Sample records for visual molecular dynamics

  1. How Dynamic Visualization Technology Can Support Molecular Reasoning

    ERIC Educational Resources Information Center

    Levy, Dalit

    2013-01-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and…

  2. Visualizing Energy on Target: Molecular Dynamics Simulations

    DTIC Science & Technology

    2017-12-01

    ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target

  3. How Dynamic Visualization Technology can Support Molecular Reasoning

    NASA Astrophysics Data System (ADS)

    Levy, Dalit

    2013-10-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and gas. They interact with the visualizations and carry out inquiry activities to make and refine connections between observable phenomena and atomic level processes related to phase change. The explanations proposed by 300 pairs of students in response to pre/post-assessment items have been analyzed using a scale for measuring the level of molecular reasoning. Results indicate that from pretest to posttest, students make progress in their level of molecular reasoning and are better able to connect intermolecular forces and phase change in their explanations. The paper presents the results through the lens of improvement patterns and the metaphor of the "ladder of molecular reasoning," and discusses how this adds to our understanding of the benefits of interacting with dynamic molecular visualizations.

  4. Molecular Dynamics Visualization (MDV): Stereoscopic 3D Display of Biomolecular Structure and Interactions Using the Unity Game Engine.

    PubMed

    Wiebrands, Michael; Malajczuk, Chris J; Woods, Andrew J; Rohl, Andrew L; Mancera, Ricardo L

    2018-06-21

    Molecular graphics systems are visualization tools which, upon integration into a 3D immersive environment, provide a unique virtual reality experience for research and teaching of biomolecular structure, function and interactions. We have developed a molecular structure and dynamics application, the Molecular Dynamics Visualization tool, that uses the Unity game engine combined with large scale, multi-user, stereoscopic visualization systems to deliver an immersive display experience, particularly with a large cylindrical projection display. The application is structured to separate the biomolecular modeling and visualization systems. The biomolecular model loading and analysis system was developed as a stand-alone C# library and provides the foundation for the custom visualization system built in Unity. All visual models displayed within the tool are generated using Unity-based procedural mesh building routines. A 3D user interface was built to allow seamless dynamic interaction with the model while being viewed in 3D space. Biomolecular structure analysis and display capabilities are exemplified with a range of complex systems involving cell membranes, protein folding and lipid droplets.

  5. Accelerating the use of molecular modeling in the high school classroom with VMD Lite.

    PubMed

    Lundquist, Karl; Herndon, Conner; Harty, Tyson H; Gumbart, James C

    2016-01-01

    It is often difficult for students to develop an intuition about molecular processes, which occur in a realm far different from day-to-day life. For example, thermal fluctuations take on hurricane-like proportions at the molecular scale. Students need a way to visualize realistic depictions of molecular processes to appreciate them. To this end, we have developed a simplified graphical interface to the widely used molecular visualization and analysis tool Visual Molecular Dynamics (VMD) called VMD lite. We demonstrate the use of VMD lite through a module on diffusion and the hydrophobic effect as they relate to membrane formation. Trajectories from molecular dynamics simulations, which students can interact with freely, illustrate the dynamical behavior of lipid molecules and water. VMD lite was tested by ∼70 students with overall positive reception. Remaining deficiencies in conceptual understanding were noted, however, and the module has been revised in response. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Using VMD - An Introductory Tutorial

    PubMed Central

    Hsin, Jen; Arkhipov, Anton; Yin, Ying; Stone, John E.; Schulten, Klaus

    2010-01-01

    VMD (Visual Molecular Dynamics) is a molecular visualization and analysis program designed for biological systems such as proteins, nucleic acids, lipid bilayer assemblies, etc. This unit will serve as an introductory VMD tutorial. We will present several step-by-step examples of some of VMD’s most popular features, including visualizing molecules in three dimensions with different drawing and coloring methods, rendering publication-quality figures, animate and analyze the trajectory of a molecular dynamics simulation, scripting in the text-based Tcl/Tk interface, and analyzing both sequence and structure data for proteins. PMID:19085979

  7. Using Variation Theory with Metacognitive Monitoring to Develop Insights into How Students Learn from Molecular Visualizations

    ERIC Educational Resources Information Center

    Kelly, Resa M.

    2014-01-01

    Molecular visualizations have been widely endorsed by many chemical educators as an efficient way to convey the dynamic and atomic-level details of chemistry events. Research indicates that students who use molecular visualizations are able to incorporate most of the intended features of the animations into their explanations. However, studies…

  8. Visualizing electron dynamics in organic materials: Charge transport through molecules and angular resolved photoemission

    NASA Astrophysics Data System (ADS)

    Kümmel, Stephan

    Being able to visualize the dynamics of electrons in organic materials is a fascinating perspective. Simulations based on time-dependent density functional theory allow to realize this hope, as they visualize the flow of charge through molecular structures in real-space and real-time. We here present results on two fundamental processes: Photoemission from organic semiconductor molecules and charge transport through molecular structures. In the first part we demonstrate that angular resolved photoemission intensities - from both theory and experiment - can often be interpreted as a visualization of molecular orbitals. However, counter-intuitive quantum-mechanical electron dynamics such as emission perpendicular to the direction of the electrical field can substantially alter the picture, adding surprising features to the molecular orbital interpretation. In a second study we calculate the flow of charge through conjugated molecules. The calculations show in real time how breaks in the conjugation can lead to a local buildup of charge and the formation of local electrical dipoles. These can interact with neighboring molecular chains. As a consequence, collections of ''molecular electrical wires'' can show distinctly different characteristics than ''classical electrical wires''. German Science Foundation GRK 1640.

  9. A framework for stochastic simulations and visualization of biological electron-transfer dynamics

    NASA Astrophysics Data System (ADS)

    Nakano, C. Masato; Byun, Hye Suk; Ma, Heng; Wei, Tao; El-Naggar, Mohamed Y.

    2015-08-01

    Electron transfer (ET) dictates a wide variety of energy-conversion processes in biological systems. Visualizing ET dynamics could provide key insight into understanding and possibly controlling these processes. We present a computational framework named VizBET to visualize biological ET dynamics, using an outer-membrane Mtr-Omc cytochrome complex in Shewanella oneidensis MR-1 as an example. Starting from X-ray crystal structures of the constituent cytochromes, molecular dynamics simulations are combined with homology modeling, protein docking, and binding free energy computations to sample the configuration of the complex as well as the change of the free energy associated with ET. This information, along with quantum-mechanical calculations of the electronic coupling, provides inputs to kinetic Monte Carlo (KMC) simulations of ET dynamics in a network of heme groups within the complex. Visualization of the KMC simulation results has been implemented as a plugin to the Visual Molecular Dynamics (VMD) software. VizBET has been used to reveal the nature of ET dynamics associated with novel nonequilibrium phase transitions in a candidate configuration of the Mtr-Omc complex due to electron-electron interactions.

  10. Anisotropic Rotational Diffusion Studied by Nuclear Spin Relaxation and Molecular Dynamics Simulation: An Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Fuson, Michael M.

    2017-01-01

    Laboratories studying the anisotropic rotational diffusion of bromobenzene using nuclear spin relaxation and molecular dynamics simulations are described. For many undergraduates, visualizing molecular motion is challenging. Undergraduates rarely encounter laboratories that directly assess molecular motion, and so the concept remains an…

  11. Visualizing Structure and Dynamics of Disaccharide Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  12. Visualizing protein interactions and dynamics: evolving a visual language for molecular animation.

    PubMed

    Jenkinson, Jodie; McGill, Gaël

    2012-01-01

    Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional visualization techniques for learning about protein conformation and molecular motion in association with a ligand-receptor binding event. Increasingly complex versions of the same binding event were depicted in each of four animated treatments. Students (n = 131) were recruited from the undergraduate biology program at University of Toronto, Mississauga. Visualization media were developed in the Center for Molecular and Cellular Dynamics at Harvard Medical School. Stem cell factor ligand and cKit receptor tyrosine kinase were used as a classical example of a ligand-induced receptor dimerization and activation event. Each group completed a pretest, viewed one of four variants of the animation, and completed a posttest and, at 2 wk following the assessment, a delayed posttest. Overall, the most complex animation was the most effective at fostering students' understanding of the events depicted. These results suggest that, in select learning contexts, increasingly complex representations may be more desirable for conveying the dynamic nature of cell binding events.

  13. Visualizing Protein Interactions and Dynamics: Evolving a Visual Language for Molecular Animation

    ERIC Educational Resources Information Center

    Jenkinson, Jodie; McGill, Gael

    2012-01-01

    Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional…

  14. Visualizing Protein Interactions and Dynamics: Evolving a Visual Language for Molecular Animation

    PubMed Central

    Jenkinson, Jodie; McGill, Gaël

    2012-01-01

    Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional visualization techniques for learning about protein conformation and molecular motion in association with a ligand–receptor binding event. Increasingly complex versions of the same binding event were depicted in each of four animated treatments. Students (n = 131) were recruited from the undergraduate biology program at University of Toronto, Mississauga. Visualization media were developed in the Center for Molecular and Cellular Dynamics at Harvard Medical School. Stem cell factor ligand and cKit receptor tyrosine kinase were used as a classical example of a ligand-induced receptor dimerization and activation event. Each group completed a pretest, viewed one of four variants of the animation, and completed a posttest and, at 2 wk following the assessment, a delayed posttest. Overall, the most complex animation was the most effective at fostering students' understanding of the events depicted. These results suggest that, in select learning contexts, increasingly complex representations may be more desirable for conveying the dynamic nature of cell binding events. PMID:22383622

  15. Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms

    PubMed Central

    Stone, John E.; Hynninen, Antti-Pekka; Phillips, James C.; Schulten, Klaus

    2017-01-01

    All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms. PMID:29202130

  16. BioVEC: a program for biomolecule visualization with ellipsoidal coarse-graining.

    PubMed

    Abrahamsson, Erik; Plotkin, Steven S

    2009-09-01

    Biomolecule Visualization with Ellipsoidal Coarse-graining (BioVEC) is a tool for visualizing molecular dynamics simulation data while allowing coarse-grained residues to be rendered as ellipsoids. BioVEC reads in configuration files, which may be output from molecular dynamics simulations that include orientation output in either quaternion or ANISOU format, and can render frames of the trajectory in several common image formats for subsequent concatenation into a movie file. The BioVEC program is written in C++, uses the OpenGL API for rendering, and is open source. It is lightweight, allows for user-defined settings for and texture, and runs on either Windows or Linux platforms.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzi, Silvio; Hereld, Mark; Insley, Joseph

    In this work we perform in-situ visualization of molecular dynamics simulations, which can help scientists to visualize simulation output on-the-fly, without incurring storage overheads. We present a case study to couple LAMMPS, the large-scale molecular dynamics simulation code with vl3, our parallel framework for large-scale visualization and analysis. Our motivation is to identify effective approaches for covisualization and exploration of large-scale atomistic simulations at interactive frame rates.We propose a system of coupled libraries and describe its architecture, with an implementation that runs on GPU-based clusters. We present the results of strong and weak scalability experiments, as well as future researchmore » avenues based on our results.« less

  18. Can Generating Representations Enhance Learning with Dynamic Visualizations?

    ERIC Educational Resources Information Center

    Zhang, Zhihui Helen; Linn, Marcia C.

    2011-01-01

    This study explores the impact of asking middle school students to generate drawings of their ideas about chemical reactions on integrated understanding. Students explored atomic interactions during hydrogen combustion using a dynamic visualization. The generation group drew their ideas about how the reaction takes place at the molecular level.…

  19. Real-Time Single Molecule Visualization of SH2 Domain Membrane Recruitment in Growth Factor Stimulated Cells.

    PubMed

    Oh, Dongmyung

    2017-01-01

    In the last decade, single molecule tracking (SMT) techniques have emerged as a versatile tool for molecular cell biology research. This approach allows researchers to monitor the real-time behavior of individual molecules in living cells with nanometer and millisecond resolution. As a result, it is possible to visualize biological processes as they occur at a molecular level in real time. Here we describe a method for the real-time visualization of SH2 domain membrane recruitment from the cytoplasm to epidermal growth factor (EGF) induced phosphotyrosine sites on the EGF receptor. Further, we describe methods that utilize SMT data to define SH2 domain membrane dynamics parameters such as binding (τ), dissociation (k d ), and diffusion (D) rates. Together these methods may allow us to gain greater understanding of signal transduction dynamics and the molecular basis of disease-related aberrant pathways.

  20. High-Speed Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki

    2012-08-01

    The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.

  1. Supporting Knowledge Integration in Chemistry with a Visualization-Enhanced Inquiry Unit

    ERIC Educational Resources Information Center

    Chiu, Jennifer L.; Linn, Marcia C.

    2014-01-01

    This paper describes the design and impact of an inquiry-oriented online curriculum that takes advantage of dynamic molecular visualizations to improve students' understanding of chemical reactions. The visualization-enhanced unit uses research-based guidelines following the knowledge integration framework to help students develop coherent…

  2. Modeling of diatomic molecule using the Morse potential and the Verlet algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidiani, Elok

    Performing molecular modeling usually uses special software for Molecular Dynamics (MD) such as: GROMACS, NAMD, JMOL etc. Molecular dynamics is a computational method to calculate the time dependent behavior of a molecular system. In this work, MATLAB was used as numerical method for a simple modeling of some diatomic molecules: HCl, H{sub 2} and O{sub 2}. MATLAB is a matrix based numerical software, in order to do numerical analysis, all the functions and equations describing properties of atoms and molecules must be developed manually in MATLAB. In this work, a Morse potential was generated to describe the bond interaction betweenmore » the two atoms. In order to analyze the simultaneous motion of molecules, the Verlet Algorithm derived from Newton’s Equations of Motion (classical mechanics) was operated. Both the Morse potential and the Verlet algorithm were integrated using MATLAB to derive physical properties and the trajectory of the molecules. The data computed by MATLAB is always in the form of a matrix. To visualize it, Visualized Molecular Dynamics (VMD) was performed. Such method is useful for development and testing some types of interaction on a molecular scale. Besides, this can be very helpful for describing some basic principles of molecular interaction for educational purposes.« less

  3. Facilitating Students' Interaction with Real Gas Properties Using a Discovery-Based Approach and Molecular Dynamics Simulations

    ERIC Educational Resources Information Center

    Sweet, Chelsea; Akinfenwa, Oyewumi; Foley, Jonathan J., IV

    2018-01-01

    We present an interactive discovery-based approach to studying the properties of real gases using simple, yet realistic, molecular dynamics software. Use of this approach opens up a variety of opportunities for students to interact with the behaviors and underlying theories of real gases. Students can visualize gas behavior under a variety of…

  4. An expanded framework for biomolecular visualization in the classroom: Learning goals and competencies.

    PubMed

    Dries, Daniel R; Dean, Diane M; Listenberger, Laura L; Novak, Walter R P; Franzen, Margaret A; Craig, Paul A

    2017-01-02

    A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three-dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure-function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69-75, 2017. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  5. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    NASA Astrophysics Data System (ADS)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  6. Bacterial molecular networks: bridging the gap between functional genomics and dynamical modelling.

    PubMed

    van Helden, Jacques; Toussaint, Ariane; Thieffry, Denis

    2012-01-01

    This introductory review synthesizes the contents of the volume Bacterial Molecular Networks of the series Methods in Molecular Biology. This volume gathers 9 reviews and 16 method chapters describing computational protocols for the analysis of metabolic pathways, protein interaction networks, and regulatory networks. Each protocol is documented by concrete case studies dedicated to model bacteria or interacting populations. Altogether, the chapters provide a representative overview of state-of-the-art methods for data integration and retrieval, network visualization, graph analysis, and dynamical modelling.

  7. Network visualization of conformational sampling during molecular dynamics simulation.

    PubMed

    Ahlstrom, Logan S; Baker, Joseph Lee; Ehrlich, Kent; Campbell, Zachary T; Patel, Sunita; Vorontsov, Ivan I; Tama, Florence; Miyashita, Osamu

    2013-11-01

    Effective data reduction methods are necessary for uncovering the inherent conformational relationships present in large molecular dynamics (MD) trajectories. Clustering algorithms provide a means to interpret the conformational sampling of molecules during simulation by grouping trajectory snapshots into a few subgroups, or clusters, but the relationships between the individual clusters may not be readily understood. Here we show that network analysis can be used to visualize the dominant conformational states explored during simulation as well as the connectivity between them, providing a more coherent description of conformational space than traditional clustering techniques alone. We compare the results of network visualization against 11 clustering algorithms and principal component conformer plots. Several MD simulations of proteins undergoing different conformational changes demonstrate the effectiveness of networks in reaching functional conclusions. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing and Remote Rendering

    PubMed Central

    Stone, John E.; Sherman, William R.; Schulten, Klaus

    2016-01-01

    Immersive molecular visualization provides the viewer with intuitive perception of complex structures and spatial relationships that are of critical interest to structural biologists. The recent availability of commodity head mounted displays (HMDs) provides a compelling opportunity for widespread adoption of immersive visualization by molecular scientists, but HMDs pose additional challenges due to the need for low-latency, high-frame-rate rendering. State-of-the-art molecular dynamics simulations produce terabytes of data that can be impractical to transfer from remote supercomputers, necessitating routine use of remote visualization. Hardware-accelerated video encoding has profoundly increased frame rates and image resolution for remote visualization, however round-trip network latencies would cause simulator sickness when using HMDs. We present a novel two-phase rendering approach that overcomes network latencies with the combination of omnidirectional stereoscopic progressive ray tracing and high performance rasterization, and its implementation within VMD, a widely used molecular visualization and analysis tool. The new rendering approach enables immersive molecular visualization with rendering techniques such as shadows, ambient occlusion lighting, depth-of-field, and high quality transparency, that are particularly helpful for the study of large biomolecular complexes. We describe ray tracing algorithms that are used to optimize interactivity and quality, and we report key performance metrics of the system. The new techniques can also benefit many other application domains. PMID:27747138

  9. Visualization for Molecular Dynamics Simulation of Gas and Metal Surface Interaction

    NASA Astrophysics Data System (ADS)

    Puzyrkov, D.; Polyakov, S.; Podryga, V.

    2016-02-01

    The development of methods, algorithms and applications for visualization of molecular dynamics simulation outputs is discussed. The visual analysis of the results of such calculations is a complex and actual problem especially in case of the large scale simulations. To solve this challenging task it is necessary to decide on: 1) what data parameters to render, 2) what type of visualization to choose, 3) what development tools to use. In the present work an attempt to answer these questions was made. For visualization it was offered to draw particles in the corresponding 3D coordinates and also their velocity vectors, trajectories and volume density in the form of isosurfaces or fog. We tested the way of post-processing and visualization based on the Python language with use of additional libraries. Also parallel software was developed that allows processing large volumes of data in the 3D regions of the examined system. This software gives the opportunity to achieve desired results that are obtained in parallel with the calculations, and at the end to collect discrete received frames into a video file. The software package "Enthought Mayavi2" was used as the tool for visualization. This visualization application gave us the opportunity to study the interaction of a gas with a metal surface and to closely observe the adsorption effect.

  10. An expanded framework for biomolecular visualization in the classroom: Learning goals and competencies

    PubMed Central

    Dries, Daniel R.; Dean, Diane M.; Listenberger, Laura L.; Novak, Walter R.P.

    2016-01-01

    Abstract A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three‐dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure‐function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69–75, 2017. PMID:27486685

  11. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.

    PubMed

    Stone, John E; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-05-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.

  12. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL

    PubMed Central

    Stone, John E.; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-01-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications. PMID:27747137

  13. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques.

    PubMed

    Rajendiran, Nivedita; Durrant, Jacob D

    2018-05-05

    Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video-game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD-simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting-edge rendering techniques. We expect Pyrite-generated images to appeal to students and non-specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/, released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Visual verification and analysis of cluster detection for molecular dynamics.

    PubMed

    Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas

    2007-01-01

    A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented.

  15. Is an intuitive convergence definition of molecular dynamics simulations solely based on the root mean square deviation possible?

    PubMed

    Knapp, B; Frantal, S; Cibena, M; Schreiner, W; Bauer, P

    2011-08-01

    Molecular dynamics is a commonly used technique in computational biology. One key issue of each molecular dynamics simulation is: When does this simulation reach equilibrium state? A widely used way to determine this is the visual and intuitive inspection of root mean square deviation (RMSD) plots of the simulation. Although this technique has been criticized several times, it is still often used. Therefore, we present a study proving that this method is not reliable at all. We conducted a survey with participants from the field in which we illustrated different RMSD plots to scientists in the field of molecular dynamics. These plots were randomized and repeated, using a statistical model and different variants of the plots. We show that there is no mutual consent about the point of equilibrium. The decisions are severely biased by different parameters. Therefore, we conclude that scientists should not discuss the equilibration of a molecular dynamics simulation on the basis of a RMSD plot.

  16. Ethylene glycol revisited: Molecular dynamics simulations and visualization of the liquid and its hydrogen-bond network☆

    PubMed Central

    Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E.; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael

    2014-01-01

    Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions. PMID:24748697

  17. Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igal; Pe'er, Avi

    2016-02-01

    Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.

  18. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport.

    PubMed

    Kaplan, Luke; Ierokomos, Athena; Chowdary, Praveen; Bryant, Zev; Cui, Bianxiao

    2018-03-01

    Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors.

  19. Molecular Dynamics Simulations of Chemical Reactions for Use in Education

    ERIC Educational Resources Information Center

    Qian Xie; Tinker, Robert

    2006-01-01

    One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations…

  20. Laser spectroscopic visualization of hydrogen bond motions in liquid water

    NASA Astrophysics Data System (ADS)

    Bratos, S.; Leicknam, J.-Cl.; Pommeret, S.; Gallot, G.

    2004-12-01

    Ultrafast pump-probe experiments are described permitting a visualization of molecular motions in diluted HDO/D 2O solutions. The experiments were realized in the mid-infrared spectral region with a time resolution of 150 fs. They were interpreted by a careful theoretical analysis, based on the correlation function approach of statistical mechanics. Combining experiment and theory, stretching motions of the OH⋯O bonds as well as HDO rotations were 'filmed' in real time. It was found that molecular rotations are the principal agent of hydrogen bond breaking and making in water. Recent literatures covering the subject, including molecular dynamics simulations, are reviewed in detail.

  1. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey

    PubMed Central

    Xue, Yong; Chen, Shihui; Liu, Yong

    2017-01-01

    Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging. PMID:29114182

  2. HBonanza: A Computer Algorithm for Molecular-Dynamics-Trajectory Hydrogen-Bond Analysis

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2011-01-01

    In the current work, we present a hydrogen-bond analysis of 2,673 ligand-receptor complexes that suggests the total number of hydrogen bonds formed between a ligand and its protein receptor is a poor predictor of ligand potency; furthermore, even that poor prediction does not suggest a statistically significant correlation between hydrogen-bond formation and potency. While we are not the first to suggest that hydrogen bonds on average do not generally contribute to ligand binding affinities, this additional evidence is nevertheless interesting. The primary role of hydrogen bonds may instead be to ensure specificity, to correctly position the ligand within the active site, and to hold the protein active site in a ligand-friendly conformation. We also present a new computer program called HBonanza (hydrogen-bond analyzer) that aids the analysis and visualization of hydrogen-bond networks. HBonanza, which can be used to analyze single structures or the many structures of a molecular dynamics trajectory, is open source and python implemented, making it easily editable, customizable, and platform independent. Unlike many other freely available hydrogen-bond analysis tools, HBonanza provides not only a text-based table describing the hydrogen-bond network, but also a Tcl script to facilitate visualization in VMD, a popular molecular visualization program. Visualization in other programs is also possible. A copy of HBonanza can be obtained free of charge from http://www.nbcr.net/hbonanza. PMID:21880522

  3. GATE: software for the analysis and visualization of high-dimensional time series expression data.

    PubMed

    MacArthur, Ben D; Lachmann, Alexander; Lemischka, Ihor R; Ma'ayan, Avi

    2010-01-01

    We present Grid Analysis of Time series Expression (GATE), an integrated computational software platform for the analysis and visualization of high-dimensional biomolecular time series. GATE uses a correlation-based clustering algorithm to arrange molecular time series on a two-dimensional hexagonal array and dynamically colors individual hexagons according to the expression level of the molecular component to which they are assigned, to create animated movies of systems-level molecular regulatory dynamics. In order to infer potential regulatory control mechanisms from patterns of correlation, GATE also allows interactive interroga-tion of movies against a wide variety of prior knowledge datasets. GATE movies can be paused and are interactive, allowing users to reconstruct networks and perform functional enrichment analyses. Movies created with GATE can be saved in Flash format and can be inserted directly into PDF manuscript files as interactive figures. GATE is available for download and is free for academic use from http://amp.pharm.mssm.edu/maayan-lab/gate.htm

  4. Attractive Flicker--Guiding Attention in Dynamic Narrative Visualizations.

    PubMed

    Waldner, Manuela; Le Muzic, Mathieu; Bernhard, Matthias; Purgathofer, Werner; Viola, Ivan

    2014-12-01

    Focus+context techniques provide visual guidance in visualizations by giving strong visual prominence to elements of interest while the context is suppressed. However, finding a visual feature to enhance for the focus to pop out from its context in a large dynamic scene, while leading to minimal visual deformation and subjective disturbance, is challenging. This paper proposes Attractive Flicker, a novel technique for visual guidance in dynamic narrative visualizations. We first show that flicker is a strong visual attractor in the entire visual field, without distorting, suppressing, or adding any scene elements. The novel aspect of our Attractive Flicker technique is that it consists of two signal stages: The first "orientation stage" is a short but intensive flicker stimulus to attract the attention to elements of interest. Subsequently, the intensive flicker is reduced to a minimally disturbing luminance oscillation ("engagement stage") as visual support to keep track of the focus elements. To find a good trade-off between attraction effectiveness and subjective annoyance caused by flicker, we conducted two perceptual studies to find suitable signal parameters. We showcase Attractive Flicker with the parameters obtained from the perceptual statistics in a study of molecular interactions. With Attractive Flicker, users were able to easily follow the narrative of the visualization on a large display, while the flickering of focus elements was not disturbing when observing the context.

  5. A visual metaphor describing neural dynamics in schizophrenia.

    PubMed

    van Beveren, Nico J M; de Haan, Lieuwe

    2008-07-09

    In many scientific disciplines the use of a metaphor as an heuristic aid is not uncommon. A well known example in somatic medicine is the 'defense army metaphor' used to characterize the immune system. In fact, probably a large part of the everyday work of doctors consists of 'translating' scientific and clinical information (i.e. causes of disease, percentage of success versus risk of side-effects) into information tailored to the needs and capacities of the individual patient. The ability to do so in an effective way is at least partly what makes a clinician a good communicator. Schizophrenia is a severe psychiatric disorder which affects approximately 1% of the population. Over the last two decades a large amount of molecular-biological, imaging and genetic data have been accumulated regarding the biological underpinnings of schizophrenia. However, it remains difficult to understand how the characteristic symptoms of schizophrenia such as hallucinations and delusions are related to disturbances on the molecular-biological level. In general, psychiatry seems to lack a conceptual framework with sufficient explanatory power to link the mental- and molecular-biological domains. Here, we present an essay-like study in which we propose to use visualized concepts stemming from the theory on dynamical complex systems as a 'visual metaphor' to bridge the mental- and molecular-biological domains in schizophrenia. We first describe a computer model of neural information processing; we show how the information processing in this model can be visualized, using concepts from the theory on complex systems. We then describe two computer models which have been used to investigate the primary theory on schizophrenia, the neurodevelopmental model, and show how disturbed information processing in these two computer models can be presented in terms of the visual metaphor previously described. Finally, we describe the effects of dopamine neuromodulation, of which disturbances have been frequently described in schizophrenia, in terms of the same visualized metaphor. The conceptual framework and metaphor described offers a heuristic tool to understand the relationship between the mental- and molecular-biological domains in an intuitive way. The concepts we present may serve to facilitate communication between researchers, clinicians and patients.

  6. Förster resonance energy transfer as a tool to study photoreceptor biology

    PubMed Central

    Hovan, Stephanie C.; Howell, Scott; Park, Paul S.-H.

    2010-01-01

    Vision is initiated in photoreceptor cells of the retina by a set of biochemical events called phototransduction. These events occur via coordinated dynamic processes that include changes in secondary messenger concentrations, conformational changes and post-translational modifications of signaling proteins, and protein-protein interactions between signaling partners. A complete description of the orchestration of these dynamic processes is still unavailable. Described in this work is the first step in the development of tools combining fluorescent protein technology, Förster resonance energy transfer (FRET), and transgenic animals that have the potential to reveal important molecular insights about the dynamic processes occurring in photoreceptor cells. We characterize the fluorescent proteins SCFP3A and SYFP2 for use as a donor-acceptor pair in FRET assays, which will facilitate the visualization of dynamic processes in living cells. We also demonstrate the targeted expression of these fluorescent proteins to the rod photoreceptor cells of Xenopus laevis, and describe a general method for detecting FRET in these cells. The general approaches described here can address numerous types of questions related to phototransduction and photoreceptor biology by providing a platform to visualize dynamic processes in molecular detail within a native context. PMID:21198205

  7. Rotation of endosomes demonstrates coordination of molecular motors during axonal transport

    PubMed Central

    Kaplan, Luke; Ierokomos, Athena; Chowdary, Praveen; Bryant, Zev; Cui, Bianxiao

    2018-01-01

    Long-distance axonal transport is critical to the maintenance and function of neurons. Robust transport is ensured by the coordinated activities of multiple molecular motors acting in a team. Conventional live-cell imaging techniques used in axonal transport studies detect this activity by visualizing the translational dynamics of a cargo. However, translational measurements are insensitive to torques induced by motor activities. By using gold nanorods and multichannel polarization microscopy, we simultaneously measure the rotational and translational dynamics for thousands of axonally transported endosomes. We find that the rotational dynamics of an endosome provide complementary information regarding molecular motor activities to the conventionally tracked translational dynamics. Rotational dynamics correlate with translational dynamics, particularly in cases of increased rotation after switches between kinesin- and dynein-mediated transport. Furthermore, unambiguous measurement of nanorod angle shows that endosome-contained nanorods align with the orientation of microtubules, suggesting a direct mechanical linkage between the ligand-receptor complex and the microtubule motors. PMID:29536037

  8. Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides.

    PubMed

    Grottel, S; Beck, P; Muller, C; Reina, G; Roth, J; Trebin, H-R; Ertl, T

    2012-12-01

    Metal oxides are important for many technical applications. For example alumina (aluminum oxide) is the most commonly-used ceramic in microelectronic devices thanks to its excellent properties. Experimental studies of these materials are increasingly supplemented with computer simulations. Molecular dynamics (MD) simulations can reproduce the material behavior very well and are now reaching time scales relevant for interesting processes like crack propagation. In this work we focus on the visualization of induced electric dipole moments on oxygen atoms in crack propagation simulations. The straightforward visualization using glyphs for the individual atoms, simple shapes like spheres or arrows, is insufficient for providing information about the data set as a whole. As our contribution we show for the first time that fractional anisotropy values computed from the local neighborhood of individual atoms of MD simulation data depict important information about relevant properties of the field of induced electric dipole moments. Iso surfaces in the field of fractional anisotropy as well as adjustments of the glyph representation allow the user to identify regions of correlated orientation. We present novel and relevant findings for the application domain resulting from these visualizations, like the influence of mechanical forces on the electrostatic properties.

  9. A GPU-accelerated immersive audio-visual framework for interaction with molecular dynamics using consumer depth sensors.

    PubMed

    Glowacki, David R; O'Connor, Michael; Calabró, Gaetano; Price, James; Tew, Philip; Mitchell, Thomas; Hyde, Joseph; Tew, David P; Coughtrie, David J; McIntosh-Smith, Simon

    2014-01-01

    With advances in computational power, the rapidly growing role of computational/simulation methodologies in the physical sciences, and the development of new human-computer interaction technologies, the field of interactive molecular dynamics seems destined to expand. In this paper, we describe and benchmark the software algorithms and hardware setup for carrying out interactive molecular dynamics utilizing an array of consumer depth sensors. The system works by interpreting the human form as an energy landscape, and superimposing this landscape on a molecular dynamics simulation to chaperone the motion of the simulated atoms, affecting both graphics and sonified simulation data. GPU acceleration has been key to achieving our target of 60 frames per second (FPS), giving an extremely fluid interactive experience. GPU acceleration has also allowed us to scale the system for use in immersive 360° spaces with an array of up to ten depth sensors, allowing several users to simultaneously chaperone the dynamics. The flexibility of our platform for carrying out molecular dynamics simulations has been considerably enhanced by wrappers that facilitate fast communication with a portable selection of GPU-accelerated molecular force evaluation routines. In this paper, we describe a 360° atmospheric molecular dynamics simulation we have run in a chemistry/physics education context. We also describe initial tests in which users have been able to chaperone the dynamics of 10-alanine peptide embedded in an explicit water solvent. Using this system, both expert and novice users have been able to accelerate peptide rare event dynamics by 3-4 orders of magnitude.

  10. DROIDS 1.20: A GUI-Based Pipeline for GPU-Accelerated Comparative Protein Dynamics.

    PubMed

    Babbitt, Gregory A; Mortensen, Jamie S; Coppola, Erin E; Adams, Lily E; Liao, Justin K

    2018-03-13

    Traditional informatics in comparative genomics work only with static representations of biomolecules (i.e., sequence and structure), thereby ignoring the molecular dynamics (MD) of proteins that define function in the cell. A comparative approach applied to MD would connect this very short timescale process, defined in femtoseconds, to one of the longest in the universe: molecular evolution measured in millions of years. Here, we leverage advances in graphics-processing-unit-accelerated MD simulation software to develop a comparative method of MD analysis and visualization that can be applied to any two homologous Protein Data Bank structures. Our open-source pipeline, DROIDS (Detecting Relative Outlier Impacts in Dynamic Simulations), works in conjunction with existing molecular modeling software to convert any Linux gaming personal computer into a "comparative computational microscope" for observing the biophysical effects of mutations and other chemical changes in proteins. DROIDS implements structural alignment and Benjamini-Hochberg-corrected Kolmogorov-Smirnov statistics to compare nanosecond-scale atom bond fluctuations on the protein backbone, color mapping the significant differences identified in protein MD with single-amino-acid resolution. DROIDS is simple to use, incorporating graphical user interface control for Amber16 MD simulations, cpptraj analysis, and the final statistical and visual representations in R graphics and UCSF Chimera. We demonstrate that DROIDS can be utilized to visually investigate molecular evolution and disease-related functional changes in MD due to genetic mutation and epigenetic modification. DROIDS can also be used to potentially investigate binding interactions of pharmaceuticals, toxins, or other biomolecules in a functional evolutionary context as well. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction.

    PubMed

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.

  12. Dynamic Paper Constructions for Easier Visualization of Molecular Symmetry

    ERIC Educational Resources Information Center

    Sein, Lawrence T., Jr.

    2010-01-01

    A system for construction of simple poster-board models is described. The models dynamically demonstrate the symmetry operations of proper rotation, improper rotation, reflection, and inversion for the chemically important point groups D[subscript 3h], D[subscript 4h], D[subscript 5h], D[subscript 6h], T[subscript d], and O[subscript h]. The…

  13. High School Biology Students Use of Visual Molecular Dynamics as an Authentic Tool for Learning about Modeling as a Professional Scientific Practice

    ERIC Educational Resources Information Center

    Burgin, Stephen R.; Oramous, Jennifer; Kaminski, Michael; Stocker, Linda; Moradi, Mahmoud

    2018-01-01

    Modeling is a practice of science that is underemphasized in biology classrooms in comparison to its central focus in the physical sciences. Visualizations of the submicroscopic world of molecules are becoming increasingly sophisticated with the evolution of new technologies. With this in mind, we introduced high school biology classrooms to a…

  14. Molecular dynamic simulation of Trastuzumab F(ab’)2 structure in corporation with HER2 as a theranostic agent of breast cancer

    NASA Astrophysics Data System (ADS)

    Hermanto, S.; Yusuf, M.; Mutalib, A.; Hudiyono, S.

    2017-05-01

    Trastuzumab as intact IgG are well researched for theranostic agent in HER2 overexpressed breast cancer. However, due to the relatively large of molecules it is slowly moved and weak penetration of the target cells. Fragmentation of trastzumab has been developed by pepsin cleavages to get the F(ab’)2 fragments. To observe the stability and accessibility of F(ab’)2 structure in corporation with HER2 (human epidermal growth factor receptor-2), the structure of antibody modeling had been developed with 1IGT as a template. Molecular dynamics (MD) of the F(ab’)2 structure simulation has been done in the aqueous phase with AMBER trajectories for 20 ns. Computational visualization by VMD (Visual Molecular Dynamics) were applied to identify binding site interaction details between trastuzumab F(ab’)2 and HER2 receptor. The results of MD simulations indicated that the fragmentation of trastuzumab F(ab’)2 did not change the structure and conformation of F(ab’)2 as a whole, especially in the CDR (Complementarity Determining Region) area. SASA (solvent accessibility surface area) analysis on lysine residues showed that formation of conjugate DOTA-F(ab’)2 predicted occur on outside of the CDR regions so its not interfered with binding affinity for the HER2 receptor. The molecular dynamic simulation of DOTA-F(ab’)2 with HER2 receptor in aqueous system generated ΔGbinding more highly (15.5066 kkal/mol) than positive control HER2-Fab (-45.1446 kkal/mol).

  15. Tools and procedures for visualization of proteins and other biomolecules.

    PubMed

    Pan, Lurong; Aller, Stephen G

    2015-04-01

    Protein, peptides, and nucleic acids are biomolecules that drive biological processes in living organisms. An enormous amount of structural data for a large number of these biomolecules has been described with atomic precision in the form of structural "snapshots" that are freely available in public repositories. These snapshots can help explain how the biomolecules function, the nature of interactions between multi-molecular complexes, and even how small-molecule drugs can modulate the biomolecules for clinical benefits. Furthermore, these structural snapshots serve as inputs for sophisticated computer simulations to turn the biomolecules into moving, "breathing" molecular machines for understanding their dynamic properties in real-time computer simulations. In order for the researcher to take advantage of such a wealth of structural data, it is necessary to gain competency in the use of computer molecular visualization tools for exploring the structures and visualizing three-dimensional spatial representations. Here, we present protocols for using two common visualization tools--the Web-based Jmol and the stand-alone PyMOL package--as well as a few examples of other popular tools. Copyright © 2015 John Wiley & Sons, Inc.

  16. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform

    PubMed Central

    2012-01-01

    Background The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net. PMID:22889332

  17. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.

    PubMed

    Hanwell, Marcus D; Curtis, Donald E; Lonie, David C; Vandermeersch, Tim; Zurek, Eva; Hutchison, Geoffrey R

    2012-08-13

    The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net.

  18. Modeling Quantum Dynamics in Multidimensional Systems

    NASA Astrophysics Data System (ADS)

    Liss, Kyle; Weinacht, Thomas; Pearson, Brett

    2017-04-01

    Coupling between different degrees-of-freedom is an inherent aspect of dynamics in multidimensional quantum systems. As experiments and theory begin to tackle larger molecular structures and environments, models that account for vibrational and/or electronic couplings are essential for interpretation. Relevant processes include intramolecular vibrational relaxation, conical intersections, and system-bath coupling. We describe a set of simulations designed to model coupling processes in multidimensional molecular systems, focusing on models that provide insight and allow visualization of the dynamics. Undergraduates carried out much of the work as part of a senior research project. In addition to the pedagogical value, the simulations allow for comparison between both explicit and implicit treatments of a system's many degrees-of-freedom.

  19. Performance of multiple docking and refinement methods in the pose prediction D3R prospective Grand Challenge 2016

    NASA Astrophysics Data System (ADS)

    Fradera, Xavier; Verras, Andreas; Hu, Yuan; Wang, Deping; Wang, Hongwu; Fells, James I.; Armacost, Kira A.; Crespo, Alejandro; Sherborne, Brad; Wang, Huijun; Peng, Zhengwei; Gao, Ying-Duo

    2018-01-01

    We describe the performance of multiple pose prediction methods for the D3R 2016 Grand Challenge. The pose prediction challenge includes 36 ligands, which represent 4 chemotypes and some miscellaneous structures against the FXR ligand binding domain. In this study we use a mix of fully automated methods as well as human-guided methods with considerations of both the challenge data and publicly available data. The methods include ensemble docking, colony entropy pose prediction, target selection by molecular similarity, molecular dynamics guided pose refinement, and pose selection by visual inspection. We evaluated the success of our predictions by method, chemotype, and relevance of publicly available data. For the overall data set, ensemble docking, visual inspection, and molecular dynamics guided pose prediction performed the best with overall mean RMSDs of 2.4, 2.2, and 2.2 Å respectively. For several individual challenge molecules, the best performing method is evaluated in light of that particular ligand. We also describe the protein, ligand, and public information data preparations that are typical of our binding mode prediction workflow.

  20. Visualizing global properties of a molecular dynamics trajectory.

    PubMed

    Zhou, Hao; Li, Shangyang; Makowski, Lee

    2016-01-01

    Molecular dynamics (MD) trajectories are very large data sets that contain substantial information about the dynamic behavior of a protein. Condensing these data into a form that can provide intuitively useful understanding of the molecular behavior during the trajectory is a substantial challenge that has received relatively little attention. Here, we introduce the sigma-r plot, a plot of the standard deviation of intermolecular distances as a function of that distance. This representation of global dynamics contains within a single, one-dimensional plot, the average range of motion between pairs of atoms within a macromolecule. Comparison of sigma-r plots calculated from 10 ns trajectories of proteins representing the four major SCOP fold classes indicates diversity of dynamic behaviors which are recognizably different among the four classes. Differences in domain structure and molecular weight also produce recognizable features in sigma-r plots, reflective of differences in global dynamics. Plots generated from trajectories with progressively increasing simulation time reflect the increased sampling of the structural ensemble as a function of time. Single amino acid replacements can give rise to changes in global dynamics detectable through comparison of sigma-r plots. Dynamic behavior of substructures can be monitored by careful choice of interatomic vectors included in the calculation. These examples provide demonstrations of the utility of the sigma-r plot to provide a simple measure of the global dynamics of a macromolecule. © 2015 Wiley Periodicals, Inc.

  1. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Li; Xiong, Hui; Kukk, Edwin

    Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. Here, we present our investigation of photoionization and nuclear dynamics in methyl iodine (CH 3I) molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up tomore » 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.« less

  3. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction

    PubMed Central

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Background Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. Methods A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. Results This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. Conclusion This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice. PMID:25848224

  4. Molecular dynamics of individual alpha-helices of bacteriorhodopsin in dimyristol phosphatidylocholine. I. Structure and dynamics.

