image characteristics used to quantify iris transillumination do not require expert interpretation. Inter-rater rankings were also highly similar, suggesting that varied methods of transillumination ranking are robust in terms of producing reproducible results.
Panoramic-image-based rendering solutions for visualizing remote locations via the web
NASA Astrophysics Data System (ADS)
Obeysekare, Upul R.; Egts, David; Bethmann, John
2000-05-01
With advances in panoramic image-based rendering techniques and the rapid expansion of web advertising, new techniques are emerging for visualizing remote locations on the WWW. Success of these techniques depends on how easy and inexpensive it is to develop a new type of web content that provides pseudo 3D visualization at home, 24-hours a day. Furthermore, the acceptance of this new visualization medium depends on the effectiveness of the familiarization tools by a segment of the population that was never exposed to this type of visualization. This paper addresses various hardware and software solutions available to collect, produce, and view panoramic content. While cost and effectiveness of building the content is being addressed using a few commercial hardware solutions, effectiveness of familiarization tools is evaluated using a few sample data sets.
An Integrated Tone Mapping for High Dynamic Range Image Visualization
NASA Astrophysics Data System (ADS)
Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun
2018-01-01
There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.
Enhance wound healing monitoring through a thermal imaging based smartphone app
NASA Astrophysics Data System (ADS)
Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh
2018-03-01
In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.
NASA Astrophysics Data System (ADS)
Du, Hongbo; Al-Jubouri, Hanan; Sellahewa, Harin
2014-05-01
Content-based image retrieval is an automatic process of retrieving images according to image visual contents instead of textual annotations. It has many areas of application from automatic image annotation and archive, image classification and categorization to homeland security and law enforcement. The key issues affecting the performance of such retrieval systems include sensible image features that can effectively capture the right amount of visual contents and suitable similarity measures to find similar and relevant images ranked in a meaningful order. Many different approaches, methods and techniques have been developed as a result of very intensive research in the past two decades. Among many existing approaches, is a cluster-based approach where clustering methods are used to group local feature descriptors into homogeneous regions, and search is conducted by comparing the regions of the query image against those of the stored images. This paper serves as a review of works in this area. The paper will first summarize the existing work reported in the literature and then present the authors' own investigations in this field. The paper intends to highlight not only achievements made by recent research but also challenges and difficulties still remaining in this area.
Sensor fusion for synthetic vision
NASA Technical Reports Server (NTRS)
Pavel, M.; Larimer, J.; Ahumada, A.
1991-01-01
Display methodologies are explored for fusing images gathered by millimeter wave sensors with images rendered from an on-board terrain data base to facilitate visually guided flight and ground operations in low visibility conditions. An approach to fusion based on multiresolution image representation and processing is described which facilitates fusion of images differing in resolution within and between images. To investigate possible fusion methods, a workstation-based simulation environment is being developed.
Toward a perceptual video-quality metric
NASA Astrophysics Data System (ADS)
Watson, Andrew B.
1998-07-01
The advent of widespread distribution of digital video creates a need for automated methods for evaluating the visual quality of digital video. This is particularly so since most digital video is compressed using lossy methods, which involve the controlled introduction of potentially visible artifacts. Compounding the problem is the bursty nature of digital video, which requires adaptive bit allocation based on visual quality metrics, and the economic need to reduce bit-rate to the lowest level that yields acceptable quality. In previous work, we have developed visual quality metrics for evaluating, controlling,a nd optimizing the quality of compressed still images. These metrics incorporate simplified models of human visual sensitivity to spatial and chromatic visual signals. Here I describe a new video quality metric that is an extension of these still image metrics into the time domain. Like the still image metrics, it is based on the Discrete Cosine Transform. An effort has been made to minimize the amount of memory and computation required by the metric, in order that might be applied in the widest range of applications. To calibrate the basic sensitivity of this metric to spatial and temporal signals we have made measurements of visual thresholds for temporally varying samples of DCT quantization noise.
Visual attention to food cues in obesity: an eye-tracking study.
Doolan, Katy J; Breslin, Gavin; Hanna, Donncha; Murphy, Kate; Gallagher, Alison M
2014-12-01
Based on the theory of incentive sensitization, the aim of this study was to investigate differences in attentional processing of food-related visual cues between normal-weight and overweight/obese males and females. Twenty-six normal-weight (14M, 12F) and 26 overweight/obese (14M, 12F) adults completed a visual probe task and an eye-tracking paradigm. Reaction times and eye movements to food and control images were collected during both a fasted and fed condition in a counterbalanced design. Participants had greater visual attention towards high-energy-density food images compared to low-energy-density food images regardless of hunger condition. This was most pronounced in overweight/obese males who had significantly greater maintained attention towards high-energy-density food images when compared with their normal-weight counterparts however no between weight group differences were observed for female participants. High-energy-density food images appear to capture visual attention more readily than low-energy-density food images. Results also suggest the possibility of an altered visual food cue-associated reward system in overweight/obese males. Attentional processing of food cues may play a role in eating behaviors thus should be taken into consideration as part of an integrated approach to curbing obesity. © 2014 The Obesity Society.
Computer-aided Classification of Mammographic Masses Using Visually Sensitive Image Features
Wang, Yunzhi; Aghaei, Faranak; Zarafshani, Ali; Qiu, Yuchen; Qian, Wei; Zheng, Bin
2017-01-01
Purpose To develop a new computer-aided diagnosis (CAD) scheme that computes visually sensitive image features routinely used by radiologists to develop a machine learning classifier and distinguish between the malignant and benign breast masses detected from digital mammograms. Methods An image dataset including 301 breast masses was retrospectively selected. From each segmented mass region, we computed image features that mimic five categories of visually sensitive features routinely used by radiologists in reading mammograms. We then selected five optimal features in the five feature categories and applied logistic regression models for classification. A new CAD interface was also designed to show lesion segmentation, computed feature values and classification score. Results Areas under ROC curves (AUC) were 0.786±0.026 and 0.758±0.027 when to classify mass regions depicting on two view images, respectively. By fusing classification scores computed from two regions, AUC increased to 0.806±0.025. Conclusion This study demonstrated a new approach to develop CAD scheme based on 5 visually sensitive image features. Combining with a “visual aid” interface, CAD results may be much more easily explainable to the observers and increase their confidence to consider CAD generated classification results than using other conventional CAD approaches, which involve many complicated and visually insensitive texture features. PMID:27911353
Computer-based analysis of microvascular alterations in a mouse model for Alzheimer's disease
NASA Astrophysics Data System (ADS)
Heinzer, Stefan; Müller, Ralph; Stampanoni, Marco; Abela, Rafael; Meyer, Eric P.; Ulmann-Schuler, Alexandra; Krucker, Thomas
2007-03-01
Vascular factors associated with Alzheimer's disease (AD) have recently gained increased attention. To investigate changes in vascular, particularly microvascular architecture, we developed a hierarchical imaging framework to obtain large-volume, high-resolution 3D images from brains of transgenic mice modeling AD. In this paper, we present imaging and data analysis methods which allow compiling unique characteristics from several hundred gigabytes of image data. Image acquisition is based on desktop micro-computed tomography (µCT) and local synchrotron-radiation µCT (SRµCT) scanning with a nominal voxel size of 16 µm and 1.4 µm, respectively. Two visualization approaches were implemented: stacks of Z-buffer projections for fast data browsing, and progressive-mesh based surface rendering for detailed 3D visualization of the large datasets. In a first step, image data was assessed visually via a Java client connected to a central database. Identified characteristics of interest were subsequently quantified using global morphometry software. To obtain even deeper insight into microvascular alterations, tree analysis software was developed providing local morphometric parameters such as number of vessel segments or vessel tortuosity. In the context of ever increasing image resolution and large datasets, computer-aided analysis has proven both powerful and indispensable. The hierarchical approach maintains the context of local phenomena, while proper visualization and morphometry provide the basis for detailed analysis of the pathology related to structure. Beyond analysis of microvascular changes in AD this framework will have significant impact considering that vascular changes are involved in other neurodegenerative diseases as well as in cancer, cardiovascular disease, asthma, and arthritis.
Uncluttered Single-Image Visualization of Vascular Structures using GPU and Integer Programming
Won, Joong-Ho; Jeon, Yongkweon; Rosenberg, Jarrett; Yoon, Sungroh; Rubin, Geoffrey D.; Napel, Sandy
2013-01-01
Direct projection of three-dimensional branching structures, such as networks of cables, blood vessels, or neurons onto a 2D image creates the illusion of intersecting structural parts and creates challenges for understanding and communication. We present a method for visualizing such structures, and demonstrate its utility in visualizing the abdominal aorta and its branches, whose tomographic images might be obtained by computed tomography or magnetic resonance angiography, in a single two-dimensional stylistic image, without overlaps among branches. The visualization method, termed uncluttered single-image visualization (USIV), involves optimization of geometry. This paper proposes a novel optimization technique that utilizes an interesting connection of the optimization problem regarding USIV to the protein structure prediction problem. Adopting the integer linear programming-based formulation for the protein structure prediction problem, we tested the proposed technique using 30 visualizations produced from five patient scans with representative anatomical variants in the abdominal aortic vessel tree. The novel technique can exploit commodity-level parallelism, enabling use of general-purpose graphics processing unit (GPGPU) technology that yields a significant speedup. Comparison of the results with the other optimization technique previously reported elsewhere suggests that, in most aspects, the quality of the visualization is comparable to that of the previous one, with a significant gain in the computation time of the algorithm. PMID:22291148
Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics.
Mano, Shoji; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nishimura, Mikio
2009-12-01
Organelle dynamics vary dramatically depending on cell type, developmental stage and environmental stimuli, so that various parameters, such as size, number and behavior, are required for the description of the dynamics of each organelle. Imaging techniques are superior to other techniques for describing organelle dynamics because these parameters are visually exhibited. Therefore, as the results can be seen immediately, investigators can more easily grasp organelle dynamics. At present, imaging techniques are emerging as fundamental tools in plant organelle research, and the development of new methodologies to visualize organelles and the improvement of analytical tools and equipment have allowed the large-scale generation of image and movie data. Accordingly, image databases that accumulate information on organelle dynamics are an increasingly indispensable part of modern plant organelle research. In addition, image databases are potentially rich data sources for computational analyses, as image and movie data reposited in the databases contain valuable and significant information, such as size, number, length and velocity. Computational analytical tools support image-based data mining, such as segmentation, quantification and statistical analyses, to extract biologically meaningful information from each database and combine them to construct models. In this review, we outline the image databases that are dedicated to plant organelle research and present their potential as resources for image-based computational analyses.
Sensor, signal, and image informatics - state of the art and current topics.
Lehmann, T M; Aach, T; Witte, H
2006-01-01
The number of articles published annually in the fields of biomedical signal and image acquisition and processing is increasing. Based on selected examples, this survey aims at comprehensively demonstrating the recent trends and developments. Four articles are selected for biomedical data acquisition covering topics such as dose saving in CT, C-arm X-ray imaging systems for volume imaging, and the replacement of dose-intensive CT-based diagnostic with harmonic ultrasound imaging. Regarding biomedical signal analysis (BSA), the four selected articles discuss the equivalence of different time-frequency approaches for signal analysis, an application to Cochlea implants, where time-frequency analysis is applied for controlling the replacement system, recent trends for fusion of different modalities, and the role of BSA as part of a brain machine interfaces. To cover the broad spectrum of publications in the field of biomedical image processing, six papers are focused. Important topics are content-based image retrieval in medical applications, automatic classification of tongue photographs from traditional Chinese medicine, brain perfusion analysis in single photon emission computed tomography (SPECT), model-based visualization of vascular trees, and virtual surgery, where enhanced visualization and haptic feedback techniques are combined with a sphere-filled model of the organ. The selected papers emphasize the five fields forming the chain of biomedical data processing: (1) data acquisition, (2) data reconstruction and pre-processing, (3) data handling, (4) data analysis, and (5) data visualization. Fields 1 and 2 form the sensor informatics, while fields 2 to 5 form signal or image informatics with respect to the nature of the data considered. Biomedical data acquisition and pre-processing, as well as data handling, analysis and visualization aims at providing reliable tools for decision support that improve the quality of health care. Comprehensive evaluation of the processing methods and their reliable integration in routine applications are future challenges in the field of sensor, signal and image informatics.
NASA Astrophysics Data System (ADS)
Price, Norman T.
The availability and sophistication of visual display images, such as simulations, for use in science classrooms has increased exponentially however, it can be difficult for teachers to use these images to encourage and engage active student thinking. There is a need to describe flexible discussion strategies that use visual media to engage active thinking. This mixed methods study analyzes teacher behavior in lessons using visual media about the particulate model of matter that were taught by three experienced middle school teachers. Each teacher taught one half of their students with lessons using static overheads and taught the other half with lessons using a projected dynamic simulation. The quantitative analysis of pre-post data found significant gain differences between the two image mode conditions, suggesting that the students who were assigned to the simulation condition learned more than students who were assigned to the overhead condition. Open coding was used to identify a set of eight image-based teaching strategies that teachers were using with visual displays. Fixed codes for this set of image-based discussion strategies were then developed and used to analyze video and transcripts of whole class discussions from 12 lessons. The image-based discussion strategies were refined over time in a set of three in-depth 2x2 comparative case studies of two teachers teaching one lesson topic with two image display modes. The comparative case study data suggest that the simulation mode may have offered greater affordances than the overhead mode for planning and enacting discussions. The 12 discussions were also coded for overall teacher student interaction patterns, such as presentation, IRE, and IRF. When teachers moved during a lesson from using no image to using either image mode, some teachers were observed asking more questions when the image was displayed while others asked many fewer questions. The changes in teacher student interaction patterns suggest that teachers vary on whether they consider the displayed image as a "tool-for-telling" and a "tool-for-asking." The study attempts to provide new descriptions of strategies teachers use to orchestrate image-based discussions designed to promote student engagement and reasoning in lessons with conceptual goals.
Comprehensive model for predicting perceptual image quality of smart mobile devices.
Gong, Rui; Xu, Haisong; Luo, M R; Li, Haifeng
2015-01-01
An image quality model for smart mobile devices was proposed based on visual assessments of several image quality attributes. A series of psychophysical experiments were carried out on two kinds of smart mobile devices, i.e., smart phones and tablet computers, in which naturalness, colorfulness, brightness, contrast, sharpness, clearness, and overall image quality were visually evaluated under three lighting environments via categorical judgment method for various application types of test images. On the basis of Pearson correlation coefficients and factor analysis, the overall image quality could first be predicted by its two constituent attributes with multiple linear regression functions for different types of images, respectively, and then the mathematical expressions were built to link the constituent image quality attributes with the physical parameters of smart mobile devices and image appearance factors. The procedure and algorithms were applicable to various smart mobile devices, different lighting conditions, and multiple types of images, and performance was verified by the visual data.
Research on metallic material defect detection based on bionic sensing of human visual properties
NASA Astrophysics Data System (ADS)
Zhang, Pei Jiang; Cheng, Tao
2018-05-01
Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M Pauline
2007-06-30
The VisPort visualization portal is an experiment in providing Web-based access to visualization functionality from any place and at any time. VisPort adopts a service-oriented architecture to encapsulate visualization functionality and to support remote access. Users employ browser-based client applications to choose data and services, set parameters, and launch visualization jobs. Visualization products typically images or movies are viewed in the user's standard Web browser. VisPort emphasizes visualization solutions customized for specific application communities. Finally, VisPort relies heavily on XML, and introduces the notion of visualization informatics - the formalization and specialization of information related to the process and productsmore » of visualization.« less
Enhancing security of fingerprints through contextual biometric watermarking.
Noore, Afzel; Singh, Richa; Vatsa, Mayank; Houck, Max M
2007-07-04
This paper presents a novel digital watermarking technique using face and demographic text data as multiple watermarks for verifying the chain of custody and protecting the integrity of a fingerprint image. The watermarks are embedded in selected texture regions of a fingerprint image using discrete wavelet transform. Experimental results show that modifications in these locations are visually imperceptible and maintain the minutiae details. The integrity of the fingerprint image is verified through the high matching scores obtained from an automatic fingerprint identification system. There is also a high degree of visual correlation between the embedded images, and the extracted images from the watermarked fingerprint. The degree of similarity is computed using pixel-based metrics and human visual system metrics. The results also show that the proposed watermarked fingerprint and the extracted images are resilient to common attacks such as compression, filtering, and noise.
NASA Astrophysics Data System (ADS)
Utomo, Edy Setiyo; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
The aim of this research was to describe the mathematical visualization process of Junior High School students in solving contextual problems based on cognitive style. Mathematical visualization process in this research was seen from aspects of image generation, image inspection, image scanning, and image transformation. The research subject was the students in the eighth grade based on GEFT test (Group Embedded Figures Test) adopted from Within to determining the category of cognitive style owned by the students namely field independent or field dependent and communicative. The data collection was through visualization test in contextual problem and interview. The validity was seen through time triangulation. The data analysis referred to the aspect of mathematical visualization through steps of categorization, reduction, discussion, and conclusion. The results showed that field-independent and field-dependent subjects were difference in responding to contextual problems. The field-independent subject presented in the form of 2D and 3D, while the field-dependent subject presented in the form of 3D. Both of the subjects had different perception to see the swimming pool. The field-independent subject saw from the top, while the field-dependent subject from the side. The field-independent subject chose to use partition-object strategy, while the field-dependent subject chose to use general-object strategy. Both the subjects did transformation in an object rotation to get the solution. This research is reference to mathematical curriculum developers of Junior High School in Indonesia. Besides, teacher could develop the students' mathematical visualization by using technology media or software, such as geogebra, portable cabri in learning.
NASA Astrophysics Data System (ADS)
Li, Heng; Zeng, Yajie; Lu, Zhuofan; Cao, Xiaofei; Su, Xiaofan; Sui, Xiaohong; Wang, Jing; Chai, Xinyu
2018-04-01
Objective. Retinal prosthesis devices have shown great value in restoring some sight for individuals with profoundly impaired vision, but the visual acuity and visual field provided by prostheses greatly limit recipients’ visual experience. In this paper, we employ computer vision approaches to seek to expand the perceptible visual field in patients implanted potentially with a high-density retinal prosthesis while maintaining visual acuity as much as possible. Approach. We propose an optimized content-aware image retargeting method, by introducing salient object detection based on color and intensity-difference contrast, aiming to remap important information of a scene into a small visual field and preserve their original scale as much as possible. It may improve prosthetic recipients’ perceived visual field and aid in performing some visual tasks (e.g. object detection and object recognition). To verify our method, psychophysical experiments, detecting object number and recognizing objects, are conducted under simulated prosthetic vision. As control, we use three other image retargeting techniques, including Cropping, Scaling, and seam-assisted shrinkability. Main results. Results show that our method outperforms in preserving more key features and has significantly higher recognition accuracy in comparison with other three image retargeting methods under the condition of small visual field and low-resolution. Significance. The proposed method is beneficial to expand the perceived visual field of prosthesis recipients and improve their object detection and recognition performance. It suggests that our method may provide an effective option for image processing module in future high-density retinal implants.
NASA Astrophysics Data System (ADS)
Reznicek, R.
The present conference on flow visualization encompasses methods exploiting tracing particles, surface tracing methods, methods exploiting the effects of streaming fluid on passing radiation/field, computer-aided flow visualization, and applications to fluid mechanics, aerodynamics, flow devices, shock tubes, and heat/mass transfer. Specific issues include visualizing velocity distribution by stereo photography, dark-field Fourier quasiinterferometry, speckle tomography of an open flame, a fast eye for real-time image analysis, and velocity-field determination based on flow-image analysis. Also addressed are flows around rectangular prisms with oscillating flaps at the leading edges, the tomography of aerodynamic objects, the vapor-screen technique applied to a delta-wing aircraft, flash-lamp planar imaging, IR-thermography applications in convective heat transfer, and the visualization of marangoni effects in evaporating sessile drops.
Three-photon tissue imaging using moxifloxacin.
Lee, Seunghun; Lee, Jun Ho; Wang, Taejun; Jang, Won Hyuk; Yoon, Yeoreum; Kim, Bumju; Jun, Yong Woong; Kim, Myoung Joon; Kim, Ki Hean
2018-06-20
Moxifloxacin is an antibiotic used in clinics and has recently been used as a clinically compatible cell-labeling agent for two-photon (2P) imaging. Although 2P imaging with moxifloxacin labeling visualized cells inside tissues using enhanced fluorescence, the imaging depth was quite limited because of the relatively short excitation wavelength (<800 nm) used. In this study, the feasibility of three-photon (3P) excitation of moxifloxacin using a longer excitation wavelength and moxifloxacin-based 3P imaging were tested to increase the imaging depth. Moxifloxacin fluorescence via 3P excitation was detected at a >1000 nm excitation wavelength. After obtaining the excitation and emission spectra of moxifloxacin, moxifloxacin-based 3P imaging was applied to ex vivo mouse bladder and ex vivo mouse small intestine tissues and compared with moxifloxacin-based 2P imaging by switching the excitation wavelength of a Ti:sapphire oscillator between near 1030 and 780 nm. Both moxifloxacin-based 2P and 3P imaging visualized cellular structures in the tissues via moxifloxacin labeling, but the image contrast was better with 3P imaging than with 2P imaging at the same imaging depths. The imaging speed and imaging depth of moxifloxacin-based 3P imaging using a Ti:sapphire oscillator were limited by insufficient excitation power. Therefore, we constructed a new system for moxifloxacin-based 3P imaging using a high-energy Yb fiber laser at 1030 nm and used it for in vivo deep tissue imaging of a mouse small intestine. Moxifloxacin-based 3P imaging could be useful for clinical applications with enhanced imaging depth.
Applying a visual language for image processing as a graphical teaching tool in medical imaging
NASA Astrophysics Data System (ADS)
Birchman, James J.; Tanimoto, Steven L.; Rowberg, Alan H.; Choi, Hyung-Sik; Kim, Yongmin
1992-05-01
Typical user interaction in image processing is with command line entries, pull-down menus, or text menu selections from a list, and as such is not generally graphical in nature. Although applying these interactive methods to construct more sophisticated algorithms from a series of simple image processing steps may be clear to engineers and programmers, it may not be clear to clinicians. A solution to this problem is to implement a visual programming language using visual representations to express image processing algorithms. Visual representations promote a more natural and rapid understanding of image processing algorithms by providing more visual insight into what the algorithms do than the interactive methods mentioned above can provide. Individuals accustomed to dealing with images will be more likely to understand an algorithm that is represented visually. This is especially true of referring physicians, such as surgeons in an intensive care unit. With the increasing acceptance of picture archiving and communications system (PACS) workstations and the trend toward increasing clinical use of image processing, referring physicians will need to learn more sophisticated concepts than simply image access and display. If the procedures that they perform commonly, such as window width and window level adjustment and image enhancement using unsharp masking, are depicted visually in an interactive environment, it will be easier for them to learn and apply these concepts. The software described in this paper is a visual programming language for imaging processing which has been implemented on the NeXT computer using NeXTstep user interface development tools and other tools in an object-oriented environment. The concept is based upon the description of a visual language titled `Visualization of Vision Algorithms' (VIVA). Iconic representations of simple image processing steps are placed into a workbench screen and connected together into a dataflow path by the user. As the user creates and edits a dataflow path, more complex algorithms can be built on the screen. Once the algorithm is built, it can be executed, its results can be reviewed, and operator parameters can be interactively adjusted until an optimized output is produced. The optimized algorithm can then be saved and added to the system as a new operator. This system has been evaluated as a graphical teaching tool for window width and window level adjustment, image enhancement using unsharp masking, and other techniques.
Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity
Schettini, Raimondo
2018-01-01
Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art. PMID:29329268
Fox, Christopher J; Barton, Jason J S
2007-01-05
The neural representation of facial expression within the human visual system is not well defined. Using an adaptation paradigm, we examined aftereffects on expression perception produced by various stimuli. Adapting to a face, which was used to create morphs between two expressions, substantially biased expression perception within the morphed faces away from the adapting expression. This adaptation was not based on low-level image properties, as a different image of the same person displaying that expression produced equally robust aftereffects. Smaller but significant aftereffects were generated by images of different individuals, irrespective of gender. Non-face visual, auditory, or verbal representations of emotion did not generate significant aftereffects. These results suggest that adaptation affects at least two neural representations of expression: one specific to the individual (not the image), and one that represents expression across different facial identities. The identity-independent aftereffect suggests the existence of a 'visual semantic' for facial expression in the human visual system.
Visual difference metric for realistic image synthesis
NASA Astrophysics Data System (ADS)
Bolin, Mark R.; Meyer, Gary W.
1999-05-01
An accurate and efficient model of human perception has been developed to control the placement of sample in a realistic image synthesis algorithm. Previous sampling techniques have sought to spread the error equally across the image plane. However, this approach neglects the fact that the renderings are intended to be displayed for a human observer. The human visual system has a varying sensitivity to error that is based upon the viewing context. This means that equivalent optical discrepancies can be very obvious in one situation and imperceptible in another. It is ultimately the perceptibility of this error that governs image quality and should be used as the basis of a sampling algorithm. This paper focuses on a simplified version of the Lubin Visual Discrimination Metric (VDM) that was developed for insertion into an image synthesis algorithm. The sampling VDM makes use of a Haar wavelet basis for the cortical transform and a less severe spatial pooling operation. The model was extended for color including the effects of chromatic aberration. Comparisons are made between the execution time and visual difference map for the original Lubin and simplified visual difference metrics. Results for the realistic image synthesis algorithm are also presented.
D Modelling and Interactive Web-Based Visualization of Cultural Heritage Objects
NASA Astrophysics Data System (ADS)
Koeva, M. N.
2016-06-01
Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria - a country with thousands of years of history and cultural heritage dating back to ancient civilizations. This motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1) image-based modelling using a non-metric hand-held camera; (2) 3D visualization based on spherical panoramic images; (3) and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This comparative study discusses the advantages and disadvantages of these three approaches and their integration in multiple domains, such as web-based 3D city modelling, tourism and architectural 3D visualization. It was concluded that image-based modelling and panoramic visualisation are simple, fast and effective techniques suitable for simultaneous virtual representation of many objects. However, additional measurements or CAD information will be beneficial for obtaining higher accuracy.
Supervised guiding long-short term memory for image caption generation based on object classes
NASA Astrophysics Data System (ADS)
Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan
2018-03-01
The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.
NASA Astrophysics Data System (ADS)
Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai
2016-07-01
Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.
ERIC Educational Resources Information Center
Arizpe, Evelyn; Bagelman, Caroline; Devlin, Alison M.; Farrell, Maureen; McAdam, Julie E.
2014-01-01
Accessible forms of language, learning and literacy, as well as strategies that support intercultural communication are needed for the diverse population of refugee, asylum seeker and migrant children within schools. The research project "Journeys from Images to Words" explored the potential of visual texts to address these issues.…
Modelling Subjectivity in Visual Perception of Orientation for Image Retrieval.
ERIC Educational Resources Information Center
Sanchez, D.; Chamorro-Martinez, J.; Vila, M. A.
2003-01-01
Discussion of multimedia libraries and the need for storage, indexing, and retrieval techniques focuses on the combination of computer vision and data mining techniques to model high-level concepts for image retrieval based on perceptual features of the human visual system. Uses fuzzy set theory to measure users' assessments and to capture users'…
Research Ethics and the Use of Visual Images in Research with People with Intellectual Disability
ERIC Educational Resources Information Center
Boxall, Kathy; Ralph, Sue
2009-01-01
The aim of this paper is to encourage debate about the use of creative visual approaches in intellectual disability research and discussion about Internet publication of photographs. Image-based research with people with intellectual disability is explored within the contexts of tighter ethical regulation of social research, increased interest in…
PSQM-based RR and NR video quality metrics
NASA Astrophysics Data System (ADS)
Lu, Zhongkang; Lin, Weisi; Ong, Eeping; Yang, Xiaokang; Yao, Susu
2003-06-01
This paper presents a new and general concept, PQSM (Perceptual Quality Significance Map), to be used in measuring the visual distortion. It makes use of the selectivity characteristic of HVS (Human Visual System) that it pays more attention to certain area/regions of visual signal due to one or more of the following factors: salient features in image/video, cues from domain knowledge, and association of other media (e.g., speech or audio). PQSM is an array whose elements represent the relative perceptual-quality significance levels for the corresponding area/regions for images or video. Due to its generality, PQSM can be incorporated into any visual distortion metrics: to improve effectiveness or/and efficiency of perceptual metrics; or even to enhance a PSNR-based metric. A three-stage PQSM estimation method is also proposed in this paper, with an implementation of motion, texture, luminance, skin-color and face mapping. Experimental results show the scheme can improve the performance of current image/video distortion metrics.
Inferring Interaction Force from Visual Information without Using Physical Force Sensors.
Hwang, Wonjun; Lim, Soo-Chul
2017-10-26
In this paper, we present an interaction force estimation method that uses visual information rather than that of a force sensor. Specifically, we propose a novel deep learning-based method utilizing only sequential images for estimating the interaction force against a target object, where the shape of the object is changed by an external force. The force applied to the target can be estimated by means of the visual shape changes. However, the shape differences in the images are not very clear. To address this problem, we formulate a recurrent neural network-based deep model with fully-connected layers, which models complex temporal dynamics from the visual representations. Extensive evaluations show that the proposed learning models successfully estimate the interaction forces using only the corresponding sequential images, in particular in the case of three objects made of different materials, a sponge, a PET bottle, a human arm, and a tube. The forces predicted by the proposed method are very similar to those measured by force sensors.
