Visual and Non-Visual Contributions to the Perception of Object Motion during Self-Motion
Fajen, Brett R.; Matthis, Jonathan S.
2013-01-01
Many locomotor tasks involve interactions with moving objects. When observer (i.e., self-)motion is accompanied by object motion, the optic flow field includes a component due to self-motion and a component due to object motion. For moving observers to perceive the movement of other objects relative to the stationary environment, the visual system could recover the object-motion component – that is, it could factor out the influence of self-motion. In principle, this could be achieved using visual self-motion information, non-visual self-motion information, or a combination of both. In this study, we report evidence that visual information about the speed (Experiment 1) and direction (Experiment 2) of self-motion plays a role in recovering the object-motion component even when non-visual self-motion information is also available. However, the magnitude of the effect was less than one would expect if subjects relied entirely on visual self-motion information. Taken together with previous studies, we conclude that when self-motion is real and actively generated, both visual and non-visual self-motion information contribute to the perception of object motion. We also consider the possible role of this process in visually guided interception and avoidance of moving objects. PMID:23408983
Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu
2015-01-01
Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828
Accuracy and Tuning of Flow Parsing for Visual Perception of Object Motion During Self-Motion
Niehorster, Diederick C.
2017-01-01
How do we perceive object motion during self-motion using visual information alone? Previous studies have reported that the visual system can use optic flow to identify and globally subtract the retinal motion component resulting from self-motion to recover scene-relative object motion, a process called flow parsing. In this article, we developed a retinal motion nulling method to directly measure and quantify the magnitude of flow parsing (i.e., flow parsing gain) in various scenarios to examine the accuracy and tuning of flow parsing for the visual perception of object motion during self-motion. We found that flow parsing gains were below unity for all displays in all experiments; and that increasing self-motion and object motion speed did not alter flow parsing gain. We conclude that visual information alone is not sufficient for the accurate perception of scene-relative motion during self-motion. Although flow parsing performs global subtraction, its accuracy also depends on local motion information in the retinal vicinity of the moving object. Furthermore, the flow parsing gain was constant across common self-motion or object motion speeds. These results can be used to inform and validate computational models of flow parsing. PMID:28567272
Gaglianese, A; Costagli, M; Ueno, K; Ricciardi, E; Bernardi, G; Pietrini, P; Cheng, K
2015-01-22
The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypassing the V1, through a direct pathway. We aimed at elucidating whether this direct route between LGN and hMT+ represents a 'fast lane' reserved to high-speed motion, as proposed previously, or it is merely involved in processing motion information irrespective of speeds. We evaluated functional magnetic resonance imaging (fMRI) responses elicited by moving visual stimuli and applied connectivity analyses to investigate the effect of motion speed on the causal influence between LGN and hMT+, independent of V1, using the Conditional Granger Causality (CGC) in the presence of slow and fast visual stimuli. Our results showed that at least part of the visual motion information from LGN reaches hMT+, bypassing V1, in response to both slow and fast motion speeds of the perceived stimuli. We also investigated whether motion speeds have different effects on the connections between LGN and functional subdivisions within hMT+: direct connections between LGN and MT-proper carry mainly slow motion information, while connections between LGN and MST carry mainly fast motion information. The existence of a parallel pathway that connects the LGN directly to hMT+ in response to both slow and fast speeds may explain why MT and MST can still respond in the presence of V1 lesions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Filling gaps in visual motion for target capture
Bosco, Gianfranco; Delle Monache, Sergio; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco
2015-01-01
A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation. PMID:25755637
Filling gaps in visual motion for target capture.
Bosco, Gianfranco; Monache, Sergio Delle; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco
2015-01-01
A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation.
Evidence for auditory-visual processing specific to biological motion.
Wuerger, Sophie M; Crocker-Buque, Alexander; Meyer, Georg F
2012-01-01
Biological motion is usually associated with highly correlated sensory signals from more than one modality: an approaching human walker will not only have a visual representation, namely an increase in the retinal size of the walker's image, but also a synchronous auditory signal since the walker's footsteps will grow louder. We investigated whether the multisensorial processing of biological motion is subject to different constraints than ecologically invalid motion. Observers were presented with a visual point-light walker and/or synchronised auditory footsteps; the walker was either approaching the observer (looming motion) or walking away (receding motion). A scrambled point-light walker served as a control. Observers were asked to detect the walker's motion as quickly and as accurately as possible. In Experiment 1 we tested whether the reaction time advantage due to redundant information in the auditory and visual modality is specific for biological motion. We found no evidence for such an effect: the reaction time reduction was accounted for by statistical facilitation for both biological and scrambled motion. In Experiment 2, we dissociated the auditory and visual information and tested whether inconsistent motion directions across the auditory and visual modality yield longer reaction times in comparison to consistent motion directions. Here we find an effect specific to biological motion: motion incongruency leads to longer reaction times only when the visual walker is intact and recognisable as a human figure. If the figure of the walker is abolished by scrambling, motion incongruency has no effect on the speed of the observers' judgments. In conjunction with Experiment 1 this suggests that conflicting auditory-visual motion information of an intact human walker leads to interference and thereby delaying the response.
Lencer, Rebekka; Keedy, Sarah K.; Reilly, James L.; McDonough, Bruce E.; Harris, Margret S. H.; Sprenger, Andreas; Sweeney, John A.
2011-01-01
Visual motion processing and its use for pursuit eye movement control represent a valuable model for studying the use of sensory input for action planning. In psychotic disorders, alterations of visual motion perception have been suggested to cause pursuit eye tracking deficits. We evaluated this system in functional neuroimaging studies of untreated first-episode schizophrenia (N=24), psychotic bipolar disorder patients (N=13) and healthy controls (N=20). During a passive visual motion processing task, both patient groups showed reduced activation in the posterior parietal projection fields of motion-sensitive extrastriate area V5, but not in V5 itself. This suggests reduced bottom-up transfer of visual motion information from extrastriate cortex to perceptual systems in parietal association cortex. During active pursuit, activation was enhanced in anterior intraparietal sulcus and insula in both patient groups, and in dorsolateral prefrontal cortex and dorsomedial thalamus in schizophrenia patients. This may result from increased demands on sensorimotor systems for pursuit control due to the limited availability of perceptual motion information about target speed and tracking error. Visual motion information transfer deficits to higher -level association cortex may contribute to well-established pursuit tracking abnormalities, and perhaps to a wider array of alterations in perception and action planning in psychotic disorders. PMID:21873035
Filling-in visual motion with sounds.
Väljamäe, A; Soto-Faraco, S
2008-10-01
Information about the motion of objects can be extracted by multiple sensory modalities, and, as a consequence, object motion perception typically involves the integration of multi-sensory information. Often, in naturalistic settings, the flow of such information can be rather discontinuous (e.g. a cat racing through the furniture in a cluttered room is partly seen and partly heard). This study addressed audio-visual interactions in the perception of time-sampled object motion by measuring adaptation after-effects. We found significant auditory after-effects following adaptation to unisensory auditory and visual motion in depth, sampled at 12.5 Hz. The visually induced (cross-modal) auditory motion after-effect was eliminated if visual adaptors flashed at half of the rate (6.25 Hz). Remarkably, the addition of the high-rate acoustic flutter (12.5 Hz) to this ineffective, sparsely time-sampled, visual adaptor restored the auditory after-effect to a level comparable to what was seen with high-rate bimodal adaptors (flashes and beeps). Our results suggest that this auditory-induced reinstatement of the motion after-effect from the poor visual signals resulted from the occurrence of sound-induced illusory flashes. This effect was found to be dependent both on the directional congruency between modalities and on the rate of auditory flutter. The auditory filling-in of time-sampled visual motion supports the feasibility of using reduced frame rate visual content in multisensory broadcasting and virtual reality applications.
Kinesthetic information disambiguates visual motion signals.
Hu, Bo; Knill, David C
2010-05-25
Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.
Streepey, Jefferson W; Kenyon, Robert V; Keshner, Emily A
2007-01-01
We previously reported responses to induced postural instability in young healthy individuals viewing visual motion with a narrow (25 degrees in both directions) and wide (90 degrees and 55 degrees in the horizontal and vertical directions) field of view (FOV) as they stood on different sized blocks. Visual motion was achieved using an immersive virtual environment that moved realistically with head motion (natural motion) and translated sinusoidally at 0.1 Hz in the fore-aft direction (augmented motion). We observed that a subset of the subjects (steppers) could not maintain continuous stance on the smallest block when the virtual environment was in motion. We completed a posteriori analyses on the postural responses of the steppers and non-steppers that may inform us about the mechanisms underlying these differences in stability. We found that when viewing augmented motion with a wide FOV, there was a greater effect on the head and whole body center of mass and ankle angle root mean square (RMS) values of the steppers than of the non-steppers. FFT analyses revealed greater power at the frequency of the visual stimulus in the steppers compared to the non-steppers. Whole body COM time lags relative to the augmented visual scene revealed that the time-delay between the scene and the COM was significantly increased in the steppers. The increased responsiveness to visual information suggests a greater visual field-dependency of the steppers and suggests that the thresholds for shifting from a reliance on visual information to somatosensory information can differ even within a healthy population.
Shibai, Atsushi; Arimoto, Tsunehiro; Yoshinaga, Tsukasa; Tsuchizawa, Yuta; Khureltulga, Dashdavaa; Brown, Zuben P; Kakizuka, Taishi; Hosoda, Kazufumi
2018-06-05
Visual recognition of conspecifics is necessary for a wide range of social behaviours in many animals. Medaka (Japanese rice fish), a commonly used model organism, are known to be attracted by the biological motion of conspecifics. However, biological motion is a composite of both body-shape motion and entire-field motion trajectory (i.e., posture or motion-trajectory elements, respectively), and it has not been revealed which element mediates the attractiveness. Here, we show that either posture or motion-trajectory elements alone can attract medaka. We decomposed biological motion of the medaka into the two elements and synthesized visual stimuli that contain both, either, or none of the two elements. We found that medaka were attracted by visual stimuli that contain at least one of the two elements. In the context of other known static visual information regarding the medaka, the potential multiplicity of information regarding conspecific recognition has further accumulated. Our strategy of decomposing biological motion into these partial elements is applicable to other animals, and further studies using this technique will enhance the basic understanding of visual recognition of conspecifics.
Motion perception: behavior and neural substrate.
Mather, George
2011-05-01
Visual motion perception is vital for survival. Single-unit recordings in primate primary visual cortex (V1) have revealed the existence of specialized motion sensing neurons; perceptual effects such as the motion after-effect demonstrate their importance for motion perception. Human psychophysical data on motion detection can be explained by a computational model of cortical motion sensors. Both psychophysical and physiological data reveal at least two classes of motion sensor capable of sensing motion in luminance-defined and texture-defined patterns, respectively. Psychophysical experiments also reveal that motion can be seen independently of motion sensor output, based on attentive tracking of visual features. Sensor outputs are inherently ambiguous, due to the problem of univariance in neural responses. In order to compute stimulus direction and speed, the visual system must compare the responses of many different sensors sensitive to different directions and speeds. Physiological data show that this computation occurs in the visual middle temporal (MT) area. Recent psychophysical studies indicate that information about spatial form may also play a role in motion computations. Adaptation studies show that the human visual system is selectively sensitive to large-scale optic flow patterns, and physiological studies indicate that cells in the middle superior temporal (MST) area derive this sensitivity from the combined responses of many MT cells. Extraretinal signals used to control eye movements are an important source of signals to cancel out the retinal motion responses generated by eye movements, though visual information also plays a role. A number of issues remain to be resolved at all levels of the motion-processing hierarchy. WIREs Cogni Sci 2011 2 305-314 DOI: 10.1002/wcs.110 For further resources related to this article, please visit the WIREs website Additional Supporting Information may be found in http://www.lifesci.sussex.ac.uk/home/George_Mather/Motion/index.html. Copyright © 2010 John Wiley & Sons, Ltd.
Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.
Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong
2016-08-01
The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.
Lobjois, Régis; Dagonneau, Virginie; Isableu, Brice
2016-11-01
Compared with driving or flight simulation, little is known about self-motion perception in riding simulation. The goal of this study was to examine whether or not continuous roll motion supports the sensation of leaning into bends in dynamic motorcycle simulation. To this end, riders were able to freely tune the visual scene and/or motorcycle simulator roll angle to find a pattern that matched their prior knowledge. Our results revealed idiosyncrasy in the combination of visual and proprioceptive information. Some subjects relied more on the visual dimension, but reported increased sickness symptoms with the visual roll angle. Others relied more on proprioceptive information, tuning the direction of the visual scenery to match three possible patterns. Our findings also showed that these two subgroups tuned the motorcycle simulator roll angle in a similar way. This suggests that sustained inertially specified roll motion have contributed to the sensation of leaning in spite of the occurrence of unexpected gravito-inertial stimulation during the tilt. Several hypotheses are discussed. Practitioner Summary: Self-motion perception in motorcycle simulation is a relatively new research area. We examined how participants combined visual and proprioceptive information. Findings revealed individual differences in the visual dimension. However, participants tuned the simulator roll angle similarly, supporting the hypothesis that sustained inertially specified roll motion contributes to a leaning sensation.
Modality-dependent effect of motion information in sensory-motor synchronised tapping.
Ono, Kentaro
2018-05-14
Synchronised action is important for everyday life. Generally, the auditory domain is more sensitive for coding temporal information, and previous studies have shown that auditory-motor synchronisation is much more precise than visuo-motor synchronisation. Interestingly, adding motion information improves synchronisation with visual stimuli and the advantage of the auditory modality seems to diminish. However, whether adding motion information also improves auditory-motor synchronisation remains unknown. This study compared tapping accuracy with a stationary or moving stimulus in both auditory and visual modalities. Participants were instructed to tap in synchrony with the onset of a sound or flash in the stationary condition, while these stimuli were perceived as moving from side to side in the motion condition. The results demonstrated that synchronised tapping with a moving visual stimulus was significantly more accurate than tapping with a stationary visual stimulus, as previous studies have shown. However, tapping with a moving auditory stimulus was significantly poorer than tapping with a stationary auditory stimulus. Although motion information impaired audio-motor synchronisation, an advantage of auditory modality compared to visual modality still existed. These findings are likely the result of higher temporal resolution in the auditory domain, which is likely due to the physiological and structural differences in the auditory and visual pathways in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.
Visual/motion cue mismatch in a coordinated roll maneuver
NASA Technical Reports Server (NTRS)
Shirachi, D. K.; Shirley, R. S.
1981-01-01
The effects of bandwidth differences between visual and motion cueing systems on pilot performance for a coordinated roll task were investigated. Visual and motion cue configurations which were acceptable and the effects of reduced motion cue scaling on pilot performance were studied to determine the scale reduction threshold for which pilot performance was significantly different from full scale pilot performance. It is concluded that: (1) the presence or absence of high frequency error information in the visual and/or motion display systems significantly affects pilot performance; and (2) the attenuation of motion scaling while maintaining other display dynamic characteristics constant, affects pilot performance.
Buchanan, John J
2016-01-01
The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.
Verspui, Remko; Gray, John R
2009-10-01
Animals rely on multimodal sensory integration for proper orientation within their environment. For example, odour-guided behaviours often require appropriate integration of concurrent visual cues. To gain a further understanding of mechanisms underlying sensory integration in odour-guided behaviour, our study examined the effects of visual stimuli induced by self-motion and object-motion on odour-guided flight in male M. sexta. By placing stationary objects (pillars) on either side of a female pheromone plume, moths produced self-induced visual motion during odour-guided flight. These flights showed a reduction in both ground and flight speeds and inter-turn interval when compared with flight tracks without stationary objects. Presentation of an approaching 20 cm disc, to simulate object-motion, resulted in interrupted odour-guided flight and changes in flight direction away from the pheromone source. Modifications of odour-guided flight behaviour in the presence of stationary objects suggest that visual information, in conjunction with olfactory cues, can be used to control the rate of counter-turning. We suggest that the behavioural responses to visual stimuli induced by object-motion indicate the presence of a neural circuit that relays visual information to initiate escape responses. These behavioural responses also suggest the presence of a sensory conflict requiring a trade-off between olfactory and visually driven behaviours. The mechanisms underlying olfactory and visual integration are discussed in the context of these behavioural responses.
Spatiotemporal Processing in Crossmodal Interactions for Perception of the External World: A Review
Hidaka, Souta; Teramoto, Wataru; Sugita, Yoichi
2015-01-01
Research regarding crossmodal interactions has garnered much interest in the last few decades. A variety of studies have demonstrated that multisensory information (vision, audition, tactile sensation, and so on) can perceptually interact with each other in the spatial and temporal domains. Findings regarding crossmodal interactions in the spatiotemporal domain (i.e., motion processing) have also been reported, with updates in the last few years. In this review, we summarize past and recent findings on spatiotemporal processing in crossmodal interactions regarding perception of the external world. A traditional view regarding crossmodal interactions holds that vision is superior to audition in spatial processing, but audition is dominant over vision in temporal processing. Similarly, vision is considered to have dominant effects over the other sensory modalities (i.e., visual capture) in spatiotemporal processing. However, recent findings demonstrate that sound could have a driving effect on visual motion perception. Moreover, studies regarding perceptual associative learning reported that, after association is established between a sound sequence without spatial information and visual motion information, the sound sequence could trigger visual motion perception. Other sensory information, such as motor action or smell, has also exhibited similar driving effects on visual motion perception. Additionally, recent brain imaging studies demonstrate that similar activation patterns could be observed in several brain areas, including the motion processing areas, between spatiotemporal information from different sensory modalities. Based on these findings, we suggest that multimodal information could mutually interact in spatiotemporal processing in the percept of the external world and that common perceptual and neural underlying mechanisms would exist for spatiotemporal processing. PMID:26733827
NASA Technical Reports Server (NTRS)
Comstock, J. R., Jr.; Kirby, R. H.; Coates, G. D.
1984-01-01
Pilot and flight crew assessment of visually displayed information is examined as well as the effects of degraded and uncorrected motion feedback, and instrument scanning efficiency by the pilot. Computerized flight simulation and appropriate physiological measurements are used to collect data for standardization.
Relationship Between Optimal Gain and Coherence Zone in Flight Simulation
NASA Technical Reports Server (NTRS)
Gracio, Bruno Jorge Correia; Pais, Ana Rita Valente; vanPaassen, M. M.; Mulder, Max; Kely, Lon C.; Houck, Jacob A.
2011-01-01
In motion simulation the inertial information generated by the motion platform is most of the times different from the visual information in the simulator displays. This occurs due to the physical limits of the motion platform. However, for small motions that are within the physical limits of the motion platform, one-to-one motion, i.e. visual information equal to inertial information, is possible. It has been shown in previous studies that one-to-one motion is often judged as too strong, causing researchers to lower the inertial amplitude. When trying to measure the optimal inertial gain for a visual amplitude, we found a zone of optimal gains instead of a single value. Such result seems related with the coherence zones that have been measured in flight simulation studies. However, the optimal gain results were never directly related with the coherence zones. In this study we investigated whether the optimal gain measurements are the same as the coherence zone measurements. We also try to infer if the results obtained from the two measurements can be used to differentiate between simulators with different configurations. An experiment was conducted at the NASA Langley Research Center which used both the Cockpit Motion Facility and the Visual Motion Simulator. The results show that the inertial gains obtained with the optimal gain are different than the ones obtained with the coherence zone measurements. The optimal gain is within the coherence zone.The point of mean optimal gain was lower and further away from the one-to-one line than the point of mean coherence. The zone width obtained for the coherence zone measurements was dependent on the visual amplitude and frequency. For the optimal gain, the zone width remained constant when the visual amplitude and frequency were varied. We found no effect of the simulator configuration in both the coherence zone and optimal gain measurements.
Impaired visual recognition of biological motion in schizophrenia.
Kim, Jejoong; Doop, Mikisha L; Blake, Randolph; Park, Sohee
2005-09-15
Motion perception deficits have been suggested to be an important feature of schizophrenia but the behavioral consequences of such deficits are unknown. Biological motion refers to the movements generated by living beings. The human visual system rapidly and effortlessly detects and extracts socially relevant information from biological motion. A deficit in biological motion perception may have significant consequences for detecting and interpreting social information. Schizophrenia patients and matched healthy controls were tested on two visual tasks: recognition of human activity portrayed in point-light animations (biological motion task) and a perceptual control task involving detection of a grouped figure against the background noise (global-form task). Both tasks required detection of a global form against background noise but only the biological motion task required the extraction of motion-related information. Schizophrenia patients performed as well as the controls in the global-form task, but were significantly impaired on the biological motion task. In addition, deficits in biological motion perception correlated with impaired social functioning as measured by the Zigler social competence scale [Zigler, E., Levine, J. (1981). Premorbid competence in schizophrenia: what is being measured? Journal of Consulting and Clinical Psychology, 49, 96-105.]. The deficit in biological motion processing, which may be related to the previously documented deficit in global motion processing, could contribute to abnormal social functioning in schizophrenia.
Nonlinear circuits for naturalistic visual motion estimation
Fitzgerald, James E; Clark, Damon A
2015-01-01
Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494
Motion processing with two eyes in three dimensions.
Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C
2011-02-11
The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.
Video quality assessment using a statistical model of human visual speed perception.
Wang, Zhou; Li, Qiang
2007-12-01
Motion is one of the most important types of information contained in natural video, but direct use of motion information in the design of video quality assessment algorithms has not been deeply investigated. Here we propose to incorporate a recent model of human visual speed perception [Nat. Neurosci. 9, 578 (2006)] and model visual perception in an information communication framework. This allows us to estimate both the motion information content and the perceptual uncertainty in video signals. Improved video quality assessment algorithms are obtained by incorporating the model as spatiotemporal weighting factors, where the weight increases with the information content and decreases with the perceptual uncertainty. Consistent improvement over existing video quality assessment algorithms is observed in our validation with the video quality experts group Phase I test data set.
A Role for Mouse Primary Visual Cortex in Motion Perception.
Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo
2018-06-04
Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Yi; Chen, Lihan
2016-01-01
Recent studies of brain plasticity that pertain to time perception have shown that fast training of temporal discrimination in one modality, for example, the auditory modality, can improve performance of temporal discrimination in another modality, such as the visual modality. We here examined whether the perception of visual Ternus motion could be recalibrated through fast crossmodal statistical binding of temporal information and stimuli properties binding. We conducted two experiments, composed of three sessions each: pre-test, learning, and post-test. In both the pre-test and the post-test, participants classified the Ternus display as either “element motion” or “group motion.” For the training session in Experiment 1, we constructed two types of temporal structures, in which two consecutively presented sound beeps were dominantly (80%) flanked by one leading visual Ternus frame and by one lagging visual Ternus frame (VAAV) or dominantly inserted by two Ternus visual frames (AVVA). Participants were required to respond which interval (auditory vs. visual) was longer. In Experiment 2, we presented only a single auditory–visual pair but with similar temporal configurations as in Experiment 1, and asked participants to perform an audio–visual temporal order judgment. The results of these two experiments support that statistical binding of temporal information and stimuli properties can quickly and selectively recalibrate the sensitivity of perceiving visual motion, according to the protocols of the specific bindings. PMID:27065910
Behavior Selection of Mobile Robot Based on Integration of Multimodal Information
NASA Astrophysics Data System (ADS)
Chen, Bin; Kaneko, Masahide
Recently, biologically inspired robots have been developed to acquire the capacity for directing visual attention to salient stimulus generated from the audiovisual environment. On purpose to realize this behavior, a general method is to calculate saliency maps to represent how much the external information attracts the robot's visual attention, where the audiovisual information and robot's motion status should be involved. In this paper, we represent a visual attention model where three modalities, that is, audio information, visual information and robot's motor status are considered, while the previous researches have not considered all of them. Firstly, we introduce a 2-D density map, on which the value denotes how much the robot pays attention to each spatial location. Then we model the attention density using a Bayesian network where the robot's motion statuses are involved. Secondly, the information from both of audio and visual modalities is integrated with the attention density map in integrate-fire neurons. The robot can direct its attention to the locations where the integrate-fire neurons are fired. Finally, the visual attention model is applied to make the robot select the visual information from the environment, and react to the content selected. Experimental results show that it is possible for robots to acquire the visual information related to their behaviors by using the attention model considering motion statuses. The robot can select its behaviors to adapt to the dynamic environment as well as to switch to another task according to the recognition results of visual attention.
Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada
2013-01-01
Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031
Spering, Miriam; Montagnini, Anna
2011-04-22
Many neurophysiological studies in monkeys have indicated that visual motion information for the guidance of perception and smooth pursuit eye movements is - at an early stage - processed in the same visual pathway in the brain, crucially involving the middle temporal area (MT). However, these studies left some questions unanswered: Are perception and pursuit driven by the same or independent neuronal signals within this pathway? Are the perceptual interpretation of visual motion information and the motor response to visual signals limited by the same source of neuronal noise? Here, we review psychophysical studies that were motivated by these questions and compared perception and pursuit behaviorally in healthy human observers. We further review studies that focused on the interaction between perception and pursuit. The majority of results point to similarities between perception and pursuit, but dissociations were also reported. We discuss recent developments in this research area and conclude with suggestions for common and separate principles for the guidance of perceptual and motor responses to visual motion information. Copyright © 2010 Elsevier Ltd. All rights reserved.
Visual Acuity Using Head-fixed Displays During Passive Self and Surround Motion
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Black, F. Owen; Stallings, Valerie; Peters, Brian
2007-01-01
The ability to read head-fixed displays on various motion platforms requires the suppression of vestibulo-ocular reflexes. This study examined dynamic visual acuity while viewing a head-fixed display during different self and surround rotation conditions. Twelve healthy subjects were asked to report the orientation of Landolt C optotypes presented on a micro-display fixed to a rotating chair at 50 cm distance. Acuity thresholds were determined by the lowest size at which the subjects correctly identified 3 of 5 optotype orientations at peak velocity. Visual acuity was compared across four different conditions, each tested at 0.05 and 0.4 Hz (peak amplitude of 57 deg/s). The four conditions included: subject rotated in semi-darkness (i.e., limited to background illumination of the display), subject stationary while visual scene rotated, subject rotated around a stationary visual background, and both subject and visual scene rotated together. Visual acuity performance was greatest when the subject rotated around a stationary visual background; i.e., when both vestibular and visual inputs provided concordant information about the motion. Visual acuity performance was most reduced when the subject and visual scene rotated together; i.e., when the visual scene provided discordant information about the motion. Ranges of 4-5 logMAR step sizes across the conditions indicated the acuity task was sufficient to discriminate visual performance levels. The background visual scene can influence the ability to read head-fixed displays during passive motion disturbances. Dynamic visual acuity using head-fixed displays can provide an operationally relevant screening tool for visual performance during exposure to novel acceleration environments.
Novel method of extracting motion from natural movies.
Suzuki, Wataru; Ichinohe, Noritaka; Tani, Toshiki; Hayami, Taku; Miyakawa, Naohisa; Watanabe, Satoshi; Takeichi, Hiroshige
2017-11-01
The visual system in primates can be segregated into motion and shape pathways. Interaction occurs at multiple stages along these pathways. Processing of shape-from-motion and biological motion is considered to be a higher-order integration process involving motion and shape information. However, relatively limited types of stimuli have been used in previous studies on these integration processes. We propose a new algorithm to extract object motion information from natural movies and to move random dots in accordance with the information. The object motion information is extracted by estimating the dynamics of local normal vectors of the image intensity projected onto the x-y plane of the movie. An electrophysiological experiment on two adult common marmoset monkeys (Callithrix jacchus) showed that the natural and random dot movies generated with this new algorithm yielded comparable neural responses in the middle temporal visual area. In principle, this algorithm provided random dot motion stimuli containing shape information for arbitrary natural movies. This new method is expected to expand the neurophysiological and psychophysical experimental protocols to elucidate the integration processing of motion and shape information in biological systems. The novel algorithm proposed here was effective in extracting object motion information from natural movies and provided new motion stimuli to investigate higher-order motion information processing. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Takeuchi, Tatsuto; Yoshimoto, Sanae; Shimada, Yasuhiro; Kochiyama, Takanori; Kondo, Hirohito M
2017-02-19
Recent studies have shown that interindividual variability can be a rich source of information regarding the mechanism of human visual perception. In this study, we examined the mechanisms underlying interindividual variability in the perception of visual motion, one of the fundamental components of visual scene analysis, by measuring neurotransmitter concentrations using magnetic resonance spectroscopy. First, by psychophysically examining two types of motion phenomena-motion assimilation and contrast-we found that, following the presentation of the same stimulus, some participants perceived motion assimilation, while others perceived motion contrast. Furthermore, we found that the concentration of the excitatory neurotransmitter glutamate-glutamine (Glx) in the dorsolateral prefrontal cortex (Brodmann area 46) was positively correlated with the participant's tendency to motion assimilation over motion contrast; however, this effect was not observed in the visual areas. The concentration of the inhibitory neurotransmitter γ-aminobutyric acid had only a weak effect compared with that of Glx. We conclude that excitatory process in the suprasensory area is important for an individual's tendency to determine antagonistically perceived visual motion phenomena.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).
Full-wave and half-wave rectification in second-order motion perception
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1994-01-01
Microbalanced stimuli are dynamic displays which do not stimulate motion mechanisms that apply standard (Fourier-energy or autocorrelational) motion analysis directly to the visual signal. In order to extract motion information from microbalanced stimuli, Chubb and Sperling [(1988) Journal of the Optical Society of America, 5, 1986-2006] proposed that the human visual system performs a rectifying transformation on the visual signal prior to standard motion analysis. The current research employs two novel types of microbalanced stimuli: half-wave stimuli preserve motion information following half-wave rectification (with a threshold) but lose motion information following full-wave rectification; full-wave stimuli preserve motion information following full-wave rectification but lose motion information following half-wave rectification. Additionally, Fourier stimuli, ordinary square-wave gratings, were used to stimulate standard motion mechanisms. Psychometric functions (direction discrimination vs stimulus contrast) were obtained for each type of stimulus when presented alone, and when masked by each of the other stimuli (presented as moving masks and also as nonmoving, counterphase-flickering masks). RESULTS: given sufficient contrast, all three types of stimulus convey motion. However, only one-third of the population can perceive the motion of the half-wave stimulus. Observers are able to process the motion information contained in the Fourier stimulus slightly more efficiently than the information in the full-wave stimulus but are much less efficient in processing half-wave motion information. Moving masks are more effective than counterphase masks at hampering direction discrimination, indicating that some of the masking effect is interference between motion mechanisms, and some occurs at earlier stages. When either full-wave and Fourier or half-wave and Fourier gratings are presented simultaneously, there is a wide range of relative contrasts within which the motion directions of both gratings are easily determinable. Conversely, when half-wave and full-wave gratings are combined, the direction of only one of these gratings can be determined with high accuracy. CONCLUSIONS: the results indicate that three motion computations are carried out, any two in parallel: one standard ("first order") and two non-Fourier ("second-order") computations that employ full-wave and half-wave rectification.
NASA Astrophysics Data System (ADS)
Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Orientation of selective effects of body tilt on visually induced perception of self-motion.
Nakamura, S; Shimojo, S
1998-10-01
We examined the effect of body posture upon visually induced perception of self-motion (vection) with various angles of observer's tilt. The experiment indicated that the tilted body of observer could enhance perceived strength of vertical vection, while there was no effect of body tilt on horizontal vection. This result suggests that there is an interaction between the effects of visual and vestibular information on perception of self-motion.
Visual processing in the central bee brain.
Paulk, Angelique C; Dacks, Andrew M; Phillips-Portillo, James; Fellous, Jean-Marc; Gronenberg, Wulfila
2009-08-12
Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.
Decoding conjunctions of direction-of-motion and binocular disparity from human visual cortex.
Seymour, Kiley J; Clifford, Colin W G
2012-05-01
Motion and binocular disparity are two features in our environment that share a common correspondence problem. Decades of psychophysical research dedicated to understanding stereopsis suggest that these features interact early in human visual processing to disambiguate depth. Single-unit recordings in the monkey also provide evidence for the joint encoding of motion and disparity across much of the dorsal visual stream. Here, we used functional MRI and multivariate pattern analysis to examine where in the human brain conjunctions of motion and disparity are encoded. Subjects sequentially viewed two stimuli that could be distinguished only by their conjunctions of motion and disparity. Specifically, each stimulus contained the same feature information (leftward and rightward motion and crossed and uncrossed disparity) but differed exclusively in the way these features were paired. Our results revealed that a linear classifier could accurately decode which stimulus a subject was viewing based on voxel activation patterns throughout the dorsal visual areas and as early as V2. This decoding success was conditional on some voxels being individually sensitive to the unique conjunctions comprising each stimulus, thus a classifier could not rely on independent information about motion and binocular disparity to distinguish these conjunctions. This study expands on evidence that disparity and motion interact at many levels of human visual processing, particularly within the dorsal stream. It also lends support to the idea that stereopsis is subserved by early mechanisms also tuned to direction of motion.
Premotor cortex is sensitive to auditory-visual congruence for biological motion.
Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F
2012-03-01
The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.
The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.
Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P
2015-01-01
Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.
Selectivity to Translational Egomotion in Human Brain Motion Areas
Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare
2013-01-01
The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096
Role of orientation reference selection in motion sickness
NASA Technical Reports Server (NTRS)
Peterka, Robert J.; Black, F. Owen
1988-01-01
Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals used to control upright posture. In particular, there is one class of subjects with a vestibular disorder known as benign paroxysmal positional vertigo (BPPV) who often are particularly sensitive to inaccurate visual information. That is, they will use visual sensory information for the control of their posture even when that visual information is inaccurate and is in conflict with accurate proprioceptive and vestibular sensory signals. BPPV has been associated with disorders of both posterior semicircular canal function and possibly otolith function. The present proposal hopes to take advantage of the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with the BPPV syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives of this proposal are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans.
Audio aided electro-tactile perception training for finger posture biofeedback.
Vargas, Jose Gonzalez; Yu, Wenwei
2008-01-01
Visual information is one of the prerequisites for most biofeedback studies. The aim of this study is to explore how the usage of an audio aided training helps in the learning process of dynamical electro-tactile perception without any visual feedback. In this research, the electrical simulation patterns associated with the experimenter's finger postures and motions were presented to the subjects. Along with the electrical stimulation patterns 2 different types of information, verbal and audio information on finger postures and motions, were presented to the verbal training subject group (group 1) and audio training subject group (group 2), respectively. The results showed an improvement in the ability to distinguish and memorize electrical stimulation patterns correspondent to finger postures and motions without visual feedback, and with audio tones aid, the learning was faster and the perception became more precise after training. Thus, this study clarified that, as a substitution to visual presentation, auditory information could help effectively in the formation of electro-tactile perception. Further research effort needed to make clear the difference between the visual guided and audio aided training in terms of information compilation, post-training effect and robustness of the perception.
Perception of biological motion from size-invariant body representations.
Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E
2015-01-01
The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.
Representation of visual gravitational motion in the human vestibular cortex.
Indovina, Iole; Maffei, Vincenzo; Bosco, Gianfranco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco
2005-04-15
How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain.
Visual Motion Perception and Visual Attentive Processes.
1988-04-01
88-0551 Visual Motion Perception and Visual Attentive Processes George Spering , New YorkUnivesity A -cesson For DTIC TAB rant AFOSR 85-0364... Spering . HIPSt: A Unix-based image processing syslem. Computer Vision, Graphics, and Image Processing, 1984,25. 331-347. ’HIPS is the Human Information...Processing Laboratory’s Image Processing System. 1985 van Santen, Jan P. It, and George Spering . Elaborated Reichardt detectors. Journal of the Optical
Dynamic visual attention: motion direction versus motion magnitude
NASA Astrophysics Data System (ADS)
Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.
2008-02-01
Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.
A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection.
Fisher, Yvette E; Leong, Jonathan C S; Sporar, Katja; Ketkar, Madhura D; Gohl, Daryl M; Clandinin, Thomas R; Silies, Marion
2015-12-21
Visual motion cues are used by many animals to guide navigation across a wide range of environments. Long-standing theoretical models have made predictions about the computations that compare light signals across space and time to detect motion. Using connectomic and physiological approaches, candidate circuits that can implement various algorithmic steps have been proposed in the Drosophila visual system. These pathways connect photoreceptors, via interneurons in the lamina and the medulla, to direction-selective cells in the lobula and lobula plate. However, the functional architecture of these circuits remains incompletely understood. Here, we use a forward genetic approach to identify the medulla neuron Tm9 as critical for motion-evoked behavioral responses. Using in vivo calcium imaging combined with genetic silencing, we place Tm9 within motion-detecting circuitry. Tm9 receives functional inputs from the lamina neurons L3 and, unexpectedly, L1 and passes information onto the direction-selective T5 neuron. Whereas the morphology of Tm9 suggested that this cell would inform circuits about local points in space, we found that the Tm9 spatial receptive field is large. Thus, this circuit informs elementary motion detectors about a wide region of the visual scene. In addition, Tm9 exhibits sustained responses that provide a tonic signal about incoming light patterns. Silencing Tm9 dramatically reduces the response amplitude of T5 neurons under a broad range of different motion conditions. Thus, our data demonstrate that sustained and wide-field signals are essential for elementary motion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
The contribution of dynamic visual cues to audiovisual speech perception.