    PubMed

    Woolf, T B

    1997-11-01

    Understanding the role of the lipid bilayer in membrane protein structure and dynamics is needed for tertiary structure determination methods. However, the molecular details are not well understood. Molecular dynamics computer calculations can provide insight into these molecular details of protein:lipid interactions. This paper reports on 10 simulations of individual alpha-helices in explicit lipid bilayers. The 10 helices were selected from the bacteriorhodopsin structure as representative alpha-helical membrane folding components. The bilayer is constructed of dimyristoyl phosphatidylcholine molecules. The only major difference between simulations is the primary sequence of the alpha-helix. The results show dramatic differences in motional behavior between alpha-helices. For example, helix A has much smaller root-mean-squared deviations than does helix D. This can be understood in terms of the presence of aromatic residues at the interface for helix A that are not present in helix D. Additional motions are possible for the helices that contain proline side chains relative to other amino acids. The results thus provide insight into the types of motion and the average structures possible for helices within the bilayer setting and demonstrate the strength of molecular simulations in providing molecular details that are not directly visualized in experiments.

  5. MD Simulations of P-Type ATPases in a Lipid Bilayer System.

    PubMed

    Autzen, Henriette Elisabeth; Musgaard, Maria

    2016-01-01

    Molecular dynamics (MD) simulation is a computational method which provides insight on protein dynamics with high resolution in both space and time, in contrast to many experimental techniques. MD simulations can be used as a stand-alone method to study P-type ATPases as well as a complementary method aiding experimental studies. In particular, MD simulations have proved valuable in generating and confirming hypotheses relating to the structure and function of P-type ATPases. In the following, we describe a detailed practical procedure on how to set up and run a MD simulation of a P-type ATPase embedded in a lipid bilayer using software free of use for academics. We emphasize general considerations and problems typically encountered when setting up simulations. While full coverage of all possible procedures is beyond the scope of this chapter, we have chosen to illustrate the MD procedure with the Nanoscale Molecular Dynamics (NAMD) and the Visual Molecular Dynamics (VMD) software suites.

  6. vmdICE: a plug-in for rapid evaluation of molecular dynamics simulations using VMD.

    PubMed

    Knapp, Bernhard; Lederer, Nadja; Omasits, Ulrich; Schreiner, Wolfgang

    2010-12-01

    Molecular dynamics (MD) is a powerful in silico method to investigate the interactions between biomolecules. It solves Newton's equations of motion for atoms over a specified period of time and yields a trajectory file, containing the different spatial arrangements of atoms during the simulation. The movements and energies of each single atom are recorded. For evaluating of these simulation trajectories with regard to biomedical implications, several methods are available. Three well-known ones are the root mean square deviation (RMSD), the root mean square fluctuation (RMSF) and solvent accessible surface area (SASA). Herein, we present a novel plug-in for the software "visual molecular dynamics" (VMD) that allows an interactive 3D representation of RMSD, RMSF, and SASA, directly on the molecule. On the one hand, our plug-in is easy to handle for inexperienced users, and on the other hand, it provides a fast and flexible graphical impression of the spatial dynamics of a system for experts in the field. © 2010 Wiley Periodicals, Inc.

  7. X-ray Pump–Probe Investigation of Charge and Dissociation Dynamics in Methyl Iodine Molecule

    DOE PAGES

    Fang, Li; Xiong, Hui; Kukk, Edwin; ...

    2017-05-19

    Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. Here, we present our investigation of photoionization and nuclear dynamics in methyl iodine (CH 3I) molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up tomore » 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.« less

  8. PLUMED-GUI: An environment for the interactive development of molecular dynamics analysis and biasing scripts

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni

    2014-03-01

    PLUMED-GUI is an interactive environment to develop and test complex PLUMED scripts within the Visual Molecular Dynamics (VMD) environment. Computational biophysicists can take advantage of both PLUMED’s rich syntax to define collective variables (CVs) and VMD’s chemically-aware atom selection language, while working within a natural point-and-click interface. Pre-defined templates and syntax mnemonics facilitate the definition of well-known reaction coordinates. Complex CVs, e.g. involving reference snapshots used for RMSD or native contacts calculations, can be built through dialogs that provide a synoptic view of the available options. Scripts can be either exported for use in simulation programs, or evaluated on the currently loaded molecular trajectories. Script development takes place without leaving VMD, thus enabling an incremental try-see-modify development model for molecular metrics.

  9. Supporting Knowledge Integration in Chemistry with a Visualization-Enhanced Inquiry Unit

    NASA Astrophysics Data System (ADS)

    Chiu, Jennifer L.; Linn, Marcia C.

    2014-02-01

    This paper describes the design and impact of an inquiry-oriented online curriculum that takes advantage of dynamic molecular visualizations to improve students' understanding of chemical reactions. The visualization-enhanced unit uses research-based guidelines following the knowledge integration framework to help students develop coherent understanding by connecting and refining existing and new ideas. The inquiry unit supports students to develop connections among molecular, observable, and symbolic representations of chemical reactions. Design-based research included a pilot study, a study comparing the visualization-enhanced inquiry unit to typical instruction, and a course-long comparison study featuring a delayed posttest. Students participating in the visualization-enhanced unit outperformed students receiving typical instruction and further consolidated their understanding on the delayed posttest. Students who used the visualization-enhanced unit formed more connections among concepts than students with typical textbook and lecture-based instruction. Item analysis revealed the types of connections students made when studying the curriculum and suggested how these connections enabled students to consolidate their understanding as they continued in the chemistry course. Results demonstrate that visualization-enhanced inquiry designed for knowledge integration can improve connections between observable and atomic-level phenomena and serve students well as they study subsequent topics in chemistry.

  10. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle.

    PubMed

    Salorinne, Kirsi; Malola, Sami; Wong, O Andrea; Rithner, Christopher D; Chen, Xi; Ackerson, Christopher J; Häkkinen, Hannu

    2016-01-21

    Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of (1)H and (13)C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications.

  11. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle

    PubMed Central

    Salorinne, Kirsi; Malola, Sami; Wong, O. Andrea; Rithner, Christopher D.; Chen, Xi; Ackerson, Christopher J.; Häkkinen, Hannu

    2016-01-01

    Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of 1H and 13C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications. PMID:26791253

  12. Femtosecond visualization of lattice dynamics in shock-compressed matter.

    PubMed

    Milathianaki, D; Boutet, S; Williams, G J; Higginbotham, A; Ratner, D; Gleason, A E; Messerschmidt, M; Seibert, M M; Swift, D C; Hering, P; Robinson, J; White, W E; Wark, J S

    2013-10-11

    The ultrafast evolution of microstructure is key to understanding high-pressure and strain-rate phenomena. However, the visualization of lattice dynamics at scales commensurate with those of atomistic simulations has been challenging. Here, we report femtosecond x-ray diffraction measurements unveiling the response of copper to laser shock-compression at peak normal elastic stresses of ~73 gigapascals (GPa) and strain rates of 10(9) per second. We capture the evolution of the lattice from a one-dimensional (1D) elastic to a 3D plastically relaxed state within a few tens of picoseconds, after reaching shear stresses of 18 GPa. Our in situ high-precision measurement of material strength at spatial (<1 micrometer) and temporal (<50 picoseconds) scales provides a direct comparison with multimillion-atom molecular dynamics simulations.

  13. Dynamics of Actin Cables in Polarized Growth of the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Bergs, Anna; Ishitsuka, Yuji; Evangelinos, Minoas; Nienhaus, G. U.; Takeshita, Norio

    2016-01-01

    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules. PMID:27242709

  14. Visualizing the molecular sociology at the HeLa cell nuclear periphery.

    PubMed

    Mahamid, Julia; Pfeffer, Stefan; Schaffer, Miroslava; Villa, Elizabeth; Danev, Radostin; Cuellar, Luis Kuhn; Förster, Friedrich; Hyman, Anthony A; Plitzko, Jürgen M; Baumeister, Wolfgang

    2016-02-26

    The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo-electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed the native structure and organization of the cytoplasmic translation machinery. Analysis of a large dynamic structure-the nuclear pore complex-revealed variations detectable at the level of individual complexes. Cryo-ET was used to visualize previously elusive structures, such as nucleosome chains and the filaments of the nuclear lamina, in situ. Elucidation of the lamina structure provides insight into its contribution to metazoan nuclear stiffness. Copyright © 2016, American Association for the Advancement of Science.

  15. Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone.

    PubMed

    Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde

    2011-12-01

    In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms.

  16. Computer Series, 36: Bits and Pieces, 13.

    ERIC Educational Resources Information Center

    Moore, John W.

    1983-01-01

    Eleven computer/calculator programs (most are available from authors) are described. Topics include visualizing molecular vibrations, dynamic nuclear magnetic resonance spectra of two-spin systems, programming utilities for Apple II Plus, gas chromatography simulation for TRS-80, infrared spectra analysis on a calculator, naming chemical…

  17. Computer aided drug design

    NASA Astrophysics Data System (ADS)

    Jain, A.

    2017-08-01

    Computer based method can help in discovery of leads and can potentially eliminate chemical synthesis and screening of many irrelevant compounds, and in this way, it save time as well as cost. Molecular modeling systems are powerful tools for building, visualizing, analyzing and storing models of complex molecular structure that can help to interpretate structure activity relationship. The use of various techniques of molecular mechanics and dynamics and software in Computer aided drug design along with statistics analysis is powerful tool for the medicinal chemistry to synthesis therapeutic and effective drugs with minimum side effect.

  18. Analysis of Actin-Based Intracellular Trafficking in Pollen Tubes.

    PubMed

    Jiang, Yuxiang; Zhang, Meng; Huang, Shanjin

    2017-01-01

    Underlying rapid and directional pollen tube growth is the active intracellular trafficking system that carries materials necessary for cell wall synthesis and membrane expansion to the expanding point of the pollen tube. The actin cytoskeleton has been shown to control various intracellular trafficking events in the pollen tube, but the underlying cellular and molecular mechanisms remain poorly understood. To better understand how the actin cytoskeleton is involved in the regulation of intracellular trafficking events, we need to establish assays to visualize and quantify the distribution and dynamics of organelles, vesicles, or secreted proteins. In this chapter, we introduce methods regarding the visualization and quantification of the distribution and dynamics of organelles or vesicles in pollen tubes.

  19. Visualizing functional motions of membrane transporters with molecular dynamics simulations.

    PubMed

    Shaikh, Saher A; Li, Jing; Enkavi, Giray; Wen, Po-Chao; Huang, Zhijian; Tajkhorshid, Emad

    2013-01-29

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.

  20. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  1. 3DScapeCS: application of three dimensional, parallel, dynamic network visualization in Cytoscape

    PubMed Central

    2013-01-01

    Background The exponential growth of gigantic biological data from various sources, such as protein-protein interaction (PPI), genome sequences scaffolding, Mass spectrometry (MS) molecular networking and metabolic flux, demands an efficient way for better visualization and interpretation beyond the conventional, two-dimensional visualization tools. Results We developed a 3D Cytoscape Client/Server (3DScapeCS) plugin, which adopted Cytoscape in interpreting different types of data, and UbiGraph for three-dimensional visualization. The extra dimension is useful in accommodating, visualizing, and distinguishing large-scale networks with multiple crossed connections in five case studies. Conclusions Evaluation on several experimental data using 3DScapeCS and its special features, including multilevel graph layout, time-course data animation, and parallel visualization has proven its usefulness in visualizing complex data and help to make insightful conclusions. PMID:24225050

  2. Deciphering fine molecular details of proteins' structure and function with a Protein Surface Topography (PST) method.

    PubMed

    Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G

    2014-04-28

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  3. Wetlands for Wastewater: a Visual Approach to Microbial Dynamics

    NASA Astrophysics Data System (ADS)

    Joubert, L.; Wolfaardt, G.; Du Plessis, K.

    2007-12-01

    The complex character of distillery wastewater comprises high concentrations of sugars, lignins, hemicelluloses, dextrans, resins, polyphenols and organic acids which are recalcitrant to biodegradation. Microorganisms play a key role in the production and degradation of organic matter, environmental pollutants, and cycling of nutrients and metals. Due to their short life cycles microbes respond rapidly to external nutrient loading, with major consequences for the stability of biological systems. We evaluated the feasibility of wetlands to treat winery and distillery effluents in experimental systems based on constructed wetlands, including down-scaled on-site distillery wetlands, small-scale controlled greenhouse systems, and bench-scale mesocosms. Chemical, visual and molecular fingerprinting (t-RFLP) techniques were applied to study the dynamics of planktonic and attached (biofilm) communities at various points in wetlands of different size, retention time and geological substrate, and under influence of shock nutrient loadings. Variable- Pressure Scanning Electron Microscopy (VP-SEM) was applied to visualize microbial colonization, morphotype diversity and distribution, and 3D biofilm architecture. Cross-taxon and predator-prey interactions were markedly influenced by organic loading, while the presence of algae affected microbial community composition and biofilm structure. COD removal varied with geological substrate, and was positively correlated with retention time in gravel wetlands. Planktonic and biofilm communities varied markedly in different regions of the wetland and over time, as indicated by whole-community t-RFLP and VP-SEM. An integrative visual approach to community dynamics enhanced data retrieval not afforded by molecular techniques alone. The high microbial diversity along spatial and temporal gradients, and responsiveness to the physico-chemical environment, suggest that microbial communities maintain metabolic function by modifying species composition in response to fluctuations in their environment. It seems apparent that microbial community plasticity may indeed be the distinguishing characteristic of a successful wetland system.

  4. Tube Visualization and Properties from Isoconfigurational Averaging

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Bisbee, Windsor; Milner, Scott

    2012-02-01

    We introduce a simulation method to visualize the confining tube in polymer melts and measure its properties. We studied bead-spring ring polymers, which conveniently suppresses constraint release and contour length fluctuations. We allow molecules to cross and reach topologically equilibrated states by invoking various molecular rebridging moves in Monte Carlo simulations. To reveal the confining tube, we start with a well equilibrated configuration, turn off rebridging moves, and run molecular dynamics simulation multiple times, each with different initial velocities. The resulting set of ``movies'' of molecular trajectories defines an isoconfigurational ensemble, with the bead positions at different times and in different ``movies'' giving rise to a cloud. The cloud shows the shape, range and strength of the tube confinement, which enables us to study the statistical properties of tube. Using this approach, we studied the effects of free surface, and found that the tube diameter near the surface is greater than the bulk value by about 25%.

  5. High-speed atomic force microscopy coming of age

    NASA Astrophysics Data System (ADS)

    Ando, Toshio

    2012-02-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.

  6. Molecular interferometer to decode attosecond electron-nuclear dynamics.

    PubMed

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2014-03-18

    Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses.

  7. VMD DisRg: New User-Friendly Implement for calculation distance and radius of gyration in VMD program

    PubMed Central

    Falsafi-Zadeh, Sajad; Karimi, Zahra; Galehdari, Hamid

    2012-01-01

    Molecular dynamic simulation is a practical and powerful technique for analysis of protein structure. Several programs have been developed to facilitate the mentioned investigation, under them the visual molecular dynamic or VMD is the most frequently used programs. One of the beneficial properties of the VMD is its ability to be extendable by designing new plug-in. We introduce here a new facility of the VMD for distance analysis and radius of gyration of biopolymers such as protein and DNA. Availability The database is available for free at http://trc.ajums.ac.ir/HomePage.aspx/?TabID/=12618/&Site/=trc.ajums.ac/&Lang/=fa-IR PMID:22553393

  8. A collaborative visual analytics suite for protein folding research.

    PubMed

    Harvey, William; Park, In-Hee; Rübel, Oliver; Pascucci, Valerio; Bremer, Peer-Timo; Li, Chenglong; Wang, Yusu

    2014-09-01

    Molecular dynamics (MD) simulation is a crucial tool for understanding principles behind important biochemical processes such as protein folding and molecular interaction. With the rapidly increasing power of modern computers, large-scale MD simulation experiments can be performed regularly, generating huge amounts of MD data. An important question is how to analyze and interpret such massive and complex data. One of the (many) challenges involved in analyzing MD simulation data computationally is the high-dimensionality of such data. Given a massive collection of molecular conformations, researchers typically need to rely on their expertise and prior domain knowledge in order to retrieve certain conformations of interest. It is not easy to make and test hypotheses as the data set as a whole is somewhat "invisible" due to its high dimensionality. In other words, it is hard to directly access and examine individual conformations from a sea of molecular structures, and to further explore the entire data set. There is also no easy and convenient way to obtain a global view of the data or its various modalities of biochemical information. To this end, we present an interactive, collaborative visual analytics tool for exploring massive, high-dimensional molecular dynamics simulation data sets. The most important utility of our tool is to provide a platform where researchers can easily and effectively navigate through the otherwise "invisible" simulation data sets, exploring and examining molecular conformations both as a whole and at individual levels. The visualization is based on the concept of a topological landscape, which is a 2D terrain metaphor preserving certain topological and geometric properties of the high dimensional protein energy landscape. In addition to facilitating easy exploration of conformations, this 2D terrain metaphor also provides a platform where researchers can visualize and analyze various properties (such as contact density) overlayed on the top of the 2D terrain. Finally, the software provides a collaborative environment where multiple researchers can assemble observations and biochemical events into storyboards and share them in real time over the Internet via a client-server architecture. The software is written in Scala and runs on the cross-platform Java Virtual Machine. Binaries and source code are available at http://www.aylasoftware.org and have been released under the GNU General Public License. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The Dynamics of Chemical Reactions: Atomistic Visualizations of Organic Reactions, and Homage to van 't Hoff.

    PubMed

    Yang, Zhongyue; Houk, K N

    2018-03-15

    Jacobus Henricus van 't Hoff was the first Nobel Laureate in Chemistry. He pioneered in the study of chemical dynamics, which referred at that time to chemical kinetics and thermodynamics. The term has evolved in modern times to refer to the exploration of chemical transformations in a time-resolved fashion. Chemical dynamics has been driven by the development of molecular dynamics trajectory simulations, which provide atomic visualization of chemical processes and illuminate how dynamic effects influence chemical reactivity and selectivity. In homage to the legend of van 't Hoff, we review the development of the chemical dynamics of organic reactions, our area of research. We then discuss our trajectory simulations of pericyclic reactions, and our development of dynamic criteria for concerted and stepwise reaction mechanisms. We also describe a method that we call environment-perturbed transition state sampling, which enables trajectory simulations in condensed-media using quantum mechanics and molecular mechanics (QM/MM). We apply the method to reactions in solvent and in enzyme. Jacobus Henricus van 't Hoff (1852, Rotterdam-1911, Berlin) received the Nobel Prize for Chemistry in 1901 "in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions". van 't Hoff was born the Netherlands, and earned his doctorate in Utrecht in 1874. In 1896 he moved to Berlin, where he was offered a position with more research and less teaching. van 't Hoff is considered one of the founders of physical chemistry. A key step in establishing this new field was the start of Zeitschrift für Physikalische Chemie in 1887. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Markov State Models of gene regulatory networks.

    PubMed

    Chu, Brian K; Tse, Margaret J; Sato, Royce R; Read, Elizabeth L

    2017-02-06

    Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models. Application of transition path theory to the constructed Markov State Model decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for stochastic state-switching. In this proof-of-concept study, we found that the Markov State Model provides a general framework for analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this framework-adopted from the field of atomistic Molecular Dynamics-can be a useful tool for quantitative Systems Biology at the network scale.

  11. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.

    PubMed

    Felberg, Lisa E; Brookes, David H; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A; Head-Gordon, Teresa

    2017-06-05

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Amorphous Carbon Nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Amorphous carbon nanosphere used as the anode material for Li-intercalation in Lithium-ion energy storage. This structure was obtained through a thermal annealing process at a temperature of 3000 degree Kelvin, simulated using the LAMMPS molecular dynamics code on the LCRC Fusion resource. Science: Kah Chun Lau and Larry Curtiss Visualization: Aaron Knoll, Mark Hereld and Michael E. Papka

  13. Making the Rate: Enzyme Dynamics

    ERIC Educational Resources Information Center

    Ragsdale, Frances R.

    2004-01-01

    An enzyme exercise to address the problem of students inability to visualize chemical reaction at the molecular level is described. This exercise is designed as a dry lab exercise but can be modified into a classroom activity then can be augmented by a wet lab procedure, thereby providing students with a practical exposure to enzyme function.

  14. What Do Biochemistry Students Pay Attention to in External Representations of Protein Translation? Tthe Case of the Shine-Dalgarno Sequence

    ERIC Educational Resources Information Center

    Bussey, Thomas J.; Orgill, MaryKay

    2015-01-01

    Biochemistry instructors often use external representations--ranging from static diagrams to dynamic animations and from simplistic, stylized illustrations to more complex, realistic presentations--to help their students visualize abstract cellular and molecular processes, mechanisms, and components. However, relatively little is known about how…

  15. A Balanced Approach to Adaptive Probability Density Estimation.

    PubMed

    Kovacs, Julio A; Helmick, Cailee; Wriggers, Willy

    2017-01-01

    Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics.

  16. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples.

    PubMed

    Oblinsky, Daniel G; Vanschouwen, Bryan M B; Gordon, Heather L; Rothstein, Stuart M

    2009-12-14

    Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the beta1 domain of protein G.

  17. Procrustean rotation in concert with principal component analysis of molecular dynamics trajectories: Quantifying global and local differences between conformational samples

    NASA Astrophysics Data System (ADS)

    Oblinsky, Daniel G.; VanSchouwen, Bryan M. B.; Gordon, Heather L.; Rothstein, Stuart M.

    2009-12-01

    Given the principal component analysis (PCA) of a molecular dynamics (MD) conformational trajectory for a model protein, we perform orthogonal Procrustean rotation to "best fit" the PCA squared-loading matrix to that of a target matrix computed for a related but different molecular system. The sum of squared deviations of the elements of the rotated matrix from those of the target, known as the error of fit (EOF), provides a quantitative measure of the dissimilarity between the two conformational samples. To estimate precision of the EOF, we perform bootstrap resampling of the molecular conformations within the trajectories, generating a distribution of EOF values for the system and target. The average EOF per variable is determined and visualized to ascertain where, locally, system and target sample properties differ. We illustrate this approach by analyzing MD trajectories for the wild-type and four selected mutants of the β1 domain of protein G.

  18. Molecular expressions: exploring the world of optics and microscopy. http://microscopy.fsu.edu.

    PubMed

    Eliceiri, Kevin W

    2004-08-01

    Our knowledge of the structure, dynamics and physiology of a cell has increased significantly in the last ten years through the emergence of new optical imaging modalities such as optical sectioning microscopy, computer- enhanced video microscopy and laser-scanning microscopy. These techniques together with the use of genetically engineered fluorophores have helped scientists visualize the 3-dimensional dynamic processes of living cells. However as powerful as these imaging tools are, they can often be difficult to understand and fully utilize. Below I will discuss my favorite website: The Molecular Expressions Web Site that endeavors to present the power of microscopy to its visitors. The Molecular Expressions group does a remarkable job of not only clearly presenting the principles behind these techniques in a manner approachable by lay and scientific audiences alike but also provides representative data from each as well.

  19. Adsorption behavior of acetone solvent at the HMX crystal faces: A molecular dynamics study.

    PubMed

    Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Ma, Yiding; Kang, Ying; Ge, Zhongxue

    2017-06-01

    Molecular dynamics simulations have been performed to understand the adsorption behavior of acetone (AC) solvent at the three surfaces of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctan (HMX) crystal, i.e. (011), (110), and (020) faces. The simulation results show that the structural features and electrostatic potentials of crystal faces are determined by the HMX molecular packing, inducing distinct mass density distribution, dipole orientation, and diffusion of solvent molecules in the interfacial regions. The solvent adsorption is mainly governed by the van der Waals forces, and the crystal-solvent interaction energies among three systems are ranked as (020)≈(110)>(011). The adsorption sites for solvent incorporation at the crystal surface were found and visualized with the aid of occupancy analysis. A uniform arrangement of adsorption sites is observed at the rough (020) surface as a result of ordered adsorption motif. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ab initio molecular dynamics determination of competitive O₂ vs. N₂ adsorption at open metal sites of M₂(dobdc).

    PubMed

    Parkes, Marie V; Greathouse, Jeffery A; Hart, David B; Gallis, Dorina F Sava; Nenoff, Tina M

    2016-04-28

    The separation of oxygen from nitrogen using metal-organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O2 and N2 in the M2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. This unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize the process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.

  1. Binding Energy Calculation of Patchouli Alcohol Isomer Cyclooxygenase Complexes Suggested as COX-1/COX-2 Selective Inhibitor

    PubMed Central

    Mahdi, Chanif; Nurdiana, Nurdiana; Kikuchi, Takheshi; Fatchiyah, Fatchiyah

    2014-01-01

    To understand the structural features that dictate the selectivity of the two isoforms of the prostaglandin H2 synthase (PGHS/COX), the three-dimensional (3D) structure of COX-1/COX-2 was assessed by means of binding energy calculation of virtual molecular dynamic with using ligand alpha-Patchouli alcohol isomers. Molecular interaction studies with COX-1 and COX-2 were done using the molecular docking tools by Hex 8.0. Interactions were further visualized by using Discovery Studio Client 3.5 software tool. The binding energy of molecular interaction was calculated by AMBER12 and Virtual Molecular Dynamic 1.9.1 software. The analysis of the alpha-Patchouli alcohol isomer compounds showed that all alpha-Patchouli alcohol isomers were suggested as inhibitor of COX-1 and COX-2. Collectively, the scoring binding energy calculation (with PBSA Model Solvent) of alpha-Patchouli alcohol isomer compounds (CID442384, CID6432585, CID3080622, CID10955174, and CID56928117) was suggested as candidate for a selective COX-1 inhibitor and CID521903 as nonselective COX-1/COX-2. PMID:25484897

  2. Local structure in anisotropic systems determined by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Komolkin, Andrei V.; Maliniak, Arnold

    In the present communication we describe the investigation of local structure using a new visualization technique. The approach is based on two-dimensional pair correlation functions derived from a molecular dynamics computer simulation. We have used this method to analyse a trajectory produced in a simulation of a nematic liquid crystal of 4-n-pentyl-4'-cyanobiphenyl (5CB) (Komolkin et al., 1994, J. chem. Phys., 101, 4103). The molecule is assumed to have cylindrical symmetry, and the liquid crystalline phase is treated as uniaxial. The pair correlation functions or cylindrical distribution functions (CDFs) are calculated in the molecular (m) and laboratory (l) frames, gm2(z1 2, d1 2) and g12(Z1 2, D1 2). Anisotropic molecular organization in the liquid crystal is reflected in laboratory frame CDFs. The molecular excluded volume is determined and the effect of the fast motion in the alkyl chain is observed. The intramolecular distributions are included in the CDFs and indicate the size of the motional amplitude in the chain. Absence of long range order was confirmed, a feature typical for a nematic liquid crystal.

  3. Single-cell dynamics of genome-nuclear lamina interactions.

    PubMed

    Kind, Jop; Pagie, Ludo; Ortabozkoyun, Havva; Boyle, Shelagh; de Vries, Sandra S; Janssen, Hans; Amendola, Mario; Nolen, Leisha D; Bickmore, Wendy A; van Steensel, Bas

    2013-03-28

    The nuclear lamina (NL) interacts with hundreds of large genomic regions termed lamina associated domains (LADs). The dynamics of these interactions and the relation to epigenetic modifications are poorly understood. We visualized the fate of LADs in single cells using a "molecular contact memory" approach. In each nucleus, only ~30% of LADs are positioned at the periphery; these LADs are in intermittent molecular contact with the NL but remain constrained to the periphery. Upon mitosis, LAD positioning is not detectably inherited but instead is stochastically reshuffled. Contact of individual LADs with the NL is linked to transcriptional repression and H3K9 dimethylation in single cells. Furthermore, we identify the H3K9 methyltransferase G9a as a regulator of NL contacts. Collectively, these results highlight principles of the dynamic spatial architecture of chromosomes in relation to gene regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. METAGUI 3: A graphical user interface for choosing the collective variables in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni; Laio, Alessandro; Rodriguez, Alex

    2017-08-01

    Molecular dynamics (MD) simulations allow the exploration of the phase space of biopolymers through the integration of equations of motion of their constituent atoms. The analysis of MD trajectories often relies on the choice of collective variables (CVs) along which the dynamics of the system is projected. We developed a graphical user interface (GUI) for facilitating the interactive choice of the appropriate CVs. The GUI allows: defining interactively new CVs; partitioning the configurations into microstates characterized by similar values of the CVs; calculating the free energies of the microstates for both unbiased and biased (metadynamics) simulations; clustering the microstates in kinetic basins; visualizing the free energy landscape as a function of a subset of the CVs used for the analysis. A simple mouse click allows one to quickly inspect structures corresponding to specific points in the landscape.

  5. DIVE: A Graph-based Visual Analytics Framework for Big Data

    PubMed Central

    Rysavy, Steven J.; Bromley, Dennis; Daggett, Valerie

    2014-01-01

    The need for data-centric scientific tools is growing; domains like biology, chemistry, and physics are increasingly adopting computational approaches. As a result, scientists must now deal with the challenges of big data. To address these challenges, we built a visual analytics platform named DIVE: Data Intensive Visualization Engine. DIVE is a data-agnostic, ontologically-expressive software framework capable of streaming large datasets at interactive speeds. Here we present the technical details of the DIVE platform, multiple usage examples, and a case study from the Dynameomics molecular dynamics project. We specifically highlight our novel contributions to structured data model manipulation and high-throughput streaming of large, structured datasets. PMID:24808197

  6. Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.

  7. Ancestral gene reconstruction and synthesis of ancient rhodopsins in the laboratory.

    PubMed

    Chang, Belinda S W

    2003-08-01

    Laboratory synthesis of ancestral proteins offers an intriguing opportunity to study the past directly. The development of Bayesian methods to infer ancestral sequences, combined with advances in models of molecular evolution, and synthetic gene technology make this an increasingly promising approach in evolutionary studies of molecular function. Visual pigments form the first step in the biochemical cascade of events in the retina in all animals known to possess visual capabilities. In vertebrates, the necessity of spanning a dynamic range of light intensities of many orders of magnitude has given rise to two different types of photoreceptors, rods specialized for dim-light conditions, and cones for daylight and color vision. These photoreceptors contain different types of visual pigment genes. Reviewed here are methods of inferring ancestral sequences, chemical synthesis of artificial ancestral genes in the laboratory, and applications to the evolution of vertebrate visual systems and the experimental recreation of an archosaur rod visual pigment. The ancestral archosaurs gave rise to several notable lineages of diapsid reptiles, including the birds and the dinosaurs, and would have existed over 200 MYA. What little is known of their physiology comes from fossil remains, and inference based on the biology of their living descendants. Despite its age, an ancestral archosaur pigment was successfully recreated in the lab, and showed interesting properties of its wavelength sensitivity that may have implications for the visual capabilities of the ancestral archosaurs in dim light.

  8. Live Imaging of Cell Motility and Actin Cytoskeleton of Individual Neurons and Neural Crest Cells in Zebrafish Embryos

    PubMed Central

    Andersen, Erica; Asuri, Namrata; Clay, Matthew; Halloran, Mary

    2010-01-01

    The zebrafish is an ideal model for imaging cell behaviors during development in vivo. Zebrafish embryos are externally fertilized and thus easily accessible at all stages of development. Moreover, their optical clarity allows high resolution imaging of cell and molecular dynamics in the natural environment of the intact embryo. We are using a live imaging approach to analyze cell behaviors during neural crest cell migration and the outgrowth and guidance of neuronal axons. Live imaging is particularly useful for understanding mechanisms that regulate cell motility processes. To visualize details of cell motility, such as protrusive activity and molecular dynamics, it is advantageous to label individual cells. In zebrafish, plasmid DNA injection yields a transient mosaic expression pattern and offers distinct benefits over other cell labeling methods. For example, transgenic lines often label entire cell populations and thus may obscure visualization of the fine protrusions (or changes in molecular distribution) in a single cell. In addition, injection of DNA at the one-cell stage is less invasive and more precise than dye injections at later stages. Here we describe a method for labeling individual developing neurons or neural crest cells and imaging their behavior in vivo. We inject plasmid DNA into 1-cell stage embryos, which results in mosaic transgene expression. The vectors contain cell-specific promoters that drive expression of a gene of interest in a subset of sensory neurons or neural crest cells. We provide examples of cells labeled with membrane targeted GFP or with a biosensor probe that allows visualization of F-actin in living cells1. Erica Andersen, Namrata Asuri, and Matthew Clay contributed equally to this work. PMID:20130524

  9. minepath.org: a free interactive pathway analysis web server.

    PubMed

    Koumakis, Lefteris; Roussos, Panos; Potamias, George

    2017-07-03

    ( www.minepath.org ) is a web-based platform that elaborates on, and radically extends the identification of differentially expressed sub-paths in molecular pathways. Besides the network topology, the underlying MinePath algorithmic processes exploit exact gene-gene molecular relationships (e.g. activation, inhibition) and are able to identify differentially expressed pathway parts. Each pathway is decomposed into all its constituent sub-paths, which in turn are matched with corresponding gene expression profiles. The highly ranked, and phenotype inclined sub-paths are kept. Apart from the pathway analysis algorithm, the fundamental innovation of the MinePath web-server concerns its advanced visualization and interactive capabilities. To our knowledge, this is the first pathway analysis server that introduces and offers visualization of the underlying and active pathway regulatory mechanisms instead of genes. Other features include live interaction, immediate visualization of functional sub-paths per phenotype and dynamic linked annotations for the engaged genes and molecular relations. The user can download not only the results but also the corresponding web viewer framework of the performed analysis. This feature provides the flexibility to immediately publish results without publishing source/expression data, and get all the functionality of a web based pathway analysis viewer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang Beom; Dsilva, Carmeline J.; Debenedetti, Pablo G., E-mail: pdebene@princeton.edu

    Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration, provide structural information but fail to capture the underlying dynamics of the protein folding process. It is therefore advantageous to adopt a method that can systematically analyze simulation data to extract relevant structural as well as dynamical information. The nonlinear dimensionality reduction technique known as diffusion maps automatically embeds the high-dimensional folding trajectories inmore » a lower-dimensional space from which one can more easily visualize folding pathways, assuming the data lie approximately on a lower-dimensional manifold. The eigenvectors that parametrize the low-dimensional space, furthermore, are determined systematically, rather than chosen heuristically, as is done with phenomenological order parameters. We demonstrate that diffusion maps can effectively characterize the folding process of a Trp-cage miniprotein. By embedding molecular dynamics simulation trajectories of Trp-cage folding in diffusion maps space, we identify two folding pathways and intermediate structures that are consistent with the previous studies, demonstrating that this technique can be employed as an effective way of analyzing and constructing protein folding pathways from molecular simulations.« less

  11. GPU-Accelerated Molecular Modeling Coming Of Age

    PubMed Central

    Stone, John E.; Hardy, David J.; Ufimtsev, Ivan S.

    2010-01-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. PMID:20675161

  12. GPU-accelerated molecular modeling coming of age.

    PubMed

    Stone, John E; Hardy, David J; Ufimtsev, Ivan S; Schulten, Klaus

    2010-09-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. (c) 2010 Elsevier Inc. All rights reserved.

  13. Las Palmeras Molecular Dynamics: A flexible and modular molecular dynamics code

    NASA Astrophysics Data System (ADS)

    Davis, Sergio; Loyola, Claudia; González, Felipe; Peralta, Joaquín

    2010-12-01

    Las Palmeras Molecular Dynamics (LPMD) is a highly modular and extensible molecular dynamics (MD) code using interatomic potential functions. LPMD is able to perform equilibrium MD simulations of bulk crystalline solids, amorphous solids and liquids, as well as non-equilibrium MD (NEMD) simulations such as shock wave propagation, projectile impacts, cluster collisions, shearing, deformation under load, heat conduction, heterogeneous melting, among others, which involve unusual MD features like non-moving atoms and walls, unstoppable atoms with constant-velocity, and external forces like electric fields. LPMD is written in C++ as a compromise between efficiency and clarity of design, and its architecture is based on separate components or plug-ins, implemented as modules which are loaded on demand at runtime. The advantage of this architecture is the ability to completely link together the desired components involved in the simulation in different ways at runtime, using a user-friendly control file language which describes the simulation work-flow. As an added bonus, the plug-in API (Application Programming Interface) makes it possible to use the LPMD components to analyze data coming from other simulation packages, convert between input file formats, apply different transformations to saved MD atomic trajectories, and visualize dynamical processes either in real-time or as a post-processing step. Individual components, such as a new potential function, a new integrator, a new file format, new properties to calculate, new real-time visualizers, and even a new algorithm for handling neighbor lists can be easily coded, compiled and tested within LPMD by virtue of its object-oriented API, without the need to modify the rest of the code. LPMD includes already several pair potential functions such as Lennard-Jones, Morse, Buckingham, MCY and the harmonic potential, as well as embedded-atom model (EAM) functions such as the Sutton-Chen and Gupta potentials. Integrators to choose include Euler (if only for demonstration purposes), Verlet and Velocity Verlet, Leapfrog and Beeman, among others. Electrostatic forces are treated as another potential function, by default using the plug-in implementing the Ewald summation method. Program summaryProgram title: LPMD Catalogue identifier: AEHG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 509 490 No. of bytes in distributed program, including test data, etc.: 6 814 754 Distribution format: tar.gz Programming language: C++ Computer: 32-bit and 64-bit workstation Operating system: UNIX RAM: Minimum 1024 bytes Classification: 7.7 External routines: zlib, OpenGL Nature of problem: Study of Statistical Mechanics and Thermodynamics of condensed matter systems, as well as kinetics of non-equilibrium processes in the same systems. Solution method: Equilibrium and non-equilibrium molecular dynamics method, Monte Carlo methods. Restrictions: Rigid molecules are not supported. Polarizable atoms and chemical bonds (proteins) either. Unusual features: The program is able to change the temperature of the simulation cell, the pressure, cut regions of the cell, color the atoms by properties, even during the simulation. It is also possible to fix the positions and/or velocity of groups of atoms. Visualization of atoms and some physical properties during the simulation. Additional comments: The program does not only perform molecular dynamics and Monte Carlo simulations, it is also able to filter and manipulate atomic configurations, read and write different file formats, convert between them, evaluate different structural and dynamical properties. Running time: 50 seconds on a 1000-step simulation of 4000 argon atoms, running on a single 2.67 GHz Intel processor.

  14. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme.

    PubMed

    Levitt, M; Sander, C; Stern, P S

    1985-02-05

    We have developed a new method for modelling protein dynamics using normal-mode analysis in internal co-ordinates. This method, normal-mode dynamics, is particularly well suited for modelling collective motion, makes possible direct visualization of biologically interesting modes, and is complementary to the more time-consuming simulation of molecular dynamics trajectories. The essential assumption and limitation of normal-mode analysis is that the molecular potential energy varies quadratically. Our study starts with energy minimization of the X-ray co-ordinates with respect to the single-bond torsion angles. The main technical task is the calculation of second derivative matrices of kinetic and potential energy with respect to the torsion angle co-ordinates. These enter into a generalized eigenvalue problem, and the final eigenvalues and eigenvectors provide a complete description of the motion in the basic 0.1 to 10 picosecond range. Thermodynamic averages of amplitudes, fluctuations and correlations can be calculated efficiently using analytical formulae. The general method presented here is applied to four proteins, trypsin inhibitor, crambin, ribonuclease and lysozyme. When the resulting atomic motion is visualized by computer graphics, it is clear that the motion of each protein is collective with all atoms participating in each mode. The slow modes, with frequencies of below 10 cm-1 (a period of 3 ps), are the most interesting in that the motion in these modes is segmental. The root-mean-square atomic fluctuations, which are dominated by a few slow modes, agree well with experimental temperature factors (B values). The normal-mode dynamics of these four proteins have many features in common, although in the larger molecules, lysozyme and ribonuclease, there is low frequency domain motion about the active site.

  15. PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations.

    PubMed

    Scheurer, Maximilian; Rodenkirch, Peter; Siggel, Marc; Bernardi, Rafael C; Schulten, Klaus; Tajkhorshid, Emad; Rudack, Till

    2018-02-06

    Molecular dynamics (MD) simulations have become ubiquitous in all areas of life sciences. The size and model complexity of MD simulations are rapidly growing along with increasing computing power and improved algorithms. This growth has led to the production of a large amount of simulation data that need to be filtered for relevant information to address specific biomedical and biochemical questions. One of the most relevant molecular properties that can be investigated by all-atom MD simulations is the time-dependent evolution of the complex noncovalent interaction networks governing such fundamental aspects as molecular recognition, binding strength, and mechanical and structural stability. Extracting, evaluating, and visualizing noncovalent interactions is a key task in the daily work of structural biologists. We have developed PyContact, an easy-to-use, highly flexible, and intuitive graphical user interface-based application, designed to provide a toolkit to investigate biomolecular interactions in MD trajectories. PyContact is designed to facilitate this task by enabling identification of relevant noncovalent interactions in a comprehensible manner. The implementation of PyContact as a standalone application enables rapid analysis and data visualization without any additional programming requirements, and also preserves full in-program customization and extension capabilities for advanced users. The statistical analysis representation is interactively combined with full mapping of the results on the molecular system through the synergistic connection between PyContact and VMD. We showcase the capabilities and scientific significance of PyContact by analyzing and visualizing in great detail the noncovalent interactions underlying the ion permeation pathway of the human P2X 3 receptor. As a second application, we examine the protein-protein interaction network of the mechanically ultrastable cohesin-dockering complex. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Calculation and Visualization of Atomistic Mechanical Stresses in Nanomaterials and Biomolecules

    PubMed Central

    Gilson, Michael K.

    2014-01-01

    Many biomolecules have machine-like functions, and accordingly are discussed in terms of mechanical properties like force and motion. However, the concept of stress, a mechanical property that is of fundamental importance in the study of macroscopic mechanics, is not commonly applied in the biomolecular context. We anticipate that microscopical stress analyses of biomolecules and nanomaterials will provide useful mechanistic insights and help guide molecular design. To enable such applications, we have developed Calculator of Atomistic Mechanical Stress (CAMS), an open-source software package for computing atomic resolution stresses from molecular dynamics (MD) simulations. The software also enables decomposition of stress into contributions from bonded, nonbonded and Generalized Born potential terms. CAMS reads GROMACS topology and trajectory files, which are easily generated from AMBER files as well; and time-varying stresses may be animated and visualized in the VMD viewer. Here, we review relevant theory and present illustrative applications. PMID:25503996

  17. Calculation and visualization of atomistic mechanical stresses in nanomaterials and biomolecules.

    PubMed

    Fenley, Andrew T; Muddana, Hari S; Gilson, Michael K

    2014-01-01

    Many biomolecules have machine-like functions, and accordingly are discussed in terms of mechanical properties like force and motion. However, the concept of stress, a mechanical property that is of fundamental importance in the study of macroscopic mechanics, is not commonly applied in the biomolecular context. We anticipate that microscopical stress analyses of biomolecules and nanomaterials will provide useful mechanistic insights and help guide molecular design. To enable such applications, we have developed Calculator of Atomistic Mechanical Stress (CAMS), an open-source software package for computing atomic resolution stresses from molecular dynamics (MD) simulations. The software also enables decomposition of stress into contributions from bonded, nonbonded and Generalized Born potential terms. CAMS reads GROMACS topology and trajectory files, which are easily generated from AMBER files as well; and time-varying stresses may be animated and visualized in the VMD viewer. Here, we review relevant theory and present illustrative applications.