Naganawa, Shinji; Yamazaki, Masahiro; Kawai, Hisashi; Bokura, Kiminori; Sone, Michihiko; Nakashima, Tsutomu
2013-01-01
Endolymphatic hydrops can be visualized with high contrast-to-noise ratio even after intravenous injection of single-dose gadolinium-based contrast material (IV-SD-GBCM) using HYDROPS-Mi2 images. We applied 3-dimensional rendering software to process HYDROPS-Mi2 images of 15 ears with and without suspected Ménière's disease and separately visualized the volumes of endo- and perilymph in patients with Ménière's disease even after IV-SD-GBCM. Such dimensional visualization will aid understanding of the pathophysiology of Ménière's disease.
Ma, Teng; Zhou, Bill; Hsiai, Tzung K.; Shung, K. Kirk
2015-01-01
Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features—the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages—are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal “gold standard” for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676
Retrieving the unretrievable in electronic imaging systems: emotions, themes, and stories
NASA Astrophysics Data System (ADS)
Joergensen, Corinne
1999-05-01
New paradigms such as 'affective computing' and user-based research are extending the realm of facets traditionally addressed in IR systems. This paper builds on previous research reported to the electronic imaging community concerning the need to provide access to more abstract attributes of images than those currently amenable to a variety of content-based and text-based indexing techniques. Empirical research suggest that, for visual materials, in addition to standard bibliographic data and broad subject, and in addition to such visually perceptual attributes such as color, texture, shape, and position or focal point, additional access points such as themes, abstract concepts, emotions, stories, and 'people-related' information such as social status would be useful in image retrieval. More recent research demonstrates that similar results are also obtained with 'fine arts' images, which generally have no access provided for these types of attributes. Current efforts to match image attributes as revealed in empirical research with those addressed both in current textural and content-based indexing systems are discussed, as well as the need for new representations for image attributes and for collaboration among diverse communities of researchers.
Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xin; Qi, Yunliang; Wang, Zhi
Our work describes a novel experimental method to visualize the mode shapes of pressure oscillation in a cylindrical cavity. Acoustic resonance in a cavity is a grand old problem that has been under investigation (using both analytical and numerical methods) for more than a century. In this article, a novel method based on high speed imaging of combustion chemiluminescence was presented to visualize the mode shapes of pressure oscillation in a cylindrical cavity. By generating high-temperature combustion gases and strong pressure waves simultaneously in a cylindrical cavity, the pressure oscillation can be inferred due to the chemiluminescence emissions of themore » combustion products. We can then visualized the mode shapes by reconstructing the images based on the amplitudes of the luminosity spectrum at the corresponding resonant frequencies. Up to 11 resonant mode shapes were clearly visualized, each matching very well with the analytical solutions.« less
Learning invariance from natural images inspired by observations in the primary visual cortex.
Teichmann, Michael; Wiltschut, Jan; Hamker, Fred
2012-05-01
The human visual system has the remarkable ability to largely recognize objects invariant of their position, rotation, and scale. A good interpretation of neurobiological findings involves a computational model that simulates signal processing of the visual cortex. In part, this is likely achieved step by step from early to late areas of visual perception. While several algorithms have been proposed for learning feature detectors, only few studies at hand cover the issue of biologically plausible learning of such invariance. In this study, a set of Hebbian learning rules based on calcium dynamics and homeostatic regulations of single neurons is proposed. Their performance is verified within a simple model of the primary visual cortex to learn so-called complex cells, based on a sequence of static images. As a result, the learned complex-cell responses are largely invariant to phase and position.
Lesion classification using clinical and visual data fusion by multiple kernel learning
NASA Astrophysics Data System (ADS)
Kisilev, Pavel; Hashoul, Sharbell; Walach, Eugene; Tzadok, Asaf
2014-03-01
To overcome operator dependency and to increase diagnosis accuracy in breast ultrasound (US), a lot of effort has been devoted to developing computer-aided diagnosis (CAD) systems for breast cancer detection and classification. Unfortunately, the efficacy of such CAD systems is limited since they rely on correct automatic lesions detection and localization, and on robustness of features computed based on the detected areas. In this paper we propose a new approach to boost the performance of a Machine Learning based CAD system, by combining visual and clinical data from patient files. We compute a set of visual features from breast ultrasound images, and construct the textual descriptor of patients by extracting relevant keywords from patients' clinical data files. We then use the Multiple Kernel Learning (MKL) framework to train SVM based classifier to discriminate between benign and malignant cases. We investigate different types of data fusion methods, namely, early, late, and intermediate (MKL-based) fusion. Our database consists of 408 patient cases, each containing US images, textual description of complaints and symptoms filled by physicians, and confirmed diagnoses. We show experimentally that the proposed MKL-based approach is superior to other classification methods. Even though the clinical data is very sparse and noisy, its MKL-based fusion with visual features yields significant improvement of the classification accuracy, as compared to the image features only based classifier.
Visual Communications And Image Processing
NASA Astrophysics Data System (ADS)
Hsing, T. Russell; Tzou, Kou-Hu
1989-07-01
This special issue on Visual Communications and Image Processing contains 14 papers that cover a wide spectrum in this fast growing area. For the past few decades, researchers and scientists have devoted their efforts to these fields. Through this long-lasting devotion, we witness today the growing popularity of low-bit-rate video as a convenient tool for visual communication. We also see the integration of high-quality video into broadband digital networks. Today, with more sophisticated processing, clearer and sharper pictures are being restored from blurring and noise. Also, thanks to the advances in digital image processing, even a PC-based system can be built to recognize highly complicated Chinese characters at the speed of 300 characters per minute. This special issue can be viewed as a milestone of visual communications and image processing on its journey to eternity. It presents some overviews on advanced topics as well as some new development in specific subjects.
Beyond sensory images: Object-based representation in the human ventral pathway
Pietrini, Pietro; Furey, Maura L.; Ricciardi, Emiliano; Gobbini, M. Ida; Wu, W.-H. Carolyn; Cohen, Leonardo; Guazzelli, Mario; Haxby, James V.
2004-01-01
We investigated whether the topographically organized, category-related patterns of neural response in the ventral visual pathway are a representation of sensory images or a more abstract representation of object form that is not dependent on sensory modality. We used functional MRI to measure patterns of response evoked during visual and tactile recognition of faces and manmade objects in sighted subjects and during tactile recognition in blind subjects. Results showed that visual and tactile recognition evoked category-related patterns of response in a ventral extrastriate visual area in the inferior temporal gyrus that were correlated across modality for manmade objects. Blind subjects also demonstrated category-related patterns of response in this “visual” area, and in more ventral cortical regions in the fusiform gyrus, indicating that these patterns are not due to visual imagery and, furthermore, that visual experience is not necessary for category-related representations to develop in these cortices. These results demonstrate that the representation of objects in the ventral visual pathway is not simply a representation of visual images but, rather, is a representation of more abstract features of object form. PMID:15064396
NASA Astrophysics Data System (ADS)
Dong, Leng; Chen, Yan; Dias, Sarah; Stone, William; Dias, Joseph; Rout, John; Gale, Alastair G.
2017-03-01
Visual search techniques and FROC analysis have been widely used in radiology to understand medical image perceptual behaviour and diagnostic performance. The potential of exploiting the advantages of both methodologies is of great interest to medical researchers. In this study, eye tracking data of eight dental practitioners was investigated. The visual search measures and their analyses are considered here. Each participant interpreted 20 dental radiographs which were chosen by an expert dental radiologist. Various eye movement measurements were obtained based on image area of interest (AOI) information. FROC analysis was then carried out by using these eye movement measurements as a direct input source. The performance of FROC methods using different input parameters was tested. The results showed that there were significant differences in FROC measures, based on eye movement data, between groups with different experience levels. Namely, the area under the curve (AUC) score evidenced higher values for experienced group for the measurements of fixation and dwell time. Also, positive correlations were found for AUC scores between the eye movement data conducted FROC and rating based FROC. FROC analysis using eye movement measurements as input variables can act as a potential performance indicator to deliver assessment in medical imaging interpretation and assess training procedures. Visual search data analyses lead to new ways of combining eye movement data and FROC methods to provide an alternative dimension to assess performance and visual search behaviour in the area of medical imaging perceptual tasks.
Visual Based Retrieval Systems and Web Mining--Introduction.
ERIC Educational Resources Information Center
Iyengar, S. S.
2001-01-01
Briefly discusses Web mining and image retrieval techniques, and then presents a summary of articles in this special issue. Articles focus on Web content mining, artificial neural networks as tools for image retrieval, content-based image retrieval systems, and personalizing the Web browsing experience using media agents. (AEF)
Modeling global scene factors in attention
NASA Astrophysics Data System (ADS)
Torralba, Antonio
2003-07-01
Models of visual attention have focused predominantly on bottom-up approaches that ignored structured contextual and scene information. I propose a model of contextual cueing for attention guidance based on the global scene configuration. It is shown that the statistics of low-level features across the whole image can be used to prime the presence or absence of objects in the scene and to predict their location, scale, and appearance before exploring the image. In this scheme, visual context information can become available early in the visual processing chain, which allows modulation of the saliency of image regions and provides an efficient shortcut for object detection and recognition. 2003 Optical Society of America
Iris Image Classification Based on Hierarchical Visual Codebook.
Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang
2014-06-01
Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.
Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi
2015-01-01
Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600
[Design of visualized medical images network and web platform based on MeVisLab].
Xiang, Jun; Ye, Qing; Yuan, Xun
2017-04-01
With the trend of the development of "Internet +", some further requirements for the mobility of medical images have been required in the medical field. In view of this demand, this paper presents a web-based visual medical imaging platform. First, the feasibility of medical imaging is analyzed and technical points. CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) images are reconstructed three-dimensionally by MeVisLab and packaged as X3D (Extensible 3D Graphics) files shown in the present paper. Then, the B/S (Browser/Server) system specially designed for 3D image is designed by using the HTML 5 and WebGL rendering engine library, and the X3D image file is parsed and rendered by the system. The results of this study showed that the platform was suitable for multiple operating systems to realize the platform-crossing and mobilization of medical image data. The development of medical imaging platform is also pointed out in this paper. It notes that web application technology will not only promote the sharing of medical image data, but also facilitate image-based medical remote consultations and distance learning.
Real-time biscuit tile image segmentation method based on edge detection.
Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter
2018-05-01
In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Lymph Node Metastases Optical Molecular Diagnostic and Radiation Therapy
2017-03-01
because most imaging is based upon structures and not molecular functions. The one tool commonly used for metastases imaging is nuclear medicine...imaging, which is that micro metastases cannot be visualized at a relevant stage., largely because most imaging is based upon structures and not...evaluate the limits on structural , metabolic and immunologic probes for molecular imaging, and (4) to complete studies on metastatic breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, X; Liu, L; Xing, L
Purpose: Visualization and processing of medical images and radiation treatment plan evaluation have traditionally been constrained to local workstations with limited computation power and ability of data sharing and software update. We present a web-based image processing and planning evaluation platform (WIPPEP) for radiotherapy applications with high efficiency, ubiquitous web access, and real-time data sharing. Methods: This software platform consists of three parts: web server, image server and computation server. Each independent server communicates with each other through HTTP requests. The web server is the key component that provides visualizations and user interface through front-end web browsers and relay informationmore » to the backend to process user requests. The image server serves as a PACS system. The computation server performs the actual image processing and dose calculation. The web server backend is developed using Java Servlets and the frontend is developed using HTML5, Javascript, and jQuery. The image server is based on open source DCME4CHEE PACS system. The computation server can be written in any programming language as long as it can send/receive HTTP requests. Our computation server was implemented in Delphi, Python and PHP, which can process data directly or via a C++ program DLL. Results: This software platform is running on a 32-core CPU server virtually hosting the web server, image server, and computation servers separately. Users can visit our internal website with Chrome browser, select a specific patient, visualize image and RT structures belonging to this patient and perform image segmentation running Delphi computation server and Monte Carlo dose calculation on Python or PHP computation server. Conclusion: We have developed a webbased image processing and plan evaluation platform prototype for radiotherapy. This system has clearly demonstrated the feasibility of performing image processing and plan evaluation platform through a web browser and exhibited potential for future cloud based radiotherapy.« less
Image visualization of hyperspectral spectrum for LWIR
NASA Astrophysics Data System (ADS)
Chong, Eugene; Jeong, Young-Su; Lee, Jai-Hoon; Park, Dong Jo; Kim, Ju Hyun
2015-07-01
The image visualization of a real-time hyperspectral spectrum in the long-wave infrared (LWIR) range of 900-1450 cm-1 by a color-matching function is addressed. It is well known that the absorption spectra of main toxic industrial chemical (TIC) and chemical warfare agent (CWA) clouds are detected in this spectral region. Furthermore, a significant spectral peak due to various background species and unknown targets are also present. However, those are dismissed as noise, resulting in utilization limit. Herein, we applied a color-matching function that uses the information from hyperspectral data, which is emitted from the materials and surfaces of artificial or natural backgrounds in the LWIR region. This information was used to classify and differentiate the background signals from the targeted substances, and the results were visualized as image data without additional visual equipment. The tristimulus value based visualization information can quickly identify the background species and target in real-time detection in LWIR.
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2003-08-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. The ability of human brain to emulate knowledge structures in the form of networks-symbolic models is found. And that means an important shift of paradigm in our knowledge about brain from neural networks to "cortical software". Symbols, predicates and grammars naturally emerge in such active multilevel hierarchical networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type decision structure created via multilevel hierarchical compression of visual information. Mid-level vision processes like clustering, perceptual grouping, separation of figure from ground, are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models works similar to frames and agents, combines learning, classification, analogy together with higher-level model-based reasoning into a single framework. Such models do not require supercomputers. Based on such principles, and using methods of Computational intelligence, an Image Understanding system can convert images into the network-symbolic knowledge models, and effectively resolve uncertainty and ambiguity, providing unifying representation for perception and cognition. That allows creating new intelligent computer vision systems for robotic and defense industries.
VisiOmatic: Celestial image viewer
NASA Astrophysics Data System (ADS)
Bertin, Emmanuel; Marmo, Chiara; Pillay, Ruven
2014-08-01
VisiOmatic is a web client for IIPImage (ascl:1408.009) and is used to visualize and navigate through large science images from remote locations. It requires STIFF (ascl:1110.006), is based on the Leaflet Javascript library, and works on both touch-based and mouse-based devices.
A method for improved visual landscape compatibility of mobile home park
Daniel R. Jones
1979-01-01
This paper is a description of a research effort directed to improving the visual image of mobile home parks in the landscape. The study is an application of existing methodologies for measuring scenic quality and visual landscape compatibility to an unsolved problem. The paper summarizes two major areas of investigation: regional location factors based on visual...
The Montage Image Mosaic Toolkit As A Visualization Engine.
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Lerias, Angela; Good, John; Mandel, Eric; Pepper, Joshua
2018-01-01
The Montage toolkit has since 2003 been used to aggregate FITS images into mosaics for science analysis. It is now finding application as an engine for image visualization. One important reason is that the functionality developed for creating mosaics is also valuable in image visualization. An equally important (though perhaps less obvious) reason is that Montage is portable and is built on standard astrophysics toolkits, making it very easy to integrate into new environments. Montage models and rectifies the sky background to a common level and thus reveals faint, diffuse features; it offers an adaptive image stretching method that preserves the dynamic range of a FITS image when represented in PNG format; it provides utilities for creating cutouts of large images and downsampled versions of large images that can then be visualized on desktops or in browsers; it contains a fast reprojection algorithm intended for visualization; and it resamples and reprojects images to a common grid for subsequent multi-color visualization.This poster will highlight these visualization capabilities with the following examples:1. Creation of down-sampled multi-color images of a 16-wavelength Infrared Atlas of the Galactic Plane, sampled at 1 arcsec when created2. Integration into web-based image processing environment: JS9 is an interactive image display service for web browsers, desktops and mobile devices. It exploits the flux-preserving reprojection algorithms in Montage to transform diverse images to common image parameters for display. Select Montage programs have been compiled to Javascript/WebAssembly using the Emscripten compiler, which allows our reprojection algorithms to run in browsers at close to native speed.3. Creation of complex sky coverage maps: an multicolor all-sky map that shows the sky coverage of the Kepler and K2, KELT and TESS projects, overlaid on an all-sky 2MASS image.Montage is funded by the National Science Foundation under Grant Number ACI-1642453. JS9 is funded by the Chandra X-ray Center (NAS8-03060) and NASA's Universe of Learning (STScI-509913).
Multimodal imaging of the human knee down to the cellular level
NASA Astrophysics Data System (ADS)
Schulz, G.; Götz, C.; Müller-Gerbl, M.; Zanette, I.; Zdora, M.-C.; Khimchenko, A.; Deyhle, H.; Thalmann, P.; Müller, B.
2017-06-01
Computed tomography reaches the best spatial resolution for the three-dimensional visualization of human tissues among the available nondestructive clinical imaging techniques. Nowadays, sub-millimeter voxel sizes are regularly obtained. Regarding investigations on true micrometer level, lab-based micro-CT (μCT) has become gold standard. The aim of the present study is firstly the hierarchical investigation of a human knee post mortem using hard X-ray μCT and secondly a multimodal imaging using absorption and phase contrast modes in order to investigate hard (bone) and soft (cartilage) tissues on the cellular level. After the visualization of the entire knee using a clinical CT, a hierarchical imaging study was performed using the lab-system nanotom® m. First, the entire knee was measured with a pixel length of 65 μm. The highest resolution with a pixel length of 3 μm could be achieved after extracting cylindrically shaped plugs from the femoral bones. For the visualization of the cartilage, grating-based phase contrast μCT (I13-2, Diamond Light Source) was performed. With an effective voxel size of 2.3 μm it was possible to visualize individual chondrocytes within the cartilage.
Teaching an Old Client New Tricks - the GloVIS Global Visualization Viewer after 14 Years
NASA Astrophysics Data System (ADS)
Meyer, D. J.; Steinwand, D.; Lemig, K.; Davis, B.; Werpy, J.; Quenzer, R.
2014-12-01
The US Geological Survey's Global Visualization Viewer (GloVIS) is a web-based, visual search and discovery tool used to access imagery from aircraft and space-based imaging systems. GloVIS was introduced shortly after the launch of Landsat 7 to provide a visual client to select images squired by the Enhanced Thematic Mapper Plus. Since then, it has been expanded to search on other Landsat imagery (Multi-spectral Scanner, Thematic Mapper, Operational Land Imager), imagery from a variety of NASA instruments (Moderate Resolution Imaging Spectroradiometer, Advanced Spaceborne Thermal Emissions and Reflection Radiometer, Advanced Land Imager, Hyperion), along with images from high-resolution airborne photography and special collections representing decades-long observations. GloVIS incorporated a number of features considered novel at its original release, such as rapid visual browse, and the ability to use one type of satellite observation (e.g., vegetation seasonality curves derived from the Advanced Very High Resolution Radiometer) to assist in the selection of another (e.g., Landsat). After 14 years, the GloVIS client has gained a large following, having served millions of images to hundreds of thousands of users, but is due for a major re-design. Described here are a set of guiding principles driving the re-design, the methodology used to understand how users discover and retrieve imagery, and candidate technologies to be leveraged in the re-design. The guiding principles include (1) visual co-discovery - the ability to browse and select imagery from diverse sources simultaneously; (2) user-centric design - understanding user needs prior to design and involving users throughout the design process; (3) adaptability - the use of flexible design to permit rapid incorporation of new capabilities, and (4) interoperability - the use of services, conventions and protocols to permit interaction with external sources of Earth science imagery.
NASA Technical Reports Server (NTRS)
Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.
1993-01-01
The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).
Underwater image enhancement through depth estimation based on random forest
NASA Astrophysics Data System (ADS)
Tai, Shen-Chuan; Tsai, Ting-Chou; Huang, Jyun-Han
2017-11-01
Light absorption and scattering in underwater environments can result in low-contrast images with a distinct color cast. This paper proposes a systematic framework for the enhancement of underwater images. Light transmission is estimated using the random forest algorithm. RGB values, luminance, color difference, blurriness, and the dark channel are treated as features in training and estimation. Transmission is calculated using an ensemble machine learning algorithm to deal with a variety of conditions encountered in underwater environments. A color compensation and contrast enhancement algorithm based on depth information was also developed with the aim of improving the visual quality of underwater images. Experimental results demonstrate that the proposed scheme outperforms existing methods with regard to subjective visual quality as well as objective measurements.
Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Klinko, Steven J.
2004-01-01
A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.
NASA Astrophysics Data System (ADS)
Li, Jianwei D.; Malone, Joseph D.; El-Haddad, Mohamed T.; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.
2017-02-01
Surgical interventions for ocular diseases involve manipulations of semi-transparent structures in the eye, but limited visualization of these tissue layers remains a critical barrier to developing novel surgical techniques and improving clinical outcomes. We addressed limitations in image-guided ophthalmic microsurgery by using microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (iSS-SESLO-OCT). We previously demonstrated in vivo human ophthalmic imaging using SS-SESLO-OCT, which enabled simultaneous acquisition of en face SESLO images with every OCT cross-section. Here, we integrated our new 400 kHz iSS-SESLO-OCT, which used a buffered Axsun 1060 nm swept-source, with a surgical microscope and TrueVision stereoscopic viewing system to provide image-based feedback. In vivo human imaging performance was demonstrated on a healthy volunteer, and simulated surgical maneuvers were performed in ex vivo porcine eyes. Denselysampled static volumes and volumes subsampled at 10 volumes-per-second were used to visualize tissue deformations and surgical dynamics during corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. En face SESLO images enabled orientation and co-registration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. TrueVision heads-up display allowed for side-by-side viewing of the surgical field with SESLO and OCT previews for real-time feedback, and we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Integration of these complementary imaging modalities may benefit surgical outcomes by enabling real-time intraoperative visualization of surgical plans, instrument positions, tissue deformations, and image-based surrogate biomarkers correlated with completion of surgical goals.
Fujimura, Yoshinori; Miura, Daisuke; Tachibana, Hirofumi
2017-09-27
Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.
A top-down manner-based DCNN architecture for semantic image segmentation.
Qiao, Kai; Chen, Jian; Wang, Linyuan; Zeng, Lei; Yan, Bin
2017-01-01
Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.
Up-conversion of MMW radiation to visual band using glow discharge detector and silicon detector
NASA Astrophysics Data System (ADS)
Aharon Akram, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.
2016-10-01
In this work we describe and demonstrate a method for up-conversion of millimeter wave (MMW) radiation to the visual band using a very inexpensive miniature Glow Discharge Detector (GDD), and a silicon detector (photodetector). Here we present 100 GHz up-conversion images based on measuring the visual light emitting from the GDD rather than its electrical current. The results showed better response time of 480 ns and better sensitivity compared to the electronic detection that was performed in our previous work. In this work we performed MMW imaging based on this method using a GDD lamp, and a photodetector to measure GDD light emission.
Explanatory and illustrative visualization of special and general relativity.
Weiskopf, Daniel; Borchers, Marc; Ertl, Thomas; Falk, Martin; Fechtig, Oliver; Frank, Regine; Grave, Frank; King, Andreas; Kraus, Ute; Müller, Thomas; Nollert, Hans-Peter; Rica Mendez, Isabel; Ruder, Hanns; Schafhitzel, Tobias; Schär, Sonja; Zahn, Corvin; Zatloukal, Michael
2006-01-01
This paper describes methods for explanatory and illustrative visualizations used to communicate aspects of Einstein's theories of special and general relativity, their geometric structure, and of the related fields of cosmology and astrophysics. Our illustrations target a general audience of laypersons interested in relativity. We discuss visualization strategies, motivated by physics education and the didactics of mathematics, and describe what kind of visualization methods have proven to be useful for different types of media, such as still images in popular science magazines, film contributions to TV shows, oral presentations, or interactive museum installations. Our primary approach is to adopt an egocentric point of view: The recipients of a visualization participate in a visually enriched thought experiment that allows them to experience or explore a relativistic scenario. In addition, we often combine egocentric visualizations with more abstract illustrations based on an outside view in order to provide several presentations of the same phenomenon. Although our visualization tools often build upon existing methods and implementations, the underlying techniques have been improved by several novel technical contributions like image-based special relativistic rendering on GPUs, special relativistic 4D ray tracing for accelerating scene objects, an extension of general relativistic ray tracing to manifolds described by multiple charts, GPU-based interactive visualization of gravitational light deflection, as well as planetary terrain rendering. The usefulness and effectiveness of our visualizations are demonstrated by reporting on experiences with, and feedback from, recipients of visualizations and collaborators.
Maravall, Darío; de Lope, Javier; Fuentes, Juan P
2017-01-01
We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks.
Maravall, Darío; de Lope, Javier; Fuentes, Juan P.
2017-01-01
We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks. PMID:28900394
Different source image fusion based on FPGA
NASA Astrophysics Data System (ADS)
Luo, Xiao; Piao, Yan
2016-03-01
The fusion technology of video image is to make the video obtained by different image sensors complementary to each other by some technical means, so as to obtain the video information which is rich in information and suitable for the human eye system. Infrared cameras in harsh environments such as when smoke, fog and low light situations penetrating power, but the ability to obtain the details of the image is poor, does not meet the human visual system. Single visible light imaging can be rich in detail, high resolution images and for the visual system, but the visible image easily affected by the external environment. Infrared image and visible image fusion process involved in the video image fusion algorithm complexity and high calculation capacity, have occupied more memory resources, high clock rate requirements, such as software, c ++, c, etc. to achieve more, but based on Hardware platform less. In this paper, based on the imaging characteristics of infrared images and visible light images, the software and hardware are combined to obtain the registration parameters through software matlab, and the gray level weighted average method is used to implement the hardware platform. Information fusion, and finally the fusion image can achieve the goal of effectively improving the acquisition of information to increase the amount of information in the image.
NASA Astrophysics Data System (ADS)
Liansheng, Sui; Bei, Zhou; Zhanmin, Wang; Ailing, Tian
2017-05-01
A novel optical color image watermarking scheme considering human visual characteristics is presented in gyrator transform domain. Initially, an appropriate reference image is constructed of significant blocks chosen from the grayscale host image by evaluating visual characteristics such as visual entropy and edge entropy. Three components of the color watermark image are compressed based on compressive sensing, and the corresponding results are combined to form the grayscale watermark. Then, the frequency coefficients of the watermark image are fused into the frequency data of the gyrator-transformed reference image. The fused result is inversely transformed and partitioned, and eventually the watermarked image is obtained by mapping the resultant blocks into their original positions. The scheme can reconstruct the watermark with high perceptual quality and has the enhanced security due to high sensitivity of the secret keys. Importantly, the scheme can be implemented easily under the framework of double random phase encoding with the 4f optical system. To the best of our knowledge, it is the first report on embedding the color watermark into the grayscale host image which will be out of attacker's expectation. Simulation results are given to verify the feasibility and its superior performance in terms of noise and occlusion robustness.
Naturalness and interestingness of test images for visual quality evaluation
NASA Astrophysics Data System (ADS)
Halonen, Raisa; Westman, Stina; Oittinen, Pirkko
2011-01-01
Balanced and representative test images are needed to study perceived visual quality in various application domains. This study investigates naturalness and interestingness as image quality attributes in the context of test images. Taking a top-down approach we aim to find the dimensions which constitute naturalness and interestingness in test images and the relationship between these high-level quality attributes. We compare existing collections of test images (e.g. Sony sRGB images, ISO 12640 images, Kodak images, Nokia images and test images developed within our group) in an experiment combining quality sorting and structured interviews. Based on the data gathered we analyze the viewer-supplied criteria for naturalness and interestingness across image types, quality levels and judges. This study advances our understanding of subjective image quality criteria and enables the validation of current test images, furthering their development.
NASA Astrophysics Data System (ADS)
Bates, Lisa M.; Hanson, Dennis P.; Kall, Bruce A.; Meyer, Frederic B.; Robb, Richard A.
1998-06-01
An important clinical application of biomedical imaging and visualization techniques is provision of image guided neurosurgical planning and navigation techniques using interactive computer display systems in the operating room. Current systems provide interactive display of orthogonal images and 3D surface or volume renderings integrated with and guided by the location of a surgical probe. However, structures in the 'line-of-sight' path which lead to the surgical target cannot be directly visualized, presenting difficulty in obtaining full understanding of the 3D volumetric anatomic relationships necessary for effective neurosurgical navigation below the cortical surface. Complex vascular relationships and histologic boundaries like those found in artereovenous malformations (AVM's) also contribute to the difficulty in determining optimal approaches prior to actual surgical intervention. These difficulties demonstrate the need for interactive oblique imaging methods to provide 'line-of-sight' visualization. Capabilities for 'line-of- sight' interactive oblique sectioning are present in several current neurosurgical navigation systems. However, our implementation is novel, in that it utilizes a completely independent software toolkit, AVW (A Visualization Workshop) developed at the Mayo Biomedical Imaging Resource, integrated with a current neurosurgical navigation system, the COMPASS stereotactic system at Mayo Foundation. The toolkit is a comprehensive, C-callable imaging toolkit containing over 500 optimized imaging functions and structures. The powerful functionality and versatility of the AVW imaging toolkit provided facile integration and implementation of desired interactive oblique sectioning using a finite set of functions. The implementation of the AVW-based code resulted in higher-level functions for complete 'line-of-sight' visualization.
Simple Smartphone-Based Guiding System for Visually Impaired People
Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying
2017-01-01
Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them. PMID:28608811
Simple Smartphone-Based Guiding System for Visually Impaired People.
Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying
2017-06-13
Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.