Jaekl, Philip; Pesquita, Ana; Alsius, Agnes; Munhall, Kevin; Soto-Faraco, Salvador
2015-08-01
Seeing a speaker's facial gestures can significantly improve speech comprehension, especially in noisy environments. However, the nature of the visual information from the speaker's facial movements that is relevant for this enhancement is still unclear. Like auditory speech signals, visual speech signals unfold over time and contain both dynamic configural information and luminance-defined local motion cues; two information sources that are thought to engage anatomically and functionally separate visual systems. Whereas, some past studies have highlighted the importance of local, luminance-defined motion cues in audiovisual speech perception, the contribution of dynamic configural information signalling changes in form over time has not yet been assessed. We therefore attempted to single out the contribution of dynamic configural information to audiovisual speech processing. To this aim, we measured word identification performance in noise using unimodal auditory stimuli, and with audiovisual stimuli. In the audiovisual condition, speaking faces were presented as point light displays achieved via motion capture of the original talker. Point light displays could be isoluminant, to minimise the contribution of effective luminance-defined local motion information, or with added luminance contrast, allowing the combined effect of dynamic configural cues and local motion cues. Audiovisual enhancement was found in both the isoluminant and contrast-based luminance conditions compared to an auditory-only condition, demonstrating, for the first time the specific contribution of dynamic configural cues to audiovisual speech improvement. These findings imply that globally processed changes in a speaker's facial shape contribute significantly towards the perception of articulatory gestures and the analysis of audiovisual speech. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saunders, Jeffrey A.
2014-01-01
Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194
Acquisition and Visualization Techniques of Human Motion Using Master-Slave System and Haptograph
NASA Astrophysics Data System (ADS)
Katsura, Seiichiro; Ohishi, Kiyoshi
Artificial acquisition and reproduction of human sensations are basic technologies of communication engineering. For example, auditory information is obtained by a microphone, and a speaker reproduces it by artificial means. Furthermore, a video camera and a television make it possible to transmit visual sensation by broadcasting. On the contrary, since tactile or haptic information is subject to the Newton's “law of action and reaction” in the real world, a device which acquires, transmits, and reproduces the information has not been established. From the point of view, real-world haptics is the key technology for future haptic communication engineering. This paper proposes a novel acquisition method of haptic information named “haptograph”. The haptograph visualizes the haptic information like photograph. Since temporal and spatial analyses are conducted to represent haptic information as the haptograph, it is possible to be recognized and to be evaluated intuitively. In this paper, the proposed haptograph is applied to visualization of human motion. It is possible to represent the motion characteristics, the expert's skill and the personal habit, and so on. In other words, a personal encyclopedia is attained. Once such a personal encyclopedia is stored in ubiquitous environment, the future human support technology will be developed.
Aging effect in pattern, motion and cognitive visual evoked potentials.
Kuba, Miroslav; Kremláček, Jan; Langrová, Jana; Kubová, Zuzana; Szanyi, Jana; Vít, František
2012-06-01
An electrophysiological study on the effect of aging on the visual pathway and various levels of visual information processing (primary cortex, associate visual motion processing cortex and cognitive cortical areas) was performed. We examined visual evoked potentials (VEPs) to pattern-reversal, motion-onset (translation and radial motion) and visual stimuli with a cognitive task (cognitive VEPs - P300 wave) at luminance of 17 cd/m(2). The most significant age-related change in a group of 150 healthy volunteers (15-85 years of age) was the increase in the P300 wave latency (2 ms per 1 year of age). Delays of the motion-onset VEPs (0.47 ms/year in translation and 0.46 ms/year in radial motion) and the pattern-reversal VEPs (0.26 ms/year) and the reductions of their amplitudes with increasing subject age (primarily in P300) were also found to be significant. The amplitude of the motion-onset VEPs to radial motion remained the most constant parameter with increasing age. Age-related changes were stronger in males. Our results indicate that cognitive VEPs, despite larger variability of their parameters, could be a useful criterion for an objective evaluation of the aging processes within the CNS. Possible differences in aging between the motion-processing system and the form-processing system within the visual pathway might be indicated by the more pronounced delay in the motion-onset VEPs and by their preserved size for radial motion (a biologically significant variant of motion) compared to the changes in pattern-reversal VEPs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Local statistics of retinal optic flow for self-motion through natural sceneries.
Calow, Dirk; Lappe, Markus
2007-12-01
Image analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments. Natural locomotion includes bouncing and swaying of the head and eye movement reflexes that stabilize gaze onto interesting objects in the scene while walking. We investigate the dependencies of the local statistics of optic flow on the depth structure of the natural environment and on the ego-motion parameters. To measure these dependencies we estimate the mutual information between correlated data sets. We analyze the results with respect to the variation of the dependencies over the visual field, since the visual motions in the optic flow vary depending on visual field position. We find that retinal flow direction and retinal speed show only minor statistical interdependencies. Retinal speed is statistically tightly connected to the depth structure of the scene. Retinal flow direction is statistically mostly driven by the relation between the direction of gaze and the direction of ego-motion. These dependencies differ at different visual field positions such that certain areas of the visual field provide more information about ego-motion and other areas provide more information about depth. The statistical properties of natural optic flow may be used to tune the performance of artificial vision systems based on human imitating behavior, and may be useful for analyzing properties of natural vision systems.
Silvanto, Juha; Cattaneo, Zaira
2010-05-01
Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM. 2010. Published by Elsevier Inc.
Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.
Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno
2016-11-01
Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.
A model for the pilot's use of motion cues in roll-axis tracking tasks
NASA Technical Reports Server (NTRS)
Levison, W. H.; Junker, A. M.
1977-01-01
Simulated target-following and disturbance-regulation tasks were explored with subjects using visual-only and combined visual and motion cues. The effects of motion cues on task performance and pilot response behavior were appreciably different for the two task configurations and were consistent with data reported in earlier studies for similar task configurations. The optimal-control model for pilot/vehicle systems provided a task-independent framework for accounting for the pilot's use of motion cues. Specifically, the availability of motion cues was modeled by augmenting the set of perceptual variables to include position, rate, acceleration, and accleration-rate of the motion simulator, and results were consistent with the hypothesis of attention-sharing between visual and motion variables. This straightforward informational model allowed accurate model predictions of the effects of motion cues on a variety of response measures for both the target-following and disturbance-regulation tasks.
Vision System Measures Motions of Robot and External Objects
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2008-01-01
A prototype of an advanced robotic vision system both (1) measures its own motion with respect to a stationary background and (2) detects other moving objects and estimates their motions, all by use of visual cues. Like some prior robotic and other optoelectronic vision systems, this system is based partly on concepts of optical flow and visual odometry. Whereas prior optoelectronic visual-odometry systems have been limited to frame rates of no more than 1 Hz, a visual-odometry subsystem that is part of this system operates at a frame rate of 60 to 200 Hz, given optical-flow estimates. The overall system operates at an effective frame rate of 12 Hz. Moreover, unlike prior machine-vision systems for detecting motions of external objects, this system need not remain stationary: it can detect such motions while it is moving (even vibrating). The system includes a stereoscopic pair of cameras mounted on a moving robot. The outputs of the cameras are digitized, then processed to extract positions and velocities. The initial image-data-processing functions of this system are the same as those of some prior systems: Stereoscopy is used to compute three-dimensional (3D) positions for all pixels in the camera images. For each pixel of each image, optical flow between successive image frames is used to compute the two-dimensional (2D) apparent relative translational motion of the point transverse to the line of sight of the camera. The challenge in designing this system was to provide for utilization of the 3D information from stereoscopy in conjunction with the 2D information from optical flow to distinguish between motion of the camera pair and motions of external objects, compute the motion of the camera pair in all six degrees of translational and rotational freedom, and robustly estimate the motions of external objects, all in real time. To meet this challenge, the system is designed to perform the following image-data-processing functions: The visual-odometry subsystem (the subsystem that estimates the motion of the camera pair relative to the stationary background) utilizes the 3D information from stereoscopy and the 2D information from optical flow. It computes the relationship between the 3D and 2D motions and uses a least-mean-squares technique to estimate motion parameters. The least-mean-squares technique is suitable for real-time implementation when the number of external-moving-object pixels is smaller than the number of stationary-background pixels.
Encodings of implied motion for animate and inanimate object categories in the two visual pathways.
Lu, Zhengang; Li, Xueting; Meng, Ming
2016-01-15
Previous research has proposed two separate pathways for visual processing: the dorsal pathway for "where" information vs. the ventral pathway for "what" information. Interestingly, the middle temporal cortex (MT) in the dorsal pathway is involved in representing implied motion from still pictures, suggesting an interaction between motion and object related processing. However, the relationship between how the brain encodes implied motion and how the brain encodes object/scene categories is unclear. To address this question, fMRI was used to measure activity along the two pathways corresponding to different animate and inanimate categories of still pictures with different levels of implied motion speed. In the visual areas of both pathways, activity induced by pictures of humans and animals was hardly modulated by the implied motion speed. By contrast, activity in these areas correlated with the implied motion speed for pictures of inanimate objects and scenes. The interaction between implied motion speed and stimuli category was significant, suggesting different encoding mechanisms of implied motion for animate-inanimate distinction. Further multivariate pattern analysis of activity in the dorsal pathway revealed significant effects of stimulus category that are comparable to the ventral pathway. Moreover, still pictures of inanimate objects/scenes with higher implied motion speed evoked activation patterns that were difficult to differentiate from those evoked by pictures of humans and animals, indicating a functional role of implied motion in the representation of object categories. These results provide novel evidence to support integrated encoding of motion and object categories, suggesting a rethink of the relationship between the two visual pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
Can biological motion research provide insight on how to reduce friendly fire incidents?
Steel, Kylie A; Baxter, David; Dogramaci, Sera; Cobley, Stephen; Ellem, Eathan
2016-10-01
The ability to accurately detect, perceive, and recognize biological motion can be associated with a fundamental drive for survival, and it is a significant interest for perception researchers. This field examines various perceptual features of motion and has been assessed and applied in several real-world contexts (e.g., biometric, sport). Unexplored applications still exist however, including the military issue of friendly fire. There are many causes and processes leading to friendly fire and specific challenges that are associated with visual information extraction during engagement, such as brief glimpses, low acuity, camouflage, and uniform deception. Furthermore, visual information must often be processed under highly stressful (potentially threatening), time-constrained conditions that present a significant problem for soldiers. Biological motion research and anecdotal evidence from experienced combatants suggests that intentions, emotions, identities of human motion can be identified and discriminated, even when visual display is degraded or limited. Furthermore, research suggests that perceptual discriminatory capability of movement under visually constrained conditions is trainable. Therefore, given the limited military research linked to biological motion and friendly fire, an opportunity for cross-disciplinary investigations exists. The focus of this paper is twofold: first, to provide evidence for the possible link between biological motion factors and friendly fire, and second, to propose conceptual and methodological considerations and recommendations for perceptual-cognitive training within current military programs.
Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J. J.; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine
2017-01-01
The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer’s motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex. PMID:28861024
Conveying Movement in Music and Prosody
Hedger, Stephen C.; Nusbaum, Howard C.; Hoeckner, Berthold
2013-01-01
We investigated whether acoustic variation of musical properties can analogically convey descriptive information about an object. Specifically, we tested whether information from the temporal structure in music interacts with perception of a visual image to form an analog perceptual representation as a natural part of music perception. In Experiment 1, listeners heard music with an accelerating or decelerating temporal pattern, and then saw a picture of a still or moving object and decided whether it was animate or inanimate – a task unrelated to the patterning of the music. Object classification was faster when musical motion matched visually depicted motion. In Experiment 2, participants heard spoken sentences that were accompanied by accelerating or decelerating music, and then were presented with a picture of a still or moving object. When motion information in the music matched motion information in the picture, participants were similarly faster to respond. Fast and slow temporal patterns without acceleration and deceleration, however, did not make participants faster when they saw a picture depicting congruent motion information (Experiment 3), suggesting that understanding temporal structure information in music may depend on specific metaphors about motion in music. Taken together, these results suggest that visuo-spatial referential information can be analogically conveyed and represented by music and can be integrated with speech or influence the understanding of speech. PMID:24146920
Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil
2011-01-01
Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934
Embodied learning of a generative neural model for biological motion perception and inference
Schrodt, Fabian; Layher, Georg; Neumann, Heiko; Butz, Martin V.
2015-01-01
Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons. PMID:26217215
Embodied learning of a generative neural model for biological motion perception and inference.
Schrodt, Fabian; Layher, Georg; Neumann, Heiko; Butz, Martin V
2015-01-01
Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons.
Hu, Bin; Yue, Shigang; Zhang, Zhuhong
All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.
The Role of Visual and Nonvisual Information in the Control of Locomotion
ERIC Educational Resources Information Center
Wilkie, Richard M.; Wann, John P.
2005-01-01
During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled…
Weinstein, Joel M; Gilmore, Rick O; Shaikh, Sumera M; Kunselman, Allen R; Trescher, William V; Tashima, Lauren M; Boltz, Marianne E; McAuliffe, Matthew B; Cheung, Albert; Fesi, Jeremy D
2012-07-01
We sought to characterize visual motion processing in children with cerebral visual impairment (CVI) due to periventricular white matter damage caused by either hydrocephalus (eight individuals) or periventricular leukomalacia (PVL) associated with prematurity (11 individuals). Using steady-state visually evoked potentials (ssVEP), we measured cortical activity related to motion processing for two distinct types of visual stimuli: 'local' motion patterns thought to activate mainly primary visual cortex (V1), and 'global' or coherent patterns thought to activate higher cortical visual association areas (V3, V5, etc.). We studied three groups of children: (1) 19 children with CVI (mean age 9y 6mo [SD 3y 8mo]; 9 male; 10 female); (2) 40 neurologically and visually normal comparison children (mean age 9y 6mo [SD 3y 1mo]; 18 male; 22 female); and (3) because strabismus and amblyopia are common in children with CVI, a group of 41 children without neurological problems who had visual deficits due to amblyopia and/or strabismus (mean age 7y 8mo [SD 2y 8mo]; 28 male; 13 female). We found that the processing of global as opposed to local motion was preferentially impaired in individuals with CVI, especially for slower target velocities (p=0.028). Motion processing is impaired in children with CVI. ssVEP may provide useful and objective information about the development of higher visual function in children at risk for CVI. © The Authors. Journal compilation © Mac Keith Press 2011.
Haltere mechanosensory influence on tethered flight behavior in Drosophila.
Mureli, Shwetha; Fox, Jessica L
2015-08-01
In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli. Haltere input was altered by surgically decreasing its mass, or by removing it entirely. Haltere removal does not affect the flies' ability to flap or steer their wings, but it does increase the temporal frequency at which they modify their wingbeat amplitude. Reducing the haltere mass decreases the optomotor reflex response to wide-field motion, and removing the haltere entirely does not further decrease the response. Decreasing the mass does not attenuate the response to figure motion, but removing the entire haltere does attenuate the response. When flies are allowed to control a visual stimulus in closed-loop conditions, haltereless flies fixate figures with the same acuity as intact flies, but cannot stabilize a wide-field stimulus as accurately as intact flies can. These manipulations suggest that the haltere mass is influential in wide-field stabilization, but less so in figure tracking. In both figure and wide-field experiments, we observe responses to visual motion with and without halteres, indicating that during tethered flight, intact halteres are not strictly necessary for visually guided wing-steering responses. However, the haltere feedback loop may operate in a context-dependent way to modulate responses to visual motion. © 2015. Published by The Company of Biologists Ltd.
Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco
2013-05-01
Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.
Coherent modulation of stimulus colour can affect visually induced self-motion perception.
Nakamura, Shinji; Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji
2010-01-01
The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.
Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly
2017-01-01
The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.
Bottlenecks of Motion Processing during a Visual Glance: The Leaky Flask Model
Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E.; Tripathy, Srimant P.
2013-01-01
Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing. PMID:24391806
Bottlenecks of motion processing during a visual glance: the leaky flask model.
Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E; Tripathy, Srimant P
2013-01-01
Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.
Applications of Phase-Based Motion Processing
NASA Technical Reports Server (NTRS)
Branch, Nicholas A.; Stewart, Eric C.
2018-01-01
Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.
Perception and control of rotorcraft flight
NASA Technical Reports Server (NTRS)
Owen, Dean H.
1991-01-01
Three topics which can be applied to rotorcraft flight are examined: (1) the nature of visual information; (2) what visual information is informative about; and (3) the control of visual information. The anchorage of visual perception is defined as the distribution of structure in the surrounding optical array or the distribution of optical structure over the retinal surface. A debate was provoked about whether the referent of visual event perception, and in turn control, is optical motion, kinetics, or dynamics. The interface of control theory and visual perception is also considered. The relationships among these problems is the basis of this article.
Schwegmann, Alexander; Lindemann, Jens P.; Egelhaaf, Martin
2014-01-01
Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs). It is the key result of our analysis that the absolute EMD responses, i.e., the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way. PMID:25136314
Flies and humans share a motion estimation strategy that exploits natural scene statistics
Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.
2014-01-01
Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225
Localized direction selective responses in the dendrites of visual interneurons of the fly
2010-01-01
Background The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns. PMID:20384983
Barnett-Cowan, Michael; Meilinger, Tobias; Vidal, Manuel; Teufel, Harald; Bülthoff, Heinrich H
2012-05-10
Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to overestimate angle size while there was no such bias in the sagittal plane. Finally, observers responded slower when answering based on vestibular-kinaesthetic information alone. Human path integration based on vestibular-kinaesthetic information alone thus takes longer than when visual information is present. That pointing is consistent with underestimating and overestimating the angle one has moved through in the horizontal and vertical planes respectively, suggests that the neural representation of self-motion through space is non-symmetrical which may relate to the fact that humans experience movement mostly within the horizontal plane.
Shared sensory estimates for human motion perception and pursuit eye movements.
Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C
2015-06-03
Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.
Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements
Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio
2015-01-01
Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.
Stone, Scott A; Tata, Matthew S
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality
Tata, Matthew S.
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible. PMID:28792518
Oluk, Can; Pavan, Andrea; Kafaligonul, Hulusi
2016-01-01
At the early stages of visual processing, information is processed by two major thalamic pathways encoding brightness increments (ON) and decrements (OFF). Accumulating evidence suggests that these pathways interact and merge as early as in primary visual cortex. Using regular and reverse-phi motion in a rapid adaptation paradigm, we investigated the temporal dynamics of within and across pathway mechanisms for motion processing. When the adaptation duration was short (188 ms), reverse-phi and regular motion led to similar adaptation effects, suggesting that the information from the two pathways are combined efficiently at early-stages of motion processing. However, as the adaption duration was increased to 752 ms, reverse-phi and regular motion showed distinct adaptation effects depending on the test pattern used, either engaging spatiotemporal correlation between the same or opposite contrast polarities. Overall, these findings indicate that spatiotemporal correlation within and across ON-OFF pathways for motion processing can be selectively adapted, and support those models that integrate within and across pathway mechanisms for motion processing. PMID:27667401
Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela
2013-01-01
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Postural and Spatial Orientation Driven by Virtual Reality
Keshner, Emily A.; Kenyon, Robert V.
2009-01-01
Orientation in space is a perceptual variable intimately related to postural orientation that relies on visual and vestibular signals to correctly identify our position relative to vertical. We have combined a virtual environment with motion of a posture platform to produce visual-vestibular conditions that allow us to explore how motion of the visual environment may affect perception of vertical and, consequently, affect postural stabilizing responses. In order to involve a higher level perceptual process, we needed to create a visual environment that was immersive. We did this by developing visual scenes that possess contextual information using color, texture, and 3-dimensional structures. Update latency of the visual scene was close to physiological latencies of the vestibulo-ocular reflex. Using this system we found that even when healthy young adults stand and walk on a stable support surface, they are unable to ignore wide field of view visual motion and they adapt their postural orientation to the parameters of the visual motion. Balance training within our environment elicited measurable rehabilitation outcomes. Thus we believe that virtual environments can serve as a clinical tool for evaluation and training of movement in situations that closely reflect conditions found in the physical world. PMID:19592796
Ageing vision and falls: a review.
Saftari, Liana Nafisa; Kwon, Oh-Sang
2018-04-23
Falls are the leading cause of accidental injury and death among older adults. One of three adults over the age of 65 years falls annually. As the size of elderly population increases, falls become a major concern for public health and there is a pressing need to understand the causes of falls thoroughly. While it is well documented that visual functions such as visual acuity, contrast sensitivity, and stereo acuity are correlated with fall risks, little attention has been paid to the relationship between falls and the ability of the visual system to perceive motion in the environment. The omission of visual motion perception in the literature is a critical gap because it is an essential function in maintaining balance. In the present article, we first review existing studies regarding visual risk factors for falls and the effect of ageing vision on falls. We then present a group of phenomena such as vection and sensory reweighting that provide information on how visual motion signals are used to maintain balance. We suggest that the current list of visual risk factors for falls should be elaborated by taking into account the relationship between visual motion perception and balance control.
Local motion adaptation enhances the representation of spatial structure at EMD arrays
Lindemann, Jens P.; Egelhaaf, Martin
2017-01-01
Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distance-dependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects. PMID:29281631
Audio–visual interactions for motion perception in depth modulate activity in visual area V3A
Ogawa, Akitoshi; Macaluso, Emiliano
2013-01-01
Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) “matched vs. unmatched” conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio–visual “congruent vs. incongruent” between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio–visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio–visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio–visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices. PMID:23333414
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Liston, Dorion B.
2011-01-01
Visual motion and other visual cues are used by tower controllers to provide important support for their control tasks at and near airports. These cues are particularly important for anticipated separation. Some of them, which we call visual features, have been identified from structured interviews and discussions with 24 active air traffic controllers or supervisors. The visual information that these features provide has been analyzed with respect to possible ways it could be presented at a remote tower that does not allow a direct view of the airport. Two types of remote towers are possible. One could be based on a plan-view, map-like computer-generated display of the airport and its immediate surroundings. An alternative would present a composite perspective view of the airport and its surroundings, possibly provided by an array of radially mounted cameras positioned at the airport in lieu of a tower. An initial more detailed analyses of one of the specific landing cues identified by the controllers, landing deceleration, is provided as a basis for evaluating how controllers might detect and use it. Understanding other such cues will help identify the information that may be degraded or lost in a remote or virtual tower not located at the airport. Some initial suggestions how some of the lost visual information may be presented in displays are mentioned. Many of the cues considered involve visual motion, though some important static cues are also discussed.
Visual Motion Perception and Visual Information Processing
1993-12-31
tradi- tionally called the "span of apprehension" (Kulpe, 1904; Durable Storage Wundt , 1899). However, a partial-report procedure demon- strates...Gehrig. P. (1992). On the time course Wundt . W. (1899). Zur Kritik tachistoskopischer Versuche [A crit- of perceptual information that results from a
Kress, Daniel; Egelhaaf, Martin
2014-01-01
During locomotion animals rely heavily on visual cues gained from the environment to guide their behavior. Examples are basic behaviors like collision avoidance or the approach to a goal. The saccadic gaze strategy of flying flies, which separates translational from rotational phases of locomotion, has been suggested to facilitate the extraction of environmental information, because only image flow evoked by translational self-motion contains relevant distance information about the surrounding world. In contrast to the translational phases of flight during which gaze direction is kept largely constant, walking flies experience continuous rotational image flow that is coupled to their stride-cycle. The consequences of these self-produced image shifts for the extraction of environmental information are still unclear. To assess the impact of stride-coupled image shifts on visual information processing, we performed electrophysiological recordings from the HSE cell, a motion sensitive wide-field neuron in the blowfly visual system. This cell has been concluded to play a key role in mediating optomotor behavior, self-motion estimation and spatial information processing. We used visual stimuli that were based on the visual input experienced by walking blowflies while approaching a black vertical bar. The response of HSE to these stimuli was dominated by periodic membrane potential fluctuations evoked by stride-coupled image shifts. Nevertheless, during the approach the cell’s response contained information about the bar and its background. The response components evoked by the bar were larger than the responses to its background, especially during the last phase of the approach. However, as revealed by targeted modifications of the visual input during walking, the extraction of distance information on the basis of HSE responses is much impaired by stride-coupled retinal image shifts. Possible mechanisms that may cope with these stride-coupled responses are discussed. PMID:25309362
Self-motion Perception Training: Thresholds Improve in the Light but not in the Dark
Hartmann, Matthias; Furrer, Sarah; Herzog, Michael H.; Merfeld, Daniel M.; Mast, Fred W.
2014-01-01
We investigated perceptual learning in self-motion perception. Blindfolded participants were displaced leftward or rightward by means of a motion platform, and asked to indicate the direction of motion. A total of eleven participants underwent 3360 practice trials, distributed over twelve (Experiment 1) or six days (Experiment 2). We found no improvement in motion discrimination in both experiments. These results are surprising since perceptual learning has been demonstrated for visual, auditory, and somatosensory discrimination. Improvements in the same task were found when visual input was provided (Experiment 3). The multisensory nature of vestibular information is discussed as a possible explanation of the absence of perceptual learning in darkness. PMID:23392475
Visual-Cerebellar Pathways and Their Roles in the Control of Avian Flight.
Wylie, Douglas R; Gutiérrez-Ibáñez, Cristián; Gaede, Andrea H; Altshuler, Douglas L; Iwaniuk, Andrew N
2018-01-01
In this paper, we review the connections and physiology of visual pathways to the cerebellum in birds and consider their role in flight. We emphasize that there are two visual pathways to the cerebellum. One is to the vestibulocerebellum (folia IXcd and X) that originates from two retinal-recipient nuclei that process optic flow: the nucleus of the basal optic root (nBOR) and the pretectal nucleus lentiformis mesencephali (LM). The second is to the oculomotor cerebellum (folia VI-VIII), which receives optic flow information, mainly from LM, but also local visual motion information from the optic tectum, and other visual information from the ventral lateral geniculate nucleus (Glv). The tectum, LM and Glv are all intimately connected with the pontine nuclei, which also project to the oculomotor cerebellum. We believe this rich integration of visual information in the cerebellum is important for analyzing motion parallax that occurs during flight. Finally, we extend upon a suggestion by Ibbotson (2017) that the hypertrophy that is observed in LM in hummingbirds might be due to an increase in the processing demands associated with the pathway to the oculomotor cerebellum as they fly through a cluttered environment while feeding.
Visual representation of spatiotemporal structure
NASA Astrophysics Data System (ADS)
Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.
1998-07-01
The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research. PMID:29599739
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.
Vestibular nuclei and cerebellum put visual gravitational motion in context.
Miller, William L; Maffei, Vincenzo; Bosco, Gianfranco; Iosa, Marco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco
2008-04-01
Animal survival in the forest, and human success on the sports field, often depend on the ability to seize a target on the fly. All bodies fall at the same rate in the gravitational field, but the corresponding retinal motion varies with apparent viewing distance. How then does the brain predict time-to-collision under gravity? A perspective context from natural or pictorial settings might afford accurate predictions of gravity's effects via the recovery of an environmental reference from the scene structure. We report that embedding motion in a pictorial scene facilitates interception of gravitational acceleration over unnatural acceleration, whereas a blank scene eliminates such bias. Functional magnetic resonance imaging (fMRI) revealed blood-oxygen-level-dependent correlates of these visual context effects on gravitational motion processing in the vestibular nuclei and posterior cerebellar vermis. Our results suggest an early stage of integration of high-level visual analysis with gravity-related motion information, which may represent the substrate for perceptual constancy of ubiquitous gravitational motion.
Neural Circuit to Integrate Opposing Motions in the Visual Field.
Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander
2015-07-16
When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.
A method for automatically abstracting visual documents
NASA Technical Reports Server (NTRS)
Rorvig, Mark E.
1994-01-01
Visual documents--motion sequences on film, videotape, and digital recording--constitute a major source of information for the Space Agency, as well as all other government and private sector entities. This article describes a method for automatically selecting key frames from visual documents. These frames may in turn be used to represent the total image sequence of visual documents in visual libraries, hypermedia systems, and training algorithm reduces 51 minutes of video sequences to 134 frames; a reduction of information in the range of 700:1.
Peripheral Processing Facilitates Optic Flow-Based Depth Perception
Li, Jinglin; Lindemann, Jens P.; Egelhaaf, Martin
2016-01-01
Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light conditions. PMID:27818631
NASA Technical Reports Server (NTRS)
Clark, B.; Stewart, J. D.
1974-01-01
This experiment was concerned with the effects of rotary acceleration on choice reaction time (RTc) to the motion of a luminous line on a cathode-ray tube. Specifically, it compared the (RTc) to rotary acceleration alone, visual acceleration alone, and simultaneous, double stimulation by both rotary and visual acceleration. Thirteen airline pilots were rotated about an earth-vertical axis in a precision rotation device while they observed a vertical line. The stimuli were 7 rotary and visual accelerations which were matched for rise time. The pilot responded as quickly as possible by displacing a vertical controller to the right or left. The results showed a decreasing (RTc) with increasing acceleration for all conditions, while the (RTc) to rotary motion alone was substantially longer than for all other conditions. The (RTc) to the double stimulation was significantly longer than that for visual acceleration alone.
Decoding information about dynamically occluded objects in visual cortex
Erlikhman, Gennady; Caplovitz, Gideon P.
2016-01-01
During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder, even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or, non-object-specific information such as its position or velocity as it is tracked behind an occluder as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by “invisible” objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine the representation of information within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may represent the dynamically occluded object’s position or motion path, while later visual areas represent object-specific information. PMID:27663987
A multistage motion vector processing method for motion-compensated frame interpolation.
Huang, Ai- Mei; Nguyen, Truong Q
2008-05-01
In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.
Feature integration and object representations along the dorsal stream visual hierarchy
Perry, Carolyn Jeane; Fallah, Mazyar
2014-01-01
The visual system is split into two processing streams: a ventral stream that receives color and form information and a dorsal stream that receives motion information. Each stream processes that information hierarchically, with each stage building upon the previous. In the ventral stream this leads to the formation of object representations that ultimately allow for object recognition regardless of changes in the surrounding environment. In the dorsal stream, this hierarchical processing has classically been thought to lead to the computation of complex motion in three dimensions. However, there is evidence to suggest that there is integration of both dorsal and ventral stream information into motion computation processes, giving rise to intermediate object representations, which facilitate object selection and decision making mechanisms in the dorsal stream. First we review the hierarchical processing of motion along the dorsal stream and the building up of object representations along the ventral stream. Then we discuss recent work on the integration of ventral and dorsal stream features that lead to intermediate object representations in the dorsal stream. Finally we propose a framework describing how and at what stage different features are integrated into dorsal visual stream object representations. Determining the integration of features along the dorsal stream is necessary to understand not only how the dorsal stream builds up an object representation but also which computations are performed on object representations instead of local features. PMID:25140147
On the role of spatial phase and phase correlation in vision, illusion, and cognition
Gladilin, Evgeny; Eils, Roland
2015-01-01
Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of “cognition by phase correlation.” PMID:25954190
On the role of spatial phase and phase correlation in vision, illusion, and cognition.
Gladilin, Evgeny; Eils, Roland
2015-01-01
Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of "cognition by phase correlation."
The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices
An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei
2014-01-01
All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033
Dynamic Stimuli And Active Processing In Human Visual Perception
NASA Astrophysics Data System (ADS)
Haber, Ralph N.
1990-03-01
Theories of visual perception traditionally have considered a static retinal image to be the starting point for processing; and has considered processing both to be passive and a literal translation of that frozen, two dimensional, pictorial image. This paper considers five problem areas in the analysis of human visually guided locomotion, in which the traditional approach is contrasted to newer ones that utilize dynamic definitions of stimulation, and an active perceiver: (1) differentiation between object motion and self motion, and among the various kinds of self motion (e.g., eyes only, head only, whole body, and their combinations); (2) the sources and contents of visual information that guide movement; (3) the acquisition and performance of perceptual motor skills; (4) the nature of spatial representations, percepts, and the perceived layout of space; and (5) and why the retinal image is a poor starting point for perceptual processing. These newer approaches argue that stimuli must be considered as dynamic: humans process the systematic changes in patterned light when objects move and when they themselves move. Furthermore, the processing of visual stimuli must be active and interactive, so that perceivers can construct panoramic and stable percepts from an interaction of stimulus information and expectancies of what is contained in the visual environment. These developments all suggest a very different approach to the computational analyses of object location and identification, and of the visual guidance of locomotion.
Zago, Myrka; Lacquaniti, Francesco
2005-09-01
Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. However, there are limitations in the visual system that raise questions about the general validity of these theories. Most notably, vision is poorly sensitive to arbitrary accelerations. How then does the brain deal with the motion of objects accelerated by Earth's gravity? Here we review evidence in favor of the view that the brain makes the best estimate about target motion based on visually measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from the expected kinetics in the Earth's gravitational field.
Active contour-based visual tracking by integrating colors, shapes, and motions.
Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen
2013-05-01
In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.
Calibration, Information, and Control Strategies for Braking to Avoid a Collision
ERIC Educational Resources Information Center
Fajen, Brett R.
2005-01-01
This study explored visual control strategies for braking to avoid collision by manipulating information about speed of self-motion. Participants watched computer-generated displays and used a brake to stop at an object in the path of motion. Global optic flow rate and edge rate were manipulated by adjusting eyeheight and ground-texture size.…
Motion transparency: making models of motion perception transparent.
Snowden; Verstraten
1999-10-01
In daily life our visual system is bombarded with motion information. We see cars driving by, flocks of birds flying in the sky, clouds passing behind trees that are dancing in the wind. Vision science has a good understanding of the first stage of visual motion processing, that is, the mechanism underlying the detection of local motions. Currently, research is focused on the processes that occur beyond the first stage. At this level, local motions have to be integrated to form objects, define the boundaries between them, construct surfaces and so on. An interesting, if complicated case is known as motion transparency: the situation in which two overlapping surfaces move transparently over each other. In that case two motions have to be assigned to the same retinal location. Several researchers have tried to solve this problem from a computational point of view, using physiological and psychophysical results as a guideline. We will discuss two models: one uses the traditional idea known as 'filter selection' and the other a relatively new approach based on Bayesian inference. Predictions from these models are compared with our own visual behaviour and that of the neural substrates that are presumed to underlie these perceptions.
Parvocellular Pathway Impairment in Autism Spectrum Disorder: Evidence from Visual Evoked Potentials
ERIC Educational Resources Information Center
Fujita, Takako; Yamasaki, Takao; Kamio, Yoko; Hirose, Shinichi; Tobimatsu, Shozo
2011-01-01
In humans, visual information is processed via parallel channels: the parvocellular (P) pathway analyzes color and form information, whereas the magnocellular (M) stream plays an important role in motion analysis. Individuals with autism spectrum disorder (ASD) often show superior performance in processing fine detail, but impaired performance in…
Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi
2016-01-01
Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588
Decoding the direction of imagined visual motion using 7 T ultra-high field fMRI
Emmerling, Thomas C.; Zimmermann, Jan; Sorger, Bettina; Frost, Martin A.; Goebel, Rainer
2016-01-01
There is a long-standing debate about the neurocognitive implementation of mental imagery. One form of mental imagery is the imagery of visual motion, which is of interest due to its naturalistic and dynamic character. However, so far only the mere occurrence rather than the specific content of motion imagery was shown to be detectable. In the current study, the application of multi-voxel pattern analysis to high-resolution functional data of 12 subjects acquired with ultra-high field 7 T functional magnetic resonance imaging allowed us to show that imagery of visual motion can indeed activate the earliest levels of the visual hierarchy, but the extent thereof varies highly between subjects. Our approach enabled classification not only of complex imagery, but also of its actual contents, in that the direction of imagined motion out of four options was successfully identified in two thirds of the subjects and with accuracies of up to 91.3% in individual subjects. A searchlight analysis confirmed the local origin of decodable information in striate and extra-striate cortex. These high-accuracy findings not only shed new light on a central question in vision science on the constituents of mental imagery, but also show for the first time that the specific sub-categorical content of visual motion imagery is reliably decodable from brain imaging data on a single-subject level. PMID:26481673
Visual Cues of Motion That Trigger Animacy Perception at Birth: The Case of Self-Propulsion
ERIC Educational Resources Information Center
Di Giorgio, Elisa; Lunghi, Marco; Simion, Francesca; Vallortigara, Giorgio
2017-01-01
Self-propelled motion is a powerful cue that conveys information that an object is animate. In this case, animate refers to an entity's capacity to initiate motion without an applied external force. Sensitivity to this motion cue is present in infants that are a few months old, but whether this sensitivity is experience-dependent or is already…
Visual-Vestibular Conflict Detection Depends on Fixation.
Garzorz, Isabelle T; MacNeilage, Paul R
2017-09-25
Visual and vestibular signals are the primary sources of sensory information for self-motion. Conflict among these signals can be seriously debilitating, resulting in vertigo [1], inappropriate postural responses [2], and motion, simulator, or cyber sickness [3-8]. Despite this significance, the mechanisms mediating conflict detection are poorly understood. Here we model conflict detection simply as crossmodal discrimination with benchmark performance limited by variabilities of the signals being compared. In a series of psychophysical experiments conducted in a virtual reality motion simulator, we measure these variabilities and assess conflict detection relative to this benchmark. We also examine the impact of eye movements on visual-vestibular conflict detection. In one condition, observers fixate a point that is stationary in the simulated visual environment by rotating the eyes opposite head rotation, thereby nulling retinal image motion. In another condition, eye movement is artificially minimized via fixation of a head-fixed fixation point, thereby maximizing retinal image motion. Visual-vestibular integration performance is also measured, similar to previous studies [9-12]. We observe that there is a tradeoff between integration and conflict detection that is mediated by eye movements. Minimizing eye movements by fixating a head-fixed target leads to optimal integration but highly impaired conflict detection. Minimizing retinal motion by fixating a scene-fixed target improves conflict detection at the cost of impaired integration performance. The common tendency to fixate scene-fixed targets during self-motion [13] may indicate that conflict detection is typically a higher priority than the increase in precision of self-motion estimation that is obtained through integration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Suppressive mechanisms in visual motion processing: from perception to intelligence
Tadin, Duje
2015-01-01
Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and those with schizophrenia—a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. PMID:26299386
Differential responses in dorsal visual cortex to motion and disparity depth cues
Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.
2013-01-01
We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808
NASA Technical Reports Server (NTRS)
Carr, Peter C.; Mckissick, Burnell T.