  18. Forensic molecular pathology: its impacts on routine work, education and training.

    PubMed

    Maeda, Hitoshi; Ishikawa, Takaki; Michiue, Tomomi

    2014-03-01

    The major role of forensic pathology is the investigation of human death in relevance to social risk management to determine the cause and process of death, especially in violent and unexpected sudden deaths, which involve social and medicolegal issues of ultimate, personal and public concerns. In addition to the identification of victims and biological materials, forensic molecular pathology contributes to general explanation of the human death process and assessment of individual death on the basis of biological molecular evidence, visualizing dynamic functional changes involved in the dying process that cannot be detected by morphology (pathophysiological or molecular biological vital reactions); the genetic background (genomics), dynamics of gene expression (up-/down-regulation: transcriptomics) and vital phenomena, involving activated biological mediators and degenerative products (proteomics) as well as metabolic deterioration (metabolomics), are detected by DNA analysis, relative quantification of mRNA transcripts using real-time reverse transcription-PCR (RT-PCR), and immunohisto-/immunocytochemistry combined with biochemistry, respectively. Thus, forensic molecular pathology involves the application of omic medical sciences to investigate the genetic basis, and cause and process of death at the biological molecular level in the context of forensic pathology, that is, 'advanced molecular autopsy'. These procedures can be incorporated into routine death investigations as well as guidance, education and training programs in forensic pathology for 'dynamic assessment of the cause and process of death' on the basis of autopsy and laboratory data. Postmortem human data can also contribute to understanding patients' critical conditions in clinical management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. High-speed atomic force microscopy for observing protein molecules in dynamic action

    NASA Astrophysics Data System (ADS)

    Ando, T.

    2017-02-01

    Directly observing protein molecules in dynamic action at high spatiotemporal resolution has long been a holy grail for biological science. To materialize this long quested dream, I have been developing high-speed atomic force microscopy (HS-AFM) since 1993. Tremendous strides were recently accomplished in its high-speed and low-invasive performances. Consequently, various dynamic molecular actions, including bipedal walking of myosin V and rotary propagation of structural changes in F1-ATPase, were successfully captured on video. The visualized dynamic images not only provided irrefutable evidence for speculated actions of the protein molecules but also brought new discoveries inaccessible with other approaches, thus giving great mechanistic insights into how the molecules function. HS-AFM is now transforming "static" structural biology into dynamic structural bioscience.

  20. MapMyFlu: visualizing spatio-temporal relationships between related influenza sequences

    PubMed Central

    Nolte, Nicholas; Kurzawa, Nils; Eils, Roland; Herrmann, Carl

    2015-01-01

    Understanding the molecular dynamics of viral spreading is crucial for anticipating the epidemiological implications of disease outbreaks. In the case of influenza, reassortments or point mutations affect the adaption to new hosts or resistance to anti-viral drugs and can determine whether a new strain will result in a pandemic infection or a less severe progression. To this end, tools integrating molecular information with epidemiological parameters are important to understand how molecular characteristics reflect in the infection dynamics. We present a new web tool, MapMyFlu, which allows to spatially and temporally display influenza viruses related to a query sequence on a Google Map based on BLAST results against the NCBI Influenza Database. Temporal and geographical trends appear clearly and may help in reconstructing the evolutionary history of a particular sequence. The tool is accessible through a web server, hence without the need for local installation. The website has an intuitive design and provides an easy-to-use service, and is available at http://mapmyflu.ipmb.uni-heidelberg.de PMID:25940623

  1. High-pressure microscopy for tracking dynamic properties of molecular machines.

    PubMed

    Nishiyama, Masayoshi

    2017-12-01

    High-pressure microscopy is one of the powerful techniques to visualize the effects of hydrostatic pressures on research targets. It could be used for monitoring the pressure-induced changes in the structure and function of molecular machines in vitro and in vivo. This review focuses on the dynamic properties of the assemblies and machines, analyzed by means of high-pressure microscopy measurement. We developed a high-pressure microscope that is optimized both for the best image formation and for the stability to hydrostatic pressure up to 150 MPa. Application of pressure could change polymerization and depolymerization processes of the microtubule cytoskeleton, suggesting a modulation of the intermolecular interaction between tubulin molecules. A novel motility assay demonstrated that high hydrostatic pressure induces counterclockwise (CCW) to clockwise (CW) reversals of the Escherichia coli flagellar motor. The present techniques could be extended to study how molecular machines in complicated systems respond to mechanical stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Rotational and constitutional dynamics of caged supramolecules

    PubMed Central

    Kühne, Dirk; Klappenberger, Florian; Krenner, Wolfgang; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V.

    2010-01-01

    The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules’ chirality signature, reflecting decay and reassembly of the caged units. PMID:21098303

  3. Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation

    PubMed Central

    2011-01-01

    Background To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns. Results We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed. Conclusions The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses. PMID:21672238

  4. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE PAGES

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu 40Zr 51Al 9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at T x ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (T m ~ 900K),more » and the crossover temperature is roughly twice of the glass-transition temperature (T g). Below T x, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below T x and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  5. Polymer physics experiments with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Smith, Douglas E.

    1999-11-01

    Bacteriophage DNA molecules were taken as a model flexible polymer chain for the experimental study of polymer dynamics at the single molecule level. Video fluorescence microscopy was used to directly observe the conformational dynamics of fluorescently labeled molecules, optical tweezers were used to manipulate individual molecules, and micro-fabricated flow cells were used to apply controlled hydrodynamic strain to molecules. These techniques constitute a powerful new experimental approach in the study of basic polymer physics questions. I have used these techniques to study the diffusion and relaxation of isolated and entangled polymer molecules and the hydrodynamic deformation of polymers in elongational and shear flows. These studies revealed a rich, and previously unobserved, ``molecular individualism'' in the dynamical behavior of single molecules. Individual measurements on ensembles of identical molecules allowed the average conformation to be determined as well as the underlying probability distributions for molecular conformation. Scaling laws, that predict the dependence of properties on chain length and concentration, were also tested. The basic assumptions of the reptation model were directly confirmed by visualizing the dynamics of entangled chains.

  6. Bringing macromolecular machinery to life using 3D animation.

    PubMed

    Iwasa, Janet H

    2015-04-01

    Over the past decade, there has been a rapid rise in the use of three-dimensional (3D) animation to depict molecular and cellular processes. Much of the growth in molecular animation has been in the educational arena, but increasingly, 3D animation software is finding its way into research laboratories. In this review, I will discuss a number of ways in which 3d animation software can play a valuable role in visualizing and communicating macromolecular structures and dynamics. I will also consider the challenges of using animation tools within the research sphere. Copyright © 2015. Published by Elsevier Ltd.

  7. Live-cell confocal microscopy and quantitative 4D image analysis of anchor cell invasion through the basement membrane in C. elegans

    PubMed Central

    Kelley, Laura C.; Wang, Zheng; Hagedorn, Elliott J.; Wang, Lin; Shen, Wanqing; Lei, Shijun; Johnson, Sam A.; Sherwood, David R.

    2018-01-01

    Cell invasion through basement membrane (BM) barriers is crucial during development, leukocyte trafficking, and for the spread of cancer. Despite its importance in normal and diseased states, the mechanisms that direct invasion are poorly understood, in large part because of the inability to visualize dynamic cell-basement membrane interactions in vivo. This protocol describes multi-channel time-lapse confocal imaging of anchor cell invasion in live C. elegans. Methods presented include outline slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min), and quantitative analysis (variable timing). Images acquired enable direct measurement of invasive dynamics including invadopodia formation, cell membrane protrusions, and BM removal. This protocol can be combined with genetic analysis, molecular activity probes, and optogenetic approaches to uncover molecular mechanisms underlying cell invasion. These methods can also be readily adapted for real-time analysis of cell migration, basement membrane turnover, and cell membrane dynamics by any worm laboratory. PMID:28880279

  8. Ab initio molecular dynamics determination of competitive O 2 vs. N 2 adsorption at open metal sites of M 2 (dobdc)

    DOE PAGES

    Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David B.; ...

    2016-04-04

    The separation of oxygen from nitrogen using metal–organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O 2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O 2 and N 2 in the M 2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. Lastly, this unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize themore » process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.« less

  9. Lightweight computational steering of very large scale molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beazley, D.M.; Lomdahl, P.S.

    1996-09-01

    We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show howmore » this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.« less

  10. Manipulating and Visualizing Molecular Interactions in Customized Nanoscale Spaces

    NASA Astrophysics Data System (ADS)

    Stabile, Francis; Henkin, Gil; Berard, Daniel; Shayegan, Marjan; Leith, Jason; Leslie, Sabrina

    We present a dynamically adjustable nanofluidic platform for formatting the conformations of and visualizing the interaction kinetics between biomolecules in solution, offering new time resolution and control of the reaction processes. This platform extends convex lens-induced confinement (CLiC), a technique for imaging molecules under confinement, by introducing a system for in situ modification of the chemical environment; this system uses a deep microchannel to diffusively exchange reagents within the nanoscale imaging region, whose height is fixed by a nanopost array. To illustrate, we visualize and manipulate salt-induced, surfactant-induced, and enzyme-induced reactions between small-molecule reagents and DNA molecules, where the conformations of the DNA molecules are formatted by the imposed nanoscale confinement. By using nanofabricated, nonabsorbing, low-background glass walls to confine biomolecules, our nanofluidic platform facilitates quantitative exploration of physiologically and biotechnologically relevant processes at the nanoscale. This device provides new kinetic information about dynamic chemical processes at the single-molecule level, using advancements in the CLiC design including a microchannel-based diffuser and postarray-based dialysis slit.

  11. The effects of computer-based dynamic visualization simulations on student learning in high school science

    NASA Astrophysics Data System (ADS)

    Moodley, Sadha

    The purpose of this study was to determine whether the use of dynamic computer-based visualizations of the classical model of particle behavior helps to improve student understanding, performance, and interest in science when used by teachers as visual presentations to complement their traditional methods of teaching. The software, Virtual Molecular Dynamics Laboratory (VMDL), was developed at the Center for Polymer Studies at Boston University through funding from the National Science Foundation. The design of the study included five pairs of classes in four different schools in New England from the inner city and from advantaged suburbs. The study employed a treatment-control group design for testing the impact of several VMDL simulations on student learning in several content areas from traditional chemistry and physical science courses. The study employed a mixed qualitative and quantitative design. The quantitative part involved administering the Group Assessment of Logical Thinking (GALT) as well as post-tests that were topic specific. An Analysis of Covariance (ANCOVA) was conducted on the test scores with the GALT scores serving as a covariate. Results of the ANCOVA showed that students' understanding and performance were better in classes where teachers used the computer-based dynamic visualizations to complement their traditional teaching. GALT scores were significantly different among schools but very similar within schools. They were significant in adjusting post-test scores for pre-treatment differences for only two of the schools. The treatment groups outscored the control groups in all five comparisons. The mean differences reached statistical significance at the p < .01 level in only four of the comparisons. The qualitative part of the study involved classroom observations and student interviews. Analysis of classroom observations revealed a shift in classroom dynamics to more learner-centeredness with greater engagement by students, especially in classes that tended to have little student participation without the simulations. Analysis of the student interviews indicated that the dynamic visualizations made learning more enjoyable, helped with remembering, and enhanced students abilities to make connections between the nanoscopic and macroscopic science.

  12. Visualization of the collective vortex-like motions in liquid argon and water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Anikeenko, A. V.; Malenkov, G. G.; Naberukhin, Yu. I.

    2018-03-01

    We propose a new measure of collectivity of molecular motion in the liquid: the average vector of displacement of the particles, ⟨ΔR⟩, which initially have been localized within a sphere of radius Rsph and then have executed the diffusive motion during a time interval Δt. The more correlated the motion of the particles is, the longer will be the vector ⟨ΔR⟩. We visualize the picture of collective motions in molecular dynamics (MD) models of liquids by constructing the ⟨ΔR⟩ vectors and pinning them to the sites of the uniform grid which divides each of the edges of the model box into equal parts. MD models of liquid argon and water have been studied by this method. Qualitatively, the patterns of ⟨ΔR⟩ vectors are similar for these two liquids but differ in minor details. The most important result of our research is the revealing of the aggregates of ⟨ΔR⟩ vectors which have the form of extended flows which sometimes look like the parts of vortices. These vortex-like clusters of ⟨ΔR⟩ vectors have the mesoscopic size (of the order of 10 nm) and persist for tens of picoseconds. Dependence of the ⟨ΔR⟩ vector field on parameters Rsph, Δt, and on the model size has been investigated. This field in the models of liquids differs essentially from that in a random-walk model.

  13. Touching proteins with virtual bare hands - Visualizing protein-drug complexes and their dynamics in self-made virtual reality using gaming hardware

    NASA Astrophysics Data System (ADS)

    Ratamero, Erick Martins; Bellini, Dom; Dowson, Christopher G.; Römer, Rudolf A.

    2018-06-01

    The ability to precisely visualize the atomic geometry of the interactions between a drug and its protein target in structural models is critical in predicting the correct modifications in previously identified inhibitors to create more effective next generation drugs. It is currently common practice among medicinal chemists while attempting the above to access the information contained in three-dimensional structures by using two-dimensional projections, which can preclude disclosure of useful features. A more accessible and intuitive visualization of the three-dimensional configuration of the atomic geometry in the models can be achieved through the implementation of immersive virtual reality (VR). While bespoke commercial VR suites are available, in this work, we present a freely available software pipeline for visualising protein structures through VR. New consumer hardware, such as the uc(HTC Vive) and the uc(Oculus Rift) utilized in this study, are available at reasonable prices. As an instructive example, we have combined VR visualization with fast algorithms for simulating intramolecular motions of protein flexibility, in an effort to further improve structure-led drug design by exposing molecular interactions that might be hidden in the less informative static models. This is a paradigmatic test case scenario for many similar applications in computer-aided molecular studies and design.

  14. Touching proteins with virtual bare hands : Visualizing protein-drug complexes and their dynamics in self-made virtual reality using gaming hardware.

    PubMed

    Ratamero, Erick Martins; Bellini, Dom; Dowson, Christopher G; Römer, Rudolf A

    2018-06-07

    The ability to precisely visualize the atomic geometry of the interactions between a drug and its protein target in structural models is critical in predicting the correct modifications in previously identified inhibitors to create more effective next generation drugs. It is currently common practice among medicinal chemists while attempting the above to access the information contained in three-dimensional structures by using two-dimensional projections, which can preclude disclosure of useful features. A more accessible and intuitive visualization of the three-dimensional configuration of the atomic geometry in the models can be achieved through the implementation of immersive virtual reality (VR). While bespoke commercial VR suites are available, in this work, we present a freely available software pipeline for visualising protein structures through VR. New consumer hardware, such as the HTC VIVE and the OCULUS RIFT utilized in this study, are available at reasonable prices. As an instructive example, we have combined VR visualization with fast algorithms for simulating intramolecular motions of protein flexibility, in an effort to further improve structure-led drug design by exposing molecular interactions that might be hidden in the less informative static models. This is a paradigmatic test case scenario for many similar applications in computer-aided molecular studies and design.

  15. Network structure of SiO2 and MgSiO3 in amorphous and liquid States

    NASA Astrophysics Data System (ADS)

    Lan, Mai Thi; Thuy Duong, Tran; Viet Huy, Nguyen; Van Hong, Nguyen

    2017-03-01

    Network structure of SiO2 and MgSiO3 at 300 K and 3200 K is investigated by molecular dynamics simulation and visualization of simulation data. Structural organization of SiO2 and MgSiO3 is clarified via analysis the short range order (SRO) and intermediate range order (IRO). Network topology is determined via analyzing the bond between structural units, the cluster of structural units as well as spatial distribution of structural units. The polyamorphism as well as structural and dynamic heterogeneities are also discussed in this work.

  16. Computer display and manipulation of biological molecules

    NASA Technical Reports Server (NTRS)

    Coeckelenbergh, Y.; Macelroy, R. D.; Hart, J.; Rein, R.

    1978-01-01

    This paper describes a computer model that was designed to investigate the conformation of molecules, macromolecules and subsequent complexes. Utilizing an advanced 3-D dynamic computer display system, the model is sufficiently versatile to accommodate a large variety of molecular input and to generate data for multiple purposes such as visual representation of conformational changes, and calculation of conformation and interaction energy. Molecules can be built on the basis of several levels of information. These include the specification of atomic coordinates and connectivities and the grouping of building blocks and duplicated substructures using symmetry rules found in crystals and polymers such as proteins and nucleic acids. Called AIMS (Ames Interactive Molecular modeling System), the model is now being used to study pre-biotic molecular evolution toward life.

  17. An ALuc-Based Molecular Tension Probe for Sensing Intramolecular Protein-Protein Interactions.

    PubMed

    Kim, Sung-Bae; Nishihara, Ryo; Suzuki, Koji

    2016-01-01

    Optical imaging of protein-protein interactions (PPIs) facilitates comprehensive elucidation of intracellular molecular events. The present protocol demonstrates an optical measure for visualizing molecular tension triggered by any PPI in mammalian cells. A unique design of single-chain probes was fabricated, in which a full-length artificial luciferase (ALuc(®)) was sandwiched between two model proteins of interest, e.g., FKBP and FRB. A molecular tension probe comprising ALuc23 greatly enhances the bioluminescence in response to varying concentrations of rapamycin, and named "tension probe (TP)." The basic probe design can be further modified towards eliminating the C-terminal end of ALuc and was found to improve signal-to-background ratios, named "combinational probe." TPs may become an important addition to the tool box of bioassays in the determination of protein dynamics of interest in mammalian cells.

  18. Spotlight on Fluorescent Biosensors—Tools for Diagnostics and Drug Discovery

    PubMed Central

    2013-01-01

    Fluorescent biosensors constitute potent tools for probing biomolecules in their natural environment and for visualizing dynamic processes in complex biological samples, living cells, and organisms. They are well suited for highlighting molecular alterations associated with pathological disorders, thereby offering means of implementing sensitive and alternative technologies for diagnostic purposes. They constitute attractive tools for drug discovery programs, from high throughput screening assays to preclinical studies. PMID:24900780

  19. Visualizing Energy on Target: Molecular Dynamics Simulations

    DTIC Science & Technology

    2017-12-01

    to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or...tend to be small, whereas corresponding coefficients for molecules with low-frequency vibrations close to the impact surface are comparatively much...This is due to the reduced number of N2 collisions with the target resulting from this comparatively weak value of vimp. Figures 10–12 are

  20. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision.

    PubMed

    Schnedermann, C; Yang, X; Liebel, M; Spillane, K M; Lugtenburg, J; Fernández, I; Valentini, A; Schapiro, I; Olivucci, M; Kukura, P; Mathies, R A

    2018-04-01

    Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H 11 -C 11 =C 12 -H 12 double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.

  1. Structural properties and defects of GaN crystals grown at ultra-high pressures: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Xie, Quan; Tian, Zean; Chen, Qian; Liang, Yongchao; Ren, Lei; Hu, Xuechen

    2018-01-01

    The growth of GaN crystals at different pressures was studied by molecular dynamics simulation employing the Stillinger-Weber potential, and their structural properties and defects were characterized using the radial distribution function, the Voronoi polyhedron index method, and a suitable visualization technology. Crystal structures formed at 0, 1, 5, 10, and 20 GPa featured an overwhelming number of <4 0 0 0> Voronoi polyhedra, whereas amorphous structures comprising numerous disordered polyhedra were produced at 50 GPa. During quenching, coherent twin boundaries were easily formed between zinc-blende and wurtzite crystal structures in GaN. Notably, point defects usually appeared at low pressure, whereas dislocations were observed at high pressure, since the simultaneous growth of two crystal grains with different crystal orientations and their boundary expansion was hindered in the latter case, resulting in the formation of a dislocation between these grains.

  2. jAMVLE, a New Integrated Molecular Visualization Learning Environment

    ERIC Educational Resources Information Center

    Bottomley, Steven; Chandler, David; Morgan, Eleanor; Helmerhorst, Erik

    2006-01-01

    A new computer-based molecular visualization tool has been developed for teaching, and learning, molecular structure. This java-based jmol Amalgamated Molecular Visualization Learning Environment (jAMVLE) is platform-independent, integrated, and interactive. It has an overall graphical user interface that is intuitive and easy to use. The…

  3. POLYVIEW-MM: web-based platform for animation and analysis of molecular simulations

    PubMed Central

    Porollo, Aleksey; Meller, Jaroslaw

    2010-01-01

    Molecular simulations offer important mechanistic and functional clues in studies of proteins and other macromolecules. However, interpreting the results of such simulations increasingly requires tools that can combine information from multiple structural databases and other web resources, and provide highly integrated and versatile analysis tools. Here, we present a new web server that integrates high-quality animation of molecular motion (MM) with structural and functional analysis of macromolecules. The new tool, dubbed POLYVIEW-MM, enables animation of trajectories generated by molecular dynamics and related simulation techniques, as well as visualization of alternative conformers, e.g. obtained as a result of protein structure prediction methods or small molecule docking. To facilitate structural analysis, POLYVIEW-MM combines interactive view and analysis of conformational changes using Jmol and its tailored extensions, publication quality animation using PyMol, and customizable 2D summary plots that provide an overview of MM, e.g. in terms of changes in secondary structure states and relative solvent accessibility of individual residues in proteins. Furthermore, POLYVIEW-MM integrates visualization with various structural annotations, including automated mapping of known inter-action sites from structural homologs, mapping of cavities and ligand binding sites, transmembrane regions and protein domains. URL: http://polyview.cchmc.org/conform.html. PMID:20504857

  4. Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time.

    PubMed

    Guo, Dong; IJzerman, Adriaan P

    2018-01-01

    G protein-coupled receptors (GPCRs) are integral membrane proteins and represent the largest class of drug targets. During the past decades progress in structural biology has enabled the crystallographic elucidation of the architecture of these important macromolecules. It also provided atomic-level visualization of ligand-receptor interactions, dramatically boosting the impact of structure-based approaches in drug discovery. However, knowledge obtained through crystallography is limited to static structural information. Less information is available showing how a ligand associates with or dissociates from a given receptor, whose importance is in fact increasingly recognized by the drug research community. Owing to recent advances in computer power and algorithms, molecular dynamics stimulations have become feasible that help in analyzing the kinetics of the ligand binding process. Here, we review what is currently known about the dynamics of GPCRs in the context of ligand association and dissociation, as determined through both crystallography and computer simulations. We particularly focus on the molecular basis of ligand dissociation from GPCRs and provide case studies that predict ligand dissociation pathways and residence time.

  5. Single-molecule studies of multi-protein machines

    NASA Astrophysics Data System (ADS)

    van Oijen, Antoine

    2010-03-01

    Advances in optical imaging and molecular manipulation techniques have made it possible to observe individual enzymes and record molecular movies that provide new insight into their dynamics and reaction mechanisms. In a biological context, most of these enzymes function in concert with other enzymes in multi-protein complexes, so an important future direction will be the utilization of single-molecule techniques to unravel the orchestration of large macromolecular assemblies. Our group is developing the single-molecule tools that will make it possible to study biochemical pathways of arbitrary complexity at the single-molecule level. I will discuss results of single-molecule experiments on the replisome, the molecular machinery that is responsible for replication of DNA. We stretch individual DNA molecules and use their elastic properties to obtain dynamic information on the proteins that unwind the double helix and copy its genetic information. Furthermore, we visualize fluorescently labeled components of the replisome and thus obtain information on stochiometry and exchange kinetics. This simultaneous observation of catalytic activity and composition allows us to gain deeper insight into the structure-function relationship of the replisome.

  6. A survey of educational uses of molecular visualization freeware.

    PubMed

    Craig, Paul A; Michel, Lea Vacca; Bateman, Robert C

    2013-01-01

    As biochemists, one of our most captivating teaching tools is the use of molecular visualization. It is a compelling medium that can be used to communicate structural information much more effectively with interactive animations than with static figures. We have conducted a survey to begin a systematic evaluation of the current classroom usage of molecular visualization. Participants (n = 116) were asked to complete 11 multiple choice and 3 open ended questions. To provide more depth to these results, interviews were conducted with 12 of the participants. Many common themes arose in the survey and the interviews: a shared passion for the use of molecular visualization in teaching, broad diversity in software preference, the lack of uniform standards for assessment, a desire for more quality resources, and the challenge of enabling students to incorporate visualization in their learning. The majority of respondents had used molecular visualization for more than 5 years and mentioned 32 different visualization tools used, with Jmol and PyMOL clearly standing out as the most frequently used programs at the present time. The most common uses of molecular visualization in teaching were lecture and lab illustrations, followed by exam questions, in-class or in-laboratory exercises, and student projects, which frequently included presentations. While a minority of instructors used a grading rubric/scoring matrix for assessment of student learning with molecular visualization, many expressed a desire for common use assessment tools. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  7. gRINN: a tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations.

    PubMed

    Serçinoglu, Onur; Ozbek, Pemra

    2018-05-25

    Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.

  8. Visualization of gas flow and diffusion in porous media

    PubMed Central

    Kaiser, Lana G.; Meersmann, Thomas; Logan, John W.; Pines, Alexander

    2000-01-01

    The transport of gases in porous materials is a crucial component of many important processes in science and technology. In the present work, we demonstrate how magnetic resonance microscopy with continuous flow laser-polarized noble gases makes it possible to “light up” and thereby visualize, with unprecedented sensitivity and resolution, the dynamics of gases in samples of silica aerogels and zeolite molecular sieve particles. The “polarization-weighted” images of gas transport in aerogel fragments are correlated to the diffusion coefficient of xenon obtained from NMR pulsed-field gradient experiments. The technique provides a unique means of studying the combined effects of flow and diffusion in systems with macroscopic dimensions and microscopic internal pore structure. PMID:10706617

  9. Open discovery: An integrated live Linux platform of Bioinformatics tools.

    PubMed

    Vetrivel, Umashankar; Pilla, Kalabharath

    2008-01-01

    Historically, live linux distributions for Bioinformatics have paved way for portability of Bioinformatics workbench in a platform independent manner. Moreover, most of the existing live Linux distributions limit their usage to sequence analysis and basic molecular visualization programs and are devoid of data persistence. Hence, open discovery - a live linux distribution has been developed with the capability to perform complex tasks like molecular modeling, docking and molecular dynamics in a swift manner. Furthermore, it is also equipped with complete sequence analysis environment and is capable of running windows executable programs in Linux environment. Open discovery portrays the advanced customizable configuration of fedora, with data persistency accessible via USB drive or DVD. The Open Discovery is distributed free under Academic Free License (AFL) and can be downloaded from http://www.OpenDiscovery.org.in.

  10. A Survey of Educational Uses of Molecular Visualization Freeware†

    PubMed Central

    Craig, Paul A.; Michel, Lea Vacca; Bateman, Robert C.

    2014-01-01

    As biochemists, one of our most captivating teaching tools is the use of molecular visualization. It is a compelling medium that can be used to communicate structural information much more effectively with interactive animations than with static figures. We have conducted a survey to begin a systematic evaluation of the current classroom usage of molecular visualization. Participants (n = 116) were asked to complete 11 multiple choice and 3 open ended questions. To provide more depth to these results, interviews were conducted with 12 of the participants. Many common themes arose in the survey and the interviews: a shared passion for the use of molecular visualization in teaching, broad diversity in software preference, the lack of uniform standards for assessment, a desire for more quality resources, and the challenge of enabling students to incorporate visualization in their learning. The majority of respondents had used molecular visualization for more than 5 years and mentioned 32 different visualization tools used, with Jmol and PyMOL clearly standing out as the most frequently used programs at the present time. The most common uses of molecular visualization in teaching were lecture and lab illustrations, followed by exam questions, in-class or in-laboratory exercises, and student projects, which frequently included presentations. While a minority of instructors used a grading rubric/scoring matrix for assessment of student learning with molecular visualization, many expressed a desire for common use assessment tools. PMID:23649886

  11. The threshold algorithm: Description of the methodology and new developments

    NASA Astrophysics Data System (ADS)

    Neelamraju, Sridhar; Oligschleger, Christina; Schön, J. Christian

    2017-10-01

    Understanding the dynamics of complex systems requires the investigation of their energy landscape. In particular, the flow of probability on such landscapes is a central feature in visualizing the time evolution of complex systems. To obtain such flows, and the concomitant stable states of the systems and the generalized barriers among them, the threshold algorithm has been developed. Here, we describe the methodology of this approach starting from the fundamental concepts in complex energy landscapes and present recent new developments, the threshold-minimization algorithm and the molecular dynamics threshold algorithm. For applications of these new algorithms, we draw on landscape studies of three disaccharide molecules: lactose, maltose, and sucrose.

  12. How to identify dislocations in molecular dynamics simulations?

    NASA Astrophysics Data System (ADS)

    Li, Duo; Wang, FengChao; Yang, ZhenYu; Zhao, YaPu

    2014-12-01

    Dislocations are of great importance in revealing the underlying mechanisms of deformed solid crystals. With the development of computational facilities and technologies, the observations of dislocations at atomic level through numerical simulations are permitted. Molecular dynamics (MD) simulation suggests itself as a powerful tool for understanding and visualizing the creation of dislocations as well as the evolution of crystal defects. However, the numerical results from the large-scale MD simulations are not very illuminating by themselves and there exist various techniques for analyzing dislocations and the deformed crystal structures. Thus, it is a big challenge for the beginners in this community to choose a proper method to start their investigations. In this review, we summarized and discussed up to twelve existing structure characterization methods in MD simulations of deformed crystal solids. A comprehensive comparison was made between the advantages and disadvantages of these typical techniques. We also examined some of the recent advances in the dynamics of dislocations related to the hydraulic fracturing. It was found that the dislocation emission has a significant effect on the propagation and bifurcation of the crack tip in the hydraulic fracturing.

  13. SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes.

    PubMed

    Bielejec, Filip; Baele, Guy; Vrancken, Bram; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe

    2016-08-01

    Model-based phylogenetic reconstructions increasingly consider spatial or phenotypic traits in conjunction with sequence data to study evolutionary processes. Alongside parameter estimation, visualization of ancestral reconstructions represents an integral part of these analyses. Here, we present a complete overhaul of the spatial phylogenetic reconstruction of evolutionary dynamics software, now called SpreaD3 to emphasize the use of data-driven documents, as an analysis and visualization package that primarily complements Bayesian inference in BEAST (http://beast.bio.ed.ac.uk, last accessed 9 May 2016). The integration of JavaScript D3 libraries (www.d3.org, last accessed 9 May 2016) offers novel interactive web-based visualization capacities that are not restricted to spatial traits and extend to any discrete or continuously valued trait for any organism of interest. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state.

    PubMed

    Veyrinas, K; Gruson, V; Weber, S J; Barreau, L; Ruchon, T; Hergott, J-F; Houver, J-C; Lucchese, R R; Salières, P; Dowek, D

    2016-12-16

    Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s 1 , s 2 , s 3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF 6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s 1 , s 2 , s 3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.

  15. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  16. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  17. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  18. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    PubMed Central

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-01-01

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920

  19. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DOE PAGES

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less

  20. Visualization of aging-associated chromatin alterations with an engineered TALE system

    PubMed Central

    Ren, Ruotong; Deng, Liping; Xue, Yanhong; Suzuki, Keiichiro; Zhang, Weiqi; Yu, Yang; Wu, Jun; Sun, Liang; Gong, Xiaojun; Luan, Huiqin; Yang, Fan; Ju, Zhenyu; Ren, Xiaoqing; Wang, Si; Tang, Hong; Geng, Lingling; Zhang, Weizhou; Li, Jian; Qiao, Jie; Xu, Tao; Qu, Jing; Liu, Guang-Hui

    2017-01-01

    Visualization of specific genomic loci in live cells is a prerequisite for the investigation of dynamic changes in chromatin architecture during diverse biological processes, such as cellular aging. However, current precision genomic imaging methods are hampered by the lack of fluorescent probes with high specificity and signal-to-noise contrast. We find that conventional transcription activator-like effectors (TALEs) tend to form protein aggregates, thereby compromising their performance in imaging applications. Through screening, we found that fusing thioredoxin with TALEs prevented aggregate formation, unlocking the full power of TALE-based genomic imaging. Using thioredoxin-fused TALEs (TTALEs), we achieved high-quality imaging at various genomic loci and observed aging-associated (epi) genomic alterations at telomeres and centromeres in human and mouse premature aging models. Importantly, we identified attrition of ribosomal DNA repeats as a molecular marker for human aging. Our study establishes a simple and robust imaging method for precisely monitoring chromatin dynamics in vitro and in vivo. PMID:28139645

  1. Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.

    PubMed

    Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki

    2005-11-08

    By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.

  2. Genetically Encoded Molecular Tension Probe for Tracing Protein-Protein Interactions in Mammalian Cells.

    PubMed

    Kim, Sung Bae; Nishihara, Ryo; Citterio, Daniel; Suzuki, Koji

    2016-02-17

    Optical imaging of protein-protein interactions (PPIs) facilitates comprehensive elucidation of intracellular molecular events. We demonstrate an optical measure for visualizing molecular tension triggered by any PPI in mammalian cells. Twenty-three kinds of candidate designs were fabricated, in which a full-length artificial luciferase (ALuc) was sandwiched between two model proteins of interest, e.g., FKBP and FRB. One of the designs greatly enhanced the bioluminescence in response to varying concentrations of rapamycin. It is confirmed with negative controls that the elevated bioluminescence is solely motivated from the molecular tension. The probe design was further modified toward eliminating the C-terminal end of ALuc and was found to improve signal-to-background ratios, named "a combinational probe". The utilities were elucidated with detailed substrate selectivity, bioluminescence imaging of live cells, and different PPI models. This study expands capabilities of luciferases as a tool for analyses of molecular dynamics and cell signaling in living subjects.

  3. Lynx1 Limits Dendritic Spine Turnover in the Adult Visual Cortex

    PubMed Central

    Sajo, Mari

    2016-01-01

    Dendritic spine turnover becomes limited in the adult cerebral cortex. Identification of specific aspects of spine dynamics that can be unmasked in adulthood and its regulatory molecular mechanisms could provide novel therapeutic targets for inducing plasticity at both the functional and structural levels for robust recovery from brain disorders and injuries in adults. Lynx1, an endogenous inhibitor of nicotinic acetylcholine receptors, was previously shown to increase its expression in adulthood and thus to limit functional ocular dominance plasticity in adult primary visual cortex (V1). However, the role of this “brake” on spine dynamics is not known. We examined the contribution of Lynx1 on dendritic spine turnover before and after monocular deprivation (MD) in adult V1 with chronic in vivo imaging using two-photon microscopy and determined the spine turnover rate of apical dendrites of layer 5 (L5) and L2/3 pyramidal neurons in adult V1 of Lynx1 knock-out (KO) mice. We found that the deletion of Lynx1 doubled the baseline spine turnover rate, suggesting that the spine dynamics in the adult cortex is actively limited by the presence of Lynx1. After MD, adult Lynx1-KO mice selectively exhibit higher rate of spine loss with no difference in gain rate in L5 neurons compared with control wild-type counterparts, revealing a key signature of spine dynamics associated with robust functional plasticity in adult V1. Overall, Lynx1 could be a promising therapeutic target to induce not only functional, but also structural plasticity at the level of spine dynamics in the adult brain. SIGNIFICANCE STATEMENT Dendritic spine turnover becomes limited in the adult cortex. In mouse visual cortex, a premier model of experience-dependent plasticity, we found that the deletion of Lynx1, a nicotinic “brake” for functional plasticity, doubled the baseline spine turnover in adulthood, suggesting that the spine dynamics in the adult cortex is actively limited by Lynx1. After visual deprivation, spine loss, but not gain rate, remains higher in adult Lynx1 knock-out mice than in control wild-type mice, revealing a key signature of spine dynamics associated with robust functional plasticity. Lynx1 would be a promising target to induce not only functional, but also structural plasticity at the level of spine dynamics in adulthood. PMID:27605620

  4. Clinical Applications of a CT Window Blending Algorithm: RADIO (Relative Attenuation-Dependent Image Overlay).

    PubMed

    Mandell, Jacob C; Khurana, Bharti; Folio, Les R; Hyun, Hyewon; Smith, Stacy E; Dunne, Ruth M; Andriole, Katherine P

    2017-06-01

    A methodology is described using Adobe Photoshop and Adobe Extendscript to process DICOM images with a Relative Attenuation-Dependent Image Overlay (RADIO) algorithm to visualize the full dynamic range of CT in one view, without requiring a change in window and level settings. The potential clinical uses for such an algorithm are described in a pictorial overview, including applications in emergency radiology, oncologic imaging, and nuclear medicine and molecular imaging.

  5. Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections.

    PubMed

    Capoferri, Denise; Álvarez-Diduk, Ruslan; Del Carlo, Michele; Compagnone, Dario; Merkoçi, Arben

    2018-05-01

    Electrochromic effect and molecularly imprinted technology have been used to develop a sensitive and selective electrochromic sensor. The polymeric matrices obtained using the imprinting technology are robust molecular recognition elements and have the potential to mimic natural recognition entities with very high selectivity. The electrochromic behavior of iridium oxide nanoparticles (IrOx NPs) as physicochemical transducer together with a molecularly imprinted polymer (MIP) as recognition layer resulted in a fast and efficient translation of the detection event. The sensor was fabricated using screen-printing technology with indium tin oxide as a transparent working electrode; IrOx NPs where electrodeposited onto the electrode followed by thermal polymerization of polypyrrole in the presence of the analyte (chlorpyrifos). Two different approaches were used to detect and quantify the pesticide: direct visual detection and smartphone imaging. Application of different oxidation potentials for 10 s resulted in color changes directly related to the concentration of the analyte. For smartphone imaging, at fixed potential, the concentration of the analyte was dependent on the color intensity of the electrode. The electrochromic sensor detects a highly toxic compound (chlorpyrifos) with a 100 fM and 1 mM dynamic range. So far, to the best of our knowledge, this is the first work where an electrochromic MIP sensor uses the electrochromic properties of IrOx to detect a certain analyte with high selectivity and sensitivity.

  6. FT-IR and FT-Raman characterization and investigation of reactive properties of N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide by molecular dynamics simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Ranjith, P. K.; Al-Abdullah, Ebtehal S.; Al-Omary, Fatmah A. M.; El-Emam, Ali A.; Anto, P. L.; Sheena, Mary Y.; Armaković, Stevan; Armaković, Sanja J.; Zitko, Jan; Dolezal, Martin; Van Alsenoy, C.

    2017-05-01

    The FT-IR and FT-Raman spectra of N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide were recorded and the experimentally observed wavenumbers are compared with the theoretically obtained wavenumbers. The redshift of the Nsbnd H stretching mode in the IR spectrum from the computed value indicated the weakening of the Nsbnd H bond. The ring breathing modes of the phenyl ring and pyrazine ring are assigned at 819 and 952 cm-1 theoretically. Using natural bond orbital analysis, the stability of the molecule arising from hyperconjugative interaction and charge delocalization has been analyzed. The most reactive sites in the molecule were identified by molecular electrostatic potential map. The calculations of the average local ionization energy (ALIE) were used for visualization and determination of molecule sites possibly prone to electrophilic attacks. Further information on possible reactive centers of title molecule has been obtained by calculations of Fukui functions. Vulnerability of title molecule towards autoxidation mechanism was investigated by calculations of bond dissociation energies (BDE), while vulnerability towards hydrolysis was investigated by calculations of radial distribution functions (RDF) as obtained after molecular dynamics (MD) simulations. Molecular docking studies suggest that the compound might exhibit inhibitory activity against mGluRs.

  7. Open discovery: An integrated live Linux platform of Bioinformatics tools

    PubMed Central

    Vetrivel, Umashankar; Pilla, Kalabharath

    2008-01-01

    Historically, live linux distributions for Bioinformatics have paved way for portability of Bioinformatics workbench in a platform independent manner. Moreover, most of the existing live Linux distributions limit their usage to sequence analysis and basic molecular visualization programs and are devoid of data persistence. Hence, open discovery ‐ a live linux distribution has been developed with the capability to perform complex tasks like molecular modeling, docking and molecular dynamics in a swift manner. Furthermore, it is also equipped with complete sequence analysis environment and is capable of running windows executable programs in Linux environment. Open discovery portrays the advanced customizable configuration of fedora, with data persistency accessible via USB drive or DVD. Availability The Open Discovery is distributed free under Academic Free License (AFL) and can be downloaded from http://www.OpenDiscovery.org.in PMID:19238235

  8. A Model Comparison for Characterizing Protein Motions from Structure

    NASA Astrophysics Data System (ADS)

    David, Charles; Jacobs, Donald

    2011-10-01

    A comparative study is made using three computational models that characterize native state dynamics starting from known protein structures taken from four distinct SCOP classifications. A geometrical simulation is performed, and the results are compared to the elastic network model and molecular dynamics. The essential dynamics is quantified by a direct analysis of a mode subspace constructed from ANM and a principal component analysis on both the FRODA and MD trajectories using root mean square inner product and principal angles. Relative subspace sizes and overlaps are visualized using the projection of displacement vectors on the model modes. Additionally, a mode subspace is constructed from PCA on an exemplar set of X-ray crystal structures in order to determine similarly with respect to the generated ensembles. Quantitative analysis reveals there is significant overlap across the three model subspaces and the model independent subspace. These results indicate that structure is the key determinant for native state dynamics.

  9. A PAR-1–dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte

    PubMed Central

    Parton, Richard M.; Hamilton, Russell S.; Ball, Graeme; Yang, Lei; Cullen, C. Fiona; Lu, Weiping; Ohkura, Hiroyuki

    2011-01-01

    Cytoskeletal organization is central to establishing cell polarity in various cellular contexts, including during messenger ribonucleic acid sorting in Drosophila melanogaster oocytes by microtubule (MT)-dependent molecular motors. However, MT organization and dynamics remain controversial in the oocyte. In this paper, we use rapid multichannel live-cell imaging with novel image analysis, tracking, and visualization tools to characterize MT polarity and dynamics while imaging posterior cargo transport. We found that all MTs in the oocyte were highly dynamic and were organized with a biased random polarity that increased toward the posterior. This organization originated through MT nucleation at the oocyte nucleus and cortex, except at the posterior end of the oocyte, where PAR-1 suppressed nucleation. Our findings explain the biased random posterior cargo movements in the oocyte that establish the germline and posterior. PMID:21746854

  10. Dynamic optical projection of acquired luminescence for aiding oncologic surgery

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Gullicksrud, Kyle; Mondal, Suman; Sudlow, Gail P.; Achilefu, Samuel; Akers, Walter J.