Connecting Swath Satellite Data With Imagery in Mapping Applications
NASA Astrophysics Data System (ADS)
Thompson, C. K.; Hall, J. R.; Penteado, P. F.; Roberts, J. T.; Zhou, A. Y.
2016-12-01
Visualizations of gridded science data products (referred to as Level 3 or Level 4) typically provide a straightforward correlation between image pixels and the source science data. This direct relationship allows users to make initial inferences based on imagery values, facilitating additional operations on the underlying data values, such as data subsetting and analysis. However, that same pixel-to-data relationship for ungridded science data products (referred to as Level 2) is significantly more challenging. These products, also referred to as "swath products", are in orbital "instrument space" and raster visualization pixels do not directly correlate to science data values. Interpolation algorithms are often employed during the gridding or projection of a science dataset prior to image generation, introducing intermediary values that separate the image from the source data values. NASA's Global Imagery Browse Services (GIBS) is researching techniques for efficiently serving "image-ready" data allowing client-side dynamic visualization and analysis capabilities. This presentation will cover some GIBS prototyping work designed to maintain connectivity between Level 2 swath data and its corresponding raster visualizations. Specifically, we discuss the DAta-to-Image-SYstem (DAISY), an indexing approach for Level 2 swath data, and the mechanisms whereby a client may dynamically visualize the data in raster form.
Learning receptor positions from imperfectly known motions
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.
1990-01-01
An algorithm is described for learning image interpolation functions for sensor arrays whose sensor positions are somewhat disordered. The learning is based on failures of translation invariance, so it does not require knowledge of the images being presented to the visual system. Previously reported implementations of the method assumed the visual system to have precise knowledge of the translations. It is demonstrated that translation estimates computed from the imperfectly interpolated images can have enough accuracy to allow the learning process to converge to a correct interpolation.
Hattab, Georges; Schlüter, Jan-Philip; Becker, Anke; Nattkemper, Tim W.
2017-01-01
In order to understand gene function in bacterial life cycles, time lapse bioimaging is applied in combination with different marker protocols in so called microfluidics chambers (i.e., a multi-well plate). In one experiment, a series of T images is recorded for one visual field, with a pixel resolution of 60 nm/px. Any (semi-)automatic analysis of the data is hampered by a strong image noise, low contrast and, last but not least, considerable irregular shifts during the acquisition. Image registration corrects such shifts enabling next steps of the analysis (e.g., feature extraction or tracking). Image alignment faces two obstacles in this microscopic context: (a) highly dynamic structural changes in the sample (i.e., colony growth) and (b) an individual data set-specific sample environment which makes the application of landmarks-based alignments almost impossible. We present a computational image registration solution, we refer to as ViCAR: (Vi)sual (C)ues based (A)daptive (R)egistration, for such microfluidics experiments, consisting of (1) the detection of particular polygons (outlined and segmented ones, referred to as visual cues), (2) the adaptive retrieval of three coordinates throughout different sets of frames, and finally (3) an image registration based on the relation of these points correcting both rotation and translation. We tested ViCAR with different data sets and have found that it provides an effective spatial alignment thereby paving the way to extract temporal features pertinent to each resulting bacterial colony. By using ViCAR, we achieved an image registration with 99.9% of image closeness, based on the average rmsd of 4.10−2 pixels, and superior results compared to a state of the art algorithm. PMID:28620411
Pimmer, Christoph; Mateescu, Magdalena; Zahn, Carmen; Genewein, Urs
2013-11-27
Despite the widespread use and advancements of mobile technology that facilitate rich communication modes, there is little evidence demonstrating the value of smartphones for effective interclinician communication and knowledge processes. The objective of this study was to determine the effects of different synchronous smartphone-based modes of communication, such as (1) speech only, (2) speech and images, and (3) speech, images, and image annotation (guided noticing) on the recall and transfer of visually and verbally represented medical knowledge. The experiment was conducted from November 2011 to May 2012 at the University Hospital Basel (Switzerland) with 42 medical students in a master's program. All participants analyzed a standardized case (a patient with a subcapital fracture of the fifth metacarpal bone) based on a radiological image, photographs of the hand, and textual descriptions, and were asked to consult a remote surgical specialist via a smartphone. Participants were randomly assigned to 3 experimental conditions/groups. In group 1, the specialist provided verbal explanations (speech only). In group 2, the specialist provided verbal explanations and displayed the radiological image and the photographs to the participants (speech and images). In group 3, the specialist provided verbal explanations, displayed the radiological image and the photographs, and annotated the radiological image by drawing structures/angle elements (speech, images, and image annotation). To assess knowledge recall, participants were asked to write brief summaries of the case (verbally represented knowledge) after the consultation and to re-analyze the diagnostic images (visually represented knowledge). To assess knowledge transfer, participants analyzed a similar case without specialist support. Data analysis by ANOVA found that participants in groups 2 and 3 (images used) evaluated the support provided by the specialist as significantly more positive than group 1, the speech-only group (group 1: mean 4.08, SD 0.90; group 2: mean 4.73, SD 0.59; group 3: mean 4.93, SD 0.25; F2,39=6.76, P=.003; partial η(2)=0.26, 1-β=.90). However, significant positive effects on the recall and transfer of visually represented medical knowledge were only observed when the smartphone-based communication involved the combination of speech, images, and image annotation (group 3). There were no significant positive effects on the recall and transfer of visually represented knowledge between group 1 (speech only) and group 2 (speech and images). No significant differences were observed between the groups regarding verbally represented medical knowledge. The results show (1) the value of annotation functions for digital and mobile technology for interclinician communication and medical informatics, and (2) the use of guided noticing (the integration of speech, images, and image annotation) leads to significantly improved knowledge gains for visually represented knowledge. This is particularly valuable in situations involving complex visual subject matters, typical in clinical practice.
Mateescu, Magdalena; Zahn, Carmen; Genewein, Urs
2013-01-01
Background Despite the widespread use and advancements of mobile technology that facilitate rich communication modes, there is little evidence demonstrating the value of smartphones for effective interclinician communication and knowledge processes. Objective The objective of this study was to determine the effects of different synchronous smartphone-based modes of communication, such as (1) speech only, (2) speech and images, and (3) speech, images, and image annotation (guided noticing) on the recall and transfer of visually and verbally represented medical knowledge. Methods The experiment was conducted from November 2011 to May 2012 at the University Hospital Basel (Switzerland) with 42 medical students in a master’s program. All participants analyzed a standardized case (a patient with a subcapital fracture of the fifth metacarpal bone) based on a radiological image, photographs of the hand, and textual descriptions, and were asked to consult a remote surgical specialist via a smartphone. Participants were randomly assigned to 3 experimental conditions/groups. In group 1, the specialist provided verbal explanations (speech only). In group 2, the specialist provided verbal explanations and displayed the radiological image and the photographs to the participants (speech and images). In group 3, the specialist provided verbal explanations, displayed the radiological image and the photographs, and annotated the radiological image by drawing structures/angle elements (speech, images, and image annotation). To assess knowledge recall, participants were asked to write brief summaries of the case (verbally represented knowledge) after the consultation and to re-analyze the diagnostic images (visually represented knowledge). To assess knowledge transfer, participants analyzed a similar case without specialist support. Results Data analysis by ANOVA found that participants in groups 2 and 3 (images used) evaluated the support provided by the specialist as significantly more positive than group 1, the speech-only group (group 1: mean 4.08, SD 0.90; group 2: mean 4.73, SD 0.59; group 3: mean 4.93, SD 0.25; F 2,39=6.76, P=.003; partial η2=0.26, 1–β=.90). However, significant positive effects on the recall and transfer of visually represented medical knowledge were only observed when the smartphone-based communication involved the combination of speech, images, and image annotation (group 3). There were no significant positive effects on the recall and transfer of visually represented knowledge between group 1 (speech only) and group 2 (speech and images). No significant differences were observed between the groups regarding verbally represented medical knowledge. Conclusions The results show (1) the value of annotation functions for digital and mobile technology for interclinician communication and medical informatics, and (2) the use of guided noticing (the integration of speech, images, and image annotation) leads to significantly improved knowledge gains for visually represented knowledge. This is particularly valuable in situations involving complex visual subject matters, typical in clinical practice. PMID:24284080
Visual homing with a pan-tilt based stereo camera
NASA Astrophysics Data System (ADS)
Nirmal, Paramesh; Lyons, Damian M.
2013-01-01
Visual homing is a navigation method based on comparing a stored image of the goal location and the current image (current view) to determine how to navigate to the goal location. It is theorized that insects, such as ants and bees, employ visual homing methods to return to their nest. Visual homing has been applied to autonomous robot platforms using two main approaches: holistic and feature-based. Both methods aim at determining distance and direction to the goal location. Navigational algorithms using Scale Invariant Feature Transforms (SIFT) have gained great popularity in the recent years due to the robustness of the feature operator. Churchill and Vardy have developed a visual homing method using scale change information (Homing in Scale Space, HiSS) from SIFT. HiSS uses SIFT feature scale change information to determine distance between the robot and the goal location. Since the scale component is discrete with a small range of values, the result is a rough measurement with limited accuracy. We have developed a method that uses stereo data, resulting in better homing performance. Our approach utilizes a pan-tilt based stereo camera, which is used to build composite wide-field images. We use the wide-field images combined with stereo-data obtained from the stereo camera to extend the keypoint vector described in to include a new parameter, depth (z). Using this info, our algorithm determines the distance and orientation from the robot to the goal location. We compare our method with HiSS in a set of indoor trials using a Pioneer 3-AT robot equipped with a BumbleBee2 stereo camera. We evaluate the performance of both methods using a set of performance measures described in this paper.
NASA Astrophysics Data System (ADS)
Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra
2015-12-01
Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.
Client-side Medical Image Colorization in a Collaborative Environment.
Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela
2015-01-01
The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities.
Sonification of optical coherence tomography data and images
Ahmad, Adeel; Adie, Steven G.; Wang, Morgan; Boppart, Stephen A.
2010-01-01
Sonification is the process of representing data as non-speech audio signals. In this manuscript, we describe the auditory presentation of OCT data and images. OCT acquisition rates frequently exceed our ability to visually analyze image-based data, and multi-sensory input may therefore facilitate rapid interpretation. This conversion will be especially valuable in time-sensitive surgical or diagnostic procedures. In these scenarios, auditory feedback can complement visual data without requiring the surgeon to constantly monitor the screen, or provide additional feedback in non-imaging procedures such as guided needle biopsies which use only axial-scan data. In this paper we present techniques to translate OCT data and images into sound based on the spatial and spatial frequency properties of the OCT data. Results obtained from parameter-mapped sonification of human adipose and tumor tissues are presented, indicating that audio feedback of OCT data may be useful for the interpretation of OCT images. PMID:20588846
The primate amygdala represents the positive and negative value of visual stimuli during learning
Paton, Joseph J.; Belova, Marina A.; Morrison, Sara E.; Salzman, C. Daniel
2008-01-01
Visual stimuli can acquire positive or negative value through their association with rewards and punishments, a process called reinforcement learning. Although we now know a great deal about how the brain analyses visual information, we know little about how visual representations become linked with values. To study this process, we turned to the amygdala, a brain structure implicated in reinforcement learning1–5. We recorded the activity of individual amygdala neurons in monkeys while abstract images acquired either positive or negative value through conditioning. After monkeys had learned the initial associations, we reversed image value assignments. We examined neural responses in relation to these reversals in order to estimate the relative contribution to neural activity of the sensory properties of images and their conditioned values. Here we show that changes in the values of images modulate neural activity, and that this modulation occurs rapidly enough to account for, and correlates with, monkeys’ learning. Furthermore, distinct populations of neurons encode the positive and negative values of visual stimuli. Behavioural and physiological responses to visual stimuli may therefore be based in part on the plastic representation of value provided by the amygdala. PMID:16482160
A Novel Robot Visual Homing Method Based on SIFT Features
Zhu, Qidan; Liu, Chuanjia; Cai, Chengtao
2015-01-01
Warping is an effective visual homing method for robot local navigation. However, the performance of the warping method can be greatly influenced by the changes of the environment in a real scene, thus resulting in lower accuracy. In order to solve the above problem and to get higher homing precision, a novel robot visual homing algorithm is proposed by combining SIFT (scale-invariant feature transform) features with the warping method. The algorithm is novel in using SIFT features as landmarks instead of the pixels in the horizon region of the panoramic image. In addition, to further improve the matching accuracy of landmarks in the homing algorithm, a novel mismatching elimination algorithm, based on the distribution characteristics of landmarks in the catadioptric panoramic image, is proposed. Experiments on image databases and on a real scene confirm the effectiveness of the proposed method. PMID:26473880
Fourier-based automatic alignment for improved Visual Cryptography schemes.
Machizaud, Jacques; Chavel, Pierre; Fournel, Thierry
2011-11-07
In Visual Cryptography, several images, called "shadow images", that separately contain no information, are overlapped to reveal a shared secret message. We develop a method to digitally register one printed shadow image acquired by a camera with a purely digital shadow image, stored in memory. Using Fourier techniques derived from Fourier Optics concepts, the idea is to enhance and exploit the quasi periodicity of the shadow images, composed by a random distribution of black and white patterns on a periodic sampling grid. The advantage is to speed up the security control or the access time to the message, in particular in the cases of a small pixel size or of large numbers of pixels. Furthermore, the interest of visual cryptography can be increased by embedding the initial message in two shadow images that do not have identical mathematical supports, making manual registration impractical. Experimental results demonstrate the successful operation of the method, including the possibility to directly project the result onto the printed shadow image.
Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.
2014-01-01
The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019
Structural brain alterations in primary open angle glaucoma: a 3T MRI study
Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang
2016-01-01
Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811
Jing, Bowen; Chigan, Pengju; Ge, Zhengtong; Wu, Liang; Wang, Supin; Wan, Mingxi
2017-01-01
For the purpose of noninvasively visualizing the dynamics of the contact between vibrating vocal fold medial surfaces, an ultrasonic imaging method which is referred to as array-based transmission ultrasonic glottography is proposed. An array of ultrasound transducers is used to detect the ultrasound wave transmitted from one side of the vocal folds to the other side through the small-sized contact between the vocal folds. A passive acoustic mapping method is employed to visualize and locate the contact. The results of the investigation using tissue-mimicking phantoms indicate that it is feasible to use the proposed method to visualize and locate the contact between soft tissues. Furthermore, the proposed method was used for investigating the movement of the contact between the vibrating vocal folds of excised canine larynges. The results indicate that the vertical movement of the contact can be visualized as a vertical movement of a high-intensity stripe in a series of images obtained by using the proposed method. Moreover, a visualization and analysis method, which is referred to as array-based ultrasonic kymography, is presented. The velocity of the vertical movement of the contact, which is estimated from the array-based ultrasonic kymogram, could reach 0.8 m/s during the vocal fold vibration. PMID:28599522
The implementation of thermal image visualization by HDL based on pseudo-color
NASA Astrophysics Data System (ADS)
Zhu, Yong; Zhang, JiangLing
2004-11-01
The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.
NASA Astrophysics Data System (ADS)
Maki, Toshihiro; Ura, Tamaki; Singh, Hanumant; Sakamaki, Takashi
Large-area seafloor imaging will bring significant benefits to various fields such as academics, resource survey, marine development, security, and search-and-rescue. The authors have proposed a navigation method of an autonomous underwater vehicle for seafloor imaging, and verified its performance through mapping tubeworm colonies with the area of 3,000 square meters using the AUV Tri-Dog 1 at Tagiri vent field, Kagoshima bay in Japan (Maki et al., 2008, 2009). This paper proposes a post-processing method to build a natural photo mosaic from a number of pictures taken by an underwater platform. The method firstly removes lens distortion, invariances of color and lighting from each image, and then ortho-rectification is performed based on camera pose and seafloor estimated by navigation data. The image alignment is based on both navigation data and visual characteristics, implemented as an expansion of the image based method (Pizarro et al., 2003). Using the two types of information realizes an image alignment that is consistent both globally and locally, as well as making the method applicable to data sets with little visual keys. The method was evaluated using a data set obtained by the AUV Tri-Dog 1 at the vent field in Sep. 2009. A seamless, uniformly illuminated photo mosaic covering the area of around 500 square meters was created from 391 pictures, which covers unique features of the field such as bacteria mats and tubeworm colonies.
Long-term Live-cell Imaging to Assess Cell Fate in Response to Paclitaxel.
Bolgioni, Amanda F; Vittoria, Marc A; Ganem, Neil J
2018-05-14
Live-cell imaging is a powerful technique that can be used to directly visualize biological phenomena in single cells over extended periods of time. Over the past decade, new and innovative technologies have greatly enhanced the practicality of live-cell imaging. Cells can now be kept in focus and continuously imaged over several days while maintained under 37 °C and 5% CO2 cell culture conditions. Moreover, multiple fields of view representing different experimental conditions can be acquired simultaneously, thus providing high-throughput experimental data. Live-cell imaging provides a significant advantage over fixed-cell imaging by allowing for the direct visualization and temporal quantitation of dynamic cellular events. Live-cell imaging can also identify variation in the behavior of single cells that would otherwise have been missed using population-based assays. Here, we describe live-cell imaging protocols to assess cell fate decisions following treatment with the anti-mitotic drug paclitaxel. We demonstrate methods to visualize whether mitotically arrested cells die directly from mitosis or slip back into interphase. We also describe how the fluorescent ubiquitination-based cell cycle indicator (FUCCI) system can be used to assess the fraction of interphase cells born from mitotic slippage that are capable of re-entering the cell cycle. Finally, we describe a live-cell imaging method to identify nuclear envelope rupture events.
Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses
NASA Astrophysics Data System (ADS)
Wong, Stephen T. C.; Knowlton, Robert C.; Hoo, Kent S.; Huang, H. K.
1995-05-01
Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the brain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstation to aid the noninvasive presurgical evaluation of epilepsy patients. These techniques include online access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitation of structural and functional information contained in the registered images. For illustration, we describe the use of these techniques in a patient case of nonlesional neocortical epilepsy. We also present out future work based on preliminary studies.
Beyond Words: An Enquiry into Children's Home Visual Communication Practices
ERIC Educational Resources Information Center
Yamada-Rice, Dylan
2010-01-01
This research focuses on young children's experiences of the visual mode embedded in new multimodal literacy practices. An enquiry was undertaken into the role of visual and digital images in a group of 11 four-year-olds' out-of-school lives. The children photographed their use of a range of primarily visual-based media at home, to produce a book…
2001-10-25
Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, T; Wang, J; Frank, S
Purpose: The current CT-based post-implant dosimetry allows precise seed localization but limited anatomical delineation. Switching to MR-based post-implant dosimetry is confounded by imprecise seed localization. One approach is to place positive-contrast markers (Sirius) adjacent to the negative-contrast seeds. This patient study aims to assess the utility of a 3D fast spoiled gradient-recalled echo (FSPGR) sequence to visualize Sirius markers for post-implant dosimetry. Methods: MRI images were acquired in prostate implant patients (n=10) on Day 0 (day-of-implant) and Day 30. The post-implant MR protocol consisted of 3D T2-weighted fast-spin-echo (FSE), T2-weighted 2D-FSE (axial) and T1-weighted 2D-FSE (axial/sagittal/coronal). We incorporated a 3D-FSPGRmore » sequence into the post-implant MR protocol to visualize the Sirius markers. Patients were scanned with different number-of-excitations (6, 8, 10), field-of-view (10cm, 14cm, 18cm), slice thickness (1mm, 0.8mm), flip angle (14 degrees, 20 degrees), bandwidth (122.070 Hz/pixel, 325.508 Hz/pixel, 390.625 Hz/pixel), phase encoding steps (160, 192, 224, 256), frequency-encoding direction (right/left, anterior/posterior), echo-time type (minimum-full, out-of-phase), field strength (1.5T, 3T), contrast (with, without), scanner vendor (Siemens, GE), coil (endorectal-coil only, endorectal-and-torso-coil, torsocoil only), endorectal-coil filling (30cc, 50cc) and endorectal-coil filling type (air, perfluorocarbon [PFC]). For post-implant dosimetric evaluation with greater anatomical detail, 3D-FSE images were fused with 3D-FSPGR images. For comparison with CT-based post-implant dosimetry, CT images were fused with 3D-FSPGR images. Results: The 3D-FSPGR sequence facilitated visualization of markers in patients. Marker visualization helped distinguish signal voids as seeds versus needle tracks for more definitive MR-based post-implant dosimetry. On the CT-MR fused images, the distance between the seed on CT to MR images was 3.2±1.6mm in patients with no endorectal coil, 2.3±0.8mm in patients with 30cc-PFC-filled endorectal-coil and 5.0±1.8mm in patients with 50cc-PFC-filled endorectal-coil. Conclusion: An MR protocol to visualize positive-contrast Sirius markers to assist in the identification of negative-contrast seeds was demonstrated. S Frank is a co-founder of C4 Imaging LLC, the manufacturer of the MRI markers.« less
NASA Astrophysics Data System (ADS)
Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.
2017-02-01
Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.
NASA Astrophysics Data System (ADS)
Tanaka, Osamu; Iida, Takayoshi; Komeda, Hisao; Tamaki, Masayoshi; Seike, Kensaku; Kato, Daiki; Yokoyama, Takamasa; Hirose, Shigeki; Kawaguchi, Daisuke
2016-12-01
Visualization of markers is critical for imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). However, the size of the marker varies according to the imaging technique. While a large-sized marker is more useful for visualization in MRI, it results in artifacts on CT and causes substantial pain on administration. In contrast, a small-sized marker reduces the artifacts on CT but hampers MRI detection. Herein, we report a new ironcontaining marker and compare its utility with that of non-iron-containing markers. Five patients underwent CT/MRI fusion-based intensity-modulated radiotherapy, and the markers were placed by urologists. A Gold Anchor™ (GA; diameter, 0.28 mm; length, 10 mm) was placed using a 22G needle on the right side of the prostate. A VISICOIL™ (VIS; diameter, 0.35 mm; length, 10 mm) was placed using a 19G needle on the left side. MRI was performed using T2*-weighted imaging. Three observers evaluated and scored the visual qualities of the acquired images. The mean score of visualization was almost identical between the GA and VIS in radiography and cone-beam CT (Novalis Tx). The artifacts in planning CT were slightly larger using the GA than using the VIS. The visualization of the marker on MRI using the GA was superior to that using the VIS. In conclusion, the visualization quality of radiography, conebeam CT, and planning CT was roughly equal between the GA and VIS. However, the GA was more strongly visualized than was the VIS on MRI due to iron containing.
Bone age maturity assessment using hand-held device
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Gilsanz, Vicente; Liu, Xiaodong; Boechat, M. I.
2004-04-01
Purpose: Assessment of bone maturity is traditionally performed through visual comparison of hand and wrist radiograph with existing reference images in textbooks. Our goal was to develop a digital index based on idealized hand Xray images that can be incorporated in a hand held computer and used for visual assessment of bone age for patients. Material and methods: Due to the large variability in bone maturation in normals, we generated a set of "ideal" images obtained by computer combinations of images from our normal reference data sets. Software for hand-held PDA devices was developed for easy navigation through the set of images and visual selection of matching images. A formula based on our statistical analysis provides the standard deviation from normal based on the chronological age of the patient. The accuracy of the program was compared to traditional interpretation by two radiologists in a double blind reading of 200 normal Caucasian children (100 boys, 100 girls). Results: Strong correlations were present between chronological age and bone age (r > 0.9) with no statistical difference between the digital and traditional assessment methods. Determinations of carpal bone maturity in adolescents was slightly more accurate using the digital system. The users did praise the convenience and effectiveness of the digital Palm Index in clinical practice. Conclusion: An idealized digital Palm Bone Age Index provides a convenient and effective alternative to conventional atlases for the assessment of skeletal maturity.
NASA Astrophysics Data System (ADS)
Wang, Deng-wei; Zhang, Tian-xu; Shi, Wen-jun; Wei, Long-sheng; Wang, Xiao-ping; Ao, Guo-qing
2009-07-01
Infrared images at sea background are notorious for the low signal-to-noise ratio, therefore, the target recognition of infrared image through traditional methods is very difficult. In this paper, we present a novel target recognition method based on the integration of visual attention computational model and conventional approach (selective filtering and segmentation). The two distinct techniques for image processing are combined in a manner to utilize the strengths of both. The visual attention algorithm searches the salient regions automatically, and represented them by a set of winner points, at the same time, demonstrated the salient regions in terms of circles centered at these winner points. This provides a priori knowledge for the filtering and segmentation process. Based on the winner point, we construct a rectangular region to facilitate the filtering and segmentation, then the labeling operation will be added selectively by requirement. Making use of the labeled information, from the final segmentation result we obtain the positional information of the interested region, label the centroid on the corresponding original image, and finish the localization for the target. The cost time does not depend on the size of the image but the salient regions, therefore the consumed time is greatly reduced. The method is used in the recognition of several kinds of real infrared images, and the experimental results reveal the effectiveness of the algorithm presented in this paper.
Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.
Chen, Jian; Jia, Bingxi; Zhang, Kaixiang
2017-11-01
In this paper, a trifocal tensor-based approach is proposed for the visual trajectory tracking task of a nonholonomic mobile robot equipped with a roughly installed monocular camera. The desired trajectory is expressed by a set of prerecorded images, and the robot is regulated to track the desired trajectory using visual feedback. Trifocal tensor is exploited to obtain the orientation and scaled position information used in the control system, and it works for general scenes owing to the generality of trifocal tensor. In the previous works, the start, current, and final images are required to share enough visual information to estimate the trifocal tensor. However, this requirement can be easily violated for perspective cameras with limited field of view. In this paper, key frame strategy is proposed to loosen this requirement, extending the workspace of the visual servo system. Considering the unknown depth and extrinsic parameters (installing position of the camera), an adaptive controller is developed based on Lyapunov methods. The proposed control strategy works for almost all practical circumstances, including both trajectory tracking and pose regulation tasks. Simulations are made based on the virtual experimentation platform (V-REP) to evaluate the effectiveness of the proposed approach.
Kurtz, Camille; Depeursinge, Adrien; Napel, Sandy; Beaulieu, Christopher F.; Rubin, Daniel L.
2014-01-01
Computer-assisted image retrieval applications can assist radiologists by identifying similar images in archives as a means to providing decision support. In the classical case, images are described using low-level features extracted from their contents, and an appropriate distance is used to find the best matches in the feature space. However, using low-level image features to fully capture the visual appearance of diseases is challenging and the semantic gap between these features and the high-level visual concepts in radiology may impair the system performance. To deal with this issue, the use of semantic terms to provide high-level descriptions of radiological image contents has recently been advocated. Nevertheless, most of the existing semantic image retrieval strategies are limited by two factors: they require manual annotation of the images using semantic terms and they ignore the intrinsic visual and semantic relationships between these annotations during the comparison of the images. Based on these considerations, we propose an image retrieval framework based on semantic features that relies on two main strategies: (1) automatic “soft” prediction of ontological terms that describe the image contents from multi-scale Riesz wavelets and (2) retrieval of similar images by evaluating the similarity between their annotations using a new term dissimilarity measure, which takes into account both image-based and ontological term relations. The combination of these strategies provides a means of accurately retrieving similar images in databases based on image annotations and can be considered as a potential solution to the semantic gap problem. We validated this approach in the context of the retrieval of liver lesions from computed tomographic (CT) images and annotated with semantic terms of the RadLex ontology. The relevance of the retrieval results was assessed using two protocols: evaluation relative to a dissimilarity reference standard defined for pairs of images on a 25-images dataset, and evaluation relative to the diagnoses of the retrieved images on a 72-images dataset. A normalized discounted cumulative gain (NDCG) score of more than 0.92 was obtained with the first protocol, while AUC scores of more than 0.77 were obtained with the second protocol. This automatical approach could provide real-time decision support to radiologists by showing them similar images with associated diagnoses and, where available, responses to therapies. PMID:25036769
Programmable Remapper with Single Flow Architecture
NASA Technical Reports Server (NTRS)
Fisher, Timothy E. (Inventor)
1993-01-01
An apparatus for image processing comprising a camera for receiving an original visual image and transforming the original visual image into an analog image, a first converter for transforming the analog image of the camera to a digital image, a processor having a single flow architecture for receiving the digital image and producing, with a single algorithm, an output image, a second converter for transforming the digital image of the processor to an analog image, and a viewer for receiving the analog image, transforming the analog image into a transformed visual image for observing the transformations applied to the original visual image. The processor comprises one or more subprocessors for the parallel reception of a digital image for producing an output matrix of the transformed visual image. More particularly, the processor comprises a plurality of subprocessors for receiving in parallel and transforming the digital image for producing a matrix of the transformed visual image, and an output interface means for receiving the respective portions of the transformed visual image from the respective subprocessor for producing an output matrix of the transformed visual image.
NASA Astrophysics Data System (ADS)
Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carley; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.
2016-03-01
In this work, we present multimodal imaging of peripheral airways in vivo using an endoscopic imaging system capable of co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI). This system employs a 0.9 mm diameter double-clad fiber optic-based catheter for endoscopic imaging of small peripheral airways. Optical coherence tomography (OCT) can visualize detailed airway morphology in the lung periphery and autofluorescence imaging (AFI) can visualize fluorescent tissue components such as collagen and elastin, improving the detection of airway lesions. Results from in vivo imaging of 40 patients indicate that OCT and AFI offer complementary information that may increase the ability to identify pulmonary nodules in the lung periphery and improve the safety of biopsy collection by identifying large blood vessels. AFI can rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. By providing complementary information about structure and function of tissue, OCT-AFI may improve site selection during biopsy collection in the lung periphery.