1988-01-01
A joint experiment to investigate simulator validation and cue fidelity was conducted by the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and NASA Langley Research Center. The primary objective was to validate the use of a closed-loop pilot-vehicle mathematical model as an analytical tool for optimizing the tradeoff between simulator fidelity requirements and simulator cost. The validation process includes comparing model predictions with simulation and flight test results to evaluate various hypotheses for differences in motion and visual cues and information transfer. A group of five pilots flew air-to-air tracking maneuvers in the Langley differential maneuvering simulator and visual motion simulator and in an F-14 aircraft at Ames-Dryden. The simulators used motion and visual cueing devices including a g-seat, a helmet loader, wide field-of-view horizon, and a motion base platform.
Dual processing of visual rotation for bipedal stance control.
Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene
2016-10-01
When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Binocular eye movement control and motion perception: what is being tracked?
van der Steen, Johannes; Dits, Joyce
2012-10-19
We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking.
Binocular Eye Movement Control and Motion Perception: What Is Being Tracked?
van der Steen, Johannes; Dits, Joyce
2012-01-01
Purpose. We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. Methods. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Results. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. Conclusions. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking. PMID:22997286
1988-11-17
NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if ntcestary and identify by block number) FIELD GROUP SUB-GROUP ,-.:image...ambiguity in the recognition of partially occluded objects. V 1 , t : ., , ’ -, L: \\ : _ 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT...constraints involved in the problem. More information can be found in [ 1 ]. Motion-based segmentation. Edge detection algorithms based on visual motion
The Perception of Biological and Mechanical Motion in Female Fragile X Premutation Carriers
ERIC Educational Resources Information Center
Keri, Szabolcs; Benedek, Gyorgy
2010-01-01
Previous studies reported impaired visual information processing in patients with fragile x syndrome and in premutation carriers. In this study, we assessed the perception of biological motion (a walking point-light character) and mechanical motion (a rotating shape) in 25 female fragile x premutation carriers and in 20 healthy non-carrier…
Biological Motion Preference in Humans at Birth: Role of Dynamic and Configural Properties
ERIC Educational Resources Information Center
Bardi, Lara; Regolin, Lucia; Simion, Francesca
2011-01-01
The present study addresses the hypothesis that detection of biological motion is an intrinsic capacity of the visual system guided by a non-species-specific predisposition for the pattern of vertebrate movement and investigates the role of global vs. local information in biological motion detection. Two-day-old babies exposed to a biological…
Motion-based prediction explains the role of tracking in motion extrapolation.
Khoei, Mina A; Masson, Guillaume S; Perrinet, Laurent U
2013-11-01
During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank using motion-based prediction. This implies that using a prior on the coherency of motion, the system may integrate previous motion information even in the absence of a stimulus. In order to compare with experimental results, we simulated tracking velocity responses. We found that the response of the motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly recovers the information on the trajectory after reappearance. This is compatible with behavioral and neural observations on motion extrapolation. To understand these mechanisms, we have recorded the response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at the global level as a gain control mechanism and that we could switch from a smooth regime to a binary tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a certain value, where motion coherency and predictability fail to hold longer. In particular, we found that motion-based prediction leads to the emergence of a tracking behavior only when enough information from the trajectory has been accumulated. Then, during tracking, trajectory estimation is robust to blanks even in the presence of relatively high levels of noise. Moreover, we found that tracking is necessary for motion extrapolation, this calls for further experimental work exploring the role of noise in motion extrapolation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Visual information for judging temporal range
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Mowafy, Lyn
1993-01-01
Work in our laboratory suggests that pilots can extract temporal range information (i.e., the time to pass a given waypoint) directly from out-the-window motion information. This extraction does not require the use of velocity or distance, but rather operates solely on a 2-D motion cue. In this paper, we present the mathematical derivation of this information, psychophysical evidence of human observers' sensitivity, and possible advantages and limitations of basing vehicle control on this parameter.
Differential effect of visual motion adaption upon visual cortical excitability.
Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer
2017-03-01
The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.
Weighted integration of short-term memory and sensory signals in the oculomotor system.
Deravet, Nicolas; Blohm, Gunnar; de Xivry, Jean-Jacques Orban; Lefèvre, Philippe
2018-05-01
Oculomotor behaviors integrate sensory and prior information to overcome sensory-motor delays and noise. After much debate about this process, reliability-based integration has recently been proposed and several models of smooth pursuit now include recurrent Bayesian integration or Kalman filtering. However, there is a lack of behavioral evidence in humans supporting these theoretical predictions. Here, we independently manipulated the reliability of visual and prior information in a smooth pursuit task. Our results show that both smooth pursuit eye velocity and catch-up saccade amplitude were modulated by visual and prior information reliability. We interpret these findings as the continuous reliability-based integration of a short-term memory of target motion with visual information, which support modeling work. Furthermore, we suggest that saccadic and pursuit systems share this short-term memory. We propose that this short-term memory of target motion is quickly built and continuously updated, and constitutes a general building block present in all sensorimotor systems.
Mukherjee, Joyeeta Mitra; Hutton, Brian F; Johnson, Karen L; Pretorius, P Hendrik; King, Michael A
2014-01-01
Motion estimation methods in single photon emission computed tomography (SPECT) can be classified into methods which depend on just the emission data (data-driven), or those that use some other source of information such as an external surrogate. The surrogate-based methods estimate the motion exhibited externally which may not correlate exactly with the movement of organs inside the body. The accuracy of data-driven strategies on the other hand is affected by the type and timing of motion occurrence during acquisition, the source distribution, and various degrading factors such as attenuation, scatter, and system spatial resolution. The goal of this paper is to investigate the performance of two data-driven motion estimation schemes based on the rigid-body registration of projections of motion-transformed source distributions to the acquired projection data for cardiac SPECT studies. Comparison is also made of six intensity based registration metrics to an external surrogate-based method. In the data-driven schemes, a partially reconstructed heart is used as the initial source distribution. The partially-reconstructed heart has inaccuracies due to limited angle artifacts resulting from using only a part of the SPECT projections acquired while the patient maintained the same pose. The performance of different cost functions in quantifying consistency with the SPECT projection data in the data-driven schemes was compared for clinically realistic patient motion occurring as discrete pose changes, one or two times during acquisition. The six intensity-based metrics studied were mean-squared difference (MSD), mutual information (MI), normalized mutual information (NMI), pattern intensity (PI), normalized cross-correlation (NCC) and entropy of the difference (EDI). Quantitative and qualitative analysis of the performance is reported using Monte-Carlo simulations of a realistic heart phantom including degradation factors such as attenuation, scatter and system spatial resolution. Further the visual appearance of motion-corrected images using data-driven motion estimates was compared to that obtained using the external motion-tracking system in patient studies. Pattern intensity and normalized mutual information cost functions were observed to have the best performance in terms of lowest average position error and stability with degradation of image quality of the partial reconstruction in simulations. In all patients, the visual quality of PI-based estimation was either significantly better or comparable to NMI-based estimation. Best visual quality was obtained with PI-based estimation in 1 of the 5 patient studies, and with external-surrogate based correction in 3 out of 5 patients. In the remaining patient study there was little motion and all methods yielded similar visual image quality. PMID:24107647
Residual perception of biological motion in cortical blindness.
Ruffieux, Nicolas; Ramon, Meike; Lao, Junpeng; Colombo, Françoise; Stacchi, Lisa; Borruat, François-Xavier; Accolla, Ettore; Annoni, Jean-Marie; Caldara, Roberto
2016-12-01
From birth, the human visual system shows a remarkable sensitivity for perceiving biological motion. This visual ability relies on a distributed network of brain regions and can be preserved even after damage of high-level ventral visual areas. However, it remains unknown whether this critical biological skill can withstand the loss of vision following bilateral striate damage. To address this question, we tested the categorization of human and animal biological motion in BC, a rare case of cortical blindness after anoxia-induced bilateral striate damage. The severity of his impairment, encompassing various aspects of vision (i.e., color, shape, face, and object recognition) and causing blind-like behavior, contrasts with a residual ability to process motion. We presented BC with static or dynamic point-light displays (PLDs) of human or animal walkers. These stimuli were presented either individually, or in pairs in two alternative forced choice (2AFC) tasks. When confronted with individual PLDs, the patient was unable to categorize the stimuli, irrespective of whether they were static or dynamic. In the 2AFC task, BC exhibited appropriate eye movements towards diagnostic information, but performed at chance level with static PLDs, in stark contrast to his ability to efficiently categorize dynamic biological agents. This striking ability to categorize biological motion provided top-down information is important for at least two reasons. Firstly, it emphasizes the importance of assessing patients' (visual) abilities across a range of task constraints, which can reveal potential residual abilities that may in turn represent a key feature for patient rehabilitation. Finally, our findings reinforce the view that the neural network processing biological motion can efficiently operate despite severely impaired low-level vision, positing our natural predisposition for processing dynamicity in biological agents as a robust feature of human vision. Copyright © 2016 Elsevier Ltd. All rights reserved.
Catching What We Can't See: Manual Interception of Occluded Fly-Ball Trajectories
Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco
2012-01-01
Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories. PMID:23166653
Catching what we can't see: manual interception of occluded fly-ball trajectories.
Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco
2012-01-01
Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories.
Kinematic Parameters of Signed Verbs
ERIC Educational Resources Information Center
Malaia, Evie; Wilbur, Ronnie B.; Milkovic, Marina
2013-01-01
Purpose: Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production…
Defining the computational structure of the motion detector in Drosophila
Clark, Damon A.; Bursztyn, Limor; Horowitz, Mark; Schnitzer, Mark J.; Clandinin, Thomas R.
2011-01-01
SUMMARY Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt Correlator (HRC), relates visual inputs to neural and behavioral responses to motion, but the circuits that implement this computation remain unknown. Using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, “reverse phi”, that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. PMID:21689602
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Levine, M. S.
1979-01-01
Human experiments are carried out which support the observation of Goodwin (1973) and Goodwin et al. (1972) that vibration of skeletal muscles can elicit illusory limb motion. These experiments extend the class of possible myesthetic illusions by showing that vibration of the appropriate muscles can produce illusory body motion in nearly any desired direction. Such illusory changes in posture occur only when visual information about body orientation is absent; these changes in apparent posture are sometimes accompanied by a slow-phase nystagmus that compensates for the direction of apparent body motion. During illusory body motion a stationary target light that is fixated will appear to move with the body at the same apparent velocity. However, this pattern of apparent body motion and conjoint visual - defined as propriogyral illusion - is suppressed if the subject is in a fully illuminated environment providing cues about true body orientation. Persuasive evidence is thus provided for the contribution of both muscle afferent and touch-pressure information to the supraspinal mechanisms that determine apparent orientation on the basis of ongoing patterns of interoceptive and exteroceptive activity.
Sensory convergence in the parieto-insular vestibular cortex
Shinder, Michael E.
2014-01-01
Vestibular signals are pervasive throughout the central nervous system, including the cortex, where they likely play different roles than they do in the better studied brainstem. Little is known about the parieto-insular vestibular cortex (PIVC), an area of the cortex with prominent vestibular inputs. Neural activity was recorded in the PIVC of rhesus macaques during combinations of head, body, and visual target rotations. Activity of many PIVC neurons was correlated with the motion of the head in space (vestibular), the twist of the neck (proprioceptive), and the motion of a visual target, but was not associated with eye movement. PIVC neurons responded most commonly to more than one stimulus, and responses to combined movements could often be approximated by a combination of the individual sensitivities to head, neck, and target motion. The pattern of visual, vestibular, and somatic sensitivities on PIVC neurons displayed a continuous range, with some cells strongly responding to one or two of the stimulus modalities while other cells responded to any type of motion equivalently. The PIVC contains multisensory convergence of self-motion cues with external visual object motion information, such that neurons do not represent a specific transformation of any one sensory input. Instead, the PIVC neuron population may define the movement of head, body, and external visual objects in space and relative to one another. This comparison of self and external movement is consistent with insular cortex functions related to monitoring and explains many disparate findings of previous studies. PMID:24671533
Rosenblatt, Steven David; Crane, Benjamin Thomas
2015-01-01
A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.
fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.
Kimmig, H; Ohlendorf, S; Speck, O; Sprenger, A; Rutschmann, R M; Haller, S; Greenlee, M W
2008-01-01
Smooth pursuit eye movements (SP) are driven by moving objects. The pursuit system processes the visual input signals and transforms this information into an oculomotor output signal. Despite the object's movement on the retina and the eyes' movement in the head, we are able to locate the object in space implying coordinate transformations from retinal to head and space coordinates. To test for the visual and oculomotor components of SP and the possible transformation sites, we investigated three experimental conditions: (I) fixation of a stationary target with a second target moving across the retina (visual), (II) pursuit of the moving target with the second target moving in phase (oculomotor), (III) pursuit of the moving target with the second target remaining stationary (visuo-oculomotor). Precise eye movement data were simultaneously measured with the fMRI data. Visual components of activation during SP were located in the motion-sensitive, temporo-parieto-occipital region MT+ and the right posterior parietal cortex (PPC). Motor components comprised more widespread activation in these regions and additional activations in the frontal and supplementary eye fields (FEF, SEF), the cingulate gyrus and precuneus. The combined visuo-oculomotor stimulus revealed additional activation in the putamen. Possible transformation sites were found in MT+ and PPC. The MT+ activation evoked by the motion of a single visual dot was very localized, while the activation of the same single dot motion driving the eye was rather extended across MT+. The eye movement information appeared to be dispersed across the visual map of MT+. This could be interpreted as a transfer of the one-dimensional eye movement information into the two-dimensional visual map. Potentially, the dispersed information could be used to remap MT+ to space coordinates rather than retinal coordinates and to provide the basis for a motor output control. A similar interpretation holds for our results in the PPC region.
Self-organizing neural integration of pose-motion features for human action recognition
Parisi, German I.; Weber, Cornelius; Wermter, Stefan
2015-01-01
The visual recognition of complex, articulated human movements is fundamental for a wide range of artificial systems oriented toward human-robot communication, action classification, and action-driven perception. These challenging tasks may generally involve the processing of a huge amount of visual information and learning-based mechanisms for generalizing a set of training actions and classifying new samples. To operate in natural environments, a crucial property is the efficient and robust recognition of actions, also under noisy conditions caused by, for instance, systematic sensor errors and temporarily occluded persons. Studies of the mammalian visual system and its outperforming ability to process biological motion information suggest separate neural pathways for the distinct processing of pose and motion features at multiple levels and the subsequent integration of these visual cues for action perception. We present a neurobiologically-motivated approach to achieve noise-tolerant action recognition in real time. Our model consists of self-organizing Growing When Required (GWR) networks that obtain progressively generalized representations of sensory inputs and learn inherent spatio-temporal dependencies. During the training, the GWR networks dynamically change their topological structure to better match the input space. We first extract pose and motion features from video sequences and then cluster actions in terms of prototypical pose-motion trajectories. Multi-cue trajectories from matching action frames are subsequently combined to provide action dynamics in the joint feature space. Reported experiments show that our approach outperforms previous results on a dataset of full-body actions captured with a depth sensor, and ranks among the best results for a public benchmark of domestic daily actions. PMID:26106323
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Visual and vestibular components of motion sickness.
Eyeson-Annan, M; Peterken, C; Brown, B; Atchison, D
1996-10-01
The relative importance of visual and vestibular information in the etiology of motion sickness (MS) is not well understood, but these factors can be manipulated by inducing Coriolis and pseudo-Coriolis effects in experimental subjects. We hypothesized that visual and vestibular information are equivalent in producing MS. The experiments reported here aim, in part, to examine the relative influence of Coriolis and pseudo-Coriolis effects in inducing MS. We induced MS symptoms by combinations of whole body rotation and tilt, and environment rotation and tilt, in 22 volunteer subjects. Subjects participated in all of the experiments with at least 2 d between each experiment to dissipate after-effects. We recorded MS signs and symptoms when only visual stimulation was applied, when only vestibular stimulation was applied, and when both visual and vestibular stimulation were applied under specific conditions of whole body and environmental tilt. Visual stimuli produced more symptoms of MS than vestibular stimuli when only visual or vestibular stimuli were used (ANOVA F = 7.94, df = 1, 21 p = 0.01), but there was no significant difference in MS production when combined visual and vestibular stimulation were used to produce the Coriolis effect or pseudo-Coriolis effect (ANOVA: F = 0.40, df = 1, 21 p = 0.53). This was further confirmed by examination of the order in which the symptoms occurred and the lack of a correlation between previous experience and visually induced MS. Visual information is more important than vestibular input in causing MS when these stimuli are presented in isolation. In conditions where both visual and vestibular information are present, cross-coupling appears to occur between the pseudo-Coriolis effect and the Coriolis effect, as these two conditions are not significantly different in producing MS symptoms.
On-chip visual perception of motion: a bio-inspired connectionist model on FPGA.
Torres-Huitzil, César; Girau, Bernard; Castellanos-Sánchez, Claudio
2005-01-01
Visual motion provides useful information to understand the dynamics of a scene to allow intelligent systems interact with their environment. Motion computation is usually restricted by real time requirements that need the design and implementation of specific hardware architectures. In this paper, the design of hardware architecture for a bio-inspired neural model for motion estimation is presented. The motion estimation is based on a strongly localized bio-inspired connectionist model with a particular adaptation of spatio-temporal Gabor-like filtering. The architecture is constituted by three main modules that perform spatial, temporal, and excitatory-inhibitory connectionist processing. The biomimetic architecture is modeled, simulated and validated in VHDL. The synthesis results on a Field Programmable Gate Array (FPGA) device show the potential achievement of real-time performance at an affordable silicon area.
The role of human ventral visual cortex in motion perception
Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene
2013-01-01
Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030
Perception of the dynamic visual vertical during sinusoidal linear motion.
Pomante, A; Selen, L P J; Medendorp, W P
2017-10-01
The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the disambiguation of linear acceleration and spatial orientation. We discuss the dynamics of these illusory percepts in terms of a dynamic Bayesian model that combines uncertainty in the vestibular signals with priors based on the natural statistics of head motion. Copyright © 2017 the American Physiological Society.
Motion perception tasks as potential correlates to driving difficulty in the elderly
NASA Astrophysics Data System (ADS)
Raghuram, A.; Lakshminarayanan, V.
2006-09-01
Changes in the demographics indicates that the population older than 65 is on the rise because of the aging of the ‘baby boom’ generation. This aging trend and driving related accident statistics reveal the need for procedures and tests that would assess the driving ability of older adults and predict whether they would be safe or unsafe drivers. Literature shows that an attention based test called the useful field of view (UFOV) was a significant predictor of accident rates compared to any other visual function tests. The present study evaluates a qualitative trend on using motion perception tasks as a potential visual perceptual correlates in screening elderly drivers who might have difficulty in driving. Data was collected from 15 older subjects with a mean age of 71. Motion perception tasks included—speed discrimination with radial and lamellar motion, time to collision using prediction motion and estimating direction of heading. A motion index score was calculated which was indicative of performance on all of the above-mentioned motion tasks. Scores on visual attention was assessed using UFOV. A driving habit questionnaire was also administered for a self report on the driving difficulties and accident rates. A qualitative trend based on frequency distributions show that thresholds on the motion perception tasks are successful in identifying subjects who reported to have had difficulty in certain aspects of driving and had accidents. Correlation between UFOV and motion index scores was not significant indicating that probably different aspects of visual information processing that are crucial to driving behaviour are being tapped by these two paradigms. UFOV and motion perception tasks together can be a better predictor for identifying at risk or safe drivers than just using either one of them.
Suppressive mechanisms in visual motion processing: From perception to intelligence.
Tadin, Duje
2015-10-01
Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and individuals with schizophrenia-a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Visual Control for Multirobot Organized Rendezvous.
Lopez-Nicolas, G; Aranda, M; Mezouar, Y; Sagues, C
2012-08-01
This paper addresses the problem of visual control of a set of mobile robots. In our framework, the perception system consists of an uncalibrated flying camera performing an unknown general motion. The robots are assumed to undergo planar motion considering nonholonomic constraints. The goal of the control task is to drive the multirobot system to a desired rendezvous configuration relying solely on visual information given by the flying camera. The desired multirobot configuration is defined with an image of the set of robots in that configuration without any additional information. We propose a homography-based framework relying on the homography induced by the multirobot system that gives a desired homography to be used to define the reference target, and a new image-based control law that drives the robots to the desired configuration by imposing a rigidity constraint. This paper extends our previous work, and the main contributions are that the motion constraints on the flying camera are removed, the control law is improved by reducing the number of required steps, the stability of the new control law is proved, and real experiments are provided to validate the proposal.
Extracting heading and temporal range from optic flow: Human performance issues
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Perrone, John A.; Stone, Leland; Banks, Martin S.; Crowell, James A.
1993-01-01
Pilots are able to extract information about their vehicle motion and environmental structure from dynamic transformations in the out-the-window scene. In this presentation, we focus on the information in the optic flow which specifies vehicle heading and distance to objects in the environment, scaled to a temporal metric. In particular, we are concerned with modeling how the human operators extract the necessary information, and what factors impact their ability to utilize the critical information. In general, the psychophysical data suggest that the human visual system is fairly robust to degradations in the visual display, e.g., reduced contrast and resolution or restricted field of view. However, extraneous motion flow, i.e., introduced by sensor rotation, greatly compromises human performance. The implications of these models and data for enhanced/synthetic vision systems are discussed.
Hagura, Nobuhiro; Oouchida, Yutaka; Aramaki, Yu; Okada, Tomohisa; Matsumura, Michikazu; Sadato, Norihiro
2009-01-01
Combination of visual and kinesthetic information is essential to perceive bodily movements. We conducted behavioral and functional magnetic resonance imaging experiments to investigate the neuronal correlates of visuokinesthetic combination in perception of hand movement. Participants experienced illusory flexion movement of their hand elicited by tendon vibration while they viewed video-recorded flexion (congruent: CONG) or extension (incongruent: INCONG) motions of their hand. The amount of illusory experience was graded by the visual velocities only when visual information regarding hand motion was concordant with kinesthetic information (CONG). The left posterolateral cerebellum was specifically recruited under the CONG, and this left cerebellar activation was consistent for both left and right hands. The left cerebellar activity reflected the participants' intensity of illusory hand movement under the CONG, and we further showed that coupling of activity between the left cerebellum and the “right” parietal cortex emerges during this visuokinesthetic combination/perception. The “left” cerebellum, working with the anatomically connected high-order bodily region of the “right” parietal cortex, participates in online combination of exteroceptive (vision) and interoceptive (kinesthesia) information to perceive hand movement. The cerebro–cerebellar interaction may underlie updating of one's “body image,” when perceiving bodily movement from visual and kinesthetic information. PMID:18453537
Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin
2009-03-01
Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.
DOT National Transportation Integrated Search
1968-10-01
A conflict among sensory signals frequently underlies problems of disorientation, vertigo, and motion sickness. In this study, visual information in conflict with vestibular signals was presented to groups of subjects by illuminating the test room fo...
Analysis in Motion Initiative – Summarization Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Dustin; Pirrung, Meg; Jasper, Rob
2017-06-22
Analysts are tasked with integrating information from multiple data sources for important and timely decision making. What if sense making and overall situation awareness could be improved through visualization techniques? The Analysis in Motion initiative is advancing the ability to summarize and abstract multiple streams and static data sources over time.
Perceptual response and information pick-up strategies within a family of sports.
Ida, Hirofumi; Fukuhara, Kazunobu; Ishii, Motonobu; Inoue, Tetsuri
2013-02-01
The purpose of this study was to determine whether and how the perceptual response of athletes differed depending on their sporting expertise. This was achieved by comparing the responses of tennis and soft tennis players. Twelve experienced tennis players and 12 experienced soft tennis players viewed computer graphic serve motions simulated by a motion perturbation technique, and then scaled their anticipatory judgments regarding the direction, speed, and spin of the ball on a visual analogue scale. Experiment 1 evaluated the player's judgments in response to test motions rendered with a complete polygon model. The results revealed significantly different anticipatory judgments between the player groups when an elbow rotation perturbation was applied to the test serve motion. Experiment 2 used spatially occluded models in order to investigate the effectiveness of local information in making anticipatory judgments. The results suggested that the isolation of visual information had less effect on the judgment of the tennis players than on that of the soft tennis players. In conclusion, the domain of sporting expertise, including those of closely related sports, cannot only differentiate the anticipatory judgment of a ball's future flight path, but also affect the utilization strategy for the local kinematic information. Copyright © 2012 Elsevier B.V. All rights reserved.
[Visual cuing effect for haptic angle judgment].
Era, Ataru; Yokosawa, Kazuhiko
2009-08-01
We investigated whether visual cues are useful for judging haptic angles. Participants explored three-dimensional angles with a virtual haptic feedback device. For visual cues, we use a location cue, which synchronizes haptic exploration, and a space cue, which specifies the haptic space. In Experiment 1, angles were judged more correctly with both cues, but were overestimated with a location cue only. In Experiment 2, the visual cues emphasized depth, and overestimation with location cues occurred, but space cues had no influence. The results showed that (a) when both cues are presented, haptic angles are judged more correctly. (b) Location cues facilitate only motion information, and not depth information. (c) Haptic angles are apt to be overestimated when there is both haptic and visual information.
Motion cue effects on human pilot dynamics in manual control
NASA Technical Reports Server (NTRS)
Washizu, K.; Tanaka, K.; Endo, S.; Itoko, T.
1977-01-01
Two experiments were conducted to study the motion cue effects on human pilots during tracking tasks. The moving-base simulator of National Aerospace Laboratory was employed as the motion cue device, and the attitude director indicator or the projected visual field was employed as the visual cue device. The chosen controlled elements were second-order unstable systems. It was confirmed that with the aid of motion cues the pilot workload was lessened and consequently the human controllability limits were enlarged. In order to clarify the mechanism of these effects, the describing functions of the human pilots were identified by making use of the spectral and the time domain analyses. The results of these analyses suggest that the sensory system of the motion cues can yield the differential informations of the signal effectively, which coincides with the existing knowledges in the physiological area.
Multisensory effects on somatosensation: a trimodal visuo-vestibular-tactile interaction
Kaliuzhna, Mariia; Ferrè, Elisa Raffaella; Herbelin, Bruno; Blanke, Olaf; Haggard, Patrick
2016-01-01
Vestibular information about self-motion is combined with other sensory signals. Previous research described both visuo-vestibular and vestibular-tactile bilateral interactions, but the simultaneous interaction between all three sensory modalities has not been explored. Here we exploit a previously reported visuo-vestibular integration to investigate multisensory effects on tactile sensitivity in humans. Tactile sensitivity was measured during passive whole body rotations alone or in conjunction with optic flow, creating either purely vestibular or visuo-vestibular sensations of self-motion. Our results demonstrate that tactile sensitivity is modulated by perceived self-motion, as provided by a combined visuo-vestibular percept, and not by the visual and vestibular cues independently. We propose a hierarchical multisensory interaction that underpins somatosensory modulation: visual and vestibular cues are first combined to produce a multisensory self-motion percept. Somatosensory processing is then enhanced according to the degree of perceived self-motion. PMID:27198907
Multisensory Motion Perception in 3–4 Month-Old Infants
Nava, Elena; Grassi, Massimo; Brenna, Viola; Croci, Emanuela; Turati, Chiara
2017-01-01
Human infants begin very early in life to take advantage of multisensory information by extracting the invariant amodal information that is conveyed redundantly by multiple senses. Here we addressed the question as to whether infants can bind multisensory moving stimuli, and whether this occurs even if the motion produced by the stimuli is only illusory. Three- to 4-month-old infants were presented with two bimodal pairings: visuo-tactile and audio-visual. Visuo-tactile pairings consisted of apparently vertically moving bars (the Barber Pole illusion) moving in either the same or opposite direction with a concurrent tactile stimulus consisting of strokes given on the infant’s back. Audio-visual pairings consisted of the Barber Pole illusion in its visual and auditory version, the latter giving the impression of a continuous rising or ascending pitch. We found that infants were able to discriminate congruently (same direction) vs. incongruently moving (opposite direction) pairs irrespective of modality (Experiment 1). Importantly, we also found that congruently moving visuo-tactile and audio-visual stimuli were preferred over incongruently moving bimodal stimuli (Experiment 2). Our findings suggest that very young infants are able to extract motion as amodal component and use it to match stimuli that only apparently move in the same direction. PMID:29187829
Shapiro, Arthur; Lu, Zhong-Lin; Huang, Chang-Bing; Knight, Emily; Ennis, Robert
2010-10-13
The human visual system does not treat all parts of an image equally: the central segments of an image, which fall on the fovea, are processed with a higher resolution than the segments that fall in the visual periphery. Even though the differences between foveal and peripheral resolution are large, these differences do not usually disrupt our perception of seamless visual space. Here we examine a motion stimulus in which the shift from foveal to peripheral viewing creates a dramatic spatial/temporal discontinuity. The stimulus consists of a descending disk (global motion) with an internal moving grating (local motion). When observers view the disk centrally, they perceive both global and local motion (i.e., observers see the disk's vertical descent and the internal spinning). When observers view the disk peripherally, the internal portion appears stationary, and the disk appears to descend at an angle. The angle of perceived descent increases as the observer views the stimulus from further in the periphery. We examine the first- and second-order information content in the display with the use of a three-dimensional Fourier analysis and show how our results can be used to describe perceived spatial/temporal discontinuities in real-world situations. The perceived shift of the disk's direction in the periphery is consistent with a model in which foveal processing separates first- and second-order motion information while peripheral processing integrates first- and second-order motion information. We argue that the perceived distortion may influence real-world visual observations. To this end, we present a hypothesis and analysis of the perception of the curveball and rising fastball in the sport of baseball. The curveball is a physically measurable phenomenon: the imbalance of forces created by the ball's spin causes the ball to deviate from a straight line and to follow a smooth parabolic path. However, the curveball is also a perceptual puzzle because batters often report that the flight of the ball undergoes a dramatic and nearly discontinuous shift in position as the ball nears home plate. We suggest that the perception of a discontinuous shift in position results from differences between foveal and peripheral processing.
Ida, Hirofumi; Fukuhara, Kazunobu; Ishii, Motonobu
2012-01-01
The objective of this study was to assess the cognitive effect of human character models on the observer's ability to extract relevant information from computer graphics animation of tennis serve motions. Three digital human models (polygon, shadow, and stick-figure) were used to display the computationally simulated serve motions, which were perturbed at the racket-arm by modulating the speed (slower or faster) of one of the joint rotations (wrist, elbow, or shoulder). Twenty-one experienced tennis players and 21 novices made discrimination responses about the modulated joint and also specified the perceived swing speeds on a visual analogue scale. The result showed that the discrimination accuracies of the experienced players were both above and below chance level depending on the modulated joint whereas those of the novices mostly remained at chance or guessing levels. As far as the experienced players were concerned, the polygon model decreased the discrimination accuracy as compared with the stick-figure model. This suggests that the complicated pictorial information may have a distracting effect on the recognition of the observed action. On the other hand, the perceived swing speed of the perturbed motion relative to the control was lower for the stick-figure model than for the polygon model regardless of the skill level. This result suggests that the simplified visual information can bias the perception of the motion speed toward slower. It was also shown that the increasing the joint rotation speed increased the perceived swing speed, although the resulting racket velocity had little correlation with this speed sensation. Collectively, observer's recognition of the motion pattern and perception of the motion speed can be affected by the pictorial information of the human model as well as by the perturbation processing applied to the observed motion.
Robotic Attention Processing And Its Application To Visual Guidance
NASA Astrophysics Data System (ADS)
Barth, Matthew; Inoue, Hirochika
1988-03-01
This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.
Computational model for perception of objects and motions.
Yang, WenLu; Zhang, LiQing; Ma, LiBo
2008-06-01
Perception of objects and motions in the visual scene is one of the basic problems in the visual system. There exist 'What' and 'Where' pathways in the superior visual cortex, starting from the simple cells in the primary visual cortex. The former is able to perceive objects such as forms, color, and texture, and the latter perceives 'where', for example, velocity and direction of spatial movement of objects. This paper explores brain-like computational architectures of visual information processing. We propose a visual perceptual model and computational mechanism for training the perceptual model. The computational model is a three-layer network. The first layer is the input layer which is used to receive the stimuli from natural environments. The second layer is designed for representing the internal neural information. The connections between the first layer and the second layer, called the receptive fields of neurons, are self-adaptively learned based on principle of sparse neural representation. To this end, we introduce Kullback-Leibler divergence as the measure of independence between neural responses and derive the learning algorithm based on minimizing the cost function. The proposed algorithm is applied to train the basis functions, namely receptive fields, which are localized, oriented, and bandpassed. The resultant receptive fields of neurons in the second layer have the characteristics resembling that of simple cells in the primary visual cortex. Based on these basis functions, we further construct the third layer for perception of what and where in the superior visual cortex. The proposed model is able to perceive objects and their motions with a high accuracy and strong robustness against additive noise. Computer simulation results in the final section show the feasibility of the proposed perceptual model and high efficiency of the learning algorithm.
Visual search for motion-form conjunctions: is form discriminated within the motion system?
von Mühlenen, A; Müller, H J
2001-06-01
Motion-form conjunction search can be more efficient when the target is moving (a moving 45 degrees tilted line among moving vertical and stationary 45 degrees tilted lines) rather than stationary. This asymmetry may be due to aspects of form being discriminated within a motion system representing only moving items, whereas discrimination of stationary items relies on a static form system (J. Driver & P. McLeod, 1992). Alternatively, it may be due to search exploiting differential motion velocity and direction signals generated by the moving-target and distractor lines. To decide between these alternatives, 4 experiments systematically varied the motion-signal information conveyed by the moving target and distractors while keeping their form difference salient. Moving-target search was found to be facilitated only when differential motion-signal information was available. Thus, there is no need to assume that form is discriminated within the motion system.
Emotional and movement-related body postures modulate visual processing
Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E.; Avenanti, Alessio
2015-01-01
Human body postures convey useful information for understanding others’ emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213
Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice
2017-04-07
Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Comparison of visual sensitivity to human and object motion in autism spectrum disorder.
Kaiser, Martha D; Delmolino, Lara; Tanaka, James W; Shiffrar, Maggie
2010-08-01
Successful social behavior requires the accurate detection of other people's movements. Consistent with this, typical observers demonstrate enhanced visual sensitivity to human movement relative to equally complex, nonhuman movement [e.g., Pinto & Shiffrar, 2009]. A psychophysical study investigated visual sensitivity to human motion relative to object motion in observers with autism spectrum disorder (ASD). Participants viewed point-light depictions of a moving person and, for comparison, a moving tractor and discriminated between coherent and scrambled versions of these stimuli in unmasked and masked displays. There were three groups of participants: young adults with ASD, typically developing young adults, and typically developing children. Across masking conditions, typical observers showed enhanced visual sensitivity to human movement while observers in the ASD group did not. Because the human body is an inherently social stimulus, this result is consistent with social brain theories [e.g., Pelphrey & Carter, 2008; Schultz, 2005] and suggests that the visual systems of individuals with ASD may not be tuned for the detection of socially relevant information such as the presence of another person. Reduced visual sensitivity to human movements could compromise important social behaviors including, for example, gesture comprehension.
Predictive and postdictive mechanisms jointly contribute to visual awareness.
Soga, Ryosuke; Akaishi, Rei; Sakai, Katsuyuki
2009-09-01
One of the fundamental issues in visual awareness is how we are able to perceive the scene in front of our eyes on time despite the delay in processing visual information. The prediction theory postulates that our visual system predicts the future to compensate for such delays. On the other hand, the postdiction theory postulates that our visual awareness is inevitably a delayed product. In the present study we used flash-lag paradigms in motion and color domains and examined how the perception of visual information at the time of flash is influenced by prior and subsequent visual events. We found that both types of event additively influence the perception of the present visual image, suggesting that our visual awareness results from joint contribution of predictive and postdictive mechanisms.
Audiovisual associations alter the perception of low-level visual motion
Kafaligonul, Hulusi; Oluk, Can
2015-01-01
Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role. PMID:25873869
Matching multiple rigid domain decompositions of proteins
Flynn, Emily; Streinu, Ileana
2017-01-01
We describe efficient methods for consistently coloring and visualizing collections of rigid cluster decompositions obtained from variations of a protein structure, and lay the foundation for more complex setups that may involve different computational and experimental methods. The focus here is on three biological applications: the conceptually simpler problems of visualizing results of dilution and mutation analyses, and the more complex task of matching decompositions of multiple NMR models of the same protein. Implemented into the KINARI web server application, the improved visualization techniques give useful information about protein folding cores, help examining the effect of mutations on protein flexibility and function, and provide insights into the structural motions of PDB proteins solved with solution NMR. These tools have been developed with the goal of improving and validating rigidity analysis as a credible coarse-grained model capturing essential information about a protein’s slow motions near the native state. PMID:28141528
Smart unattended sensor networks with scene understanding capabilities
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2006-05-01
Unattended sensor systems are new technologies that are supposed to provide enhanced situation awareness to military and law enforcement agencies. A network of such sensors cannot be very effective in field conditions only if it can transmit visual information to human operators or alert them on motion. In the real field conditions, events may happen in many nodes of a network simultaneously. But the real number of control personnel is always limited, and attention of human operators can be simply attracted to particular network nodes, while more dangerous threat may be unnoticed at the same time in the other nodes. Sensor networks would be more effective if equipped with a system that is similar to human vision in its abilities to understand visual information. Human vision uses for that a rough but wide peripheral system that tracks motions and regions of interests, narrow but precise foveal vision that analyzes and recognizes objects in the center of selected region of interest, and visual intelligence that provides scene and object contexts and resolves ambiguity and uncertainty in the visual information. Biologically-inspired Network-Symbolic models convert image information into an 'understandable' Network-Symbolic format, which is similar to relational knowledge models. The equivalent of interaction between peripheral and foveal systems in the network-symbolic system is achieved via interaction between Visual and Object Buffers and the top-level knowledge system.
Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.
Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi
2017-07-01
Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.
Kaneoke, Y; Urakawa, T; Kakigi, R
2009-05-19
We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.
Real-time 3D visualization of volumetric video motion sensor data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, J.; Stansfield, S.; Shawver, D.