    2013-12-01

    Optical imaging enables real-time visualization of intrinsic and exogenous contrast within biological tissues. Applications in human medicine have demonstrated the power of fluorescence imaging to enhance visualization in dermatology, endoscopic procedures, and open surgery. Although few optical contrast agents are available for human medicine at this time, fluorescence imaging is proving to be a powerful tool in guiding medical procedures. Recently, intraoperative detection of fluorescent molecular probes that target cell-surface receptors has been reported for improvement in oncologic surgery in humans. We have developed a novel system, optical projection of acquired luminescence (OPAL), to further enhance real-time guidance of open oncologic surgery. In this method, collected fluorescence intensity maps are projected onto the imaged surface rather than via wall-mounted display monitor. To demonstrate proof-of-principle for OPAL applications in oncologic surgery, lymphatic transport of indocyanine green was visualized in live mice for intraoperative identification of sentinel lymph nodes. Subsequently, peritoneal tumors in a murine model of breast cancer metastasis were identified using OPAL after systemic administration of a tumor-selective fluorescent molecular probe. These initial results clearly show that OPAL can enhance adoption and ease-of-use of fluorescence imaging in oncologic procedures relative to existing state-of-the-art intraoperative imaging systems.

  11. Workshop on Molecular Animation

    PubMed Central

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E.

    2011-01-01

    Summary February 25–26, 2010, in San Francisco, the Resource for Biocomputing, Visualization and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for: producing high quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories. PMID:20947014

  12. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.

    PubMed

    Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba

    2014-01-01

    Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non-activated STAT5 proteins. Our theoretical prediction based on results obtained with MONETA was validated for KIT by in vitro experiments. MONETA is a versatile analytical and visualization tool entirely devoted to the understanding of the functioning/malfunctioning of allosteric regulation in proteins - a crucial basis to guide the discovery of next-generation allosteric drugs.

  13. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.

    PubMed

    McGibbon, Robert T; Beauchamp, Kyle A; Harrigan, Matthew P; Klein, Christoph; Swails, Jason M; Hernández, Carlos X; Schwantes, Christian R; Wang, Lee-Ping; Lane, Thomas J; Pande, Vijay S

    2015-10-20

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  15. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories

    PubMed Central

    McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.; Klein, Christoph; Swails, Jason M.; Hernández, Carlos X.; Schwantes, Christian R.; Wang, Lee-Ping; Lane, Thomas J.; Pande, Vijay S.

    2015-01-01

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. PMID:26488642

  16. Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid.

    PubMed

    Cao, Bing-Yang; Dong, Ruo-Yu

    2014-01-21

    Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient.

  17. The Hugoniot adiabat of crystalline copper based on molecular dynamics simulation and semiempirical equation of state

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Maklashova, I. V.; Mel'nikov, I. N.

    2018-01-01

    The molecular dynamics (MD) method was used for prediction of properties of copper under shock-wave compression and clarification of the melting region of crystal copper. The embedded atom potential was used for the interatomic interaction. Parameters of Hugonoit adiabats of solid and liquid phases of copper calculated by the semiempirical Grüneisen equation of state are consistent with the results of MD simulations and experimental data. MD simulation allows to visualize the structure of cooper on the atomistic level. The analysis of the radial distribution function and the standard deviation by MD modeling allows to predict the melting area behind the shock wave front. These MD simulation data are required to verify the wide-range equation of state of metals. The melting parameters of copper based on MD simulations and semiempirical equations of state are consistent with experimental and theoretical data, including the region of the melting point of copper.

  18. The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system.

    PubMed

    Lowery, Rebecca L; Tremblay, Marie-Eve; Hopkins, Brittany E; Majewska, Ania K

    2017-11-01

    Microglia have recently been implicated as key regulators of activity-dependent plasticity, where they contribute to the removal of inappropriate or excess synapses. However, the molecular mechanisms that mediate this microglial function are still not well understood. Although multiple studies have implicated fractalkine signaling as a mediator of microglia-neuron communications during synaptic plasticity, it is unclear whether this is a universal signaling mechanism or whether its role is limited to specific brain regions and stages of the lifespan. Here, we examined whether fractalkine signaling mediates microglial contributions to activity-dependent plasticity in the developing and adolescent visual system. Using genetic ablation of fractalkine's cognate receptor, CX 3 CR1, and both ex vivo characterization and in vivo imaging in mice, we examined whether fractalkine signaling is required for microglial dynamics and modulation of synapses, as well as activity-dependent plasticity in the visual system. We did not find a role for fractalkine signaling in mediating microglial properties during visual plasticity. Ablation of CX 3 CR1 had no effect on microglial density, distribution, morphology, or motility, in either adolescent or young adult mice across brain regions that include the visual cortex. Ablation of CX 3 CR1 also had no effect on baseline synaptic turnover or contact dynamics between microglia and neurons. Finally, we found that fractalkine signaling is not required for either early or late forms of activity-dependent visual system plasticity. These findings suggest that fractalkine is not a universal regulator of synaptic plasticity, but rather has heterogeneous roles in specific brain regions and life stages. © 2017 Wiley Periodicals, Inc.

  19. Incorporating modeling and simulations in undergraduate biophysical chemistry course to promote understanding of structure-dynamics-function relationships in proteins.

    PubMed

    Hati, Sanchita; Bhattacharyya, Sudeep

    2016-01-01

    A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and simulations. In particular, modern computational tools are employed to elucidate the relationship between structure, dynamics, and function in proteins. Computer-based laboratory protocols that we introduced in three modules allow students to visualize the secondary, super-secondary, and tertiary structures of proteins, analyze non-covalent interactions in protein-ligand complexes, develop three-dimensional structural models (homology model) for new protein sequences and evaluate their structural qualities, and study proteins' intrinsic dynamics to understand their functions. In the fourth module, students are assigned to an authentic research problem, where they apply their laboratory skills (acquired in modules 1-3) to answer conceptual biophysical questions. Through this process, students gain in-depth understanding of protein dynamics-the missing link between structure and function. Additionally, the requirement of term papers sharpens students' writing and communication skills. Finally, these projects result in new findings that are communicated in peer-reviewed journals. © 2016 The International Union of Biochemistry and Molecular Biology.

  20. An Introductory Classroom Exercise on Protein Molecular Model Visualization and Detailed Analysis of Protein-Ligand Binding

    ERIC Educational Resources Information Center

    Poeylaut-Palena, Andres, A.; de los Angeles Laborde, Maria

    2013-01-01

    A learning module for molecular level analysis of protein structure and ligand/drug interaction through the visualization of X-ray diffraction is presented. Using DeepView as molecular model visualization software, students learn about the general concepts of protein structure. This Biochemistry classroom exercise is designed to be carried out by…

  1. Molecular dynamics study of nano-porous materials—Enhancement of mobility of Li ions in lithium disilicate

    NASA Astrophysics Data System (ADS)

    Habasaki, Junko

    2016-11-01

    In several nano-porous materials and their composites, enhancement of ionic conductivity has been reported and several mechanisms having different origins have been proposed so far. In the present work, ionic motion of Li ions in porous lithium disilicates is examined by molecular dynamics simulation in the constant volume conditions and the enhancement of the dynamics is predicted. Structures and dynamics of ions in a nano-porous system were characterized and visualized to clarify the mechanism of the enhancement. The diffusion coefficient of Li ions has shown the maximum in the medium density (and porosity) region, and near the maximum, shortening of the nearly constant loss region in the mean squared displacement of ions as well as changes of the structures of the coordination polyhedra, LiOx is found. It suggests that the loosening of the cage, which increases the jump rate of ions, is an origin of the enhancement. When larger (but still in a nano-scale) voids are formed with a further decrease of density, more tight cages are reconstructed and the diffusion coefficient decreases again. These behaviors are closely related to the residual stress in the system. It is noteworthy that the explanation is not based on the percolation of the path only or formation of boundaries, although the former also affects the dynamics.

  2. Mapping mechanical force propagation through biomolecular complexes

    DOE PAGES

    Schoeler, Constantin; Bernardi, Rafael C.; Malinowska, Klara H.; ...

    2015-08-11

    In this paper, we employ single-molecule force spectroscopy with an atomic force microscope (AFM) and steered molecular dynamics (SMD) simulations to reveal force propagation pathways through a mechanically ultrastable multidomain cellulosome protein complex. We demonstrate a new combination of network-based correlation analysis supported by AFM directional pulling experiments, which allowed us to visualize stiff paths through the protein complex along which force is transmitted. Finally, the results implicate specific force-propagation routes nonparallel to the pulling axis that are advantageous for achieving high dissociation forces.

  3. Morse-Smale Analysis of Ion Diffusion in Ab Initio Battery Materials Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun

    Ab initio molecular dynamics (AIMD) simulations are increasingly useful in modeling, optimizing and synthesizing materials in energy sciences. In solving Schrödinger’s equation, they generate the electronic structure of the simulated atoms as a scalar field. However, methods for analyzing these volume data are not yet common in molecular visualization. The Morse-Smale complex is a proven, versatile tool for topological analysis of scalar fields. In this paper, we apply the discrete Morse-Smale complex to analysis of first-principles battery materials simulations. We consider a carbon nanosphere structure used in battery materials research, and employ Morse-Smale decomposition to determine the possible lithium ionmore » diffusion paths within that structure. Our approach is novel in that it uses the wavefunction itself as opposed distance fields, and that we analyze the 1-skeleton of the Morse-Smale complex to reconstruct our diffusion paths. Furthermore, it is the first application where specific motifs in the graph structure of the complete 1-skeleton define features, namely carbon rings with specific valence. We compare our analysis of DFT data with that of a distance field approximation, and discuss implications on larger classical molecular dynamics simulations.« less

  4. Screening and structure-based modeling of T-cell epitopes of Nipah virus proteome: an immunoinformatic approach for designing peptide-based vaccine.

    PubMed

    Kamthania, Mohit; Sharma, D K

    2015-12-01

    Identification of Nipah virus (NiV) T-cell-specific antigen is urgently needed for appropriate diagnostic and vaccination. In the present study, prediction and modeling of T-cell epitopes of Nipah virus antigenic proteins nucleocapsid, phosphoprotein, matrix, fusion, glycoprotein, L protein, W protein, V protein and C protein followed by the binding simulation studies of predicted highest binding scorers with their corresponding MHC class I alleles were done. Immunoinformatic tool ProPred1 was used to predict the promiscuous MHC class I epitopes of viral antigenic proteins. The molecular modelings of the epitopes were done by PEPstr server. And alleles structure were predicted by MODELLER 9.10. Molecular dynamics (MD) simulation studies were performed through the NAMD graphical user interface embedded in visual molecular dynamics. Epitopes VPATNSPEL, NPTAVPFTL and LLFVFGPNL of Nucleocapsid, V protein and Fusion protein have considerable binding energy and score with HLA-B7, HLA-B*2705 and HLA-A2MHC class I allele, respectively. These three predicted peptides are highly potential to induce T-cell-mediated immune response and are expected to be useful in designing epitope-based vaccines against Nipah virus after further testing by wet laboratory studies.

  5. The DynaMine webserver: predicting protein dynamics from sequence.

    PubMed

    Cilia, Elisa; Pancsa, Rita; Tompa, Peter; Lenaerts, Tom; Vranken, Wim F

    2014-07-01

    Protein dynamics are important for understanding protein function. Unfortunately, accurate protein dynamics information is difficult to obtain: here we present the DynaMine webserver, which provides predictions for the fast backbone movements of proteins directly from their amino-acid sequence. DynaMine rapidly produces a profile describing the statistical potential for such movements at residue-level resolution. The predicted values have meaning on an absolute scale and go beyond the traditional binary classification of residues as ordered or disordered, thus allowing for direct dynamics comparisons between protein regions. Through this webserver, we provide molecular biologists with an efficient and easy to use tool for predicting the dynamical characteristics of any protein of interest, even in the absence of experimental observations. The prediction results are visualized and can be directly downloaded. The DynaMine webserver, including instructive examples describing the meaning of the profiles, is available at http://dynamine.ibsquare.be. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. A strategy for analysis of (molecular) equilibrium simulations: Configuration space density estimation, clustering, and visualization

    NASA Astrophysics Data System (ADS)

    Hamprecht, Fred A.; Peter, Christine; Daura, Xavier; Thiel, Walter; van Gunsteren, Wilfred F.

    2001-02-01

    We propose an approach for summarizing the output of long simulations of complex systems, affording a rapid overview and interpretation. First, multidimensional scaling techniques are used in conjunction with dimension reduction methods to obtain a low-dimensional representation of the configuration space explored by the system. A nonparametric estimate of the density of states in this subspace is then obtained using kernel methods. The free energy surface is calculated from that density, and the configurations produced in the simulation are then clustered according to the topography of that surface, such that all configurations belonging to one local free energy minimum form one class. This topographical cluster analysis is performed using basin spanning trees which we introduce as subgraphs of Delaunay triangulations. Free energy surfaces obtained in dimensions lower than four can be visualized directly using iso-contours and -surfaces. Basin spanning trees also afford a glimpse of higher-dimensional topographies. The procedure is illustrated using molecular dynamics simulations on the reversible folding of peptide analoga. Finally, we emphasize the intimate relation of density estimation techniques to modern enhanced sampling algorithms.

  7. DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology

    PubMed Central

    Grun, Casey; Werfel, Justin; Zhang, David Yu; Yin, Peng

    2015-01-01

    Dynamic DNA nanotechnology provides a promising avenue for implementing sophisticated assembly processes, mechanical behaviours, sensing and computation at the nanoscale. However, design of these systems is complex and error-prone, because the need to control the kinetic pathway of a system greatly increases the number of design constraints and possible failure modes for the system. Previous tools have automated some parts of the design workflow, but an integrated solution is lacking. Here, we present software implementing a three ‘tier’ design process: a high-level visual programming language is used to describe systems, a molecular compiler builds a DNA implementation and nucleotide sequences are generated and optimized. Additionally, our software includes tools for analysing and ‘debugging’ the designs in silico, and for importing/exporting designs to other commonly used software systems. The software we present is built on many existing pieces of software, but is integrated into a single package—accessible using a Web-based interface at http://molecular-systems.net/workbench. We hope that the deep integration between tools and the flexibility of this design process will lead to better experimental results, fewer experimental design iterations and the development of more complex DNA nanosystems. PMID:26423437

  8. Pinch-off dynamics, extensional viscosity and relaxation time of dilute and ultradilute aqueous polymer solutions

    NASA Astrophysics Data System (ADS)

    Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek

    Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.

  9. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Benjamin G., E-mail: ben.levine@temple.ed; Stone, John E., E-mail: johns@ks.uiuc.ed; Kohlmeyer, Axel, E-mail: akohlmey@temple.ed

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm aremore » presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.« less

  10. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units—Radial Distribution Function Histogramming

    PubMed Central

    Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007

  11. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  12. Evaluation of Static vs. Dynamic Visualizations for Engineering Technology Students and Implications on Spatial Visualization Ability: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Katsioloudis, Petros; Dickerson, Daniel; Jovanovic, Vukica; Jones, Mildred

    2015-01-01

    The benefit of using static versus dynamic visualizations is a controversial one. Few studies have explored the effectiveness of static visualizations to those of dynamic visualizations, and the current state of the literature remains somewhat unclear. During the last decade there has been a lengthy debate about the opportunities for using…

  13. Advances in visual representation of molecular potentials.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  14. Inferring causal molecular networks: empirical assessment through a community-based effort.

    PubMed

    Hill, Steven M; Heiser, Laura M; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K; Carlin, Daniel E; Zhang, Yang; Sokolov, Artem; Paull, Evan O; Wong, Chris K; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V; Favorov, Alexander V; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W; Long, Byron L; Noren, David P; Bisberg, Alexander J; Mills, Gordon B; Gray, Joe W; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A; Fertig, Elana J; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M; Spellman, Paul T; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-04-01

    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

  15. How Temporal and Spatial Aspects of Presenting Visualizations Affect Learning about Locomotion Patterns

    ERIC Educational Resources Information Center

    Imhof, Birgit; Scheiter, Katharina; Edelmann, Jorg; Gerjets, Peter

    2012-01-01

    Two studies investigated the effectiveness of dynamic and static visualizations for a perceptual learning task (locomotion pattern classification). In Study 1, seventy-five students viewed either dynamic, static-sequential, or static-simultaneous visualizations. For tasks of intermediate difficulty, dynamic visualizations led to better…

  16. NGL Viewer: a web application for molecular visualization

    PubMed Central

    Rose, Alexander S.; Hildebrand, Peter W.

    2015-01-01

    The NGL Viewer (http://proteinformatics.charite.de/ngl) is a web application for the visualization of macromolecular structures. By fully adopting capabilities of modern web browsers, such as WebGL, for molecular graphics, the viewer can interactively display large molecular complexes and is also unaffected by the retirement of third-party plug-ins like Flash and Java Applets. Generally, the web application offers comprehensive molecular visualization through a graphical user interface so that life scientists can easily access and profit from available structural data. It supports common structural file-formats (e.g. PDB, mmCIF) and a variety of molecular representations (e.g. ‘cartoon, spacefill, licorice’). Moreover, the viewer can be embedded in other web sites to provide specialized visualizations of entries in structural databases or results of structure-related calculations. PMID:25925569

  17. The role of visual representation in physics learning: dynamic versus static visualization

    NASA Astrophysics Data System (ADS)

    Suyatna, Agus; Anggraini, Dian; Agustina, Dina; Widyastuti, Dini

    2017-11-01

    This study aims to examine the role of visual representation in physics learning and to compare the learning outcomes of using dynamic and static visualization media. The study was conducted using quasi-experiment with Pretest-Posttest Control Group Design. The samples of this research are students of six classes at State Senior High School in Lampung Province. The experimental class received a learning using dynamic visualization and control class using static visualization media. Both classes are given pre-test and post-test with the same instruments. Data were tested with N-gain analysis, normality test, homogeneity test and mean difference test. The results showed that there was a significant increase of mean (N-Gain) learning outcomes (p <0.05) in both experimental and control classes. The averages of students’ learning outcomes who are using dynamic visualization media are significantly higher than the class that obtains learning by using static visualization media. It can be seen from the characteristics of visual representation; each visualization provides different understanding support for the students. Dynamic visual media is more suitable for explaining material related to movement or describing a process, whereas static visual media is appropriately used for non-moving physical phenomena and requires long-term observation.

  18. An Expanded Framework for Biomolecular Visualization in the Classroom: Learning Goals and Competencies

    ERIC Educational Resources Information Center

    Dries, Daniel R.; Dean, Diane M.; Listenberger, Laura L.; Novak, Walter R. P.; Franzen, Margaret A.; Craig, Paul A.

    2017-01-01

    A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list…

  19. Imaging of dynamic ion signaling during root gravitropism.

    PubMed

    Monshausen, Gabriele B

    2015-01-01

    Gravitropic signaling is a complex process that requires the coordinated action of multiple cell types and tissues. Ca(2+) and pH signaling are key components of gravitropic signaling cascades and can serve as useful markers to dissect the molecular machinery mediating plant gravitropism. To monitor dynamic ion signaling, imaging approaches combining fluorescent ion sensors and confocal fluorescence microscopy are employed, which allow the visualization of pH and Ca(2+) changes at the level of entire tissues, while also providing high spatiotemporal resolution. Here, I describe procedures to prepare Arabidopsis seedlings for live cell imaging and to convert a microscope for vertical stage fluorescence microscopy. With this imaging system, ion signaling can be monitored during all phases of the root gravitropic response.

  20. Visual Vestibular Interaction in the Dynamic Visual Acuity Test during Voluntary Head Rotation

    NASA Technical Reports Server (NTRS)

    Lee, Moo Hoon; Durnford, Simon; Crowley, John; Rupert, Angus

    1996-01-01

    Although intact vestibular function is essential in maintaining spatial orientation, no good screening tests of vestibular function are available to the aviation community. High frequency voluntary head rotation was selected as a vestibular stimulus to isolate the vestibulo-ocular reflex (VOR) from visual influence. A dynamic visual acuity test that incorporates voluntary head rotation was evaluated as a potential vestibular function screening tool. Twenty-seven normal subjects performed voluntary sinusoidal head rotation at frequencies from 0.7-4.0 Hz under three different visual conditions: visually-enhanced VOR, normal VOR, and visually suppressed VOR. Standardized Baily-Lovie chart letters were presented on a computer monitor in front of the subject, who then was asked to read the letters while rotating his head horizontally. The electro-oculogram and dynamic visual acuity score were recorded and analyzed. There were no significant differences in gain or phase shift among three visual conditions in the frequency range of 2.8 to 4.0 Hz. The dynamic visual acuity score shifted less than 0.3 logMAR at frequencies under 2.0 Hz. The dynamic visual acuity test at frequencies a round 2.0 Hz can be recommended for evaluating vestibular function.

  1. Scaffolding Learning from Molecular Visualizations

    ERIC Educational Resources Information Center

    Chang, Hsin-Yi; Linn, Marcia C.

    2013-01-01

    Powerful online visualizations can make unobservable scientific phenomena visible and improve student understanding. Instead, they often confuse or mislead students. To clarify the impact of molecular visualizations for middle school students we explored three design variations implemented in a Web-based Inquiry Science Environment (WISE) unit on…

  2. Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.

    PubMed

    Zhang, Liqun; Borthakur, Susmita; Buck, Matthias

    2016-02-23

    The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in that it initially involves transitions to surfaces with fewer, less favorable contacts compared with those seen in the fully formed complex. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. TranscriptomeBrowser 3.0: introducing a new compendium of molecular interactions and a new visualization tool for the study of gene regulatory networks.

    PubMed

    Lepoivre, Cyrille; Bergon, Aurélie; Lopez, Fabrice; Perumal, Narayanan B; Nguyen, Catherine; Imbert, Jean; Puthier, Denis

    2012-01-31

    Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and (vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of heterogeneous biological information and is a productive avenue in generating new hypotheses. The second objective of InteractomeBrowser is to fill the gap between interaction databases and dynamic modeling. It is thus compatible with the network analysis software Cytoscape and with the Gene Interaction Network simulation software (GINsim). We provide examples underlying the benefits of this visualization tool for large gene set analysis related to thymocyte differentiation. The InteractomeBrowser plugin is a powerful tool to get quick access to a knowledge database that includes both predicted and validated molecular interactions. InteractomeBrowser is available through the TranscriptomeBrowser framework and can be found at: http://tagc.univ-mrs.fr/tbrowser/. Our database is updated on a regular basis.

  4. VLTI-GRAVITY measurements of cool evolved stars

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Rau, G.; Chiavassa, A.; Höfner, S.; Scholz, M.; Wood, P. R.; de Wit, W. J.; Eisenhauer, F.; Haubois, X.; Paumard, T.

    2018-06-01

    Context. Dynamic model atmospheres of Mira stars predict variabilities in the photospheric radius and in atmospheric molecular layers which are not yet strongly constrained by observations. Aims: Here we measure the variability of the oxygen-rich Mira star R Peg in near-continuum and molecular bands. Methods: We used near-infrared K-band spectro-interferometry with a spectral resolution of about 4000 obtained at four epochs between post-maximum and minimum visual phases employing the newly available GRAVITY beam combiner at the Very Large Telescope Interferometer (VLTI). Results: Our observations show a continuum radius that is anti-correlated with the visual lightcurve. Uniform disc (UD) angular diameters at a near-continuum wavelength of 2.25 μm are steadily increasing with values of 8.7 ± 0.1 mas, 9.4 ± 0.1 mas, 9.8 ± 0.1 mas, and 9.9 ± 0.1 mas at visual phases of 0.15, 0.36, 0,45, 0.53, respectively. UD diameters at a bandpass around 2.05 μm, dominated by water vapour, follow the near-continuum variability at larger UD diameters between 10.7 mas and 11.7 mas. UD diameters at the CO 2-0 bandhead, instead, are correlated with the visual lightcurve and anti-correlated with the near-continuum UD diameters, with values between 12.3 mas and 11.7 mas. Conclusions: The observed anti-correlation between continuum radius and visual lightcurve is consistent with an earlier study of the oxygen-rich Mira S Lac, and with recent 1D CODEX dynamic model atmosphere predictions. The amplitude of the variation is comparable to the earlier observations of S Lac, and smaller than predicted by CODEX models. The wavelength-dependent visibility variations at our epochs can be reproduced by a set of CODEX models at model phases between 0.3 and 0.6. The anti-correlation of water vapour and CO contributions at our epochs suggests that these molecules undergo different processes in the extended atmosphere along the stellar cycle. The newly available GRAVITY instrument is suited to conducting longer time series observations, which are needed to provide strong constraints on the model-predicted intra- and inter-cycle variability. Based on observations made with the VLT Interferometer at Paranal Observatory under programme IDs 60.A-9176 and 098.D-0647.

  5. SNPitty: An Intuitive Web Application for Interactive B-Allele Frequency and Copy Number Visualization of Next-Generation Sequencing Data.

    PubMed

    van Riet, Job; Krol, Niels M G; Atmodimedjo, Peggy N; Brosens, Erwin; van IJcken, Wilfred F J; Jansen, Maurice P H M; Martens, John W M; Looijenga, Leendert H; Jenster, Guido; Dubbink, Hendrikus J; Dinjens, Winand N M; van de Werken, Harmen J G

    2018-03-01

    Exploration and visualization of next-generation sequencing data are crucial for clinical diagnostics. Software allowing simultaneous visualization of multiple regions of interest coupled with dynamic heuristic filtering of genetic aberrations is, however, lacking. Therefore, the authors developed the web application SNPitty that allows interactive visualization and interrogation of variant call format files by using B-allele frequencies of single-nucleotide polymorphisms and single-nucleotide variants, coverage metrics, and copy numbers analysis results. SNPitty displays variant alleles and allelic imbalances with a focus on loss of heterozygosity and copy number variation using genome-wide heterozygous markers and somatic mutations. In addition, SNPitty is capable of generating predefined reports that summarize and highlight disease-specific targets of interest. SNPitty was validated for diagnostic interpretation of somatic events by showcasing a serial dilution series of glioma tissue. Additionally, SNPitty is demonstrated in four cancer-related scenarios encountered in daily clinical practice and on whole-exome sequencing data of peripheral blood from a Down syndrome patient. SNPitty allows detection of loss of heterozygosity, chromosomal and gene amplifications, homozygous or heterozygous deletions, somatic mutations, or any combination thereof in regions or genes of interest. Furthermore, SNPitty can be used to distinguish molecular relationships between multiple tumors from a single patient. On the basis of these data, the authors demonstrate that SNPitty is robust and user friendly in a wide range of diagnostic scenarios. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Strand Displacement Amplification Reaction on Quantum Dot-Encoded Silica Bead for Visual Detection of Multiplex MicroRNAs.

    PubMed

    Qu, Xiaojun; Jin, Haojun; Liu, Yuqian; Sun, Qingjiang

    2018-03-06

    The combination of microbead array, isothermal amplification, and molecular signaling enables the continuous development of next-generation molecular diagnostic techniques. Herein we reported the implementation of nicking endonuclease-assisted strand displacement amplification reaction on quantum dots-encoded microbead (Qbead), and demonstrated its feasibility for multiplexed miRNA assay in real sample. The Qbead featured with well-defined core-shell superstructure with dual-colored quantum dots loaded in silica core and shell, respectively, exhibiting remarkably high optical encoding stability. Specially designed stem-loop-structured probes were immobilized onto the Qbead for specific target recognition and amplification. In the presence of low abundance of miRNA target, the target triggered exponential amplification, producing a large quantity of stem-G-quadruplexes, which could be selectively signaled by a fluorescent G-quadruplex intercalator. In one-step operation, the Qbead-based isothermal amplification and signaling generated emissive "core-shell-satellite" superstructure, changing the Qbead emission-color. The target abundance-dependent emission-color changes of the Qbead allowed direct, visual detection of specific miRNA target. This visualization method achieved limit of detection at the subfemtomolar level with a linear dynamic range of 4.5 logs, and point-mutation discrimination capability for precise miRNA analyses. The array of three encoded Qbeads could simultaneously quantify three miRNA biomarkers in ∼500 human hepatoma carcinoma cells. With the advancements in ease of operation, multiplexing, and visualization capabilities, the isothermal amplification-on-Qbead assay could potentially enable the development of point-of-care diagnostics.

  7. WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Lorenz, Ulf

    2017-04-01

    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.

  8. Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology

    PubMed Central

    Creager, Angela N.H.

    2009-01-01

    The recent historiography of molecular biology features key technologies, instruments and materials, which offer a different view of the field and its turning points than preceding intellectual and institutional histories. Radioisotopes, in this vein, became essential tools in postwar life science research, including molecular biology, and are here analyzed through their use in experiments on bacteriophage. Isotopes were especially well suited for studying the dynamics of chemical transformation over time, through metabolic pathways or life cycles. Scientists labeled phage with phosphorus-32 in order to trace the transfer of genetic material between parent and progeny in virus reproduction. Initial studies of this type did not resolve the mechanism of generational transfer but unexpectedly gave rise to a new style of molecular radiobiology based on the inactivation of phage by the radioactive decay of incorporated phosphorus-32. These ‘suicide experiments’, a preoccupation of phage researchers in the mid-1950s, reveal how molecular biologists interacted with the traditions and practices of radiation geneticists as well as those of biochemists as they were seeking to demarcate a new field. The routine use of radiolabels to visualize nucleic acids emerged as an enduring feature of molecular biological experimentation. PMID:19268872

  9. Imaging Adenosine Triphosphate (ATP)

    PubMed Central

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-01-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provides valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific for ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies that are available to visualize ATP in living cells and identify areas where new tools and approaches are needed to expand our capabilities. PMID:27638696

  10. Imaging Adenosine Triphosphate (ATP).

    PubMed

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities. © 2016 Marine Biological Laboratory.

  11. Observing polymersome dynamics in controlled microscale flows

    NASA Astrophysics Data System (ADS)

    Kumar, Subhalakshmi; Shenoy, Anish; Schroeder, Charles

    2015-03-01

    Achieving an understanding of single particle rheology for large yet deformable particles with controlled membrane viscoelasticity is major challenge in soft materials. In this work, we directly visualize the dynamics of single polymersomes (~ 10 μm in size) in an extensional flow using optical microscopy. We generate polymer vesicular structures composed of polybutadiene-block-polyethylene oxide (PB-b-PEO) copolymers. Single polymersomes are confined near the stagnation point of a planar extensional flow using an automated microfluidic trap, thereby enabling the direct observation of polymersome dynamics under fluid flows with controlled strains and strain rates. In a series of experiments, we investigate the effect of varying elasticity in vesicular membranes on polymersome deformation, along with the impact of decreasing membrane fluidity upon increasing diblock copolymer molecular weight. Overall, we believe that this approach will enable precise characterization of the role of membrane properties on single particle rheology for deformable polymersomes.

  12. Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy

    DOE PAGES

    Sutter, Markus; Faulkner, Matthew; Aussignargues, Clément; ...

    2015-11-30

    Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla. They compartmentalize enzymes within a selectively permeable shell and play important roles in CO 2 fixation, pathogenesis, and microbial ecology. Here, we combine X-ray crystallography and high-speed atomic force microscopy to characterize, at molecular resolution, the structure and dynamics of BMC shell facet assembly. Our results show that preformed hexamers assemble into uniformly oriented shell layers, a single hexamer thick. We also observe the dynamic process of shell facet assembly. Shell hexamers can dissociate from and incorporate into assembled sheets, indicating a flexible intermolecular interaction. Furthermore, we demonstrate that themore » self-assembly and dynamics of shell proteins are governed by specific contacts at the interfaces of shell proteins. Our study provides novel insights into the formation, interactions, and dynamics of BMC shell facets, which are essential for the design and engineering of self-assembled biological nanoreactors and scaffolds based on BMC architectures.« less

  13. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0059: Molecular Dynamics Modeling Support

    DTIC Science & Technology

    2008-03-01

    Molecular Dynamics Simulations 5 Theory: Equilibrium Molecular Dynamics Simulations 6 Theory: Non...Equilibrium Molecular Dynamics Simulations 8 Carbon Nanotube Simulations : Approach and results from equilibrium and non-equilibrium molecular dynamics ...touched from the perspective of molecular dynamics simulations . However, ordered systems such as “Carbon Nanotubes” have been investigated in terms

  14. Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation.

    PubMed

    Baslow, Morris H; Hrabe, Jan; Guilfoyle, David N

    2007-01-01

    N-acetyl-l-aspartic acid (NAA), an amino acid synthesized and stored primarily in neurons in the brain, has been proposed to be a molecular water pump (MWP) whose function is to rapidly remove water from neurons against a water gradient. In this communication, we describe the results of a functional (1)H proton magnetic resonance spectroscopy (fMRS) study, and provide evidence that in the human visual cortex, over a 10-min period of visual stimulation, there are stimulation-induced graded changes in the NAA MRS signal from that of a preceding 10-min baseline period with a decline in the NAA signal of 13.1% by the end of the 10-min stimulation period. Upon cessation of visual stimulation, the NAA signal gradually increases during a 10-min recovery period and once again approaches the baseline level. Because the NAA MRS signal reflects the NAA concentration, these changes indicate rapid focal changes in its concentration, and transient changes in its intercompartmental metabolism. These include its rates of synthesis and efflux from neurons and its hydrolysis by oligodendrocytes. During stimulation, the apparent rate of NAA efflux and hydrolysis increased 14.2 times, from 0.55 to 7.8 micromol g(-1) h(-1). During recovery, the apparent rate of synthesis increased 13.3 times, from 0.55 to 7.3 micromol g(-1) h(-1). The decline in the NAA signal during stimulation suggests that a rapid increase in the rate of NAA-obligated water release to extracellular fluid (ECF) is the initial and seminal event in response to neurostimulation. It is concluded that the NAA metabolic cycle in the visual cortex is intimately linked to rates of neuronal signaling, and that the functional cycle of NAA is associated with its release to ECF, thus supporting the hypothesis that an important function of the NAA metabolic cycle is that of an efflux MWP.

  15. Molecular Beam Mass Spectrometry With Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation

    PubMed Central

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics1-4. Fundamental studies of photoionization processes of biomolecules provide information about the electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water1, 5-9. We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-dimethyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline10 located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds1. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations11, 12. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species 1, 3. PMID:23149375

  16. NGL Viewer: a web application for molecular visualization.

    PubMed

    Rose, Alexander S; Hildebrand, Peter W

    2015-07-01

    The NGL Viewer (http://proteinformatics.charite.de/ngl) is a web application for the visualization of macromolecular structures. By fully adopting capabilities of modern web browsers, such as WebGL, for molecular graphics, the viewer can interactively display large molecular complexes and is also unaffected by the retirement of third-party plug-ins like Flash and Java Applets. Generally, the web application offers comprehensive molecular visualization through a graphical user interface so that life scientists can easily access and profit from available structural data. It supports common structural file-formats (e.g. PDB, mmCIF) and a variety of molecular representations (e.g. 'cartoon, spacefill, licorice'). Moreover, the viewer can be embedded in other web sites to provide specialized visualizations of entries in structural databases or results of structure-related calculations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. A qualitative inquiry into the effects of visualization on high school chemistry students' learning process of molecular structure

    NASA Astrophysics Data System (ADS)

    Deratzou, Susan

    This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts. Based on the Visualization Test results, which showed that most of the students performed better on the post-test, the visualization experience and the abstract nature of the content allowed them to transfer some of their chemical understanding and practice to non-chemical structures. Finally, implications for teaching of chemistry, students learning chemistry, curriculum, and research for the field of chemical education were discussed.

  18. Application of Sequence-Dependent Electrophoresis Fingerprinting in Exploring Biodiversity and Population Dynamics of Human Intestinal Microbiota: What Can Be Revealed?

    PubMed Central

    Huys, Geert; Vanhoutte, Tom; Vandamme, Peter

    2008-01-01

    Sequence-dependent electrophoresis (SDE) fingerprinting techniques such as denaturing gradient gel electrophoresis (DGGE) have become commonplace in the field of molecular microbial ecology. The success of the SDE technology lays in the fact that it allows visualization of the predominant members of complex microbial ecosystems independent of their culturability and without prior knowledge on the complexity and diversity of the ecosystem. Mainly using the prokaryotic 16S rRNA gene as PCR amplification target, SDE-based community fingerprinting turned into one of the leading molecular tools to unravel the diversity and population dynamics of human intestinal microbiota. The first part of this review covers the methodological concept of SDE fingerprinting and the technical hurdles for analyzing intestinal samples. Subsequently, the current state-of-the-art of DGGE and related techniques to analyze human intestinal microbiota from healthy individuals and from patients with intestinal disorders is surveyed. In addition, the applicability of SDE analysis to monitor intestinal population changes upon nutritional or therapeutic interventions is critically evaluated. PMID:19277102

  19. Relevance and limitations of crowding, fractal, and polymer models to describe nuclear architecture.

    PubMed

    Huet, Sébastien; Lavelle, Christophe; Ranchon, Hubert; Carrivain, Pascal; Victor, Jean-Marc; Bancaud, Aurélien

    2014-01-01

    Chromosome architecture plays an essential role for all nuclear functions, and its physical description has attracted considerable interest over the last few years among the biophysics community. These researches at the frontiers of physics and biology have been stimulated by the demand for quantitative analysis of molecular biology experiments, which provide comprehensive data on chromosome folding, or of live cell imaging experiments that enable researchers to visualize selected chromosome loci in living or fixed cells. In this review our goal is to survey several nonmutually exclusive models that have emerged to describe the folding of DNA in the nucleus, the dynamics of proteins in the nucleoplasm, or the movements of chromosome loci. We focus on three classes of models, namely molecular crowding, fractal, and polymer models, draw comparisons, and discuss their merits and limitations in the context of chromosome structure and dynamics, or nuclear protein navigation in the nucleoplasm. Finally, we identify future challenges in the roadmap to a unified model of the nuclear environment. © 2014 Elsevier Inc. All rights reserved.

  20. 369 TFlop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminarayan, Sriram; Germann, Timothy C; Kadau, Kai

    2008-01-01

    The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementationmore » of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.« less

  1. Post-processing interstitialcy diffusion from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bhardwaj, U.; Bukkuru, S.; Warrier, M.

    2016-01-01

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.

  2. MDTRA: a molecular dynamics trajectory analyzer with a graphical user interface.

    PubMed

    Popov, Alexander V; Vorobjev, Yury N; Zharkov, Dmitry O

    2013-02-05

    Most of existing software for analysis of molecular dynamics (MD) simulation results is based on command-line, script-guided processes that require the researchers to have an idea about programming language constructions used, often applied to the one and only product. Here, we describe an open-source cross-platform program, MD Trajectory Reader and Analyzer (MDTRA), that performs a large number of MD analysis tasks assisted with a graphical user interface. The program has been developed to facilitate the process of search and visualization of results. MDTRA can handle trajectories as sets of protein data bank files and presents tools and guidelines to convert some other trajectory formats into such sets. The parameters analyzed by MDTRA include interatomic distances, angles, dihedral angles, angles between planes, one-dimensional and two-dimensional root-mean-square deviation, solvent-accessible area, and so on. As an example of using the program, we describe the application of MDTRA to analyze the MD of formamidopyrimidine-DNA glycosylase, a DNA repair enzyme from Escherichia coli. Copyright © 2012 Wiley Periodicals, Inc.

  3. Post-processing interstitialcy diffusion from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, U., E-mail: haptork@gmail.com; Bukkuru, S.; Warrier, M.

    2016-01-15

    An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures ismore » studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms. -- Graphical abstract:.« less

  4. Supporting Students' Knowledge Integration with Technology-Enhanced Inquiry Curricula

    ERIC Educational Resources Information Center

    Chiu, Jennifer Lopseen

    2010-01-01

    Dynamic visualizations of scientific phenomena have the potential to transform how students learn and understand science. Dynamic visualizations enable interaction and experimentation with unobservable atomic-level phenomena. A series of studies clarify the conditions under which embedding dynamic visualizations in technology-enhanced inquiry…

  5. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions.

    PubMed

    Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H; Oğmen, Haluk

    2008-07-15

    The 1990s, the "decade of the brain," witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this "steady-state approach," more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness.

  6. Visual masking and the dynamics of human perception, cognition, and consciousness A century of progress, a contemporary synthesis, and future directions

    PubMed Central

    Ansorge, Ulrich; Francis, Gregory; Herzog, Michael H.; Öğmen, Haluk

    2008-01-01

    The 1990s, the “decade of the brain,” witnessed major advances in the study of visual perception, cognition, and consciousness. Impressive techniques in neurophysiology, neuroanatomy, neuropsychology, electrophysiology, psychophysics and brain-imaging were developed to address how the nervous system transforms and represents visual inputs. Many of these advances have dealt with the steady-state properties of processing. To complement this “steady-state approach,” more recent research emphasized the importance of dynamic aspects of visual processing. Visual masking has been a paradigm of choice for more than a century when it comes to the study of dynamic vision. A recent workshop (http://lpsy.epfl.ch/VMworkshop/), held in Delmenhorst, Germany, brought together an international group of researchers to present state-of-the-art research on dynamic visual processing with a focus on visual masking. This special issue presents peer-reviewed contributions by the workshop participants and provides a contemporary synthesis of how visual masking can inform the dynamics of human perception, cognition, and consciousness. PMID:20517493

  7. Visualization of early events in acetic acid denaturation of HIV-1 protease: a molecular dynamics study.

    PubMed

    Borkar, Aditi Narendra; Rout, Manoj Kumar; Hosur, Ramakrishna V

    2011-01-01

    Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.

  8. Seeing the Unseen: Molecular Visualization in Biology

    ERIC Educational Resources Information Center

    Finnan, Jeff; Taylor-Papp, Kim; Duran, Mesut

    2005-01-01

    In high school biology, students are challenged by many molecular concepts and structures. They meander through a number of molecular structures, some in macromolecular form: carbohydrates, amino acids, fatty acids, nucleotides. Student difficulties arise in part from inability to visualize what they can't easily see. Students struggle moving from…

  9. Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples.

    PubMed

    Viswanath, Shruthi; Kreuzer, Steven M; Cardenas, Alfredo E; Elber, Ron

    2013-11-07

    Network representations are becoming increasingly popular for analyzing kinetic data from techniques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous phase space trajectories into a relatively small number of discrete states helps in visualization of the data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular networks derived from molecular dynamics simulations growing in number, they are also getting increasingly complex, owing partly to the growth in computer power that allows us to generate longer and better converged trajectories. The increased complexity of the networks makes simple interpretation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we focus on various network representations of kinetic data and algorithms to identify important edges and pathways in these networks. The kinetic data can be local and partial (such as the value of rate coefficients between states) or an exact solution to kinetic equations for the entire system (such as the stationary flux between vertices). In particular, we focus on the Milestoning method that provides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool for analyzing molecular mechanism in Milestoning networks. A closely related definition was made in the context of Transition Path Theory. We consider three algorithms to find Global Maximum Weight Pathways: Recursive Dijkstra's, Edge-Elimination, and Edge-List Bisection. The asymptotic efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List Bisection and Recursive Dijkstra's algorithms are most efficient for sparse and dense networks, respectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation. Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpretation of molecular mechanisms.