NASA Astrophysics Data System (ADS)
Robbins, William L.; Conklin, James J.
1995-10-01
Medical images (angiography, CT, MRI, nuclear medicine, ultrasound, x ray) play an increasingly important role in the clinical development and regulatory review process for pharmaceuticals and medical devices. Since medical images are increasingly acquired and archived digitally, or are readily digitized from film, they can be visualized, processed and analyzed in a variety of ways using digital image processing and display technology. Moreover, with image-based data management and data visualization tools, medical images can be electronically organized and submitted to the U.S. Food and Drug Administration (FDA) for review. The collection, processing, analysis, archival, and submission of medical images in a digital format versus an analog (film-based) format presents both challenges and opportunities for the clinical and regulatory information management specialist. The medical imaging 'core laboratory' is an important resource for clinical trials and regulatory submissions involving medical imaging data. Use of digital imaging technology within a core laboratory can increase efficiency and decrease overall costs in the image data management and regulatory review process.
Towards A Complete Model Of Photopic Visual Threshold Performance
NASA Astrophysics Data System (ADS)
Overington, I.
1982-02-01
Based on a wide variety of fragmentary evidence taken from psycho-physics, neurophysiology and electron microscopy, it has been possible to put together a very widely applicable conceptual model of photopic visual threshold performance. Such a model is so complex that a single comprehensive mathematical version is excessively cumbersome. It is, however, possible to set up a suite of related mathematical models, each of limited application but strictly known envelope of usage. Such models may be used for assessment of a variety of facets of visual performance when using display imagery, including effects and interactions of image quality, random and discrete display noise, viewing distance, image motion, etc., both for foveal interrogation tasks and for visual search tasks. The specific model may be selected from the suite according to the assessment task in hand. The paper discusses in some depth the major facets of preperceptual visual processing and their interaction with instrumental image quality and noise. It then highlights the statistical nature of visual performance before going on to consider a number of specific mathematical models of partial visual function. Where appropriate, these are compared with widely popular empirical models of visual function.
Fahmy, Gamal; Black, John; Panchanathan, Sethuraman
2006-06-01
Today's multimedia applications demand sophisticated compression and classification techniques in order to store, transmit, and retrieve audio-visual information efficiently. Over the last decade, perceptually based image compression methods have been gaining importance. These methods take into account the abilities (and the limitations) of human visual perception (HVP) when performing compression. The upcoming MPEG 7 standard also addresses the need for succinct classification and indexing of visual content for efficient retrieval. However, there has been no research that has attempted to exploit the characteristics of the human visual system to perform both compression and classification jointly. One area of HVP that has unexplored potential for joint compression and classification is spatial frequency perception. Spatial frequency content that is perceived by humans can be characterized in terms of three parameters, which are: 1) magnitude; 2) phase; and 3) orientation. While the magnitude of spatial frequency content has been exploited in several existing image compression techniques, the novel contribution of this paper is its focus on the use of phase coherence for joint compression and classification in the wavelet domain. Specifically, this paper describes a human visual system-based method for measuring the degree to which an image contains coherent (perceptible) phase information, and then exploits that information to provide joint compression and classification. Simulation results that demonstrate the efficiency of this method are presented.
Liu, Yuxin; Li, Luoyuan; Guo, Quanwei; Wang, Lu; Liu, Dongdong; Wei, Ziwei; Zhou, Jing
2016-01-01
Lanthanide-based contrast agents have attracted increasing attention for their unique properties and potential applications in cancer theranostics. To date, many of these agents have been studied extensively in cells and small animal models. However, performance of these theranostic nanoparticles requires further improvement. In this study, a novel CsLu2F7:Yb,Er,Tm-based visual therapeutic platform was developed for imaging-guided synergistic cancer therapy. Due to the presence of the heavy alkali metal Cesium (Cs) in host lattice, the nanoplatform can provide a higher resolution X-ray CT imaging than many other reported lanthanide-based CT contrast agents. Furthermore, by using the targeted RGD motif, chemotherapy drug alpha-tocopheryl succinate (α-TOS), and photothermal coupling agent ICG, this nanoplatform simultaneously provides multifunctional imaging and targeted synergistic therapy. To demonstrate the theranostic performance of this novel nanoplatform in vivo, visual diagnosis in the small animal model was realized by UCL/CT imaging which was further integrated with targeted chemo-photothermal synergistic therapy. These results provided evidence for the successful construction of a novel lanthanide-based nanoplatform coupled with multimodal imaging diagnosis and potential application in synergistic cancer theranostics.
The method for detecting small lesions in medical image based on sliding window
NASA Astrophysics Data System (ADS)
Han, Guilai; Jiao, Yuan
2016-10-01
At present, the research on computer-aided diagnosis includes the sample image segmentation, extracting visual features, generating the classification model by learning, and according to the model generated to classify and judge the inspected images. However, this method has a large scale of calculation and speed is slow. And because medical images are usually low contrast, when the traditional image segmentation method is applied to the medical image, there is a complete failure. As soon as possible to find the region of interest, improve detection speed, this topic attempts to introduce the current popular visual attention model into small lesions detection. However, Itti model is mainly for natural images. But the effect is not ideal when it is used to medical images which usually are gray images. Especially in the early stages of some cancers, the focus of a disease in the whole image is not the most significant region and sometimes is very difficult to be found. But these lesions are prominent in the local areas. This paper proposes a visual attention mechanism based on sliding window, and use sliding window to calculate the significance of a local area. Combined with the characteristics of the lesion, select the features of gray, entropy, corner and edge to generate a saliency map. Then the significant region is segmented and distinguished. This method reduces the difficulty of image segmentation, and improves the detection accuracy of small lesions, and it has great significance to early discovery, early diagnosis and treatment of cancers.
Vlek, S L; van Dam, D A; Rubinstein, S M; de Lange-de Klerk, E S M; Schoonmade, L J; Tuynman, J B; Meijerink, W J H J; Ankersmit, M
2017-07-01
Near-infrared imaging with indocyanine green (ICG) has been extensively investigated during laparoscopic cholecystectomy (LC). However, methods vary between studies, especially regarding patient selection, dosage and timing. The aim of this systematic review was to evaluate the potential of the near-infrared imaging technique with ICG to identify biliary structures during LC. A comprehensive systematic literature search was performed. Prospective trials examining the use of ICG during LC were included. Primary outcome was biliary tract visualization. Risk of bias was assessed using ROBINS-I. Secondly, a meta-analysis was performed comparing ICG to intraoperative cholangiography (IOC) for identification of biliary structures. GRADE was used to assess the quality of the evidence. Nineteen studies were included. Based upon the pooled data from 13 studies, cystic duct (Lusch et al. in J Endourol 28:261-266, 2014) visualization was 86.5% (95% CI 71.2-96.6%) prior to dissection of Calot's triangle with a 2.5-mg dosage of ICG and 96.5% (95% CI 93.9-98.4%) after dissection. The results were not appreciably different when the dosage was based upon bodyweight. There is moderate quality evidence that the CD is more frequently visualized using ICG than IOC (RR 1.16; 95% CI 1.00-1.35); however, this difference was not statistically significant. This systematic review provides equal results for biliary tract visualization with near-infrared imaging with ICG during LC compared to IOC. Near-infrared imaging with ICG has the potential to replace IOC for biliary mapping. However, methods of near-infrared imaging with ICG vary. Future research is necessary for optimization and standardization of the near-infrared ICG technique.
Ma, Jun; Su, Shaobo; Yue, Shuyuan; Zhao, Yan; Li, Yonggang; Chen, Xiaochen; Ma, Hui
2016-01-01
To visualize cranial nerves (CNs) using diffusion tensor imaging (DTI) with special parameters. This study also involved the evaluation of preoperative estimates and intraoperative confirmation of the relationship between nerves and tumor by verifying the accuracy of visualization. 3T magnetic resonance imaging scans including 3D-FSPGR, FIESTA, and DTI were used to collect information from 18 patients with skull base tumor. DTI data were integrated into the 3D slicer for fiber tracking and overlapped anatomic images to determine course of nerves. 3D reconstruction of tumors was achieved to perform neighboring, encasing, and invading relationship between lesion and nerves. Optic pathway including the optic chiasm could be traced in cases of tuberculum sellae meningioma and hypophysoma (pituitary tumor). The oculomotor nerve, from the interpeduncular fossa out of the brain stem to supraorbital fissure, was clearly visible in parasellar meningioma cases. Meanwhile, cisternal parts of trigeminal nerve and abducens nerve, facial nerve were also imaged well in vestibular schwannomas and petroclival meningioma cases. The 3D-spatial relationship between CNs and skull base tumor estimated preoperatively by tumor modeling and tractography corresponded to the results determined during surgery. Supported by DTI and 3D slicer, preoperative 3D reconstruction of most CNs related to skull base tumor is feasible in pathological circumstances. We consider DTI Technology to be a useful tool for predicting the course and location of most CNs, and syntopy between them and skull base tumor.
Fusion of infrared and visible images based on saliency scale-space in frequency domain
NASA Astrophysics Data System (ADS)
Chen, Yanfei; Sang, Nong; Dan, Zhiping
2015-12-01
A fusion algorithm of infrared and visible images based on saliency scale-space in the frequency domain was proposed. Focus of human attention is directed towards the salient targets which interpret the most important information in the image. For the given registered infrared and visible images, firstly, visual features are extracted to obtain the input hypercomplex matrix. Secondly, the Hypercomplex Fourier Transform (HFT) is used to obtain the salient regions of the infrared and visible images respectively, the convolution of the input hypercomplex matrix amplitude spectrum with a low-pass Gaussian kernel of an appropriate scale which is equivalent to an image saliency detector are done. The saliency maps are obtained by reconstructing the 2D signal using the original phase and the amplitude spectrum, filtered at a scale selected by minimizing saliency map entropy. Thirdly, the salient regions are fused with the adoptive weighting fusion rules, and the nonsalient regions are fused with the rule based on region energy (RE) and region sharpness (RS), then the fused image is obtained. Experimental results show that the presented algorithm can hold high spectrum information of the visual image, and effectively get the thermal targets information at different scales of the infrared image.
Gradient-based interpolation method for division-of-focal-plane polarimeters.
Gao, Shengkui; Gruev, Viktor
2013-01-14
Recent advancements in nanotechnology and nanofabrication have allowed for the emergence of the division-of-focal-plane (DoFP) polarization imaging sensors. These sensors capture polarization properties of the optical field at every imaging frame. However, the DoFP polarization imaging sensors suffer from large registration error as well as reduced spatial-resolution output. These drawbacks can be improved by applying proper image interpolation methods for the reconstruction of the polarization results. In this paper, we present a new gradient-based interpolation method for DoFP polarimeters. The performance of the proposed interpolation method is evaluated against several previously published interpolation methods by using visual examples and root mean square error (RMSE) comparison. We found that the proposed gradient-based interpolation method can achieve better visual results while maintaining a lower RMSE than other interpolation methods under various dynamic ranges of a scene ranging from dim to bright conditions.
Infrared image enhancement using H(infinity) bounds for surveillance applications.
Qidwai, Uvais
2008-08-01
In this paper, two algorithms have been presented to enhance the infrared (IR) images. Using the autoregressive moving average model structure and H(infinity) optimal bounds, the image pixels are mapped from the IR pixel space into normal optical image space, thus enhancing the IR image for improved visual quality. Although H(infinity)-based system identification algorithms are very common now, they are not quite suitable for real-time applications owing to their complexity. However, many variants of such algorithms are possible that can overcome this constraint. Two such algorithms have been developed and implemented in this paper. Theoretical and algorithmic results show remarkable enhancement in the acquired images. This will help in enhancing the visual quality of IR images for surveillance applications.
A Spot Reminder System for the Visually Impaired Based on a Smartphone Camera
Takizawa, Hotaka; Orita, Kazunori; Aoyagi, Mayumi; Ezaki, Nobuo; Mizuno, Shinji
2017-01-01
The present paper proposes a smartphone-camera-based system to assist visually impaired users in recalling their memories related to important locations, called spots, that they visited. The memories are recorded as voice memos, which can be played back when the users return to the spots. Spot-to-spot correspondence is determined by image matching based on the scale invariant feature transform. The main contribution of the proposed system is to allow visually impaired users to associate arbitrary voice memos with arbitrary spots. The users do not need any special devices or systems except smartphones and do not need to remember the spots where the voice memos were recorded. In addition, the proposed system can identify spots in environments that are inaccessible to the global positioning system. The proposed system has been evaluated by two experiments: image matching tests and a user study. The experimental results suggested the effectiveness of the system to help visually impaired individuals, including blind individuals, recall information about regularly-visited spots. PMID:28165403
A Spot Reminder System for the Visually Impaired Based on a Smartphone Camera.
Takizawa, Hotaka; Orita, Kazunori; Aoyagi, Mayumi; Ezaki, Nobuo; Mizuno, Shinji
2017-02-04
The present paper proposes a smartphone-camera-based system to assist visually impaired users in recalling their memories related to important locations, called spots, that they visited. The memories are recorded as voice memos, which can be played back when the users return to the spots. Spot-to-spot correspondence is determined by image matching based on the scale invariant feature transform. The main contribution of the proposed system is to allow visually impaired users to associate arbitrary voice memos with arbitrary spots. The users do not need any special devices or systems except smartphones and do not need to remember the spots where the voice memos were recorded. In addition, the proposed system can identify spots in environments that are inaccessible to the global positioning system. The proposed system has been evaluated by two experiments: image matching tests and a user study. The experimental results suggested the effectiveness of the system to help visually impaired individuals, including blind individuals, recall information about regularly-visited spots.
Social Image Tag Ranking by Two-View Learning
NASA Astrophysics Data System (ADS)
Zhuang, Jinfeng; Hoi, Steven C. H.
Tags play a central role in text-based social image retrieval and browsing. However, the tags annotated by web users could be noisy, irrelevant, and often incomplete for describing the image contents, which may severely deteriorate the performance of text-based image retrieval models. In order to solve this problem, researchers have proposed techniques to rank the annotated tags of a social image according to their relevance to the visual content of the image. In this paper, we aim to overcome the challenge of social image tag ranking for a corpus of social images with rich user-generated tags by proposing a novel two-view learning approach. It can effectively exploit both textual and visual contents of social images to discover the complicated relationship between tags and images. Unlike the conventional learning approaches that usually assumes some parametric models, our method is completely data-driven and makes no assumption about the underlying models, making the proposed solution practically more effective. We formulate our method as an optimization task and present an efficient algorithm to solve it. To evaluate the efficacy of our method, we conducted an extensive set of experiments by applying our technique to both text-based social image retrieval and automatic image annotation tasks. Our empirical results showed that the proposed method can be more effective than the conventional approaches.
An infrared/video fusion system for military robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, A.W.; Roberts, R.S.
1997-08-05
Sensory information is critical to the telerobotic operation of mobile robots. In particular, visual sensors are a key component of the sensor package on a robot engaged in urban military operations. Visual sensors provide the robot operator with a wealth of information including robot navigation and threat assessment. However, simple countermeasures such as darkness, smoke, or blinding by a laser, can easily neutralize visual sensors. In order to provide a robust visual sensing system, an infrared sensor is required to augment the primary visual sensor. An infrared sensor can acquire useful imagery in conditions that incapacitate a visual sensor. Amore » simple approach to incorporating an infrared sensor into the visual sensing system is to display two images to the operator: side-by-side visual and infrared images. However, dual images might overwhelm the operator with information, and result in degraded robot performance. A better solution is to combine the visual and infrared images into a single image that maximizes scene information. Fusing visual and infrared images into a single image demands balancing the mixture of visual and infrared information. Humans are accustom to viewing and interpreting visual images. They are not accustom to viewing or interpreting infrared images. Hence, the infrared image must be used to enhance the visual image, not obfuscate it.« less
Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.
Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu
2016-09-01
Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
NASA Astrophysics Data System (ADS)
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D.; Shekhar, Raj
2017-01-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool (rdCalib; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery. PMID:28943703
Application of single-image camera calibration for ultrasound augmented laparoscopic visualization.
Liu, Xinyang; Su, He; Kang, Sukryool; Kane, Timothy D; Shekhar, Raj
2015-03-01
Accurate calibration of laparoscopic cameras is essential for enabling many surgical visualization and navigation technologies such as the ultrasound-augmented visualization system that we have developed for laparoscopic surgery. In addition to accuracy and robustness, there is a practical need for a fast and easy camera calibration method that can be performed on demand in the operating room (OR). Conventional camera calibration methods are not suitable for the OR use because they are lengthy and tedious. They require acquisition of multiple images of a target pattern in its entirety to produce satisfactory result. In this work, we evaluated the performance of a single-image camera calibration tool ( rdCalib ; Percieve3D, Coimbra, Portugal) featuring automatic detection of corner points in the image, whether partial or complete, of a custom target pattern. Intrinsic camera parameters of a 5-mm and a 10-mm standard Stryker ® laparoscopes obtained using rdCalib and the well-accepted OpenCV camera calibration method were compared. Target registration error (TRE) as a measure of camera calibration accuracy for our optical tracking-based AR system was also compared between the two calibration methods. Based on our experiments, the single-image camera calibration yields consistent and accurate results (mean TRE = 1.18 ± 0.35 mm for the 5-mm scope and mean TRE = 1.13 ± 0.32 mm for the 10-mm scope), which are comparable to the results obtained using the OpenCV method with 30 images. The new single-image camera calibration method is promising to be applied to our augmented reality visualization system for laparoscopic surgery.
Temporal and spatial localization of prediction-error signals in the visual brain.
Johnston, Patrick; Robinson, Jonathan; Kokkinakis, Athanasios; Ridgeway, Samuel; Simpson, Michael; Johnson, Sam; Kaufman, Jordy; Young, Andrew W
2017-04-01
It has been suggested that the brain pre-empts changes in the environment through generating predictions, although real-time electrophysiological evidence of prediction violations in the domain of visual perception remain elusive. In a series of experiments we showed participants sequences of images that followed a predictable implied sequence or whose final image violated the implied sequence. Through careful design we were able to use the same final image transitions across predictable and unpredictable conditions, ensuring that any differences in neural responses were due only to preceding context and not to the images themselves. EEG and MEG recordings showed that early (N170) and mid-latency (N300) visual evoked potentials were robustly modulated by images that violated the implied sequence across a range of types of image change (expression deformations, rigid-rotations and visual field location). This modulation occurred irrespective of stimulus object category. Although the stimuli were static images, MEG source reconstruction of the early latency signal (N/M170) localized expectancy violation signals to brain areas associated with motion perception. Our findings suggest that the N/M170 can index mismatches between predicted and actual visual inputs in a system that predicts trajectories based on ongoing context. More generally we suggest that the N/M170 may reflect a "family" of brain signals generated across widespread regions of the visual brain indexing the resolution of top-down influences and incoming sensory data. This has important implications for understanding the N/M170 and investigating how the brain represents context to generate perceptual predictions. Copyright © 2017 Elsevier B.V. All rights reserved.
A GPU-based mipmapping method for water surface visualization
NASA Astrophysics Data System (ADS)
Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan
2018-03-01
Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.
The Neural Basis of Mark Making: A Functional MRI Study of Drawing
Yuan, Ye; Brown, Steven
2014-01-01
Compared to most other forms of visually-guided motor activity, drawing is unique in that it “leaves a trail behind” in the form of the emanating image. We took advantage of an MRI-compatible drawing tablet in order to examine both the motor production and perceptual emanation of images. Subjects participated in a series of mark making tasks in which they were cued to draw geometric patterns on the tablet's surface. The critical comparison was between when visual feedback was displayed (image generation) versus when it was not (no image generation). This contrast revealed an occipito-parietal stream involved in motion-based perception of the emerging image, including areas V5/MT+, LO, V3A, and the posterior part of the intraparietal sulcus. Interestingly, when subjects passively viewed animations of visual patterns emerging on the projected surface, all of the sensorimotor network involved in drawing was strongly activated, with the exception of the primary motor cortex. These results argue that the origin of the human capacity to draw and write involves not only motor skills for tool use but also motor-sensory links between drawing movements and the visual images that emanate from them in real time. PMID:25271440
Gorczynska, Iwona; Migacz, Justin V.; Zawadzki, Robert J.; Capps, Arlie G.; Werner, John S.
2016-01-01
We compared the performance of three OCT angiography (OCTA) methods: speckle variance, amplitude decorrelation and phase variance for imaging of the human retina and choroid. Two averaging methods, split spectrum and volume averaging, were compared to assess the quality of the OCTA vascular images. All data were acquired using a swept-source OCT system at 1040 nm central wavelength, operating at 100,000 A-scans/s. We performed a quantitative comparison using a contrast-to-noise (CNR) metric to assess the capability of the three methods to visualize the choriocapillaris layer. For evaluation of the static tissue noise suppression in OCTA images we proposed to calculate CNR between the photoreceptor/RPE complex and the choriocapillaris layer. Finally, we demonstrated that implementation of intensity-based OCT imaging and OCT angiography methods allows for visualization of retinal and choroidal vascular layers known from anatomic studies in retinal preparations. OCT projection imaging of data flattened to selected retinal layers was implemented to visualize retinal and choroidal vasculature. User guided vessel tracing was applied to segment the retinal vasculature. The results were visualized in a form of a skeletonized 3D model. PMID:27231598
A systematic review of visual image theory, assessment, and use in skin cancer and tanning research.
McWhirter, Jennifer E; Hoffman-Goetz, Laurie
2014-01-01
Visual images increase attention, comprehension, and recall of health information and influence health behaviors. Health communication campaigns on skin cancer and tanning often use visual images, but little is known about how such images are selected or evaluated. A systematic review of peer-reviewed, published literature on skin cancer and tanning was conducted to determine (a) what visual communication theories were used, (b) how visual images were evaluated, and (c) how visual images were used in the research studies. Seven databases were searched (PubMed/MEDLINE, EMBASE, PsycINFO, Sociological Abstracts, Social Sciences Full Text, ERIC, and ABI/INFORM) resulting in 5,330 citations. Of those, 47 met the inclusion criteria. Only one study specifically identified a visual communication theory guiding the research. No standard instruments for assessing visual images were reported. Most studies lacked, to varying degrees, comprehensive image description, image pretesting, full reporting of image source details, adequate explanation of image selection or development, and example images. The results highlight the need for greater theoretical and methodological attention to visual images in health communication research in the future. To this end, the authors propose a working definition of visual health communication.
Automatic medical image annotation and keyword-based image retrieval using relevance feedback.
Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal
2012-08-01
This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.
B-spline based image tracking by detection
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Sithiravel, Rajiv; Damini, Anthony; Kirubarajan, Thiagalingam; Rajan, Sreeraman
2016-05-01
Visual image tracking involves the estimation of the motion of any desired targets in a surveillance region using a sequence of images. A standard method of isolating moving targets in image tracking uses background subtraction. The standard background subtraction method is often impacted by irrelevant information in the images, which can lead to poor performance in image-based target tracking. In this paper, a B-Spline based image tracking is implemented. The novel method models the background and foreground using the B-Spline method followed by a tracking-by-detection algorithm. The effectiveness of the proposed algorithm is demonstrated.
Chen, Song; Li, Xuena; Chen, Meijie; Yin, Yafu; Li, Na; Li, Yaming
2016-10-01
This study is aimed to compare the diagnostic power of using quantitative analysis or visual analysis with single time point imaging (STPI) PET/CT and dual time point imaging (DTPI) PET/CT for the classification of solitary pulmonary nodules (SPN) lesions in granuloma-endemic regions. SPN patients who received early and delayed (18)F-FDG PET/CT at 60min and 180min post-injection were retrospectively reviewed. Diagnoses are confirmed by pathological results or follow-ups. Three quantitative metrics, early SUVmax, delayed SUVmax and retention index(the percentage changes between the early SUVmax and delayed SUVmax), were measured for each lesion. Three 5-point scale score was given by blinded interpretations performed by physicians based on STPI PET/CT images, DTPI PET/CT images and CT images, respectively. ROC analysis was performed on three quantitative metrics and three visual interpretation scores. One-hundred-forty-nine patients were retrospectively included. The areas under curve (AUC) of the ROC curves of early SUVmax, delayed SUVmax, RI, STPI PET/CT score, DTPI PET/CT score and CT score are 0.73, 0.74, 0.61, 0.77 0.75 and 0.76, respectively. There were no significant differences between the AUCs in visual interpretation of STPI PET/CT images and DTPI PET/CT images, nor in early SUVmax and delayed SUVmax. The differences of sensitivity, specificity and accuracy between STPI PET/CT and DTPI PET/CT were not significantly different in either quantitative analysis or visual interpretation. In granuloma-endemic regions, DTPI PET/CT did not offer significant improvement over STPI PET/CT in differentiating malignant SPNs in both quantitative analysis and visual interpretation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Evaluation of image deblurring methods via a classification metric
NASA Astrophysics Data System (ADS)
Perrone, Daniele; Humphreys, David; Lamb, Robert A.; Favaro, Paolo
2012-09-01
The performance of single image deblurring algorithms is typically evaluated via a certain discrepancy measure between the reconstructed image and the ideal sharp image. The choice of metric, however, has been a source of debate and has also led to alternative metrics based on human visual perception. While fixed metrics may fail to capture some small but visible artifacts, perception-based metrics may favor reconstructions with artifacts that are visually pleasant. To overcome these limitations, we propose to assess the quality of reconstructed images via a task-driven metric. In this paper we consider object classification as the task and therefore use the rate of classification as the metric to measure deblurring performance. In our evaluation we use data with different types of blur in two cases: Optical Character Recognition (OCR), where the goal is to recognise characters in a black and white image, and object classification with no restrictions on pose, illumination and orientation. Finally, we show how off-the-shelf classification algorithms benefit from working with deblurred images.
Door and window image-based measurement using a mobile device
NASA Astrophysics Data System (ADS)
Ma, Guangyao; Janakaraj, Manishankar; Agam, Gady
2015-03-01
We present a system for door and window image-based measurement using an Android mobile device. In this system a user takes an image of a door or window that needs to be measured and using interaction measures specific dimensions of the object. The existing object is removed from the image and a 3D model of a replacement is rendered onto the image. The visualization provides a 3D model with which the user can interact. When tested on a mobile Android platform with an 8MP camera we obtain an average measurement error of roughly 0.5%. This error rate is stable across a range of view angles, distances from the object, and image resolutions. The main advantages of our mobile device application for image measurement include measuring objects for which physical access is not readily available, documenting in a precise manner the locations in the scene where the measurements were taken, and visualizing a new object with custom selections inside the original view.
A high-level 3D visualization API for Java and ImageJ.
Schmid, Benjamin; Schindelin, Johannes; Cardona, Albert; Longair, Mark; Heisenberg, Martin
2010-05-21
Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set. Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts. Our framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de.
Tan, T J; Lau, Kenneth K; Jackson, Dana; Ardley, Nicholas; Borasu, Adina
2017-04-01
The purpose of this study was to assess the efficacy of model-based iterative reconstruction (MBIR), statistical iterative reconstruction (SIR), and filtered back projection (FBP) image reconstruction algorithms in the delineation of ureters and overall image quality on non-enhanced computed tomography of the renal tracts (NECT-KUB). This was a prospective study of 40 adult patients who underwent NECT-KUB for investigation of ureteric colic. Images were reconstructed using FBP, SIR, and MBIR techniques and individually and randomly assessed by two blinded radiologists. Parameters measured were overall image quality, presence of ureteric calculus, presence of hydronephrosis or hydroureters, image quality of each ureteric segment, total length of ureters unable to be visualized, attenuation values of image noise, and retroperitoneal fat content for each patient. There were no diagnostic discrepancies between image reconstruction modalities for urolithiasis. Overall image qualities and for each ureteric segment were superior using MBIR (67.5 % rated as 'Good to Excellent' vs. 25 % in SIR and 2.5 % in FBP). The lengths of non-visualized ureteric segments were shortest using MBIR (55.0 % measured 'less than 5 cm' vs. ASIR 33.8 % and FBP 10 %). MBIR was able to reduce overall image noise by up to 49.36 % over SIR and 71.02 % over FBP. MBIR technique improves overall image quality and visualization of ureters over FBP and SIR.
NASA Technical Reports Server (NTRS)
Martin, Russel A.; Ahumada, Albert J., Jr.; Larimer, James O.
1992-01-01
This paper describes the design and operation of a new simulation model for color matrix display development. It models the physical structure, the signal processing, and the visual perception of static displays, to allow optimization of display design parameters through image quality measures. The model is simple, implemented in the Mathematica computer language, and highly modular. Signal processing modules operate on the original image. The hardware modules describe backlights and filters, the pixel shape, and the tiling of the pixels over the display. Small regions of the displayed image can be visualized on a CRT. Visual perception modules assume static foveal images. The image is converted into cone catches and then into luminance, red-green, and blue-yellow images. A Haar transform pyramid separates the three images into spatial frequency and direction-specific channels. The channels are scaled by weights taken from human contrast sensitivity measurements of chromatic and luminance mechanisms at similar frequencies and orientations. Each channel provides a detectability measure. These measures allow the comparison of images displayed on prospective devices and, by that, the optimization of display designs.
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; Fales, Carl L.
1990-01-01
Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule
Waitz, M.; Bello, R. Y.; Metz, D.; ...
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less
Imaging the square of the correlated two-electron wave function of a hydrogen molecule.
Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R
2017-12-22
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
Imaging the square of the correlated two-electron wave function of a hydrogen molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waitz, M.; Bello, R. Y.; Metz, D.
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less
Mobile phone imaging and cloud-based analysis for standardized malaria detection and reporting.