1996-11-01
This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to bemore » immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.« less
Defining the computational structure of the motion detector in Drosophila.
Clark, Damon A; Bursztyn, Limor; Horowitz, Mark A; Schnitzer, Mark J; Clandinin, Thomas R
2011-06-23
Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt correlator (HRC), relates visual inputs to neural activity and behavioral responses to motion, but the circuits that implement this computation remain unknown. By using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, "reverse phi," that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. Copyright © 2011 Elsevier Inc. All rights reserved.
Smelling directions: Olfaction modulates ambiguous visual motion perception
Kuang, Shenbing; Zhang, Tao
2014-01-01
Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway. PMID:25052162
The perception of surface layout during low level flight
NASA Technical Reports Server (NTRS)
Perrone, John A.
1991-01-01
Although it is fairly well established that information about surface layout can be gained from motion cues, it is not so clear as to what information humans can use and what specific information they should be provided. Theoretical analyses tell us that the information is in the stimulus. It will take more experiments to verify that this information can be used by humans to extract surface layout from the 2D velocity flow field. The visual motion factors that can affect the pilot's ability to control an aircraft and to infer the layout of the terrain ahead are discussed.
Effects of aging on identifying emotions conveyed by point-light walkers.
Spencer, Justine M Y; Sekuler, Allison B; Bennett, Patrick J; Giese, Martin A; Pilz, Karin S
2016-02-01
The visual system is able to recognize human motion simply from point lights attached to the major joints of an actor. Moreover, it has been shown that younger adults are able to recognize emotions from such dynamic point-light displays. Previous research has suggested that the ability to perceive emotional stimuli changes with age. For example, it has been shown that older adults are impaired in recognizing emotional expressions from static faces. In addition, it has been shown that older adults have difficulties perceiving visual motion, which might be helpful to recognize emotions from point-light displays. In the current study, 4 experiments were completed in which older and younger adults were asked to identify 3 emotions (happy, sad, and angry) displayed by 4 types of point-light walkers: upright and inverted normal walkers, which contained both local motion and global form information; upright scrambled walkers, which contained only local motion information; and upright random-position walkers, which contained only global form information. Overall, emotion discrimination accuracy was lower in older participants compared with younger participants, specifically when identifying sad and angry point-light walkers. In addition, observers in both age groups were able to recognize emotions from all types of point-light walkers, suggesting that both older and younger adults are able to recognize emotions from point-light walkers on the basis of local motion or global form. (c) 2016 APA, all rights reserved).
Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.
2013-01-01
Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760
Krug, Kristine; Cicmil, Nela; Parker, Andrew J.; Cumming, Bruce G.
2013-01-01
Summary Judgments about the perceptual appearance of visual objects require the combination of multiple parameters, like location, direction, color, speed, and depth. Our understanding of perceptual judgments has been greatly informed by studies of ambiguous figures, which take on different appearances depending upon the brain state of the observer. Here we probe the neural mechanisms hypothesized as responsible for judging the apparent direction of rotation of ambiguous structure from motion (SFM) stimuli. Resolving the rotation direction of SFM cylinders requires the conjoint decoding of direction of motion and binocular depth signals [1, 2]. Within cortical visual area V5/MT of two macaque monkeys, we applied electrical stimulation at sites with consistent multiunit tuning to combinations of binocular depth and direction of motion, while the monkey made perceptual decisions about the rotation of SFM stimuli. For both ambiguous and unambiguous SFM figures, rotation judgments shifted as if we had added a specific conjunction of disparity and motion signals to the stimulus elements. This is the first causal demonstration that the activity of neurons in V5/MT contributes directly to the perception of SFM stimuli and by implication to decoding the specific conjunction of disparity and motion, the two different visual cues whose combination drives the perceptual judgment. PMID:23871244
High contrast sensitivity for visually guided flight control in bumblebees.
Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie
2017-12-01
Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.
Sensitivity to synchronicity of biological motion in normal and amblyopic vision
Luu, Jennifer Y.; Levi, Dennis M.
2017-01-01
Amblyopia is a developmental disorder of spatial vision that results from abnormal early visual experience usually due to the presence of strabismus, anisometropia, or both strabismus and anisometropia. Amblyopia results in a range of visual deficits that cannot be corrected by optics because the deficits reflect neural abnormalities. Biological motion refers to the motion patterns of living organisms, and is normally displayed as points of lights positioned at the major joints of the body. In this experiment, our goal was twofold. We wished to examine whether the human visual system in people with amblyopia retained the higher-level processing capabilities to extract visual information from the synchronized actions of others, therefore retaining the ability to detect biological motion. Specifically, we wanted to determine if the synchronized interaction of two agents performing a dancing routine allowed the amblyopic observer to use the actions of one agent to predict the expected actions of a second agent. We also wished to establish whether synchronicity sensitivity (detection of synchronized versus desynchronized interactions) is impaired in amblyopic observers relative to normal observers. The two aims are differentiated in that the first aim looks at whether synchronized actions result in improved expected action predictions while the second aim quantitatively compares synchronicity sensitivity, or the ratio of desynchronized to synchronized detection sensitivities, to determine if there is a difference between normal and amblyopic observers. Our results show that the ability to detect biological motion requires more samples in both eyes of amblyopes than in normal control observers. The increased sample threshold is not the result of low-level losses but may reflect losses in feature integration due to undersampling in the amblyopic visual system. However, like normal observers, amblyopes are more sensitive to synchronized versus desynchronized interactions, indicating that higher-level processing of biological motion remains intact. We also found no impairment in synchronicity sensitivity in the amblyopic visual system relative to the normal visual system. Since there is no impairment in synchronicity sensitivity in either the nonamblyopic or amblyopic eye of amblyopes, our results suggest that the higher order processing of biological motion is intact. PMID:23474301
People can understand descriptions of motion without activating visual motion brain regions
Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina
2013-01-01
What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592
Troyer, Melissa; Curley, Lauren B.; Miller, Luke E.; Saygin, Ayse P.; Bergen, Benjamin K.
2014-01-01
Language comprehension requires rapid and flexible access to information stored in long-term memory, likely influenced by activation of rich world knowledge and by brain systems that support the processing of sensorimotor content. We hypothesized that while literal language about biological motion might rely on neurocognitive representations of biological motion specific to the details of the actions described, metaphors rely on more generic representations of motion. In a priming and self-paced reading paradigm, participants saw video clips or images of (a) an intact point-light walker or (b) a scrambled control and read sentences containing literal or metaphoric uses of biological motion verbs either closely or distantly related to the depicted action (walking). We predicted that reading times for literal and metaphorical sentences would show differential sensitivity to the match between the verb and the visual prime. In Experiment 1, we observed interactions between the prime type (walker or scrambled video) and the verb type (close or distant match) for both literal and metaphorical sentences, but with strikingly different patterns. We found no difference in the verb region of literal sentences for Close-Match verbs after walker or scrambled motion primes, but Distant-Match verbs were read more quickly following walker primes. For metaphorical sentences, the results were roughly reversed, with Distant-Match verbs being read more slowly following a walker compared to scrambled motion. In Experiment 2, we observed a similar pattern following still image primes, though critical interactions emerged later in the sentence. We interpret these findings as evidence for shared recruitment of cognitive and neural mechanisms for processing visual and verbal biological motion information. Metaphoric language using biological motion verbs may recruit neurocognitive mechanisms similar to those used in processing literal language but be represented in a less-specific way. PMID:25538604
Perceived change in orientation from optic flow in the central visual field
NASA Technical Reports Server (NTRS)
Dyre, Brian P.; Andersen, George J.
1988-01-01
The effects of internal depth within a simulation display on perceived changes in orientation have been studied. Subjects monocularly viewed displays simulating observer motion within a volume of randomly positioned points through a window which limited the field of view to 15 deg. Changes in perceived spatial orientation were measured by changes in posture. The extent of internal depth within the display, the presence or absence of visual information specifying change in orientation, and the frequency of motion supplied by the display were examined. It was found that increased sway occurred at frequencies equal to or below 0.375 Hz when motion at these frequencies was displayed. The extent of internal depth had no effect on the perception of changing orientation.
Finding the Correspondence of Audio-Visual Events by Object Manipulation
NASA Astrophysics Data System (ADS)
Nishibori, Kento; Takeuchi, Yoshinori; Matsumoto, Tetsuya; Kudo, Hiroaki; Ohnishi, Noboru
A human being understands the objects in the environment by integrating information obtained by the senses of sight, hearing and touch. In this integration, active manipulation of objects plays an important role. We propose a method for finding the correspondence of audio-visual events by manipulating an object. The method uses the general grouping rules in Gestalt psychology, i.e. “simultaneity” and “similarity” among motion command, sound onsets and motion of the object in images. In experiments, we used a microphone, a camera, and a robot which has a hand manipulator. The robot grasps an object like a bell and shakes it or grasps an object like a stick and beat a drum in a periodic, or non-periodic motion. Then the object emits periodical/non-periodical events. To create more realistic scenario, we put other event source (a metronome) in the environment. As a result, we had a success rate of 73.8 percent in finding the correspondence between audio-visual events (afferent signal) which are relating to robot motion (efferent signal).
Xie, Jun; Xu, Guanghua; Wang, Jing; Li, Min; Han, Chengcheng; Jia, Yaguang
Steady-state visual evoked potentials (SSVEP) based paradigm is a conventional BCI method with the advantages of high information transfer rate, high tolerance to artifacts and the robust performance across users. But the occurrence of mental load and fatigue when users stare at flickering stimuli is a critical problem in implementation of SSVEP-based BCIs. Based on electroencephalography (EEG) power indices α, θ, θ + α, ratio index θ/α and response properties of amplitude and SNR, this study quantitatively evaluated the mental load and fatigue in both of conventional flickering and the novel motion-reversal visual attention tasks. Results over nine subjects revealed significant mental load alleviation in motion-reversal task rather than flickering task. The interaction between factors of "stimulation type" and "fatigue level" also illustrated the motion-reversal stimulation as a superior anti-fatigue solution for long-term BCI operation. Taken together, our work provided an objective method favorable for the design of more practically applicable steady-state evoked potential based BCIs.
2014-01-01
Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility. PMID:25276860
The influence of visual motion on interceptive actions and perception.
Marinovic, Welber; Plooy, Annaliese M; Arnold, Derek H
2012-05-01
Visual information is an essential guide when interacting with moving objects, yet it can also be deceiving. For instance, motion can induce illusory position shifts, such that a moving ball can seem to have bounced past its true point of contact with the ground. Some evidence suggests illusory motion-induced position shifts bias pointing tasks to a greater extent than they do perceptual judgments. This, however, appears at odds with other findings and with our success when intercepting moving objects. Here we examined the accuracy of interceptive movements and of perceptual judgments in relation to simulated bounces. Participants were asked to intercept a moving disc at its bounce location by positioning a virtual paddle, and then to report where the disc had landed. Results showed that interceptive actions were accurate whereas perceptual judgments were inaccurate, biased in the direction of motion. Successful interceptions necessitated accurate information concerning both the location and timing of the bounce, so motor planning evidently had privileged access to an accurate forward model of bounce timing and location. This would explain why people can be accurate when intercepting a moving object, but lack insight into the accurate information that had guided their actions when asked to make a perceptual judgment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kooiker, M J G; Pel, J J M; van der Steen, J
2014-06-01
Children with visual impairments are very heterogeneous in terms of the extent of visual and developmental etiology. The aim of the present study was to investigate a possible correlation between prevalence of clinical risk factors of visual processing impairments and characteristics of viewing behavior. We tested 149 children with visual information processing impairments (90 boys, 59 girls; mean age (SD)=7.3 (3.3)) and 127 children without visual impairments (63 boys and 64 girls, mean age (SD)=7.9 (2.8)). Visual processing impairments were classified based on the time it took to complete orienting responses to various visual stimuli (form, contrast, motion detection, motion coherence, color and a cartoon). Within the risk group, children were divided into a fast, medium or slow group based on the response times to a highly salient stimulus. The relationship between group specific response times and clinical risk factors was assessed. The fast responding children in the risk group were significantly slower than children in the control group. Within the risk group, the prevalence of cerebral visual impairment, brain damage and intellectual disabilities was significantly higher in slow responding children compared to faster responding children. The presence of nystagmus, perceptual dysfunctions, mean visual acuity and mean age did not significantly differ between the subgroups. Orienting responses are related to risk factors for visual processing impairments known to be prevalent in visual rehabilitation practice. The proposed method may contribute to assessing the effectiveness of visual information processing in children. Copyright © 2014 Elsevier Ltd. All rights reserved.
Keshner, E A; Dhaher, Y
2008-07-01
Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a three-dimensional model of joint motion was developed to examine gross head motion in three planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (p<0.003) head motion in yaw than when on a translating platform. However, when the platform was translated in the dark or with a visual scene rotating in roll, head motion orthogonal to the plane of platform motion significantly increased (p<0.02). Visually sensitive subjects having no history of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (p<0.05) and with a stationary scene (p<0.01). We concluded that motion of the visual field could modify compensatory response kinematics of a freely moving head in planes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms.
Mobile assistive technologies for the visually impaired.
Hakobyan, Lilit; Lumsden, Jo; O'Sullivan, Dympna; Bartlett, Hannah
2013-01-01
There are around 285 million visually impaired people worldwide, and around 370,000 people are registered as blind or partially sighted in the UK. Ongoing advances in information technology (IT) are increasing the scope for IT-based mobile assistive technologies to facilitate the independence, safety, and improved quality of life of the visually impaired. Research is being directed at making mobile phones and other handheld devices accessible via our haptic (touch) and audio sensory channels. We review research and innovation within the field of mobile assistive technology for the visually impaired and, in so doing, highlight the need for successful collaboration between clinical expertise, computer science, and domain users to realize fully the potential benefits of such technologies. We initially reflect on research that has been conducted to make mobile phones more accessible to people with vision loss. We then discuss innovative assistive applications designed for the visually impaired that are either delivered via mainstream devices and can be used while in motion (e.g., mobile phones) or are embedded within an environment that may be in motion (e.g., public transport) or within which the user may be in motion (e.g., smart homes). Copyright © 2013 Elsevier Inc. All rights reserved.
Higher order visual input to the mushroom bodies in the bee, Bombus impatiens.
Paulk, Angelique C; Gronenberg, Wulfila
2008-11-01
To produce appropriate behaviors based on biologically relevant associations, sensory pathways conveying different modalities are integrated by higher-order central brain structures, such as insect mushroom bodies. To address this function of sensory integration, we characterized the structure and response of optic lobe (OL) neurons projecting to the calyces of the mushroom bodies in bees. Bees are well known for their visual learning and memory capabilities and their brains possess major direct visual input from the optic lobes to the mushroom bodies. To functionally characterize these visual inputs to the mushroom bodies, we recorded intracellularly from neurons in bumblebees (Apidae: Bombus impatiens) and a single neuron in a honeybee (Apidae: Apis mellifera) while presenting color and motion stimuli. All of the mushroom body input neurons were color sensitive while a subset was motion sensitive. Additionally, most of the mushroom body input neurons would respond to the first, but not to subsequent, presentations of repeated stimuli. In general, the medulla or lobula neurons projecting to the calyx signaled specific chromatic, temporal, and motion features of the visual world to the mushroom bodies, which included sensory information required for the biologically relevant associations bees form during foraging tasks.
A Tool for the Analysis of Motion Picture Film or Video Tape.
ERIC Educational Resources Information Center
Ekman, Paul; Friesen, Wallace V.
1969-01-01
A visual information display and retrieval system (VID-R) is described for application to visual records. VID-R searches and retrieves events by time address (location) or by previously stored ovservations or measurements. Fields are labeled by writing discriminable binary addresses on the horizontal lines outside the normal viewing area. The…
ERIC Educational Resources Information Center
Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas
2018-01-01
Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…
Liu, Sheng; Angelaki, Dora E.
2009-01-01
Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those due to changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception. PMID:19605631
Parkinson, Rachel H; Little, Jacelyn M; Gray, John R
2017-04-20
Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of these effects are not fully understood. A visual motion sensitive neuron in the locust, the Descending Contralateral Movement Detector (DCMD), integrates visual information and is involved in eliciting escape behaviours. The DCMD receives coded input from the compound eyes and monosynaptically excites motorneurons involved in flight and jumping. We show that imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g locust body weight). Effects on DCMD firing translate to deficits in collision avoidance behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD prevents the ability to fly and walk. We show that, at ecologically-relevant doses, IMD causes significant and lasting impairment of an important pathway involved with visual sensory coding and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide directly impairs an important, taxonomically conserved, motion-sensitive visual network.
Breaking camouflage and detecting targets require optic flow and image structure information.
Pan, Jing Samantha; Bingham, Ned; Chen, Chang; Bingham, Geoffrey P
2017-08-01
Use of motion to break camouflage extends back to the Cambrian [In the Blink of an Eye: How Vision Sparked the Big Bang of Evolution (New York Basic Books, 2003)]. We investigated the ability to break camouflage and continue to see camouflaged targets after motion stops. This is crucial for the survival of hunting predators. With camouflage, visual targets and distracters cannot be distinguished using only static image structure (i.e., appearance). Motion generates another source of optical information, optic flow, which breaks camouflage and specifies target locations. Optic flow calibrates image structure with respect to spatial relations among targets and distracters, and calibrated image structure makes previously camouflaged targets perceptible in a temporally stable fashion after motion stops. We investigated this proposal using laboratory experiments and compared how many camouflaged targets were identified either with optic flow information alone or with combined optic flow and image structure information. Our results show that the combination of motion-generated optic flow and target-projected image structure information yielded efficient and stable perception of camouflaged targets.
A fuzzy measure approach to motion frame analysis for scene detection. M.S. Thesis - Houston Univ.
NASA Technical Reports Server (NTRS)
Leigh, Albert B.; Pal, Sankar K.
1992-01-01
This paper addresses a solution to the problem of scene estimation of motion video data in the fuzzy set theoretic framework. Using fuzzy image feature extractors, a new algorithm is developed to compute the change of information in each of two successive frames to classify scenes. This classification process of raw input visual data can be used to establish structure for correlation. The algorithm attempts to fulfill the need for nonlinear, frame-accurate access to video data for applications such as video editing and visual document archival/retrieval systems in multimedia environments.
Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys
Liu, Bing
2017-01-01
Despite the enduring interest in motion integration, a direct measure of the space–time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus–response correlations across space and time, computing the linear space–time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms. SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space–time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear to use all available motion signals uniformly, but rather weights motion preferentially in a narrow band at approximately one-third the radius of the stimulus. Although not universal, the filter predicts responses to other types of stimuli, demonstrating a remarkable degree of generalization that may lead to a deeper understanding of visual motion processing. PMID:28003348
The Posture of Putting One's Palms Together Modulates Visual Motion Event Perception.
Saito, Godai; Gyoba, Jiro
2018-02-01
We investigated the effect of an observer's hand postures on visual motion perception using the stream/bounce display. When two identical visual objects move across collinear horizontal trajectories toward each other in a two-dimensional display, observers perceive them as either streaming or bouncing. In our previous study, we found that when observers put their palms together just below the coincidence point of the two objects, the percentage of bouncing responses increased, mainly depending on the proprioceptive information from their own hands. However, it remains unclear if the tactile or haptic (force) information produced by the postures mostly influences the stream/bounce perception. We solved this problem by changing the tactile and haptic information on the palms of the hands. Experiment 1 showed that the promotion of bouncing perception was observed only when the posture of directly putting one's palms together was used, while there was no effect when a brick was sandwiched between the participant's palms. Experiment 2 demonstrated that the strength of force used when putting the palms together had no effect on increasing bounce perception. Our findings indicate that the hands-induced bounce effect derives from the tactile information produced by the direct contact between both palms.
Human discrimination of visual direction of motion with and without smooth pursuit eye movements
NASA Technical Reports Server (NTRS)
Krukowski, Anton E.; Pirog, Kathleen A.; Beutter, Brent R.; Brooks, Kevin R.; Stone, Leland S.
2003-01-01
It has long been known that ocular pursuit of a moving target has a major influence on its perceived speed (Aubert, 1886; Fleischl, 1882). However, little is known about the effect of smooth pursuit on the perception of target direction. Here we compare the precision of human visual-direction judgments under two oculomotor conditions (pursuit vs. fixation). We also examine the impact of stimulus duration (200 ms vs. 800 ms) and absolute direction (cardinal vs. oblique). Our main finding is that direction discrimination thresholds in the fixation and pursuit conditions are indistinguishable. Furthermore, the two oculomotor conditions showed oblique effects of similar magnitudes. These data suggest that the neural direction signals supporting perception are the same with or without pursuit, despite remarkably different retinal stimulation. During fixation, the stimulus information is restricted to large, purely peripheral retinal motion, while during steady-state pursuit, the stimulus information consists of small, unreliable foveal retinal motion and a large efference-copy signal. A parsimonious explanation of our findings is that the signal limiting the precision of direction judgments is a neural estimate of target motion in head-centered (or world-centered) coordinates (i.e., a combined retinal and eye motion signal) as found in the medial superior temporal area (MST), and not simply an estimate of retinal motion as found in the middle temporal area (MT).
Spherical Coordinate Systems for Streamlining Suited Mobility Analysis
NASA Technical Reports Server (NTRS)
Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Rajulu. Sudhakar
2015-01-01
Introduction: When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. It has been shown that using a spherical coordinate system allows Anthropometry and Biomechanics Facility (ABF) personnel to increase their ability to transmit important human mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project was to use innovative analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify a new method before it was implemented in the ABF's data analysis practices. A mechanical test rig was built and tracked in 3D using an optical motion capture system. Its position and orientation were reported in both Euler and spherical reference systems. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder to include the rest of the joints of the body. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. These visualization methods will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development. Results: Initial results demonstrated that a spherical coordinate system is helpful in describing and visualizing the motion of a space suit. The system is particularly useful in describing the motion of the shoulder, where multiple degrees of freedom can lead to very complex motion paths.
Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa
2011-07-01
Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.
Studies of the Interactions Between Vestibular Function and Tactual Orientation Display Systems
NASA Technical Reports Server (NTRS)
Cholewiak, Roger W.; Reschke, Millard F.
1997-01-01
When humans experience conditions in which internal vestibular cues to movement or spatial location are challenged or contradicted by external visual information, the result can be spatial disorientation, often leading to motion sickness. Spatial disorientation can occur in any situation in which the individual is passively moved in the environment, but is most common in automotive, aircraft, or undersea travel. Significantly, the incidence of motion sickness in space travel is great: The majority of individuals in Shuttle operations suffer from the syndrome. Even after the space-sickness-producing influences of spatial disorientation dissipate, usually within several days, there are other situations in which, because of the absence of reliable or familiar vestibular cues, individuals in space still experience disorientation, resulting in a reliance on the already preoccupied sense of vision. One possible technique to minimize the deleterious effects of spatial disorientation might be to present attitude information (including orientation, direction, and motion) through another less-used sensory modality - the sense of touch. Data from experiences with deaf and blind persons indicate that this channel can provide useful communication and mobility information on a real-time basis. More recently, technologies have developed to present effective attitude information to pilots in situations in which dangerously ambiguous and conflicting visual and vestibular sensations occur. This summers project at NASA-Johnson Space Center will evaluate the influence of motion-based spatial disorientation on the perception of tactual stimuli representing veridical position and orientation information, presented by new dynamic vibrotactile array display technologies. In addition, the possibility will be explored that tactile presentations of motion and direction from this alternative modality might be useful in mitigating or alleviating spatial disorientation produced by multi-axis rotatory systems, monitored by physiological recording techniques developed at JSC.
Keshner, E.A.; Dhaher, Y.
2008-01-01
Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29–31 years) and 3 visually sensitive (27–57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a 3-dimensional model of joint motion11 was developed to examine gross head motion in 3 planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (p<0.003) head motion in yaw than when on a translating platform. However, when the platform was translated in the dark or with a visual scene rotating in roll, head motion orthogonal to the plane of platform motion significantly increased (p<0.02). Visually sensitive subjects having no history of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (p<0.05) and with a stationary scene (p<0.01). We concluded that motion of the visual field can modify compensatory response kinematics of a freely moving head in planes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms. PMID:18162402
Automated Selection Of Pictures In Sequences
NASA Technical Reports Server (NTRS)
Rorvig, Mark E.; Shelton, Robert O.
1995-01-01
Method of automated selection of film or video motion-picture frames for storage or examination developed. Beneficial in situations in which quantity of visual information available exceeds amount stored or examined by humans in reasonable amount of time, and/or necessary to reduce large number of motion-picture frames to few conveying significantly different information in manner intermediate between movie and comic book or storyboard. For example, computerized vision system monitoring industrial process programmed to sound alarm when changes in scene exceed normal limits.
Aylar, Mozhgan Faraji; Firouzi, Faramarz; Araghi, Mandana Rahnama
2016-12-01
[Purpose] The purpose of this investigation was to assess whether or not restriction of visual information influences the kinematics of sit-to-stand (STS) performance in children. [Subjects and Methods] Five girls with congenital blindness (CB) and ten healthy girls with no visual impairments were randomly selected. The girls with congenital blindness were placed in one group and the ten girls with no visual impairments were divided into two groups of five, control and treatment groups. The participants in the treatment group were asked to close their eyes (EC) for 20 minutes before the STS test, whereas those in the control group kept their eyes open (EO). The performance of the participants in all three groups was measured using a motion capture system and two force plates. [Results] The results show that the constraint duration of visual sensory information affected the range of motion (ROM), the excursion of the dominant side ankle, and the ROM of the dominant side knee in the EC group. However, only ankle excursion on the non-dominant side was affected in the CB group, and this was only observed in the sagittal plane. [Conclusion] These results indicate that visual memory does not affect the joint angles in the frontal and transverse planes. Moreover, all of the participants could perform the STS transition without falling, indicating; the participants performed the STS maneuver correctly in all planes except the sagittal one.
Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex
Imhof, Fabia; Martini, Francisco J.; Hofer, Sonja B.
2017-01-01
Sensory perception depends on the context within which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher-order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context – yet the nature of the signals conveyed to cortex by higher-order thalamus remains poorly understood. Here we use axonal calcium imaging to measure information provided to visual cortex by the pulvinar equivalent in mice, the lateral posterior nucleus (LP), as well as the dorsolateral geniculate nucleus (dLGN). We found that dLGN conveys retinotopically precise visual signals, while LP provides distributed information from the visual scene. Both LP and dLGN projections carry locomotion signals. However, while dLGN inputs often respond to positive combinations of running and visual flow speed, LP signals discrepancies between self-generated and external visual motion. This higher-order thalamic nucleus therefore conveys diverse contextual signals that inform visual cortex about visual scene changes not predicted by the animal’s own actions. PMID:26691828
Helical Axis Data Visualization and Analysis of the Knee Joint Articulation.
Millán Vaquero, Ricardo Manuel; Vais, Alexander; Dean Lynch, Sean; Rzepecki, Jan; Friese, Karl-Ingo; Hurschler, Christof; Wolter, Franz-Erich
2016-09-01
We present processing methods and visualization techniques for accurately characterizing and interpreting kinematical data of flexion-extension motion of the knee joint based on helical axes. We make use of the Lie group of rigid body motions and particularly its Lie algebra for a natural representation of motion sequences. This allows to analyze and compute the finite helical axis (FHA) and instantaneous helical axis (IHA) in a unified way without redundant degrees of freedom or singularities. A polynomial fitting based on Legendre polynomials within the Lie algebra is applied to provide a smooth description of a given discrete knee motion sequence which is essential for obtaining stable instantaneous helical axes for further analysis. Moreover, this allows for an efficient overall similarity comparison across several motion sequences in order to differentiate among several cases. Our approach combines a specifically designed patient-specific three-dimensional visualization basing on the processed helical axes information and incorporating computed tomography (CT) scans for an intuitive interpretation of the axes and their geometrical relation with respect to the knee joint anatomy. In addition, in the context of the study of diseases affecting the musculoskeletal articulation, we propose to integrate the above tools into a multiscale framework for exploring related data sets distributed across multiple spatial scales. We demonstrate the utility of our methods, exemplarily processing a collection of motion sequences acquired from experimental data involving several surgery techniques. Our approach enables an accurate analysis, visualization and comparison of knee joint articulation, contributing to the evaluation and diagnosis in medical applications.
Selen, L. P. J.; Medendorp, W. P.
2014-01-01
Despite the constantly changing retinal image due to eye, head, and body movements, we are able to maintain a stable representation of the visual environment. Various studies on retinal image shifts caused by saccades have suggested that occipital and parietal areas correct for these perturbations by a gaze-centered remapping of the neural image. However, such a uniform, rotational, remapping mechanism cannot work during translations when objects shift on the retina in a more complex, depth-dependent fashion due to motion parallax. Here we tested whether the brain's activity patterns show parallax-sensitive remapping of remembered visual space during whole-body motion. Under continuous recording of electroencephalography (EEG), we passively translated human subjects while they had to remember the location of a world-fixed visual target, briefly presented in front of or behind the eyes' fixation point prior to the motion. Using a psychometric approach we assessed the quality of the memory update, which had to be made based on vestibular feedback and other extraretinal motion cues. All subjects showed a variable amount of parallax-sensitive updating errors, i.e., the direction of the errors depended on the depth of the target relative to fixation. The EEG recordings show a neural correlate of this parallax-sensitive remapping in the alpha-band power at occipito-parietal electrodes. At parietal electrodes, the strength of these alpha-band modulations correlated significantly with updating performance. These results suggest that alpha-band oscillatory activity reflects the time-varying updating of gaze-centered spatial information during parallax-sensitive remapping during whole-body motion. PMID:25505108
FuryExplorer: visual-interactive exploration of horse motion capture data
NASA Astrophysics Data System (ADS)
Wilhelm, Nils; Vögele, Anna; Zsoldos, Rebeka; Licka, Theresia; Krüger, Björn; Bernard, Jürgen
2015-01-01
The analysis of equine motion has a long tradition in the past of mankind. Equine biomechanics aims at detecting characteristics of horses indicative of good performance. Especially, veterinary medicine gait analysis plays an important role in diagnostics and in the emerging research of long-term effects of athletic exercises. More recently, the incorporation of motion capture technology contributed to an easier and faster analysis, with a trend from mere observation of horses towards the analysis of multivariate time-oriented data. However, due to the novelty of this topic being raised within an interdisciplinary context, there is yet a lack of visual-interactive interfaces to facilitate time series data analysis and information discourse for the veterinary and biomechanics communities. In this design study, we bring visual analytics technology into the respective domains, which, to our best knowledge, was never approached before. Based on requirements developed in the domain characterization phase, we present a visual-interactive system for the exploration of horse motion data. The system provides multiple views which enable domain experts to explore frequent poses and motions, but also to drill down to interesting subsets, possibly containing unexpected patterns. We show the applicability of the system in two exploratory use cases, one on the comparison of different gait motions, and one on the analysis of lameness recovery. Finally, we present the results of a summative user study conducted in the environment of the domain experts. The overall outcome was a significant improvement in effectiveness and efficiency in the analytical workflow of the domain experts.
Modeling and measuring the visual detection of ecologically relevant motion by an Anolis lizard.
Pallus, Adam C; Fleishman, Leo J; Castonguay, Philip M
2010-01-01
Motion in the visual periphery of lizards, and other animals, often causes a shift of visual attention toward the moving object. This behavioral response must be more responsive to relevant motion (predators, prey, conspecifics) than to irrelevant motion (windblown vegetation). Early stages of visual motion detection rely on simple local circuits known as elementary motion detectors (EMDs). We presented a computer model consisting of a grid of correlation-type EMDs, with videos of natural motion patterns, including prey, predators and windblown vegetation. We systematically varied the model parameters and quantified the relative response to the different classes of motion. We carried out behavioral experiments with the lizard Anolis sagrei and determined that their visual response could be modeled with a grid of correlation-type EMDs with a spacing parameter of 0.3 degrees visual angle, and a time constant of 0.1 s. The model with these parameters gave substantially stronger responses to relevant motion patterns than to windblown vegetation under equivalent conditions. However, the model is sensitive to local contrast and viewer-object distance. Therefore, additional neural processing is probably required for the visual system to reliably distinguish relevant from irrelevant motion under a full range of natural conditions.
Emergence of postural patterns as a function of vision and translation frequency
NASA Technical Reports Server (NTRS)
Buchanan, J. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1999-01-01
Emergence of postural patterns as a function of vision and translation frequency. We examined the frequency characteristics of human postural coordination and the role of visual information in this coordination. Eight healthy adults maintained balance in stance during sinusoidal support surface translations (12 cm peak to peak) in the anterior-posterior direction at six different frequencies. Changes in kinematic and dynamic measures revealed that both sensory and biomechanical constraints limit postural coordination patterns as a function of translation frequency. At slow frequencies (0.1 and 0.25 Hz), subjects ride the platform (with the eyes open or closed). For fast frequencies (1.0 and 1.25 Hz) with the eyes open, subjects fix their head and upper trunk in space. With the eyes closed, large-amplitude, slow-sway motion of the head and trunk occurred for fast frequencies above 0.5 Hz. Visual information stabilized posture by reducing the variability of the head's position in space and the position of the center of mass (CoM) within the support surface defined by the feet for all but the slowest translation frequencies. When subjects rode the platform, there was little oscillatory joint motion, with muscle activity limited mostly to the ankles. To support the head fixed in space and slow-sway postural patterns, subjects produced stable interjoint hip and ankle joint coordination patterns. This increase in joint motion of the lower body dissipated the energy input by fast translation frequencies and facilitated the control of upper body motion. CoM amplitude decreased with increasing translation frequency, whereas the center of pressure amplitude increased with increasing translation frequency. Our results suggest that visual information was important to maintaining a fixed position of the head and trunk in space, whereas proprioceptive information was sufficient to produce stable coordinative patterns between the support surface and legs. The CNS organizes postural patterns in this balance task as a function of available sensory information, biomechanical constraints, and translation frequency.
Parallel Computations in Insect and Mammalian Visual Motion Processing
Clark, Damon A.; Demb, Jonathan B.
2016-01-01
Sensory systems use receptors to extract information from the environment and neural circuits to perform subsequent computations. These computations may be described as algorithms composed of sequential mathematical operations. Comparing these operations across taxa reveals how different neural circuits have evolved to solve the same problem, even when using different mechanisms to implement the underlying math. In this review, we compare how insect and mammalian neural circuits have solved the problem of motion estimation, focusing on the fruit fly Drosophila and the mouse retina. Although the two systems implement computations with grossly different anatomy and molecular mechanisms, the underlying circuits transform light into motion signals with strikingly similar processing steps. These similarities run from photoreceptor gain control and spatiotemporal tuning to ON and OFF pathway structures, motion detection, and computed motion signals. The parallels between the two systems suggest that a limited set of algorithms for estimating motion satisfies both the needs of sighted creatures and the constraints imposed on them by metabolism, anatomy, and the structure and regularities of the visual world. PMID:27780048
Parallel Computations in Insect and Mammalian Visual Motion Processing.
Clark, Damon A; Demb, Jonathan B
2016-10-24
Sensory systems use receptors to extract information from the environment and neural circuits to perform subsequent computations. These computations may be described as algorithms composed of sequential mathematical operations. Comparing these operations across taxa reveals how different neural circuits have evolved to solve the same problem, even when using different mechanisms to implement the underlying math. In this review, we compare how insect and mammalian neural circuits have solved the problem of motion estimation, focusing on the fruit fly Drosophila and the mouse retina. Although the two systems implement computations with grossly different anatomy and molecular mechanisms, the underlying circuits transform light into motion signals with strikingly similar processing steps. These similarities run from photoreceptor gain control and spatiotemporal tuning to ON and OFF pathway structures, motion detection, and computed motion signals. The parallels between the two systems suggest that a limited set of algorithms for estimating motion satisfies both the needs of sighted creatures and the constraints imposed on them by metabolism, anatomy, and the structure and regularities of the visual world. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shapiro, Arthur; Lu, Zhong-Lin; Huang, Chang-Bing; Knight, Emily; Ennis, Robert
2010-01-01
Background The human visual system does not treat all parts of an image equally: the central segments of an image, which fall on the fovea, are processed with a higher resolution than the segments that fall in the visual periphery. Even though the differences between foveal and peripheral resolution are large, these differences do not usually disrupt our perception of seamless visual space. Here we examine a motion stimulus in which the shift from foveal to peripheral viewing creates a dramatic spatial/temporal discontinuity. Methodology/Principal Findings The stimulus consists of a descending disk (global motion) with an internal moving grating (local motion). When observers view the disk centrally, they perceive both global and local motion (i.e., observers see the disk's vertical descent and the internal spinning). When observers view the disk peripherally, the internal portion appears stationary, and the disk appears to descend at an angle. The angle of perceived descent increases as the observer views the stimulus from further in the periphery. We examine the first- and second-order information content in the display with the use of a three-dimensional Fourier analysis and show how our results can be used to describe perceived spatial/temporal discontinuities in real-world situations. Conclusions/Significance The perceived shift of the disk's direction in the periphery is consistent with a model in which foveal processing separates first- and second-order motion information while peripheral processing integrates first- and second-order motion information. We argue that the perceived distortion may influence real-world visual observations. To this end, we present a hypothesis and analysis of the perception of the curveball and rising fastball in the sport of baseball. The curveball is a physically measurable phenomenon: the imbalance of forces created by the ball's spin causes the ball to deviate from a straight line and to follow a smooth parabolic path. However, the curveball is also a perceptual puzzle because batters often report that the flight of the ball undergoes a dramatic and nearly discontinuous shift in position as the ball nears home plate. We suggest that the perception of a discontinuous shift in position results from differences between foveal and peripheral processing. PMID:20967247
Postural time-to-contact as a precursor of visually induced motion sickness.