  10. SMPBS: Web server for computing biomolecular electrostatics using finite element solvers of size modified Poisson-Boltzmann equation.

    PubMed

    Xie, Yang; Ying, Jinyong; Xie, Dexuan

    2017-03-30

    SMPBS (Size Modified Poisson-Boltzmann Solvers) is a web server for computing biomolecular electrostatics using finite element solvers of the size modified Poisson-Boltzmann equation (SMPBE). SMPBE not only reflects ionic size effects but also includes the classic Poisson-Boltzmann equation (PBE) as a special case. Thus, its web server is expected to have a broader range of applications than a PBE web server. SMPBS is designed with a dynamic, mobile-friendly user interface, and features easily accessible help text, asynchronous data submission, and an interactive, hardware-accelerated molecular visualization viewer based on the 3Dmol.js library. In particular, the viewer allows computed electrostatics to be directly mapped onto an irregular triangular mesh of a molecular surface. Due to this functionality and the fast SMPBE finite element solvers, the web server is very efficient in the calculation and visualization of electrostatics. In addition, SMPBE is reconstructed using a new objective electrostatic free energy, clearly showing that the electrostatics and ionic concentrations predicted by SMPBE are optimal in the sense of minimizing the objective electrostatic free energy. SMPBS is available at the URL: smpbs.math.uwm.edu © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  12. Can Dynamic Visualizations Improve Middle School Students' Understanding of Energy in Photosynthesis?

    ERIC Educational Resources Information Center

    Ryoo, Kihyun; Linn, Marcia C.

    2012-01-01

    Dynamic visualizations have the potential to make abstract scientific phenomena more accessible and visible to students, but they can also be confusing and difficult to comprehend. This research investigates how dynamic visualizations, compared to static illustrations, can support middle school students in developing an integrated understanding of…

  13. A concurrent multiscale micromorphic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaofan, E-mail: shaofan@berkeley.edu; Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from firstmore » principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.« less

  14. Plasticity Beyond V1: Reinforcement of Motion Perception upon Binocular Central Retinal Lesions in Adulthood.

    PubMed

    Burnat, Kalina; Hu, Tjing-Tjing; Kossut, Małgorzata; Eysel, Ulf T; Arckens, Lutgarde

    2017-09-13

    Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7. SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli. Copyright © 2017 the authors 0270-6474/17/378989-11$15.00/0.

  15. Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry.

    PubMed

    Wang, Guanshi; Hauver, Jesse; Thomas, Zachary; Darst, Seth A; Pertsinidis, Alexandros

    2016-12-15

    Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves <2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ 70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Image communication scheme based on dynamic visual cryptography and computer generated holography

    NASA Astrophysics Data System (ADS)

    Palevicius, Paulius; Ragulskis, Minvydas

    2015-01-01

    Computer generated holograms are often exploited to implement optical encryption schemes. This paper proposes the integration of dynamic visual cryptography (an optical technique based on the interplay of visual cryptography and time-averaging geometric moiré) with Gerchberg-Saxton algorithm. A stochastic moiré grating is used to embed the secret into a single cover image. The secret can be visually decoded by a naked eye if only the amplitude of harmonic oscillations corresponds to an accurately preselected value. The proposed visual image encryption scheme is based on computer generated holography, optical time-averaging moiré and principles of dynamic visual cryptography. Dynamic visual cryptography is used both for the initial encryption of the secret image and for the final decryption. Phase data of the encrypted image are computed by using Gerchberg-Saxton algorithm. The optical image is decrypted using the computationally reconstructed field of amplitudes.

  17. Teaching the Structure of Immunoglobulins by Molecular Visualization and SDS-PAGE Analysis

    ERIC Educational Resources Information Center

    Rižner, Tea Lanišnik

    2014-01-01

    This laboratory class combines molecular visualization and laboratory experimentation to teach the structure of the immunoglobulins (Ig). In the first part of the class, the three-dimensional structures of the human IgG and IgM molecules available through the RCSB PDB database are visualized using freely available software. In the second part, IgG…

  18. Supporting students' knowledge integration with technology-enhanced inquiry curricula

    NASA Astrophysics Data System (ADS)

    Chiu, Jennifer Lopseen

    Dynamic visualizations of scientific phenomena have the potential to transform how students learn and understand science. Dynamic visualizations enable interaction and experimentation with unobservable atomic-level phenomena. A series of studies clarify the conditions under which embedding dynamic visualizations in technology-enhanced inquiry instruction can help students develop robust and durable chemistry knowledge. Using the knowledge integration perspective, I designed Chemical Reactions, a technology-enhanced curriculum unit, with a partnership of teachers, educational researchers, and chemists. This unit guides students in an exploration of how energy and chemical reactions relate to climate change. It uses powerful dynamic visualizations to connect atomic level interactions to the accumulation of greenhouse gases. The series of studies were conducted in typical classrooms in eleven high schools across the country. This dissertation describes four studies that contribute to understanding of how visualizations can be used to transform chemistry learning. The efficacy study investigated the impact of the Chemical Reactions unit compared to traditional instruction using pre-, post- and delayed posttest assessments. The self-monitoring study used self-ratings in combination with embedded assessments to explore how explanation prompts help students learn from dynamic visualizations. The self-regulation study used log files of students' interactions with the learning environment to investigate how external feedback and explanation prompts influence students' exploration of dynamic visualizations. The explanation study compared specific and general explanation prompts to explore the processes by which explanations benefit learning with dynamic visualizations. These studies delineate the conditions under which dynamic visualizations embedded in inquiry instruction can enhance student outcomes. The studies reveal that visualizations can be deceptively clear, deterring learners from exploring details. Asking students to generate explanations helps them realize what they don't understand and can spur students to revisit visualizations to remedy gaps in their knowledge. The studies demonstrate that science instruction focused on complex topics can succeed by combining visualizations with generative activities to encourage knowledge integration. Students are more successful at monitoring their progress and remedying gaps in knowledge when required to distinguish among alternative explanations. The results inform the design of technology-enhanced science instruction for typical classrooms.

  19. Dynamic Visualizations: How Attraction, Motivation and Communication Affect Streaming Video Tutorial Implementation

    ERIC Educational Resources Information Center

    Boger, Claire

    2011-01-01

    The rapid advancement in the capabilities of computer technologies has made it easier to design and deploy dynamic visualizations in web-based learning environments; yet, the implementation of these dynamic visuals has been met with mixed results. While many guidelines exist to assist instructional designers in the design and application of…

  20. Zebrafish models flex their muscles to shed light on muscular dystrophies.

    PubMed

    Berger, Joachim; Currie, Peter D

    2012-11-01

    Muscular dystrophies are a group of genetic disorders that specifically affect skeletal muscle and are characterized by progressive muscle degeneration and weakening. To develop therapies and treatments for these diseases, a better understanding of the molecular basis of muscular dystrophies is required. Thus, identification of causative genes mutated in specific disorders and the study of relevant animal models are imperative. Zebrafish genetic models of human muscle disorders often closely resemble disease pathogenesis, and the optical clarity of zebrafish embryos and larvae enables visualization of dynamic molecular processes in vivo. As an adjunct tool, morpholino studies provide insight into the molecular function of genes and allow rapid assessment of candidate genes for human muscular dystrophies. This unique set of attributes makes the zebrafish model system particularly valuable for the study of muscle diseases. This review discusses how recent research using zebrafish has shed light on the pathological basis of muscular dystrophies, with particular focus on the muscle cell membrane and the linkage between the myofibre cytoskeleton and the extracellular matrix.

  1. Teaching the structure of immunoglobulins by molecular visualization and SDS-PAGE analysis.

    PubMed

    Rižner, Tea Lanišnik

    2014-01-01

    This laboratory class combines molecular visualization and laboratory experimentation to teach the structure of the immunoglobulins (Ig). In the first part of the class, the three-dimensional structures of the human IgG and IgM molecules available through the RCSB PDB database are visualized using freely available software. In the second part, IgG and IgM are studied using electrophoretic methods. Through SDS-PAGE analysis under reducing conditions, the students determine the number and molecular masses of the polypeptide chains, while through SDS-PAGE under nonreducing conditions, the students assess the oligomerization of these Ig molecules. The aims of this class are to expand upon the knowledge and understanding of the Ig structure that the students have gained from classroom lectures. The combination of this molecular visualization of the Ig molecules and the SDS-PAGE experimentation ensures variety in the teaching techniques, while the implication of the Ig molecules in human disease promotes interest for biomedical students. © 2014 by The International Union of Biochemistry and Molecular Biology.

  2. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  3. The Effects of Realism in Learning with Dynamic Visualizations

    ERIC Educational Resources Information Center

    Scheiter, Katharina; Gerjets, Peter; Huk, Thomas; Imhof, Birgit; Kammerer, Yvonne

    2009-01-01

    Two experiments are reported that investigated the relative effectiveness of a realistic dynamic visualization as opposed to a schematic visualization for learning about cell replication (mitosis). In Experiment 1, 37 university students watched either realistic or schematic visualizations. Students' subjective task demands ratings as well as…

  4. Intraoperative video-rate hemodynamic response assessment in human cortex using snapshot hyperspectral optical imaging

    PubMed Central

    Pichette, Julien; Laurence, Audrey; Angulo, Leticia; Lesage, Frederic; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frederic

    2016-01-01

    Abstract. Using light, we are able to visualize the hemodynamic behavior of the brain to better understand neurovascular coupling and cerebral metabolism. In vivo optical imaging of tissue using endogenous chromophores necessitates spectroscopic detection to ensure molecular specificity as well as sufficiently high imaging speed and signal-to-noise ratio, to allow dynamic physiological changes to be captured, isolated, and used as surrogate of pathophysiological processes. An optical imaging system is introduced using a 16-bands on-chip hyperspectral camera. Using this system, we show that up to three dyes can be imaged and quantified in a tissue phantom at video-rate through the optics of a surgical microscope. In vivo human patient data are presented demonstrating brain hemodynamic response can be measured intraoperatively with molecular specificity at high speed. PMID:27752519

  5. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    PubMed

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  6. Learning about Locomotion Patterns from Visualizations: Effects of Presentation Format and Realism

    ERIC Educational Resources Information Center

    Imhof, Birgit; Scheiter, Katharina; Gerjets, Peter

    2011-01-01

    The rapid development of computer graphics technology has made possible an easy integration of dynamic visualizations into computer-based learning environments. This study examines the relative effectiveness of dynamic visualizations, compared either to sequentially or simultaneously presented static visualizations. Moreover, the degree of realism…

  7. Perceptual upright: the relative effectiveness of dynamic and static images under different gravity States.

    PubMed

    Jenkin, Michael R; Dyde, Richard T; Jenkin, Heather L; Zacher, James E; Harris, Laurence R

    2011-01-01

    The perceived direction of up depends on both gravity and visual cues to orientation. Static visual cues to orientation have been shown to be less effective in influencing the perception of upright (PU) under microgravity conditions than they are on earth (Dyde et al., 2009). Here we introduce dynamic orientation cues into the visual background to ascertain whether they might increase the effectiveness of visual cues in defining the PU under different gravity conditions. Brief periods of microgravity and hypergravity were created using parabolic flight. Observers viewed a polarized, natural scene presented at various orientations on a laptop viewed through a hood which occluded all other visual cues. The visual background was either an animated video clip in which actors moved along the visual ground plane or an individual static frame taken from the same clip. We measured the perceptual upright using the oriented character recognition test (OCHART). Dynamic visual cues significantly enhance the effectiveness of vision in determining the perceptual upright under normal gravity conditions. Strong trends were found for dynamic visual cues to produce an increase in the visual effect under both microgravity and hypergravity conditions.

  8. Infant Attention to Dynamic Audiovisual Stimuli: Look Duration from 3 to 9 Months of Age

    ERIC Educational Resources Information Center

    Reynolds, Greg D.; Zhang, Dantong; Guy, Maggie W.

    2013-01-01

    The goal of this study was to examine developmental change in visual attention to dynamic visual and audiovisual stimuli in 3-, 6-, and 9-month-old infants. Infant look duration was measured during exposure to dynamic geometric patterns and Sesame Street video clips under three different stimulus modality conditions: unimodal visual, synchronous…

  9. Visual Design Guidelines for Improving Learning from Dynamic and Interactive Digital Text

    ERIC Educational Resources Information Center

    Jin, Sung-Hee

    2013-01-01

    Despite the dynamic and interactive features of digital text, the visual design guidelines for digital text are similar to those for printed text. The purpose of this study was to develop visual design guidelines for improving learning from dynamic and interactive digital text and to validate them by controlled testing. Two structure design…

  10. Enhancing Learning from Dynamic and Static Visualizations by Means of Cueing

    ERIC Educational Resources Information Center

    Kuhl, Tim; Scheiter, Katharina; Gerjets, Peter

    2012-01-01

    The current study investigated whether learning from dynamic and two presentation formats for static visualizations can be enhanced by means of cueing. One hundred and fifty university students were randomly assigned to six conditions, resulting from a 2x3-design, with cueing (with/without) and type of visualization (dynamic, static-sequential,…

  11. Laser-Based Flowfield Imaging in a Lean Premixed Prevaporized Sector Combustor

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.

    2005-01-01

    OH and fuel planar laser-induced fluorescence (PLIF) is used qualitatively in this study to observe the flame structure resultant from different fuel injector dome configurations within the 3-cup sector combustor test rig. The fluorescence images are compared with some computational fluid dynamics (CFD) results. Interferences in obtaining OH fluorescence signals due to the emission of other species are assessed. NO PLIF images are presented and compared to gas analysis results. The comparison shows that PLIF NO can be an excellent method for measuring NO in the flame. Additionally, we present flow visualization of the molecular species C2.

  12. Interactive Visualization of Infrared Spectral Data: Synergy of Computation, Visualization, and Experiment for Learning Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lahti, Paul M.; Motyka, Eric J.; Lancashire, Robert J.

    2000-05-01

    A straightforward procedure is described to combine computation of molecular vibrational modes using commonly available molecular modeling programs with visualization of the modes using advanced features of the MDL Information Systems Inc. Chime World Wide Web browser plug-in. Minor editing of experimental spectra that are stored in the JCAMP-DX format allows linkage of IR spectral frequency ranges to Chime molecular display windows. The spectra and animation files can be combined by Hypertext Markup Language programming to allow interactive linkage between experimental spectra and computationally generated vibrational displays. Both the spectra and the molecular displays can be interactively manipulated to allow the user maximum control of the objects being viewed. This procedure should be very valuable not only for aiding students through visual linkage of spectra and various vibrational animations, but also by assisting them in learning the advantages and limitations of computational chemistry by comparison to experiment.

  13. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease.

    PubMed

    Nörenberg, Dominik; Ebersberger, Hans U; Diederichs, Gerd; Hamm, Bernd; Botnar, René M; Makowski, Marcus R

    2016-03-01

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. Targeted MR-probes allow the characterization of atherosclerosis on a molecular level. Molecular MRI can identify in vivo markers for the differentiation of stable and unstable plaques. Visualization of early molecular changes has the potential to improve patient-individualized risk-assessment.

  14. Visualizing the orientational dependence of an intermolecular potential

    NASA Astrophysics Data System (ADS)

    Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip

    2016-02-01

    Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard-Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation.

  15. TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD.

    PubMed

    Vermaas, Josh V; Hardy, David J; Stone, John E; Tajkhorshid, Emad; Kohlmeyer, Axel

    2016-06-27

    Molecular dynamics (MD) simulation engines use a variety of different approaches for modeling molecular systems with force fields that govern their dynamics and describe their topology. These different approaches introduce incompatibilities between engines, and previously published software bridges the gaps between many popular MD packages, such as between CHARMM and AMBER or GROMACS and LAMMPS. While there are many structure building tools available that generate topologies and structures in CHARMM format, only recently have mechanisms been developed to convert their results into GROMACS input. We present an approach to convert CHARMM-formatted topology and parameters into a format suitable for simulation with GROMACS by expanding the functionality of TopoTools, a plugin integrated within the widely used molecular visualization and analysis software VMD. The conversion process was diligently tested on a comprehensive set of biological molecules in vacuo. The resulting comparison between energy terms shows that the translation performed was lossless as the energies were unchanged for identical starting configurations. By applying the conversion process to conventional benchmark systems that mimic typical modestly sized MD systems, we explore the effect of the implementation choices made in CHARMM, NAMD, and GROMACS. The newly available automatic conversion capability breaks down barriers between simulation tools and user communities and allows users to easily compare simulation programs and leverage their unique features without the tedium of constructing a topology twice.

  16. Extended Hu¨ckel Calculations on Solids Using the Avogadro Molecular Editor and Visualizer

    ERIC Educational Resources Information Center

    Avery, Patrick; Ludoweig, Herbert; Autschbach, Jochen; Zurek, Eva

    2018-01-01

    The "Yet Another extended Hu¨ckel Molecular Orbital Package" (YAeHMOP) has been merged with the Avogadro open-source molecular editor and visualizer. It is now possible to perform YAeHMOP calculations directly from the Avogadro graphical user interface for materials that are periodic in one, two, or three dimensions, and to visualize…

  17. Ex vivo Live Imaging of Lung Metastasis and Their Microenvironment

    PubMed Central

    Maynard, Carrie; Plaks, Vicki

    2016-01-01

    Metastasis is a major cause for cancer-related morbidity and mortality. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular processes that govern metastatic dissemination and growth are still elusive. Live imaging allows visualization of the dynamic and spatial interactions of cells and their microenvironment. Solid tumors commonly metastasize to the lungs. However, the anatomical location of the lungs poses a challenge to intravital imaging. This protocol provides a relatively simple and quick method for ex vivo live imaging of the dynamic interactions between tumor cells and their surrounding stroma within lung metastasis. Using this method, the motility of cancer cells as well as interactions between cancer cells and stromal cells in their microenvironment can be visualized in real time for several hours. By using transgenic fluorescent reporter mice, a fluorescent cell line, injectable fluorescently labeled molecules and/or antibodies, multiple components of the lung microenvironment can be visualized, such as blood vessels and immune cells. To image the different cell types, a spinning disk confocal microscope that allows long-term continuous imaging with rapid, four-color image acquisition has been used. Time-lapse movies compiled from images collected over multiple positions and focal planes show interactions between live metastatic and immune cells for at least 4 hr. This technique can be further used to test chemotherapy or targeted therapy. Moreover, this method could be adapted for the study of other lung-related pathologies that may affect the lung microenvironment. PMID:26862704

  18. Moving to higher ground: The dynamic field theory and the dynamics of visual cognition

    PubMed Central

    Johnson, Jeffrey S.; Spencer, John P.; Schöner, Gregor

    2009-01-01

    In the present report, we describe a new dynamic field theory that captures the dynamics of visuo-spatial cognition. This theory grew out of the dynamic systems approach to motor control and development, and is grounded in neural principles. The initial application of dynamic field theory to issues in visuo-spatial cognition extended concepts of the motor approach to decision making in a sensori-motor context, and, more recently, to the dynamics of spatial cognition. Here we extend these concepts still further to address topics in visual cognition, including visual working memory for non-spatial object properties, the processes that underlie change detection, and the ‘binding problem’ in vision. In each case, we demonstrate that the general principles of the dynamic field approach can unify findings in the literature and generate novel predictions. We contend that the application of these concepts to visual cognition avoids the pitfalls of reductionist approaches in cognitive science, and points toward a formal integration of brains, bodies, and behavior. PMID:19173013

  19. Effect of Material Ion Exchanges on the Mechanical Stiffness Properties and Shear Deformation of Hydrated Cement Material Chemistry Structure C-S-H Jennite -- A Computational Modeling Study

    NASA Astrophysics Data System (ADS)

    Adebiyi, Babatunde Mattew

    Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance, are required. A computational material modeling methodology is investigated and demonstrated for a key cement hydrated component material chemistry structure of Calcium-Silicate-Hydrate (C-S-H) Jennite in this work. The effect of material ion exchanges on the mechanical stiffness properties and shear deformation behavior of hydrated cement material chemistry structure of Calcium Silicate Hydrate (C-S-H) Jennite was studied. Calcium ions were replaced with Magnesium ions in Jennite structure of the C-S-H gel. Different level of substitution of the ions was used. The traditional Jennite structure was obtained from the American Mineralogist Crystal Structure Database and super cells of the structures were created using a Molecular Dynamics Analyzer and Visualizer Material Studio. Molecular dynamics parameters used in the modeling analysis were determined by carrying out initial dynamic studies. 64 unit cell of C-S-H Jennite was used in material modeling analysis studies based on convergence results obtained from the elastic modulus and total energies. NVT forcite dynamics using COMPASS force field based on 200 ps dynamics time was used to determine mechanical modulus of the traditional C-S-H gel and the Magnesium ion modified structures. NVT Discover dynamics using COMPASS forcefield was used in the material modeling studies to investigate the influence of ionic exchange on the shear deformation of the associated material chemistry structures. A prior established quasi-static deformation method to emulate shear deformation of C-S-H material chemistry structure that is based on a triclinic crystal structure was used, by deforming the triclinic crystal structure at 0.2 degree per time step for 75 steps of deformation. It was observed that there is a decrease in the total energies of the systems as the percentage of magnesium ion increases in the C-S-H Jennite molecular structure systems. Investigation of effect of ion exchange on the elastic modulus shows that the elastic stiffness modulus tends to decrease as the amount of Mg in the systems increases, using either COMPASS or universal force field. On the other hand, shear moduli obtained after deforming the structures computed from the stress-strain curve obtained from material modeling increases as the amount of Mg increases in the system. The present investigations also showed that ultimate shear stress obtained from predicted shear stress---strain also increases with amount of Mg in the chemistry structure. Present study clearly demonstrates that computational material modeling following molecular dynamics analysis methodology is an effective way to predict and understand the effective material chemistry and additive changes on the stiffness and deformation characteristics in cementitious materials, and the results suggest that this method can be extended to other materials.

  20. Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters.

    PubMed

    Rogers, Kelly L; Stinnakre, Jacques; Agulhon, Cendra; Jublot, Delphine; Shorte, Spencer L; Kremer, Eric J; Brûlet, Philippe

    2005-02-01

    Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto-fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca(2+)-sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi-functional Ca2+ reporter gene, GFP-aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260-7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable 'real-time' measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal-to-noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell-cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex-vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non-invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.

  1. Multi-scale volumetric cell and tissue imaging based on optical projection tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ban, Sungbea; Cho, Nam Hyun; Ryu, Yongjae; Jung, Sunwoo; Vavilin, Andrey; Min, Eunjung; Jung, Woonggyu

    2016-04-01

    Optical projection tomography is a new optical imaging method for visualizing small biological specimens in three dimension. The most important advantage of OPT is to fill the gap between MRI and confocal microscope for the specimen having the range of 1-10 mm. Thus, it has been mainly used for whole-mount small animals and developmental study since this imaging modality was developed. The ability of OPT delivering anatomical and functional information of relatively large tissue in 3D has made it a promising platform in biomedical research. Recently, the potential of OPT spans its coverage to cellular scale. Even though there are increasing demand to obtain better understanding of cellular dynamics, only few studies to visualize cellular structure, shape, size and functional morphology over tissue has been investigated in existing OPT system due to its limited field of view. In this study, we develop a novel optical imaging system for 3D cellular imaging with OPT integrated with dynamic focusing technique. Our tomographic setup has great potential to be used for identifying cell characteristic in tissue because it can provide selective contrast on dynamic focal plane allowing for fluorescence as well as absorption. While the dominant contrast of optical imaging technique is to use the fluorescence for detecting certain target only, the newly developed OPT system will offer considerable advantages over currently available method when imaging cellar molecular dynamics by permitting contrast variation. By achieving multi-contrast, it is expected for this new imaging system to play an important role in delivering better cytological information to pathologist.

  2. Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling.

    PubMed

    Liu, Hui; Dong, Peng; Ioannou, Maria S; Li, Li; Shea, Jamien; Pasolli, H Amalia; Grimm, Jonathan B; Rivlin, Patricia K; Lavis, Luke D; Koyama, Minoru; Liu, Zhe

    2018-01-09

    Our ability to unambiguously image and track individual molecules in live cells is limited by packing of multiple copies of labeled molecules within the resolution limit. Here we devise a universal genetic strategy to precisely control copy number of fluorescently labeled molecules in a cell. This system has a dynamic range of ∼10,000-fold, enabling sparse labeling of proteins expressed at different abundance levels. Combined with photostable labels, this system extends the duration of automated single-molecule tracking by two orders of magnitude. We demonstrate long-term imaging of synaptic vesicle dynamics in cultured neurons as well as in intact zebrafish. We found axon initial segment utilizes a "waterfall" mechanism gating synaptic vesicle transport polarity by promoting anterograde transport processivity. Long-time observation also reveals that transcription factor hops between clustered binding sites in spatially restricted subnuclear regions, suggesting that topological structures in the nucleus shape local gene activities by a sequestering mechanism. This strategy thus greatly expands the spatiotemporal length scales of live-cell single-molecule measurements, enabling new experiments to quantitatively understand complex control of molecular dynamics in vivo.

  3. Hsc70 chaperone activity is required for the cytosolic slow axonal transport of synapsin

    PubMed Central

    Ganguly, Archan; Han, Xuemei; Das, Utpal; Caillol, Ghislaine

    2017-01-01

    Soluble cytosolic proteins vital to axonal and presynaptic function are synthesized in the neuronal soma and conveyed via slow axonal transport. Our previous studies suggest that the overall slow transport of synapsin is mediated by dynamic assembly/disassembly of cargo complexes followed by short-range vectorial transit (the “dynamic recruitment” model). However, neither the composition of these complexes nor the mechanistic basis for the dynamic behavior is understood. In this study, we first examined putative cargo complexes associated with synapsin using coimmunoprecipitation and multidimensional protein identification technology mass spectrometry (MS). MS data indicate that synapsin is part of a multiprotein complex enriched in chaperones/cochaperones including Hsc70. Axonal synapsin–Hsc70 coclusters are also visualized by two-color superresolution microscopy. Inhibition of Hsc70 ATPase activity blocked the slow transport of synapsin, disrupted axonal synapsin organization, and attenuated Hsc70–synapsin associations, advocating a model where Hsc70 activity dynamically clusters cytosolic proteins into cargo complexes, allowing transport. Collectively, our study offers insight into the molecular organization of cytosolic transport complexes and identifies a novel regulator of slow transport. PMID:28559423

  4. Free Surface Flows and Extensional Rheology of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  5. Dynamically Switching the Polarization State of Light Based on the Phase Transition of Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu

    2018-03-01

    There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.

  6. Atomic-scale investigation of nuclear quantum effects of surface water: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Li, Xin-Zheng; Peng, Jinbo; Wang, En-Ge; Jiang, Ying

    2017-12-01

    Quantum behaviors of protons in terms of tunneling and zero-point motion have significant effects on the macroscopic properties, structure, and dynamics of water even at room temperature or higher. In spite of tremendous theoretical and experimental efforts, accurate and quantitative description of the nuclear quantum effects (NQEs) is still challenging. The main difficulty lies in that the NQEs are extremely susceptible to the structural inhomogeneity and local environments, especially when interfacial systems are concerned. In this review article, we will highlight the recent advances of scanning tunneling microscopy and spectroscopy (STM/S), which allows the access to the quantum degree of freedom of protons both in real and energy space. In addition, we will also introduce recent development of ab initio path-integral molecular dynamics (PIMD) simulations at surfaces/interfaces, in which both the electrons and nuclei are treated as quantum particles in contrast to traditional ab initio molecular dynamics (MD). Then we will discuss how the combination of STM/S and PIMD are used to directly visualize the concerted quantum tunneling of protons within the water clusters and quantify the impact of zero-point motion on the strength of a single hydrogen bond (H bond) at a water/solid interface. Those results may open up the new possibility of exploring the exotic quantum states of light nuclei at surfaces, as well as the quantum coupling between the electrons and nuclei.

  7. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    PubMed

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  8. Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis

    PubMed Central

    Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.

    2014-01-01

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300

  9. [Clinical applications of molecular imaging methods for patients with ischemic stroke].

    PubMed

    Yamauchi, Hiroshi; Fukuyama, Hidenao

    2007-02-01

    Several molecular imaging methods have been developed to visualize pathophysiology of cerebral ischemia in humans in vivo. PET and SPECT with specific ligands have been mainly used as diagnostic tools for the clinical usage of molecular imaging in patients with ischemic stroke. Recently, cellular MR imaging with specific contrast agents has been developed to visualize targeted cells in human stroke patients. This article reviews the current status in the clinical applications of those molecular imaging methods for patients with ischemic stroke.

  10. Synthesis, characterization and computational study of the newly synthetized sulfonamide molecule

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Suchetan, P. A.; Giri, L.; Rao, R. Sreenivasa

    2018-02-01

    A new compound N-(2,5-dimethyl-4-nitrophenyl)-4-methylbenzenesulfonamide (NDMPMBS) has been derived from 2,5-dimethyl-4-nitroaniline and 4-methylbenzene-1-sulfonyl chloride. Structure was characterized by SCXRD studies and spectroscopic tools. Compound crystallized in the monoclinic crystal system with P21/c space group a = 10.0549, b = 18.967, c = 8.3087, β = 103.18 and Z = 4. Type and nature of intermolecular interaction in crystal state investigated by 3D-Hirshfeld surface and 2D-finger print plots revealed that title compound stabilized by several interactions. The structural and electronic properties of title compound have been calculated at DFT/B3LYP/6-311G++(d,p) level of theory. Computationally obtained spectral data was compared with experimental results, showing excellent mutual agreement. Assignment of each vibrational wave number was done on the basis of potential energy distribution (PED). Investigation of local reactivity descriptors encompassed visualization of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) surfaces, visualization of Fukui functions, natural bond order (NBO) analysis, bond dissociation energies for hydrogen abstraction (H-BDE) and radial distribution functions (RDF) after molecular dynamics (MD) simulations. MD simulations were also used in order to investigate interaction of NDMPMBS molecule with 1WKR and 3ETT proteins protein.

  11. Noninvasive two-photon fluorescence microscopy imaging of mouse retina and RPE through the pupil of the eye

    PubMed Central

    Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Hunter, Jennifer J.; Williams, David R.; Alexander, Nathan S.; Palczewski, Krzysztof

    2014-01-01

    Two-photon excitation microscopy (TPM) can image retinal molecular processes in vivo. Intrinsically fluorescent retinyl esters in sub-cellular structures called retinosomes are an integral part of the visual chromophore regeneration pathway. Fluorescent condensation products of all–trans–retinal accumulate in the eye with age and are also associated with age-related macular degeneration (AMD). Here we report repetitive, dynamic imaging of these compounds in live mice, through the pupil of the eye. Leveraging advanced adaptive optics we developed a data acquisition algorithm that permitted the identification of retinosomes and condensation products in the retinal pigment epithelium (RPE) by their characteristic localization, spectral properties, and absence in genetically modified or drug-treated mice. This imaging approach has the potential to detect early molecular changes in retinoid metabolism that trigger light and AMD-induced retinal defects and to assess the effectiveness of treatments for these conditions. PMID:24952647

  12. Aurally aided visual search performance in a dynamic environment

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.

    2008-04-01

    Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.

  13. Enhancing 4-propylheptane dissociation with nickel nanocluster based on molecular dynamics simulations.

    PubMed

    Ilyina, Margarita G; Khamitov, Edward M; Galiakhmetov, Rail N; Mustafin, Ildar A; Mustafin, Akhat G

    2017-03-01

    In the present work, a 0.4nm nickel cluster has been theoretically studied. Its equilibrium structural parameters have been calculated by the DFT method based on the PBEH1PBE hybrid functional and split-valence basis set Lanl2DZ including effective core potentials. We have systematically considered diverse spin states of this cluster and find out its ground state. The relative stability of these states depends on the HOMO-LUMO gap. The interaction of the Ni 6 with 4-propylheptane С 10 Н 22 has been studied to simulate the process of catalytic cracking of hydrocarbons. The optimization of this structure has been performed by the ωPBE/Lanl2DZ_ecp method (the TeraChem V.1.9 program package) with no symmetry restrictions; the electron shells of the metal were described by effective core pseudopotentials. For visualization and quantitative estimation of the bonding bonds between the nickel nanocluster and 4-propylheptane, the analysis of weak interactions based on RGD has been performed. To confirm the proposition about the formation of Ni-H bonds, we have scrutinized critical points of electronic density. Values of laplasian of electronic density and Bader atomic charge distribution in the global minimum of the total energy have been estimated by the AIMAll 15.05.18 program suite. Finally, we have simulated interaction of Ni 6 with 4-propylheptane in terms of the Born-Oppenheimer ab initio molecular dynamics. The results of the molecular dynamics simulation provide pair radial distribution function CH at 1500°C and a detailed picture of the processes occurring in the system. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Visual Environments for CFD Research

    NASA Technical Reports Server (NTRS)

    Watson, Val; George, Michael W. (Technical Monitor)

    1994-01-01

    This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.

  15. Impulse processing: A dynamical systems model of incremental eye movements in the visual world paradigm

    PubMed Central

    Kukona, Anuenue; Tabor, Whitney

    2011-01-01

    The visual world paradigm presents listeners with a challenging problem: they must integrate two disparate signals, the spoken language and the visual context, in support of action (e.g., complex movements of the eyes across a scene). We present Impulse Processing, a dynamical systems approach to incremental eye movements in the visual world that suggests a framework for integrating language, vision, and action generally. Our approach assumes that impulses driven by the language and the visual context impinge minutely on a dynamical landscape of attractors corresponding to the potential eye-movement behaviors of the system. We test three unique predictions of our approach in an empirical study in the visual world paradigm, and describe an implementation in an artificial neural network. We discuss the Impulse Processing framework in relation to other models of the visual world paradigm. PMID:21609355

  16. Differential temporal dynamics during visual imagery and perception.

    PubMed

    Dijkstra, Nadine; Mostert, Pim; Lange, Floris P de; Bosch, Sander; van Gerven, Marcel Aj

    2018-05-29

    Visual perception and imagery rely on similar representations in the visual cortex. During perception, visual activity is characterized by distinct processing stages, but the temporal dynamics underlying imagery remain unclear. Here, we investigated the dynamics of visual imagery in human participants using magnetoencephalography. Firstly, we show that, compared to perception, imagery decoding becomes significant later and representations at the start of imagery already overlap with later time points. This suggests that during imagery, the entire visual representation is activated at once or that there are large differences in the timing of imagery between trials. Secondly, we found consistent overlap between imagery and perceptual processing around 160 ms and from 300 ms after stimulus onset. This indicates that the N170 gets reactivated during imagery and that imagery does not rely on early perceptual representations. Together, these results provide important insights for our understanding of the neural mechanisms of visual imagery. © 2018, Dijkstra et al.

  17. Storyline Visualizations of Eye Tracking of Movie Viewing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balint, John T.; Arendt, Dustin L.; Blaha, Leslie M.

    Storyline visualizations offer an approach that promises to capture the spatio-temporal characteristics of individual observers and simultaneously illustrate emerging group behaviors. We develop a visual analytics approach to parsing, aligning, and clustering fixation sequences from eye tracking data. Visualization of the results captures the similarities and differences across a group of observers performing a common task. We apply our storyline approach to visualize gaze patterns of people watching dynamic movie clips. Storylines mitigate some of the shortcomings of existent spatio-temporal visualization techniques and, importantly, continue to highlight individual observer behavioral dynamics.

  18. Are Covert Saccade Functionally Relevant in Vestibular Hypofunction?

    PubMed

    Hermann, R; Pelisson, D; Dumas, O; Urquizar, Ch; Truy, E; Tilikete, C

    2018-06-01

    The vestibulo-ocular reflex maintains gaze stabilization during angular or linear head accelerations, allowing adequate dynamic visual acuity. In case of bilateral vestibular hypofunction, patients use saccades to compensate for the reduced vestibulo-ocular reflex function, with covert saccades occurring even during the head displacement. In this study, we questioned whether covert saccades help maintain dynamic visual acuity, and evaluated which characteristic of these saccades are the most relevant to improve visual function. We prospectively included 18 patients with chronic bilateral vestibular hypofunction. Subjects underwent evaluation of dynamic visual acuity in the horizontal plane as well as video recording of their head and eye positions during horizontal head impulse tests in both directions (36 ears tested). Frequency, latency, consistency of covert saccade initiation, and gain of covert saccades as well as residual vestibulo-ocular reflex gain were calculated. We found no correlation between residual vestibulo-ocular reflex gain and dynamic visual acuity. Dynamic visual acuity performance was however positively correlated with the frequency and gain of covert saccades and negatively correlated with covert saccade latency. There was no correlation between consistency of covert saccade initiation and dynamic visual acuity. Even though gaze stabilization in space during covert saccades might be of very short duration, these refixation saccades seem to improve vision in patients with bilateral vestibular hypofunction during angular head impulses. These findings emphasize the need for specific rehabilitation technics that favor the triggering of covert saccades. The physiological origin of covert saccades is discussed.

  19. Interactive visualization of vegetation dynamics

    USGS Publications Warehouse

    Reed, B.C.; Swets, D.; Bard, L.; Brown, J.; Rowland, James

    2001-01-01

    Satellite imagery provides a mechanism for observing seasonal dynamics of the landscape that have implications for near real-time monitoring of agriculture, forest, and range resources. This study illustrates a technique for visualizing timely information on key events during the growing season (e.g., onset, peak, duration, and end of growing season), as well as the status of the current growing season with respect to the recent historical average. Using time-series analysis of normalized difference vegetation index (NDVI) data from the advanced very high resolution radiometer (AVHRR) satellite sensor, seasonal dynamics can be derived. We have developed a set of Java-based visualization and analysis tools to make comparisons between the seasonal dynamics of the current year with those from the past twelve years. In addition, the visualization tools allow the user to query underlying databases such as land cover or administrative boundaries to analyze the seasonal dynamics of areas of their own interest. The Java-based tools (data exploration and visualization analysis or DEVA) use a Web-based client-server model for processing the data. The resulting visualization and analysis, available via the Internet, is of value to those responsible for land management decisions, resource allocation, and at-risk population targeting.

  20. Dynamic contrast-enhanced optical imaging of in vivo organ function

    NASA Astrophysics Data System (ADS)

    Amoozegar, Cyrus B.; Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-09-01

    Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ's response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition.

  1. Regulating Critical Period Plasticity: Insight from the Visual System to Fear Circuitry for Therapeutic Interventions

    PubMed Central

    Nabel, Elisa M.; Morishita, Hirofumi

    2013-01-01

    Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development – the preeminent model of experience-dependent critical period plasticity-actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins – endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions. PMID:24273519

  2. Novel Visualization Approaches in Environmental Mineralogy

    NASA Astrophysics Data System (ADS)

    Anderson, C. D.; Lopano, C. L.; Hummer, D. R.; Heaney, P. J.; Post, J. E.; Kubicki, J. D.; Sofo, J. O.

    2006-05-01

    Communicating the complexities of atomic scale reactions between minerals and fluids is fraught with intrinsic challenges. For example, an increasing number of techniques are now available for the interrogation of dynamical processes at the mineral-fluid interface. However, the time-dependent behavior of atomic interactions between a solid and a liquid is often not adequately captured by two-dimensional line drawings or images. At the same time, the necessity for describing these reactions to general audiences is growing more urgent, as funding agencies are amplifying their encouragement to scientists to reach across disciplines and to justify their studies to public audiences. To overcome the shortcomings of traditional graphical representations, the Center for Environmental Kinetics Analysis is creating three-dimensional visualizations of experimental and simulated mineral reactions. These visualizations are then displayed on a stereo 3D projection system called the GeoWall. Made possible (and affordable) by recent improvements in computer and data projector technology, the GeoWall system uses a combination of computer software and hardware, polarizing filters and polarizing glasses, to present visualizations in true 3D. The three-dimensional views greatly improve comprehension of complex multidimensional data, and animations of time series foster better understanding of the underlying processes. The visualizations also offer an effective means to communicate the complexities of environmental mineralogy to colleagues, students and the public. Here we present three different kinds of datasets that demonstrate the effectiveness of the GeoWall in clarifying complex environmental reactions at the atomic scale. First, a time-resolved series of diffraction patterns obtained during the hydrothermal synthesis of metal oxide phases from precursor solutions can be viewed as a surface with interactive controls for peak scaling and color mapping. Second, the results of Rietveld analysis of cation exchange reactions in Mn oxides has provided three-dimensional difference Fourier maps. When stitched together in a temporal series, these offer an animated view of changes in atomic configurations during the process of exchange. Finally, molecular dynamical simulations are visualized as three-dimensional reactions between vibrating atoms in both the solid and the aqueous phases.

  3. Visualizing Molecular Diffusion through Passive Permeability Barriers in Cells: Conventional and Novel Approaches

    PubMed Central

    Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari

    2013-01-01

    Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically-inducible diffusion trap (C-IDT) for probing permeable barriers. PMID:23731778

  4. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    PubMed Central

    Huys, Raoul; Jirsa, Viktor K.; Darokhan, Ziauddin; Valentiniene, Sonata; Roland, Per E.

    2016-01-01

    Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2–3. PMID:26778982

  5. Sexing sirenians: Validation of visual and molecular sex determination in both wild dugongs (Dugong dugon) and Florida manatees (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Lanyon, J.M.; Sneath, H.L.; Ovenden, J.R.; Broderick, D.; Bonde, R.K.

    2009-01-01

    Sexing wild marine mammals that show little to no sexual dimorphism is challenging. For sirenians that are difficult to catch or approach closely, molecular sexing from tissue biopsies offers an alternative method to visual discrimination. This paper reports the results of a field study to validate the use of two sexing methods: (1) visual discrimination of sex vs (2) molecular sexing based on a multiplex PCR assay which amplifies the male-specific SRY gene and differentiates ZFX and ZFY gametologues. Skin samples from 628 dugongs (Dugong dugon) and 100 Florida manatees (Trichechus manatus latirostris) were analysed and assigned as male or female based on molecular sex. These individuals were also assigned a sex based on either direct observation of the genitalia and/or the association of the individual with a calf. Individuals of both species showed 93 to 96% congruence between visual and molecular sexing. For the remaining 4 to 7%, the discrepancies could be explained by human error. To mitigate this error rate, we recommend using both of these robust techniques, with routine inclusion of sex primers into microsatellite panels employed for identity, along with trained field observers and stringent sample handling.

  6. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI.

    PubMed

    Iliff, Jeffrey J; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-03-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer's disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer's disease susceptibility and progression in the live human brain.