Scherr, Thomas F; Gupta, Sparsh; Wright, David W; Haselton, Frederick R
2016-06-27
Rapid diagnostic tests (RDTs) have been widely deployed in low-resource settings. These tests are typically read by visual inspection, and accurate record keeping and data aggregation remains a substantial challenge. A successful malaria elimination campaign will require new strategies that maximize the sensitivity of RDTs, reduce user error, and integrate results reporting tools. In this report, an unmodified mobile phone was used to photograph RDTs, which were subsequently uploaded into a globally accessible database, REDCap, and then analyzed three ways: with an automated image processing program, visual inspection, and a commercial lateral flow reader. The mobile phone image processing detected 20.6 malaria parasites/microliter of blood, compared to the commercial lateral flow reader which detected 64.4 parasites/microliter. Experienced observers visually identified positive malaria cases at 12.5 parasites/microliter, but encountered reporting errors and false negatives. Visual interpretation by inexperienced users resulted in only an 80.2% true negative rate, with substantial disagreement in the lower parasitemia range. We have demonstrated that combining a globally accessible database, such as REDCap, with mobile phone based imaging of RDTs provides objective, secure, automated, data collection and result reporting. This simple combination of existing technologies would appear to be an attractive tool for malaria elimination campaigns.
Mobile phone imaging and cloud-based analysis for standardized malaria detection and reporting
NASA Astrophysics Data System (ADS)
Scherr, Thomas F.; Gupta, Sparsh; Wright, David W.; Haselton, Frederick R.
2016-06-01
Rapid diagnostic tests (RDTs) have been widely deployed in low-resource settings. These tests are typically read by visual inspection, and accurate record keeping and data aggregation remains a substantial challenge. A successful malaria elimination campaign will require new strategies that maximize the sensitivity of RDTs, reduce user error, and integrate results reporting tools. In this report, an unmodified mobile phone was used to photograph RDTs, which were subsequently uploaded into a globally accessible database, REDCap, and then analyzed three ways: with an automated image processing program, visual inspection, and a commercial lateral flow reader. The mobile phone image processing detected 20.6 malaria parasites/microliter of blood, compared to the commercial lateral flow reader which detected 64.4 parasites/microliter. Experienced observers visually identified positive malaria cases at 12.5 parasites/microliter, but encountered reporting errors and false negatives. Visual interpretation by inexperienced users resulted in only an 80.2% true negative rate, with substantial disagreement in the lower parasitemia range. We have demonstrated that combining a globally accessible database, such as REDCap, with mobile phone based imaging of RDTs provides objective, secure, automated, data collection and result reporting. This simple combination of existing technologies would appear to be an attractive tool for malaria elimination campaigns.
2007-04-01
We report our progress in developing Magnetically Induced Motion Imaging (MIMI) for unambiguous identification and localization brachytherapy seeds ...tail artifacts in segmented seed images. The second is a method for joining ends of seeds in segmented seed images based on the phase of the detected
Implicit recognition based on lateralized perceptual fluency.
Vargas, Iliana M; Voss, Joel L; Paller, Ken A
2012-02-06
In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this "implicit recognition" results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention encoding. Presentation in the same visual hemifield at test produced higher recognition accuracy than presentation in the opposite visual hemifield, but only for guess responses. These correct guesses likely reflect a contribution from implicit recognition, given that when the stimulated visual hemifield was the same at study and test, recognition accuracy was higher for guess responses than for responses with any level of confidence. The dramatic difference in guessing accuracy as a function of lateralized perceptual overlap between study and test suggests that implicit recognition arises from memory storage in visual cortical networks that mediate repetition-induced fluency increments.
MultiFacet: A Faceted Interface for Browsing Large Multimedia Collections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Michael J.; Hampton, Shawn D.; Endert, Alexander
2013-10-31
Faceted browsing is a common technique for exploring collections where the data can be grouped into a number of pre-defined categories, most often generated from textual metadata. Historically, faceted browsing has been applied to a single data type such as text or image data. However, typical collections contain multiple data types, such as information from web pages that contain text, images, and video. Additionally, when browsing a collection of images and video, facets are often created based on the metadata which may be incomplete, inaccurate, or missing altogether instead of the actual visual content contained within those images and video.more » In this work we address these limitations by presenting MultiFacet, a faceted browsing interface that supports multiple data types. MultiFacet constructs facets for images and video in a collection from the visual content using computer vision techniques. These visual facets can then be browsed in conjunction with text facets within a single interface to reveal relationships and phenomena within multimedia collections. Additionally, we present a use case based on real-world data, demonstrating the utility of this approach towards browsing a large multimedia data collection.« less
Annotating image ROIs with text descriptions for multimodal biomedical document retrieval
NASA Astrophysics Data System (ADS)
You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-01-01
Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images are expected to contain more important and relevant information than other regions for biomedical article indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval of biomedical articles. We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.
Image Based Biomarker of Breast Cancer Risk: Analysis of Risk Disparity among Minority Populations
2013-03-01
TITLE: Image Based Biomarker of Breast Cancer Risk: Analysis of Risk Disparity among Minority Populations PRINCIPAL INVESTIGATOR: Fengshan Liu...SUBTITLE 5a. CONTRACT NUMBER Image Based Biomarker of Breast Cancer Risk: Analysis of Risk Disparity among Minority Populations 5b. GRANT NUMBER...identifying the prevalence of women with incomplete visualization of the breast . We developed a code to estimate the breast cancer risks using the
Web-based visualization of very large scientific astronomy imagery
NASA Astrophysics Data System (ADS)
Bertin, E.; Pillay, R.; Marmo, C.
2015-04-01
Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.
Visualization and manipulating the image of a formal data structure (FDS)-based database
NASA Astrophysics Data System (ADS)
Verdiesen, Franc; de Hoop, Sylvia; Molenaar, Martien
1994-08-01
A vector map is a terrain representation with a vector-structured geometry. Molenaar formulated an object-oriented formal data structure for 3D single valued vector maps. This FDS is implemented in a database (Oracle). In this study we describe a methodology for visualizing a FDS-based database and manipulating the image. A data set retrieved by querying the database is converted into an import file for a drawing application. An objective of this study is that an end-user can alter and add terrain objects in the image. The drawing application creates an export file, that is compared with the import file. Differences between these files result in updating the database which involves checks on consistency. In this study Autocad is used for visualizing and manipulating the image of the data set. A computer program has been written for the data exchange and conversion between Oracle and Autocad. The data structure of the FDS is compared to the data structure of Autocad and the data of the FDS is converted into the structure of Autocad equal to the FDS.
Bhirde, Ashwin A; Sousa, Alioscka A; Patel, Vyomesh; Azari, Afrouz A; Gutkind, J Silvio; Leapman, Richard D; Rusling, James F
2009-01-01
Aims To image the distribution of drug molecules attached to single-wall carbon nanotubes (SWNTs). Materials & methods Herein we report the use of scanning transmission electron microscopy (STEM) for atomic scale visualization and quantitation of single platinum-based drug molecules attached to SWNTs designed for targeted drug delivery. Fourier transform infrared spectroscopy and energy-dispersive x-ray spectroscopy were used for characterization of the SWNT drug conjugates. Results Z-contrast STEM imaging enabled visualization of the first-line anticancer drug cisplatin on the nanotubes at single molecule level. The identity and presence of cisplatin on the nanotubes was confirmed using energy-dispersive x-ray spectroscopy and Fourier transform infrared spectroscopy. STEM tomography was also used to provide additional insights concerning the nanotube conjugates. Finally, our observations provide a rationale for exploring the use of SWNT bioconjugates to selectively target and kill squamous cancer cells. Conclusion Z-contrast STEM imaging provides a means for direct visualization of heavy metal containing molecules (i.e., cisplatin) attached to surfaces of carbon SWNTs along with distribution and quantitation. PMID:19839812
Intensity-based segmentation and visualization of cells in 3D microscopic images using the GPU
NASA Astrophysics Data System (ADS)
Kang, Mi-Sun; Lee, Jeong-Eom; Jeon, Woong-ki; Choi, Heung-Kook; Kim, Myoung-Hee
2013-02-01
3D microscopy images contain abundant astronomical data, rendering 3D microscopy image processing time-consuming and laborious on a central processing unit (CPU). To solve these problems, many people crop a region of interest (ROI) of the input image to a small size. Although this reduces cost and time, there are drawbacks at the image processing level, e.g., the selected ROI strongly depends on the user and there is a loss in original image information. To mitigate these problems, we developed a 3D microscopy image processing tool on a graphics processing unit (GPU). Our tool provides efficient and various automatic thresholding methods to achieve intensity-based segmentation of 3D microscopy images. Users can select the algorithm to be applied. Further, the image processing tool provides visualization of segmented volume data and can set the scale, transportation, etc. using a keyboard and mouse. However, the 3D objects visualized fast still need to be analyzed to obtain information for biologists. To analyze 3D microscopic images, we need quantitative data of the images. Therefore, we label the segmented 3D objects within all 3D microscopic images and obtain quantitative information on each labeled object. This information can use the classification feature. A user can select the object to be analyzed. Our tool allows the selected object to be displayed on a new window, and hence, more details of the object can be observed. Finally, we validate the effectiveness of our tool by comparing the CPU and GPU processing times by matching the specification and configuration.
Modeling semantic aspects for cross-media image indexing.
Monay, Florent; Gatica-Perez, Daniel
2007-10-01
To go beyond the query-by-example paradigm in image retrieval, there is a need for semantic indexing of large image collections for intuitive text-based image search. Different models have been proposed to learn the dependencies between the visual content of an image set and the associated text captions, then allowing for the automatic creation of semantic indices for unannotated images. The task, however, remains unsolved. In this paper, we present three alternatives to learn a Probabilistic Latent Semantic Analysis model (PLSA) for annotated images, and evaluate their respective performance for automatic image indexing. Under the PLSA assumptions, an image is modeled as a mixture of latent aspects that generates both image features and text captions, and we investigate three ways to learn the mixture of aspects. We also propose a more discriminative image representation than the traditional Blob histogram, concatenating quantized local color information and quantized local texture descriptors. The first learning procedure of a PLSA model for annotated images is a standard EM algorithm, which implicitly assumes that the visual and the textual modalities can be treated equivalently. The other two models are based on an asymmetric PLSA learning, allowing to constrain the definition of the latent space on the visual or on the textual modality. We demonstrate that the textual modality is more appropriate to learn a semantically meaningful latent space, which translates into improved annotation performance. A comparison of our learning algorithms with respect to recent methods on a standard dataset is presented, and a detailed evaluation of the performance shows the validity of our framework.
Fused methods for visual saliency estimation
NASA Astrophysics Data System (ADS)
Danko, Amanda S.; Lyu, Siwei
2015-02-01
In this work, we present a new model of visual saliency by combing results from existing methods, improving upon their performance and accuracy. By fusing pre-attentive and context-aware methods, we highlight the abilities of state-of-the-art models while compensating for their deficiencies. We put this theory to the test in a series of experiments, comparatively evaluating the visual saliency maps and employing them for content-based image retrieval and thumbnail generation. We find that on average our model yields definitive improvements upon recall and f-measure metrics with comparable precisions. In addition, we find that all image searches using our fused method return more correct images and additionally rank them higher than the searches using the original methods alone.
NASA Astrophysics Data System (ADS)
Iqbal, Asim; Farooq, Umar; Mahmood, Hassan; Asad, Muhammad Usman; Khan, Akrama; Atiq, Hafiz Muhammad
2010-02-01
A self teaching image processing and voice recognition based system is developed to educate visually impaired children, chiefly in their primary education. System comprises of a computer, a vision camera, an ear speaker and a microphone. Camera, attached with the computer system is mounted on the ceiling opposite (on the required angle) to the desk on which the book is placed. Sample images and voices in the form of instructions and commands of English, Urdu alphabets, Numeric Digits, Operators and Shapes are already stored in the database. A blind child first reads the embossed character (object) with the help of fingers than he speaks the answer, name of the character, shape etc into the microphone. With the voice command of a blind child received by the microphone, image is taken by the camera which is processed by MATLAB® program developed with the help of Image Acquisition and Image processing toolbox and generates a response or required set of instructions to child via ear speaker, resulting in self education of a visually impaired child. Speech recognition program is also developed in MATLAB® with the help of Data Acquisition and Signal Processing toolbox which records and process the command of the blind child.
Design and implementation of a PC-based image-guided surgical system.
Stefansic, James D; Bass, W Andrew; Hartmann, Steven L; Beasley, Ryan A; Sinha, Tuhin K; Cash, David M; Herline, Alan J; Galloway, Robert L
2002-11-01
In interactive, image-guided surgery, current physical space position in the operating room is displayed on various sets of medical images used for surgical navigation. We have developed a PC-based surgical guidance system (ORION) which synchronously displays surgical position on up to four image sets and updates them in real time. There are three essential components which must be developed for this system: (1) accurately tracked instruments; (2) accurate registration techniques to map physical space to image space; and (3) methods to display and update the image sets on a computer monitor. For each of these components, we have developed a set of dynamic link libraries in MS Visual C++ 6.0 supporting various hardware tools and software techniques. Surgical instruments are tracked in physical space using an active optical tracking system. Several of the different registration algorithms were developed with a library of robust math kernel functions, and the accuracy of all registration techniques was thoroughly investigated. Our display was developed using the Win32 API for windows management and tomographic visualization, a frame grabber for live video capture, and OpenGL for visualization of surface renderings. We have begun to use this current implementation of our system for several surgical procedures, including open and minimally invasive liver surgery.
Visual Image Sensor Organ Replacement: Implementation
NASA Technical Reports Server (NTRS)
Maluf, A. David (Inventor)
2011-01-01
Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.
Real-time digital signal processing for live electro-optic imaging.
Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro
2009-08-31
We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.
The seam visual tracking method for large structures
NASA Astrophysics Data System (ADS)
Bi, Qilin; Jiang, Xiaomin; Liu, Xiaoguang; Cheng, Taobo; Zhu, Yulong
2017-10-01
In this paper, a compact and flexible weld visual tracking method is proposed. Firstly, there was the interference between the visual device and the work-piece to be welded when visual tracking height cannot change. a kind of weld vision system with compact structure and tracking height is researched. Secondly, according to analyze the relative spatial pose between the camera, the laser and the work-piece to be welded and study with the theory of relative geometric imaging, The mathematical model between image feature parameters and three-dimensional trajectory of the assembly gap to be welded is established. Thirdly, the visual imaging parameters of line structured light are optimized by experiment of the weld structure of the weld. Fourth, the interference that line structure light will be scatters at the bright area of metal and the area of surface scratches will be bright is exited in the imaging. These disturbances seriously affect the computational efficiency. The algorithm based on the human eye visual attention mechanism is used to extract the weld characteristics efficiently and stably. Finally, in the experiment, It is verified that the compact and flexible weld tracking method has the tracking accuracy of 0.5mm in the tracking of large structural parts. It is a wide range of industrial application prospects.
Coupled binary embedding for large-scale image retrieval.
Zheng, Liang; Wang, Shengjin; Tian, Qi
2014-08-01
Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.
Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.
Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu
2017-05-23
This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.
Volumetric visualization algorithm development for an FPGA-based custom computing machine
NASA Astrophysics Data System (ADS)
Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim
1998-05-01
Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.
NASA Astrophysics Data System (ADS)
Stranieri, Andrew; Yearwood, John; Pham, Binh
1999-07-01
The development of data warehouses for the storage and analysis of very large corpora of medical image data represents a significant trend in health care and research. Amongst other benefits, the trend toward warehousing enables the use of techniques for automatically discovering knowledge from large and distributed databases. In this paper, we present an application design for knowledge discovery from databases (KDD) techniques that enhance the performance of the problem solving strategy known as case- based reasoning (CBR) for the diagnosis of radiological images. The problem of diagnosing the abnormality of the cervical spine is used to illustrate the method. The design of a case-based medical image diagnostic support system has three essential characteristics. The first is a case representation that comprises textual descriptions of the image, visual features that are known to be useful for indexing images, and additional visual features to be discovered by data mining many existing images. The second characteristic of the approach presented here involves the development of a case base that comprises an optimal number and distribution of cases. The third characteristic involves the automatic discovery, using KDD techniques, of adaptation knowledge to enhance the performance of the case based reasoner. Together, the three characteristics of our approach can overcome real time efficiency obstacles that otherwise mitigate against the use of CBR to the domain of medical image analysis.
NASA Technical Reports Server (NTRS)
Meyer, P. J.
1993-01-01
An image data visual browse facility is developed for a UNIX platform using the X Windows 11 system. It allows one to visually examine reduced resolution image data to determine which data are applicable for further research. Links with a relational data base manager then allow one to extract not only the full resolution image data, but any other ancillary data related to the case study. Various techniques are examined for compression of the image data in order to reduce data storage requirements and time necessary to transmit the data on the internet. Data used were from the WetNet project.
Kim, Kyung Lock; Sung, Gihyun; Sim, Jaehwan; Murray, James; Li, Meng; Lee, Ara; Shrinidhi, Annadka; Park, Kyeng Min; Kim, Kimoon
2018-04-27
Here we report ultrastable synthetic binding pairs between cucurbit[7]uril (CB[7]) and adamantyl- (AdA) or ferrocenyl-ammonium (FcA) as a supramolecular latching system for protein imaging, overcoming the limitations of protein-based binding pairs. Cyanine 3-conjugated CB[7] (Cy3-CB[7]) can visualize AdA- or FcA-labeled proteins to provide clear fluorescence images for accurate and precise analysis of proteins. Furthermore, controllability of the system is demonstrated by treating with a stronger competitor guest. At low temperature, this allows us to selectively detach Cy3-CB[7] from guest-labeled proteins on the cell surface, while leaving Cy3-CB[7] latched to the cytosolic proteins for spatially conditional visualization of target proteins. This work represents a non-protein-based bioimaging tool which has inherent advantages over the widely used protein-based techniques, thereby demonstrating the great potential of this synthetic system.
Schmid, Anita M.; Victor, Jonathan D.
2014-01-01
When analyzing a visual image, the brain has to achieve several goals quickly. One crucial goal is to rapidly detect parts of the visual scene that might be behaviorally relevant, while another one is to segment the image into objects, to enable an internal representation of the world. Both of these processes can be driven by local variations in any of several image attributes such as luminance, color, and texture. Here, focusing on texture defined by local orientation, we propose that the two processes are mediated by separate mechanisms that function in parallel. More specifically, differences in orientation can cause an object to “pop out” and attract visual attention, if its orientation differs from that of the surrounding objects. Differences in orientation can also signal a boundary between objects and therefore provide useful information for image segmentation. We propose that contextual response modulations in primary visual cortex (V1) are responsible for orientation pop-out, while a different kind of receptive field nonlinearity in secondary visual cortex (V2) is responsible for orientation-based texture segmentation. We review a recent experiment that led us to put forward this hypothesis along with other research literature relevant to this notion. PMID:25064441
Mobile medical visual information retrieval.
Depeursinge, Adrien; Duc, Samuel; Eggel, Ivan; Müller, Henning
2012-01-01
In this paper, we propose mobile access to peer-reviewed medical information based on textual search and content-based visual image retrieval. Web-based interfaces designed for limited screen space were developed to query via web services a medical information retrieval engine optimizing the amount of data to be transferred in wireless form. Visual and textual retrieval engines with state-of-the-art performance were integrated. Results obtained show a good usability of the software. Future use in clinical environments has the potential of increasing quality of patient care through bedside access to the medical literature in context.
What Can Pictures Tell Us About Web Pages? Improving Document Search Using Images.
Rodriguez-Vaamonde, Sergio; Torresani, Lorenzo; Fitzgibbon, Andrew W
2015-06-01
Traditional Web search engines do not use the images in the HTML pages to find relevant documents for a given query. Instead, they typically operate by computing a measure of agreement between the keywords provided by the user and only the text portion of each page. In this paper we study whether the content of the pictures appearing in a Web page can be used to enrich the semantic description of an HTML document and consequently boost the performance of a keyword-based search engine. We present a Web-scalable system that exploits a pure text-based search engine to find an initial set of candidate documents for a given query. Then, the candidate set is reranked using visual information extracted from the images contained in the pages. The resulting system retains the computational efficiency of traditional text-based search engines with only a small additional storage cost needed to encode the visual information. We test our approach on one of the TREC Million Query Track benchmarks where we show that the exploitation of visual content yields improvement in accuracies for two distinct text-based search engines, including the system with the best reported performance on this benchmark. We further validate our approach by collecting document relevance judgements on our search results using Amazon Mechanical Turk. The results of this experiment confirm the improvement in accuracy produced by our image-based reranker over a pure text-based system.
Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.
Lee, Jun Ho; Lee, Seunghun; Gho, Yong Song; Song, In Seok; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean
2015-03-01
High-resolution imaging of the cornea is important for studying corneal diseases at cellular levels. Confocal microscopy (CM) has been widely used in the clinic, and two-photon microscopy (TPM) has recently been introduced in various pre-clinical studies. We compared the performance of CM and TPM in normal mouse corneas and neovascularized mouse corneas induced by suturing. Balb/C mice and C57BL/6 mice expressing green fluorescent protein (GFP) were used to compare modalities based on intrinsic contrast and extrinsic fluorescence contrast. CM based on reflection (CMR), CM based on fluorescence (CMF), and TPM based on intrinsic/extrinsic fluorescence and second harmonic generation (SHG) were compared by imaging the same sections of mouse corneas sequentially in vivo. In normal mouse corneas, CMR visualized corneal cell morphologies with some background noise, and CMF visualized GFP expressing corneal cells clearly. TPM visualized corneal cells and collagen in the stroma based on fluorescence and SHG, respectively. However, in neovascularized mouse corneas, CMR could not resolve cells deep inside the cornea due to high background noise from the effects of increased structural irregularity induced by suturing. CMF and TPM visualized cells and induced vasculature better than CMR because both collect signals from fluorescent cells only. Both CMF and TPM had signal decays with depth due to the structural irregularity, with CMF having faster signal decay than TPM. CMR, CMF, and TPM showed different degrees of image degradation in neovascularized mouse corneas. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Guiyan; Wang, Qingyan; Liu, Chen; Wang, Xiaobin; Fan, Shuxiang; Huang, Wenqian
2018-07-01
Rapid and visual detection of the chemical compositions of plant seeds is important but difficult for a traditional seed quality analysis system. In this study, a custom-designed line-scan Raman hyperspectral imaging system was applied for detecting and displaying the main chemical compositions in a heterogeneous maize seed. Raman hyperspectral images collected from the endosperm and embryo of maize seed were acquired and preprocessed by Savitzky-Golay (SG) filter and adaptive iteratively reweighted Penalized Least Squares (airPLS). Three varieties of maize seeds were analyzed, and the characteristics of the spectral and spatial information were extracted from each hyperspectral image. The Raman characteristic peaks, identified at 477, 1443, 1522, 1596 and 1654 cm-1 from 380 to 1800 cm-1 Raman spectra, were related to corn starch, mixture of oil and starch, zeaxanthin, lignin and oil in maize seeds, respectively. Each single-band image corresponding to the characteristic band characterized the spatial distribution of the chemical composition in a seed successfully. The embryo was distinguished from the endosperm by band operation of the single-band images at 477, 1443, and 1596 cm-1 for each variety. Results showed that Raman hyperspectral imaging system could be used for on-line quality control of maize seeds based on the rapid and visual detection of the chemical compositions in maize seeds.
NASA Astrophysics Data System (ADS)
Hayakawa, Tomohiko; Moko, Yushi; Morishita, Kenta; Ishikawa, Masatoshi
2018-04-01
In this paper, we propose a pixel-wise deblurring imaging (PDI) system based on active vision for compensation of the blur caused by high-speed one-dimensional motion between a camera and a target. The optical axis is controlled by back-and-forth motion of a galvanometer mirror to compensate the motion. High-spatial-resolution image captured by our system in high-speed motion is useful for efficient and precise visual inspection, such as visually judging abnormal parts of a tunnel surface to prevent accidents; hence, we applied the PDI system for structural health monitoring. By mounting the system onto a vehicle in a tunnel, we confirmed significant improvement in image quality for submillimeter black-and-white stripes and real tunnel-surface cracks at a speed of 100 km/h.
Severtson, Dolores J; Henriques, Jeffrey B
2009-11-01
Lay people have difficulty understanding the meaning of environmental health risk information. Visual images can use features that leverage visual perception capabilities and semiotic conventions to promote meaningful comprehension. Such evidence-based features were employed to develop two images of a color-coded visual scale to convey drinking water test results. The effect of these images and a typical alphanumeric (AN) lab report were explored in a repeated measures randomized trial among 261 undergraduates. Outcome measures included risk beliefs, emotions, personal safety threshold, mitigation intentions, the durability of beliefs and intentions over time, and test result recall. The plain image conveyed the strongest risk message overall, likely due to increased visual salience. The more detailed graded image conveyed a stronger message than the AN format only for females. Images only prompted meaningful risk reduction intentions among participants with optimistically biased safety threshold beliefs. Fuzzy trace theory supported some findings as follow. Images appeared to promote the consolidation of beliefs over time from an initial meaning of safety to an integrated meaning of safety and health risk; emotion potentially shaped this process. Although the AN report fostered more accurate recall, images were related to more appropriate beliefs and intentions at both time points. Findings hinted at the potential for images to prompt appropriate beliefs independent of accurate factual knowledge. Overall, results indicate that images facilitated meaningful comprehension of environmental health risk information and suggest foci for further research.
Understanding Deep Representations Learned in Modeling Users Likes.
Guntuku, Sharath Chandra; Zhou, Joey Tianyi; Roy, Sujoy; Lin, Weisi; Tsang, Ivor W
2016-08-01
Automatically understanding and discriminating different users' liking for an image is a challenging problem. This is because the relationship between image features (even semantic ones extracted by existing tools, viz., faces, objects, and so on) and users' likes is non-linear, influenced by several subtle factors. This paper presents a deep bi-modal knowledge representation of images based on their visual content and associated tags (text). A mapping step between the different levels of visual and textual representations allows for the transfer of semantic knowledge between the two modalities. Feature selection is applied before learning deep representation to identify the important features for a user to like an image. The proposed representation is shown to be effective in discriminating users based on images they like and also in recommending images that a given user likes, outperforming the state-of-the-art feature representations by ∼ 15 %-20%. Beyond this test-set performance, an attempt is made to qualitatively understand the representations learned by the deep architecture used to model user likes.
Frequency domain analysis of knock images
NASA Astrophysics Data System (ADS)
Qi, Yunliang; He, Xin; Wang, Zhi; Wang, Jianxin
2014-12-01
High speed imaging-based knock analysis has mainly focused on time domain information, e.g. the spark triggered flame speed, the time when end gas auto-ignition occurs and the end gas flame speed after auto-ignition. This study presents a frequency domain analysis on the knock images recorded using a high speed camera with direct photography in a rapid compression machine (RCM). To clearly visualize the pressure wave oscillation in the combustion chamber, the images were high-pass-filtered to extract the luminosity oscillation. The luminosity spectrum was then obtained by applying fast Fourier transform (FFT) to three basic colour components (red, green and blue) of the high-pass-filtered images. Compared to the pressure spectrum, the luminosity spectra better identify the resonant modes of pressure wave oscillation. More importantly, the resonant mode shapes can be clearly visualized by reconstructing the images based on the amplitudes of luminosity spectra at the corresponding resonant frequencies, which agree well with the analytical solutions for mode shapes of gas vibration in a cylindrical cavity.
Kuhl, Brice A.; Rissman, Jesse; Wagner, Anthony D.
2012-01-01
Successful encoding of episodic memories is thought to depend on contributions from prefrontal and temporal lobe structures. Neural processes that contribute to successful encoding have been extensively explored through univariate analyses of neuroimaging data that compare mean activity levels elicited during the encoding of events that are subsequently remembered vs. those subsequently forgotten. Here, we applied pattern classification to fMRI data to assess the degree to which distributed patterns of activity within prefrontal and temporal lobe structures elicited during the encoding of word-image pairs were diagnostic of the visual category (Face or Scene) of the encoded image. We then assessed whether representation of category information was predictive of subsequent memory. Classification analyses indicated that temporal lobe structures contained information robustly diagnostic of visual category. Information in prefrontal cortex was less diagnostic of visual category, but was nonetheless associated with highly reliable classifier-based evidence for category representation. Critically, trials associated with greater classifier-based estimates of category representation in temporal and prefrontal regions were associated with a higher probability of subsequent remembering. Finally, consideration of trial-by-trial variance in classifier-based measures of category representation revealed positive correlations between prefrontal and temporal lobe representations, with the strength of these correlations varying as a function of the category of image being encoded. Together, these results indicate that multi-voxel representations of encoded information can provide unique insights into how visual experiences are transformed into episodic memories. PMID:21925190
Spits, Christine; Wallace, Luke; Reinke, Karin
2017-04-20
Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential.
Interobject grouping facilitates visual awareness.
Stein, Timo; Kaiser, Daniel; Peelen, Marius V
2015-01-01
In organizing perception, the human visual system takes advantage of regularities in the visual input to perceptually group related image elements. Simple stimuli that can be perceptually grouped based on physical regularities, for example by forming an illusory contour, have a competitive advantage in entering visual awareness. Here, we show that regularities that arise from the relative positioning of complex, meaningful objects in the visual environment also modulate visual awareness. Using continuous flash suppression, we found that pairs of objects that were positioned according to real-world spatial regularities (e.g., a lamp above a table) accessed awareness more quickly than the same object pairs shown in irregular configurations (e.g., a table above a lamp). This advantage was specific to upright stimuli and abolished by stimulus inversion, meaning that it did not reflect physical stimulus confounds or the grouping of simple image elements. Thus, knowledge of the spatial configuration of objects in the environment shapes the contents of conscious perception.