Li, Ruixuan; Walter, Hannah; Curry, Christopher; Rath, Ruth; Peterson, Nicolette; Stoffregen, Thomas A
2018-06-01
The postural instability theory of motion sickness predicts that subjective symptoms of motion sickness will be preceded by unstable control of posture. In previous studies, this prediction has been confirmed with measures of the spatial magnitude and the temporal dynamics of postural activity. In the present study, we examine whether precursors of visually induced motion sickness might exist in postural time-to-contact, a measure of postural activity that is related to the risk of falling. Standing participants were exposed to oscillating visual motion stimuli in a standard laboratory protocol. Both before and during exposure to visual motion stimuli, we monitored the kinematics of the body's center of pressure. We predicted that postural activity would differ between participants who reported motion sickness and those who did not, and that these differences would exist before participants experienced subjective symptoms of motion sickness. During exposure to visual motion stimuli, the multifractality of sway differed between the Well and Sick groups. Postural time-to-contact differed between the Well and Sick groups during exposure to visual motion stimuli, but also before exposure to any motion stimuli. The results provide a qualitatively new type of support for the postural instability theory of motion sickness.
Characterization of selected elementary motion detector cells to image primitives.
Benson, Leslie A; Barrett, Steven F; Wright, Cameron H G
2008-01-01
Developing a visual sensing system, complete with motion processing hardware and software would have many applications to current technology. It could be mounted on many autonomous vehicles to provide information about the navigational environment, as well as obstacle avoidance features. Incorporating the motion processing capabilities into the sensor requires a new approach to the algorithm implementation. This research, and that of many others, have turned to nature for inspiration. Elementary motion detector (EMD) cells are involved in a biological preprocessing network to provide information to the motion processing lobes of the house degrees y Musca domestica. This paper describes the response of the photoreceptor inputs to the EMDs. The inputs to the EMD components are tested as they are stimulated with varying image primitives. This is the first of many steps in characterizing the EMD response to image primitives.
Sparing of Sensitivity to Biological Motion but Not of Global Motion after Early Visual Deprivation
ERIC Educational Resources Information Center
Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.
2012-01-01
Patients deprived of visual experience during infancy by dense bilateral congenital cataracts later show marked deficits in the perception of global motion (dorsal visual stream) and global form (ventral visual stream). We expected that they would also show marked deficits in sensitivity to biological motion, which is normally processed in the…
Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.
2015-01-01
Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450
The Vestibular System and Human Dynamic Space Orientation
NASA Technical Reports Server (NTRS)
Meiry, J. L.
1966-01-01
The motion sensors of the vestibular system are studied to determine their role in human dynamic space orientation and manual vehicle control. The investigation yielded control models for the sensors, descriptions of the subsystems for eye stabilization, and demonstrations of the effects of motion cues on closed loop manual control. Experiments on the abilities of subjects to perceive a variety of linear motions provided data on the dynamic characteristics of the otoliths, the linear motion sensors. Angular acceleration threshold measurements supplemented knowledge of the semicircular canals, the angular motion sensors. Mathematical models are presented to describe the known control characteristics of the vestibular sensors, relating subjective perception of motion to objective motion of a vehicle. The vestibular system, the neck rotation proprioceptors and the visual system form part of the control system which maintains the eye stationary relative to a target or a reference. The contribution of each of these systems was identified through experiments involving head and body rotations about a vertical axis. Compensatory eye movements in response to neck rotation were demonstrated and their dynamic characteristics described by a lag-lead model. The eye motions attributable to neck rotations and vestibular stimulation obey superposition when both systems are active. Human operator compensatory tracking is investigated in simple vehicle orientation control system with stable and unstable controlled elements. Control of vehicle orientation to a reference is simulated in three modes: visual, motion and combined. Motion cues sensed by the vestibular system through tactile sensation enable the operator to generate more lead compensation than in fixed base simulation with only visual input. The tracking performance of the human in an unstable control system near the limits of controllability is shown to depend heavily upon the rate information provided by the vestibular sensors.
Krug, Kristine; Cicmil, Nela; Parker, Andrew J; Cumming, Bruce G
2013-08-05
Judgments about the perceptual appearance of visual objects require the combination of multiple parameters, like location, direction, color, speed, and depth. Our understanding of perceptual judgments has been greatly informed by studies of ambiguous figures, which take on different appearances depending upon the brain state of the observer. Here we probe the neural mechanisms hypothesized as responsible for judging the apparent direction of rotation of ambiguous structure from motion (SFM) stimuli. Resolving the rotation direction of SFM cylinders requires the conjoint decoding of direction of motion and binocular depth signals [1, 2]. Within cortical visual area V5/MT of two macaque monkeys, we applied electrical stimulation at sites with consistent multiunit tuning to combinations of binocular depth and direction of motion, while the monkey made perceptual decisions about the rotation of SFM stimuli. For both ambiguous and unambiguous SFM figures, rotation judgments shifted as if we had added a specific conjunction of disparity and motion signals to the stimulus elements. This is the first causal demonstration that the activity of neurons in V5/MT contributes directly to the perception of SFM stimuli and by implication to decoding the specific conjunction of disparity and motion, the two different visual cues whose combination drives the perceptual judgment. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Metaphors are Embodied, and so are Their Literal Counterparts
Santana, Eduardo; de Vega, Manuel
2011-01-01
This study investigates whether understanding up/down metaphors as well as semantically homologous literal sentences activates embodied representations online. Participants read orientational literal sentences (e.g., she climbed up the hill), metaphors (e.g., she climbed up in the company), and abstract sentences with similar meaning to the metaphors (e.g., she succeeded in the company). In Experiments 1 and 2, participants were asked to perform a speeded upward or downward hand motion while they were reading the sentence verb. The hand motion either matched or mismatched the direction connoted by the sentence. The results showed a meaning-action effect for metaphors and literals, that is, faster hand motion responses in the matching conditions. Notably, the matching advantage was also found for homologous abstract sentences, indicating that some abstract ideas are conceptually organized in the vertical dimension, even when they are expressed by means of literal sentences. In Experiment 3, participants responded to an upward or downward visual motion associated with the sentence verb by pressing a single key. In this case, the facilitation effect for matching visual motion-sentence meaning faded, indicating that the visual motion component is less important than the action component in conceptual metaphors. Most up and down metaphors convey emotionally positive and negative information, respectively. We suggest that metaphorical meaning elicits upward/downward movements because they are grounded on the bodily expression of the corresponding emotions. PMID:21687459
Visual Persons Behavior Diary Generation Model based on Trajectories and Pose Estimation
NASA Astrophysics Data System (ADS)
Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li
2018-03-01
The behavior pattern of persons was the important output of the surveillance analysis. This paper focus on the generation model of visual person behavior diary. The pipeline includes the person detection, tracking, and the person behavior classify. This paper adopts the deep convolutional neural model YOLO (You Only Look Once)V2 for person detection module. Multi person tracking was based on the detection framework. The Hungarian assignment algorithm was used to the matching. The person appearance model was integrated by HSV color model and Hash code model. The person object motion was estimated by the Kalman Filter. The multi objects were matching with exist tracklets through the appearance and motion location distance by the Hungarian assignment method. A long continuous trajectory for one person was get by the spatial-temporal continual linking algorithm. And the face recognition information was used to identify the trajectory. The trajectories with identification information can be used to generate the visual diary of person behavior based on the scene context information and person action estimation. The relevant modules are tested in public data sets and our own capture video sets. The test results show that the method can be used to generate the visual person behavior pattern diary with certain accuracy.
Like a rolling stone: naturalistic visual kinematics facilitate tracking eye movements.
Souto, David; Kerzel, Dirk
2013-02-06
Newtonian physics constrains object kinematics in the real world. We asked whether eye movements towards tracked objects depend on their compliance with those constraints. In particular, the force of gravity constrains round objects to roll on the ground with a particular rotational and translational motion. We measured tracking eye movements towards rolling objects. We found that objects with rotational and translational motion that was congruent with an object rolling on the ground elicited faster tracking eye movements during pursuit initiation than incongruent stimuli. Relative to a condition without rotational component, we compared objects with this motion with a condition in which there was no rotational component, we essentially obtained benefits of congruence, and, to a lesser extent, costs from incongruence. Anticipatory pursuit responses showed no congruence effect, suggesting that the effect is based on visually-driven predictions, not on velocity storage. We suggest that the eye movement system incorporates information about object kinematics acquired by a lifetime of experience with visual stimuli obeying the laws of Newtonian physics.
Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.
Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko
2012-01-01
Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909
Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.
Spering, Miriam; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R
2011-04-01
Success of motor behavior often depends on the ability to predict the path of moving objects. Here we asked whether tracking a visual object with smooth pursuit eye movements helps to predict its motion direction. We developed a paradigm, "eye soccer," in which observers had to either track or fixate a visual target (ball) and judge whether it would have hit or missed a stationary vertical line segment (goal). Ball and goal were presented briefly for 100-500 ms and disappeared from the screen together before the perceptual judgment was prompted. In pursuit conditions, the ball moved towards the goal; in fixation conditions, the goal moved towards the stationary ball, resulting in similar retinal stimulation during pursuit and fixation. We also tested the condition in which the goal was fixated and the ball moved. Motion direction prediction was significantly better in pursuit than in fixation trials, regardless of whether ball or goal served as fixation target. In both fixation and pursuit trials, prediction performance was better when eye movements were accurate. Performance also increased with shorter ball-goal distance and longer presentation duration. A longer trajectory did not affect performance. During pursuit, an efference copy signal might provide additional motion information, leading to the advantage in motion prediction.
The cortical basis of true memory and false memory for motion.
Karanian, Jessica M; Slotnick, Scott D
2014-02-01
Behavioral evidence indicates that false memory, like true memory, can be rich in sensory detail. By contrast, there is fMRI evidence that true memory for visual information produces greater activity in earlier visual regions than false memory, which suggests true memory is associated with greater sensory detail. However, false memory in previous fMRI paradigms may have lacked sufficient sensory detail to recruit earlier visual processing regions. To investigate this possibility in the present fMRI study, we employed a paradigm that produced feature-specific false memory with a high degree of visual detail. During the encoding phase, moving or stationary abstract shapes were presented to the left or right of fixation. During the retrieval phase, shapes from encoding were presented at fixation and participants classified each item as previously "moving" or "stationary" within each visual field. Consistent with previous fMRI findings, true memory but not false memory for motion activated motion processing region MT+, while both true memory and false memory activated later cortical processing regions. In addition, false memory but not true memory for motion activated language processing regions. The present findings indicate that true memory activates earlier visual regions to a greater degree than false memory, even under conditions of detailed retrieval. Thus, the dissociation between previous behavioral findings and fMRI findings do not appear to be task dependent. Future work will be needed to assess whether the same pattern of true memory and false memory activity is observed for different sensory modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Alpha oscillations correlate with the successful inhibition of unattended stimuli.
Händel, Barbara F; Haarmeier, Thomas; Jensen, Ole
2011-09-01
Because the human visual system is continually being bombarded with inputs, it is necessary to have effective mechanisms for filtering out irrelevant information. This is partly achieved by the allocation of attention, allowing the visual system to process relevant input while blocking out irrelevant input. What is the physiological substrate of attentional allocation? It has been proposed that alpha activity reflects functional inhibition. Here we asked if inhibition by alpha oscillations has behavioral consequences for suppressing the perception of unattended input. To this end, we investigated the influence of alpha activity on motion processing in two attentional conditions using magneto-encephalography. The visual stimuli used consisted of two random-dot kinematograms presented simultaneously to the left and right visual hemifields. Subjects were cued to covertly attend the left or right kinematogram. After 1.5 sec, a second cue tested whether subjects could report the direction of coherent motion in the attended (80%) or unattended hemifield (20%). Occipital alpha power was higher contralateral to the unattended side than to the attended side, thus suggesting inhibition of the unattended hemifield. Our key finding is that this alpha lateralization in the 20% invalidly cued trials did correlate with the perception of motion direction: Subjects with pronounced alpha lateralization were worse at detecting motion direction in the unattended hemifield. In contrast, lateralization did not correlate with visual discrimination in the attended visual hemifield. Our findings emphasize the suppressive nature of alpha oscillations and suggest that processing of inputs outside the field of attention is weakened by means of increased alpha activity.
Sarlegna, Fabrice R; Baud-Bovy, Gabriel; Danion, Frédéric
2010-08-01
When we manipulate an object, grip force is adjusted in anticipation of the mechanical consequences of hand motion (i.e., load force) to prevent the object from slipping. This predictive behavior is assumed to rely on an internal representation of the object dynamic properties, which would be elaborated via visual information before the object is grasped and via somatosensory feedback once the object is grasped. Here we examined this view by investigating the effect of delayed visual feedback during dextrous object manipulation. Adult participants manually tracked a sinusoidal target by oscillating a handheld object whose current position was displayed as a cursor on a screen along with the visual target. A delay was introduced between actual object displacement and cursor motion. This delay was linearly increased (from 0 to 300 ms) and decreased within 2-min trials. As previously reported, delayed visual feedback altered performance in manual tracking. Importantly, although the physical properties of the object remained unchanged, delayed visual feedback altered the timing of grip force relative to load force by about 50 ms. Additional experiments showed that this effect was not due to task complexity nor to manual tracking. A model inspired by the behavior of mass-spring systems suggests that delayed visual feedback may have biased the representation of object dynamics. Overall, our findings support the idea that visual feedback of object motion can influence the predictive control of grip force even when the object is grasped.
Visual motion integration for perception and pursuit
NASA Technical Reports Server (NTRS)
Stone, L. S.; Beutter, B. R.; Lorenceau, J.
2000-01-01
To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.
Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search
Tadin, Duje; Nyquist, Jeffrey B.; Lusk, Kelly E.; Corn, Anne L.; Lappin, Joseph S.
2012-01-01
Purpose. Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. Methods. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10–17) and low vision (n = 24, ages 9–18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. Results. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Conclusions. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function. PMID:22836766
Peripheral vision of youths with low vision: motion perception, crowding, and visual search.
Tadin, Duje; Nyquist, Jeffrey B; Lusk, Kelly E; Corn, Anne L; Lappin, Joseph S
2012-08-24
Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10-17) and low vision (n = 24, ages 9-18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function.
NASA Technical Reports Server (NTRS)
Teixeira, R. A.; Lackner, J. R.
1979-01-01
An experimental study was conducted on seven normal subjects to evaluate the effectiveness of passive head movements in suppressing the optokinetically-induced illusory self-rotation. Visual simulation was provided by a servo-controlled optokinetic drum. Each subject participated in two experimental sessions. In one condition, the subject's head remained stationary while he gazed passively at a moving stripe pattern. In the other, he gazed passively and relaxed his neck muscles while his head was rotated from side to side. It appears that suppression of optokinetically-induced illusory self-rotation with passive head movements results from the operation of a spatial constancy mechanism interrelating visual, vestibular, and kinesthetic information on ongoing body orientation. The results support the view that optokinetic 'motion sickness' is related, at least in part, to an oculomotor disturbance rather than a visually triggered disturbance of specifically vestibular etiology.
Spering, Miriam; Carrasco, Marisa
2012-01-01
Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth pursuit eye movements in response to moving dichoptic plaids–stimuli composed of two orthogonally-drifting gratings, presented separately to each eye–in human observers. Monocular adaptation to one grating prior to the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating’s motion direction or to both (neutral condition). We show that observers were better in detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating’s motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted towards the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it. PMID:22649238
Spering, Miriam; Carrasco, Marisa
2012-05-30
Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.
Are visual peripheries forever young?
Burnat, Kalina
2015-01-01
The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.
Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila
Aptekar, Jacob W.; Keleş, Mehmet F.; Lu, Patrick M.; Zolotova, Nadezhda M.
2015-01-01
Many animals rely on visual figure–ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure–ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula—one of the four, primary neuropiles of the fly optic lobe—performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure–ground stimuli in a homologous manner to the behavior; “figure-like” stimuli are coded similar to one another and “ground-like” stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. PMID:25972183
Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.
Aptekar, Jacob W; Keleş, Mehmet F; Lu, Patrick M; Zolotova, Nadezhda M; Frye, Mark A
2015-05-13
Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. Copyright © 2015 the authors 0270-6474/15/357587-13$15.00/0.
Zaidel, Adam; Goin-Kochel, Robin P.; Angelaki, Dora E.
2015-01-01
Perceptual processing in autism spectrum disorder (ASD) is marked by superior low-level task performance and inferior complex-task performance. This observation has led to theories of defective integration in ASD of local parts into a global percept. Despite mixed experimental results, this notion maintains widespread influence and has also motivated recent theories of defective multisensory integration in ASD. Impaired ASD performance in tasks involving classic random dot visual motion stimuli, corrupted by noise as a means to manipulate task difficulty, is frequently interpreted to support this notion of global integration deficits. By manipulating task difficulty independently of visual stimulus noise, here we test the hypothesis that heightened sensitivity to noise, rather than integration deficits, may characterize ASD. We found that although perception of visual motion through a cloud of dots was unimpaired without noise, the addition of stimulus noise significantly affected adolescents with ASD, more than controls. Strikingly, individuals with ASD demonstrated intact multisensory (visual–vestibular) integration, even in the presence of noise. Additionally, when vestibular motion was paired with pure visual noise, individuals with ASD demonstrated a different strategy than controls, marked by reduced flexibility. This result could be simulated by using attenuated (less reliable) and inflexible (not experience-dependent) Bayesian priors in ASD. These findings question widespread theories of impaired global and multisensory integration in ASD. Rather, they implicate increased sensitivity to sensory noise and less use of prior knowledge in ASD, suggesting increased reliance on incoming sensory information. PMID:25941373
Causal evidence for retina dependent and independent visual motion computations in mouse cortex
Hillier, Daniel; Fiscella, Michele; Drinnenberg, Antonia; Trenholm, Stuart; Rompani, Santiago B.; Raics, Zoltan; Katona, Gergely; Juettner, Josephine; Hierlemann, Andreas; Rozsa, Balazs; Roska, Botond
2017-01-01
How neuronal computations in the sensory periphery contribute to computations in the cortex is not well understood. We examined this question in the context of visual-motion processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal direction selectivity – either exclusively along the horizontal axis using FRMD7 mutants or along all directions by ablating starburst amacrine cells – and monitored neuronal activity in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found an overrepresentation of cortical cells preferring posterior visual motion, the dominant motion direction an animal experiences when it moves forward. In mice with disrupted retinal direction selectivity, the overrepresentation of posterior-motion-preferring cortical cells disappeared, and their response at higher stimulus speeds was reduced. This work reveals the existence of two functionally distinct, sensory-periphery-dependent and -independent computations of visual motion in the cortex. PMID:28530661
NASA Technical Reports Server (NTRS)
Berthoz, A.; Pavard, B.; Young, L. R.
1975-01-01
The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.
A novel role for visual perspective cues in the neural computation of depth.
Kim, HyungGoo R; Angelaki, Dora E; DeAngelis, Gregory C
2015-01-01
As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extraretinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We found that incorporating these 'dynamic perspective' cues allowed the visual system to generate selectivity for depth sign from motion parallax in macaque cortical area MT, a computation that was previously thought to require extraretinal signals regarding eye velocity. Our findings suggest neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations.
Maloney, Ryan T; Watson, Tamara L; Clifford, Colin W G
2014-10-15
Anisotropies in the cortical representation of various stimulus parameters can reveal the fundamental mechanisms by which sensory properties are analysed and coded by the brain. One example is the preference for motion radial to the point of fixation (i.e. centripetal or centrifugal) exhibited in mammalian visual cortex. In two experiments, this study used functional magnetic resonance imaging (fMRI) to explore the determinants of these radial biases for motion in functionally-defined areas of human early visual cortex, and in particular their dependence upon eccentricity which has been indicated in recent reports. In one experiment, the cortical response to wide-field random dot kinematograms forming 16 different complex motion patterns (including centrifugal, centripetal, rotational and spiral motion) was measured. The response was analysed according to preferred eccentricity within four different eccentricity ranges. Response anisotropies were characterised by enhanced activity for centripetal or centrifugal patterns that changed systematically with eccentricity in visual areas V1-V3 and hV4 (but not V3A/B or V5/MT+). Responses evolved from a preference for centrifugal over centripetal patterns close to the fovea, to a preference for centripetal over centrifugal at the most peripheral region stimulated, in agreement with previous work. These effects were strongest in V2 and V3. In a second experiment, the stimuli were restricted to within narrow annuli either close to the fovea (0.75-1.88°) or further in the periphery (4.82-6.28°), in a way that preserved the local motion information available in the first experiment. In this configuration a preference for radial motion (centripetal or centrifugal) persisted but the dependence upon eccentricity disappeared. Again this was clearest in V2 and V3. A novel interpretation of the dependence upon eccentricity of motion anisotropies in early visual cortex is offered that takes into account the spatiotemporal "predictability" of the moving pattern. Such stimulus predictability, and its relationship to models of predictive coding, has found considerable support in recent years in accounting for a number of other perceptual and neural phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.
Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco
2004-04-01
Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors.
Eyes Matched to the Prize: The State of Matched Filters in Insect Visual Circuits.
Kohn, Jessica R; Heath, Sarah L; Behnia, Rudy
2018-01-01
Confronted with an ever-changing visual landscape, animals must be able to detect relevant stimuli and translate this information into behavioral output. A visual scene contains an abundance of information: to interpret the entirety of it would be uneconomical. To optimally perform this task, neural mechanisms exist to enhance the detection of important features of the sensory environment while simultaneously filtering out irrelevant information. This can be accomplished by using a circuit design that implements specific "matched filters" that are tuned to relevant stimuli. Following this rule, the well-characterized visual systems of insects have evolved to streamline feature extraction on both a structural and functional level. Here, we review examples of specialized visual microcircuits for vital behaviors across insect species, including feature detection, escape, and estimation of self-motion. Additionally, we discuss how these microcircuits are modulated to weigh relevant input with respect to different internal and behavioral states.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Bowles, R. L.
1983-01-01
This paper addresses the issues of motion/visual cueing fidelity requirements for vortex encounters during simulated transport visual approaches and landings. Four simulator configurations were utilized to provide objective performance measures during simulated vortex penetrations, and subjective comments from pilots were collected. The configurations used were as follows: fixed base with visual degradation (delay), fixed base with no visual degradation, moving base with visual degradation (delay), and moving base with no visual degradation. The statistical comparisons of the objective measures and the subjective pilot opinions indicated that although both minimum visual delay and motion cueing are recommended for the vortex penetration task, the visual-scene delay characteristics were not as significant a fidelity factor as was the presence of motion cues. However, this indication was applicable to a restricted task, and to transport aircraft. Although they were statistically significant, the effects of visual delay and motion cueing on the touchdown-related measures were considered to be of no practical consequence.
Body sway reflects leadership in joint music performance.
Chang, Andrew; Livingstone, Steven R; Bosnyak, Dan J; Trainor, Laurel J
2017-05-23
The cultural and technological achievements of the human species depend on complex social interactions. Nonverbal interpersonal coordination, or joint action, is a crucial element of social interaction, but the dynamics of nonverbal information flow among people are not well understood. We used joint music making in string quartets, a complex, naturalistic nonverbal behavior, as a model system. Using motion capture, we recorded body sway simultaneously in four musicians, which reflected real-time interpersonal information sharing. We used Granger causality to analyze predictive relationships among the motion time series of the players to determine the magnitude and direction of information flow among the players. We experimentally manipulated which musician was the leader (followers were not informed who was leading) and whether they could see each other, to investigate how these variables affect information flow. We found that assigned leaders exerted significantly greater influence on others and were less influenced by others compared with followers. This effect was present, whether or not they could see each other, but was enhanced with visual information, indicating that visual as well as auditory information is used in musical coordination. Importantly, performers' ratings of the "goodness" of their performances were positively correlated with the overall degree of body sway coupling, indicating that communication through body sway reflects perceived performance success. These results confirm that information sharing in a nonverbal joint action task occurs through both auditory and visual cues and that the dynamics of information flow are affected by changing group relationships.
Body sway reflects leadership in joint music performance
Livingstone, Steven R.; Bosnyak, Dan J.; Trainor, Laurel J.
2017-01-01
The cultural and technological achievements of the human species depend on complex social interactions. Nonverbal interpersonal coordination, or joint action, is a crucial element of social interaction, but the dynamics of nonverbal information flow among people are not well understood. We used joint music making in string quartets, a complex, naturalistic nonverbal behavior, as a model system. Using motion capture, we recorded body sway simultaneously in four musicians, which reflected real-time interpersonal information sharing. We used Granger causality to analyze predictive relationships among the motion time series of the players to determine the magnitude and direction of information flow among the players. We experimentally manipulated which musician was the leader (followers were not informed who was leading) and whether they could see each other, to investigate how these variables affect information flow. We found that assigned leaders exerted significantly greater influence on others and were less influenced by others compared with followers. This effect was present, whether or not they could see each other, but was enhanced with visual information, indicating that visual as well as auditory information is used in musical coordination. Importantly, performers’ ratings of the “goodness” of their performances were positively correlated with the overall degree of body sway coupling, indicating that communication through body sway reflects perceived performance success. These results confirm that information sharing in a nonverbal joint action task occurs through both auditory and visual cues and that the dynamics of information flow are affected by changing group relationships. PMID:28484007
Nakamura, S; Shimojo, S
2000-01-01
We investigated interactions between foreground and background stimuli during visually induced perception of self-motion (vection) by using a stimulus composed of orthogonally moving random-dot patterns. The results indicated that, when the foreground moves with a slower speed, a self-motion sensation with a component in the same direction as the foreground is induced. We named this novel component of self-motion perception 'inverted vection'. The robustness of inverted vection was confirmed using various measures of self-motion sensation and under different stimulus conditions. The mechanism underlying inverted vection is discussed with regard to potentially relevant factors, such as relative motion between the foreground and background, and the interaction between the mis-registration of eye-movement information and self-motion perception.
Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco
2015-02-01
Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research. PMID:29618999
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments.
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research.
Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths.
Stöckl, A L; O'Carroll, D; Warrant, E J
2017-06-28
To sample information optimally, sensory systems must adapt to the ecological demands of each animal species. These adaptations can occur peripherally, in the anatomical structures of sensory organs and their receptors; and centrally, as higher-order neural processing in the brain. While a rich body of investigations has focused on peripheral adaptations, our understanding is sparse when it comes to central mechanisms. We quantified how peripheral adaptations in the eyes, and central adaptations in the wide-field motion vision system, set the trade-off between resolution and sensitivity in three species of hawkmoths active at very different light levels: nocturnal Deilephila elpenor, crepuscular Manduca sexta , and diurnal Macroglossum stellatarum. Using optical measurements and physiological recordings from the photoreceptors and wide-field motion neurons in the lobula complex, we demonstrate that all three species use spatial and temporal summation to improve visual performance in dim light. The diurnal Macroglossum relies least on summation, but can only see at brighter intensities. Manduca, with large sensitive eyes, relies less on neural summation than the smaller eyed Deilephila , but both species attain similar visual performance at nocturnal light levels. Our results reveal how the visual systems of these three hawkmoth species are intimately matched to their visual ecologies. © 2017 The Author(s).
Jellema, Tjeerd; Maassen, Gerard; Perrett, David I
2004-07-01
This study investigated the cellular mechanisms in the anterior part of the superior temporal sulcus (STSa) that underlie the integration of different features of the same visually perceived animate object. Three visual features were systematically manipulated: form, motion and location. In 58% of a population of cells selectively responsive to the sight of a walking agent, the location of the agent significantly influenced the cell's response. The influence of position was often evident in intricate two- and three-way interactions with the factors form and/or motion. For only one of the 31 cells tested, the response could be explained by just a single factor. For all other cells at least two factors, and for half of the cells (52%) all three factors, played a significant role in controlling responses. Our findings support a reformulation of the Ungerleider and Mishkin model, which envisages a subdivision of the visual processing into a ventral 'what' and a dorsal 'where' stream. We demonstrated that at least part of the temporal cortex ('what' stream) makes ample use of visual spatial information. Our findings open up the prospect of a much more elaborate integration of visual properties of animate objects at the single cell level. Such integration may support the comprehension of animals and their actions.
Effect of altered sensory conditions on multivariate descriptors of human postural sway
NASA Technical Reports Server (NTRS)
Kuo, A. D.; Speers, R. A.; Peterka, R. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1998-01-01
Multivariate descriptors of sway were used to test whether altered sensory conditions result not only in changes in amount of sway but also in postural coordination. Eigenvalues and directions of eigenvectors of the covariance of shnk and hip angles were used as a set of multivariate descriptors. These quantities were measured in 14 healthy adult subjects performing the Sensory Organization test, which disrupts visual and somatosensory information used for spatial orientation. Multivariate analysis of variance and discriminant analysis showed that resulting sway changes were at least bivariate in character, with visual and somatosensory conditions producing distinct changes in postural coordination. The most significant changes were found when somatosensory information was disrupted by sway-referencing of the support surface (P = 3.2 x 10(-10)). The resulting covariance measurements showed that subjects not only swayed more but also used increased hip motion analogous to the hip strategy. Disruption of vision, by either closing the eyes or sway-referencing the visual surround, also resulted in altered sway (P = 1.7 x 10(-10)), with proportionately more motion of the center of mass than with platform sway-referencing. As shown by discriminant analysis, an optimal univariate measure could explain at most 90% of the behavior due to altered sensory conditions. The remaining 10%, while smaller, are highly significant changes in posture control that depend on sensory conditions. The results imply that normal postural coordination of the trunk and legs requires both somatosensory and visual information and that each sensory modality makes a unique contribution to posture control. Descending postural commands are multivariate in nature, and the motion at each joint is affected uniquely by input from multiple sensors.
Information Foraging for Perceptual Decisions
2016-01-01
We tested an information foraging framework to characterize the mechanisms that drive active (visual) sampling behavior in decision problems that involve multiple sources of information. Experiments 1 through 3 involved participants making an absolute judgment about the direction of motion of a single random dot motion pattern. In Experiment 4, participants made a relative comparison between 2 motion patterns that could only be sampled sequentially. Our results show that: (a) Information (about noisy motion information) grows to an asymptotic level that depends on the quality of the information source; (b) The limited growth is attributable to unequal weighting of the incoming sensory evidence, with early samples being weighted more heavily; (c) Little information is lost once a new source of information is being sampled; and (d) The point at which the observer switches from 1 source to another is governed by online monitoring of his or her degree of (un)certainty about the sampled source. These findings demonstrate that the sampling strategy in perceptual decision-making is under some direct control by ongoing cognitive processing. More specifically, participants are able to track a measure of (un)certainty and use this information to guide their sampling behavior. PMID:27819455
Destabilizing effects of visual environment motions simulating eye movements or head movements
NASA Technical Reports Server (NTRS)
White, Keith D.; Shuman, D.; Krantz, J. H.; Woods, C. B.; Kuntz, L. A.
1991-01-01
In the present paper, we explore effects on the human of exposure to a visual virtual environment which has been enslaved to simulate the human user's head movements or eye movements. Specifically, we have studied the capacity of our experimental subjects to maintain stable spatial orientation in the context of moving their entire visible surroundings by using the parameters of the subjects' natural movements. Our index of the subjects' spatial orientation was the extent of involuntary sways of the body while attempting to stand still, as measured by translations and rotations of the head. We also observed, informally, their symptoms of motion sickness.
Can walking motions improve visually induced rotational self-motion illusions in virtual reality?
Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y
2015-02-04
Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.
Perception of Visual Speed While Moving
ERIC Educational Resources Information Center
Durgin, Frank H.; Gigone, Krista; Scott, Rebecca
2005-01-01
During self-motion, the world normally appears stationary. In part, this may be due to reductions in visual motion signals during self-motion. In 8 experiments, the authors used magnitude estimation to characterize changes in visual speed perception as a result of biomechanical self-motion alone (treadmill walking), physical translation alone…
Manipulating the content of dynamic natural scenes to characterize response in human MT/MST.
Durant, Szonya; Wall, Matthew B; Zanker, Johannes M
2011-09-09
Optic flow is one of the most important sources of information for enabling human navigation through the world. A striking finding from single-cell studies in monkeys is the rapid saturation of response of MT/MST areas with the density of optic flow type motion information. These results are reflected psychophysically in human perception in the saturation of motion aftereffects. We began by comparing responses to natural optic flow scenes in human visual brain areas to responses to the same scenes with inverted contrast (photo negative). This changes scene familiarity while preserving local motion signals. This manipulation had no effect; however, the response was only correlated with the density of local motion (calculated by a motion correlation model) in V1, not in MT/MST. To further investigate this, we manipulated the visible proportion of natural dynamic scenes and found that areas MT and MST did not increase in response over a 16-fold increase in the amount of information presented, i.e., response had saturated. This makes sense in light of the sparseness of motion information in natural scenes, suggesting that the human brain is well adapted to exploit a small amount of dynamic signal and extract information important for survival.
ERIC Educational Resources Information Center
White, Peter A.
2012-01-01
Forces are experienced in actions on objects. The mechanoreceptor system is stimulated by proximal forces in interactions with objects, and experiences of force occur in a context of information yielded by other sensory modalities, principally vision. These experiences are registered and stored as episodic traces in the brain. These stored…
Multimodal Virtual Environments: MAGIC Toolkit and Visual-Haptic Interaction Paradigms
1998-01-01
2.7.3 Load/Save Options ..... 2.7.4 Information Display .... 2.8 Library Files. 2.9 Evaluation .............. 3 Visual-Haptic Interactions 3.1...Northwestern University[ Colgate , 1994]. It is possible for a user to touch one side of a thin object and be propelled out the opposite side, because...when there is a high correlation in motion and force between the visual and haptic realms. * Chapter 7 concludes with an evaluation of the application
Hummingbirds control hovering flight by stabilizing visual motion.
Goller, Benjamin; Altshuler, Douglas L
2014-12-23
Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.
Demonstrating the Potential for Dynamic Auditory Stimulation to Contribute to Motion Sickness
Keshavarz, Behrang; Hettinger, Lawrence J.; Kennedy, Robert S.; Campos, Jennifer L.
2014-01-01
Auditory cues can create the illusion of self-motion (vection) in the absence of visual or physical stimulation. The present study aimed to determine whether auditory cues alone can also elicit motion sickness and how auditory cues contribute to motion sickness when added to visual motion stimuli. Twenty participants were seated in front of a curved projection display and were exposed to a virtual scene that constantly rotated around the participant's vertical axis. The virtual scene contained either visual-only, auditory-only, or a combination of corresponding visual and auditory cues. All participants performed all three conditions in a counterbalanced order. Participants tilted their heads alternately towards the right or left shoulder in all conditions during stimulus exposure in order to create pseudo-Coriolis effects and to maximize the likelihood for motion sickness. Measurements of motion sickness (onset, severity), vection (latency, strength, duration), and postural steadiness (center of pressure) were recorded. Results showed that adding auditory cues to the visual stimuli did not, on average, affect motion sickness and postural steadiness, but it did reduce vection onset times and increased vection strength compared to pure visual or pure auditory stimulation. Eighteen of the 20 participants reported at least slight motion sickness in the two conditions including visual stimuli. More interestingly, six participants also reported slight motion sickness during pure auditory stimulation and two of the six participants stopped the pure auditory test session due to motion sickness. The present study is the first to demonstrate that motion sickness may be caused by pure auditory stimulation, which we refer to as “auditorily induced motion sickness”. PMID:24983752
Neural Representation of Motion-In-Depth in Area MT
Sanada, Takahisa M.
2014-01-01
Neural processing of 2D visual motion has been studied extensively, but relatively little is known about how visual cortical neurons represent visual motion trajectories that include a component toward or away from the observer (motion in depth). Psychophysical studies have demonstrated that humans perceive motion in depth based on both changes in binocular disparity over time (CD cue) and interocular velocity differences (IOVD cue). However, evidence for neurons that represent motion in depth has been limited, especially in primates, and it is unknown whether such neurons make use of CD or IOVD cues. We show that approximately one-half of neurons in macaque area MT are selective for the direction of motion in depth, and that this selectivity is driven primarily by IOVD cues, with a small contribution from the CD cue. Our results establish that area MT, a central hub of the primate visual motion processing system, contains a 3D representation of visual motion. PMID:25411481
Hand interception of occluded motion in humans: a test of model-based vs. on-line control
Zago, Myrka; Lacquaniti, Francesco
2015-01-01
Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. PMID:26133803
Contextual effects on motion perception and smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2008-08-15
Smooth pursuit eye movements are continuous, slow rotations of the eyes that allow us to follow the motion of a visual object of interest. These movements are closely related to sensory inputs from the visual motion processing system. To track a moving object in the natural environment, its motion first has to be segregated from the motion signals provided by surrounding stimuli. Here, we review experiments on the effect of the visual context on motion processing with a focus on the relationship between motion perception and smooth pursuit eye movements. While perception and pursuit are closely linked, we show that they can behave quite distinctly when required by the visual context.
Harvey, Ben M; Dumoulin, Serge O
2016-02-15
Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Inferring the direction of implied motion depends on visual awareness
Faivre, Nathan; Koch, Christof
2014-01-01
Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction. PMID:24706951
Inferring the direction of implied motion depends on visual awareness.
Faivre, Nathan; Koch, Christof
2014-04-04
Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction.