  7. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI

    PubMed Central

    Iliff, Jeffrey J.; Lee, Hedok; Yu, Mei; Feng, Tian; Logan, Jean; Nedergaard, Maiken; Benveniste, Helene

    2013-01-01

    The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance depends on glymphatic pathway function, we proposed that failure of this clearance system contributes to amyloid plaque deposition and Alzheimer’s disease progression. Here we provide proof of concept that glymphatic pathway function can be measured using a clinically relevant imaging technique. Dynamic contrast-enhanced MRI was used to visualize CSF-ISF exchange across the rat brain following intrathecal paramagnetic contrast agent administration. Key features of glymphatic pathway function were confirmed, including visualization of para-arterial CSF influx and molecular size-dependent CSF-ISF exchange. Whole-brain imaging allowed the identification of two key influx nodes at the pituitary and pineal gland recesses, while dynamic MRI permitted the definition of simple kinetic parameters to characterize glymphatic CSF-ISF exchange and solute clearance from the brain. We propose that this MRI approach may provide the basis for a wholly new strategy to evaluate Alzheimer’s disease susceptibility and progression in the live human brain. PMID:23434588

  8. Learning from Chemical Visualizations: Comparing Generation and Selection

    ERIC Educational Resources Information Center

    Zhang, Zhihui Helen; Linn, Marcia C.

    2013-01-01

    Dynamic visualizations can make unseen phenomena such as chemical reactions visible but students need guidance to benefit from them. This study explores the value of generating drawings versus selecting among alternatives to guide students to learn chemical reactions from a dynamic visualization of hydrogen combustion as part of an online inquiry…

  9. Decoding information about dynamically occluded objects in visual cortex

    PubMed Central

    Erlikhman, Gennady; Caplovitz, Gideon P.

    2016-01-01

    During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder, even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or, non-object-specific information such as its position or velocity as it is tracked behind an occluder as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by “invisible” objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine the representation of information within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may represent the dynamically occluded object’s position or motion path, while later visual areas represent object-specific information. PMID:27663987

  10. Spectroscopic analysis of 8-hydroxyquinoline derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sureshkumar, B.; Mary, Y. Sheena; Resmi, K. S.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Narayana, B.; Suma, S.

    2018-03-01

    Two 8-hydroxyquinoline derivatives, 5,7-dichloro-8-hydroxyquinoline (57DC8HQ) and 5-chloro-7-iodo-8-hydroxy quinoline (5CL7I8HQ) have been investigated in details by means of spectroscopic characterization and computational molecular modelling techniques. FT-IR and FT-Raman experimental spectroscopic approaches have been utilized in order to obtain detailed spectroscopic signatures of title compounds, while DFT calculations have been used in order to visualize and assign vibrations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the title molecules exhibit NLO properties. The evaluated HOMO and LUMO energies demonstrate the chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyperconjugative interactions and charge delocalization. DFT calculations have been also used jointly with MD simulations in order to investigate in details global and local reactivity properties of title compounds. Also, molecular docking has been also used in order to investigate affinity of title compounds against decarboxylase inhibitor and quinoline derivatives can be a lead compounds for developing new antiparkinsonian drug.

  11. Inferring causal molecular networks: empirical assessment through a community-based effort

    PubMed Central

    Hill, Steven M.; Heiser, Laura M.; Cokelaer, Thomas; Unger, Michael; Nesser, Nicole K.; Carlin, Daniel E.; Zhang, Yang; Sokolov, Artem; Paull, Evan O.; Wong, Chris K.; Graim, Kiley; Bivol, Adrian; Wang, Haizhou; Zhu, Fan; Afsari, Bahman; Danilova, Ludmila V.; Favorov, Alexander V.; Lee, Wai Shing; Taylor, Dane; Hu, Chenyue W.; Long, Byron L.; Noren, David P.; Bisberg, Alexander J.; Mills, Gordon B.; Gray, Joe W.; Kellen, Michael; Norman, Thea; Friend, Stephen; Qutub, Amina A.; Fertig, Elana J.; Guan, Yuanfang; Song, Mingzhou; Stuart, Joshua M.; Spellman, Paul T.; Koeppl, Heinz; Stolovitzky, Gustavo; Saez-Rodriguez, Julio; Mukherjee, Sach

    2016-01-01

    Inferring molecular networks is a central challenge in computational biology. However, it has remained unclear whether causal, rather than merely correlational, relationships can be effectively inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge that focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results constitute the most comprehensive assessment of causal network inference in a mammalian setting carried out to date and suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess the causal validity of inferred molecular networks. PMID:26901648

  12. Molecular candidates of MTV in air

    NASA Astrophysics Data System (ADS)

    Dam, Nico; Mirzaei, Mehrnoosh; van de Water, Willem

    2011-11-01

    In molecular tagging velocimetry (MTV), the molecules of a gas are used as flow tracers. These tracers can be produced at will by illumination with a laser which promotes molecules to a long- lived excited state, fuses N2 and N2 to NO, or makes molecules phosphoresce. A while later these tagged molecules can be visualized by laser-induced fluorescence, or by just watching them while they phosphoresce. Candidates for MTV in turbulence research must be arranged in structures narrower than the Kolmogorov scale, which remain narrow as time progresses, and must live longer than the Kolmogorov time. These requirements invalidate many candidates, candidates once deemed successful. They do so in various surprising manners that involve a combination of fluid flow and molecular dynamics. Rather than velocimetry in turbulence, MTV techniques offer a unique view on basic dispersion processes at the smallest scales of turbulence. In this way we have measured the spreading of clouds whose size is a few times the Kolmogorov length and the Batchelor dispersion of objects whose size is inside the inertial range.

  13. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  14. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  15. Molecular and Cellular Biology Animations: Development and Impact on Student Learning

    ERIC Educational Resources Information Center

    McClean, Phillip; Johnson, Christina; Rogers, Roxanne; Daniels, Lisa; Reber, John; Slator, Brian M.; Terpstra, Jeff; White, Alan

    2005-01-01

    Educators often struggle when teaching cellular and molecular processes because typically they have only two-dimensional tools to teach something that plays out in four dimensions. Learning research has demonstrated that visualizing processes in three dimensions aids learning, and animations are effective visualization tools for novice learners…

  16. Volume-rendering on a 3D hyperwall: A molecular visualization platform for research, education and outreach.

    PubMed

    MacDougall, Preston J; Henze, Christopher E; Volkov, Anatoliy

    2016-11-01

    We present a unique platform for molecular visualization and design that uses novel subatomic feature detection software in tandem with 3D hyperwall visualization technology. We demonstrate the fleshing-out of pharmacophores in drug molecules, as well as reactive sites in catalysts, focusing on subatomic features. Topological analysis with picometer resolution, in conjunction with interactive volume-rendering of the Laplacian of the electronic charge density, leads to new insight into docking and catalysis. Visual data-mining is done efficiently and in parallel using a 4×4 3D hyperwall (a tiled array of 3D monitors driven independently by slave GPUs but displaying high-resolution, synchronized and functionally-related images). The visual texture of images for a wide variety of molecular systems are intuitive to experienced chemists but also appealing to neophytes, making the platform simultaneously useful as a tool for advanced research as well as for pedagogical and STEM education outreach purposes. Copyright © 2016. Published by Elsevier Inc.

  17. Computational approach for deriving cancer progression roadmaps from static sample data

    PubMed Central

    Yao, Jin; Yang, Le; Chen, Runpu; Nowak, Norma J.

    2017-01-01

    Abstract As with any biological process, cancer development is inherently dynamic. While major efforts continue to catalog the genomic events associated with human cancer, it remains difficult to interpret and extrapolate the accumulating data to provide insights into the dynamic aspects of the disease. Here, we present a computational strategy that enables the construction of a cancer progression model using static tumor sample data. The developed approach overcame many technical limitations of existing methods. Application of the approach to breast cancer data revealed a linear, branching model with two distinct trajectories for malignant progression. The validity of the constructed model was demonstrated in 27 independent breast cancer data sets, and through visualization of the data in the context of disease progression we were able to identify a number of potentially key molecular events in the advance of breast cancer to malignancy. PMID:28108658

  18. Hexagonal bubble formation and nucleation in sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Wang, Lifen; Liu, Lei; Mohsin, Ali; Wen, Jianguo; Gu, Gong; Miller, Dean

    The bubble is formed frequently at a solid-liquid interface when the surface of the solid or liquid has a tendency of accumulating molecular species due to unbalanced surface hydrophobicity attraction. Morphology and shape of the bubble are thought to be associated with the Laplace pressure that spherical-cap-shaped object are commonly observed. Dynamic surface nanobubble formation and nucleation in the controlled system have been not fully investigated due to the direct visualization challenge in liquid systems. Here, utilizing in situ TEM, dynamic formation and collapse of spherical-shaped nanobubbles were observed at the water-graphene interface, while hexagonal nanobubbles grew and merged with each other at water-crystalline sodium chloride interface. Our finding demonstrates that different hydrophobic-hydrophilic interaction systems give rise to the varied morphology of surface nanobubble, leading to the fundamental understanding of the interface-interaction-governed law on the formation of surface nanobubble.

  19. A Molecular Fluorescent Probe for Targeted Visualization of Temperature at the Endoplasmic Reticulum

    PubMed Central

    Arai, Satoshi; Lee, Sung-Chan; Zhai, Duanting; Suzuki, Madoka; Chang, Young Tae

    2014-01-01

    The dynamics of cellular heat production and propagation remains elusive at a subcellular level. Here we report the first small molecule fluorescent thermometer selectively targeting the endoplasmic reticulum (ER thermo yellow), with the highest sensitivity reported so far (3.9%/°C). Unlike nanoparticle thermometers, ER thermo yellow stains the target organelle evenly without the commonly encountered problem of aggregation, and successfully demonstrates the ability to monitor intracellular temperature gradients generated by external heat sources in various cell types. We further confirm the ability of ER thermo yellow to monitor heat production by intracellular Ca2+ changes in HeLa cells. Our thermometer anchored at nearly-zero distance from the ER, i.e. the heat source, allowed the detection of the heat as it readily dissipated, and revealed the dynamics of heat production in real time at a subcellular level. PMID:25330751

  20. Committor of elementary reactions on multistate systems

    NASA Astrophysics Data System (ADS)

    Király, Péter; Kiss, Dóra Judit; Tóth, Gergely

    2018-04-01

    In our study, we extend the committor concept on multi-minima systems, where more than one reaction may proceed, but the feasible data evaluation needs the projection onto partial reactions. The elementary reaction committor and the corresponding probability density of the reactive trajectories are defined and calculated on a three-hole two-dimensional model system explored by single-particle Langevin dynamics. We propose a method to visualize more elementary reaction committor functions or probability densities of reactive trajectories on a single plot that helps to identify the most important reaction channels and the nonreactive domains simultaneously. We suggest a weighting for the energy-committor plots that correctly shows the limits of both the minimal energy path and the average energy concepts. The methods also performed well on the analysis of molecular dynamics trajectories of 2-chlorobutane, where an elementary reaction committor, the probability densities, the potential energy/committor, and the free-energy/committor curves are presented.

  1. Dynamics of memory-guided choice behavior in Drosophila

    PubMed Central

    ICHINOSE, Toshiharu; TANIMOTO, Hiromu

    2016-01-01

    Memory retrieval requires both accuracy and speed. Olfactory learning of the fruit fly Drosophila melanogaster serves as a powerful model system to identify molecular and neuronal substrates of memory and memory-guided behavior. The behavioral expression of olfactory memory has traditionally been tested as a conditioned odor response in a simple T-maze, which measures the result, but not the speed, of odor choice. Here, we developed multiplexed T-mazes that allow video recording of the choice behavior. Automatic fly counting in each arm of the maze visualizes choice dynamics. Using this setup, we show that the transient blockade of serotonergic neurons slows down the choice, while leaving the eventual choice intact. In contrast, activation of the same neurons impairs the eventual performance leaving the choice speed unchanged. Our new apparatus contributes to elucidating how the speed and the accuracy of memory retrieval are implemented in the fly brain. PMID:27725473

  2. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.

    PubMed

    Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong

    2018-02-07

    Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.

  3. Toll-Like Receptor-9-Mediated Invasion in Breast Cancer

    DTIC Science & Technology

    2011-07-01

    Molecular Dynamics Simulations. Theoretical structural models were obtained from molecular dynamics simulations using explicit solvation by...with AMBER by MARDIGRAS. The solution structure was then derived by coupling the resulting NMR distance restraints with a molecular dynamic ...Overlay of NMR restrained structure (red) with theoretical molecular dynamic simulated annealing structure (blue). Energetic stability of the 9-mer

  4. NaviCom: a web application to create interactive molecular network portraits using multi-level omics data.

    PubMed

    Dorel, Mathurin; Viara, Eric; Barillot, Emmanuel; Zinovyev, Andrei; Kuperstein, Inna

    2017-01-01

    Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. NaviCom is available at https://navicom.curie.fr. © The Author(s) 2017. Published by Oxford University Press.

  5. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background.

    PubMed

    Hsiang, Jung-Cheng; Jablonski, Amy E; Dickson, Robert M

    2014-05-20

    Fluorescence microscopy and detection have become indispensible for understanding organization and dynamics in biological systems. Novel fluorophores with improved brightness, photostability, and biocompatibility continue to fuel further advances but often rely on having minimal background. The visualization of interactions in very high biological background, especially for proteins or bound complexes at very low copy numbers, remains a primary challenge. Instead of focusing on molecular brightness of fluorophores, we have adapted the principles of high-sensitivity absorption spectroscopy to improve the sensitivity and signal discrimination in fluorescence bioimaging. Utilizing very long wavelength transient absorptions of kinetically trapped dark states, we employ molecular modulation schemes that do not simultaneously modulate the background fluorescence. This improves the sensitivity and ease of implementation over high-energy photoswitch-based recovery schemes, as no internal dye reference or nanoparticle-based fluorophores are needed to separate the desired signals from background. In this Account, we describe the selection process for and identification of fluorophores that enable optically modulated fluorescence to decrease obscuring background. Differing from thermally stable photoswitches using higher-energy secondary lasers, coillumination at very low energies depopulates transient dark states, dynamically altering the fluorescence and giving characteristic modulation time scales for each modulatable emitter. This process is termed synchronously amplified fluorescence image recovery (SAFIRe) microscopy. By understanding and optically controlling the dye photophysics, we selectively modulate desired fluorophore signals independent of all autofluorescent background. This shifts the fluorescence of interest to unique detection frequencies with nearly shot-noise-limited detection, as no background signals are collected. Although the fluorescence brightness is improved slightly, SAFIRe yields up to 100-fold improved signal visibility by essentially removing obscuring, unmodulated background (Richards, C. I.; J. Am. Chem. Soc. 2009, 131, 4619). While SAFIRe exhibits a wide, linear dynamic range, we have demonstrated single-molecule signal recovery buried within 200 nM obscuring dye. In addition to enabling signal recovery through background reduction, each dye exhibits a characteristic modulation frequency indicative of its photophysical dynamics. Thus, these characteristic time scales offer opportunities not only to expand the dimensionality of fluorescence imaging by using dark-state lifetimes but also to distinguish the dynamics of subpopulations on the basis of photophysical versus diffusional time scales, even within modulatable populations. The continued development of modulation for signal recovery and observation of biological dynamics holds great promise for studying a range of transient biological phenomena in natural environments. Through the development of a wide range of fluorescent proteins, organic dyes, and inorganic emitters that exhibit significant dark-state populations under steady-state illumination, we can drastically expand the applicability of fluorescence imaging to probe lower-abundance complexes and their dynamics.

  6. Oculometric Assessment of Dynamic Visual Processing

    NASA Technical Reports Server (NTRS)

    Liston, Dorion Bryce; Stone, Lee

    2014-01-01

    Eye movements are the most frequent (3 per second), shortest-latency (150-250 ms), and biomechanically simplest (1 joint, no inertial complexities) voluntary motor behavior in primates, providing a model system to assess sensorimotor disturbances arising from trauma, fatigue, aging, or disease states (e.g., Diefendorf and Dodge, 1908). We developed a 15-minute behavioral tracking protocol consisting of randomized stepramp radial target motion to assess several aspects of the behavioral response to dynamic visual motion, including pursuit initiation, steadystate tracking, direction-tuning, and speed-tuning thresholds. This set of oculomotor metrics provide valid and reliable measures of dynamic visual performance (Stone and Krauzlis, 2003; Krukowski and Stone, 2005; Stone et al, 2009; Liston and Stone, 2014), and may prove to be a useful assessment tool for functional impairments of dynamic visual processing.

  7. Cells from icons to symbols: molecularizing cell biology in the 1980s.

    PubMed

    Serpente, Norberto

    2011-12-01

    Over centuries cells have been the target of optical and electronic microscopes as well as others technologies, with distinctive types of visual output. Whilst optical technologies produce images 'evident to the eye', the electronic and especially the molecular create images that are more elusive to conceptualization and assessment. My study applies the semiotic approach to the production of images in cell biology to capture the shift from microscopic images to non-traditional visual technologies around 1980. Here I argue that the visual shift that coincides with the growing dominance of molecular biology involves a change from iconic to symbolic forms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. DVA as a Diagnostic Test for Vestibulo-Ocular Reflex Function

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Appelbaum, Meghan

    2010-01-01

    The vestibulo-ocular reflex (VOR) stabilizes vision on earth-fixed targets by eliciting eyes movements in response to changes in head position. How well the eyes perform this task can be functionally measured by the dynamic visual acuity (DVA) test. We designed a passive, horizontal DVA test to specifically study the acuity and reaction time when looking in different target locations. Visual acuity was compared among 12 subjects using a standard Landolt C wall chart, a computerized static (no rotation) acuity test and dynamic acuity test while oscillating at 0.8 Hz (+/-60 deg/s). In addition, five trials with yaw oscillation randomly presented a visual target in one of nine different locations with the size and presentation duration of the visual target varying across trials. The results showed a significant difference between the static and dynamic threshold acuities as well as a significant difference between the visual targets presented in the horizontal plane versus those in the vertical plane when comparing accuracy of vision and reaction time of the response. Visual acuity increased proportional to the size of the visual target and increased between 150 and 300 msec duration. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of rotation. This DVA test could be used as a functional diagnostic test for visual-vestibular and neuro-cognitive impairments by assessing both accuracy and reaction time to acquire visual targets.

  9. SOCR "Motion Charts": An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    ERIC Educational Resources Information Center

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2010-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality…

  10. Cognitive Strategies for Learning from Static and Dynamic Visuals.

    ERIC Educational Resources Information Center

    Lewalter, D.

    2003-01-01

    Studied the effects of including static or dynamic visuals in an expository text on a learning outcome and the use of learning strategies when working with these visuals. Results for 60 undergraduates for both types of illustration indicate different frequencies in the use of learning strategies relevant for the learning outcome. (SLD)

  11. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  12. Flow Visualization of Dynamic Stall on an Oscillating Airfoil

    DTIC Science & Technology

    1989-09-01

    Dynamic Stall; Dynamic lift, ’Unsteady lift; Helicopter retreating blade stall; Oscillating airfoil ; Flow visualization,’Schlieren method ;k ez.S-,’ .0...the degree of MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September 1989 Author...and moment behavior is quite different from the static stall associated with fixed-wing airfoils . Helicopter retreating blade stall is a dynamic

  13. Joshua Vermaas | NREL

    Science.gov Websites

    molecular dynamics simulations to explore biological interfaces, such as those found at the cell membrane or in lignocellulosic biomass. In particular, molecular dynamics can see in molecular detail the research toward fruitful results. Areas of Expertise Molecular dynamics Compound parameterization

  14. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol- Water Mixed Solvent

    DTIC Science & Technology

    2012-01-01

    molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different concentrations of water-ethanol mixtures as...understood. This work focuses on detailed molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different...using GROMACS molecular dynamics simulation (MD) code. Compared to water environment, the lysozyme structure showed remarkable changes in water

  15. Integration of Molecular Dynamics Based Predictions into the Optimization of De Novo Protein Designs: Limitations and Benefits.

    PubMed

    Carvalho, Henrique F; Barbosa, Arménio J M; Roque, Ana C A; Iranzo, Olga; Branco, Ricardo J F

    2017-01-01

    Recent advances in de novo protein design have gained considerable insight from the intrinsic dynamics of proteins, based on the integration of molecular dynamics simulations protocols on the state-of-the-art de novo protein design protocols used nowadays. With this protocol we illustrate how to set up and run a molecular dynamics simulation followed by a functional protein dynamics analysis. New users will be introduced to some useful open-source computational tools, including the GROMACS molecular dynamics simulation software package and ProDy for protein structural dynamics analysis.

  16. A Survey of Educational Uses of Molecular Visualization Freeware

    ERIC Educational Resources Information Center

    Craig, Paul A.; Michel, Lea Vacca; Bateman, Robert C.

    2013-01-01

    As biochemists, one of our most captivating teaching tools is the use of molecular visualization. It is a compelling medium that can be used to communicate structural information much more effectively with interactive animations than with static figures. We have conducted a survey to begin a systematic evaluation of the current classroom usage of…

  17. Visualization and Interactivity in the Teaching of Chemistry to Science and Non-Science Students

    ERIC Educational Resources Information Center

    Venkataraman, Bhawani

    2009-01-01

    A series of interactive, instructional units have been developed that integrate computational molecular modelling and visualization to teach fundamental chemistry concepts and the relationship between the molecular and macro-scales. The units span the scale from atoms, small molecules to macromolecular systems, and introduce many of the concepts…

  18. Analysis, simulation and visualization of 1D tapping via reduced dynamical models

    NASA Astrophysics Data System (ADS)

    Blackmore, Denis; Rosato, Anthony; Tricoche, Xavier; Urban, Kevin; Zou, Luo

    2014-04-01

    A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately predicting some important aspects of the motion of a vertical column comprised of a large number of particles subjected to gravity and periodic vertical tapping. This model is investigated first as a continuous dynamical system using analytical, simulation and visualization techniques. Then, by employing an approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions to chaotic motion along with other properties. The predictions of the analysis are then compared-primarily qualitatively-with visualization and simulation results of the reduced continuous model, and ultimately with simulations of the complete system dynamics.

  19. Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    DTIC Science & Technology

    2009-11-01

    dynamics of the complex predicted by multiple molecular dynamics simulations , and discuss further structural optimization to achieve better in vivo efficacy...complex with BoNTAe and the dynamics of the complex predicted by multiple molecular dynamics simulations (MMDSs). On the basis of the 3D model, we discuss...is unlimited whereas AHP exhibited 54% inhibition under the same conditions (Table 1). Computer Simulation Twenty different molecular dynamics

  20. Molecular Imaging in the Era of Personalized Medicine

    PubMed Central

    Jung, Kyung-Ho; Lee, Kyung-Han

    2015-01-01

    Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging. PMID:25812652

  1. Molecular imaging in the era of personalized medicine.

    PubMed

    Jung, Kyung-Ho; Lee, Kyung-Han

    2015-01-01

    Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging.

  2. Optical Molecular Imaging for Diagnosing Intestinal Diseases

    PubMed Central

    Kim, Sang-Yeob

    2013-01-01

    Real-time visualization of the molecular signature of cells can be achieved with advanced targeted imaging techniques using molecular probes and fluorescence endoscopy. This molecular optical imaging in gastrointestinal endoscopy is promising for improving the detection of neoplastic lesions, their characterization for patient stratification, and the assessment of their response to molecular targeted therapy and radiotherapy. In inflammatory bowel disease, this method can be used to detect dysplasia in the presence of background inflammation and to visualize inflammatory molecular targets for assessing disease severity and prognosis. Several preclinical and clinical trials have applied this method in endoscopy; however, this field has just started to evolve. Hence, many problems have yet to be solved to enable the clinical application of this novel method. PMID:24340254

  3. Visual format for detection of Mycobacterium tuberculosis and M. bovis in clinical samples using molecular beacons.

    PubMed

    Kumar, Parameet; Nath, Kapili; Rath, Bimba; Sen, Manas K; Vishalakshi, Potharuju; Chauhan, Devender S; Katoch, Vishwa M; Singh, Sarman; Tyagi, Sanjay; Sreenivas, Vishnubhatla; Prasad, Hanumanthappa K

    2009-09-01

    A real-time polymerase chain reaction (PCR) assay for the direct identification of Mycobacterium tuberculosis and M. bovis using molecular beacons was developed. The assay was modified for use in regular thermal cyclers. Molecular beacons that were specific for M. tuberculosis (Tb-B) and M. bovis (Bo-B) were designed. The fluorescence of the target PCR product-molecular beacon probe complex was detected visually using a transilluminator. The results were then compared with those of conventional multiplex PCR (CM-PCR) assays and biochemical identification. The detection limit of Tb-B and Bo-B beacons was 500 fg and 50 fg by the visual format and real-time PCR assay, respectively, compared with 5 pg by CM-PCR assay. Pulmonary and extrapulmonary samples were examined. The agreement between culture and the two assays was very good in sputum samples and fair in extrapulmonary samples. The agreement between clinical diagnoses with the two assays was moderate in extrapulmonary samples. There was very good agreement between CM-PCR and visual format assays for all samples used in the study. Concordance in the identification of isolates by the visual, CM-PCR assay, and biochemical identification was seen. Hence, the use of molecular beacon detection of M. tuberculosis and M. bovis in clinical samples is feasible by setting up two asymmetric PCRs concurrently. The assay is sensitive, specific, simple to interpret, and takes less than 3 hours to complete.

  4. Visual Format for Detection of Mycobacterium tuberculosis and M. bovis in Clinical Samples Using Molecular Beacons

    PubMed Central

    Kumar, Parameet; Nath, Kapili; Rath, Bimba; Sen, Manas K.; Vishalakshi, Potharuju; Chauhan, Devender S.; Katoch, Vishwa M.; Singh, Sarman; Tyagi, Sanjay; Sreenivas, Vishnubhatla; Prasad, Hanumanthappa K.

    2009-01-01

    A real-time polymerase chain reaction (PCR) assay for the direct identification of Mycobacterium tuberculosis and M. bovis using molecular beacons was developed. The assay was modified for use in regular thermal cyclers. Molecular beacons that were specific for M. tuberculosis (Tb-B) and M. bovis (Bo-B) were designed. The fluorescence of the target PCR product-molecular beacon probe complex was detected visually using a transilluminator. The results were then compared with those of conventional multiplex PCR (CM-PCR) assays and biochemical identification. The detection limit of Tb-B and Bo-B beacons was 500 fg and 50 fg by the visual format and real-time PCR assay, respectively, compared with 5 pg by CM-PCR assay. Pulmonary and extrapulmonary samples were examined. The agreement between culture and the two assays was very good in sputum samples and fair in extrapulmonary samples. The agreement between clinical diagnoses with the two assays was moderate in extrapulmonary samples. There was very good agreement between CM-PCR and visual format assays for all samples used in the study. Concordance in the identification of isolates by the visual, CM-PCR assay, and biochemical identification was seen. Hence, the use of molecular beacon detection of M. tuberculosis and M. bovis in clinical samples is feasible by setting up two asymmetric PCRs concurrently. The assay is sensitive, specific, simple to interpret, and takes less than 3 hours to complete. PMID:19661384

  5. Molecular mechanisms responsible for hydrate anti-agglomerant performance.

    PubMed

    Phan, Anh; Bui, Tai; Acosta, Erick; Krishnamurthy, Pushkala; Striolo, Alberto

    2016-09-28

    Steered and equilibrium molecular dynamics simulations were employed to study the coalescence of a sI hydrate particle and a water droplet within a hydrocarbon mixture. The size of both the hydrate particle and the water droplet is comparable to that of the aqueous core in reverse micelles. The simulations were repeated in the presence of various quaternary ammonium chloride surfactants. We investigated the effects due to different groups on the quaternary head group (e.g. methyl vs. butyl groups), as well as different hydrophobic tail lengths (e.g. n-hexadecyl vs. n-dodecyl tails) on the surfactants' ability to prevent coalescence. Visual inspection of sequences of simulation snapshots indicates that when the water droplet is not covered by surfactants it is more likely to approach the hydrate particle, penetrate the protective surfactant film, reach the hydrate surface, and coalesce with the hydrate than when surfactants are present on both surfaces. Force-distance profiles obtained from steered molecular dynamics simulations and free energy profiles obtained from umbrella sampling suggest that surfactants with butyl tripods on the quaternary head group and hydrophobic tails with size similar to the solvent molecules can act as effective anti-agglomerants. These results qualitatively agree with macroscopic experimental observations. The simulation results provide additional insights, which could be useful in flow assurance applications: the butyl tripod provides adhesion between surfactants and hydrates; when the length of the surfactant tail is compatible with that of the hydrocarbon in the liquid phase a protective film can form on the hydrate; however, once a molecularly thin chain of water molecules forms through the anti-agglomerant film, connecting the water droplet and the hydrate, water flows to the hydrate and coalescence is inevitable.

  6. Nano-scale characterization of the dynamics of the chloroplast Toc translocon.

    PubMed

    Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D

    2008-01-01

    Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.

  7. Energy landscape of LeuT from molecular simulations

    NASA Astrophysics Data System (ADS)

    Gur, Mert; Zomot, Elia; Cheng, Mary Hongying; Bahar, Ivet

    2015-12-01

    The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na+ ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ˜40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates.

  8. Energy landscape of LeuT from molecular simulations.

    PubMed

    Gur, Mert; Zomot, Elia; Cheng, Mary Hongying; Bahar, Ivet

    2015-12-28

    The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na(+) ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ∼40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates.

  9. Energy landscape of LeuT from molecular simulations

    PubMed Central

    Gur, Mert; Zomot, Elia; Cheng, Mary Hongying; Bahar, Ivet

    2015-01-01

    The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na+ ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ∼40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates. PMID:26723619

  10. A self-organizing model of perisaccadic visual receptive field dynamics in primate visual and oculomotor system.

    PubMed

    Mender, Bedeho M W; Stringer, Simon M

    2015-01-01

    We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions.

  11. A self-organizing model of perisaccadic visual receptive field dynamics in primate visual and oculomotor system

    PubMed Central

    Mender, Bedeho M. W.; Stringer, Simon M.

    2015-01-01

    We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions. PMID:25717301

  12. Label-free Chemical Imaging of Fungal Spore Walls by Raman Microscopy and Multivariate Curve Resolution Analysis

    PubMed Central

    Noothalapati, Hemanth; Sasaki, Takahiro; Kaino, Tomohiro; Kawamukai, Makoto; Ando, Masahiro; Hamaguchi, Hiro-o; Yamamoto, Tatsuyuki

    2016-01-01

    Fungal cell walls are medically important since they represent a drug target site for antifungal medication. So far there is no method to directly visualize structurally similar cell wall components such as α-glucan, β-glucan and mannan with high specificity, especially in a label-free manner. In this study, we have developed a Raman spectroscopy based molecular imaging method and combined multivariate curve resolution analysis to enable detection and visualization of multiple polysaccharide components simultaneously at the single cell level. Our results show that vegetative cell and ascus walls are made up of both α- and β-glucans while spore wall is exclusively made of α-glucan. Co-localization studies reveal the absence of mannans in ascus wall but are distributed primarily in spores. Such detailed picture is believed to further enhance our understanding of the dynamic spore wall architecture, eventually leading to advancements in drug discovery and development in the near future. PMID:27278218

  13. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  14. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Parsing Heterogeneity in Autism Spectrum Disorders: Visual Scanning of Dynamic Social Scenes in School-Aged Children

    ERIC Educational Resources Information Center

    Rice, Katherine; Moriuchi, Jennifer M.; Jones, Warren; Klin, Ami

    2012-01-01

    Objective: To examine patterns of variability in social visual engagement and their relationship to standardized measures of social disability in a heterogeneous sample of school-aged children with autism spectrum disorders (ASD). Method: Eye-tracking measures of visual fixation during free-viewing of dynamic social scenes were obtained for 109…

  16. WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Hartmann, Carsten

    2018-07-01

    WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.

  17. Lightness Constancy in Surface Visualization

    PubMed Central

    Szafir, Danielle Albers; Sarikaya, Alper; Gleicher, Michael

    2016-01-01

    Color is a common channel for displaying data in surface visualization, but is affected by the shadows and shading used to convey surface depth and shape. Understanding encoded data in the context of surface structure is critical for effective analysis in a variety of domains, such as in molecular biology. In the physical world, lightness constancy allows people to accurately perceive shadowed colors; however, its effectiveness in complex synthetic environments such as surface visualizations is not well understood. We report a series of crowdsourced and laboratory studies that confirm the existence of lightness constancy effects for molecular surface visualizations using ambient occlusion. We provide empirical evidence of how common visualization design decisions can impact viewers’ abilities to accurately identify encoded surface colors. These findings suggest that lightness constancy aids in understanding color encodings in surface visualization and reveal a correlation between visualization techniques that improve color interpretation in shadow and those that enhance perceptions of surface depth. These results collectively suggest that understanding constancy in practice can inform effective visualization design. PMID:26584495

  18. Sexing sirenians: validation of visual and molecular sex determination in both wild dugongs (Dugong dugon) and Florida manatees (Trichechus manatus latirostris). Aquatic Mammals 35(2):187-192.

    USGS Publications Warehouse

    Bonde, Robert K.; Lanyon, J.; Sneath, H.; Ovenden, J.; Broderick, D.

    2009-01-01

    Sexing wild marine mammals that show little to no sexual dimorphism is challenging. For sirenians that are difficult to catch or approach closely, molecular sexing from tissue biopsies offers an alternative method to visual discrimination. This paper reports the results of a field study to validate the use of two sexing methods: (1) visual discrimination of sex vs (2) molecular sexing based on a multiplex PCR assay which amplifies the male-specific SRY gene and differentiates ZFX and ZFY gametologues. Skin samples from 628 dugongs (Dugong dugon) and 100 Florida manatees (Trichechus manatus latirostris) were analysed and assigned as male or female based on molecular sex. These individuals were also assigned a sex based on either direct observation of the genitalia and/or the association of the individual with a calf. Individuals of both species showed 93 to 96% congruence between visual and molecular sexing. For the remaining 4 to 7%, the discrepancies could be explained by human error. To mitigate this error rate, we recommend using both of these robust techniques, with routine inclusion of sex primers into microsatellite panels employed for identity, along with trained field observers and stringent sample handling.

  19. Visualization of molecular structures using HoloLens-based augmented reality

    PubMed Central

    Hoffman, MA; Provance, JB

    2017-01-01

    Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109

  20. Generalizing the extensibility of a dynamic geometry software

    NASA Astrophysics Data System (ADS)

    Herceg, Đorđe; Radaković, Davorka; Herceg, Dejana

    2012-09-01

    Plug-and-play visual components in a Dynamic Geometry Software (DGS) enable development of visually attractive, rich and highly interactive dynamic drawings. We are developing SLGeometry, a DGS that contains a custom programming language, a computer algebra system (CAS engine) and a graphics subsystem. The basic extensibility framework on SLGeometry supports dynamic addition of new functions from attribute annotated classes that implement runtime metadata registration in code. We present a general plug-in framework for dynamic importing of arbitrary Silverlight user interface (UI) controls into SLGeometry at runtime. The CAS engine maintains a metadata storage that describes each imported visual component and enables two-way communication between the expressions stored in the engine and the UI controls on the screen.

  1. Hand-held dynamic visual noise reduces naturally occurring food cravings and craving-related consumption.

    PubMed

    Kemps, Eva; Tiggemann, Marika

    2013-09-01

    This study demonstrated the applicability of the well-established laboratory task, dynamic visual noise, as a technique for reducing naturally occurring food cravings and subsequent food intake. Dynamic visual noise was delivered on a hand-held computer device. Its effects were assessed within the context of a diary study. Over a 4-week period, 48 undergraduate women recorded their food cravings and consumption. Following a 2-week baseline, half the participants watched the dynamic visual noise display whenever they experienced a food craving. Compared to a control group, these participants reported less intense cravings. They were also less likely to eat following a craving and consequently consumed fewer total calories following craving. These findings hold promise for curbing unwanted food cravings and craving-driven consumption in real-world settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The "Collisions Cube" Molecular Dynamics Simulator.

    ERIC Educational Resources Information Center

    Nash, John J.; Smith, Paul E.

    1995-01-01

    Describes a molecular dynamics simulator that employs ping-pong balls as the atoms or molecules and is suitable for either large lecture halls or small classrooms. Discusses its use in illustrating many of the fundamental concepts related to molecular motion and dynamics and providing a three-dimensional perspective of molecular motion. (JRH)

  3. Raman and Autofluorescence Spectrum Dynamics along the HRG-Induced Differentiation Pathway of MCF-7 Cells

    PubMed Central

    Morita, Shin-ichi; Takanezawa, Sota; Hiroshima, Michio; Mitsui, Toshiyuki; Ozaki, Yukihiro; Sako, Yasushi

    2014-01-01

    Cellular differentiation proceeds along complicated pathways, even when it is induced by extracellular signaling molecules. One of the major reasons for this complexity is the highly multidimensional internal dynamics of cells, which sometimes causes apparently stochastic responses in individual cells to extracellular stimuli. Therefore, to understand cell differentiation, it is necessary to monitor the internal dynamics of cells at single-cell resolution. Here, we used a Raman and autofluorescence spectrum analysis of single cells to detect dynamic changes in intracellular molecular components. MCF-7 cells are a human cancer-derived cell line that can be induced to differentiate into mammary-gland-like cells with the addition of heregulin (HRG) to the culture medium. We measured the spectra in the cytoplasm of MCF-7 cells during 12 days of HRG stimulation. The Raman scattering spectrum, which was the major component of the signal, changed with time. A multicomponent analysis of the Raman spectrum revealed that the dynamics of the major components of the intracellular molecules, including proteins and lipids, changed cyclically along the differentiation pathway. The background autofluorescence signals of Raman scattering also provided information about the differentiation process. Using the total information from the Raman and autofluorescence spectra, we were able to visualize the pathway of cell differentiation in the multicomponent phase space. PMID:25418290

  4. Dynamic visual noise reduces confidence in short-term memory for visual information.

    PubMed

    Kemps, Eva; Andrade, Jackie

    2012-05-01

    Previous research has shown effects of the visual interference technique, dynamic visual noise (DVN), on visual imagery, but not on visual short-term memory, unless retention of precise visual detail is required. This study tested the prediction that DVN does also affect retention of gross visual information, specifically by reducing confidence. Participants performed a matrix pattern memory task with three retention interval interference conditions (DVN, static visual noise and no interference control) that varied from trial to trial. At recall, participants indicated whether or not they were sure of their responses. As in previous research, DVN did not impair recall accuracy or latency on the task, but it did reduce recall confidence relative to static visual noise and no interference. We conclude that DVN does distort visual representations in short-term memory, but standard coarse-grained recall measures are insensitive to these distortions.

  5. Molecular Dynamics Study of Poly And Monocrystalline CdS/CdTe Junctions and Cu Doped Znte Back Contacts for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Aguirre, Rodolfo, II

    Cadmium telluride (CdTe) is a material used to make solar cells because it absorbs the sunlight very efficiently and converts it into electricity. However, CdTe modules suffer from degradation of 1% over a period of 1 year. Improvements on the efficiency and stability can be achieved by designing better materials at the atomic scale. Experimental techniques to study materials at the atomic scale, such as Atomic Probe Tomography (APT) and Transmission Electron Microscope (TEM) are expensive and time consuming. On the other hand, Molecular Dynamics (MD) offers an inexpensive and fast computer simulation technique to study the growth evolution of materials with atomic scale resolution. In combination with advance characterization software, MD simulations provide atomistic visualization, defect analysis, structure maps, 3-D atomistic view, and composition profiles. MD simulations help to design better quality materials by predicting material behavior at the atomic scale. In this work, a new MD method to study several phenomena such as polycrystalline growth of CdTe-based materials, interdiffusion of atoms at interfaces, and deposition of a copper doped ZnTe back contact is established. Results are compared with experimental data found in the literature and experiments performed and shown to be in remarkably good agreement.

  6. Keratins and lipids in ethnic hair.

    PubMed

    Cruz, C F; Fernandes, M M; Gomes, A C; Coderch, L; Martí, M; Méndez, S; Gales, L; Azoia, N G; Shimanovich, U; Cavaco-Paulo, A

    2013-06-01

    Human hair has an important and undeniable relevance in society due to its important role in visual appearance and social communication. Hair is mainly composed of structural proteins, mainly keratin and keratin associated proteins and lipids. Herein, we report a comprehensive study of the content and distribution of the lipids among ethnic hair, African, Asian and Caucasian hair. More interestingly, we also report the study of the interaction between those two main components of hair, specifically, the influence of the hair internal lipids in the structure of the hair keratin. This was achieved by the use of a complete set of analytical tools, such as thin layer chromatography-flame ionization detector, X-ray analysis, molecular dynamics simulation and confocal microscopy. The experimental results indicated different amounts of lipids on ethnic hair compositions and higher percentage of hair internal lipids in African hair. In this type of hair, the axial diffraction of keratin was not observed in X-ray analysis, but after hair lipids removal, the keratin returned to its typical packing arrangement. In molecular dynamic simulation, lipids were shown to intercalate dimers of keratin, changing its structure. From those results, we assume that keratin structure may be influenced by higher concentration of lipids in African hair. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Visual search for facial expressions of emotions: a comparison of dynamic and static faces.

    PubMed

    Horstmann, Gernot; Ansorge, Ulrich

    2009-02-01

    A number of past studies have used the visual search paradigm to examine whether certain aspects of emotional faces are processed preattentively and can thus be used to guide attention. All these studies presented static depictions of facial prototypes. Emotional expressions conveyed by the movement patterns of the face have never been examined for their preattentive effect. The present study presented for the first time dynamic facial expressions in a visual search paradigm. Experiment 1 revealed efficient search for a dynamic angry face among dynamic friendly faces, but inefficient search in a control condition with static faces. Experiments 2 to 4 suggested that this pattern of results is due to a stronger movement signal in the angry than in the friendly face: No (strong) advantage of dynamic over static faces is revealed when the degree of movement is controlled. These results show that dynamic information can be efficiently utilized in visual search for facial expressions. However, these results do not generally support the hypothesis that emotion-specific movement patterns are always preattentively discriminated. (c) 2009 APA, all rights reserved

  8. Protein Folding Simulations Combining Self-Guided Langevin Dynamics and Temperature-Based Replica Exchange

    DTIC Science & Technology

    2010-01-01

    formulations of molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage...ad hoc force term in the SGLD model. Introduction Molecular dynamics (MD) simulations of small proteins provide insight into the mechanisms and... molecular dynamics (MD) and Langevin dynamics (LD) simulations for the prediction of thermodynamic folding observables of the Trp-cage mini-protein. All

  9. Membrane Insertion Profiles of Peptides Probed by Molecular Dynamics Simulations

    DTIC Science & Technology

    2008-07-17

    Membrane insertion profiles of peptides probed by molecular dynamics simulations In-Chul Yeh,* Mark A. Olson,# Michael S. Lee,*#§ and Anders...a methodology based on molecular dynamics simulation techniques to probe the insertion profiles of small peptides across the membrane interface. The...profiles of peptides probed by molecular dynamics simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  10. Efficient Conformational Sampling in Explicit Solvent Using a Hybrid Replica Exchange Molecular Dynamics Method

    DTIC Science & Technology

    2011-12-01

    REMD while reproducing the energy landscape of explicit solvent simulations . ’ INTRODUCTION Molecular dynamics (MD) simulations of proteins can pro...Mongan, J.; McCammon, J. A. Accelerated molecular dynamics : a promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120 (24...Chemical Theory and Computation ARTICLE (8) Abraham,M. J.; Gready, J. E. Ensuringmixing efficiency of replica- exchange molecular dynamics simulations . J

  11. Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma.