In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema.
Hellbach, Katharina; Yaroshenko, Andre; Meinel, Felix G; Yildirim, Ali Ö; Conlon, Thomas M; Bech, Martin; Mueller, Mark; Velroyen, Astrid; Notohamiprodjo, Mike; Bamberg, Fabian; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz
2015-07-01
The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema. Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images. Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher for dark-field imaging than those for conventional transmission images. X-ray dark-field radiography can reliably visualize different stages of emphysema in vivo and demonstrates significantly higher diagnostic accuracy for early stages of emphysema than conventional attenuation-based radiography.
Regional Principal Color Based Saliency Detection
Lou, Jing; Ren, Mingwu; Wang, Huan
2014-01-01
Saliency detection is widely used in many visual applications like image segmentation, object recognition and classification. In this paper, we will introduce a new method to detect salient objects in natural images. The approach is based on a regional principal color contrast modal, which incorporates low-level and medium-level visual cues. The method allows a simple computation of color features and two categories of spatial relationships to a saliency map, achieving higher F-measure rates. At the same time, we present an interpolation approach to evaluate resulting curves, and analyze parameters selection. Our method enables the effective computation of arbitrary resolution images. Experimental results on a saliency database show that our approach produces high quality saliency maps and performs favorably against ten saliency detection algorithms. PMID:25379960
Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition
Cheng, Yujie; Zhou, Bo; Lu, Chen; Yang, Chao
2017-01-01
Fault diagnosis for rolling bearings has attracted increasing attention in recent years. However, few studies have focused on fault diagnosis for rolling bearings under variable conditions. This paper introduces a fault diagnosis method for rolling bearings under variable conditions based on visual cognition. The proposed method includes the following steps. First, the vibration signal data are transformed into a recurrence plot (RP), which is a two-dimensional image. Then, inspired by the visual invariance characteristic of the human visual system (HVS), we utilize speed up robust feature to extract fault features from the two-dimensional RP and generate a 64-dimensional feature vector, which is invariant to image translation, rotation, scaling variation, etc. Third, based on the manifold perception characteristic of HVS, isometric mapping, a manifold learning method that can reflect the intrinsic manifold embedded in the high-dimensional space, is employed to obtain a low-dimensional feature vector. Finally, a classical classification method, support vector machine, is utilized to realize fault diagnosis. Verification data were collected from Case Western Reserve University Bearing Data Center, and the experimental result indicates that the proposed fault diagnosis method based on visual cognition is highly effective for rolling bearings under variable conditions, thus providing a promising approach from the cognitive computing field. PMID:28772943
Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Nixon-Shapiro, Elizabeth
2016-11-01
The role of the physiological processes involved in human vision escapes clarification in current literature. Many unanswered questions about vision include: 1) whether there is more to lateral inhibition than previously proposed, 2) the role of the discs in rods and cones, 3) how inverted images on the retina are converted to erect images for visual perception, 4) what portion of the image formed on the retina is actually processed in the brain, 5) the reason we have an after-image with antagonistic colors, and 6) how we remember space. This theoretical article attempts to clarify some of the physiological processes involved with human vision. The global integration of visual information is conceptual; therefore, we include illustrations to present our theory. Universally, the eyeball is 2.4cm and works together with membrane potential, correspondingly representing the retinal layers, photoreceptors, and cortex. Images formed within the photoreceptors must first be converted into chemical signals on the photoreceptors' individual discs and the signals at each disc are transduced from light photons into electrical signals. We contend that the discs code the electrical signals into accurate distances and are shown in our figures. The pre-existing oscillations among the various cortices including the striate and parietal cortex, and the retina work in unison to create an infrastructure of visual space that functionally "places" the objects within this "neural" space. The horizontal layers integrate all discs accurately to create a retina that is pre-coded for distance. Our theory suggests image inversion never takes place on the retina, but rather images fall onto the retina as compressed and coiled, then amplified through lateral inhibition through intensification and amplification on the OFF-center cones. The intensified and amplified images are decompressed and expanded in the brain, which become the images we perceive as external vision. This is a theoretical article presenting a novel hypothesis about the physiological processes in vision, and expounds upon the visual aspect of two of our previously published articles, "A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience", and "Functional representation of vision within the mind: A visual consciousness model based in 3D default space." Currently, neuroscience teaches that visual images are initially inverted on the retina, processed in the brain, and then conscious perception of vision happens in the visual cortex. Here, we propose that inversion of visual images never takes place because images enter the retina as coiled and compressed graded potentials that are intensified and amplified in OFF-center photoreceptors. Once they reach the brain, they are decompressed and expanded to the original size of the image, which is perceived by the brain as the external image. We adduce that pre-existing oscillations (alpha, beta, and gamma) among the various cortices in the brain (including the striate and parietal cortex) and the retina, work together in unison to create an infrastructure of visual space thatfunctionally "places" the objects within a "neural" space. These fast oscillations "bring" the faculties of the cortical activity to the retina, creating the infrastructure of the space within the eye where visual information can be immediately recognized by the brain. By this we mean that the visual (striate) cortex synchronizes the information with the photoreceptors in the retina, and the brain instantaneously receives the already processed visual image, thereby relinquishing the eye from being required to send the information to the brain to be interpreted before it can rise to consciousness. The visual system is a heavily studied area of neuroscience yet very little is known about how vision occurs. We believe that our novel hypothesis provides new insights into how vision becomes part of consciousness, helps to reconcile various previously proposed models, and further elucidates current questions in vision based on our unified 3D default space model. Illustrations are provided to aid in explaining our theory. Copyright © 2016. Published by Elsevier Ltd.
Gross, M Melissa; Wright, Mary C; Anderson, Olivia S
2017-09-01
Research on the benefits of visual learning has relied primarily on lecture-based pedagogy, but the potential benefits of combining active learning strategies with visual and verbal materials on learning anatomy has not yet been explored. In this study, the differential effects of text-based and image-based active learning exercises on examination performance were investigated in a functional anatomy course. Each class session was punctuated with an average of 12 text-based and image-based active learning exercises. Participation data from 231 students were compared with their examination performance on 262 questions associated with the in-class exercises. Students also rated the helpfulness and difficulty of the in-class exercises on a survey. Participation in the active learning exercises was positively correlated with examination performance (r = 0.63, P < 0.001). When controlling for other key demographics (gender, underrepresented minority status) and prior grade point average, participation in the image-based exercises was significantly correlated with performance on examination questions associated with image-based exercises (P < 0.001) and text-based exercises (P < 0.01), while participation in text-based exercises was not. Additionally, students reported that the active learning exercises were helpful for seeing images of key ideas (94%) and clarifying key course concepts (80%), and that the image-based exercises were significantly less demanding, less hard and required less effort than text-based exercises (P < 0.05). The findings confirm the positive effect of using images and active learning strategies on student learning, and suggest that integrating them may be especially beneficial for learning anatomy. Anat Sci Educ 10: 444-455. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.
Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S.T.C.; Knowlton, R.; Hoo, K.S.
1995-12-31
Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the grain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstationmore » to aid the non-invasive presurgical evaluation of epilepsy patients. These techniques include on-line access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitative of structural and functional information contained in the registered images. For illustration, the authors describe the use of these techniques in a patient case of non-lesional neocortical epilepsy. They also present the future work based on preliminary studies.« less
Visual tracking of da Vinci instruments for laparoscopic surgery
NASA Astrophysics Data System (ADS)
Speidel, S.; Kuhn, E.; Bodenstedt, S.; Röhl, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.
2014-03-01
Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.
Gerth, Victor E; Vize, Peter D
2005-04-01
The Gene Expression Viewer is a web-launched three-dimensional visualization tool, tailored to compare surface reconstructions of multi-channel image volumes generated by confocal microscopy or micro-CT.
NASA Astrophysics Data System (ADS)
Tiede, Dirk; Lang, Stefan
2010-11-01
In this paper we focus on the application of transferable, object-based image analysis algorithms for dwelling extraction in a camp for internally displaced people (IDP) in Darfur, Sudan along with innovative means for scientific visualisation of the results. Three very high spatial resolution satellite images (QuickBird: 2002, 2004, 2008) were used for: (1) extracting different types of dwellings and (2) calculating and visualizing added-value products such as dwelling density and camp structure. The results were visualized on virtual globes (Google Earth and ArcGIS Explorer) revealing the analysis results (analytical 3D views,) transformed into the third dimension (z-value). Data formats depend on virtual globe software including KML/KMZ (keyhole mark-up language) and ESRI 3D shapefiles streamed as ArcGIS Server-based globe service. In addition, means for improving overall performance of automated dwelling structures using grid computing techniques are discussed using examples from a similar study.
JuxtaView - A tool for interactive visualization of large imagery on scalable tiled displays
Krishnaprasad, N.K.; Vishwanath, V.; Venkataraman, S.; Rao, A.G.; Renambot, L.; Leigh, J.; Johnson, A.E.; Davis, B.
2004-01-01
JuxtaView is a cluster-based application for viewing ultra-high-resolution images on scalable tiled displays. We present in JuxtaView, a new parallel computing and distributed memory approach for out-of-core montage visualization, using LambdaRAM, a software-based network-level cache system. The ultimate goal of JuxtaView is to enable a user to interactively roam through potentially terabytes of distributed, spatially referenced image data such as those from electron microscopes, satellites and aerial photographs. In working towards this goal, we describe our first prototype implemented over a local area network, where the image is distributed using LambdaRAM, on the memory of all nodes of a PC cluster driving a tiled display wall. Aggressive pre-fetching schemes employed by LambdaRAM help to reduce latency involved in remote memory access. We compare LambdaRAM with a more traditional memory-mapped file approach for out-of-core visualization. ?? 2004 IEEE.
iScreen: Image-Based High-Content RNAi Screening Analysis Tools.
Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua
2015-09-01
High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.
CR softcopy display presets based on optimum visualization of specific findings
NASA Astrophysics Data System (ADS)
Andriole, Katherine P.; Gould, Robert G.; Webb, W. R.
1999-07-01
The purpose of this research is to assess the utility of providing presets for computed radiography (CR) softcopy display, based not on the window/level settings, but on image processing applied to the image based on optimization for visualization of specific findings, pathologies, etc. Clinical chest images are acquired using an Agfa ADC 70 CR scanner, and transferred over the PACS network to an image processing station which has the capability to perform multiscale contrast equalization. The optimal image processing settings per finding are developed in conjunction with a thoracic radiologist by manipulating the multiscale image contrast amplification algorithm parameters. Softcopy display of images processed with finding-specific settings are compared with the standard default image presentation for fifty cases of each category. Comparison is scored using a five point scale with positive one and two denoting the standard presentation is preferred over the finding-specific presets, negative one and two denoting the finding-specific preset is preferred over the standard presentation, and zero denoting no difference. Presets have been developed for pneumothorax and clinical cases are currently being collected in preparation for formal clinical trials. Subjective assessments indicate a preference for the optimized-preset presentation of images over the standard default, particularly by inexperienced radiology residents and referring clinicians.
Seamless positioning and navigation by using geo-referenced images and multi-sensor data.
Li, Xun; Wang, Jinling; Li, Tao
2013-07-12
Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments.
Seamless Positioning and Navigation by Using Geo-Referenced Images and Multi-Sensor Data
Li, Xun; Wang, Jinling; Li, Tao
2013-01-01
Ubiquitous positioning is considered to be a highly demanding application for today's Location-Based Services (LBS). While satellite-based navigation has achieved great advances in the past few decades, positioning and navigation in indoor scenarios and deep urban areas has remained a challenging topic of substantial research interest. Various strategies have been adopted to fill this gap, within which vision-based methods have attracted growing attention due to the widespread use of cameras on mobile devices. However, current vision-based methods using image processing have yet to revealed their full potential for navigation applications and are insufficient in many aspects. Therefore in this paper, we present a hybrid image-based positioning system that is intended to provide seamless position solution in six degrees of freedom (6DoF) for location-based services in both outdoor and indoor environments. It mainly uses visual sensor input to match with geo-referenced images for image-based positioning resolution, and also takes advantage of multiple onboard sensors, including the built-in GPS receiver and digital compass to assist visual methods. Experiments demonstrate that such a system can greatly improve the position accuracy for areas where the GPS signal is negatively affected (such as in urban canyons), and it also provides excellent position accuracy for indoor environments. PMID:23857267
NASA Astrophysics Data System (ADS)
Kuvychko, Igor
2001-10-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.
NASA Astrophysics Data System (ADS)
Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.
2005-12-01
Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.
Inagaki, Mikio; Fujita, Ichiro
2011-07-13
Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.
Watanabe, Ayumi; Inoue, Yusuke; Asano, Yuji; Kikuchi, Kei; Miyatake, Hiroki; Tokushige, Takanobu
2017-01-01
The specific binding ratio (SBR) was first reported by Tossici-Bolt et al. for quantitative indicators for dopamine transporter (DAT) imaging. It is defined as the ratio of the specific binding concentration of the striatum to the non-specific binding concentration of the whole brain other than the striatum. The non-specific binding concentration is calculated based on the region of interest (ROI), which is set 20 mm inside the outer contour, defined by a threshold technique. Tossici-Bolt et al. used a 50% threshold, but sometimes we couldn't define the ROI of non-specific binding concentration (reference region) and calculate SBR appropriately with a 50% threshold. Therefore, we sought a new method for determining the reference region when calculating SBR. We used data from 20 patients who had undergone DAT imaging in our hospital, to calculate the non-specific binding concentration by the following methods, the threshold to define a reference region was fixed at some specific values (the fixing method) and reference region was visually optimized by an examiner at every examination (the visual optimization method). First, we assessed the reference region of each method visually, and afterward, we quantitatively compared SBR calculated based on each method. In the visual assessment, the scores of the fixing method at 30% and visual optimization method were higher than the scores of the fixing method at other values, with or without scatter correction. In the quantitative assessment, the SBR obtained by visual optimization of the reference region, based on consensus of three radiological technologists, was used as a baseline (the standard method). The values of SBR showed good agreement between the standard method and both the fixing method at 30% and the visual optimization method, with or without scatter correction. Therefore, the fixing method at 30% and the visual optimization method were equally suitable for determining the reference region.
Twellmann, Thorsten; Meyer-Baese, Anke; Lange, Oliver; Foo, Simon; Nattkemper, Tim W.
2008-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important tool in breast cancer diagnosis, but evaluation of multitemporal 3D image data holds new challenges for human observers. To aid the image analysis process, we apply supervised and unsupervised pattern recognition techniques for computing enhanced visualizations of suspicious lesions in breast MRI data. These techniques represent an important component of future sophisticated computer-aided diagnosis (CAD) systems and support the visual exploration of spatial and temporal features of DCE-MRI data stemming from patients with confirmed lesion diagnosis. By taking into account the heterogeneity of cancerous tissue, these techniques reveal signals with malignant, benign and normal kinetics. They also provide a regional subclassification of pathological breast tissue, which is the basis for pseudo-color presentations of the image data. Intelligent medical systems are expected to have substantial implications in healthcare politics by contributing to the diagnosis of indeterminate breast lesions by non-invasive imaging. PMID:19255616
NASA Astrophysics Data System (ADS)
Dunckel, Anne E.; Cardenas, M. Bayani; Sawyer, Audrey H.; Bennett, Philip C.
2009-12-01
Microbial mats have spatially heterogeneous structured communities that manifest visually through vibrant color zonation often associated with environmental gradients. We report the first use of high-resolution thermal infrared imaging to map temperature at four hot springs within the El Tatio Geyser Field, Chile. Thermal images with millimeter resolution show drastic variability and pronounced patterning in temperature, with changes on the order of 30°C within a square decimeter. Paired temperature and visual images show that zones with specific coloration occur within distinct temperature ranges. Unlike previous studies where maximum, minimum, and optimal temperatures for microorganisms are based on isothermally-controlled laboratory cultures, thermal imaging allows for mapping thousands of temperature values in a natural setting. This allows for efficiently constraining natural temperature bounds for visually distinct mat zones. This approach expands current understanding of thermophilic microbial communities and opens doors for detailed analysis of biophysical controls on microbial ecology.
NASA Astrophysics Data System (ADS)
Heisler, Morgan; Lee, Sieun; Mammo, Zaid; Jian, Yifan; Ju, Myeong Jin; Miao, Dongkai; Raposo, Eric; Wahl, Daniel J.; Merkur, Andrew; Navajas, Eduardo; Balaratnasingam, Chandrakumar; Beg, Mirza Faisal; Sarunic, Marinko V.
2017-02-01
High quality visualization of the retinal microvasculature can improve our understanding of the onset and development of retinal vascular diseases, which are a major cause of visual morbidity and are increasing in prevalence. Optical Coherence Tomography Angiography (OCT-A) images are acquired over multiple seconds and are particularly susceptible to motion artifacts, which are more prevalent when imaging patients with pathology whose ability to fixate is limited. The acquisition of multiple OCT-A images sequentially can be performed for the purpose of removing motion artifact and increasing the contrast of the vascular network through averaging. Due to the motion artifacts, a robust registration pipeline is needed before feature preserving image averaging can be performed. In this report, we present a novel method for a GPU-accelerated pipeline for acquisition, processing, segmentation, and registration of multiple, sequentially acquired OCT-A images to correct for the motion artifacts in individual images for the purpose of averaging. High performance computing, blending CPU and GPU, was introduced to accelerate processing in order to provide high quality visualization of the retinal microvasculature and to enable a more accurate quantitative analysis in a clinically useful time frame. Specifically, image discontinuities caused by rapid micro-saccadic movements and image warping due to smoother reflex movements were corrected by strip-wise affine registration estimated using Scale Invariant Feature Transform (SIFT) keypoints and subsequent local similarity-based non-rigid registration. These techniques improve the image quality, increasing the value for clinical diagnosis and increasing the range of patients for whom high quality OCT-A images can be acquired.
Optical cylinder designs to increase the field of vision in the osteo-odonto-keratoprosthesis.
Hull, C C; Liu, C S; Sciscio, A; Eleftheriadis, H; Herold, J
2000-12-01
The single optical cylinders used in the osteo-odonto-keratoprosthesis (OOKP) are known to produce very small visual fields. Values of 40 degrees are typically quoted. The purpose of this paper is to present designs for new optical cylinders that significantly increase the field of view and therefore improve the visual rehabilitation of patients having an OOKP. Computer ray-tracing techniques were used to design and analyse improved one- and two-piece optical cylinders made from polymethyl methacrylate. All designs were required to have a potential visual acuity of 6/6 before consideration was given to the visual field and optimising off-axis image quality. Aspheric surfaces were used where this significantly improved off-axis image quality. Single optical cylinders, with increased posterior cylinder (intraocular) diameters, gave an increase in the theoretical visual field of 18% (from 76 degrees to 90 degrees) over current designs. Two-piece designs based on an inverted telephoto principle gave theoretical field angles over 120 degrees. Aspheric surfaces were shown to improve the off-axis image quality while maintaining a potential visual acuity of at least 6/6. This may well increase the measured visual field by improving the retinal illuminance off-axis. Results demonstrate that it is possible to significantly increase the theoretical maximum visual field through OOKP optical cylinders. Such designs will improve the visual rehabilitation of patients undergoing this procedure.
A natural-color mapping for single-band night-time image based on FPGA
NASA Astrophysics Data System (ADS)
Wang, Yilun; Qian, Yunsheng
2018-01-01
A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images.
Ogunlade, Olumide; Connell, John J; Huang, Jennifer L; Zhang, Edward; Lythgoe, Mark F; Long, David A; Beard, Paul
2018-06-01
Noninvasive imaging of the kidney vasculature in preclinical murine models is important for the assessment of renal development, studying diseases and evaluating new therapies but is challenging to achieve using existing imaging modalities. Photoacoustic imaging is a promising new technique that is particularly well suited to visualizing the vasculature and could provide an alternative to existing preclinical imaging methods for studying renal vascular anatomy and function. To investigate this, an all-optical Fabry-Perot-based photoacoustic scanner was used to image the abdominal region of mice. High-resolution three-dimensional, noninvasive, label-free photoacoustic images of the mouse kidney and renal vasculature were acquired in vivo. The scanner was also used to visualize and quantify differences in the vascular architecture of the kidney in vivo due to polycystic kidney disease. This study suggests that photoacoustic imaging could be utilized as a novel preclinical imaging tool for studying the biology of renal disease.
Johari, Masoumeh; Abdollahzadeh, Milad; Esmaeili, Farzad; Sakhamanesh, Vahideh
2018-01-01
Background: Dental cone beam computed tomography (CBCT) images suffer from severe metal artifacts. These artifacts degrade the quality of acquired image and in some cases make it unsuitable to use. Streaking artifacts and cavities around teeth are the main reason of degradation. Methods: In this article, we have proposed a new artifact reduction algorithm which has three parallel components. The first component extracts teeth based on the modeling of image histogram with a Gaussian mixture model. Striking artifact reduction component reduces artifacts using converting image into the polar domain and applying morphological filtering. The third component fills cavities through a simple but effective morphological filtering operation. Results: Finally, results of these three components are combined into a fusion step to create a visually good image which is more compatible to human visual system. Conclusions: Results show that the proposed algorithm reduces artifacts of dental CBCT images and produces clean images. PMID:29535920
Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.
Reena Benjamin, J; Jayasree, T
2018-02-01
In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.
A fast and automatic fusion algorithm for unregistered multi-exposure image sequence
NASA Astrophysics Data System (ADS)
Liu, Yan; Yu, Feihong
2014-09-01
Human visual system (HVS) can visualize all the brightness levels of the scene through visual adaptation. However, the dynamic range of most commercial digital cameras and display devices are smaller than the dynamic range of human eye. This implies low dynamic range (LDR) images captured by normal digital camera may lose image details. We propose an efficient approach to high dynamic (HDR) image fusion that copes with image displacement and image blur degradation in a computationally efficient manner, which is suitable for implementation on mobile devices. The various image registration algorithms proposed in the previous literatures are unable to meet the efficiency and performance requirements in the application of mobile devices. In this paper, we selected Oriented Brief (ORB) detector to extract local image structures. The descriptor selected in multi-exposure image fusion algorithm has to be fast and robust to illumination variations and geometric deformations. ORB descriptor is the best candidate in our algorithm. Further, we perform an improved RANdom Sample Consensus (RANSAC) algorithm to reject incorrect matches. For the fusion of images, a new approach based on Stationary Wavelet Transform (SWT) is used. The experimental results demonstrate that the proposed algorithm generates high quality images at low computational cost. Comparisons with a number of other feature matching methods show that our method gets better performance.
A survey of infrared and visual image fusion methods
NASA Astrophysics Data System (ADS)
Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Hai, Jinjin; He, Kangjian
2017-09-01
Infrared (IR) and visual (VI) image fusion is designed to fuse multiple source images into a comprehensive image to boost imaging quality and reduce redundancy information, which is widely used in various imaging equipment to improve the visual ability of human and robot. The accurate, reliable and complementary descriptions of the scene in fused images make these techniques be widely used in various fields. In recent years, a large number of fusion methods for IR and VI images have been proposed due to the ever-growing demands and the progress of image representation methods; however, there has not been published an integrated survey paper about this field in last several years. Therefore, we make a survey to report the algorithmic developments of IR and VI image fusion. In this paper, we first characterize the IR and VI image fusion based applications to represent an overview of the research status. Then we present a synthesize survey of the state of the art. Thirdly, the frequently-used image fusion quality measures are introduced. Fourthly, we perform some experiments of typical methods and make corresponding analysis. At last, we summarize the corresponding tendencies and challenges in IR and VI image fusion. This survey concludes that although various IR and VI image fusion methods have been proposed, there still exist further improvements or potential research directions in different applications of IR and VI image fusion.
Image gathering and coding for digital restoration: Information efficiency and visual quality
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; John, Sarah; Mccormick, Judith A.; Narayanswamy, Ramkumar
1989-01-01
Image gathering and coding are commonly treated as tasks separate from each other and from the digital processing used to restore and enhance the images. The goal is to develop a method that allows us to assess quantitatively the combined performance of image gathering and coding for the digital restoration of images with high visual quality. Digital restoration is often interactive because visual quality depends on perceptual rather than mathematical considerations, and these considerations vary with the target, the application, and the observer. The approach is based on the theoretical treatment of image gathering as a communication channel (J. Opt. Soc. Am. A2, 1644(1985);5,285(1988). Initial results suggest that the practical upper limit of the information contained in the acquired image data range typically from approximately 2 to 4 binary information units (bifs) per sample, depending on the design of the image-gathering system. The associated information efficiency of the transmitted data (i.e., the ratio of information over data) ranges typically from approximately 0.3 to 0.5 bif per bit without coding to approximately 0.5 to 0.9 bif per bit with lossless predictive compression and Huffman coding. The visual quality that can be attained with interactive image restoration improves perceptibly as the available information increases to approximately 3 bifs per sample. However, the perceptual improvements that can be attained with further increases in information are very subtle and depend on the target and the desired enhancement.
Physical and visual state of 100-year-old Lippman color photographs
NASA Astrophysics Data System (ADS)
Alschuler, William R.
1998-02-01
In 1891 Gabriel Lippmann demonstrated a photographic process which records full color images on black and white emulsions. It is closely related to Denisyuk's reflection holography technique, which he named after Lippmann. After a historical introduction I will speak on the physical state and visual appearance of Lippmann-process color images produced at the turn of the century by Lippmann and a limited number of other practitioners. Images made on albumin, collodion and gelatine will be discussed, based on my examination of more than 400 images held in public and private collections. Examples of old original images (and some new work) will be shown. It is possible to conclude that, if properly excited, such images will be stable in their beautiful rendition of color and extremely high resolution almost indefinitely.
Visual Pattern Analysis in Histopathology Images Using Bag of Features
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Caicedo, Juan C.; González, Fabio A.
This paper presents a framework to analyse visual patterns in a collection of medical images in a two stage procedure. First, a set of representative visual patterns from the image collection is obtained by constructing a visual-word dictionary under a bag-of-features approach. Second, an analysis of the relationships between visual patterns and semantic concepts in the image collection is performed. The most important visual patterns for each semantic concept are identified using correlation analysis. A matrix visualization of the structure and organization of the image collection is generated using a cluster analysis. The experimental evaluation was conducted on a histopathology image collection and results showed clear relationships between visual patterns and semantic concepts, that in addition, are of easy interpretation and understanding.
Global-Context Based Salient Region Detection in Nature Images
NASA Astrophysics Data System (ADS)
Bao, Hong; Xu, De; Tang, Yingjun
Visually saliency detection provides an alternative methodology to image description in many applications such as adaptive content delivery and image retrieval. One of the main aims of visual attention in computer vision is to detect and segment the salient regions in an image. In this paper, we employ matrix decomposition to detect salient object in nature images. To efficiently eliminate high contrast noise regions in the background, we integrate global context information into saliency detection. Therefore, the most salient region can be easily selected as the one which is globally most isolated. The proposed approach intrinsically provides an alternative methodology to model attention with low implementation complexity. Experiments show that our approach achieves much better performance than that from the existing state-of-art methods.
REAL TIME MRI GUIDED RADIOFREQUENCY ATRIAL ABLATION AND VISUALIZATION OF LESION FORMATION AT 3-TESLA
Vergara, Gaston R.; Vijayakumar, Sathya; Kholmovski, Eugene G.; Blauer, Joshua J.E.; Guttman, Mike A.; Gloschat, Christopher; Payne, Gene; Vij, Kamal; Akoum, Nazem W.; Daccarett, Marcos; McGann, Christopher J.; MacLeod, Rob S.; Marrouche, Nassir F.
2011-01-01
Background MRI allows visualization of location and extent of RF ablation lesion, myocardial scar formation, and real-time (RT) assessment of lesion formation. In this study, we report a novel 3-Tesla RT-MRI based porcine RF ablation model and visualization of lesion formation in the atrium during RF energy delivery. Objective To develop of a 3-Tesla RT-MRI based catheter ablation and lesion visualization system. Methods RF energy was delivered to six pigs under RT-MRI guidance. A novel MRI compatible mapping and ablation catheter was used. Under RT-MRI this catheter was safely guided and positioned within either the left or right atrium. Unipolar and bi-polar electrograms were recorded. The catheter tip-tissue interface was visualized with a T1-weighted gradient echo sequence. RF energy was then delivered in a power-controlled fashion. Myocardial changes and lesion formation were visualized with a T2-weighted (T2w) HASTE sequence during ablation. Results Real-time visualization of lesion formation was achieved in 30% of the ablations performed. In the other cases, either the lesion was formed outside the imaged region (25%) or lesion was not created (45%) presumably due to poor tissue-catheter tip contact. The presence of lesions was confirmed by late gadolinium enhancement (LGE) MRI and macroscopic tissue examination. Conclusion MRI compatible catheters can be navigated and RF energy safely delivered under 3-Tesla RT-MRI guidance. It is also feasible to record electrograms during RT imaging. Real-time visualization of lesion as it forms during delivery of RF energy is possible and was demonstrated using T2w HASTE imaging. PMID:21034854
NASA Astrophysics Data System (ADS)
You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-01-01
Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.
Color-Space-Based Visual-MIMO for V2X Communication †
Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo
2016-01-01
In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603
Color-Space-Based Visual-MIMO for V2X Communication.
Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo
2016-04-23
In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.
European dental students' opinions about visual and digital tooth colour determination systems.