Priming with real motion biases visual cortical response to bistable apparent motion
Zhang, Qing-fang; Wen, Yunqing; Zhang, Deng; She, Liang; Wu, Jian-young; Dan, Yang; Poo, Mu-ming
2012-01-01
Apparent motion quartet is an ambiguous stimulus that elicits bistable perception, with the perceived motion alternating between two orthogonal paths. In human psychophysical experiments, the probability of perceiving motion in each path is greatly enhanced by a brief exposure to real motion along that path. To examine the neural mechanism underlying this priming effect, we used voltage-sensitive dye (VSD) imaging to measure the spatiotemporal activity in the primary visual cortex (V1) of awake mice. We found that a brief real motion stimulus transiently biased the cortical response to subsequent apparent motion toward the spatiotemporal pattern representing the real motion. Furthermore, intracellular recording from V1 neurons in anesthetized mice showed a similar increase in subthreshold depolarization in the neurons representing the path of real motion. Such short-term plasticity in early visual circuits may contribute to the priming effect in bistable visual perception. PMID:23188797
Ebner, Christian; Schroll, Henning; Winther, Gesche; Niedeggen, Michael; Hamker, Fred H
2015-09-01
How the brain decides which information to process 'consciously' has been debated over for decades without a simple explanation at hand. While most experiments manipulate the perceptual energy of presented stimuli, the distractor-induced blindness task is a prototypical paradigm to investigate gating of information into consciousness without or with only minor visual manipulation. In this paradigm, subjects are asked to report intervals of coherent dot motion in a rapid serial visual presentation (RSVP) stream, whenever these are preceded by a particular color stimulus in a different RSVP stream. If distractors (i.e., intervals of coherent dot motion prior to the color stimulus) are shown, subjects' abilities to perceive and report intervals of target dot motion decrease, particularly with short delays between intervals of target color and target motion. We propose a biologically plausible neuro-computational model of how the brain controls access to consciousness to explain how distractor-induced blindness originates from information processing in the cortex and basal ganglia. The model suggests that conscious perception requires reverberation of activity in cortico-subcortical loops and that basal-ganglia pathways can either allow or inhibit this reverberation. In the distractor-induced blindness paradigm, inadequate distractor-induced response tendencies are suppressed by the inhibitory 'hyperdirect' pathway of the basal ganglia. If a target follows such a distractor closely, temporal aftereffects of distractor suppression prevent target identification. The model reproduces experimental data on how delays between target color and target motion affect the probability of target detection. Copyright © 2015 Elsevier Inc. All rights reserved.
Xie, Jun; Xu, Guanghua; Luo, Ailing; Li, Min; Zhang, Sicong; Han, Chengcheng; Yan, Wenqiang
2017-08-14
As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high tolerance to artifacts, and robust performance across users. However, its benefits come at the cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a ubiquitous random perturbation with the power of randomness, may be exploited by the human visual system to enhance higher-level brain functions. In this study, a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal visual noise was used to investigate the influence of noise on the compensation of mental load and fatigue deterioration during prolonged attention tasks. Changes in α , θ , θ + α powers, θ / α ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a moderate visual noise to participants could reliably alleviate the mental load and fatigue during online operation of visual BCI that places demands on the attentional processes. This demonstrated that noise could provide a superior solution to the implementation of visual attention controlling-based BCI applications.
A novel role for visual perspective cues in the neural computation of depth
Kim, HyungGoo R.; Angelaki, Dora E.; DeAngelis, Gregory C.
2014-01-01
As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extra-retinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We demonstrate that incorporating these “dynamic perspective” cues allows the visual system to generate selectivity for depth sign from motion parallax in macaque area MT, a computation that was previously thought to require extra-retinal signals regarding eye velocity. Our findings suggest novel neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations. PMID:25436667
Precision of working memory for visual motion sequences and transparent motion surfaces
Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud
2012-01-01
Recent studies investigating working memory for location, colour and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (Zhang & Luck (2008) vs. Bays et al (2009)). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence, rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features. PMID:22135378
Tyler, Mitchell E.; Danilov, Yuri P.; Kaczmarek, Kurt A.; Meyerand, Mary E.
2013-01-01
Abstract Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network. PMID:23216162
Visual motion detection and habitat preference in Anolis lizards.
Steinberg, David S; Leal, Manuel
2016-11-01
The perception of visual stimuli has been a major area of inquiry in sensory ecology, and much of this work has focused on coloration. However, for visually oriented organisms, the process of visual motion detection is often equally crucial to survival and reproduction. Despite the importance of motion detection to many organisms' daily activities, the degree of interspecific variation in the perception of visual motion remains largely unexplored. Furthermore, the factors driving this potential variation (e.g., ecology or evolutionary history) along with the effects of such variation on behavior are unknown. We used a behavioral assay under laboratory conditions to quantify the visual motion detection systems of three species of Puerto Rican Anolis lizard that prefer distinct structural habitat types. We then compared our results to data previously collected for anoles from Cuba, Puerto Rico, and Central America. Our findings indicate that general visual motion detection parameters are similar across species, regardless of habitat preference or evolutionary history. We argue that these conserved sensory properties may drive the evolution of visual communication behavior in this clade.
Infants' prospective control during object manipulation in an uncertain environment.
Gottwald, Janna M; Gredebäck, Gustaf
2015-08-01
This study investigates how infants use visual and sensorimotor information to prospectively control their actions. We gave 14-month-olds two objects of different weight and observed how high they were lifted, using a Qualisys Motion Capture System. In one condition, the two objects were visually distinct (different color condition) in another they were visually identical (same color condition). Lifting amplitudes of the first movement unit were analyzed in order to assess prospective control. Results demonstrate that infants lifted a light object higher than a heavy object, especially when vision could be used to assess weight (different color condition). When being confronted with two visually identical objects of different weight (same color condition), infants showed a different lifting pattern than what could be observed in the different color condition, expressed by a significant interaction effect between object weight and color condition on lifting amplitude. These results indicate that (a) visual information about object weight can be used to prospectively control lifting actions and that (b) infants are able to prospectively control their lifting actions even without visual information about object weight. We argue that infants, in the absence of reliable visual information about object weight, heighten their dependence on non-visual information (tactile, sensorimotor memory) in order to estimate weight and pre-adjust their lifting actions in a prospective manner.
Teramoto, Wataru; Watanabe, Hiroshi; Umemura, Hiroyuki
2008-01-01
The perceived temporal order of external successive events does not always follow their physical temporal order. We examined the contribution of self-motion mechanisms in the perception of temporal order in the auditory modality. We measured perceptual biases in the judgment of the temporal order of two short sounds presented successively, while participants experienced visually induced self-motion (yaw-axis circular vection) elicited by viewing long-lasting large-field visual motion. In experiment 1, a pair of white-noise patterns was presented to participants at various stimulus-onset asynchronies through headphones, while they experienced visually induced self-motion. Perceived temporal order of auditory events was modulated by the direction of the visual motion (or self-motion). Specifically, the sound presented to the ear in the direction opposite to the visual motion (ie heading direction) was perceived prior to the sound presented to the ear in the same direction. Experiments 2A and 2B were designed to reduce the contributions of decisional and/or response processes. In experiment 2A, the directional cueing of the background (left or right) and the response dimension (high pitch or low pitch) were not spatially associated. In experiment 2B, participants were additionally asked to report which of the two sounds was perceived 'second'. Almost the same results as in experiment 1 were observed, suggesting that the change in temporal order of auditory events during large-field visual motion reflects a change in perceptual processing. Experiment 3 showed that the biases in the temporal-order judgments of auditory events were caused by concurrent actual self-motion with a rotatory chair. In experiment 4, using a small display, we showed that 'pure' long exposure to visual motion without the sensation of self-motion was not responsible for this phenomenon. These results are consistent with previous studies reporting a change in the perceived temporal order of visual or tactile events depending on the direction of self-motion. Hence, large-field induced (ie optic flow) self-motion can affect the temporal order of successive external events across various modalities.
Illusory visual motion stimulus elicits postural sway in migraine patients
Imaizumi, Shu; Honma, Motoyasu; Hibino, Haruo; Koyama, Shinichi
2015-01-01
Although the perception of visual motion modulates postural control, it is unknown whether illusory visual motion elicits postural sway. The present study examined the effect of illusory motion on postural sway in patients with migraine, who tend to be sensitive to it. We measured postural sway for both migraine patients and controls while they viewed static visual stimuli with and without illusory motion. The participants’ postural sway was measured when they closed their eyes either immediately after (Experiment 1), or 30 s after (Experiment 2), viewing the stimuli. The patients swayed more than the controls when they closed their eyes immediately after viewing the illusory motion (Experiment 1), and they swayed less than the controls when they closed their eyes 30 s after viewing it (Experiment 2). These results suggest that static visual stimuli with illusory motion can induce postural sway that may last for at least 30 s in patients with migraine. PMID:25972832
Intercepting a moving target: On-line or model-based control?
Zhao, Huaiyong; Warren, William H
2017-05-01
When walking to intercept a moving target, people take an interception path that appears to anticipate the target's trajectory. According to the constant bearing strategy, the observer holds the bearing direction of the target constant based on current visual information, consistent with on-line control. Alternatively, the interception path might be based on an internal model of the target's motion, known as model-based control. To investigate these two accounts, participants walked to intercept a moving target in a virtual environment. We degraded the target's visibility by blurring the target to varying degrees in the midst of a trial, in order to influence its perceived speed and position. Reduced levels of visibility progressively impaired interception accuracy and precision; total occlusion impaired performance most and yielded nonadaptive heading adjustments. Thus, performance strongly depended on current visual information and deteriorated qualitatively when it was withdrawn. The results imply that locomotor interception is normally guided by current information rather than an internal model of target motion, consistent with on-line control.
On the Visual Input Driving Human Smooth-Pursuit Eye Movements
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Beutter, Brent R.; Lorenceau, Jean
1996-01-01
Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training.
Effect Of Contrast On Perceived Motion Of A Plaid
NASA Technical Reports Server (NTRS)
Stone, L. S.; Watson, A. B.; Mulligan, J. B.
1992-01-01
Report desribes series of experiments examining effect of contrast on perception of moving plaids. Each plaid pattern used in experiments was sum of two drifting sinusoidal gratings of different orientations. One of many studies helping to show how brain processes visual information on moving patterns. When gratings forming plaid differ in contrast, apparent direction of motion of plaid biased up to 20 degrees toward direction of grating of higher contrast.
Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred
2014-07-11
Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.
Contribution of color signals to ocular following responses.
Matsuura, Kiyoto; Kawano, Kenji; Inaba, Naoko; Miura, Kenichiro
2016-10-01
Ocular following responses (OFRs) are elicited at ultra-short latencies (< 60 ms) by sudden movements of the visual scene. In this study, we investigated the roles of color signals in OFRs in monkeys. To make physiologically isoluminant sinusoidal color gratings, we estimated the physiologically isoluminant points using OFRs and found that the physiologically isoluminant points were nearly independent of the spatiotemporal frequency of the gratings. We recorded OFRs induced by the motion of physiologically isoluminant color gratings and found that OFRs elicited by the motion of color gratings had different spatiotemporal frequency tuning from those elicited by the motion of luminance gratings. Additionally, OFRs to isoluminant color gratings had smaller peak responses, suggesting that color signals weakly contribute to OFRs compared with luminance signals. OFRs to the motion of stimuli composed of luminance and color signals were also examined. We found that color signals largely contributed to OFRs under low luminance signals regardless of whether color signals moved in the same or opposite direction to luminance signals. These results provide evidence of the multichannel visual computations underlying motor responses. We conclude that, in everyday situations, color information contributes cooperatively with luminance information to the generation of ocular tracking behaviors. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Visuotactile motion congruence enhances gamma-band activity in visual and somatosensory cortices.
Krebber, Martin; Harwood, James; Spitzer, Bernhard; Keil, Julian; Senkowski, Daniel
2015-08-15
When touching and viewing a moving surface our visual and somatosensory systems receive congruent spatiotemporal input. Behavioral studies have shown that motion congruence facilitates interplay between visual and tactile stimuli, but the neural mechanisms underlying this interplay are not well understood. Neural oscillations play a role in motion processing and multisensory integration. They may also be crucial for visuotactile motion processing. In this electroencephalography study, we applied linear beamforming to examine the impact of visuotactile motion congruence on beta and gamma band activity (GBA) in visual and somatosensory cortices. Visual and tactile inputs comprised of gratings that moved either in the same or different directions. Participants performed a target detection task that was unrelated to motion congruence. While there were no effects in the beta band (13-21Hz), the power of GBA (50-80Hz) in visual and somatosensory cortices was larger for congruent compared with incongruent motion stimuli. This suggests enhanced bottom-up multisensory processing when visual and tactile gratings moved in the same direction. Supporting its behavioral relevance, GBA was correlated with shorter reaction times in the target detection task. We conclude that motion congruence plays an important role for the integrative processing of visuotactile stimuli in sensory cortices, as reflected by oscillatory responses in the gamma band. Copyright © 2015 Elsevier Inc. All rights reserved.
Choice-reaction time to visual motion with varied levels of simultaneous rotary motion
NASA Technical Reports Server (NTRS)
Clark, B.; Stewart, J. D.
1974-01-01
Twelve airline pilots were studied to determine the effects of whole-body rotation on choice-reaction time to the horizontal motion of a line on a cathode-ray tube. On each trial, one of five levels of visual acceleration and five corresponding proportions of rotary acceleration were presented simultaneously. Reaction time to the visual motion decreased with increasing levels of visual motion and increased with increasing proportions of rotary acceleration. The results conflict with general theories of facilitation during double stimulation but are consistent with neural-clock model of sensory interaction in choice-reaction time.
Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco
2017-09-01
The ability to catch objects when transiently occluded from view suggests their motion can be extrapolated. Intraparietal cortex (IPS) plays a major role in this process along with other brain structures, depending on the task. For example, interception of objects under Earth's gravity effects may depend on time-to-contact predictions derived from integration of visual signals processed by hMT/V5+ with a priori knowledge of gravity residing in the temporoparietal junction (TPJ). To investigate this issue further, we disrupted TPJ, hMT/V5+, and IPS activities with transcranial magnetic stimulation (TMS) while subjects intercepted computer-simulated projectile trajectories perturbed randomly with either hypo- or hypergravity effects. In experiment 1 , trajectories were occluded either 750 or 1,250 ms before landing. Three subject groups underwent triple-pulse TMS (tpTMS, 3 pulses at 10 Hz) on one target area (TPJ | hMT/V5+ | IPS) and on the vertex (control site), timed at either trajectory perturbation or occlusion. In experiment 2 , trajectories were entirely visible and participants received tpTMS on TPJ and hMT/V5+ with same timing as experiment 1 tpTMS of TPJ, hMT/V5+, and IPS affected differently the interceptive timing. TPJ stimulation affected preferentially responses to 1-g motion, hMT/V5+ all response types, and IPS stimulation induced opposite effects on 0-g and 2-g responses, being ineffective on 1-g responses. Only IPS stimulation was effective when applied after target disappearance, implying this area might elaborate memory representations of occluded target motion. Results are compatible with the idea that IPS, TPJ, and hMT/V5+ contribute to distinct aspects of visual motion extrapolation, perhaps through parallel processing. NEW & NOTEWORTHY Visual extrapolation represents a potential neural solution to afford motor interactions with the environment in the face of missing information. We investigated relative contributions by temporoparietal junction (TPJ), hMT/V5+, and intraparietal cortex (IPS), cortical areas potentially involved in these processes. Parallel organization of visual extrapolation processes emerged with respect to the target's motion causal nature: TPJ was primarily involved for visual motion congruent with gravity effects, IPS for arbitrary visual motion, whereas hMT/V5+ contributed at earlier processing stages. Copyright © 2017 the American Physiological Society.
Neural dynamics for landmark orientation and angular path integration
Seelig, Johannes D.; Jayaraman, Vivek
2015-01-01
Summary Many animals navigate using a combination of visual landmarks and path integration. In mammalian brains, head direction cells integrate these two streams of information by representing an animal's heading relative to landmarks, yet maintaining their directional tuning in darkness based on self-motion cues. Here we use two-photon calcium imaging in head-fixed flies walking on a ball in a virtual reality arena to demonstrate that landmark-based orientation and angular path integration are combined in the population responses of neurons whose dendrites tile the ellipsoid body — a toroidal structure in the center of the fly brain. The population encodes the fly's azimuth relative to its environment, tracking visual landmarks when available and relying on self-motion cues in darkness. When both visual and self-motion cues are absent, a representation of the animal's orientation is maintained in this network through persistent activity — a potential substrate for short-term memory. Several features of the population dynamics of these neurons and their circular anatomical arrangement are suggestive of ring attractors — network structures proposed to support the function of navigational brain circuits. PMID:25971509
Ferber, Susanne; Emrich, Stephen M
2007-03-01
Segregation and feature binding are essential to the perception and awareness of objects in a visual scene. When a fragmented line-drawing of an object moves relative to a background of randomly oriented lines, the previously hidden object is segregated from the background and consequently enters awareness. Interestingly, in such shape-from-motion displays, the percept of the object persists briefly when the motion stops, suggesting that the segregated and bound representation of the object is maintained in awareness. Here, we tested whether this persistence effect is mediated by capacity-limited working-memory processes, or by the amount of object-related information available. The experiments demonstrate that persistence is affected mainly by the proportion of object information available and is independent of working-memory limits. We suggest that this persistence effect can be seen as evidence for an intermediate, form-based memory store mediating between sensory and working memory.
Anticipation from Biological Motion: The Goalkeeper Problem
ERIC Educational Resources Information Center
Diaz, Gabriel J.; Fajen, Brett R.; Phillips, Flip
2012-01-01
People can often anticipate the outcome of another person's actions based on visual information available in the movements of the other person's body. We investigated this problem by studying how goalkeepers anticipate the direction of a penalty kick in soccer. The specific aim was to determine whether the information used to anticipate kick…
Di Luca, Massimiliano; Domini, Fulvio; Caudek, Corrado
2007-05-01
In two experiments, observers were asked to judge the relative depth of a probe and one or two flanker dots. In Experiment 1, we found that such judgments were influenced by the properties of adjacent image regions, that is, by the amount of angular rotation of a surrounding cloud of dots. In Experiment 2, we found that the properties of the adjacent image regions affected the precision of the observers' judgments. With only the probe and the flanker dots presented in isolation, the precision of observers' judgments was much lower than when probe and the flanker dots were surrounded by a rigidly-connected cloud of dots. Conversely, a non-rigid rotation of the surrounding dots was detrimental to the precision of visual performance. These data can be accounted for by the Intrinsic Constraint model [Domini, F., Caudek, C., & Tassinari, H. (2006). Stereo and motion information are not independently processed by the visual system. Vision Research, 46, 1707-1723], which incorporates the mutual constraints relating disparity and motion signals. The present investigation does not show that the rigidity constraint affects the visual interpretation of motion information alone. Rather, our results show that perceptual performance is affected by the linear relation between disparity and velocity signals, when both depth-cues are present and the distal object is, in fact, rigid.
Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field.
Kline, Keith; Holcombe, Alex O; Eagleman, David M
2004-10-01
In stroboscopic conditions--such as motion pictures--rotating objects may appear to rotate in the reverse direction due to under-sampling (aliasing). A seemingly similar phenomenon occurs in constant sunlight, which has been taken as evidence that the visual system processes discrete "snapshots" of the outside world. But if snapshots are indeed taken of the visual field, then when a rotating drum appears to transiently reverse direction, its mirror image should always appeared to reverse direction simultaneously. Contrary to this hypothesis, we found that when observers watched a rotating drum and its mirror image, almost all illusory motion reversals occurred for only one image at a time. This result indicates that the motion reversal illusion cannot be explained by snapshots of the visual field. The same result is found when the two images are presented within one visual hemifield, further ruling out the possibility that discrete sampling of the visual field occurs separately in each hemisphere. The frequency distribution of illusory reversal durations approximates a gamma distribution, suggesting perceptual rivalry as a better explanation for illusory motion reversal. After adaptation of motion detectors coding for the correct direction, the activity of motion-sensitive neurons coding for motion in the reverse direction may intermittently become dominant and drive the perception of motion.
Binding of motion and colour is early and automatic.
Blaser, Erik; Papathomas, Thomas; Vidnyánszky, Zoltán
2005-04-01
At what stages of the human visual hierarchy different features are bound together, and whether this binding requires attention, is still highly debated. We used a colour-contingent motion after-effect (CCMAE) to study the binding of colour and motion signals. The logic of our approach was as follows: if CCMAEs can be evoked by targeted adaptation of early motion processing stages, without allowing for feedback from higher motion integration stages, then this would support our hypothesis that colour and motion are bound automatically on the basis of spatiotemporally local information. Our results show for the first time that CCMAE's can be evoked by adaptation to a locally paired opposite-motion dot display, a stimulus that, importantly, is known to trigger direction-specific responses in the primary visual cortex yet results in strong inhibition of the directional responses in area MT of macaques as well as in area MT+ in humans and, indeed, is perceived only as motionless flicker. The magnitude of the CCMAE in the locally paired condition was not significantly different from control conditions where the different directions were spatiotemporally separated (i.e. not locally paired) and therefore perceived as two moving fields. These findings provide evidence that adaptation at an early, local motion stage, and only adaptation at this stage, underlies this CCMAE, which in turn implies that spatiotemporally coincident colour and motion signals are bound automatically, most probably as early as cortical area V1, even when the association between colour and motion is perceptually inaccessible.
Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko
2010-03-10
The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.
Usage of stereoscopic visualization in the learning contents of rotational motion.
Matsuura, Shu
2013-01-01
Rotational motion plays an essential role in physics even at an introductory level. In addition, the stereoscopic display of three-dimensional graphics includes is advantageous for the presentation of rotational motions, particularly for depth recognition. However, the immersive visualization of rotational motion has been known to lead to dizziness and even nausea for some viewers. Therefore, the purpose of this study is to examine the onset of nausea and visual fatigue when learning rotational motion through the use of a stereoscopic display. The findings show that an instruction method with intermittent exposure of the stereoscopic display and a simplification of its visual components reduced the onset of nausea and visual fatigue for the viewers, which maintained the overall effect of instantaneous spatial recognition.
Dokka, Kalpana; DeAngelis, Gregory C.
2015-01-01
Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and may bias heading perception if the visual system cannot dissociate object motion from self-motion. We investigated whether adding vestibular self-motion signals to optic flow enhances the accuracy of heading judgments in the presence of a moving object. Macaque monkeys were trained to report their heading (leftward or rightward relative to straight-forward) when self-motion was specified by vestibular, visual, or combined visual-vestibular signals, while viewing a display in which an object moved independently in the (virtual) world. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. In addition, multisensory heading discrimination thresholds measured in the presence of a moving object were largely consistent with the predictions of an optimal cue integration strategy. These findings demonstrate that multisensory cues facilitate the perceptual dissociation of self-motion and object motion, consistent with computational work that suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. SIGNIFICANCE STATEMENT Objects that move independently in the world alter the optic flow field and can induce errors in perceiving the direction of self-motion (heading). We show that adding vestibular (inertial) self-motion signals to optic flow almost completely eliminates the errors in perceived heading induced by an independently moving object. Furthermore, this increased accuracy occurs without a substantial loss in the precision. Our results thus demonstrate that vestibular signals play a critical role in dissociating self-motion from object motion. PMID:26446214
Hand interception of occluded motion in humans: a test of model-based vs. on-line control.
La Scaleia, Barbara; Zago, Myrka; Lacquaniti, Francesco
2015-09-01
Two control schemes have been hypothesized for the manual interception of fast visual targets. In the model-free on-line control, extrapolation of target motion is based on continuous visual information, without resorting to physical models. In the model-based control, instead, a prior model of target motion predicts the future spatiotemporal trajectory. To distinguish between the two hypotheses in the case of projectile motion, we asked participants to hit a ball that rolled down an incline at 0.2 g and then fell in air at 1 g along a parabola. By varying starting position, ball velocity and trajectory differed between trials. Motion on the incline was always visible, whereas parabolic motion was either visible or occluded. We found that participants were equally successful at hitting the falling ball in both visible and occluded conditions. Moreover, in different trials the intersection points were distributed along the parabolic trajectories of the ball, indicating that subjects were able to extrapolate an extended segment of the target trajectory. Remarkably, this trend was observed even at the very first repetition of movements. These results are consistent with the hypothesis of model-based control, but not with on-line control. Indeed, ball path and speed during the occlusion could not be extrapolated solely from the kinematic information obtained during the preceding visible phase. The only way to extrapolate ball motion correctly during the occlusion was to assume that the ball would fall under gravity and air drag when hidden from view. Such an assumption had to be derived from prior experience. Copyright © 2015 the American Physiological Society.
Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M; Nuckley, David; Carlis, John; Keefe, Daniel F
2014-12-01
In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection's trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool's effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics.
NASA Astrophysics Data System (ADS)
Barnett, Barry S.; Bovik, Alan C.
1995-04-01
This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.
Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light.
Stöckl, Anna Lisa; O'Carroll, David Charles; Warrant, Eric James
2016-03-21
Most of the world's animals are active in dim light and depend on good vision for the tasks of daily life. Many have evolved visual adaptations that permit a performance superior to that of manmade imaging devices [1]. In insects, a major model visual system, nocturnal species show impressive visual abilities ranging from flight control [2, 3], to color discrimination [4, 5], to navigation using visual landmarks [6-8] or dim celestial compass cues [9, 10]. In addition to optical adaptations that improve their sensitivity in dim light [11], neural summation of light in space and time-which enhances the coarser and slower features of the scene at the expense of noisier finer and faster features-has been suggested to improve sensitivity in theoretical [12-14], anatomical [15-17], and behavioral [18-20] studies. How these summation strategies function neurally is, however, presently unknown. Here, we quantified spatial and temporal summation in the motion vision pathway of a nocturnal hawkmoth. We show that spatial and temporal summation combine supralinearly to substantially increase contrast sensitivity and visual information rate over four decades of light intensity, enabling hawkmoths to see at light levels 100 times dimmer than without summation. Our results reveal how visual motion is calculated neurally in dim light and how spatial and temporal summation improve sensitivity while simultaneously maximizing spatial and temporal resolution, thus extending models of insect motion vision derived predominantly from diurnal flies. Moreover, the summation strategies we have revealed may benefit manmade vision systems optimized for variable light levels [21]. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2017-06-01
Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.
Schindler, Andreas; Bartels, Andreas
2018-05-15
Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.
Efficient encoding of motion is mediated by gap junctions in the fly visual system.
Wang, Siwei; Borst, Alexander; Zaslavsky, Noga; Tishby, Naftali; Segev, Idan
2017-12-01
Understanding the computational implications of specific synaptic connectivity patterns is a fundamental goal in neuroscience. In particular, the computational role of ubiquitous electrical synapses operating via gap junctions remains elusive. In the fly visual system, the cells in the vertical-system network, which play a key role in visual processing, primarily connect to each other via axonal gap junctions. This network therefore provides a unique opportunity to explore the functional role of gap junctions in sensory information processing. Our information theoretical analysis of a realistic VS network model shows that within 10 ms following the onset of the visual input, the presence of axonal gap junctions enables the VS system to efficiently encode the axis of rotation, θ, of the fly's ego motion. This encoding efficiency, measured in bits, is near-optimal with respect to the physical limits of performance determined by the statistical structure of the visual input itself. The VS network is known to be connected to downstream pathways via a subset of triplets of the vertical system cells; we found that because of the axonal gap junctions, the efficiency of this subpopulation in encoding θ is superior to that of the whole vertical system network and is robust to a wide range of signal to noise ratios. We further demonstrate that this efficient encoding of motion by this subpopulation is necessary for the fly's visually guided behavior, such as banked turns in evasive maneuvers. Because gap junctions are formed among the axons of the vertical system cells, they only impact the system's readout, while maintaining the dendritic input intact, suggesting that the computational principles implemented by neural circuitries may be much richer than previously appreciated based on point neuron models. Our study provides new insights as to how specific network connectivity leads to efficient encoding of sensory stimuli.
NASA Technical Reports Server (NTRS)
Daunton, N. G.; Fox, R. A.; Crampton, G. H.
1984-01-01
Experiments in which the susceptibility of both cats and squirrel monkeys to motion sickness induced by visual stimulation are documented. In addition, it is shown that in both species those individual subjects most highly susceptible to sickness induced by passive motion are also those most likely to become motion sick from visual (optokinetic) stimulation alone.
The sensory components of high-capacity iconic memory and visual working memory.
Bradley, Claire; Pearson, Joel
2012-01-01
EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.
Miller, Haylie L.; Bugnariu, Nicoleta; Patterson, Rita M.; Wijayasinghe, Indika; Popa, Dan O.
2018-01-01
Visuomotor integration (VMI), the use of visual information to guide motor planning, execution, and modification, is necessary for a wide range of functional tasks. To comprehensively, quantitatively assess VMI, we developed a paradigm integrating virtual environments, motion-capture, and mobile eye-tracking. Virtual environments enable tasks to be repeatable, naturalistic, and varied in complexity. Mobile eye-tracking and minimally-restricted movement enable observation of natural strategies for interacting with the environment. This paradigm yields a rich dataset that may inform our understanding of VMI in typical and atypical development. PMID:29876370
Effects of motion base and g-seat cueing of simulator pilot performance
NASA Technical Reports Server (NTRS)
Ashworth, B. R.; Mckissick, B. T.; Parrish, R. V.
1984-01-01
In order to measure and analyze the effects of a motion plus g-seat cueing system, a manned-flight-simulation experiment was conducted utilizing a pursuit tracking task and an F-16 simulation model in the NASA Langley visual/motion simulator. This experiment provided the information necessary to determine whether motion and g-seat cues have an additive effect on the performance of this task. With respect to the lateral tracking error and roll-control stick force, the answer is affirmative. It is shown that presenting the two cues simultaneously caused significant reductions in lateral tracking error and that using the g-seat and motion base separately provided essentially equal reductions in the pilot's lateral tracking error.
Remote operation: a selective review of research into visual depth perception.
Reinhardt-Rutland, A H
1996-07-01
Some perceptual motor operations are performed remotely; examples include the handling of life-threatening materials and surgical procedures. A camera conveys the site of operation to a TV monitor, so depth perception relies mainly on pictorial information, perhaps with enhancement of the occlusion cue by motion. However, motion information such as motion parallax is not likely to be important. The effectiveness of pictorial information is diminished by monocular and binocular information conveying flatness of the screen and by difficulties in scaling: Only a degree of relative depth can be conveyed. Furthermore, pictorial information can mislead. Depth perception is probably adequate in remote operation, if target objects are well separated, with well-defined edges and familiar shapes. Stereoscopic viewing systems are being developed to introduce binocular information to remote operation. However, stereoscopic viewing is problematic because binocular disparity conflicts with convergence and monocular information. An alternative strategy to improve precision in remote operation may be to rely on individuals who lack binocular function: There is redundancy in depth information, and such individuals seem to compensate for the lack of binocular function.
Senkowski, Daniel; Saint-Amour, Dave; Kelly, Simon P; Foxe, John J
2007-07-01
In everyday life, we continuously and effortlessly integrate the multiple sensory inputs from objects in motion. For instance, the sound and the visual percept of vehicles in traffic provide us with complementary information about the location and motion of vehicles. Here, we used high-density electrical mapping and local auto-regressive average (LAURA) source estimation to study the integration of multisensory objects in motion as reflected in event-related potentials (ERPs). A randomized stream of naturalistic multisensory-audiovisual (AV), unisensory-auditory (A), and unisensory-visual (V) "splash" clips (i.e., a drop falling and hitting a water surface) was presented among non-naturalistic abstract motion stimuli. The visual clip onset preceded the "splash" onset by 100 ms for multisensory stimuli. For naturalistic objects early multisensory integration effects beginning 120-140 ms after sound onset were observed over posterior scalp, with distributed sources localized to occipital cortex, temporal lobule, insular, and medial frontal gyrus (MFG). These effects, together with longer latency interactions (210-250 and 300-350 ms) found in a widespread network of occipital, temporal, and frontal areas, suggest that naturalistic objects in motion are processed at multiple stages of multisensory integration. The pattern of integration effects differed considerably for non-naturalistic stimuli. Unlike naturalistic objects, no early interactions were found for non-naturalistic objects. The earliest integration effects for non-naturalistic stimuli were observed 210-250 ms after sound onset including large portions of the inferior parietal cortex (IPC). As such, there were clear differences in the cortical networks activated by multisensory motion stimuli as a consequence of the semantic relatedness (or lack thereof) of the constituent sensory elements.
Dent, Kevin; Lestou, Vaia; Humphreys, Glyn W
2010-02-01
It has been argued that area hMT+/V5 in humans acts as a motion filter, enabling targets defined by a conjunction of motion and form to be efficiently selected. We present data indicating that (a) damage to parietal cortex leads to a selective problem in processing motion-form conjunctions, and (b) that the presence of a structurally and functional intact hMT+/V5 is not sufficient for efficient search for motion-form conjunctions. We suggest that, in addition to motion-processing areas (e.g., hMT+/V5), the posterior parietal cortex is necessary for efficient search with motion-form conjunctions, so that damage to either brain region may bring about deficits in search. We discuss the results in terms of the involvement of the posterior parietal cortex in the top-down guidance of search or in the binding of motion and form information.
Independent Deficits of Visual Word and Motion Processing in Aging and Early Alzheimer's Disease
Velarde, Carla; Perelstein, Elizabeth; Ressmann, Wendy; Duffy, Charles J.
2013-01-01
We tested whether visual processing impairments in aging and Alzheimer's disease (AD) reflect uniform posterior cortical decline, or independent disorders of visual processing for reading and navigation. Young and older normal controls were compared to early AD patients using psychophysical measures of visual word and motion processing. We find elevated perceptual thresholds for letters and word discrimination from young normal controls, to older normal controls, to early AD patients. Across subject groups, visual motion processing showed a similar pattern of increasing thresholds, with the greatest impact on radial pattern motion perception. Combined analyses show that letter, word, and motion processing impairments are independent of each other. Aging and AD may be accompanied by independent impairments of visual processing for reading and navigation. This suggests separate underlying disorders and highlights the need for comprehensive evaluations to detect early deficits. PMID:22647256
NASA Technical Reports Server (NTRS)
Parris, B. L.; Cook, A. M.
1978-01-01
Data are presented that show the effects of visual and motion during cueing on pilot performance during takeoffs with engine failures. Four groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The most basic of these systems was of the instrument-only type. Visual scene simulation and/or motion simulation was added to produce the other systems. Learning curves, mean performance, and subjective data are examined. The results show that the addition of visual cueing results in significant improvement in pilot performance, but the combined use of visual and motion cueing results in far better performance.
Rocinante, a virtual collaborative visualizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, M.J.; Ice, L.G.
1996-12-31
With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired.more » Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.« less
Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.
Ehlman, Sean M; Sandkam, Benjamin A; Breden, Felix; Sih, Andrew
2015-12-01
Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments.
Motion Direction Biases and Decoding in Human Visual Cortex
Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy
2014-01-01
Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297
The use of a tactile interface to convey position and motion perceptions
NASA Technical Reports Server (NTRS)
Rupert, A. H.; Guedry, F. E.; Reschke, M. F.
1994-01-01
Under normal terrestrial conditions, perception of position and motion is determined by central nervous system integration of concordant and redundant information from multiple sensory channels (somatosensory, vestibular, visual), which collectively yield vertical perceptions. In the acceleration environment experienced by the pilots, the somatosensory and vestibular sensors frequently present false information concerning the direction of gravity. When presented with conflicting sensory information, it is normal for pilots to experience episodes of disorientation. We have developed a tactile interface that obtains vertical roll and pitch information from a gyro-stabilized attitude indicator and maps this information in a one-to-one correspondence onto the torso of the body using a matrix of vibrotactors. This enables the pilot to continuously maintain an awareness of aircraft attitude without reference to visual cues, utilizing a sensory channel that normally operates at the subconscious level. Although initially developed to improve pilot spatial awareness, this device has obvious applications to 1) simulation and training, 2) nonvisual tracking of targets, which can reduce the need for pilots to make head movements in the high-G environment of aerial combat, and 3) orientation in environments with minimal somatosensory cues (e.g., underwater) or gravitational cues (e.g., space).
Effects of attention and laterality on motion and orientation discrimination in deaf signers.
Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R
2013-06-01
Previous studies have asked whether visual sensitivity and attentional processing in deaf signers are enhanced or altered as a result of their different sensory experiences during development, i.e., auditory deprivation and exposure to a visual language. In particular, deaf and hearing signers have been shown to exhibit a right visual field/left hemisphere advantage for motion processing, while hearing nonsigners do not. To examine whether this finding extends to other aspects of visual processing, we compared deaf signers and hearing nonsigners on motion, form, and brightness discrimination tasks. Secondly, to examine whether hemispheric lateralities are affected by attention, we employed a dual-task paradigm to measure form and motion thresholds under "full" vs. "poor" attention conditions. Deaf signers, but not hearing nonsigners, exhibited a right visual field advantage for motion processing. This effect was also seen for form processing and not for the brightness task. Moreover, no group differences were observed in attentional effects, and the motion and form visual field asymmetries were not modulated by attention, suggesting they occur at early levels of sensory processing. In sum, the results show that processing of motion and form, believed to be mediated by dorsal and ventral visual pathways, respectively, are left-hemisphere dominant in deaf signers. Published by Elsevier Inc.
Bertone, Armando; Mottron, Laurent; Jelenic, Patricia; Faubert, Jocelyn
2005-10-01
Visuo-perceptual processing in autism is characterized by intact or enhanced performance on static spatial tasks and inferior performance on dynamic tasks, suggesting a deficit of dorsal visual stream processing in autism. However, previous findings by Bertone et al. indicate that neuro-integrative mechanisms used to detect complex motion, rather than motion perception per se, may be impaired in autism. We present here the first demonstration of concurrent enhanced and decreased performance in autism on the same visuo-spatial static task, wherein the only factor dichotomizing performance was the neural complexity required to discriminate grating orientation. The ability of persons with autism was found to be superior for identifying the orientation of simple, luminance-defined (or first-order) gratings but inferior for complex, texture-defined (or second-order) gratings. Using a flicker contrast sensitivity task, we demonstrated that this finding is probably not due to abnormal information processing at a sub-cortical level (magnocellular and parvocellular functioning). Together, these findings are interpreted as a clear indication of altered low-level perceptual information processing in autism, and confirm that the deficits and assets observed in autistic visual perception are contingent on the complexity of the neural network required to process a given type of visual stimulus. We suggest that atypical neural connectivity, resulting in enhanced lateral inhibition, may account for both enhanced and decreased low-level information processing in autism.
Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory
NASA Technical Reports Server (NTRS)
Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.