    PubMed

    Gangeddula, Viswa; Ranchet, Maud; Akinwuntan, Abiodun E; Bollinger, Kathryn; Devos, Hannes

    2017-01-01

    Purpose: To investigate the effect of cognitive demand on functional visual field performance in drivers with glaucoma. Method: This study included 20 drivers with open-angle glaucoma and 13 age- and sex-matched controls. Visual field performance was evaluated under different degrees of cognitive demand: a static visual field condition (C1), dynamic visual field condition (C2), and dynamic visual field condition with active driving (C3) using an interactive, desktop driving simulator. The number of correct responses (accuracy) and response times on the visual field task were compared between groups and between conditions using Kruskal-Wallis tests. General linear models were employed to compare cognitive workload, recorded in real-time through pupillometry, between groups and conditions. Results: Adding cognitive demand (C2 and C3) to the static visual field test (C1) adversely affected accuracy and response times, in both groups ( p < 0.05). However, drivers with glaucoma performed worse than did control drivers when the static condition changed to a dynamic condition [C2 vs. C1 accuracy; glaucoma: median difference (Q1-Q3) 3 (2-6.50) vs. 2 (0.50-2.50); p = 0.05] and to a dynamic condition with active driving [C3 vs. C1 accuracy; glaucoma: 2 (2-6) vs. 1 (0.50-2); p = 0.02]. Overall, drivers with glaucoma exhibited greater cognitive workload than controls ( p = 0.02). Conclusion: Cognitive demand disproportionately affects functional visual field performance in drivers with glaucoma. Our results may inform the development of a performance-based visual field test for drivers with glaucoma.

  12. A ratiometric fluorescent molecular probe for visualization of mitochondrial temperature in living cells.

    PubMed

    Homma, Mitsumasa; Takei, Yoshiaki; Murata, Atsushi; Inoue, Takafumi; Takeoka, Shinji

    2015-04-11

    Mitochondrial thermodynamics is the key to understand cellular activities related to homeostasis and energy balance. Here, we report the first ratiometric fluorescent molecular probe (Mito-RTP) that is selectively localized in the mitochondria and visualize the temperature. We confirmed that Mito-RTP could work as a ratiometric thermometer in a cuvette and living cells.

  13. Using Molecular Visualization to Explore Protein Structure and Function and Enhance Student Facility with Computational Tools

    ERIC Educational Resources Information Center

    Terrell, Cassidy R.; Listenberger, Laura L.

    2017-01-01

    Recognizing that undergraduate students can benefit from analysis of 3D protein structure and function, we have developed a multiweek, inquiry-based molecular visualization project for Biochemistry I students. This project uses a virtual model of cyclooxygenase-1 (COX-1) to guide students through multiple levels of protein structure analysis. The…

  14. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    ERIC Educational Resources Information Center

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  15. PathFinder: reconstruction and dynamic visualization of metabolic pathways.

    PubMed

    Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert

    2002-01-01

    Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.

  16. Visualizing Epithelial Expression in Vertical and Horizontal Planes With Dual Axes Confocal Endomicroscope Using Compact Distal Scanner.

    PubMed

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D

    2017-07-01

    The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.

  17. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer

    NASA Astrophysics Data System (ADS)

    Peters, William K.; Tiwari, Vivek; Jonas, David M.

    2017-11-01

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.

  18. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn-Teller molecule or homodimer.

    PubMed

    Peters, William K; Tiwari, Vivek; Jonas, David M

    2017-11-21

    The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.

  19. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  20. Is the Oxygen Atom Static or Dynamic? The Effect of Generating Animations on Students' Mental Models of Atomic Structure

    ERIC Educational Resources Information Center

    Akaygun, Sevil

    2016-01-01

    Visualizing the chemical structure and dynamics of particles has been challenging for many students; therefore, various visualizations and tools have been used in chemistry education. For science educators, it has been important to understand how students visualize and represent particular phenomena--i.e., their mental models-- to design more…

  1. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.

    PubMed

    Xu, Mingyuan; Zhu, Tong; Zhang, John Z H

    2018-01-01

    A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  2. Visualization of Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.

  3. Parallel Fast Multipole Method For Molecular Dynamics

    DTIC Science & Technology

    2007-06-01

    Parallel Fast Multipole Method For Molecular Dynamics THESIS Reid G. Ormseth, Captain, USAF AFIT/GAP/ENP/07-J02 DEPARTMENT OF THE AIR FORCE AIR...the United States Government. AFIT/GAP/ENP/07-J02 Parallel Fast Multipole Method For Molecular Dynamics THESIS Presented to the Faculty Department of...has also been provided by ‘The Art of Molecular Dynamics Simulation ’ by Dennis Rapaport. This work is the clearest treatment of the Fast Multipole

  4. Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer

    DTIC Science & Technology

    2008-07-01

    Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In...presents replica-exchange molecular dynamics simulations of the folding and insertion of a 16- residue Ebola virus fusion peptide into a membrane...separate calculated structures into conformational basins. 2.1 Simulation models Molecular dynamics simulations were performed using the all-atom

  5. Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches.

    PubMed

    Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari

    2013-08-01

    Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Curved tails in polymerization-based bacterial motility

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Grant, Martin

    2001-08-01

    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.

  7. Expertise Reversal for Iconic Representations in Science Visualizations

    ERIC Educational Resources Information Center

    Homer, Bruce D.; Plass, Jan L.

    2010-01-01

    The influence of prior knowledge and cognitive development on the effectiveness of iconic representations in science visualizations was examined. Middle and high school students (N = 186) were given narrated visualizations of two chemistry topics: Kinetic Molecular Theory (Day 1) and Ideal Gas Laws (Day 2). For half of the visualizations, iconic…

  8. Regulation of DNA conformations and dynamics in flows with hybrid field microfluidics.

    PubMed

    Ren, Fangfang; Zu, Yingbo; Kumar Rajagopalan, Kartik; Wang, Shengnian

    2012-01-01

    Visualizing single DNA dynamics in flow provides a wealth of physical insights in biophysics and complex flow study. However, large signal fluctuations, generated from diversified conformations, deformation history dependent dynamics and flow induced stochastic tumbling, often frustrate its wide adoption in single molecule and polymer flow study. We use a hybrid field microfluidic (HFM) approach, in which an electric field is imposed at desired locations and appropriate moments to balance the flow stress on charged molecules, to effectively regulate the initial conformations and the deformation dynamics of macromolecules in flow. With λ-DNA and a steady laminar shear flow as the model system, we herein studied the performance of HFM on regulating DNA trapping, relaxation, coil-stretch transition, and accumulation. DNA molecules were found to get captured in the focused planes when motions caused by flow, and the electric field were balanced. The trapped macromolecules relaxed in two different routes while eventually became more uniform in size and globule conformations. When removing the electric field, the sudden stretching dynamics of DNA molecules exhibited a more pronounced extension overshoot in their transient response under a true step function of flow stress while similar behaviors to what other pioneering work in steady shear flow. Such regulation strategies could be useful to control the conformations of other important macromolecules (e.g., proteins) and help better reveal their molecular dynamics.

  9. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  10. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  11. Effect of Selected Balance Exercises on the Dynamic Balance of Children with Visual Impairments

    ERIC Educational Resources Information Center

    Jazi, Shirin Davarpanah; Purrajabi, Fatemeh; Movahedi, Ahmadreza; Jalali, Shahin

    2012-01-01

    Introduction: Maintaining balance while walking is of utmost importance for individuals with visual impairments because deficits in dynamic balance have been associated with a high risk of falling. Thus, the primary aim of the study presented here was to determine whether balance training effects the dynamic balance of children with visual…

  12. Instrumentation in molecular imaging.

    PubMed

    Wells, R Glenn

    2016-12-01

    In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.

  13. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Cortnie Sue

    Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently strong to direct an assembly of molecular machines, 3) the relative flexibility of the crystal environment proximate to a dynamic component may have a significant effect on its function, and, 4) molecular machines, which possess both solid-state photochemical reactivity and dynamics may show complex reaction kinetics if the correlation time of the dynamic process and the lifetime of the excited state occur on the same time scale and the dynamic moiety inherently participates as a reaction intermediate. The study of periodic mesoporous organosilica with hierarchical order probed molecular dynamics within 2D layers of molecular rotors, organized in only one dimension and with ca. 50% exposed to the mesopore free volume. From their study, it was discovered that: 1) molecular rotors, which comprise the layers of the mesopore walls, form a 2D rotational glass, 2) rotator dynamics within the 2D rotational glass undergo a transition to a 2D rotational fluid, and, 3) a 2D rotational glass transition may be exploited to develop hyper-sensitive thermally activated molecular machines. The study of a metal-organic framework assembled from molecular rotors probed dynamics in a periodic three-dimensional free-volume environment, without the presence of close contacts. From the study of this solid-state material, it was determined that: 1) the intrinsic electronic barrier is one of the few factors, which may affect functional dynamics in a true free-volume environment, and, 2) molecular machines with dynamic barriers <

  14. Visual acuity and quality of life in dry eye disease: Proceedings of the OCEAN group meeting.

    PubMed

    Benítez-Del-Castillo, José; Labetoulle, Marc; Baudouin, Christophe; Rolando, Maurizio; Akova, Yonca A; Aragona, Pasquale; Geerling, Gerd; Merayo-Lloves, Jesús; Messmer, Elisabeth M; Boboridis, Kostas

    2017-04-01

    Dry eye disease (DED) results in tear film instability and hyperosmolarity, inflammation of the ocular surface and, ultimately, visual disturbance that can significantly impact a patient's quality of life. The effects on visual acuity result in difficulties with driving, reading and computer use and negatively impact psychological health. These effects also extend to the workplace, with a loss of productivity and quality of work causing substantial economic losses. The effects of DED and the impact on vision experienced by patients may not be given sufficient importance by ophthalmologists. Functional visual acuity (FVA) is a measure of visual acuity after sustained eye opening without blinking for at least 10 s and mimics the sustained visual acuity of daily life. Measuring dynamic FVA allows the detection of impaired visual function in patients with DED who may display normal conventional visual acuity. There are currently several tests and methods that can be used to measure dynamic visual function: the SSC-350 FVA measurement system, assessment of best-corrected visual acuity decay using the interblink visual acuity decay test, serial measurements of ocular and corneal higher order aberrations, and measurement of dynamic vision quality using the Optical Quality Analysis System. Although the equipment for these methods may be too large or unaffordable for use in clinical practice, FVA testing is an important assessment for DED. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions.

    PubMed

    Contini, Erika W; Wardle, Susan G; Carlson, Thomas A

    2017-10-01

    Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 3D visualization of molecular structures in the MOGADOC database

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Popov, Evgeny; Rudert, Rainer; Kramer, Rüdiger; Vogt, Jürgen

    2010-08-01

    The MOGADOC database (Molecular Gas-Phase Documentation) is a powerful tool to retrieve information about compounds which have been studied in the gas-phase by electron diffraction, microwave spectroscopy and molecular radio astronomy. Presently the database contains over 34,500 bibliographic references (from the beginning of each method) for about 10,000 inorganic, organic and organometallic compounds and structural data (bond lengths, bond angles, dihedral angles, etc.) for about 7800 compounds. Most of the implemented molecular structures are given in a three-dimensional (3D) presentation. To create or edit and visualize the 3D images of molecules, new tools (special editor and Java-based 3D applet) were developed. Molecular structures in internal coordinates were converted to those in Cartesian coordinates.

  17. Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics

    PubMed Central

    Yamashiro, Hiroyuki; Mano, Hiroaki; Umeda, Masahiro; Higuchi, Toshihiro; Saiki, Jun

    2013-01-01

    When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical processes underlie BR dynamics. Previous neuroimaging studies have demonstrated the involvement of high-level regions by showing that frontal and parietal cortices responded time locked to spontaneous perceptual alternation in BR. However, a potential contribution of early visual areas to BR dynamics has been overlooked, because these areas also responded to the physical stimulus alternation mimicking BR. In the present study, instead of focusing on activity during perceptual switches, we highlighted brain activity during suppression periods to investigate a potential link between activity in human early visual areas and BR dynamics. We used a strong interocular suppression paradigm called continuous flash suppression to suppress and fluctuate the visibility of a probe stimulus and measured retinotopic responses to the onset of the invisible probe using functional MRI. There were ∼130-fold differences in the median suppression durations across 12 subjects. The individual differences in suppression durations could be predicted by the amplitudes of the retinotopic activity in extrastriate visual areas (V3 and V4v) evoked by the invisible probe. Weaker responses were associated with longer suppression durations. These results demonstrate that retinotopic representations in early visual areas play a role in the dynamics of perceptual alternations during BR. PMID:24353304

  18. Dynamic visual noise affects visual short-term memory for surface color, but not spatial location.

    PubMed

    Dent, Kevin

    2010-01-01

    In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.

  19. DASMI: exchanging, annotating and assessing molecular interaction data.

    PubMed

    Blankenburg, Hagen; Finn, Robert D; Prlić, Andreas; Jenkinson, Andrew M; Ramírez, Fidel; Emig, Dorothea; Schelhorn, Sven-Eric; Büch, Joachim; Lengauer, Thomas; Albrecht, Mario

    2009-05-15

    Ever increasing amounts of biological interaction data are being accumulated worldwide, but they are currently not readily accessible to the biologist at a single site. New techniques are required for retrieving, sharing and presenting data spread over the Internet. We introduce the DASMI system for the dynamic exchange, annotation and assessment of molecular interaction data. DASMI is based on the widely used Distributed Annotation System (DAS) and consists of a data exchange specification, web servers for providing the interaction data and clients for data integration and visualization. The decentralized architecture of DASMI affords the online retrieval of the most recent data from distributed sources and databases. DASMI can also be extended easily by adding new data sources and clients. We describe all DASMI components and demonstrate their use for protein and domain interactions. The DASMI tools are available at http://www.dasmi.de/ and http://ipfam.sanger.ac.uk/graph. The DAS registry and the DAS 1.53E specification is found at http://www.dasregistry.org/.

  20. A Putative Biochemical Engram of Long-term Memory

    PubMed Central

    Li, Liying; Sanchez, Consuelo Perez; Slaughter, Brian D.; Zhao, Yubai; Khan, Mohammed Repon; Unruh, Jay R.; Rubinstein, Boris; Si, Kausik

    2016-01-01

    Summary How a transient experience creates an enduring yet dynamic memory remains an unresolved issue in studies of memory. Experience-dependent aggregation of the RNA-binding protein CPEB/Orb2 is one of the candidate mechanisms of memory maintenance. Here, using tools that allow rapid and reversible inactivation of Orb2 protein in neurons we find that Orb2 activity is required for encoding and recall of memory. From a screen we have identified a DNA-J family chaperone, JJJ2, which facilitates Orb2 aggregation, and ectopic expression of JJJ2 enhances the animal’s capacity to form long-term memory. Finally, we have developed tools to visualize training-dependent aggregation of Orb2. We find that aggregated Orb2 in a subset of mushroom body neurons can serve as a “molecular signature” of memory and predict memory strength. Our data indicates that self-sustaining aggregates of Orb2 may serve as a physical substrate of memory and provide a molecular basis for the perduring yet malleable nature of memory. PMID:27818176

  1. Watching excitons move: the time-dependent transition density matrix

    NASA Astrophysics Data System (ADS)

    Ullrich, Carsten

    2012-02-01

    Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.

  2. A solution-based single-molecule study of surface-bound PBIs: solvent-mediated environmental effects on molecular flexibility.

    PubMed

    Lee, Ji-Eun; Han, Ye Ri; Ham, Sujin; Jun, Chul-Ho; Kim, Dongho

    2017-11-08

    We have investigated the fundamental photophysical properties of surface-bound perylene bisimide (PBI) molecules in a solution-phase at the single-molecule level. By efficient immobilization of single PBIs on glass, we were able to simultaneously monitor fluorescence intensity trajectories, fluorescence lifetimes, and emission spectra of individual PBIs in organic and aqueous media using confocal microscopy. We showed that the fluorescence dynamics of single PBIs in the solution phase is highly dependent on their local and chemical environments. Furthermore, we visualized different spatial-fluctuations of surface-bound PBIs using defocused wide-field imaging. While PBIs show more steric flexibility in organic media, the flexible motion of PBI molecules in aqueous solution is relatively prohibited due to a cage effect by a hydrogen bonding network, which is previously unobserved. Our method opens up a new possibility to investigate the photophysical properties of multi-chromophoric systems in various solvents at the single-molecule level for developing optimal molecular devices such as water-proof devices.

  3. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Evans, Conor L; Potma, Eric O; Puoris'haag, Mehron; Côté, Daniel; Lin, Charles P; Xie, X Sunney

    2005-11-15

    Imaging living organisms with molecular selectivity typically requires the introduction of specific labels. Many applications in biology and medicine, however, would significantly benefit from a noninvasive imaging technique that circumvents such exogenous probes. In vivo microscopy based on vibrational spectroscopic contrast offers a unique approach for visualizing tissue architecture with molecular specificity. We have developed a sensitive technique for vibrational imaging of tissues by combining coherent anti-Stokes Raman scattering (CARS) with video-rate microscopy. Backscattering of the intense forward-propagating CARS radiation in tissue gives rise to a strong epi-CARS signal that makes in vivo imaging possible. This substantially large signal allows for real-time monitoring of dynamic processes, such as the diffusion of chemical compounds, in tissues. By tuning into the CH(2) stretching vibrational band, we demonstrate CARS imaging and spectroscopy of lipid-rich tissue structures in the skin of a live mouse, including sebaceous glands, corneocytes, and adipocytes, with unprecedented contrast at subcellular resolution.

  4. Math Majors' Visual Proofs in a Dynamic Environment: The Case of Limit of a Function and the ?-d Approach

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2015-01-01

    Despite few limitations, GeoGebra as a dynamic geometry software stood as a powerful instrument in helping university math majors understand, explore, and gain experiences in visualizing the limits of functions and the ?-d formalism. During the process of visualizing a theorem, the order mattered in the sequence of constituents. Students made use…

  5. Effects of Using Dynamic Mathematics Software on Preservice Mathematics Teachers' Spatial Visualization Skills: The Case of Spatial Analytic Geometry

    ERIC Educational Resources Information Center

    Kösa, Temel

    2016-01-01

    The purpose of this study was to investigate the effects of using dynamic geometry software on preservice mathematics teachers' spatial visualization skills and to determine whether spatial visualization skills can be a predictor of success in learning analytic geometry of space. The study used a quasi-experimental design with a control group.…

  6. Lighten the Load: Scaffolding Visual Literacy in Biochemistry and Molecular Biology

    PubMed Central

    Offerdahl, Erika G.; Arneson, Jessie B.; Byrne, Nicholas

    2017-01-01

    The development of scientific visual literacy has been identified as critical to the training of tomorrow’s scientists and citizens alike. Within the context of the molecular life sciences in particular, visual representations frequently incorporate various components, such as discipline-specific graphical and diagrammatic features, varied levels of abstraction, and spatial arrangements of visual elements to convey information. Visual literacy is achieved when an individual understands the various ways in which a discipline uses these components to represent a particular way of knowing. Owing to the complex nature of visual representations, the activities through which visual literacy is developed have high cognitive load. Cognitive load can be reduced by first helping students to become fluent with the discrete components of visual representations before asking them to simultaneously integrate these components to extract the intended meaning of a representation. We present a taxonomy for characterizing one component of visual representations—the level of abstraction—as a first step in understanding the opportunities afforded students to develop fluency. Further, we demonstrate how our taxonomy can be used to analyze course assessments and spur discussions regarding the extent to which the development of visual literacy skills is supported by instruction within an undergraduate biochemistry curriculum. PMID:28130273

  7. Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma

    PubMed Central

    Gangeddula, Viswa; Ranchet, Maud; Akinwuntan, Abiodun E.; Bollinger, Kathryn; Devos, Hannes

    2017-01-01

    Purpose: To investigate the effect of cognitive demand on functional visual field performance in drivers with glaucoma. Method: This study included 20 drivers with open-angle glaucoma and 13 age- and sex-matched controls. Visual field performance was evaluated under different degrees of cognitive demand: a static visual field condition (C1), dynamic visual field condition (C2), and dynamic visual field condition with active driving (C3) using an interactive, desktop driving simulator. The number of correct responses (accuracy) and response times on the visual field task were compared between groups and between conditions using Kruskal–Wallis tests. General linear models were employed to compare cognitive workload, recorded in real-time through pupillometry, between groups and conditions. Results: Adding cognitive demand (C2 and C3) to the static visual field test (C1) adversely affected accuracy and response times, in both groups (p < 0.05). However, drivers with glaucoma performed worse than did control drivers when the static condition changed to a dynamic condition [C2 vs. C1 accuracy; glaucoma: median difference (Q1–Q3) 3 (2–6.50) vs. controls: 2 (0.50–2.50); p = 0.05] and to a dynamic condition with active driving [C3 vs. C1 accuracy; glaucoma: 2 (2–6) vs. controls: 1 (0.50–2); p = 0.02]. Overall, drivers with glaucoma exhibited greater cognitive workload than controls (p = 0.02). Conclusion: Cognitive demand disproportionately affects functional visual field performance in drivers with glaucoma. Our results may inform the development of a performance-based visual field test for drivers with glaucoma. PMID:28912712

  8. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2011-11-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.

  9. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2012-03-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate molecular/cellular functions.

  10. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  11. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  12. Cerebrospinal and Interstitial Fluid Transport via the Glymphatic Pathway Modeled by Optimal Mass Transport

    PubMed Central

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-01-01

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4 min over ∼3 hrs in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. PMID:28323163

  13. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.

    PubMed

    Ratner, Vadim; Gao, Yi; Lee, Hedok; Elkin, Rena; Nedergaard, Maiken; Benveniste, Helene; Tannenbaum, Allen

    2017-05-15

    The glymphatic pathway is a system which facilitates continuous cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange and plays a key role in removing waste products from the rodent brain. Dysfunction of the glymphatic pathway may be implicated in the pathophysiology of Alzheimer's disease. Intriguingly, the glymphatic system is most active during deep wave sleep general anesthesia. By using paramagnetic tracers administered into CSF of rodents, we previously showed the utility of MRI in characterizing a macroscopic whole brain view of glymphatic transport but we have yet to define and visualize the specific flow patterns. Here we have applied an alternative mathematical analysis approach to a dynamic time series of MRI images acquired every 4min over ∼3h in anesthetized rats, following administration of a small molecular weight paramagnetic tracer into the CSF reservoir of the cisterna magna. We use Optimal Mass Transport (OMT) to model the glymphatic flow vector field, and then analyze the flow to find the network of CSF-ISF flow channels. We use 3D visualization computational tools to visualize the OMT defined network of CSF-ISF flow channels in relation to anatomical and vascular key landmarks from the live rodent brain. The resulting OMT model of the glymphatic transport network agrees largely with the current understanding of the glymphatic transport patterns defined by dynamic contrast-enhanced MRI revealing key CSF transport pathways along the ventral surface of the brain with a trajectory towards the pineal gland, cerebellum, hypothalamus and olfactory bulb. In addition, the OMT analysis also revealed some interesting previously unnoticed behaviors regarding CSF transport involving parenchymal streamlines moving from ventral reservoirs towards the surface of the brain, olfactory bulb and large central veins. Copyright © 2017. Published by Elsevier Inc.

  14. Exploring Verbal, Visual and Schematic Learners' Static and Dynamic Mental Images of Scientific Species and Processes in Relation to Their Spatial Ability

    ERIC Educational Resources Information Center

    Al-Balushi, Sulaiman M.; Coll, Richard Kevin

    2013-01-01

    The current study compared different learners' static and dynamic mental images of unseen scientific species and processes in relation to their spatial ability. Learners were classified into verbal, visual and schematic. Dynamic images were classified into: appearing/disappearing, linear-movement, and rotation. Two types of scientific entities and…

  15. Dual-Modality, Dual-Functional Nanoprobes for Cellular and Molecular Imaging

    PubMed Central

    Menon, Jyothi U.; Gulaka, Praveen K.; McKay, Madalyn A.; Geethanath, Sairam; Liu, Li; Kodibagkar, Vikram D.

    2012-01-01

    An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence), dual-functional (oximetry/detection) nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications. PMID:23382776

  16. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods

    PubMed Central

    Tofalo, Rosanna; Perpetuini, Giorgia; Schirone, Maria; Fasoli, Giuseppe; Aguzzi, Irene; Corsetti, Aldo; Suzzi, Giovanna

    2013-01-01

    Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualize patterns in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere.” Agricultural practices such as farming (organic versus conventional) and floor management systems have selected different populations within this species that are phylogenetically distinct. In fact, recent ecological and geographic studies highlighted that unique strains are associated with particular grape varieties in specific geographical locations. These studies also highlighted that significant diversity and regional character, or ‘terroir,’ have been introduced into the winemaking process via this association. This diversity of wild strains preserves typicity, the high quality, and the unique flavor of wines. Recently, different molecular methods were developed to study population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review, we will provide an update on the current molecular methods used to reveal the geographical distribution of S. cerevisiae wine yeast. PMID:23805132

  17. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Chen, Jundong

    2018-03-01

    Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.

  18. Dynamic Structure of a Molecular Liquid S0.5Cl0.5: Ab initio Molecular-Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Shimakura, Hironori; Kawakita, Yukinobu; Shimojo, Fuyuki; Yao, Makoto

    2013-07-01

    The static and dynamic structures of a molecular liquid S0.5Cl0.5 consisting of Cl--S--S--Cl (S2Cl2) type molecules are studied by means of ab initio molecular dynamics simulations. Both the calculated static and dynamic structure factors are in good agreement with experimental results. The dynamic structures are discussed based on van-Hove distinct correlation functions, molecular translational mean-square displacements (TMSD) and rotational mean-square displacements (RMSD). In the TMSD and RMSD, there are ballistic and diffusive regimes in the sub-picosecond and picosecond time regions, respectively. These time scales are consistent with the decay time observed experimentally. The interaction between molecules in the liquid is also discussed in comparison with that in another liquid chalcogen--halogen system Se0.5Cl0.5.

  19. Techniques for animation of CFD results. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Horowitz, Jay; Hanson, Jeffery C.

    1992-01-01

    Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.

  20. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

    PubMed

    Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde

    2015-08-14

    Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

  1. Surface induced molecular dynamics of thin lipid films confined to submicron cavities: A 1H multiple-quantum NMR study

    NASA Astrophysics Data System (ADS)

    Jagadeesh, B.; Prabhakar, A.; Demco, D. E.; Buda, A.; Blümich, B.

    2005-03-01

    The dynamics and molecular order of thin lipid (lecithin) films confined to 200, 100 and 20 nm cylindrical pores with varying surface coverage, were investigated by 1H multiple-quantum NMR. The results show that the molecular dynamics in the surface controlled layers are less hindered compared to those in the bulk. Dynamic heterogeneity among terminal CH 3 groups is evident. Enhanced dynamic freedom is observed for films with area per molecule, ˜ 128 Å 2. The results are discussed in terms of changes in the lipid molecular organization with respect to surface concentration, its plausible motional modes and dynamic heterogeneity.

  2. The Distributed Diagonal Force Decomposition Method for Parallelizing Molecular Dynamics Simulations

    PubMed Central

    Boršnik, Urban; Miller, Benjamin T.; Brooks, Bernard R.; Janežič, Dušanka

    2011-01-01

    Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007

  3. Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark

    In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  4. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  5. Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

    PubMed

    Cheng, Sen; Sabes, Philip N

    2007-04-01

    The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

  6. Applications of CFD and visualization techniques

    NASA Technical Reports Server (NTRS)

    Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.

    1992-01-01

    In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.

  7. Degradation of learned skills: Effectiveness of practice methods on visual approach and landing skill retention

    NASA Technical Reports Server (NTRS)

    Sitterley, T. E.; Zaitzeff, L. P.; Berge, W. A.

    1972-01-01

    Flight control and procedural task skill degradation, and the effectiveness of retraining methods were evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Fifteen experienced pilots were trained and then tested after 4 months either without the benefits of practice or with static rehearsal, dynamic rehearsal or with dynamic warmup practice. Performance on both the flight control and procedure tasks degraded significantly after 4 months. The rehearsal methods effectively countered procedure task skill degradation, while dynamic rehearsal or a combination of static rehearsal and dynamic warmup practice was required for the flight control tasks. The quality of the retraining methods appeared to be primarily dependent on the efficiency of visual cue reinforcement.

  8. From genes to brain oscillations: is the visual pathway the epigenetic clue to schizophrenia?

    PubMed

    González-Hernández, J A; Pita-Alcorta, C; Cedeño, I R

    2006-01-01

    Molecular data and gene expression data and recently mitochondrial genes and possible epigenetic regulation by non-coding genes is revolutionizing our views on schizophrenia. Genes and epigenetic mechanisms are triggered by cell-cell interaction and by external stimuli. A number of recent clinical and molecular observations indicate that epigenetic factors may be operational in the origin of the illness. Based on the molecular insights, gene expression profiles and epigenetic regulation of gene, we went back to the neurophysiology (brain oscillations) and found a putative role of the visual experiences (i.e. visual stimuli) as epigenetic factor. The functional evidences provided here, establish a direct link between the striate and extrastriate unimodal visual cortex and the neurobiology of the schizophrenia. This result support the hypothesis that 'visual experience' has a potential role as epigenetic factor and contribute to trigger and/or to maintain the progression of the schizophrenia. In this case, candidate genes sensible for the visual 'insult' may be located within the visual cortex including associative areas, while the integrity of the visual pathway before reaching the primary visual cortex is preserved. The same effect can be perceived if target genes are localised within the visual pathway, which actually, is more sensitive for 'insult' during the early life than the cortex per se. If this process affects gene expression at these sites a stably sensory specific 'insult', i.e. distorted visual information, is entering the visual system and expanded to fronto-temporo-parietal multimodal areas even from early maturation periods. The difference in the timing of postnatal neuroanatomical events between such areas and the primary visual cortex in humans (with the formers reaching the same development landmarks later in life than the latter) is 'optimal' to establish an abnormal 'cell- communication' mediated by the visual system that may further interfere with the local physiology. In this context the strategy to search target genes need to be rearrangement and redirected to visual-related genes. Otherwise, psychophysics studies combining functional neuroimage, and electrophysiology are strongly recommended, for the search of epigenetic clues that will allow to carrier gene association studies in schizophrenia.

  9. Single molecule studies of flexible polymers under shear and mixed flows

    NASA Astrophysics Data System (ADS)

    Teixeira, Rodrigo Esquivel

    We combine manipulation and single molecule visualization of flexible DNA polymers with the generation of controlled simple shear and planar mixed flows for the investigation of polymer flow physics. With the ability to observe polymer conformation directly and follow its evolution in both dilute and entangled regimes we provide a direct test for molecular models. The coil-stretch transition of polymer extension was investigated in planar mixed flows approaching simple shear. Visualization of individual molecules revealed a sharp coil-stretch transition in the steady-state length of the polymer with increasing strain rate in flows slightly more straining than rotational. In slightly more rotational flows significant transient polymer deformation was observed. Next, dilute polymers were visualized in the flow-gradient plane of a steady shear flow. By exploiting the linear proportionality between polymer mass and image intensity, the radius of gyration tensor elements ( Gij) were measured over time. Then, the Giesekus stress tensor was used to obtain the bulk shear viscosity and first normal stress coefficient, thus performing rheology measurements from single molecule conformations. End-over-end tumbling was discovered for the first time, confirming a long-standing prediction and numerous single-chain computer simulation studies. The tumbling frequency followed Wi0.62, and an equation derived from simple advection and diffusion arguments was able to reproduce these observations. Power spectral densities of chain orientation trajectories were found to be single-peaked around the tumbling frequency, thus suggesting a periodic character for polymer dynamics. Finally, we investigated well-entangled polymer solutions. Identical preparations were used in both rheological characterizations and single molecule observations under a variety of shear flow histories. Polymer extension relaxations after the cessation of a fast shear flow revealed two intrinsic characteristic times. The fast one was insensitive to concentration and at least an order of magnitude larger than the Rouse time presupposed by theoretical treatments. The slow timescale grew steeply with concentration, in qualitative agreement with theory. Transient and steady shear flows showed vastly different conformations even among identical molecules subjected to identical flow histories. This "molecular individualism" of well-entangled solutions and its broad conformational distributions calls into question the validity of preaveraging approximations made in molecular-level theories.

  10. Connecting Molecular Dynamics Simulations and Fluids Density Functional Theory of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hall, Lisa

    Increased understanding and precise control over the nanoscale structure and dynamics of microphase separated block copolymers would advance development of mechanically robust but conductive materials for battery electrolytes, among other applications. Both coarse-grained molecular dynamics (MD) simulations and fluids (classical) density functional theory (fDFT) can capture the microphase separation of block copolymers, using similar monomer-based chain models and including local packing effects. Equilibrium free energies of various microphases are readily accessible from fDFT, which allows us to efficiently determine the equilibrium nanostructure over a large parameter space. Meanwhile, MD allows us to visualize specific polymer conformations in 3D over time and to calculate dynamic properties. The fDFT density profiles are used to initialize the MD simulations; this ensures the MD proceeds in the appropriate microphase separated state rather than in a metastable structure (useful especially for nonlamellar structures). The simulations equilibrate more quickly than simulations initialized with a random state, which is significant especially for long chains. We apply these methods to study the interfacial behavior and microphase separated structure of diblock and tapered block copolymers. Tapered copolymers consist of pure A and B monomer blocks on the ends separated by a tapered region that smoothly varies from A to B (or from B to A for an inverse taper). Intuitively, tapering increases the segregation strength required for the material to microphase separate and increases the width of the interfacial region. Increasing normal taper length yields a lower domain spacing and increased polymer mobility, while larger inverse tapers correspond to even lower domain spacing but decreased mobility. Thus the changes in dynamics with tapering cannot be explained by mapping to a diblock system at an adjusted effective segregation strength. This material is based upon work supported by the National Science Foundation under Grant 1454343 and the Department of Energy under Grant DE-SC0014209.

  11. Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms

    PubMed Central

    Kwon, Yong-Soo; Cho, Young-Seok; Yoon, Tae-Jong; Kim, Ho-Shik; Choi, Myung-Gyu

    2012-01-01

    Molecular imaging has emerged as a new discipline in gastrointestinal endoscopy. This technology encompasses modalities that can visualize disease-specific morphological or functional tissue changes based on the molecular signature of individual cells. Molecular imaging has several advantages including minimal damage to tissues, repetitive visualization, and utility for conducting quantitative analyses. Advancements in basic science coupled with endoscopy have made early detection of gastrointestinal cancer possible. Molecular imaging during gastrointestinal endoscopy requires the development of safe biomarkers and exogenous probes to detect molecular changes in cells with high specificity anda high signal-to-background ratio. Additionally, a high-resolution endoscope with an accurate wide-field viewing capability must be developed. Targeted endoscopic imaging is expected to improve early diagnosis and individual therapy of gastrointestinal cancer. PMID:22442742

  12. Dynamic visual attention: motion direction versus motion magnitude

    NASA Astrophysics Data System (ADS)

    Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.

    2008-02-01

    Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.

  13. Structure and Dynamics of End-to-End Loop Formation of the Penta-Peptide Cys-Ala-Gly-Gln-Trp in Implicit Solvents

    DTIC Science & Technology

    2009-01-01

    implicit solvents on peptide structure and dynamics , we performed extensive molecular dynamics simulations on the penta-peptide Cys-Ala-Gly-Gln-Trp. Two...end-to-end distances and dihedral angles obtained from molecular dynamics simulations with implicit solvent models were in a good agreement with those...to maintain the temperature of the systems. Introduction Molecular dynamics (MD) simulation techniques are widely used to study structure and

  14. High-resolution Myogenic Lineage Mapping by Single-Cell Mass Cytometry

    PubMed Central

    Porpiglia, Ermelinda; Samusik, Nikolay; Ho, Andrew Tri Van; Cosgrove, Benjamin D.; Mai, Thach; Davis, Kara L.; Jager, Astraea; Nolan, Garry P.; Bendall, Sean C.; Fantl, Wendy J.; Blau, Helen M.

    2017-01-01

    Muscle regeneration is a dynamic process during which cell state and identity change over time. A major roadblock has been a lack of tools to resolve a myogenic progression in vivo. Here we capitalize on a transformative technology, single-cell mass cytometry (CyTOF), to identify in vivo skeletal muscle stem cell and previously unrecognized progenitor populations that precede differentiation. We discovered two cell surface markers, CD9 and CD104, whose combined expression enabled in vivo identification and prospective isolation of stem and progenitor cells. Data analysis using the X-shift algorithm paired with single-cell force directed layout visualization, defined a molecular signature of the activated stem cell state (CD44+/CD98+/MyoD+) and delineated a myogenic trajectory during recovery from acute muscle injury. Our studies uncover the dynamics of skeletal muscle regeneration in vivo and pave the way for the elucidation of the regulatory networks that underlie cell-state transitions in muscle diseases and aging. PMID:28414312

  15. Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies

    PubMed Central

    2011-01-01

    To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157

  16. Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase

    NASA Astrophysics Data System (ADS)

    Saito, Shohei; Nobusue, Shunpei; Tsuzaka, Eri; Yuan, Chunxue; Mori, Chigusa; Hara, Mitsuo; Seki, Takahiro; Camacho, Cristopher; Irle, Stephan; Yamaguchi, Shigehiro

    2016-07-01

    Liquid crystal (LC) provides a suitable platform to exploit structural motions of molecules in a condensed phase. Amplification of the structural changes enables a variety of technologies not only in LC displays but also in other applications. Until very recently, however, a practical use of LCs for removable adhesives has not been explored, although a spontaneous disorganization of LC materials can be easily triggered by light-induced isomerization of photoactive components. The difficulty of such application derives from the requirements for simultaneous implementation of sufficient bonding strength and its rapid disappearance by photoirradiation. Here we report a dynamic molecular LC material that meets these requirements. Columnar-stacked V-shaped carbon frameworks display sufficient bonding strength even during heating conditions, while its bonding ability is immediately lost by a light-induced self-melting function. The light-melt adhesive is reusable and its fluorescence colour reversibly changes during the cycle, visualizing the bonding/nonbonding phases of the adhesive.

  17. Dynamics of flexible molecules in thinning fluid filaments

    NASA Astrophysics Data System (ADS)

    Arratia, Paulo E.; Juarez, Gabriel

    2011-11-01

    Newtonian liquids that contain small amounts (~ppm) of flexible polymers can exhibit viscoelastic behavior in extensional flows. In this talk, we report the results of experiments on the thinning and breakup of polymeric fluids in a simple microfluidic device. We aim to understand the stretching dynamics of flexible polymers by direct visualization of fluorescent DNA molecules, a model polymer. A Boger fluid, composed of 100 ppm polyacrylamide and 85% w/w glycerol, is seeded with stained lambdaâDNA molecules (<10% v/v) imaged by high speed epifluorescence microscopy. We observe that the strong flow in the thinning fluid threads provide sufficient forces to stretch the DNA molecules away from their equilibrium coiled state. The distribution of stretch lengths, however, is very heterogeneous due to molecular individualism and initial conditions. Once the molecules are stretched to their full length and aligned with the flow, they translate along the fluid thread as rigid rods until the point of pinch off. After pinch off, both the fluid and molecules return to a relaxed state.

  18. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  19. Dust in AGB Stars: Transparent or Opaque?

    NASA Astrophysics Data System (ADS)

    Bladh, S.; Höfner, S.; Aringer, B.

    2011-09-01

    The optical properties of the dust particles that drive the winds of cool giant stars affect the stellar spectra in two ways: (1) indirectly, through their influence on the dynamical structure of the atmosphere/envelope and the resulting molecular features, and (2) directly, by changes of the spectral energy distribution due to absorption and scattering on dust grains. The qualitative differences in the energy distributions of C-type and M-type AGB stars in the visual and near-infrared regions suggest that the dust particles in oxygen rich atmospheres are relatively transparent to radiation. By using detailed dynamical models of gas and radiation combined with a simple description for the dust opacity (which can be adjusted to mimic different wavelength dependences and condensation temperatures) and also by adjusting the fraction of the opacity that is treated as true absorption, we investigate which dust properties produce synthetic photometry consistent with observations. The goal of this study is to narrow down the possible dust species that may be driving the winds in M-type AGB stars.

  20. Rational design of a monomeric and photostable far-red fluorescent protein for fluorescence imaging in vivo.

    PubMed

    Yu, Dan; Dong, Zhiqiang; Gustafson, William Clay; Ruiz-González, Rubén; Signor, Luca; Marzocca, Fanny; Borel, Franck; Klassen, Matthew P; Makhijani, Kalpana; Royant, Antoine; Jan, Yuh-Nung; Weiss, William A; Guo, Su; Shu, Xiaokun

    2016-02-01

    Fluorescent proteins (FPs) are powerful tools for cell and molecular biology. Here based on structural analysis, a blue-shifted mutant of a recently engineered monomeric infrared fluorescent protein (mIFP) has been rationally designed. This variant, named iBlueberry, bears a single mutation that shifts both excitation and emission spectra by approximately 40 nm. Furthermore, iBlueberry is four times more photostable than mIFP, rendering it more advantageous for imaging protein dynamics. By tagging iBlueberry to centrin, it has been demonstrated that the fusion protein labels the centrosome in the developing zebrafish embryo. Together with GFP-labeled nucleus and tdTomato-labeled plasma membrane, time-lapse imaging to visualize the dynamics of centrosomes in radial glia neural progenitors in the intact zebrafish brain has been demonstrated. It is further shown that iBlueberry can be used together with mIFP in two-color protein labeling in living cells and in two-color tumor labeling in mice. © 2015 The Protein Society.

  1. Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles

    NASA Technical Reports Server (NTRS)

    Eichler, Gabriel S.; Huang, Sui; Ingber, Donald E.

    2003-01-01

    Genome-wide expression profiles contain global patterns that evade visual detection in current gene clustering analysis. Here, a Gene Expression Dynamics Inspector (GEDI) is described that uses self-organizing maps to translate high-dimensional expression profiles of time courses or sample classes into animated, coherent and robust mosaics images. GEDI facilitates identification of interesting patterns of molecular activity simultaneously across gene, time and sample space without prior assumption of any structure in the data, and then permits the user to retrieve genes of interest. Important changes in genome-wide activities may be quickly identified based on 'Gestalt' recognition and hence, GEDI may be especially useful for non-specialist end users, such as physicians. AVAILABILITY: GEDI v1.0 is written in Matlab, and binary Matlab.dll files which require Matlab to run can be downloaded for free by academic institutions at http://www.chip.org/ge/gedihome.html Supplementary information: http://www.chip.org/ge/gedihome.html.