Dozic, Alma; Kharbanda, Aron K; Kamell, Hassib; Brand, Henk S
2011-12-01
The aim of the study was to investigate students' opinion about visual and digital tooth colour determination education at different European dental schools. A cross-sectional web-based survey was created, containing nine dichotomous, multiple choice and 5-point Likert scale questions. The questionnaire was distributed amongst students of 40 European dental schools. Seven hundred and ninety-nine completed questionnaires from students of 15 dental schools were analysed statistically. Vitapan Classical and Vitapan 3D-Master are the most frequently used visual determination systems at European dental schools. Most students responded with "neutral" regarding whether they find it easy to identify the colour of teeth with a visual determination system (range 2.8-3.6). A minority of the dental students had received education in digital imaging systems (2-47%). The Easyshade was the most frequently mentioned digital system. The majority of the students who did not receive education on digital systems would like to see this topic added to the curriculum (77-100%). The dental students who had worked with both methods found it significantly easier to determine tooth colour with a digital system than with a visual system (mean score 3.5 ± 0.8 vs. 3.0 ± 0.8). Tooth colour determination programmes show a considerable variation across European dental schools. Based upon the outcomes of this study, students prefer digital imaging systems over visual systems, and like to have (more) education about digital tooth colour imaging. Copyright © 2011 Elsevier Ltd. All rights reserved.
Expansion of the visual angle of a car rear-view image via an image mosaic algorithm
NASA Astrophysics Data System (ADS)
Wu, Zhuangwen; Zhu, Liangrong; Sun, Xincheng
2015-05-01
The rear-view image system is one of the active safety devices in cars and is widely applied in all types of vehicles and traffic safety areas. However, studies made by both domestic and foreign researchers were based on a single image capture device while reversing, so a blind area still remained to drivers. Even if multiple cameras were used to expand the visual angle of the car's rear-view image in some studies, the blind area remained because different source images were not mosaicked together. To acquire an expanded visual angle of a car rear-view image, two charge-coupled device cameras with optical axes angled at 30 deg were mounted below the left and right fenders of a car in three light conditions-sunny outdoors, cloudy outdoors, and an underground garage-to capture rear-view heterologous images of the car. Then these rear-view heterologous images were rapidly registered through the scale invariant feature transform algorithm. Combined with the random sample consensus algorithm, the two heterologous images were finally mosaicked using the linear weighted gradated in-and-out fusion algorithm, and a seamless and visual-angle-expanded rear-view image was acquired. The four-index test results showed that the algorithms can mosaic rear-view images well in the underground garage condition, where the average rate of correct matching was the lowest among the three conditions. The rear-view image mosaic algorithm presented had the best information preservation, the shortest computation time and the most complete preservation of the image detail features compared to the mean value method (MVM) and segmental fusion method (SFM), and it was also able to perform better in real time and provided more comprehensive image details than MVM and SFM. In addition, it had the most complete image preservation from source images among the three algorithms. The method introduced by this paper provided the basis for researching the expansion of the visual angle of a car rear-view image in all-weather conditions.
An Updated Account of the WISELAV Project: A Visual Construction of the English Verb System
ERIC Educational Resources Information Center
Pablos, Andrés Palacios
2016-01-01
This article presents the state of the art in WISELAV, an on-going research project based on the metaphor Languages Are (like) Visuals (LAV) and its mapping Words-In-Shapes Exchange (WISE). First, the cognitive premises that motivate the proposal are recalled: the power of images, students' increasingly visual cognitive learning style, and the…
A fast non-contact imaging photoplethysmography method using a tissue-like model
NASA Astrophysics Data System (ADS)
McDuff, Daniel J.; Blackford, Ethan B.; Estepp, Justin R.; Nishidate, Izumi
2018-02-01
Imaging photoplethysmography (iPPG) allows non-contact, concomitant measurement and visualization of peripheral blood flow using just an RGB camera. Most iPPG methods require a window of temporal data and complex computation, this makes real-time measurement and spatial visualization impossible. We present a fast,"window-less", non-contact imaging photoplethysmography method, based on a tissue-like model of the skin, that allows accurate measurement of heart rate and heart rate variability parameters. The error in heart rate estimates is equivalent to state-of-the-art techniques and computation is much faster.
Classification of document page images based on visual similarity of layout structures
NASA Astrophysics Data System (ADS)
Shin, Christian K.; Doermann, David S.
1999-12-01
Searching for documents by their type or genre is a natural way to enhance the effectiveness of document retrieval. The layout of a document contains a significant amount of information that can be used to classify a document's type in the absence of domain specific models. A document type or genre can be defined by the user based primarily on layout structure. Our classification approach is based on 'visual similarity' of the layout structure by building a supervised classifier, given examples of the class. We use image features, such as the percentages of tex and non-text (graphics, image, table, and ruling) content regions, column structures, variations in the point size of fonts, the density of content area, and various statistics on features of connected components which can be derived from class samples without class knowledge. In order to obtain class labels for training samples, we conducted a user relevance test where subjects ranked UW-I document images with respect to the 12 representative images. We implemented our classification scheme using the OC1, a decision tree classifier, and report our findings.
NASA Astrophysics Data System (ADS)
Kimpe, Tom; Rostang, Johan; Avanaki, Ali; Espig, Kathryn; Xthona, Albert; Cocuranu, Ioan; Parwani, Anil V.; Pantanowitz, Liron
2014-03-01
Digital pathology systems typically consist of a slide scanner, processing software, visualization software, and finally a workstation with display for visualization of the digital slide images. This paper studies whether digital pathology images can look different when presenting them on different display systems, and whether these visual differences can result in different perceived contrast of clinically relevant features. By analyzing a set of four digital pathology images of different subspecialties on three different display systems, it was concluded that pathology images look different when visualized on different display systems. The importance of these visual differences is elucidated when they are located in areas of the digital slide that contain clinically relevant features. Based on a calculation of dE2000 differences between background and clinically relevant features, it was clear that perceived contrast of clinically relevant features is influenced by the choice of display system. Furthermore, it seems that the specific calibration target chosen for the display system has an important effect on the perceived contrast of clinically relevant features. Preliminary results suggest that calibrating to DICOM GSDF calibration performed slightly worse than sRGB, while a new experimental calibration target CSDF performed better than both DICOM GSDF and sRGB. This result is promising as it suggests that further research work could lead to better definition of an optimized calibration target for digital pathology images resulting in a positive effect on clinical performance.
Nakanishi, Rine; Sankaran, Sethuraman; Grady, Leo; Malpeso, Jenifer; Yousfi, Razik; Osawa, Kazuhiro; Ceponiene, Indre; Nazarat, Negin; Rahmani, Sina; Kissel, Kendall; Jayawardena, Eranthi; Dailing, Christopher; Zarins, Christopher; Koo, Bon-Kwon; Min, James K; Taylor, Charles A; Budoff, Matthew J
2018-03-23
Our goal was to evaluate the efficacy of a fully automated method for assessing the image quality (IQ) of coronary computed tomography angiography (CCTA). The machine learning method was trained using 75 CCTA studies by mapping features (noise, contrast, misregistration scores, and un-interpretability index) to an IQ score based on manual ground truth data. The automated method was validated on a set of 50 CCTA studies and subsequently tested on a new set of 172 CCTA studies against visual IQ scores on a 5-point Likert scale. The area under the curve in the validation set was 0.96. In the 172 CCTA studies, our method yielded a Cohen's kappa statistic for the agreement between automated and visual IQ assessment of 0.67 (p < 0.01). In the group where good to excellent (n = 163), fair (n = 6), and poor visual IQ scores (n = 3) were graded, 155, 5, and 2 of the patients received an automated IQ score > 50 %, respectively. Fully automated assessment of the IQ of CCTA data sets by machine learning was reproducible and provided similar results compared with visual analysis within the limits of inter-operator variability. • The proposed method enables automated and reproducible image quality assessment. • Machine learning and visual assessments yielded comparable estimates of image quality. • Automated assessment potentially allows for more standardised image quality. • Image quality assessment enables standardization of clinical trial results across different datasets.
Design of an Image Fusion Phantom for a Small Animal microPET/CT Scanner Prototype
NASA Astrophysics Data System (ADS)
Nava-García, Dante; Alva-Sánchez, Héctor; Murrieta-Rodríguez, Tirso; Martínez-Dávalos, Arnulfo; Rodríguez-Villafuerte, Mercedes
2010-12-01
Two separate microtomography systems recently developed at Instituto de Física, UNAM, produce anatomical (microCT) and physiological images (microPET) of small animals. In this work, the development and initial tests of an image fusion method based on fiducial markers for image registration between the two modalities are presented. A modular Helix/Line-Sources phantom was designed and constructed; this phantom contains fiducial markers that can be visualized in both imaging systems. The registration was carried out by solving the rigid body alignment problem of Procrustes to obtain rotation and translation matrices required to align the two sets of images. The microCT/microPET image fusion of the Helix/Line-Sources phantom shows excellent visual coincidence between different structures, showing a calculated target-registration-error of 0.32 mm.
Horror Image Recognition Based on Context-Aware Multi-Instance Learning.
Li, Bing; Xiong, Weihua; Wu, Ou; Hu, Weiming; Maybank, Stephen; Yan, Shuicheng
2015-12-01
Horror content sharing on the Web is a growing phenomenon that can interfere with our daily life and affect the mental health of those involved. As an important form of expression, horror images have their own characteristics that can evoke extreme emotions. In this paper, we present a novel context-aware multi-instance learning (CMIL) algorithm for horror image recognition. The CMIL algorithm identifies horror images and picks out the regions that cause the sensation of horror in these horror images. It obtains contextual cues among adjacent regions in an image using a random walk on a contextual graph. Borrowing the strength of the fuzzy support vector machine (FSVM), we define a heuristic optimization procedure based on the FSVM to search for the optimal classifier for the CMIL. To improve the initialization of the CMIL, we propose a novel visual saliency model based on the tensor analysis. The average saliency value of each segmented region is set as its initial fuzzy membership in the CMIL. The advantage of the tensor-based visual saliency model is that it not only adaptively selects features, but also dynamically determines fusion weights for saliency value combination from different feature subspaces. The effectiveness of the proposed CMIL model is demonstrated by its use in horror image recognition on two large-scale image sets collected from the Internet.
Ray-based approach to integrated 3D visual communication
NASA Astrophysics Data System (ADS)
Naemura, Takeshi; Harashima, Hiroshi
2001-02-01
For a high sense of reality in the next-generation communications, it is very important to realize three-dimensional (3D) spatial media, instead of existing 2D image media. In order to comprehensively deal with a variety of 3D visual data formats, the authors first introduce the concept of "Integrated 3D Visual Communication," which reflects the necessity of developing a neutral representation method independent of input/output systems. Then, the following discussions are concentrated on the ray-based approach to this concept, in which any visual sensation is considered to be derived from a set of light rays. This approach is a simple and straightforward to the problem of how to represent 3D space, which is an issue shared by various fields including 3D image communications, computer graphics, and virtual reality. This paper mainly presents the several developments in this approach, including some efficient methods of representing ray data, a real-time video-based rendering system, an interactive rendering system based on the integral photography, a concept of virtual object surface for the compression of tremendous amount of data, and a light ray capturing system using a telecentric lens. Experimental results demonstrate the effectiveness of the proposed techniques.
Indexing the medical open access literature for textual and content-based visual retrieval.
Eggel, Ivan; Müller, Henning
2010-01-01
Over the past few years an increasing amount of scientific journals have been created in an open access format. Particularly in the medical field the number of openly accessible journals is enormous making a wide body of knowledge available for analysis and retrieval. Part of the trend towards open access publications can be linked to funding bodies such as the NIH1 (National Institutes of Health) and the Swiss National Science Foundation (SNF2) requiring funded projects to make all articles of funded research available publicly. This article describes an approach to make part of the knowledge of open access journals available for retrieval including the textual information but also the images contained in the articles. For this goal all articles of 24 journals related to medical informatics and medical imaging were crawled from the web pages of BioMed Central. Text and images of the PDF (Portable Document Format) files were indexed separately and a web-based retrieval interface allows for searching via keyword queries or by visual similarity queries. Starting point for a visual similarity query can be an image on the local hard disk that is uploaded or any image found via the textual search. Search for similar documents is also possible.
Namikawa, Tsutomu; Fujisawa, Kazune; Munekage, Eri; Iwabu, Jun; Uemura, Sunao; Tsujii, Shigehiro; Maeda, Hiromichi; Kitagawa, Hiroyuki; Fukuhara, Hideo; Inoue, Keiji; Sato, Takayuki; Kobayashi, Michiya; Hanazaki, Kazuhiro
2018-04-04
The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.
NASA Astrophysics Data System (ADS)
Masseroli, Marco; Pinciroli, Francesco
2000-12-01
To provide easy retrieval, integration and evaluation of multimodal cardiology images and data in a web browser environment, distributed application technologies and java programming were used to implement a client-server architecture based on software agents. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. The client side is a Java applet running in a web browser and providing a friendly medical user interface to perform queries on patient and medical test dat and integrate and visualize properly the various query results. A set of tools based on Java Advanced Imaging API enables to process and analyze the retrieved cardiology images, and quantify their features in different regions of interest. The platform-independence Java technology makes the developed prototype easy to be managed in a centralized form and provided in each site where an intranet or internet connection can be located. Giving the healthcare providers effective tools for querying, visualizing and evaluating comprehensively cardiology medical images and records in all locations where they can need them- i.e. emergency, operating theaters, ward, or even outpatient clinics- the developed prototype represents an important aid in providing more efficient diagnoses and medical treatments.
Visual Equivalence and Amodal Completion in Cuttlefish
Lin, I-Rong; Chiao, Chuan-Chin
2017-01-01
Modern cephalopods are notably the most intelligent invertebrates and this is accompanied by keen vision. Despite extensive studies investigating the visual systems of cephalopods, little is known about their visual perception and object recognition. In the present study, we investigated the visual processing of the cuttlefish Sepia pharaonis, including visual equivalence and amodal completion. Cuttlefish were trained to discriminate images of shrimp and fish using the operant conditioning paradigm. After cuttlefish reached the learning criteria, a series of discrimination tasks were conducted. In the visual equivalence experiment, several transformed versions of the training images, such as images reduced in size, images reduced in contrast, sketches of the images, the contours of the images, and silhouettes of the images, were used. In the amodal completion experiment, partially occluded views of the original images were used. The results showed that cuttlefish were able to treat the training images of reduced size and sketches as the visual equivalence. Cuttlefish were also capable of recognizing partially occluded versions of the training image. Furthermore, individual differences in performance suggest that some cuttlefish may be able to recognize objects when visual information was partly removed. These findings support the hypothesis that the visual perception of cuttlefish involves both visual equivalence and amodal completion. The results from this research also provide insights into the visual processing mechanisms used by cephalopods. PMID:28220075
Steato-Score: Non-Invasive Quantitative Assessment of Liver Fat by Ultrasound Imaging.
Di Lascio, Nicole; Avigo, Cinzia; Salvati, Antonio; Martini, Nicola; Ragucci, Monica; Monti, Serena; Prinster, Anna; Chiappino, Dante; Mancini, Marcello; D'Elia, Domenico; Ghiadoni, Lorenzo; Bonino, Ferruccio; Brunetto, Maurizia R; Faita, Francesco
2018-05-04
Non-alcoholic fatty liver disease is becoming a global epidemic. The aim of this study was to develop a system for assessing liver fat content based on ultrasound images. Magnetic resonance spectroscopy measurements were obtained in 61 patients and the controlled attenuation parameter in 54. Ultrasound images were acquired for all 115 participants and used to calculate the hepatic/renal ratio, hepatic/portal vein ratio, attenuation rate, diaphragm visualization and portal vein wall visualization. The Steato-score was obtained by combining these five parameters. Magnetic resonance spectroscopy measurements were significantly correlated with hepatic/renal ratio, hepatic/portal vein ratio, attenuation rate, diaphragm visualization and portal vein wall visualization; Steato-score was dependent on hepatic/renal ratio, attenuation rate and diaphragm visualization. Area under the receiver operating characteristic curve was equal to 0.98, with 89% sensitivity and 94% specificity. Controlled attenuation parameter values were significantly correlated with hepatic/renal ratio, attenuation rate, diaphragm visualization and Steato-score; the area under the curve was 0.79. This system could be a valid alternative as a non-invasive, simple and inexpensive assessment of intrahepatic fat. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Searching for Images: The Analysis of Users' Queries for Image Retrieval in American History.
ERIC Educational Resources Information Center
Choi, Youngok; Rasmussen, Edie M.
2003-01-01
Studied users' queries for visual information in American history to identify the image attributes important for retrieval and the characteristics of users' queries for digital images, based on queries from 38 faculty and graduate students. Results of pre- and post-test questionnaires and interviews suggest principle categories of search terms.…
JSC Shuttle Mission Simulator (SMS) visual system payload bay video image
NASA Technical Reports Server (NTRS)
1981-01-01
This space shuttle orbiter payload bay (PLB) video image is used in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). The image is projected inside the FB-SMS crew compartment during mission simulation training. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
NASA Astrophysics Data System (ADS)
An, Yun-Kyu; Song, Homin; Sohn, Hoon
2014-09-01
This paper presents a wireless ultrasonic wavefield imaging (WUWI) technique for detecting hidden damage inside a steel box girder bridge. The proposed technique allows (1) complete wireless excitation of piezoelectric transducers and noncontact sensing of the corresponding responses using laser beams, (2) autonomous damage visualization without comparing against baseline data previously accumulated from the pristine condition of a target structure and (3) robust damage diagnosis even for real structures with complex structural geometries. First, a new WUWI hardware system was developed by integrating optoelectronic-based signal transmitting and receiving devices and a scanning laser Doppler vibrometer. Next, a damage visualization algorithm, self-referencing f-k filter (SRF), was introduced to isolate and visualize only crack-induced ultrasonic modes from measured ultrasonic wavefield images. Finally, the performance of the proposed technique was validated through hidden crack visualization at a decommissioned Ramp-G Bridge in South Korea. The experimental results reveal that the proposed technique instantaneously detects and successfully visualizes hidden cracks even in the complex structure of a real bridge.
fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.
Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F
2016-10-01
The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Fluorescent staining for leukocyte chemotaxis. Eosinophil-specific fluorescence with aniline blue.
McCrone, E L; Lucey, D R; Weller, P F
1988-11-10
To overcome problems associated with the quantitation of human eosinophil chemotaxis in micropore filters, we have developed a fluorescent method of specifically staining eosinophils in chemotactic filters. A neutral solution of aniline blue yielded bright green fluorescent staining of the cytoplasmic granules of eosinophils. Other leukocytes and contaminating neutrophils potentially present with eosinophils did not fluoresce with aniline blue. The fluorescent staining eosinophils within filters provided bright, non-fading images that facilitated visual microscopic counting and were of sufficiently high contrast, unlike those with conventional eosinophil stains, to allow image analyzer based enumeration of eosinophil chemotactic responses at levels through the filters. Although not cell type-specific, congo red and ethidium bromide also provided high contrast, fluorescent images of all leukocyte types within chemotactic filters. Fluorescent staining with aniline blue constitutes a rapid, stable and eosinophil-specific stain that facilitates the visual or image analyzer-based quantitation of eosinophil chemotaxis.
Visualization for genomics: the Microbial Genome Viewer.
Kerkhoven, Robert; van Enckevort, Frank H J; Boekhorst, Jos; Molenaar, Douwe; Siezen, Roland J
2004-07-22
A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a MySQL database. The generated images are in scalable vector graphics (SVG) format, which is suitable for creating high-quality scalable images and dynamic Web representations. Gene-related data such as transcriptome and time-course microarray experiments can be superimposed on the maps for visual inspection. The Microbial Genome Viewer 1.0 is freely available at http://www.cmbi.kun.nl/MGV
Web-based interactive 2D/3D medical image processing and visualization software.
Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid
2010-05-01
There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Cryo-electron microscopy and cryo-electron tomography of nanoparticles.
Stewart, Phoebe L
2017-03-01
Cryo-transmission electron microscopy (cryo-TEM or cryo-EM) and cryo-electron tomography (cryo-ET) offer robust and powerful ways to visualize nanoparticles. These techniques involve imaging of the sample in a frozen-hydrated state, allowing visualization of nanoparticles essentially as they exist in solution. Cryo-TEM grid preparation can be performed with the sample in aqueous solvents or in various organic and ionic solvents. Two-dimensional (2D) cryo-TEM provides a direct way to visualize the polydispersity within a nanoparticle preparation. Fourier transforms of cryo-TEM images can confirm the structural periodicity within a sample. While measurement of specimen parameters can be performed with 2D TEM images, determination of a three-dimensional (3D) structure often facilitates more spatially accurate quantization. 3D structures can be determined in one of two ways. If the nanoparticle has a homogeneous structure, then 2D projection images of different particles can be averaged using a computational process referred to as single particle reconstruction. Alternatively, if the nanoparticle has a heterogeneous structure, then a structure can be generated by cryo-ET. This involves collecting a tilt-series of 2D projection images for a defined region of the grid, which can be used to generate a 3D tomogram. Occasionally it is advantageous to calculate both a single particle reconstruction, to reveal the regular portions of a nanoparticle structure, and a cryo-electron tomogram, to reveal the irregular features. A sampling of 2D cryo-TEM images and 3D structures are presented for protein based, DNA based, lipid based, and polymer based nanoparticles. WIREs Nanomed Nanobiotechnol 2017, 9:e1417. doi: 10.1002/wnan.1417 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Two-out-of-two color matching based visual cryptography schemes.
Machizaud, Jacques; Fournel, Thierry
2012-09-24
Visual cryptography which consists in sharing a secret message between transparencies has been extended to color prints. In this paper, we propose a new visual cryptography scheme based on color matching. The stacked printed media reveal a uniformly colored message decoded by the human visual system. In contrast with the previous color visual cryptography schemes, the proposed one enables to share images without pixel expansion and to detect a forgery as the color of the message is kept secret. In order to correctly print the colors on the media and to increase the security of the scheme, we use spectral models developed for color reproduction describing printed colors from an optical point of view.
Cortical dipole imaging using truncated total least squares considering transfer matrix error.
Hori, Junichi; Takeuchi, Kosuke
2013-01-01
Cortical dipole imaging has been proposed as a method to visualize electroencephalogram in high spatial resolution. We investigated the inverse technique of cortical dipole imaging using a truncated total least squares (TTLS). The TTLS is a regularization technique to reduce the influence from both the measurement noise and the transfer matrix error caused by the head model distortion. The estimation of the regularization parameter was also investigated based on L-curve. The computer simulation suggested that the estimation accuracy was improved by the TTLS compared with Tikhonov regularization. The proposed method was applied to human experimental data of visual evoked potentials. We confirmed the TTLS provided the high spatial resolution of cortical dipole imaging.
NASA Astrophysics Data System (ADS)
Yao, Juncai; Liu, Guizhong
2017-03-01
In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.
NASA Astrophysics Data System (ADS)
Barnett, Barry S.; Bovik, Alan C.
1995-04-01
This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.
McKibbin, Martin; Farragher, Tracey M; Shickle, Darren
2018-01-01
To determine the prevalence of, associations with and diagnoses leading to mild visual impairment or worse (logMAR >0.3) in middle-aged adults in the UK Biobank study. Prevalence estimates for monocular and binocular visual impairment were determined for the UK Biobank participants with fundus photographs and spectral domain optical coherence tomography images. Associations with socioeconomic, biometric, lifestyle and medical variables were investigated for cases with visual impairment and matched controls, using multinomial logistic regression models. Self-reported eye history and image grading results were used to identify the primary diagnoses leading to visual impairment for a sample of 25% of cases. For the 65 033 UK Biobank participants, aged 40-69 years and with fundus images, 6682 (10.3%) and 1677 (2.6%) had mild visual impairment or worse in one or both eyes, respectively. Increasing deprivation, age and ethnicity were independently associated with both monocular and binocular visual impairment. No primary diagnosis for the recorded level of visual impairment could be identified for 49.8% of eyes. The most common identifiable diagnoses leading to visual impairment were cataract, amblyopia, uncorrected refractive error and vitreoretinal interface abnormalities. The prevalence of visual impairment in the UK Biobank study cohort is lower than for population-based studies from other industrialised countries. Monocular and binocular visual impairment are associated with increasing deprivation, age and ethnicity. The UK Biobank dataset does not allow confident identification of the causes of visual impairment, and the results may not be applicable to the wider UK population.
Farragher, Tracey M; Shickle, Darren
2018-01-01
Objective To determine the prevalence of, associations with and diagnoses leading to mild visual impairment or worse (logMAR >0.3) in middle-aged adults in the UK Biobank study. Methods and analysis Prevalence estimates for monocular and binocular visual impairment were determined for the UK Biobank participants with fundus photographs and spectral domain optical coherence tomography images. Associations with socioeconomic, biometric, lifestyle and medical variables were investigated for cases with visual impairment and matched controls, using multinomial logistic regression models. Self-reported eye history and image grading results were used to identify the primary diagnoses leading to visual impairment for a sample of 25% of cases. Results For the 65 033 UK Biobank participants, aged 40–69 years and with fundus images, 6682 (10.3%) and 1677 (2.6%) had mild visual impairment or worse in one or both eyes, respectively. Increasing deprivation, age and ethnicity were independently associated with both monocular and binocular visual impairment. No primary diagnosis for the recorded level of visual impairment could be identified for 49.8% of eyes. The most common identifiable diagnoses leading to visual impairment were cataract, amblyopia, uncorrected refractive error and vitreoretinal interface abnormalities. Conclusions The prevalence of visual impairment in the UK Biobank study cohort is lower than for population-based studies from other industrialised countries. Monocular and binocular visual impairment are associated with increasing deprivation, age and ethnicity. The UK Biobank dataset does not allow confident identification of the causes of visual impairment, and the results may not be applicable to the wider UK population. PMID:29657974
Neugebauer, Tomasz; Bordeleau, Eric; Burrus, Vincent; Brzezinski, Ryszard
2015-01-01
Data visualization methods are necessary during the exploration and analysis activities of an increasingly data-intensive scientific process. There are few existing visualization methods for raw nucleotide sequences of a whole genome or chromosome. Software for data visualization should allow the researchers to create accessible data visualization interfaces that can be exported and shared with others on the web. Herein, novel software developed for generating DNA data visualization interfaces is described. The software converts DNA data sets into images that are further processed as multi-scale images to be accessed through a web-based interface that supports zooming, panning and sequence fragment selection. Nucleotide composition frequencies and GC skew of a selected sequence segment can be obtained through the interface. The software was used to generate DNA data visualization of human and bacterial chromosomes. Examples of visually detectable features such as short and long direct repeats, long terminal repeats, mobile genetic elements, heterochromatic segments in microbial and human chromosomes, are presented. The software and its source code are available for download and further development. The visualization interfaces generated with the software allow for the immediate identification and observation of several types of sequence patterns in genomes of various sizes and origins. The visualization interfaces generated with the software are readily accessible through a web browser. This software is a useful research and teaching tool for genetics and structural genomics.
Bunck, Alexander C; Jüttner, Alena; Kröger, Jan Robert; Burg, Matthias C; Kugel, Harald; Niederstadt, Thomas; Tiemann, Klaus; Schnackenburg, Bernhard; Crelier, Gerard R; Heindel, Walter; Maintz, David
2012-09-01
4D phase contrast flow imaging is increasingly used to study the hemodynamics in various vascular territories and pathologies. The aim of this study was to assess the feasibility and validity of MRI based 4D phase contrast flow imaging for the evaluation of in-stent blood flow in 17 commonly used peripheral stents. 17 different peripheral stents were implanted into a MR compatible flow phantom. In-stent visibility, maximal velocity and flow visualization were assessed and estimates of in-stent patency obtained from 4D phase contrast flow data sets were compared to a conventional 3D contrast-enhanced magnetic resonance angiography (CE-MRA) as well as 2D PC flow measurements. In all but 3 of the tested stents time-resolved 3D particle traces could be visualized inside the stent lumen. Quality of 4D flow visualization and CE-MRA images depended on stent type and stent orientation relative to the magnetic field. Compared to the visible lumen area determined by 3D CE-MRA, estimates of lumen patency derived from 4D flow measurements were significantly higher and less dependent on stent type. A higher number of stents could be assessed for in-stent patency by 4D phase contrast flow imaging (n=14) than by 2D phase contrast flow imaging (n=10). 4D phase contrast flow imaging in peripheral vascular stents is feasible and appears advantageous over conventional 3D contrast-enhanced MR angiography and 2D phase contrast flow imaging. It allows for in-stent flow visualization and flow quantification with varying quality depending on stent type. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Wait, Eric; Winter, Mark; Bjornsson, Chris; Kokovay, Erzsebet; Wang, Yue; Goderie, Susan; Temple, Sally; Cohen, Andrew R
2014-10-03
Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate. We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image analysis algorithms with an interactive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Huber, David J.; Martin, Kevin
2017-05-01
This paper† describes a technique in which we improve upon the prior performance of the Rapid Serial Visual Presentation (RSVP) EEG paradigm for image classification though the insertion of visual attention distracters and overall sequence reordering based upon the expected ratio of rare to common "events" in the environment and operational context. Inserting distracter images maintains the ratio of common events to rare events at an ideal level, maximizing the rare event detection via P300 EEG response to the RSVP stimuli. The method has two steps: first, we compute the optimal number of distracters needed for an RSVP stimuli based on the desired sequence length and expected number of targets and insert the distracters into the RSVP sequence, and then we reorder the RSVP sequence to maximize P300 detection. We show that by reducing the ratio of target events to nontarget events using this method, we can allow RSVP sequences with more targets without sacrificing area under the ROC curve (azimuth).