  2. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    PubMed Central

    Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil

    2011-01-01

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173

  3. The Dynamic Architectural and Epigenetic Nuclear Landscape: Developing the Genomic Almanac of Biology and Disease

    PubMed Central

    Tai, Phillip W. L.; Zaidi, Sayyed K.; Wu, Hai; Grandy, Rodrigo A.; Montecino, Martin M.; van Wijnen, André J.; Lian, Jane B.; Stein, Gary S.; Stein, Janet L.

    2014-01-01

    Compaction of the eukaryotic genome into the confined space of the cell nucleus must occur faithfully throughout each cell cycle to retain gene expression fidelity. For decades, experimental limitations to study the structural organization of the interphase nucleus restricted our understanding of its contributions towards gene regulation and disease. However, within the past few years, our capability to visualize chromosomes in vivo with sophisticated fluorescence microscopy, and to characterize chromosomal regulatory environments via massively-parallel sequencing methodologies have drastically changed how we currently understand epigenetic gene control within the context of three-dimensional nuclear structure. The rapid rate at which information on nuclear structure is unfolding brings challenges to compare and contrast recent observations with historic findings. In this review, we discuss experimental breakthroughs that have influenced how we understand and explore the dynamic structure and function of the nucleus, and how we can incorporate historical perspectives with insights acquired from the ever-evolving advances in molecular biology and pathology. PMID:24242872

  4. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-01

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  5. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics.

    PubMed

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-14

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  6. Effects of simulator motion and visual characteristics on rotorcraft handling qualities evaluations

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Hart, Daniel C.

    1993-01-01

    The pilot's perceptions of aircraft handling qualities are influenced by a combination of the aircraft dynamics, the task, and the environment under which the evaluation is performed. When the evaluation is performed in a groundbased simulator, the characteristics of the simulation facility also come into play. Two studies were conducted on NASA Ames Research Center's Vertical Motion Simulator to determine the effects of simulator characteristics on perceived handling qualities. Most evaluations were conducted with a baseline set of rotorcraft dynamics, using a simple transfer-function model of an uncoupled helicopter, under different conditions of visual time delays and motion command washout filters. Differences in pilot opinion were found as the visual and motion parameters were changed, reflecting a change in the pilots' perceptions of handling qualities, rather than changes in the aircraft model itself. The results indicate a need for tailoring the motion washout dynamics to suit the task. Visual-delay data are inconclusive but suggest that it may be better to allow some time delay in the visual path to minimize the mismatch between visual and motion, rather than eliminate the visual delay entirely through lead compensation.

  7. Structure and dynamics of optically directed self-assembly of nanoparticles

    PubMed Central

    Roy, Debjit; Mondal, Dipankar; Goswami, Debabrata

    2016-01-01

    Self-assembly of nanoparticles leading to the formation of colloidal clusters often serves as the representative analogue for understanding molecular assembly. Unravelling the in situ structure and dynamics of such clusters in liquid suspensions is highly challenging. Presently colloidal clusters are first isolated from their generating environment and then their structures are probed by light scattering methods. In order to measure the in situ structure and dynamics of colloidal clusters, we have generated them using the high-repetition-rate femtosecond laser pulse optical tweezer. Since the constituent of our dimer, trimer or tetramer clusters are 250 nm radius two-photon resonant fluorophore coated nanospheres under the optical trap, they inherently produce Two-Photon Fluorescence, which undergo intra-nanosphere Fluorescence Energy Transfer. This unique energy transfer signature, in turn, enables us to visualize structures and orientations of these colloidal clusters during the process of their formation and subsequent dynamics in a liquid suspension. We also show that due to shape-birefringence, orientation and structural control of these colloidal clusters are possible as the polarization of the trapping laser is changed from linear to circular. We thus report important progress in sampling the smallest possible aggregates of nanoparticles, dimers, trimers or tetramers, formed early in the self-assembly process. PMID:27006305

  8. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry

    PubMed Central

    Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.

    2015-01-01

    Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale. PMID:25903827

  9. Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC).

    PubMed

    Galindo-Murillo, Rodrigo; Roe, Daniel R; Cheatham, Thomas E

    2015-05-01

    The structure and dynamics of DNA are critically related to its function. Molecular dynamics simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Molecular dynamics simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale molecular dynamics performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. These molecular dynamics simulations-including one of the longest simulations of DNA published to date at ~44μs-surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1-5μs timescale. We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. With access to large-scale GPU resources or the specialized MD engine "Anton" it is possible for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. This article is part of a Special Issue entitled: Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.

  10. Unraveling DNA dynamics using atomic force microscopy.

    PubMed

    Suzuki, Yuki; Yoshikawa, Yuko; Yoshimura, Shige H; Yoshikawa, Kenichi; Takeyasu, Kunio

    2011-01-01

    The elucidation of structure-function relationships of biological samples has become important issue in post-genomic researches. In order to unveil the molecular mechanisms controlling gene regulations, it is essential to understand the interplay between fundamental DNA properties and the dynamics of the entire molecule. The wide range of applicability of atomic force microscopy (AFM) has allowed us to extract physicochemical properties of DNA and DNA-protein complexes, as well as to determine their topographical information. Here, we review how AFM techniques have been utilized to study DNA and DNA-protein complexes and what types of analyses have accelerated the understanding of the DNA dynamics. We begin by illustrating the application of AFM to investigate the fundamental feature of DNA molecules; topological transition of DNA, length dependent properties of DNA molecules, flexibility of double-stranded DNA, and capability of the formation of non-Watson-Crick base pairing. These properties of DNA are critical for the DNA folding and enzymatic reactions. The technical advancement in the time-resolution of AFM and sample preparation methods enabled visual analysis of DNA-protein interactions at sub-second time region. DNA tension-dependent enzymatic reaction and DNA looping dynamics by restriction enzymes were examined at a nanoscale in physiological environments. Contribution of physical properties of DNA to dynamics of nucleosomes and transition of the higher-order structure of reconstituted chromatin are also reviewed. Copyright © 2011 John Wiley & Sons, Inc.

  11. Molecular motors interacting with their own tracks

    NASA Astrophysics Data System (ADS)

    Artyomov, Max N.; Morozov, Alexander Yu.; Kolomeisky, Anatoly B.

    2008-04-01

    Dynamics of molecular motors that move along linear lattices and interact with them via reversible destruction of specific lattice bonds is investigated theoretically by analyzing exactly solvable discrete-state “burnt-bridge” models. Molecular motors are viewed as diffusing particles that can asymmetrically break or rebuild periodically distributed weak links when passing over them. Our explicit calculations of dynamic properties show that coupling the transport of the unbiased molecular motor with the bridge-burning mechanism leads to a directed motion that lowers fluctuations and produces a dynamic transition in the limit of low concentration of weak links. Interaction between the backward biased molecular motor and the bridge-burning mechanism yields a complex dynamic behavior. For the reversible dissociation the backward motion of the molecular motor is slowed down. There is a change in the direction of the molecular motor’s motion for some range of parameters. The molecular motor also experiences nonmonotonic fluctuations due to the action of two opposing mechanisms: the reduced activity after the burned sites and locking of large fluctuations. Large spatial fluctuations are observed when two mechanisms are comparable. The properties of the molecular motor are different for the irreversible burning of bridges where the velocity and fluctuations are suppressed for some concentration range, and the dynamic transition is also observed. Dynamics of the system is discussed in terms of the effective driving forces and transitions between different diffusional regimes.

  12. An experimental study of the nonlinear dynamic phenomenon known as wing rock

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1990-01-01

    An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.

  13. Vision 20/20: Molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention

    PubMed Central

    Paulsen, Keith D.; Samkoe, Kimberley S.; Elliott, Jonathan T.; Hasan, Tayyaba; Strong, Theresa V.; Draney, Daniel R.; Feldwisch, Joachim

    2016-01-01

    Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents. PMID:27277060

  14. Vision 20/20: Molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention.

    PubMed

    Pogue, Brian W; Paulsen, Keith D; Samkoe, Kimberley S; Elliott, Jonathan T; Hasan, Tayyaba; Strong, Theresa V; Draney, Daniel R; Feldwisch, Joachim

    2016-06-01

    Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents.

  15. KinImmerse: Macromolecular VR for NMR ensembles

    PubMed Central

    Block, Jeremy N; Zielinski, David J; Chen, Vincent B; Davis, Ian W; Vinson, E Claire; Brady, Rachael; Richardson, Jane S; Richardson, David C

    2009-01-01

    Background In molecular applications, virtual reality (VR) and immersive virtual environments have generally been used and valued for the visual and interactive experience – to enhance intuition and communicate excitement – rather than as part of the actual research process. In contrast, this work develops a software infrastructure for research use and illustrates such use on a specific case. Methods The Syzygy open-source toolkit for VR software was used to write the KinImmerse program, which translates the molecular capabilities of the kinemage graphics format into software for display and manipulation in the DiVE (Duke immersive Virtual Environment) or other VR system. KinImmerse is supported by the flexible display construction and editing features in the KiNG kinemage viewer and it implements new forms of user interaction in the DiVE. Results In addition to molecular visualizations and navigation, KinImmerse provides a set of research tools for manipulation, identification, co-centering of multiple models, free-form 3D annotation, and output of results. The molecular research test case analyzes the local neighborhood around an individual atom within an ensemble of nuclear magnetic resonance (NMR) models, enabling immersive visual comparison of the local conformation with the local NMR experimental data, including target curves for residual dipolar couplings (RDCs). Conclusion The promise of KinImmerse for production-level molecular research in the DiVE is shown by the locally co-centered RDC visualization developed there, which gave new insights now being pursued in wider data analysis. PMID:19222844

  16. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process.

    PubMed

    Kirchberg, Kristina; Kim, Tai-Yang; Möller, Martina; Skegro, Darko; Dasara Raju, Gayathri; Granzin, Joachim; Büldt, Georg; Schlesinger, Ramona; Alexiev, Ulrike

    2011-11-15

    Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins.

  17. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process

    PubMed Central

    Kirchberg, Kristina; Kim, Tai-Yang; Möller, Martina; Skegro, Darko; Dasara Raju, Gayathri; Granzin, Joachim; Büldt, Georg; Schlesinger, Ramona; Alexiev, Ulrike

    2011-01-01

    Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the “phosphate-sensor” of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins. PMID:22039220

  18. Efficient evaluation of sampling quality of molecular dynamics simulations by clustering of dihedral torsion angles and Sammon mapping.

    PubMed

    Frickenhaus, Stephan; Kannan, Srinivasaraghavan; Zacharias, Martin

    2009-02-01

    A direct conformational clustering and mapping approach for peptide conformations based on backbone dihedral angles has been developed and applied to compare conformational sampling of Met-enkephalin using two molecular dynamics (MD) methods. Efficient clustering in dihedrals has been achieved by evaluating all combinations resulting from independent clustering of each dihedral angle distribution, thus resolving all conformational substates. In contrast, Cartesian clustering was unable to accurately distinguish between all substates. Projection of clusters on dihedral principal component (PCA) subspaces did not result in efficient separation of highly populated clusters. However, representation in a nonlinear metric by Sammon mapping was able to separate well the 48 highest populated clusters in just two dimensions. In addition, this approach also allowed us to visualize the transition frequencies between clusters efficiently. Significantly, higher transition frequencies between more distinct conformational substates were found for a recently developed biasing-potential replica exchange MD simulation method allowing faster sampling of possible substates compared to conventional MD simulations. Although the number of theoretically possible clusters grows exponentially with peptide length, in practice, the number of clusters is only limited by the sampling size (typically much smaller), and therefore the method is well suited also for large systems. The approach could be useful to rapidly and accurately evaluate conformational sampling during MD simulations, to compare different sampling strategies and eventually to detect kinetic bottlenecks in folding pathways.

  19. Facilitating Understanding of Movements in Dynamic Visualizations: An Embodied Perspective

    ERIC Educational Resources Information Center

    de Koning, Bjorn B.; Tabbers, Huib K.

    2011-01-01

    Learners studying mechanical or technical processes via dynamic visualizations often fail to build an accurate mental representation of the system's movements. Based on embodied theories of cognition assuming that action, perception, and cognition are closely intertwined, this paper proposes that the learning effectiveness of dynamic…

  20. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    PubMed

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  1. Easy GROMACS: A Graphical User Interface for GROMACS Molecular Dynamics Simulation Package

    NASA Astrophysics Data System (ADS)

    Dizkirici, Ayten; Tekpinar, Mustafa

    2015-03-01

    GROMACS is a widely used molecular dynamics simulation package. Since it is a command driven program, it is difficult to use this program for molecular biologists, biochemists, new graduate students and undergraduate researchers who are interested in molecular dynamics simulations. To alleviate the problem for those researchers, we wrote a graphical user interface that simplifies protein preparation for a classical molecular dynamics simulation. Our program can work with various GROMACS versions and it can perform essential analyses of GROMACS trajectories as well as protein preparation. We named our open source program `Easy GROMACS'. Easy GROMACS can give researchers more time for scientific research instead of dealing with technical intricacies.

  2. Task set induces dynamic reallocation of resources in visual short-term memory.

    PubMed

    Sheremata, Summer L; Shomstein, Sarah

    2017-08-01

    Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field.

  3. Role of red cells and plasma composition on blood sessile droplet evaporation

    NASA Astrophysics Data System (ADS)

    Lanotte, Luca; Laux, Didier; Charlot, Benoît; Abkarian, Manouk

    2017-11-01

    The morphology of dried blood droplets derives from the deposition of red cells, the main components of their solute phase. Up to now, evaporation-induced convective flows were supposed to be at the base of red cell distribution in blood samples. Here, we present a direct visualization by videomicroscopy of the internal dynamics in desiccating blood droplets, focusing on the role of cell concentration and plasma composition. We show that in diluted suspensions, the convection is promoted by the rich molecular composition of plasma, whereas it is replaced by an outward red blood cell displacement front at higher hematocrits. We also evaluate by ultrasounds the effect of red cell deposition on the temporal evolution of sample rigidity and adhesiveness.

  4. Visualization of hydrodynamic pilot-wave dynamics

    NASA Astrophysics Data System (ADS)

    Prost, Victor; Quintela, Julio; Harris, Daniel; Brun, Pierre-Thomas; Bush, John

    2015-11-01

    We present a low-cost device for examining the dynamics of droplets bouncing on a vibrating fluid bath, suitable for educational purposes. Dual control of vibrational and strobing frequency from a cell phone application allowed us to reduce the total cost to 60 dollars. Illumination with inhomogeneous colored light allows for striking visualization of the droplet dynamics and accompanying wave field via still photography or high-speed videography. Thanks to the NSF.

  5. AlaScan: A Graphical User Interface for Alanine Scanning Free-Energy Calculations.

    PubMed

    Ramadoss, Vijayaraj; Dehez, François; Chipot, Christophe

    2016-06-27

    Computation of the free-energy changes that underlie molecular recognition and association has gained significant importance due to its considerable potential in drug discovery. The massive increase of computational power in recent years substantiates the application of more accurate theoretical methods for the calculation of binding free energies. The impact of such advances is the application of parent approaches, like computational alanine scanning, to investigate in silico the effect of amino-acid replacement in protein-ligand and protein-protein complexes, or probe the thermostability of individual proteins. Because human effort represents a significant cost that precludes the routine use of this form of free-energy calculations, minimizing manual intervention constitutes a stringent prerequisite for any such systematic computation. With this objective in mind, we propose a new plug-in, referred to as AlaScan, developed within the popular visualization program VMD to automate the major steps in alanine-scanning calculations, employing free-energy perturbation as implemented in the widely used molecular dynamics code NAMD. The AlaScan plug-in can be utilized upstream, to prepare input files for selected alanine mutations. It can also be utilized downstream to perform the analysis of different alanine-scanning calculations and to report the free-energy estimates in a user-friendly graphical user interface, allowing favorable mutations to be identified at a glance. The plug-in also assists the end-user in assessing the reliability of the calculation through rapid visual inspection.

  6. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    Vandam, Andries

    1995-01-01

    The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.

  7. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Li, Haixing; Hu, Hui

    2015-08-01

    This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tagging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field measurements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and thermometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow velocity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to examine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convection regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achieve simultaneous droplet size, velocity and temperature measurements of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.

  8. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    PubMed

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    double networks in a single step was identified from coarse-grained molecular dynamics simulations of polymer solvents bearing rigid side chains dissolved...in a polymer network. Coarse-grained molecular dynamics simulations also explored the mechanical behavior of traditional double networks and...DRI), polymer networks, polymer gels, molecular dynamics simulations , double networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  10. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    PubMed Central

    2017-01-01

    Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment. PMID:28169527

  11. Epicenters of dynamic connectivity in the adaptation of the ventral visual system.

    PubMed

    Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge

    2017-04-01

    Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. The analysis of the influence of fractal structure of stimuli on fractal dynamics in fixational eye movements and EEG signal

    NASA Astrophysics Data System (ADS)

    Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin

    2016-05-01

    One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.

  13. A functional Bucky ball-GFP transgene visualizes germ plasm in living zebrafish.

    PubMed

    Riemer, Stephan; Bontems, Franck; Krishnakumar, Pritesh; Gömann, Jasmin; Dosch, Roland

    2015-01-01

    In many animals, the germline is specified by maternal RNA-granules termed germ plasm. The correct localization of germ plasm during embryogenesis is therefore crucial for the specification of germ cells. In zebrafish, we previously identified Bucky ball (Buc) as a key regulator of germ plasm formation. Here, we used a Buc antibody to describe its continuous germ plasm localization. Moreover, we generated a transgenic Buc-GFP line for live imaging, which visualizes germ plasm from its assembly during oogenesis up to the larval stages. Live imaging of Buc-GFP generated stunning movies, as they highlighted the dynamic details of germ plasm movements. Moreover, we discovered that Buc was still detected in primordial germ cells 2 days after fertilization. Interestingly, the transgene rescued buc mutants demonstrating genetically that the Buc-GFP fusion protein is functional. These results show that Buc-GFP exerts all biochemical interactions essential for germline development and highlight the potential of this line to analyze the molecular regulation of germ plasm formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes

    NASA Astrophysics Data System (ADS)

    Li, Jing; Wu, Huayi; Yang, Chaowei; Wong, David W.; Xie, Jibo

    2011-09-01

    Geoscientists build dynamic models to simulate various natural phenomena for a better understanding of our planet. Interactive visualizations of these geoscience models and their outputs through virtual globes on the Internet can help the public understand the dynamic phenomena related to the Earth more intuitively. However, challenges arise when the volume of four-dimensional data (4D), 3D in space plus time, is huge for rendering. Datasets loaded from geographically distributed data servers require synchronization between ingesting and rendering data. Also the visualization capability of display clients varies significantly in such an online visualization environment; some may not have high-end graphic cards. To enhance the efficiency of visualizing dynamic volumetric data in virtual globes, this paper proposes a systematic framework, in which an octree-based multiresolution data structure is implemented to organize time series 3D geospatial data to be used in virtual globe environments. This framework includes a view-dependent continuous level of detail (LOD) strategy formulated as a synchronized part of the virtual globe rendering process. Through the octree-based data retrieval process, the LOD strategy enables the rendering of the 4D simulation at a consistent and acceptable frame rate. To demonstrate the capabilities of this framework, data of a simulated dust storm event are rendered in World Wind, an open source virtual globe. The rendering performances with and without the octree-based LOD strategy are compared. The experimental results show that using the proposed data structure and processing strategy significantly enhances the visualization performance when rendering dynamic geospatial phenomena in virtual globes.

  15. Reducing Visual Discomfort with HMDs Using Dynamic Depth of Field.

    PubMed

    Carnegie, Kieran; Rhee, Taehyun

    2015-01-01

    Although head-mounted displays (HMDs) are ideal devices for personal viewing of immersive stereoscopic content, exposure to VR applications on them results in significant discomfort for the majority of people, with symptoms including eye fatigue, headaches, nausea, and sweating. A conflict between accommodation and vergence depth cues on stereoscopic displays is a significant cause of visual discomfort. This article describes the results of an evaluation used to judge the effectiveness of dynamic depth-of-field (DoF) blur in an effort to reduce discomfort caused by exposure to stereoscopic content on HMDs. Using a commercial game engine implementation, study participants report a reduction of visual discomfort on a simulator sickness questionnaire when DoF blurring is enabled. The study participants reported a decrease in symptom severity caused by HMD exposure, indicating that dynamic DoF can effectively reduce visual discomfort.

  16. Different Visual Preference Patterns in Response to Simple and Complex Dynamic Social Stimuli in Preschool-Aged Children with Autism Spectrum Disorders

    PubMed Central

    Shi, Lijuan; Zhou, Yuanyue; Ou, Jianjun; Gong, Jingbo; Wang, Suhong; Cui, Xilong; Lyu, Hailong; Zhao, Jingping; Luo, Xuerong

    2015-01-01

    Eye-tracking studies in young children with autism spectrum disorder (ASD) have shown a visual attention preference for geometric patterns when viewing paired dynamic social images (DSIs) and dynamic geometric images (DGIs). In the present study, eye-tracking of two different paired presentations of DSIs and DGIs was monitored in a group of 13 children aged 4 to 6 years with ASD and 20 chronologically age-matched typically developing children (TDC). The results indicated that compared with the control group, children with ASD attended significantly less to DSIs showing two or more children playing than to similar DSIs showing a single child. Visual attention preference in 4- to 6-year-old children with ASDs, therefore, appears to be modulated by the type of visual stimuli. PMID:25781170

  17. Molecular dynamics simulations of large macromolecular complexes.

    PubMed

    Perilla, Juan R; Goh, Boon Chong; Cassidy, C Keith; Liu, Bo; Bernardi, Rafael C; Rudack, Till; Yu, Hang; Wu, Zhe; Schulten, Klaus

    2015-04-01

    Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Generalized Green's function molecular dynamics for canonical ensemble simulations

    NASA Astrophysics Data System (ADS)

    Coluci, V. R.; Dantas, S. O.; Tewary, V. K.

    2018-05-01

    The need of small integration time steps (˜1 fs) in conventional molecular dynamics simulations is an important issue that inhibits the study of physical, chemical, and biological systems in real timescales. Additionally, to simulate those systems in contact with a thermal bath, thermostating techniques are usually applied. In this work, we generalize the Green's function molecular dynamics technique to allow simulations within the canonical ensemble. By applying this technique to one-dimensional systems, we were able to correctly describe important thermodynamic properties such as the temperature fluctuations, the temperature distribution, and the velocity autocorrelation function. We show that the proposed technique also allows the use of time steps one order of magnitude larger than those typically used in conventional molecular dynamics simulations. We expect that this technique can be used in long-timescale molecular dynamics simulations.

  19. Mass spectrometric imaging of red fluorescent protein in breast tumor xenografts.

    PubMed

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T; Greenwood, Tiffany R; Raman, Venu; Bhujwalla, Zaver M; Heeren, Ron M A; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.

  20. On relation between scalar interfaces and vorticity in inviscid flows

    NASA Astrophysics Data System (ADS)

    Ramesh, O. N.; Patwardhan, Saurabh

    2013-11-01

    A great variety of applications like pollutant mixing in the atmosphere, mixing of reactants in combustion highlight the importance of passive scalar dynamics in fluid flows. The other dynamically important variable in the study of fluid flow is the vorticity. Vorticity though, unlike a passive scalar, does affect the fluid motion. The dynamics of scalar (linear) and vorticity (non-linear) are governed by the equations which inherently have different characteristics. This paper addresses the question of the faithfulness of representation of vorticity by scalar marker and the motivation for this comes from the experiment of Head and Bandyopadhyay (1981) which showed the existence of coherent vortices by using smoke flow visualization in a turbulent boundary layer. We will show analytically in regions where the molecular diffusion effects are negligible, the vorticity and scalar gradients are orthogonal to each other. The iso- surface of scalar follows the vorticity in an inviscid situation. Also, we will demonstrate that in the case of unsteady burgers vortex and vortex shedding behind a finite circular cylinder, the scalar gradient is orthogonal to vorticity and inner product of vorticity and scalar gradients is zero in regions away from the wall.

  1. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    PubMed

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis. © 2015 Wiley Periodicals, Inc.

  2. Molecular Dynamics Simulations and XAFS (MD-XAFS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenter, Gregory K.; Fulton, John L.

    2017-01-20

    MD-XAFS (Molecular Dynamics X-ray Adsorption Fine Structure) makes the connection between simulation techniques that generate an ensemble of molecular configurations and the direct signal observed from X-ray measurement.

  3. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing.

    PubMed

    Sellers, Kristin K; Bennett, Davis V; Fröhlich, Flavio

    2015-02-19

    Neuronal firing responses in visual cortex reflect the statistics of visual input and emerge from the interaction with endogenous network dynamics. Artificial visual stimuli presented to animals in which the network dynamics were constrained by anesthetic agents or trained behavioral tasks have provided fundamental understanding of how individual neurons in primary visual cortex respond to input. In contrast, very little is known about the mesoscale network dynamics and their relationship to microscopic spiking activity in the awake animal during free viewing of naturalistic visual input. To address this gap in knowledge, we recorded local field potential (LFP) and multiunit activity (MUA) simultaneously in all layers of primary visual cortex (V1) of awake, freely viewing ferrets presented with naturalistic visual input (nature movie clips). We found that naturalistic visual stimuli modulated the entire oscillation spectrum; low frequency oscillations were mostly suppressed whereas higher frequency oscillations were enhanced. In average across all cortical layers, stimulus-induced change in delta and alpha power negatively correlated with the MUA responses, whereas sensory-evoked increases in gamma power positively correlated with MUA responses. The time-course of the band-limited power in these frequency bands provided evidence for a model in which naturalistic visual input switched V1 between two distinct, endogenously present activity states defined by the power of low (delta, alpha) and high (gamma) frequency oscillatory activity. Therefore, the two mesoscale activity states delineated in this study may define the degree of engagement of the circuit with the processing of sensory input. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Molecular dynamics simulations of collision-induced absorption: Implementation in LAMMPS

    NASA Astrophysics Data System (ADS)

    Fakhardji, W.; Gustafsson, M.

    2017-02-01

    We pursue simulations of collision-induced absorption in a mixture of argon and xenon gas at room temperature by means of classical molecular dynamics. The established theoretical approach (Hartmann et al. 2011 J. Chem. Phys. 134 094316) is implemented with the molecular dynamics package LAMMPS. The bound state features in the absorption spectrum are well reproduced with the molecular dynamics simulation in comparison with a laboratory measurement. The magnitude of the computed absorption, however, is underestimated in a large part of the spectrum. We suggest some aspects of the simulation that could be improved.

  5. Visual Modelling of Learning Processes

    ERIC Educational Resources Information Center

    Copperman, Elana; Beeri, Catriel; Ben-Zvi, Nava

    2007-01-01

    This paper introduces various visual models for the analysis and description of learning processes. The models analyse learning on two levels: the dynamic level (as a process over time) and the functional level. Two types of model for dynamic modelling are proposed: the session trace, which documents a specific learner in a particular learning…

  6. Dynamic Visual Perception and Reading Development in Chinese School Children

    ERIC Educational Resources Information Center

    Meng, Xiangzhi; Cheng-Lai, Alice; Zeng, Biao; Stein, John F.; Zhou, Xiaolin

    2011-01-01

    The development of reading skills may depend to a certain extent on the development of basic visual perception. The magnocellular theory of developmental dyslexia assumes that deficits in the magnocellular pathway, indicated by less sensitivity in perceiving dynamic sensory stimuli, are responsible for a proportion of reading difficulties…

  7. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.

    PubMed

    Banno, Taisuke; Toyota, Taro

    2015-06-30

    Unique dynamics using inanimate molecular assemblies have drawn a great amount of attention for demonstrating prebiomimetic molecular systems. For the construction of an organized logic combining two fundamental dynamics of life, we demonstrate here a molecular system that exhibits both division and self-propelled motion using oil droplets. The key molecule of this molecular system is a novel cationic surfactant containing a five-membered acetal moiety, and the molecular system can feed the self-propelled oil droplet composed of a benzaldehyde derivative and an alkanol. The division dynamics of the self-propelled oil droplets were observed through the hydrolysis of the cationic surfactant in bulk solution. The mechanism of the current dynamics is argued to be based on the supply of "fresh" oil components in the moving oil droplets, which is induced by the Marangoni instability. We consider this molecular system to be a prototype of self-reproducing inanimate molecular assembly exhibiting self-propelled motion.

  8. Identification of promising DNA GyrB inhibitors for Tuberculosis using pharmacophore-based virtual screening, molecular docking and molecular dynamics studies.

    PubMed

    Islam, Md Ataul; Pillay, Tahir S

    2017-08-01

    In this study, we searched for potential DNA GyrB inhibitors using pharmacophore-based virtual screening followed by molecular docking and molecular dynamics simulation approaches. For this purpose, a set of 248 DNA GyrB inhibitors was collected from the literature and a well-validated pharmacophore model was generated. The best pharmacophore model explained that two each of hydrogen bond acceptors and hydrophobicity regions were critical for inhibition of DNA GyrB. Good statistical results of the pharmacophore model indicated that the model was robust in nature. Virtual screening of molecular databases revealed three molecules as potential antimycobacterial agents. The final screened promising compounds were evaluated in molecular docking and molecular dynamics simulation studies. In the molecular dynamics studies, RMSD and RMSF values undoubtedly explained that the screened compounds formed stable complexes with DNA GyrB. Therefore, it can be concluded that the compounds identified may have potential for the treatment of TB. © 2017 John Wiley & Sons A/S.

  9. A novel role for visual perspective cues in the neural computation of depth.

    PubMed

    Kim, HyungGoo R; Angelaki, Dora E; DeAngelis, Gregory C

    2015-01-01

    As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extraretinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We found that incorporating these 'dynamic perspective' cues allowed the visual system to generate selectivity for depth sign from motion parallax in macaque cortical area MT, a computation that was previously thought to require extraretinal signals regarding eye velocity. Our findings suggest neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations.

  10. Interactive Visualization of Complex Seismic Data and Models Using Bokeh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Chengping; Ammon, Charles J.; Maceira, Monica

    Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less

  11. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  12. Interactive Visualization of Complex Seismic Data and Models Using Bokeh

    DOE PAGES

    Chai, Chengping; Ammon, Charles J.; Maceira, Monica; ...

    2018-02-14

    Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less

  13. Accelerated molecular dynamics and protein conformational change: a theoretical and practical guide using a membrane embedded model neurotransmitter transporter.

    PubMed

    Gedeon, Patrick C; Thomas, James R; Madura, Jeffry D

    2015-01-01

    Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis.

  14. Students' Visual Learning Disabilities and Under-Achievement in Selected Science Subjects.

    ERIC Educational Resources Information Center

    Rochford, Kevin

    Two experiments were conducted to assess the performance of freshmen chemistry students with poor spatial visualization skills. In the first experiment, 31 chemistry students with academically deficient backgrounds completed a diagnostic test of their ability to visualize and interpret pictorial representations of simple molecular structures. At…

  15. Biochemical Visual Literacy with Constructive Alignment: Outcomes, Assessment, and Activities

    ERIC Educational Resources Information Center

    Herraez, Angel; Costa, Manuel Joao

    2013-01-01

    Several contributions in "Biochemistry and Molecular Biology Education" have highlighted the role of visualization tools and the importance of developing students' visual literacy in biochemistry education. In this forum, the authors suggest that more focus is needed on the assessment of student learning, and they advance…

  16. Stephen R. Decker | NREL

    Science.gov Websites

    Stephen R. Decker Photo of Stephen R. Decker Steve Decker Group Research Manager III-Molecular screening Fungal molecular biology and fermentation Non-dilute acid pretreatment technologies Cellulose ," Visual. Exper. (2015) "Identification and molecular characterization of the switchgrass AP2

  17. Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein

    NASA Astrophysics Data System (ADS)

    Asafi, M. S.; Yildirim, A.; Tekpinar, M.

    2016-04-01

    Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated.

  18. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.

    PubMed

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W

    2017-10-01

    The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Insight into the Li{sub 2}CO{sub 3}–K{sub 2}CO{sub 3} eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, Dario; Vuilleumier, Rodolphe, E-mail: rodolphe.vuilleumier@ens.fr; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, 75005 Paris

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li{sub 2}CO{sub 3}–K{sub 2}CO{sub 3} (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900–1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, wemore » present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture’s self-diffusion coefficients, viscosity, and ionic conductivity.« less

  20. Enhanced Molecular Dynamics Methods Applied to Drug Design Projects.

    PubMed

    Ziada, Sonia; Braka, Abdennour; Diharce, Julien; Aci-Sèche, Samia; Bonnet, Pascal

    2018-01-01

    Nobel Laureate Richard P. Feynman stated: "[…] everything that living things do can be understood in terms of jiggling and wiggling of atoms […]." The importance of computer simulations of macromolecules, which use classical mechanics principles to describe atom behavior, is widely acknowledged and nowadays, they are applied in many fields such as material sciences and drug discovery. With the increase of computing power, molecular dynamics simulations can be applied to understand biological mechanisms at realistic timescales. In this chapter, we share our computational experience providing a global view of two of the widely used enhanced molecular dynamics methods to study protein structure and dynamics through the description of their characteristics, limits and we provide some examples of their applications in drug design. We also discuss the appropriate choice of software and hardware. In a detailed practical procedure, we describe how to set up, run, and analyze two main molecular dynamics methods, the umbrella sampling (US) and the accelerated molecular dynamics (aMD) methods.

  1. The Perceptual Root of Object-Based Storage: An Interactive Model of Perception and Visual Working Memory

    ERIC Educational Resources Information Center

    Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei

    2011-01-01

    Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…

  2. Molecular dynamics simulation and NMR investigation of the association of the β-blockers atenolol and propranolol with a chiral molecular micelle

    NASA Astrophysics Data System (ADS)

    Morris, Kevin F.; Billiot, Eugene J.; Billiot, Fereshteh H.; Hoffman, Charlene B.; Gladis, Ashley A.; Lipkowitz, Kenny B.; Southerland, William M.; Fang, Yayin

    2015-08-01

    Molecular dynamics simulations and NMR spectroscopy were used to compare the binding of two β-blocker drugs to the chiral molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The molecular micelle is used as a chiral selector in capillary electrophoresis. This study is part of a larger effort to understand the mechanism of chiral recognition in capillary electrophoresis by characterizing the molecular micelle binding of chiral compounds with different geometries and charges. Propranolol and atenolol were chosen because their structures are similar, but their chiral interactions with the molecular micelle are different. Molecular dynamics simulations showed both propranolol enantiomers inserted their aromatic rings into the molecular micelle core and that (S)-propranolol associated more strongly with the molecular micelle than (R)-propranolol. This difference was attributed to stronger molecular micelle hydrogen bonding interactions experienced by (S)-propranolol. Atenolol enantiomers were found to bind near the molecular micelle surface and to have similar molecular micelle binding free energies.

  3. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  4. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE PAGES

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  5. Identifying the Interaction of Vancomycin With Novel pH-Responsive Lipids as Antibacterial Biomaterials Via Accelerated Molecular Dynamics and Binding Free Energy Calculations.

    PubMed

    Ahmed, Shaimaa; Vepuri, Suresh B; Jadhav, Mahantesh; Kalhapure, Rahul S; Govender, Thirumala

    2018-06-01

    Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4 > lipid1 > lipid2 > lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (∆G binding  = -2.17 and -11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation ability, drug release and further development of novel liposome-based pH-responsive nano-drug delivery system with refined structural and chemical features of potential lipid molecule for formulation development.

  6. A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    PubMed Central

    Carmeli, Cristian; Lopez-Aguado, Laura; Schmidt, Kerstin E.; De Feo, Oscar; Innocenti, Giorgio M.

    2007-01-01

    Background The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization. PMID:18074012

  7. Nonadiabatic Ab Initio Molecular Dynamics with the Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction Method [Non-Adiabatic Ab Initio Molecular Dynamics with Floating Occupation Molecular Orbitals CASCI Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollas, Daniel; Sistik, Lukas; Hohenstein, Edward G.

    Here, we show that the floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the widely used complete active space self-consistent field (CASSCF) method in direct nonadiabatic dynamics simulations. We have simulated photodynamics of three archetypal molecules in photodynamics: ethylene, methaniminium cation, and malonaldehyde. We compared the time evolution of electronic populations and reaction mechanisms as revealed by the FOMO-CASCI and CASSCF approaches. Generally, the two approaches provide similar results. Some dynamical differences are observed, but these can be traced back to energetically minor differences in the potential energy surfaces. We suggest thatmore » the FOMO-CASCI method represents, due to its efficiency and stability, a promising approach for direct ab initio dynamics in the excited state.« less

  8. ls1 mardyn: The Massively Parallel Molecular Dynamics Code for Large Systems.

    PubMed

    Niethammer, Christoph; Becker, Stefan; Bernreuther, Martin; Buchholz, Martin; Eckhardt, Wolfgang; Heinecke, Alexander; Werth, Stephan; Bungartz, Hans-Joachim; Glass, Colin W; Hasse, Hans; Vrabec, Jadran; Horsch, Martin

    2014-10-14

    The molecular dynamics simulation code ls1 mardyn is presented. It is a highly scalable code, optimized for massively parallel execution on supercomputing architectures and currently holds the world record for the largest molecular simulation with over four trillion particles. It enables the application of pair potentials to length and time scales that were previously out of scope for molecular dynamics simulation. With an efficient dynamic load balancing scheme, it delivers high scalability even for challenging heterogeneous configurations. Presently, multicenter rigid potential models based on Lennard-Jones sites, point charges, and higher-order polarities are supported. Due to its modular design, ls1 mardyn can be extended to new physical models, methods, and algorithms, allowing future users to tailor it to suit their respective needs. Possible applications include scenarios with complex geometries, such as fluids at interfaces, as well as nonequilibrium molecular dynamics simulation of heat and mass transfer.

  9. Two visual systems in monitoring of dynamic traffic: effects of visual disruption.

    PubMed

    Zheng, Xianjun Sam; McConkie, George W

    2010-05-01

    Studies from neurophysiology and neuropsychology provide support for two separate object- and location-based visual systems, ventral and dorsal. In the driving context, a study was conducted using a change detection paradigm to explore drivers' ability to monitor the dynamic traffic flow, and the effects of visual disruption on these two visual systems. While driving, a discrete change, such as vehicle location, color, or identity, was occasionally made in one of the vehicles on the road ahead of the driver. Experiment results show that without visual disruption, all changes were detected very well; yet, these equally perceivable changes were disrupted differently by a brief blank display (150 ms): the detection of location changes was especially reduced. The disruption effects were also bigger for the parked vehicle compared to the moving ones. The findings support the different roles for two visual systems in monitoring the dynamic traffic: the "where", dorsal system, tracks vehicle spatiotemporal information on perceptual level, encoding information in a coarse and transient manner; whereas the "what", ventral system, monitors vehicles' featural information, encoding information more accurately and robustly. Both systems work together contributing to the driver's situation awareness of traffic. Benefits and limitations of using the driving simulation are also discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Rotational dynamics of cargos at pauses during axonal transport.

    PubMed

    Gu, Yan; Sun, Wei; Wang, Gufeng; Jeftinija, Ksenija; Jeftinija, Srdija; Fang, Ning

    2012-01-01

    Direct visualization of axonal transport in live neurons is essential for our understanding of the neuronal functions and the working mechanisms of microtubule-based motor proteins. Here we use the high-speed single particle orientation and rotational tracking technique to directly visualize the rotational dynamics of cargos in both active directional transport and pausing stages of axonal transport, with a temporal resolution of 2 ms. Both long and short pauses are imaged, and the correlations between the pause duration, the rotational behaviour of the cargo at the pause, and the moving direction after the pause are established. Furthermore, the rotational dynamics leading to switching tracks are visualized in detail. These first-time observations of cargo's rotational dynamics provide new insights on how kinesin and dynein motors take the cargo through the alternating stages of active directional transport and pause.

  11. Protonation-induced stereoisomerism in nicotine: Conformational studies using classical (AMBER) and ab initio (Car Parrinello) molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hammond, Philip S.; Wu, Yudong; Harris, Rebecca; Minehardt, Todd J.; Car, Roberto; Schmitt, Jeffrey D.

    2005-01-01

    A variety of biologically active small molecules contain prochiral tertiary amines, which become chiral centers upon protonation. S-nicotine, the prototypical nicotinic acetylcholine receptor agonist, produces two diastereomers on protonation. Results, using both classical (AMBER) and ab initio (Car-Parrinello) molecular dynamical studies, illustrate the significant differences in conformational space explored by each diastereomer. As is expected, this phenomenon has an appreciable effect on nicotine's energy hypersurface and leads to differentiation in molecular shape and divergent sampling. Thus, protonation induced isomerism can produce dynamic effects that may influence the behavior of a molecule in its interaction with a target protein. We also examine differences in the conformational dynamics for each diastereomer as quantified by both molecular dynamics methods.

  12. Nuclear Dynamics at Molecule–Metal Interfaces: A Pseudoparticle Perspective

    DOE PAGES

    Galperin, Michael; Nitzan, Abraham

    2015-11-20

    We discuss nuclear dynamics at molecule-metal interfaces including nonequilibrium molecular junctions. Starting from the many-body states (pseudoparticle) formulation of the molecule-metal system in the molecular vibronic basis, we introduce gradient expansion to reduce the adiabatic nuclear dynamics (that is, nuclear dynamics on a single molecular potential surface) into its semiclassical form while maintaining the effect of the nonadiabatic electronic transitions between different molecular charge states. Finally, this yields a set of equations for the nuclear dynamics in the presence of these nonadiabatic transitions, which reproduce the surface-hopping formulation in the limit of small metal-molecule coupling (where broadening of the molecularmore » energy levels can be disregarded) and Ehrenfest dynamics (motion on the potential of mean force) when information on the different charging states is traced out.« less

  13. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules

    NASA Astrophysics Data System (ADS)

    Hamelberg, Donald; Mongan, John; McCammon, J. Andrew

    2004-06-01

    Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.

  14. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock

    NASA Technical Reports Server (NTRS)

    Quast, Thomas; Nelson, Robert C.; Fisher, David F.

    1991-01-01

    Free-to-roll experiments and flow visualization studies have been conducted for a 2.5-percent model of the F-18 undergoing unsteady wing rock oscillations. Data have been acquired in the form of roll angle time histories as well as video recordings and 35 mm photography of the forebody and leading edge extension vortices. The time histories were differentiated to produce angular velocity and angular acceleration. From this the roll moment as a function of time and/or roll angle could be estimated. A thorough analysis of the data has revealed a genuine wing-rock phenomenon. Off-surface flow visualization was used to identiify the forebody and LEX vortex core positions and their interaction in both static and dynamic configurations. A direct correlation between the dynamic data and visualized vortex activity during the wing-rock motion has been made.

  15. ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra

    NASA Astrophysics Data System (ADS)

    Dockendorff, Monika; Solar, Horacio

    2018-01-01

    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets - designed and used in an exploratory manner - promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.

  16. Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context

    PubMed Central

    Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi

    2007-01-01

    Background Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. Results lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. Conclusion lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired. PMID:17877794

  17. Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context.

    PubMed

    Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi

    2007-09-18

    Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired.

  18. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    PubMed

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  19. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  20. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

Top