Borst, Gregoire; Niven, Elaine; Logie, Robert H
2012-04-01
Visual mental imagery and working memory are often assumed to play similar roles in high-order functions, but little is known of their functional relationship. In this study, we investigated whether similar cognitive processes are involved in the generation of visual mental images, in short-term retention of those mental images, and in short-term retention of visual information. Participants encoded and recalled visually or aurally presented sequences of letters under two interference conditions: spatial tapping or irrelevant visual input (IVI). In Experiment 1, spatial tapping selectively interfered with the retention of sequences of letters when participants generated visual mental images from aural presentation of the letter names and when the letters were presented visually. In Experiment 2, encoding of the sequences was disrupted by both interference tasks. However, in Experiment 3, IVI interfered with the generation of the mental images, but not with their retention, whereas spatial tapping was more disruptive during retention than during encoding. Results suggest that the temporary retention of visual mental images and of visual information may be supported by the same visual short-term memory store but that this store is not involved in image generation.
Artistic image analysis using graph-based learning approaches.
Carneiro, Gustavo
2013-08-01
We introduce a new methodology for the problem of artistic image analysis, which among other tasks, involves the automatic identification of visual classes present in an art work. In this paper, we advocate the idea that artistic image analysis must explore a graph that captures the network of artistic influences by computing the similarities in terms of appearance and manual annotation. One of the novelties of our methodology is the proposed formulation that is a principled way of combining these two similarities in a single graph. Using this graph, we show that an efficient random walk algorithm based on an inverted label propagation formulation produces more accurate annotation and retrieval results compared with the following baseline algorithms: bag of visual words, label propagation, matrix completion, and structural learning. We also show that the proposed approach leads to a more efficient inference and training procedures. This experiment is run on a database containing 988 artistic images (with 49 visual classification problems divided into a multiclass problem with 27 classes and 48 binary problems), where we show the inference and training running times, and quantitative comparisons with respect to several retrieval and annotation performance measures.
Trottmann, Matthias; Stepp, Herbert; Sroka, Ronald; Heide, Michael; Liedl, Bernhard; Reese, Sven; Becker, Armin J; Stief, Christian G; Kölle, Sabine
2015-05-01
In azoospermic patients, spermatozoa are routinely obtained by testicular sperm extraction (TESE). However, success rates of this technique are moderate, because the site of excision of testicular tissue is determined arbitrarily. Therefore the aim of this study was to establish probe-based laser endomicroscopy (pCLE) a noval biomedical imaging technique, which provides the opportunity of non-invasive, real-time visualisation of tissue at histological resolution. Using pCLE we clearly visualized longitudinal and horizontal views of the tubuli seminiferi contorti and localized vital spermatozoa. Obtained images and real-time videos were subsequently compared with confocal laser scanning microscopy (CLSM) of spermatozoa and tissues, respectively. Comparative visualization of single native Confocal laser scanning microscopy (CLSM, left) and probe-based laser endomicroscopy (pCLE, right) using Pro Flex(TM) UltraMini O after staining with acriflavine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Classification-Based Spatial Error Concealment for Visual Communications
NASA Astrophysics Data System (ADS)
Chen, Meng; Zheng, Yefeng; Wu, Min
2006-12-01
In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.
Automatic classification of minimally invasive instruments based on endoscopic image sequences
NASA Astrophysics Data System (ADS)
Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger
2009-02-01
Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.
Imaging-related medications: a class overview
2007-01-01
Imaging-related medications (contrast agents) are commonly utilized to improve visualization of radiographic, computed tomography (CT), and magnetic resonance (MR) images. While traditional medications are used specifically for their pharmacological actions, the ideal imaging agent provides enhanced contrast with little biological interaction. The radiopaque agents, barium sulfate and iodinated contrast agents, confer “contrast” to x-ray films by their physical ability to directly absorb x-rays. Gadolinium-based MR agents enhance visualization of tissues when exposed to a magnetic field. Ferrous-ferric oxide–based paramagnetic agents provide negative contrast for MR liver studies. This article provides an overview of clinically relevant information for the imaging-related medications commonly in use. It reviews the safety improvements in new generations of drugs; risk factors and precautions for the reduction of severe adverse reactions (i.e., extravasation, contrast-induced nephropathy, metformin-induced lactic acidosis, and nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis); and the significance of diligent patient screening before contrast exposure and appropriate monitoring after exposure. PMID:17948119
Simultaneous imaging of fat crystallinity and crystal polymorphic types by Raman microspectroscopy.
Motoyama, Michiyo; Ando, Masahiro; Sasaki, Keisuke; Nakajima, Ikuyo; Chikuni, Koichi; Aikawa, Katsuhiro; Hamaguchi, Hiro-O
2016-04-01
The crystalline states of fats, i.e., the crystallinity and crystal polymorphic types, strongly influence their physical properties in fat-based foods. Imaging of fat crystalline states has thus been a subject of abiding interest, but conventional techniques cannot image crystallinity and polymorphic types all at once. This article demonstrates a new technique using Raman microspectroscopy for simultaneously imaging the crystallinity and polymorphic types of fats. The crystallinity and β' crystal polymorph, which contribute to the hardness of fat-based food products, were quantitatively visualized in a model fat (porcine adipose tissue) by analyzing several key Raman bands. The emergence of the β crystal polymorph, which generally results in food product deterioration, was successfully imaged by analyzing the whole fingerprint regions of Raman spectra using multivariate curve resolution alternating least squares analysis. The results demonstrate that the crystalline states of fats can be nondestructively visualized and analyzed at the molecular level, in situ, without laborious sample pretreatments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mobile cosmetics advisor: an imaging based mobile service
NASA Astrophysics Data System (ADS)
Bhatti, Nina; Baker, Harlyn; Chao, Hui; Clearwater, Scott; Harville, Mike; Jain, Jhilmil; Lyons, Nic; Marguier, Joanna; Schettino, John; Süsstrunk, Sabine
2010-01-01
Selecting cosmetics requires visual information and often benefits from the assessments of a cosmetics expert. In this paper we present a unique mobile imaging application that enables women to use their cell phones to get immediate expert advice when selecting personal cosmetic products. We derive the visual information from analysis of camera phone images, and provide the judgment of the cosmetics specialist through use of an expert system. The result is a new paradigm for mobile interactions-image-based information services exploiting the ubiquity of camera phones. The application is designed to work with any handset over any cellular carrier using commonly available MMS and SMS features. Targeted at the unsophisticated consumer, it must be quick and easy to use, not requiring download capabilities or preplanning. Thus, all application processing occurs in the back-end system and not on the handset itself. We present the imaging pipeline technology and a comparison of the services' accuracy with respect to human experts.
Yamada, Shigehito; Uwabe, Chigako; Nakatsu-Komatsu, Tomoko; Minekura, Yutaka; Iwakura, Masaji; Motoki, Tamaki; Nishimiya, Kazuhiko; Iiyama, Masaaki; Kakusho, Koh; Minoh, Michihiko; Mizuta, Shinobu; Matsuda, Tetsuya; Matsuda, Yoshimasa; Haishi, Tomoyuki; Kose, Katsumi; Fujii, Shingo; Shiota, Kohei
2006-02-01
Morphogenesis in the developing embryo takes place in three dimensions, and in addition, the dimension of time is another important factor in development. Therefore, the presentation of sequential morphological changes occurring in the embryo (4D visualization) is essential for understanding the complex morphogenetic events and the underlying mechanisms. Until recently, 3D visualization of embryonic structures was possible only by reconstruction from serial histological sections, which was tedious and time-consuming. During the past two decades, 3D imaging techniques have made significant advances thanks to the progress in imaging and computer technologies, computer graphics, and other related techniques. Such novel tools have enabled precise visualization of the 3D topology of embryonic structures and to demonstrate spatiotemporal 4D sequences of organogenesis. Here, we describe a project in which staged human embryos are imaged by the magnetic resonance (MR) microscope, and 3D images of embryos and their organs at each developmental stage were reconstructed based on the MR data, with the aid of computer graphics techniques. On the basis of the 3D models of staged human embryos, we constructed a data set of 3D images of human embryos and made movies to illustrate the sequential process of human morphogenesis. Furthermore, a computer-based self-learning program of human embryology is being developed for educational purposes, using the photographs, histological sections, MR images, and 3D models of staged human embryos. Copyright 2005 Wiley-Liss, Inc.
Visual saliency detection based on in-depth analysis of sparse representation
NASA Astrophysics Data System (ADS)
Wang, Xin; Shen, Siqiu; Ning, Chen
2018-03-01
Visual saliency detection has been receiving great attention in recent years since it can facilitate a wide range of applications in computer vision. A variety of saliency models have been proposed based on different assumptions within which saliency detection via sparse representation is one of the newly arisen approaches. However, most existing sparse representation-based saliency detection methods utilize partial characteristics of sparse representation, lacking of in-depth analysis. Thus, they may have limited detection performance. Motivated by this, this paper proposes an algorithm for detecting visual saliency based on in-depth analysis of sparse representation. A number of discriminative dictionaries are first learned with randomly sampled image patches by means of inner product-based dictionary atom classification. Then, the input image is partitioned into many image patches, and these patches are classified into salient and nonsalient ones based on the in-depth analysis of sparse coding coefficients. Afterward, sparse reconstruction errors are calculated for the salient and nonsalient patch sets. By investigating the sparse reconstruction errors, the most salient atoms, which tend to be from the most salient region, are screened out and taken away from the discriminative dictionaries. Finally, an effective method is exploited for saliency map generation with the reduced dictionaries. Comprehensive evaluations on publicly available datasets and comparisons with some state-of-the-art approaches demonstrate the effectiveness of the proposed algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Rohini; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA; Chung, Theodore D.
2006-07-01
Purpose: Respiratory gating is a commercially available technology for reducing the deleterious effects of motion during imaging and treatment. The efficacy of gating is dependent on the reproducibility within and between respiratory cycles during imaging and treatment. The aim of this study was to determine whether audio-visual biofeedback can improve respiratory reproducibility by decreasing residual motion and therefore increasing the accuracy of gated radiotherapy. Methods and Materials: A total of 331 respiratory traces were collected from 24 lung cancer patients. The protocol consisted of five breathing training sessions spaced about a week apart. Within each session the patients initially breathedmore » without any instruction (free breathing), with audio instructions and with audio-visual biofeedback. Residual motion was quantified by the standard deviation of the respiratory signal within the gating window. Results: Audio-visual biofeedback significantly reduced residual motion compared with free breathing and audio instruction. Displacement-based gating has lower residual motion than phase-based gating. Little reduction in residual motion was found for duty cycles less than 30%; for duty cycles above 50% there was a sharp increase in residual motion. Conclusions: The efficiency and reproducibility of gating can be improved by: incorporating audio-visual biofeedback, using a 30-50% duty cycle, gating during exhalation, and using displacement-based gating.« less
Cortical Networks for Visual Self-Recognition
NASA Astrophysics Data System (ADS)
Sugiura, Motoaki
This paper briefly reviews recent developments regarding the brain mechanisms of visual self-recognition. A special cognitive mechanism for visual self-recognition has been postulated based on behavioral and neuropsychological evidence, but its neural substrate remains controversial. Recent functional imaging studies suggest that multiple cortical mechanisms play self-specific roles during visual self-recognition, reconciling the existing controversy. Respective roles for the left occipitotemporal, right parietal, and frontal cortices in symbolic, visuospatial, and conceptual aspects of self-representation have been proposed.
Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad
2018-02-01
Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to < 0.0001). Methods for assessing inflammation suggested a progression through the tubulointerstitial ACR grades, with statistically different results in borderline versus other ACR types, in all but the custom methods. Assessment of CD3-stained slides using various open source image analysis algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.
Liu, Jinping; Tang, Zhaohui; Xu, Pengfei; Liu, Wenzhong; Zhang, Jin; Zhu, Jianyong
2016-06-29
The topic of online product quality inspection (OPQI) with smart visual sensors is attracting increasing interest in both the academic and industrial communities on account of the natural connection between the visual appearance of products with their underlying qualities. Visual images captured from granulated products (GPs), e.g., cereal products, fabric textiles, are comprised of a large number of independent particles or stochastically stacking locally homogeneous fragments, whose analysis and understanding remains challenging. A method of image statistical modeling-based OPQI for GP quality grading and monitoring by a Weibull distribution(WD) model with a semi-supervised learning classifier is presented. WD-model parameters (WD-MPs) of GP images' spatial structures, obtained with omnidirectional Gaussian derivative filtering (OGDF), which were demonstrated theoretically to obey a specific WD model of integral form, were extracted as the visual features. Then, a co-training-style semi-supervised classifier algorithm, named COSC-Boosting, was exploited for semi-supervised GP quality grading, by integrating two independent classifiers with complementary nature in the face of scarce labeled samples. Effectiveness of the proposed OPQI method was verified and compared in the field of automated rice quality grading with commonly-used methods and showed superior performance, which lays a foundation for the quality control of GP on assembly lines.
Parallel and serial grouping of image elements in visual perception.
Houtkamp, Roos; Roelfsema, Pieter R
2010-12-01
The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some situations, but we demonstrate that there are also situations where Gestalt grouping becomes serial. We observe substantial time delays when image elements have to be grouped indirectly through a chain of local groupings. We call this chaining process incremental grouping and demonstrate that it can occur for only a single object at a time. We suggest that incremental grouping requires the gradual spread of object-based attention so that eventually all the object's parts become grouped explicitly by an attentional labeling process. Our findings inspire a new incremental grouping theory that relates the parallel, local grouping process to feedforward processing and the serial, incremental grouping process to recurrent processing in the visual cortex.
LEA Detection and Tracking Method for Color-Independent Visual-MIMO
Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo
2016-01-01
Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement. PMID:27384563
LEA Detection and Tracking Method for Color-Independent Visual-MIMO.
Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo
2016-07-02
Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement.
Masseroli, M; Bonacina, S; Pinciroli, F
2004-01-01
The actual development of distributed information technologies and Java programming enables employing them also in the medical arena to support the retrieval, integration and evaluation of heterogeneous data and multimodal images in a web browser environment. With this aim, we used them to implement a client-server architecture based on software agents. The client side is a Java applet running in a web browser and providing a friendly medical user interface to browse and visualize different patient and medical test data, integrating them properly. The server side manages secure connections and queries to heterogeneous remote databases and file systems containing patient personal and clinical data. Based on the Java Advanced Imaging API, processing and analysis tools were developed to support the evaluation of remotely retrieved bioimages through the quantification of their features in different regions of interest. The Java platform-independence allows the centralized management of the implemented prototype and its deployment to each site where an intranet or internet connection is available. Giving healthcare providers effective support for comprehensively browsing, visualizing and evaluating medical images and records located in different remote repositories, the developed prototype can represent an important aid in providing more efficient diagnoses and medical treatments.
Spits, Christine; Wallace, Luke; Reinke, Karin
2017-01-01
Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential. PMID:28425957
Thinner retinal layers are associated with changes in the visual pathway: A population-based study.
Mutlu, Unal; Ikram, Mohammad K; Roshchupkin, Gennady V; Bonnemaijer, Pieter W M; Colijn, Johanna M; Vingerling, Johannes R; Niessen, Wiro J; Ikram, Mohammad A; Klaver, Caroline C W; Vernooij, Meike W
2018-06-23
Increasing evidence shows that thinner retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL), assessed on optical coherence tomography (OCT), are reflecting global brain atrophy. Yet, little is known on the relation of these layers with specific brain regions. Using voxel-based analysis, we aimed to unravel specific brain regions associated with these retinal layers. We included 2,235 persons (mean age: 67.3 years, 55% women) from the Rotterdam Study (2007-2012) who had gradable retinal OCT images and brain magnetic resonance imaging (MRI) scans, including diffusion tensor (DT) imaging. Thicknesses of peripapillary RNFL and perimacular GCL were measured using an automated segmentation algorithm. Voxel-based morphometry protocols were applied to process DT-MRI data. We investigated the association between retinal layer thickness with voxel-wise gray matter density and white matter microstructure by performing linear regression models. We found that thinner RNFL and GCL were associated with lower gray matter density in the visual cortex, and with lower fractional anisotropy and higher mean diffusivity in white matter tracts that are part of the optic radiation. Furthermore, thinner GCL was associated with lower gray matter density of the thalamus. Thinner RNFL and GCL are associated with gray and white matter changes in the visual pathway suggesting that retinal thinning on OCT may be specifically associated with changes in the visual pathway rather than with changes in the global brain. These findings may serve as a basis for understanding visual symptoms in elderly patients, patients with Alzheimer's disease, or patients with posterior cortical atrophy. © 2018 Wiley Periodicals, Inc.
Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization.
Macé, Marc J-M; Guivarch, Valérian; Denis, Grégoire; Jouffrais, Christophe
2015-07-01
Clinical trials with blind patients implanted with a visual neuroprosthesis showed that even the simplest tasks were difficult to perform with the limited vision restored with current implants. Simulated prosthetic vision (SPV) is a powerful tool to investigate the putative functions of the upcoming generations of visual neuroprostheses. Recent studies based on SPV showed that several generations of implants will be required before usable vision is restored. However, none of these studies relied on advanced image processing. High-level image processing could significantly reduce the amount of information required to perform visual tasks and help restore visuomotor behaviors, even with current low-resolution implants. In this study, we simulated a prosthetic vision device based on object localization in the scene. We evaluated the usability of this device for object recognition, localization, and reaching. We showed that a very low number of electrodes (e.g., nine) are sufficient to restore visually guided reaching movements with fair timing (10 s) and high accuracy. In addition, performance, both in terms of accuracy and speed, was comparable with 9 and 100 electrodes. Extraction of high level information (object recognition and localization) from video images could drastically enhance the usability of current visual neuroprosthesis. We suggest that this method-that is, localization of targets of interest in the scene-may restore various visuomotor behaviors. This method could prove functional on current low-resolution implants. The main limitation resides in the reliability of the vision algorithms, which are improving rapidly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan
2016-03-01
Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.
Sieracki, M E; Reichenbach, S E; Webb, K L
1989-01-01
The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the method of choice. The tedium of making such measurements visually on the large numbers of cells required has prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing cells from a dark background. This is commonly done by visually choosing a threshold intensity value which most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method based on the cell image characteristics should be used. Since the optical nature of edges in images of light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or reflected light, it seemed that automatic segmentation of such images may require special considerations. We tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile (first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size. The method based on the minimum of the second derivative of the profile yielded the most accurate area estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model of the optical properties of fluorescing objects and the video acquisition system is described which explains how the second derivative best approximates the position of the edge. Images PMID:2516431
Fernandez, Nicolas F.; Gundersen, Gregory W.; Rahman, Adeeb; Grimes, Mark L.; Rikova, Klarisa; Hornbeck, Peter; Ma’ayan, Avi
2017-01-01
Most tools developed to visualize hierarchically clustered heatmaps generate static images. Clustergrammer is a web-based visualization tool with interactive features such as: zooming, panning, filtering, reordering, sharing, performing enrichment analysis, and providing dynamic gene annotations. Clustergrammer can be used to generate shareable interactive visualizations by uploading a data table to a web-site, or by embedding Clustergrammer in Jupyter Notebooks. The Clustergrammer core libraries can also be used as a toolkit by developers to generate visualizations within their own applications. Clustergrammer is demonstrated using gene expression data from the cancer cell line encyclopedia (CCLE), original post-translational modification data collected from lung cancer cells lines by a mass spectrometry approach, and original cytometry by time of flight (CyTOF) single-cell proteomics data from blood. Clustergrammer enables producing interactive web based visualizations for the analysis of diverse biological data. PMID:28994825
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).
PyDBS: an automated image processing workflow for deep brain stimulation surgery.
D'Albis, Tiziano; Haegelen, Claire; Essert, Caroline; Fernández-Vidal, Sara; Lalys, Florent; Jannin, Pierre
2015-02-01
Deep brain stimulation (DBS) is a surgical procedure for treating motor-related neurological disorders. DBS clinical efficacy hinges on precise surgical planning and accurate electrode placement, which in turn call upon several image processing and visualization tasks, such as image registration, image segmentation, image fusion, and 3D visualization. These tasks are often performed by a heterogeneous set of software tools, which adopt differing formats and geometrical conventions and require patient-specific parameterization or interactive tuning. To overcome these issues, we introduce in this article PyDBS, a fully integrated and automated image processing workflow for DBS surgery. PyDBS consists of three image processing pipelines and three visualization modules assisting clinicians through the entire DBS surgical workflow, from the preoperative planning of electrode trajectories to the postoperative assessment of electrode placement. The system's robustness, speed, and accuracy were assessed by means of a retrospective validation, based on 92 clinical cases. The complete PyDBS workflow achieved satisfactory results in 92 % of tested cases, with a median processing time of 28 min per patient. The results obtained are compatible with the adoption of PyDBS in clinical practice.
Freud, Erez; Macdonald, Scott N; Chen, Juan; Quinlan, Derek J; Goodale, Melvyn A; Culham, Jody C
2018-01-01
In the current era of touchscreen technology, humans commonly execute visually guided actions directed to two-dimensional (2D) images of objects. Although real, three-dimensional (3D), objects and images of the same objects share high degree of visual similarity, they differ fundamentally in the actions that can be performed on them. Indeed, previous behavioral studies have suggested that simulated grasping of images relies on different representations than actual grasping of real 3D objects. Yet the neural underpinnings of this phenomena have not been investigated. Here we used functional magnetic resonance imaging (fMRI) to investigate how brain activation patterns differed for grasping and reaching actions directed toward real 3D objects compared to images. Multivoxel Pattern Analysis (MVPA) revealed that the left anterior intraparietal sulcus (aIPS), a key region for visually guided grasping, discriminates between both the format in which objects were presented (real/image) and the motor task performed on them (grasping/reaching). Interestingly, during action planning, the representations of real 3D objects versus images differed more for grasping movements than reaching movements, likely because grasping real 3D objects involves fine-grained planning and anticipation of the consequences of a real interaction. Importantly, this dissociation was evident in the planning phase, before movement initiation, and was not found in any other regions, including motor and somatosensory cortices. This suggests that the dissociable representations in the left aIPS were not based on haptic, motor or proprioceptive feedback. Together, these findings provide novel evidence that actions, particularly grasping, are affected by the realness of the target objects during planning, perhaps because real targets require a more elaborate forward model based on visual cues to predict the consequences of real manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H
2015-06-01
To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.
Fuzzy Logic-based expert system for evaluating cake quality of freeze-dried formulations.
Trnka, Hjalte; Wu, Jian X; Van De Weert, Marco; Grohganz, Holger; Rantanen, Jukka
2013-12-01
Freeze-drying of peptide and protein-based pharmaceuticals is an increasingly important field of research. The diverse nature of these compounds, limited understanding of excipient functionality, and difficult-to-analyze quality attributes together with the increasing importance of the biosimilarity concept complicate the development phase of safe and cost-effective drug products. To streamline the development phase and to make high-throughput formulation screening possible, efficient solutions for analyzing critical quality attributes such as cake quality with minimal material consumption are needed. The aim of this study was to develop a fuzzy logic system based on image analysis (IA) for analyzing cake quality. Freeze-dried samples with different visual quality attributes were prepared in well plates. Imaging solutions together with image analytical routines were developed for extracting critical visual features such as the degree of cake collapse, glassiness, and color uniformity. On the basis of the IA outputs, a fuzzy logic system for analysis of these freeze-dried cakes was constructed. After this development phase, the system was tested with a new screening well plate. The developed fuzzy logic-based system was found to give comparable quality scores with visual evaluation, making high-throughput classification of cake quality possible. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.
Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis
2014-04-01
Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the system could help the physician in the assessment of cardiovascular image analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.
2016-03-01
A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.
VirGO: A Visual Browser for the ESO Science Archive Facility
NASA Astrophysics Data System (ADS)
Hatziminaoglou, Evanthia; Chéreau, Fabien
2009-03-01
VirGO is the next generation Visual Browser for the ESO Science Archive Facility (SAF) developed in the Virtual Observatory Project Office. VirGO enables astronomers to discover and select data easily from millions of observations in a visual and intuitive way. It allows real-time access and the graphical display of a large number of observations by showing instrumental footprints and image previews, as well as their selection and filtering for subsequent download from the ESO SAF web interface. It also permits the loading of external FITS files or VOTables, as well as the superposition of Digitized Sky Survey images to be used as background. All data interfaces are based on Virtual Observatory (VO) standards that allow access to images and spectra from external data centres, and interaction with the ESO SAF web interface or any other VO applications.
NASA Astrophysics Data System (ADS)
Dou, Hao; Sun, Xiao; Li, Bin; Deng, Qianqian; Yang, Xubo; Liu, Di; Tian, Jinwen
2018-03-01
Aircraft detection from very high resolution remote sensing images, has gained more increasing interest in recent years due to the successful civil and military applications. However, several problems still exist: 1) how to extract the high-level features of aircraft; 2) locating objects within such a large image is difficult and time consuming; 3) A common problem of multiple resolutions of satellite images still exists. In this paper, inspirited by biological visual mechanism, the fusion detection framework is proposed, which fusing the top-down visual mechanism (deep CNN model) and bottom-up visual mechanism (GBVS) to detect aircraft. Besides, we use multi-scale training method for deep CNN model to solve the problem of multiple resolutions. Experimental results demonstrate that our method can achieve a better detection result than the other methods.
NASA Astrophysics Data System (ADS)
Zheng, Guoyan
2007-03-01
Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.
Toward a Unified Theory of Visual Area V4
Roe, Anna W.; Chelazzi, Leonardo; Connor, Charles E.; Conway, Bevil R.; Fujita, Ichiro; Gallant, Jack L.; Lu, Haidong; Vanduffel, Wim
2016-01-01
Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition and has been a focus of many studies on visual attention. However, there is no unifying view of V4’s role in visual processing. Neither is there an understanding of how its role in feature processing interfaces with its role in visual attention. This review captures our current knowledge of V4, largely derived from electrophysiological and imaging studies in the macaque monkey. Based on recent discovery of functionally specific domains in V4, we propose that the unifying function of V4 circuitry is to enable selective extraction of specific functional domain-based networks, whether it be by bottom-up specification of object features or by top-down attentionally driven selection. PMID:22500626
Compressive Sampling based Image Coding for Resource-deficient Visual Communication.
Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Zhang, Xinfeng; Zhao, Debin; Gao, Wen
2016-04-14
In this paper, a new compressive sampling based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At the encoder, compact image representation is produced, which is a polyphase down-sampled version of the input image; but the conventional low-pass filter prior to down-sampling is replaced by a local random binary convolution kernel. The pixels of the resulting down-sampled pre-filtered image are local random measurements and placed in the original spatial configuration. The advantages of local random measurements are two folds: 1) preserve high-frequency image features that are otherwise discarded by low-pass filtering; 2) remain a conventional image and can therefore be coded by any standardized codec to remove statistical redundancy of larger scales. Moreover, measurements generated by different kernels can be considered as multiple descriptions of the original image and therefore the proposed scheme has the advantage of multiple description coding. At the decoder, a unified sparsity-based soft-decoding technique is developed to recover the original image from received measurements in a framework of compressive sensing. Experimental results demonstrate that the proposed scheme is competitive compared with existing methods, with a unique strength of recovering fine details and sharp edges at low bit-rates.
ERIC Educational Resources Information Center
Tung, Ting-Chun; Chen, Hung-Yuan
2017-01-01
With the advance of mobile computing and wireless technology, a user's intent to interact with the interface of a mobile device is motivated not only by its intuitional operation, but also by the emotional perception induced by its aesthetic appeal. A graphical interface employing icons with suitable visual effect based on the users' emotional…
Web-based interactive visualization in a Grid-enabled neuroimaging application using HTML5.
Siewert, René; Specovius, Svenja; Wu, Jie; Krefting, Dagmar
2012-01-01
Interactive visualization and correction of intermediate results are required in many medical image analysis pipelines. To allow certain interaction in the remote execution of compute- and data-intensive applications, new features of HTML5 are used. They allow for transparent integration of user interaction into Grid- or Cloud-enabled scientific workflows. Both 2D and 3D visualization and data manipulation can be performed through a scientific gateway without the need to install specific software or web browser plugins. The possibilities of web-based visualization are presented along the FreeSurfer-pipeline, a popular compute- and data-intensive software tool for quantitative neuroimaging.
NASA Astrophysics Data System (ADS)
Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.
2015-09-01
This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.
Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms
Kwon, Yong-Soo; Cho, Young-Seok; Yoon, Tae-Jong; Kim, Ho-Shik; Choi, Myung-Gyu
2012-01-01
Molecular imaging has emerged as a new discipline in gastrointestinal endoscopy. This technology encompasses modalities that can visualize disease-specific morphological or functional tissue changes based on the molecular signature of individual cells. Molecular imaging has several advantages including minimal damage to tissues, repetitive visualization, and utility for conducting quantitative analyses. Advancements in basic science coupled with endoscopy have made early detection of gastrointestinal cancer possible. Molecular imaging during gastrointestinal endoscopy requires the development of safe biomarkers and exogenous probes to detect molecular changes in cells with high specificity anda high signal-to-background ratio. Additionally, a high-resolution endoscope with an accurate wide-field viewing capability must be developed. Targeted endoscopic imaging is expected to improve early diagnosis and individual therapy of gastrointestinal cancer. PMID:22442742
Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong
2015-03-01
Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient content of fruit trees at canopy level. This would provide valuable information for the implementation of individual tree-based fertilization schemes in precision orchard management practices.