2005-01-01
Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.
Astronomy, Visual Literacy, and Liberal Arts Education
NASA Astrophysics Data System (ADS)
Crider, Anthony
2016-01-01
With the exponentially growing amount of visual content that twenty-first century students will face throughout their lives, teaching them to respond to it with visual and information literacy skills should be a clear priority for liberal arts education. While visual literacy is more commonly covered within humanities curricula, I will argue that because astronomy is inherently a visual science, it is a fertile academic discipline for the teaching and learning of visual literacy. Astronomers, like many scientists, rely on three basic types of visuals to convey information: images, qualitative diagrams, and quantitative plots. In this talk, I will highlight classroom methods that can be used to teach students to "read" and "write" these three separate visuals. Examples of "reading" exercises include questioning the authorship and veracity of images, confronting the distorted scales of many diagrams published in astronomy textbooks, and extracting quantitative information from published plots. Examples of "writing" exercises include capturing astronomical images with smartphones, re-sketching textbook diagrams on whiteboards, and plotting data with Google Motion Charts or iPython notebooks. Students can be further pushed to synthesize these skills with end-of-semester slide presentations that incorporate relevant images, diagrams, and plots rather than relying solely on bulleted lists.
Discrepant visual speech facilitates covert selective listening in "cocktail party" conditions.
Williams, Jason A
2012-06-01
The presence of congruent visual speech information facilitates the identification of auditory speech, while the addition of incongruent visual speech information often impairs accuracy. This latter arrangement occurs naturally when one is being directly addressed in conversation but listens to a different speaker. Under these conditions, performance may diminish since: (a) one is bereft of the facilitative effects of the corresponding lip motion and (b) one becomes subject to visual distortion by incongruent visual speech; by contrast, speech intelligibility may be improved due to (c) bimodal localization of the central unattended stimulus. Participants were exposed to centrally presented visual and auditory speech while attending to a peripheral speech stream. In some trials, the lip movements of the central visual stimulus matched the unattended speech stream; in others, the lip movements matched the attended peripheral speech. Accuracy for the peripheral stimulus was nearly one standard deviation greater with incongruent visual information, compared to the congruent condition which provided bimodal pattern recognition cues. Likely, the bimodal localization of the central stimulus further differentiated the stimuli and thus facilitated intelligibility. Results are discussed with regard to similar findings in an investigation of the ventriloquist effect, and the relative strength of localization and speech cues in covert listening.
Updating visual memory across eye movements for ocular and arm motor control.
Thompson, Aidan A; Henriques, Denise Y P
2008-11-01
Remembered object locations are stored in an eye-fixed reference frame, so that every time the eyes move, spatial representations must be updated for the arm-motor system to reflect the target's new relative position. To date, studies have not investigated how the brain updates these spatial representations during other types of eye movements, such as smooth-pursuit. Further, it is unclear what information is used in spatial updating. To address these questions we investigated whether remembered locations of pointing targets are updated following smooth-pursuit eye movements, as they are following saccades, and also investigated the role of visual information in estimating eye-movement amplitude for updating spatial memory. Misestimates of eye-movement amplitude were induced when participants visually tracked stimuli presented with a background that moved in either the same or opposite direction of the eye before pointing or looking back to the remembered target location. We found that gaze-dependent pointing errors were similar following saccades and smooth-pursuit and that incongruent background motion did result in a misestimate of eye-movement amplitude. However, the background motion had no effect on spatial updating for pointing, but did when subjects made a return saccade, suggesting that the oculomotor and arm-motor systems may rely on different sources of information for spatial updating.
Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders
Peiker, Ina; Schneider, Till R.; Milne, Elizabeth; Schöttle, Daniel; Vogeley, Kai; Münchau, Alexander; Schunke, Odette; Siegel, Markus; Engel, Andreas K.; David, Nicole
2015-01-01
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD. PMID:26147342
An Investigation of Visual, Aural, Motion and Control Movement Cues.
ERIC Educational Resources Information Center
Matheny, W. G.; And Others
A study was conducted to determine the ways in which multi-sensory cues can be simulated and effectively used in the training of pilots. Two analytical bases, one called the stimulus environment approach and the other an information array approach, are developed along with a cue taxonomy. Cues are postulated on the basis of information gained from…
Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike
2018-01-01
A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical faculties to the retina, while the thalamus is the link that couples the retina to the rest of the brain through activity by gamma oscillations. This novel theory lays groundwork for further research by providing a theoretical understanding that expands upon the functions of the retina, photoreceptors, and retinal plexus to include parallel processing needed to form the internal visual space that we perceive as the external world. Copyright © 2017 Elsevier Ltd. All rights reserved.
The relationship of global form and motion detection to reading fluency.
Englund, Julia A; Palomares, Melanie
2012-08-15
Visual motion processing in typical and atypical readers has suggested aspects of reading and motion processing share a common cortical network rooted in dorsal visual areas. Few studies have examined the relationship between reading performance and visual form processing, which is mediated by ventral cortical areas. We investigated whether reading fluency correlates with coherent motion detection thresholds in typically developing children using random dot kinematograms. As a comparison, we also evaluated the correlation between reading fluency and static form detection thresholds. Results show that both dorsal and ventral visual functions correlated with components of reading fluency, but that they have different developmental characteristics. Motion coherence thresholds correlated with reading rate and accuracy, which both improved with chronological age. Interestingly, when controlling for non-verbal abilities and age, reading accuracy significantly correlated with thresholds for coherent form detection but not coherent motion detection in typically developing children. Dorsal visual functions that mediate motion coherence seem to be related maturation of broad cognitive functions including non-verbal abilities and reading fluency. However, ventral visual functions that mediate form coherence seem to be specifically related to accurate reading in typically developing children. Copyright © 2012 Elsevier Ltd. All rights reserved.
Precision of working memory for visual motion sequences and transparent motion surfaces.
Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud
2011-12-01
Recent studies investigating working memory for location, color, and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (W. Zhang & S. J. Luck, 2008 vs. P. M. Bays, R. F. G. Catalao, & M. Husain, 2009). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features.
Visual cueing aids for rotorcraft landings
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Andre, Anthony D.
1993-01-01
The present study used a rotorcraft simulator to examine descents-to-hover at landing pads with one of three approach lighting configurations. The impact of simulator platform motion upon descents to hover was also examined. The results showed that the configuration with the most useful optical information led to the slowest final approach speeds, and that pilots found this configuration, together with the presence of simulator platform motion, most desirable. The results also showed that platform motion led to higher rates of approach to the landing pad in some cases. Implications of the results for the design of vertiport approach paths are discussed.
Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M.; Nuckley, David; Carlis, John; Keefe, Daniel F
2017-01-01
In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection’s trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool’s effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics. PMID:26356978
On the Integration of Medium Wave Infrared Cameras for Vision-Based Navigation
2015-03-01
SWIR Short Wave Infrared VisualSFM Visual Structure from Motion WPAFB Wright Patterson Air Force Base xi ON THE INTEGRATION OF MEDIUM WAVE INFRARED...Structure from Motion Visual Structure from Motion ( VisualSFM ) is an application that performs incremental SfM using images fed into it of a scene [20...too drastically in between frames. When this happens, VisualSFM will begin creating a new model with images that do not fit to the old one. These new
Effects of translational and rotational motions and display polarity on visual performance.
Feng, Wen-Yang; Tseng, Feng-Yi; Chao, Chin-Jung; Lin, Chiuhsiang Joe
2008-10-01
This study investigated effects of both translational and rotational motion and display polarity on a visual identification task. Three different motion types--heave, roll, and pitch--were compared with the static (no motion) condition. The visual task was presented on two display polarities, black-on-white and white-on-black. The experiment was a 4 (motion conditions) x 2 (display polarities) within-subjects design with eight subjects (six men and two women; M age = 25.6 yr., SD = 3.2). The dependent variables used to assess the performance on the visual task were accuracy and reaction time. Motion environments, especially the roll condition, had statistically significant effects on the decrement of accuracy and reaction time. The display polarity was significant only in the static condition.
Effects of simulator motion and visual characteristics on rotorcraft handling qualities evaluations
NASA Technical Reports Server (NTRS)
Mitchell, David G.; Hart, Daniel C.
1993-01-01
The pilot's perceptions of aircraft handling qualities are influenced by a combination of the aircraft dynamics, the task, and the environment under which the evaluation is performed. When the evaluation is performed in a groundbased simulator, the characteristics of the simulation facility also come into play. Two studies were conducted on NASA Ames Research Center's Vertical Motion Simulator to determine the effects of simulator characteristics on perceived handling qualities. Most evaluations were conducted with a baseline set of rotorcraft dynamics, using a simple transfer-function model of an uncoupled helicopter, under different conditions of visual time delays and motion command washout filters. Differences in pilot opinion were found as the visual and motion parameters were changed, reflecting a change in the pilots' perceptions of handling qualities, rather than changes in the aircraft model itself. The results indicate a need for tailoring the motion washout dynamics to suit the task. Visual-delay data are inconclusive but suggest that it may be better to allow some time delay in the visual path to minimize the mismatch between visual and motion, rather than eliminate the visual delay entirely through lead compensation.
Pavan, Andrea; Boyce, Matthew; Ghin, Filippo
2016-10-01
Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.
Visual processing of rotary motion.
Werkhoven, P; Koenderink, J J
1991-01-01
Local descriptions of velocity fields (e.g., rotation, divergence, and deformation) contain a wealth of information for form perception and ego motion. In spite of this, human psychophysical performance in estimating these entities has not yet been thoroughly examined. In this paper, we report on the visual discrimination of rotary motion. A sequence of image frames is used to elicit an apparent rotation of an annulus, composed of dots in the frontoparallel plane, around a fixation spot at the center of the annulus. Differential angular velocity thresholds are measured as a function of the angular velocity, the diameter of the annulus, the number of dots, the display time per frame, and the number of frames. The results show a U-shaped dependence of angular velocity discrimination on spatial scale, with minimal Weber fractions of 7%. Experiments with a scatter in the distance of the individual dots to the center of rotation demonstrate that angular velocity cannot be assessed directly; perceived angular velocity depends strongly on the distance of the dots relative to the center of rotation. We suggest that the estimation of rotary motion is mediated by local estimations of linear velocity.
Cattaneo, Zaira; Schiavi, Susanna; Silvanto, Juha; Nadal, Marcos
2017-01-01
Over the last decade, researchers have sought to understand the brain mechanisms involved in the appreciation of art. Previous studies reported an increased activity in sensory processing regions for artworks that participants find more appealing. Here we investigated the intriguing possibility that activity in cortical area V5-a region in the occipital cortex mediating physical and implied motion detection-is related not only to the generation of a sense of motion from visual cues used in artworks, but also to the appreciation of those artworks. Art-naïve participants viewed a series of paintings and quickly judged whether or not the paintings conveyed a sense of motion, and whether or not they liked them. Triple-pulse TMS applied over V5 while viewing the paintings significantly decreased the perceived sense of motion, and also significantly reduced liking of abstract (but not representational) paintings. Our data demonstrate that V5 is involved in extracting motion information even when the objects whose motion is implied are pictorial representations (as opposed to photographs or film frames), and even in the absence of any figurative content. Moreover, our study suggests that, in the case of untrained people, V5 activity plays a causal role in the appreciation of abstract but not of representational art.
Neural Mechanisms of Cortical Motion Computation Based on a Neuromorphic Sensory System
Abdul-Kreem, Luma Issa; Neumann, Heiko
2015-01-01
The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina) that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields). In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells. PMID:26554589
Internal models and prediction of visual gravitational motion.
Zago, Myrka; McIntyre, Joseph; Senot, Patrice; Lacquaniti, Francesco
2008-06-01
Baurès et al. [Baurès, R., Benguigui, N., Amorim, M.-A., & Siegler, I. A. (2007). Intercepting free falling objects: Better use Occam's razor than internalize Newton's law. Vision Research, 47, 2982-2991] rejected the hypothesis that free-falling objects are intercepted using a predictive model of gravity. They argued instead for "a continuous guide for action timing" based on visual information updated till target capture. Here we show that their arguments are flawed, because they fail to consider the impact of sensori-motor delays on interception behaviour and the need for neural compensation of such delays. When intercepting a free-falling object, the delays can be overcome by a predictive model of the effects of gravity on target motion.
Overview of research in progress at the Center of Excellence
NASA Technical Reports Server (NTRS)
Wandell, Brian A.
1993-01-01
The Center of Excellence (COE) was created nine years ago to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. Significant interchange of ideas and personnel continues between Stanford and participating groups at NASA-Ames; the COE serves its function well. This progress report is organized into sections divided by project. Each section contains a list of investigators, a background statement, progress report, and a proposal for work during the coming year. The projects are: Algorithms for development and calibration of visual systems, Visually optimized image compression, Evaluation of advanced piloting displays, Spectral representations of color, Perception of motion in man and machine, Automation and decision making, and Motion information used for navigation and control.
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
Integrated evaluation of visually induced motion sickness in terms of autonomic nervous regulation.
Kiryu, Tohru; Tada, Gen; Toyama, Hiroshi; Iijima, Atsuhiko
2008-01-01
To evaluate visually-induced motion sickness, we integrated subjective and objective responses in terms of autonomic nervous regulation. Twenty-seven subjects viewed a 2-min-long first-person-view video section five times (total 10 min) continuously. Measured biosignals, the RR interval, respiration, and blood pressure, were used to estimate the indices related to autonomic nervous activity (ANA). Then we determined the trigger points and some sensation sections based on the time-varying behavior of ANA-related indices. We found that there was a suitable combination of biosignals to present the symptoms of visually-induced motion sickness. Based on the suitable combination, integrating trigger points and subjective scores allowed us to represent the time-distribution of subjective responses during visual exposure, and helps us to understand what types of camera motions will cause visually-induced motion sickness.
Influence of visual path information on human heading perception during rotation.
Li, Li; Chen, Jing; Peng, Xiaozhe
2009-03-31
How does visual path information influence people's perception of their instantaneous direction of self-motion (heading)? We have previously shown that humans can perceive heading without direct access to visual path information. Here we vary two key parameters for estimating heading from optic flow, the field of view (FOV) and the depth range of environmental points, to investigate the conditions under which visual path information influences human heading perception. The display simulated an observer traveling on a circular path. Observers used a joystick to rotate their line of sight until deemed aligned with true heading. Four FOV sizes (110 x 94 degrees, 48 x 41 degrees, 16 x 14 degrees, 8 x 7 degrees) and depth ranges (6-50 m, 6-25 m, 6-12.5 m, 6-9 m) were tested. Consistent with our computational modeling results, heading bias increased with the reduction of FOV or depth range when the display provided a sequence of velocity fields but no direct path information. When the display provided path information, heading bias was not influenced as much by the reduction of FOV or depth range. We conclude that human heading and path perception involve separate visual processes. Path helps heading perception when the display does not contain enough optic-flow information for heading estimation during rotation.
2015-09-02
human behavior. In this project, we hypothesized that visual memory of past motion trajectories may be used for selecting future behavior. In other...34Decoding sequence of actions using fMRI ", Society for Neuroscience Annual Meeting, San Diego, CA, USA, Nov 9-13 2013 (only abstract) 3. Hansol Choi, Dae...Shik Kim, "Planning as inference in a Hierarchical Predictive Memory ", Proceedings of International Conference on Neural Information Processing
FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.
Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu
2017-07-18
Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.
An Adaptive Neural Mechanism for Acoustic Motion Perception with Varying Sparsity
Shaikh, Danish; Manoonpong, Poramate
2017-01-01
Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion of a relevant stimulus. Motion perception is a fundamental ability in neural sensory processing and crucial in target tracking tasks. Tracking a stimulus entails the ability to perceive its motion, i.e., extracting information about its direction and velocity. Here we focus on auditory motion perception of sound stimuli, which is poorly understood as compared to its visual counterpart. In earlier work we have developed a bio-inspired neural learning mechanism for acoustic motion perception. The mechanism extracts directional information via a model of the peripheral auditory system of lizards. The mechanism uses only this directional information obtained via specific motor behaviour to learn the angular velocity of unoccluded sound stimuli in motion. In nature however the stimulus being tracked may be occluded by artefacts in the environment, such as an escaping prey momentarily disappearing behind a cover of trees. This article extends the earlier work by presenting a comparative investigation of auditory motion perception for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 kHz in both simulation and practice. Three instances of each stimulus are employed, differing in their movement velocities–0.5°/time step, 1.0°/time step and 1.5°/time step. To validate the approach in practice, we implement the proposed neural mechanism on a wheeled mobile robot and evaluate its performance in auditory tracking. PMID:28337137
Allenmark, Fredrik; Read, Jenny C A
2012-10-10
Neurons in cortical area MT respond well to transparent streaming motion in distinct depth planes, such as caused by observer self-motion, but do not contain subregions excited by opposite directions of motion. We therefore predicted that spatial resolution for transparent motion/disparity conjunctions would be limited by the size of MT receptive fields, just as spatial resolution for disparity is limited by the much smaller receptive fields found in primary visual cortex, V1. We measured this using a novel "joint motion/disparity grating," on which human observers detected motion/disparity conjunctions in transparent random-dot patterns containing dots streaming in opposite directions on two depth planes. Surprisingly, observers showed the same spatial resolution for these as for pure disparity gratings. We estimate the limiting receptive field diameter at 11 arcmin, similar to V1 and much smaller than MT. Higher internal noise for detecting joint motion/disparity produces a slightly lower high-frequency cutoff of 2.5 cycles per degree (cpd) versus 3.3 cpd for disparity. This suggests that information on motion/disparity conjunctions is available in the population activity of V1 and that this information can be decoded for perception even when it is invisible to neurons in MT.
Conveying Looming with a Localized Tactile Cue
2015-04-01
leaning and reflexive head righting required at different speeds of linear or angular motion, the angle of contact of the foot to the substrate (e.g...approach information (e.g., relative distance updates) prior to actual contact , as has been reported for visual and auditory displays. A few studies have...Jacobs, 2013). Cancar et al. asked 12 subjects to estimate time-to- contact of a radially-expanding tactile or visual flow field representing a
Representation of vestibular and visual cues to self-motion in ventral intraparietal (VIP) cortex
Chen, Aihua; Deangelis, Gregory C.; Angelaki, Dora E.
2011-01-01
Convergence of vestibular and visual motion information is important for self-motion perception. One cortical area that combines vestibular and optic flow signals is the ventral intraparietal area (VIP). We characterized unisensory and multisensory responses of macaque VIP neurons to translations and rotations in three dimensions. Approximately half of VIP cells show significant directional selectivity in response to optic flow, half show tuning to vestibular stimuli, and one-third show multisensory responses. Visual and vestibular direction preferences of multisensory VIP neurons could be congruent or opposite. When visual and vestibular stimuli were combined, VIP responses could be dominated by either input, unlike medial superior temporal area (MSTd) where optic flow tuning typically dominates or the visual posterior sylvian area (VPS) where vestibular tuning dominates. Optic flow selectivity in VIP was weaker than in MSTd but stronger than in VPS. In contrast, vestibular tuning for translation was strongest in VPS, intermediate in VIP, and weakest in MSTd. To characterize response dynamics, direction-time data were fit with a spatiotemporal model in which temporal responses were modeled as weighted sums of velocity, acceleration, and position components. Vestibular responses in VIP reflected balanced contributions of velocity and acceleration, whereas visual responses were dominated by velocity. Timing of vestibular responses in VIP was significantly faster than in MSTd, whereas timing of optic flow responses did not differ significantly among areas. These findings suggest that VIP may be proximal to MSTd in terms of vestibular processing but hierarchically similar to MSTd in terms of optic flow processing. PMID:21849564
A stingless bee can use visual odometry to estimate both height and distance.
Eckles, M A; Roubik, D W; Nieh, J C
2012-09-15
Bees move and forage within three dimensions and rely heavily on vision for navigation. The use of vision-based odometry has been studied extensively in horizontal distance measurement, but not vertical distance measurement. The honey bee Apis mellifera and the stingless bee Melipona seminigra measure distance visually using optic flow-movement of images as they pass across the retina. The honey bees gauge height using image motion in the ventral visual field. The stingless bees forage at different tropical forest canopy levels, ranging up to 40 m at our site. Thus, estimating height would be advantageous. We provide the first evidence that the stingless bee Melipona panamica utilizes optic flow information to gauge not only distance traveled but also height above ground, by processing information primarily from the lateral visual field. After training bees to forage at a set height in a vertical tunnel lined with black and white stripes, we observed foragers that explored a new tunnel with no feeder. In a new tunnel, bees searched at the same height they were trained to. In a narrower tunnel, bees experienced more image motion and significantly lowered their search height. In a wider tunnel, bees experienced less image motion and searched at significantly greater heights. In a tunnel without optic cues, bees were disoriented and searched at random heights. A horizontal tunnel testing these variables similarly affected foraging, but bees exhibited less precision (greater variance in search positions). Accurately gauging flight height above ground may be crucial for this species and others that compete for resources located at heights ranging from ground level to the high tropical forest canopies.
NASA Astrophysics Data System (ADS)
Grieggs, Samuel M.; McLaughlin, Michael J.; Ezekiel, Soundararajan; Blasch, Erik
2015-06-01
As technology and internet use grows at an exponential rate, video and imagery data is becoming increasingly important. Various techniques such as Wide Area Motion imagery (WAMI), Full Motion Video (FMV), and Hyperspectral Imaging (HSI) are used to collect motion data and extract relevant information. Detecting and identifying a particular object in imagery data is an important step in understanding visual imagery, such as content-based image retrieval (CBIR). Imagery data is segmented and automatically analyzed and stored in dynamic and robust database. In our system, we seek utilize image fusion methods which require quality metrics. Many Image Fusion (IF) algorithms have been proposed based on different, but only a few metrics, used to evaluate the performance of these algorithms. In this paper, we seek a robust, objective metric to evaluate the performance of IF algorithms which compares the outcome of a given algorithm to ground truth and reports several types of errors. Given the ground truth of a motion imagery data, it will compute detection failure, false alarm, precision and recall metrics, background and foreground regions statistics, as well as split and merge of foreground regions. Using the Structural Similarity Index (SSIM), Mutual Information (MI), and entropy metrics; experimental results demonstrate the effectiveness of the proposed methodology for object detection, activity exploitation, and CBIR.
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
An MR-based Model for Cardio-Respiratory Motion Compensation of Overlays in X-Ray Fluoroscopy
Fischer, Peter; Faranesh, Anthony; Pohl, Thomas; Maier, Andreas; Rogers, Toby; Ratnayaka, Kanishka; Lederman, Robert; Hornegger, Joachim
2017-01-01
In X-ray fluoroscopy, static overlays are used to visualize soft tissue. We propose a system for cardiac and respiratory motion compensation of these overlays. It consists of a 3-D motion model created from real-time MR imaging. Multiple sagittal slices are acquired and retrospectively stacked to consistent 3-D volumes. Slice stacking considers cardiac information derived from the ECG and respiratory information extracted from the images. Additionally, temporal smoothness of the stacking is enhanced. Motion is estimated from the MR volumes using deformable 3-D/3-D registration. The motion model itself is a linear direct correspondence model using the same surrogate signals as slice stacking. In X-ray fluoroscopy, only the surrogate signals need to be extracted to apply the motion model and animate the overlay in real time. For evaluation, points are manually annotated in oblique MR slices and in contrast-enhanced X-ray images. The 2-D Euclidean distance of these points is reduced from 3.85 mm to 2.75 mm in MR and from 3.0 mm to 1.8 mm in X-ray compared to the static baseline. Furthermore, the motion-compensated overlays are shown qualitatively as images and videos. PMID:28692969
What visual information is used for stereoscopic depth displacement discrimination?
Nefs, Harold T; Harris, Julie M
2010-01-01
There are two ways to detect a displacement in stereoscopic depth, namely by monitoring the change in disparity over time (CDOT) or by monitoring the interocular velocity difference (IOVD). Though previous studies have attempted to understand which cue is most significant for the visual system, none has designed stimuli that provide a comparison in terms of relative efficiency between them. Here we used two-frame motion and random-dot noise to deliver equivalent strengths of CDOT and IOVD information to the visual system. Using three kinds of random-dot stimuli, we were able to isolate CDOT or IOVD or deliver both simultaneously. The proportion of dots delivering CDOT or IOVD signals could be varied, and we defined the discrimination threshold as the proportion needed to detect the direction of displacement (towards or away). Thresholds were similar for stimuli containing CDOT only, and containing both CDOT and IOVD, but only one participant was able to consistently perceive the displacement for stimuli containing only IOVD. We also investigated the effect of disparity pedestals on discrimination. Performance was best when the displacement crossed the reference plane, but was not significantly different for stimuli containing CDOT only and those containing both CDOT and IOVD. When stimuli are specifically designed to provide equivalent two-frame motion or disparity-change, few participants can reliably detect displacement when IOVD is the only cue. This challenges the notion that IOVD is involved in the discrimination of direction of displacement in two-frame motion displays.
Estimation of bio-signal based on human motion for integrated visualization of daily-life.
Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko
2007-01-01
This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.
NASA Technical Reports Server (NTRS)
Mckissick, B. T.; Ashworth, B. R.; Parrish, R. V.; Martin, D. J., Jr.
1980-01-01
NASA's Langley Research Center conducted a simulation experiment to ascertain the comparative effects of motion cues (combinations of platform motion and g-seat normal acceleration cues) on compensatory tracking performance. In the experiment, a full six-degree-of-freedom YF-16 model was used as the simulated pursuit aircraft. The Langley Visual Motion Simulator (with in-house developed wash-out), and a Langley developed g-seat were principal components of the simulation. The results of the experiment were examined utilizing univariate and multivariate techniques. The statistical analyses demonstrate that the platform motion and g-seat cues provide additional information to the pilot that allows substantial reduction of lateral tracking error. Also, the analyses show that the g-seat cue helps reduce vertical error.
Visualizing the ground motions of the 1906 San Francisco earthquake
Chourasia, A.; Cutchin, S.; Aagaard, Brad T.
2008-01-01
With advances in computational capabilities and refinement of seismic wave-propagation models in the past decade large three-dimensional simulations of earthquake ground motion have become possible. The resulting datasets from these simulations are multivariate, temporal and multi-terabyte in size. Past visual representations of results from seismic studies have been largely confined to static two-dimensional maps. New visual representations provide scientists with alternate ways of viewing and interacting with these results potentially leading to new and significant insight into the physical phenomena. Visualizations can also be used for pedagogic and general dissemination purposes. We present a workflow for visual representation of the data from a ground motion simulation of the great 1906 San Francisco earthquake. We have employed state of the art animation tools for visualization of the ground motions with a high degree of accuracy and visual realism. ?? 2008 Elsevier Ltd.
Recovery of biological motion perception and network plasticity after cerebellar tumor removal.
Sokolov, Arseny A; Erb, Michael; Grodd, Wolfgang; Tatagiba, Marcos S; Frackowiak, Richard S J; Pavlova, Marina A
2014-10-01
Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.
Fukushima, Kikuro; Barnes, Graham R; Ito, Norie; Olley, Peter M; Warabi, Tateo
2014-07-01
Aging affects virtually all functions including sensory/motor and cognitive activities. While retinal image motion is the primary input for smooth-pursuit, its efficiency/accuracy depends on cognitive processes. Elderly subjects exhibit gain decrease during initial and steady-state pursuit, but reports on latencies are conflicting. Using a cue-dependent memory-based smooth-pursuit task, we identified important extra-retinal mechanisms for initial pursuit in young adults including cue information priming and extra-retinal drive components (Ito et al. in Exp Brain Res 229:23-35, 2013). We examined aging effects on parameters for smooth-pursuit using the same tasks. Elderly subjects were tested during three task conditions as previously described: memory-based pursuit, simple ramp-pursuit just to follow motion of a single spot, and popping-out of the correct spot during memory-based pursuit to enhance retinal image motion. Simple ramp-pursuit was used as a task that did not require visual motion working memory. To clarify aging effects, we then compared the results with the previous young subject data. During memory-based pursuit, elderly subjects exhibited normal working memory of cue information. Most movement-parameters including pursuit latencies differed significantly between memory-based pursuit and simple ramp-pursuit and also between young and elderly subjects. Popping-out of the correct spot motion was ineffective for enhancing initial pursuit in elderly subjects. However, the latency difference between memory-based pursuit and simple ramp-pursuit in individual subjects, which includes decision-making delay in the memory task, was similar between the two groups. Our results suggest that smooth-pursuit latencies depend on task conditions and that, although the extra-retinal mechanisms were functional for initial pursuit in elderly subjects, they were less effective.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Houck, J. A.; Martin, D. J., Jr.
1977-01-01
Combined visual, motion, and aural cues for a helicopter engaged in visually conducted slalom runs at low altitude were studied. The evaluation of the visual and aural cues was subjective, whereas the motion cues were evaluated both subjectively and objectively. Subjective and objective results coincided in the area of control activity. Generally, less control activity is present under motion conditions than under fixed-base conditions, a fact attributed subjectively to the feeling of realistic limitations of a machine (helicopter) given by the addition of motion cues. The objective data also revealed that the slalom runs were conducted at significantly higher altitudes under motion conditions than under fixed-base conditions.
Implied motion language can influence visual spatial memory.
Vinson, David W; Engelen, Jan; Zwaan, Rolf A; Matlock, Teenie; Dale, Rick
2017-07-01
How do language and vision interact? Specifically, what impact can language have on visual processing, especially related to spatial memory? What are typically considered errors in visual processing, such as remembering the location of an object to be farther along its motion trajectory than it actually is, can be explained as perceptual achievements that are driven by our ability to anticipate future events. In two experiments, we tested whether the prior presentation of motion language influences visual spatial memory in ways that afford greater perceptual prediction. Experiment 1 showed that motion language influenced judgments for the spatial memory of an object beyond the known effects of implied motion present in the image itself. Experiment 2 replicated this finding. Our findings support a theory of perception as prediction.
Perceived state of self during motion can differentially modulate numerical magnitude allocation.
Arshad, Q; Nigmatullina, Y; Roberts, R E; Goga, U; Pikovsky, M; Khan, S; Lobo, R; Flury, A-S; Pettorossi, V E; Cohen-Kadosh, R; Malhotra, P A; Bronstein, A M
2016-09-01
Although a direct relationship between numerical allocation and spatial attention has been proposed, recent research suggests that these processes are not directly coupled. In keeping with this, spatial attention shifts induced either via visual or vestibular motion can modulate numerical allocation in some circumstances but not in others. In addition to shifting spatial attention, visual or vestibular motion paradigms also (i) elicit compensatory eye movements which themselves can influence numerical processing and (ii) alter the perceptual state of 'self', inducing changes in bodily self-consciousness impacting upon cognitive mechanisms. Thus, the precise mechanism by which motion modulates numerical allocation remains unknown. We sought to investigate the influence that different perceptual experiences of motion have upon numerical magnitude allocation while controlling for both eye movements and task-related effects. We first used optokinetic visual motion stimulation (OKS) to elicit the perceptual experience of either 'visual world' or 'self'-motion during which eye movements were identical. In a second experiment, we used a vestibular protocol examining the effects of perceived and subliminal angular rotations in darkness, which also provoked identical eye movements. We observed that during the perceptual experience of 'visual world' motion, rightward OKS-biased judgments towards smaller numbers, whereas leftward OKS-biased judgments towards larger numbers. During the perceptual experience of 'self-motion', judgments were biased towards larger numbers irrespective of the OKS direction. Contrastingly, vestibular motion perception was found not to modulate numerical magnitude allocation, nor was there any differential modulation when comparing 'perceived' vs. 'subliminal' rotations. We provide a novel demonstration that numerical magnitude allocation can be differentially modulated by the perceptual state of self during visual but not vestibular mediated motion. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Visual Features Involving Motion Seen from Airport Control Towers
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Liston, Dorion
2010-01-01
Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.
Perceptual integration of motion and form information: evidence of parallel-continuous processing.
von Mühlenen, A; Müller, H J
2000-04-01
In three visual search experiments, the processes involved in the efficient detection of motion-form conjunction targets were investigated. Experiment 1 was designed to estimate the relative contributions of stationary and moving nontargets to the search rate. Search rates were primarily determined by the number of moving nontargets; stationary nontargets sharing the target form also exerted a significant effect, but this was only about half as strong as that of moving nontargets; stationary nontargets not sharing the target form had little influence. In Experiments 2 and 3, the effects of display factors influencing the visual (form) quality of moving items (movement speed and item size) were examined. Increasing the speed of the moving items (> 1.5 degrees/sec) facilitated target detection when the task required segregation of the moving from the stationary items. When no segregation was necessary, increasing the movement speed impaired performance: With large display items, motion speed had little effect on target detection, but with small items, search efficiency declined when items moved faster than 1.5 degrees/sec. This pattern indicates that moving nontargets exert a strong effect on the search rate (Experiment 1) because of the loss of visual quality for moving items above a certain movement speed. A parallel-continuous processing account of motion-form conjunction search is proposed, which combines aspects of Guided Search (Wolfe, 1994) and attentional engagement theory (Duncan & Humphreys, 1989).
Slow and fast visual motion channels have independent binocular-rivalry stages.
van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.
2001-01-01
We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442
Visualization of Heart Sounds and Motion Using Multichannel Sensor
NASA Astrophysics Data System (ADS)
Nogata, Fumio; Yokota, Yasunari; Kawamura, Yoko
2010-06-01
As there are various difficulties associated with auscultation techniques, we have devised a technique for visualizing heart motion in order to assist in the understanding of heartbeat for both doctors and patients. Auscultatory sounds were first visualized using FFT and Wavelet analysis to visualize heart sounds. Next, to show global and simultaneous heart motions, a new technique for visualization was established. The visualization system consists of a 64-channel unit (63 acceleration sensors and one ECG sensor) and a signal/image analysis unit. The acceleration sensors were arranged in a square array (8×8) with a 20-mm pitch interval, which was adhered to the chest surface. The heart motion of one cycle was visualized at a sampling frequency of 3 kHz and quantization of 12 bits. The visualized results showed a typical waveform motion of the strong pressure shock due to closing tricuspid valve and mitral valve of the cardiac apex (first sound), and the closing aortic and pulmonic valve (second sound) in sequence. To overcome difficulties in auscultation, the system can be applied to the detection of heart disease and to the digital database management of the auscultation examination in medical areas.
Visual gravitational motion and the vestibular system in humans
Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka
2013-01-01
The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity. PMID:24421761
Visual gravitational motion and the vestibular system in humans.
Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka
2013-12-26
The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.
Normal form from biological motion despite impaired ventral stream function.
Gilaie-Dotan, S; Bentin, S; Harel, M; Rees, G; Saygin, A P
2011-04-01
We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, & Bentin, 2009). Here, in three studies we used point light displays, which require visual integration, in adaptive threshold experiments to examine LG's ability to detect form from biological and non-biological motion cues. LG's ability to detect and discriminate form from biological motion was similar to healthy controls. In contrast, he was significantly deficient in processing form from non-biological motion. Thus, LG can rely on biological motion cues to perceive human forms, but is considerably impaired in extracting form from non-biological motion. Finally, we found that while LG viewed biological motion, activity in a network of brain regions associated with processing biological motion was functionally correlated with his V5/MT+ activity, indicating that normal inputs from V5/MT+ might suffice to activate his action perception system. These results indicate that processing of biologically moving form can dissociate from other form processing in the ventral pathway. Furthermore, the present results indicate that integrative ventral stream processing is necessary for uncompromised processing of non-biological form from motion. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Pfeiffer, Mark G.; Scott, Paul G.
A fly-only group (N=16) of Navy replacement pilots undergoing fleet readiness training in the SH-3 helicopter was compared with groups pre-trained on Device 2F64C with: (1) visual only (N=13); (2) no visual/no motion (N=14); and (3) one visual plus motion group (N=19). Groups were compared for their SH-3 helicopter performance in the transition…
Acoustic facilitation of object movement detection during self-motion
Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.
2011-01-01
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050
Late development of cue integration is linked to sensory fusion in cortex.
Dekker, Tessa M; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I; Welchman, Andrew E; Nardini, Marko
2015-11-02
Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3-5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7-9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6-12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3-5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Late Development of Cue Integration Is Linked to Sensory Fusion in Cortex
Dekker, Tessa M.; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I.; Welchman, Andrew E.; Nardini, Marko
2015-01-01
Summary Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3, 4, 5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7, 8, 9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6–12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3, 4, 5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. PMID:26480841
The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory
Bradley, Claire; Pearson, Joel
2012-01-01
Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful “lower-capacity” visual working memory. PMID:23055993
MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.
Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn
2013-12-01
We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.
The reference frame for encoding and retention of motion depends on stimulus set size.
Huynh, Duong; Tripathy, Srimant P; Bedell, Harold E; Öğmen, Haluk
2017-04-01
The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.
Visual motion perception predicts driving hazard perception ability.
Lacherez, Philippe; Au, Sandra; Wood, Joanne M
2014-02-01
To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Rogers, Brian; Gyani, Alex
2010-01-01
Abstract. Patrick Hughes's 'reverspective' artworks provide a novel way of investigating the effectiveness of different sources of 3-D information for the human visual system. Our empirical findings show that the converging lines of simple linear perspective can be as effective as the rich array of 3-D cues present in natural scenes in determining what we see, even when these cues are in conflict with binocular disparities. Theoretical considerations reveal that, once the information provided by motion parallax transformations is correctly understood, there is no need to invoke higher-level processes or an interpretation based on familiarity or past experience in order to explain either the 'reversed' depth or the apparent, concomitant rotation of a reverspective artwork as the observer moves from side to side. What we see in reverspectives is the most likely real-world scenario (distal stimulus) that could have created the perspective and parallax transformations (proximal stimulus) that stimulate our visual systems.
Computational cameras for moving iris recognition
NASA Astrophysics Data System (ADS)
McCloskey, Scott; Venkatesha, Sharath
2015-05-01
Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.
Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin
2017-01-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122
Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob
In everyday conversation, viewing a talker's face can provide information about the timing and content of an upcoming speech signal, resulting in improved intelligibility. Using electrocorticography, we tested whether human auditory cortex in Heschl's gyrus (HG) and on superior temporal gyrus (STG) and motor cortex on precentral gyrus (PreC) were responsive to visual/gestural information prior to the onset of sound and whether early stages of auditory processing were sensitive to the visual content (speech syllable versus non-speech motion). Event-related band power (ERBP) in the high gamma band was content-specific prior to acoustic onset on STG and PreC, and ERBP in the beta band differed in all three areas. Following sound onset, we found with no evidence for content-specificity in HG, evidence for visual specificity in PreC, and specificity for both modalities in STG. These results support models of audio-visual processing in which sensory information is integrated in non-primary cortical areas.
Snyder, Adam C.; Foxe, John J.
2010-01-01
Retinotopically specific increases in alpha-band (~10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of feature-based attention. Visual word cues informed subjects what the task-relevant feature of an upcoming visual stimulus (S2) was, while high-density electroencephalographic recordings were acquired. We examined anticipatory oscillatory activity in the Cue-to-S2 interval (~2 s). Subjects were cued on a trial-by-trial basis to attend to either the color or direction of motion of an upcoming dot field array, and to respond when they detected that a subset of the dots differed from the majority along the target feature dimension. We used the features of color and motion, expressly because they have well known, spatially separated cortical processing areas, to distinguish shifts in alpha power over areas processing each feature. Alpha power from dorsal regions increased when motion was the irrelevant feature (i.e., color was cued), and alpha power from ventral regions increased when color was irrelevant. Thus, alpha-suppression mechanisms appear to operate during feature-based selection in much the same manner as has been shown for space-based attention. PMID:20237273
Motion of glossy objects does not promote separation of lighting and surface colour
2017-01-01
The surface properties of an object, such as texture, glossiness or colour, provide important cues to its identity. However, the actual visual stimulus received by the eye is determined by both the properties of the object and the illumination. We tested whether operational colour constancy for glossy objects (the ability to distinguish changes in spectral reflectance of the object, from changes in the spectrum of the illumination) was affected by rotational motion of either the object or the light source. The different chromatic and geometric properties of the specular and diffuse reflections provide the basis for this discrimination, and we systematically varied specularity to control the available information. Observers viewed animations of isolated objects undergoing either lighting or surface-based spectral transformations accompanied by motion. By varying the axis of rotation, and surface patterning or geometry, we manipulated: (i) motion-related information about the scene, (ii) relative motion between the surface patterning and the specular reflection of the lighting, and (iii) image disruption caused by this motion. Despite large individual differences in performance with static stimuli, motion manipulations neither improved nor degraded performance. As motion significantly disrupts frame-by-frame low-level image statistics, we infer that operational constancy depends on a high-level scene interpretation, which is maintained in all conditions. PMID:29291113
Vestibular signals in primate cortex for self-motion perception.
Gu, Yong
2018-04-21
The vestibular peripheral organs in our inner ears detect transient motion of the head in everyday life. This information is sent to the central nervous system for automatic processes such as vestibulo-ocular reflexes, balance and postural control, and higher cognitive functions including perception of self-motion and spatial orientation. Recent neurophysiological studies have discovered a prominent vestibular network in the primate cerebral cortex. Many of the areas involved are multisensory: their neurons are modulated by both vestibular signals and visual optic flow, potentially facilitating more robust heading estimation through cue integration. Combining psychophysics, computation, physiological recording and causal manipulation techniques, recent work has addressed both the encoding and decoding of vestibular signals for self-motion perception. Copyright © 2018. Published by Elsevier Ltd.
In-motion optical sensing for assessment of animal well-being
NASA Astrophysics Data System (ADS)
Atkins, Colton A.; Pond, Kevin R.; Madsen, Christi K.
2017-05-01
The application of in-motion optical sensor measurements was investigated for inspecting livestock soundness as a means of animal well-being. An optical sensor-based platform was used to collect in-motion, weight-related information. Eight steers, weighing between 680 and 1134 kg, were evaluated twice. Six of the 8 steers were used for further evaluation and analysis. Hoof impacts caused plate flexion that was optically sensed. Observed kinetic differences between animals' strides at a walking or running/trotting gait with significant force distributions of animals' hoof impacts allowed for observation of real-time, biometric patterns. Overall, optical sensor-based measurements identified hoof differences between and within animals in motion that may allow for diagnosis of musculoskeletal unsoundness without visual evaluation.
Receptive fields for smooth pursuit eye movements and motion perception.
Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R
2010-12-01
Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Huber, David J.; Bhattacharyya, Rajan
2017-05-01
In this paper, we describe an algorithm and system for optimizing search and detection performance for "items of interest" (IOI) in large-sized images and videos that employ the Rapid Serial Visual Presentation (RSVP) based EEG paradigm and surprise algorithms that incorporate motion processing to determine whether static or video RSVP is used. The system works by first computing a motion surprise map on image sub-regions (chips) of incoming sensor video data and then uses those surprise maps to label the chips as either "static" or "moving". This information tells the system whether to use a static or video RSVP presentation and decoding algorithm in order to optimize EEG based detection of IOI in each chip. Using this method, we are able to demonstrate classification of a series of image regions from video with an azimuth value of 1, indicating perfect classification, over a range of display frequencies and video speeds.
A neural basis for the spatial suppression of visual motion perception
Liu, Liu D; Haefner, Ralf M; Pack, Christopher C
2016-01-01
In theory, sensory perception should be more accurate when more neurons contribute to the representation of a stimulus. However, psychophysical experiments that use larger stimuli to activate larger pools of neurons sometimes report impoverished perceptual performance. To determine the neural mechanisms underlying these paradoxical findings, we trained monkeys to discriminate the direction of motion of visual stimuli that varied in size across trials, while simultaneously recording from populations of motion-sensitive neurons in cortical area MT. We used the resulting data to constrain a computational model that explained the behavioral data as an interaction of three main mechanisms: noise correlations, which prevented stimulus information from growing with stimulus size; neural surround suppression, which decreased sensitivity for large stimuli; and a read-out strategy that emphasized neurons with receptive fields near the stimulus center. These results suggest that paradoxical percepts reflect tradeoffs between sensitivity and noise in neuronal populations. DOI: http://dx.doi.org/10.7554/eLife.16167.001 PMID:27228283
Tracking without perceiving: a dissociation between eye movements and motion perception.
Spering, Miriam; Pomplun, Marc; Carrasco, Marisa
2011-02-01
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.
Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception
Spering, Miriam; Pomplun, Marc; Carrasco, Marisa
2011-01-01
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept. PMID:21189353
fMRI response during visual motion stimulation in patients with late whiplash syndrome.
Freitag, P; Greenlee, M W; Wachter, K; Ettlin, T M; Radue, E W
2001-01-01
After whiplash trauma, up to one fourth of patients develop chronic symptoms including head and neck pain and cognitive disturbances. Resting perfusion single-photon-emission computed tomography (SPECT) found decreased temporoparietooccipital tracer uptake among these long-term symptomatic patients with late whiplash syndrome. As MT/MST (V5/V5a) are located in that area, this study addressed the question whether these patients show impairments in visual motion perception. We examined five symptomatic patients with late whiplash syndrome, five asymptomatic patients after whiplash trauma, and a control group of seven volunteers without the history of trauma. Tests for visual motion perception and functional magnetic resonance imaging (fMRI) measurements during visual motion stimulation were performed. Symptomatic patients showed a significant reduction in their ability to perceive coherent visual motion compared with controls, whereas the asymptomatic patients did not show this effect. fMRI activation was similar during random dot motion in all three groups, but was significantly decreased during coherent dot motion in the symptomatic patients compared with the other two groups. Reduced psychophysical motion performance and reduced fMRI responses in symptomatic patients with late whiplash syndrome both point to a functional impairment in cortical areas sensitive to coherent motion. Larger studies are needed to confirm these clinical and functional imaging results to provide a possible additional diagnostic criterion for the evaluation of patients with late whiplash syndrome.
Seeing Circles and Drawing Ellipses: When Sound Biases Reproduction of Visual Motion
Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard
2016-01-01
The perception and production of biological movements is characterized by the 1/3 power law, a relation linking the curvature and the velocity of an intended action. In particular, motions are perceived and reproduced distorted when their kinematics deviate from this biological law. Whereas most studies dealing with this perceptual-motor relation focused on visual or kinaesthetic modalities in a unimodal context, in this paper we show that auditory dynamics strikingly biases visuomotor processes. Biologically consistent or inconsistent circular visual motions were used in combination with circular or elliptical auditory motions. Auditory motions were synthesized friction sounds mimicking those produced by the friction of the pen on a paper when someone is drawing. Sounds were presented diotically and the auditory motion velocity was evoked through the friction sound timbre variations without any spatial cues. Remarkably, when subjects were asked to reproduce circular visual motion while listening to sounds that evoked elliptical kinematics without seeing their hand, they drew elliptical shapes. Moreover, distortion induced by inconsistent elliptical kinematics in both visual and auditory modalities added up linearly. These results bring to light the substantial role of auditory dynamics in the visuo-motor coupling in a multisensory context. PMID:27119411
Visualization of Kepler's Laws of Planetary Motion
ERIC Educational Resources Information Center
Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong
2017-01-01
For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…
Visualizing complex hydrodynamic features
NASA Astrophysics Data System (ADS)
Kempf, Jill L.; Marshall, Robert E.; Yen, Chieh-Cheng
1990-08-01
The Lake Erie Forecasting System is a cooperative project by university, private and governmental institutions to provide continuous forecasting of three-dimensional structure within the lake. The forecasts will include water velocity and temperature distributions throughout the body of water, as well as water level and wind-wave distributions at the lake's surface. Many hydrodynamic features can be extracted from this data, including coastal jets, large-scale thermocline motion and zones of upwelling and downwelling. A visualization system is being developed that will aid in understanding these features and their interactions. Because of the wide variety of features, they cannot all be adequately represented by a single rendering technique. Particle tracing, surface rendering, and volumetric techniques are all necessary. This visualization effortis aimed towards creating a system that will provide meaningful forecasts for those using the lake for recreational and commercial purposes. For example, the fishing industry needs to know about large-scale thermocline motion in order to find the best fishing areas and power plants need to know water intAke temperatures. The visualization system must convey this information in a manner that is easily understood by these users. Scientists must also be able to use this system to verify their hydrodynamic simulation. The focus of the system, therefore, is to provide the information to serve these diverse interests, without overwhelming any single user with unnecessary data.
Visual fatigue modeling for stereoscopic video shot based on camera motion
NASA Astrophysics Data System (ADS)
Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing
2014-11-01
As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.
Visuomotor adaptation to a visual rotation is gravity dependent.
Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry
2015-03-15
Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.
Viewpoint Dependent Imaging: An Interactive Stereoscopic Display
NASA Astrophysics Data System (ADS)
Fisher, Scott
1983-04-01
Design and implementation of a viewpoint Dependent imaging system is described. The resultant display is an interactive, lifesize, stereoscopic image. that becomes a window into a three dimensional visual environment. As the user physically changes his viewpoint of the represented data in relation to the display surface, the image is continuously updated. The changing viewpoints are retrieved from a comprehensive, stereoscopic image array stored on computer controlled, optical videodisc and fluidly presented. in coordination with the viewer's, movements as detected by a body-tracking device. This imaging system is an attempt to more closely represent an observers interactive perceptual experience of the visual world by presenting sensory information cues not offered by traditional media technologies: binocular parallax, motion parallax, and motion perspective. Unlike holographic imaging, this display requires, relatively low bandwidth.
Visual Motion Perception and Visual Information Processing
1991-02-01
S submitted to Vision Research for publication. - (4) Studies of the detection and discrimination of visual acceleration. These two i r papers...1915). Vu. Res 2 (4) pp. 511-521. Supported by AIOSR Lde Scwrene Dvcmvte Gram U-0140 sad NI&M Grant 5132MH 14267. R Ipr ,,’: n Pr tl Ir I.t % I s t...0X903 or (eorge Sperling. HIP Lab. NYU. 6 Washington Place. New York. NY I (XX)3. 411 WM22-2496 91 S3.00 ,psrRht , 1l l h% siemic Pit s Inc --- j r ,Is 1
Wibirama, Sunu; Hamamoto, Kazuhiko
2014-01-01
Visually induced motion sickness (VIMS) is an important safety issue in stereoscopic 3D technology. Accompanying subjective judgment of VIMS with objective measurement is useful to identify not only biomedical effects of dynamic 3D contents, but also provoking scenes that induce VIMS, duration of VIMS, and user behavior during VIMS. Heart rate variability and depth gaze behavior are appropriate physiological indicators for such objective observation. However, there is no information about relationship between subjective judgment of VIMS, heart rate variability, and depth gaze behavior. In this paper, we present a novel investigation of VIMS based on simulator sickness questionnaire (SSQ), electrocardiography (ECG), and 3D gaze tracking. Statistical analysis on SSQ data shows that nausea and disorientation symptoms increase as amount of dynamic motions increases (nausea: p<;0.005; disorientation: p<;0.05). To reduce VIMS, SSQ and ECG data suggest that user should perform voluntary gaze fixation at one point when experiencing vertical motion (up or down) and horizontal motion (turn left and right) in dynamic 3D contents. Observation of 3D gaze tracking data reveals that users who experienced VIMS tended to have unstable depth gaze than ones who did not experience VIMS.
Erlikhman, Gennady; Gurariy, Gennadiy; Mruczek, Ryan E.B.; Caplovitz, Gideon P.
2016-01-01
Oftentimes, objects are only partially and transiently visible as parts of them become occluded during observer or object motion. The visual system can integrate such object fragments across space and time into perceptual wholes or spatiotemporal objects. This integrative and dynamic process may involve both ventral and dorsal visual processing pathways, along which shape and spatial representations are thought to arise. We measured fMRI BOLD response to spatiotemporal objects and used multi-voxel pattern analysis (MVPA) to decode shape information across 20 topographic regions of visual cortex. Object identity could be decoded throughout visual cortex, including intermediate (V3A, V3B, hV4, LO1-2,) and dorsal (TO1-2, and IPS0-1) visual areas. Shape-specific information, therefore, may not be limited to early and ventral visual areas, particularly when it is dynamic and must be integrated. Contrary to the classic view that the representation of objects is the purview of the ventral stream, intermediate and dorsal areas may play a distinct and critical role in the construction of object representations across space and time. PMID:27033688
Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation
NASA Technical Reports Server (NTRS)
O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.
2006-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation synchronized with pitch tilt at 0.1 Hz for a total of 30 min. Tilt and translation motion perception was obtained from verbal reports and a joystick mounted on a linear stage. Horizontal vergence and vertical eye movements were obtained with a binocular video system. Responses were also obtained during darkness before and following 15 min and 30 min of visual surround translation. Each of the three stimulus conditions involving visual surround translation elicited a significantly reduced sense of perceived tilt and strong linear vection (perceived translation) compared to pre-exposure tilt stimuli in darkness. This increase in perceived translation with reduction in tilt perception was also present in darkness following 15 and 30 min exposures, provided the tilt stimuli were not interrupted. Although not significant, there was a trend for the inphase asymmetrical stimulus to elicit a stronger sense of both translation and tilt than the out-of-phase asymmetrical stimulus. Surprisingly, the inphase asymmetrical stimulus also tended to elicit a stronger sense of peak-to-peak translation than the inphase symmetrical stimulus, even though the range of linear acceleration during the symmetrical stimulus was twice that of the asymmetrical stimulus. These results are consistent with the hypothesis that the central nervous system resolves the ambiguity of inertial motion sensory cues by integrating inputs from visual, vestibular, and somatosensory systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Rohini; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA; Chung, Theodore D.
2006-07-01
Purpose: Respiratory gating is a commercially available technology for reducing the deleterious effects of motion during imaging and treatment. The efficacy of gating is dependent on the reproducibility within and between respiratory cycles during imaging and treatment. The aim of this study was to determine whether audio-visual biofeedback can improve respiratory reproducibility by decreasing residual motion and therefore increasing the accuracy of gated radiotherapy. Methods and Materials: A total of 331 respiratory traces were collected from 24 lung cancer patients. The protocol consisted of five breathing training sessions spaced about a week apart. Within each session the patients initially breathedmore » without any instruction (free breathing), with audio instructions and with audio-visual biofeedback. Residual motion was quantified by the standard deviation of the respiratory signal within the gating window. Results: Audio-visual biofeedback significantly reduced residual motion compared with free breathing and audio instruction. Displacement-based gating has lower residual motion than phase-based gating. Little reduction in residual motion was found for duty cycles less than 30%; for duty cycles above 50% there was a sharp increase in residual motion. Conclusions: The efficiency and reproducibility of gating can be improved by: incorporating audio-visual biofeedback, using a 30-50% duty cycle, gating during exhalation, and using displacement-based gating.« less
A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera.
Ci, Wenyan; Huang, Yingping
2016-10-17
Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera's 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg-Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade-Lucas-Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method.
A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera
Ci, Wenyan; Huang, Yingping
2016-01-01
Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical relationship between optical flow, depth and camera ego-motion parameters through the camera’s 3-dimensional motion and planar imaging model. Accordingly, the six motion parameters are computed by minimizing the objective function, using the iterative Levenberg–Marquard method. One of key points for visual odometry is that the feature points selected for the computation should contain inliers as much as possible. In this work, the feature points and their optical flows are initially detected by using the Kanade–Lucas–Tomasi (KLT) algorithm. A circle matching is followed to remove the outliers caused by the mismatching of the KLT algorithm. A space position constraint is imposed to filter out the moving points from the point set detected by the KLT algorithm. The Random Sample Consensus (RANSAC) algorithm is employed to further refine the feature point set, i.e., to eliminate the effects of outliers. The remaining points are tracked to estimate the ego-motion parameters in the subsequent frames. The approach presented here is tested on real traffic videos and the results prove the robustness and precision of the method. PMID:27763508
Vection and visually induced motion sickness: how are they related?
Keshavarz, Behrang; Riecke, Bernhard E.; Hettinger, Lawrence J.; Campos, Jennifer L.
2015-01-01
The occurrence of visually induced motion sickness has been frequently linked to the sensation of illusory self-motion (vection), however, the precise nature of this relationship is still not fully understood. To date, it is still a matter of debate as to whether vection is a necessary prerequisite for visually induced motion sickness (VIMS). That is, can there be VIMS without any sensation of self-motion? In this paper, we will describe the possible nature of this relationship, review the literature that addresses this relationship (including theoretical accounts of vection and VIMS), and offer suggestions with respect to operationally defining and reporting these phenomena in future. PMID:25941509
A Method to Quantify Visual Information Processing in Children Using Eye Tracking
Kooiker, Marlou J.G.; Pel, Johan J.M.; van der Steen-Kant, Sanny P.; van der Steen, Johannes
2016-01-01
Visual problems that occur early in life can have major impact on a child's development. Without verbal communication and only based on observational methods, it is difficult to make a quantitative assessment of a child's visual problems. This limits accurate diagnostics in children under the age of 4 years and in children with intellectual disabilities. Here we describe a quantitative method that overcomes these problems. The method uses a remote eye tracker and a four choice preferential looking paradigm to measure eye movement responses to different visual stimuli. The child sits without head support in front of a monitor with integrated infrared cameras. In one of four monitor quadrants a visual stimulus is presented. Each stimulus has a specific visual modality with respect to the background, e.g., form, motion, contrast or color. From the reflexive eye movement responses to these specific visual modalities, output parameters such as reaction times, fixation accuracy and fixation duration are calculated to quantify a child's viewing behavior. With this approach, the quality of visual information processing can be assessed without the use of communication. By comparing results with reference values obtained in typically developing children from 0-12 years, the method provides a characterization of visual information processing in visually impaired children. The quantitative information provided by this method can be advantageous for the field of clinical visual assessment and rehabilitation in multiple ways. The parameter values provide a good basis to: (i) characterize early visual capacities and consequently to enable early interventions; (ii) compare risk groups and follow visual development over time; and (iii), construct an individual visual profile for each child. PMID:27500922
A Method to Quantify Visual Information Processing in Children Using Eye Tracking.
Kooiker, Marlou J G; Pel, Johan J M; van der Steen-Kant, Sanny P; van der Steen, Johannes
2016-07-09
Visual problems that occur early in life can have major impact on a child's development. Without verbal communication and only based on observational methods, it is difficult to make a quantitative assessment of a child's visual problems. This limits accurate diagnostics in children under the age of 4 years and in children with intellectual disabilities. Here we describe a quantitative method that overcomes these problems. The method uses a remote eye tracker and a four choice preferential looking paradigm to measure eye movement responses to different visual stimuli. The child sits without head support in front of a monitor with integrated infrared cameras. In one of four monitor quadrants a visual stimulus is presented. Each stimulus has a specific visual modality with respect to the background, e.g., form, motion, contrast or color. From the reflexive eye movement responses to these specific visual modalities, output parameters such as reaction times, fixation accuracy and fixation duration are calculated to quantify a child's viewing behavior. With this approach, the quality of visual information processing can be assessed without the use of communication. By comparing results with reference values obtained in typically developing children from 0-12 years, the method provides a characterization of visual information processing in visually impaired children. The quantitative information provided by this method can be advantageous for the field of clinical visual assessment and rehabilitation in multiple ways. The parameter values provide a good basis to: (i) characterize early visual capacities and consequently to enable early interventions; (ii) compare risk groups and follow visual development over time; and (iii), construct an individual visual profile for each child.
Acquiring Semantically Meaningful Models for Robotic Localization, Mapping and Target Recognition
2014-12-21
information, including suggesstions for reducing this burden, to Washington Headquarters Services , Directorate for Information Operations and Reports, 1215...Representations • Point features tracking • Recovery of relative motion, visual odometry • Loop closure • Environment models, sparse clouds of points...that co- occur with the object of interest Chair-Background Table-Background Object Level Segmentation Jaccard Index Silber .[5] 15.12 RenFox[4
NASA Astrophysics Data System (ADS)
Baka, N.; Lelieveldt, B. P. F.; Schultz, C.; Niessen, W.; van Walsum, T.
2015-05-01
During percutaneous coronary interventions (PCI) catheters and arteries are visualized by x-ray angiography (XA) sequences, using brief contrast injections to show the coronary arteries. If we could continue visualizing the coronary arteries after the contrast agent passed (thus in non-contrast XA frames), we could potentially lower contrast use, which is advantageous due to the toxicity of the contrast agent. This paper explores the possibility of such visualization in mono-plane XA acquisitions with a special focus on respiratory based coronary artery motion estimation. We use the patient specific coronary artery centerlines from pre-interventional 3D CTA images to project on the XA sequence for artery visualization. To achieve this, a framework for registering the 3D centerlines with the mono-plane 2D + time XA sequences is presented. During the registration the patient specific cardiac and respiratory motion is learned. We investigate several respiratory motion estimation strategies with respect to accuracy, plausibility and ease of use for motion prediction in XA frames with and without contrast. The investigated strategies include diaphragm motion based prediction, and respiratory motion extraction from the guiding catheter tip motion. We furthermore compare translational and rigid respiratory based heart motion. We validated the accuracy of the 2D/3D registration and the respiratory and cardiac motion estimations on XA sequences of 12 interventions. The diaphragm based motion model and the catheter tip derived motion achieved 1.58 mm and 1.83 mm median 2D accuracy, respectively. On a subset of four interventions we evaluated the artery visualization accuracy for non-contrast cases. Both diaphragm, and catheter tip based prediction performed similarly, with about half of the cases providing satisfactory accuracy (median error < 2 mm).
Contrast and assimilation in motion perception and smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2007-09-01
The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.
Multiplexing in the primate motion pathway.
Huk, Alexander C
2012-06-01
This article begins by reviewing recent work on 3D motion processing in the primate visual system. Some of these results suggest that 3D motion signals may be processed in the same circuitry already known to compute 2D motion signals. Such "multiplexing" has implications for the study of visual cortical circuits and neural signals. A more explicit appreciation of multiplexing--and the computations required for demultiplexing--may enrich the study of the visual system by emphasizing the importance of a structured and balanced "encoding/decoding" framework. In addition to providing a fresh perspective on how successive stages of visual processing might be approached, multiplexing also raises caveats about the value of "neural correlates" for understanding neural computation.
Automatic acquisition of motion trajectories: tracking hockey players
NASA Astrophysics Data System (ADS)
Okuma, Kenji; Little, James J.; Lowe, David
2003-12-01
Computer systems that have the capability of analyzing complex and dynamic scenes play an essential role in video annotation. Scenes can be complex in such a way that there are many cluttered objects with different colors, shapes and sizes, and can be dynamic with multiple interacting moving objects and a constantly changing background. In reality, there are many scenes that are complex, dynamic, and challenging enough for computers to describe. These scenes include games of sports, air traffic, car traffic, street intersections, and cloud transformations. Our research is about the challenge of inventing a descriptive computer system that analyzes scenes of hockey games where multiple moving players interact with each other on a constantly moving background due to camera motions. Ultimately, such a computer system should be able to acquire reliable data by extracting the players" motion as their trajectories, querying them by analyzing the descriptive information of data, and predict the motions of some hockey players based on the result of the query. Among these three major aspects of the system, we primarily focus on visual information of the scenes, that is, how to automatically acquire motion trajectories of hockey players from video. More accurately, we automatically analyze the hockey scenes by estimating parameters (i.e., pan, tilt, and zoom) of the broadcast cameras, tracking hockey players in those scenes, and constructing a visual description of the data by displaying trajectories of those players. Many technical problems in vision such as fast and unpredictable players' motions and rapid camera motions make our challenge worth tackling. To the best of our knowledge, there have not been any automatic video annotation systems for hockey developed in the past. Although there are many obstacles to overcome, our efforts and accomplishments would hopefully establish the infrastructure of the automatic hockey annotation system and become a milestone for research in automatic video annotation in this domain.
Sequential sensory and decision processing in posterior parietal cortex
Ibos, Guilhem; Freedman, David J
2017-01-01
Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for). DOI: http://dx.doi.org/10.7554/eLife.23743.001 PMID:28418332
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
Mental Rotation Meets the Motion Aftereffect: The Role of hV5/MT+ in Visual Mental Imagery
ERIC Educational Resources Information Center
Seurinck, Ruth; de Lange, Floris P.; Achten, Erik; Vingerhoets, Guy
2011-01-01
A growing number of studies show that visual mental imagery recruits the same brain areas as visual perception. Although the necessity of hV5/MT+ for motion perception has been revealed by means of TMS, its relevance for motion imagery remains unclear. We induced a direction-selective adaptation in hV5/MT+ by means of an MAE while subjects…
Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.
Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A
2004-11-09
Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
Rivlin-Etzion, Michal; Zhou, Kaili; Wei, Wei; Elstrott, Justin; Nguyen, Phong L.; Barres, Ben; Huberman, Andrew D.; Feller, Marla B.
2011-01-01
On-Off direction selective retinal ganglion cells (DSGCs) encode the axis of visual motion. They respond strongly to an object moving in a preferred direction and weakly to an object moving in the opposite, ‘null’, direction. Historically, On-Off DSGCs were classified into 4 subtypes according to their directional preference (anterior, posterior, superior or inferior). Here, we compare two genetically identified populations of On-Off DSGCs: DRD4-DSGCs and TRHR-DSGCs. We find that although both populations are tuned for posterior motion, they can be distinguished by a variety of physiological and anatomical criteria. First, the directional tuning of TRHR-DSGCs is broader than that of DRD4-DSGCs. Second, whereas both populations project similarly to the dorsal lateral geniculate nucleus, they project differently to the ventral lateral geniculate nucleus and the superior colliculus. Moreover, TRHR-DSGCs, but not DRD4-DSGCs, also project to the zona incerta, a thalamic area not previously known to receive direction-tuned visual information. Our findings reveal unexpected diversity among mouse On-Off DSGC subtypes that uniquely process and convey image motion to the brain. PMID:21677160
Fukushima, Kikuro; Ito, Norie; Barnes, Graham R; Onishi, Sachiyo; Kobayashi, Nobuyoshi; Takei, Hidetoshi; Olley, Peter M; Chiba, Susumu; Inoue, Kiyoharu; Warabi, Tateo
2015-01-01
While retinal image motion is the primary input for smooth-pursuit, its efficiency depends on cognitive processes including prediction. Reports are conflicting on impaired prediction during pursuit in Parkinson's disease. By separating two major components of prediction (image motion direction memory and movement preparation) using a memory-based pursuit task, and by comparing tracking eye movements with those during a simple ramp-pursuit task that did not require visual memory, we examined smooth-pursuit in 25 patients with Parkinson's disease and compared the results with 14 age-matched controls. In the memory-based pursuit task, cue 1 indicated visual motion direction, whereas cue 2 instructed the subjects to prepare to pursue or not to pursue. Based on the cue-information memory, subjects were asked to pursue the correct spot from two oppositely moving spots or not to pursue. In 24/25 patients, the cue-information memory was normal, but movement preparation and execution were impaired. Specifically, unlike controls, most of the patients (18/24 = 75%) lacked initial pursuit during the memory task and started tracking the correct spot by saccades. Conversely, during simple ramp-pursuit, most patients (83%) exhibited initial pursuit. Popping-out of the correct spot motion during memory-based pursuit was ineffective for enhancing initial pursuit. The results were similar irrespective of levodopa/dopamine agonist medication. Our results indicate that the extra-retinal mechanisms of most patients are dysfunctional in initiating memory-based (not simple ramp) pursuit. A dysfunctional pursuit loop between frontal eye fields (FEF) and basal ganglia may contribute to the impairment of extra-retinal mechanisms, resulting in deficient pursuit commands from the FEF to brainstem. PMID:25825544
Motion-guided attention promotes adaptive communications during social navigation.
Lemasson, B H; Anderson, J J; Goodwin, R A
2013-03-07
Animals are capable of enhanced decision making through cooperation, whereby accurate decisions can occur quickly through decentralized consensus. These interactions often depend upon reliable social cues, which can result in highly coordinated activities in uncertain environments. Yet information within a crowd may be lost in translation, generating confusion and enhancing individual risk. As quantitative data detailing animal social interactions accumulate, the mechanisms enabling individuals to rapidly and accurately process competing social cues remain unresolved. Here, we model how motion-guided attention influences the exchange of visual information during social navigation. We also compare the performance of this mechanism to the hypothesis that robust social coordination requires individuals to numerically limit their attention to a set of n-nearest neighbours. While we find that such numerically limited attention does not generate robust social navigation across ecological contexts, several notable qualities arise from selective attention to motion cues. First, individuals can instantly become a local information hub when startled into action, without requiring changes in neighbour attention level. Second, individuals can circumvent speed-accuracy trade-offs by tuning their motion thresholds. In turn, these properties enable groups to collectively dampen or amplify social information. Lastly, the minority required to sway a group's short-term directional decisions can change substantially with social context. Our findings suggest that motion-guided attention is a fundamental and efficient mechanism underlying collaborative decision making during social navigation.
Fetsch, Christopher R; Deangelis, Gregory C; Angelaki, Dora E
2010-05-01
The perception of self-motion is crucial for navigation, spatial orientation and motor control. In particular, estimation of one's direction of translation, or heading, relies heavily on multisensory integration in most natural situations. Visual and nonvisual (e.g., vestibular) information can be used to judge heading, but each modality alone is often insufficient for accurate performance. It is not surprising, then, that visual and vestibular signals converge frequently in the nervous system, and that these signals interact in powerful ways at the level of behavior and perception. Early behavioral studies of visual-vestibular interactions consisted mainly of descriptive accounts of perceptual illusions and qualitative estimation tasks, often with conflicting results. In contrast, cue integration research in other modalities has benefited from the application of rigorous psychophysical techniques, guided by normative models that rest on the foundation of ideal-observer analysis and Bayesian decision theory. Here we review recent experiments that have attempted to harness these so-called optimal cue integration models for the study of self-motion perception. Some of these studies used nonhuman primate subjects, enabling direct comparisons between behavioral performance and simultaneously recorded neuronal activity. The results indicate that humans and monkeys can integrate visual and vestibular heading cues in a manner consistent with optimal integration theory, and that single neurons in the dorsal medial superior temporal area show striking correlates of the behavioral effects. This line of research and other applications of normative cue combination models should continue to shed light on mechanisms of self-motion perception and the neuronal basis of multisensory integration.
Erlikhman, Gennady; Kellman, Philip J.
2016-01-01
Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved by the visual system. PMID:27445886
Modeling a space-variant cortical representation for apparent motion.
Wurbs, Jeremy; Mingolla, Ennio; Yazdanbakhsh, Arash
2013-08-06
Receptive field sizes of neurons in early primate visual areas increase with eccentricity, as does temporal processing speed. The fovea is evidently specialized for slow, fine movements while the periphery is suited for fast, coarse movements. In either the fovea or periphery discrete flashes can produce motion percepts. Grossberg and Rudd (1989) used traveling Gaussian activity profiles to model long-range apparent motion percepts. We propose a neural model constrained by physiological data to explain how signals from retinal ganglion cells to V1 affect the perception of motion as a function of eccentricity. Our model incorporates cortical magnification, receptive field overlap and scatter, and spatial and temporal response characteristics of retinal ganglion cells for cortical processing of motion. Consistent with the finding of Baker and Braddick (1985), in our model the maximum flash distance that is perceived as an apparent motion (Dmax) increases linearly as a function of eccentricity. Baker and Braddick (1985) made qualitative predictions about the functional significance of both stimulus and visual system parameters that constrain motion perception, such as an increase in the range of detectable motions as a function of eccentricity and the likely role of higher visual processes in determining Dmax. We generate corresponding quantitative predictions for those functional dependencies for individual aspects of motion processing. Simulation results indicate that the early visual pathway can explain the qualitative linear increase of Dmax data without reliance on extrastriate areas, but that those higher visual areas may serve as a modulatory influence on the exact Dmax increase.
Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco
2013-09-01
By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.
Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque
Kaneko, Takaaki; Saleem, Kadharbatcha S.; Berman, Rebecca A.; Leopold, David A.
2016-01-01
Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. SIGNIFICANCE STATEMENT Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This “reafferent” motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. PMID:27629710
Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque.
Russ, Brian E; Kaneko, Takaaki; Saleem, Kadharbatcha S; Berman, Rebecca A; Leopold, David A
2016-09-14
Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This "reafferent" motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. Copyright © 2016 the authors 0270-6474/16/369580-10$15.00/0.
The Role of Gesture in Meaning Construction
ERIC Educational Resources Information Center
Singer, Melissa; Radinsky, Joshua; Goldman, Susan R.
2008-01-01
This article examines the role of gesture in the shared meaning-making processes of 6th-grade students studying plate tectonics using a data visualization tool; specifically, a geographic information system. Students' verbal and gestural characterizations of key concepts of plate motions (i.e., "subduction", "rift", and "buckling") were…
Amano, Kaoru; Kimura, Toshitaka; Nishida, Shin'ya; Takeda, Tsunehiro; Gomi, Hiroaki
2009-02-01
Human brain uses visual motion inputs not only for generating subjective sensation of motion but also for directly guiding involuntary actions. For instance, during arm reaching, a large-field visual motion is quickly and involuntarily transformed into a manual response in the direction of visual motion (manual following response, MFR). Previous attempts to correlate motion-evoked cortical activities, revealed by brain imaging techniques, with conscious motion perception have resulted only in partial success. In contrast, here we show a surprising degree of similarity between the MFR and the population neural activity measured by magnetoencephalography (MEG). We measured the MFR and MEG induced by the same motion onset of a large-field sinusoidal drifting grating with changing the spatiotemporal frequency of the grating. The initial transient phase of these two responses had very similar spatiotemporal tunings. Specifically, both the MEG and MFR amplitudes increased as the spatial frequency was decreased to, at most, 0.05 c/deg, or as the temporal frequency was increased to, at least, 10 Hz. We also found in peak latency a quantitative agreement (approximately 100-150 ms) and correlated changes against spatiotemporal frequency changes between MEG and MFR. In comparison with these two responses, conscious visual motion detection is known to be most sensitive (i.e., have the lowest detection threshold) at higher spatial frequencies and have longer and more variable response latencies. Our results suggest a close relationship between the properties of involuntary motor responses and motion-evoked cortical activity as reflected by the MEG.
Lemasson, B H; Anderson, J J; Goodwin, R A
2009-12-21
We explore mechanisms associated with collective animal motion by drawing on the neurobiological bases of sensory information processing and decision-making. The model uses simplified retinal processes to translate neighbor movement patterns into information through spatial signal integration and threshold responses. The structure provides a mechanism by which individuals can vary their sets of influential neighbors, a measure of an individual's sensory load. Sensory loads are correlated with group order and density, and we discuss their adaptive values in an ecological context. The model also provides a mechanism by which group members can identify, and rapidly respond to, novel visual stimuli.
Impaired Velocity Processing Reveals an Agnosia for Motion in Depth.
Barendregt, Martijn; Dumoulin, Serge O; Rokers, Bas
2016-11-01
Many individuals with normal visual acuity are unable to discriminate the direction of 3-D motion in a portion of their visual field, a deficit previously referred to as a stereomotion scotoma. The origin of this visual deficit has remained unclear. We hypothesized that the impairment is due to a failure in the processing of one of the two binocular cues to motion in depth: changes in binocular disparity over time or interocular velocity differences. We isolated the contributions of these two cues and found that sensitivity to interocular velocity differences, but not changes in binocular disparity, varied systematically with observers' ability to judge motion direction. We therefore conclude that the inability to interpret motion in depth is due to a failure in the neural mechanisms that combine velocity signals from the two eyes. Given these results, we argue that the deficit should be considered a prevalent but previously unrecognized agnosia specific to the perception of visual motion. © The Author(s) 2016.
Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin
2017-06-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Vibrotactile Feedback on Human Learning of Arm Motions
Bark, Karlin; Hyman, Emily; Tan, Frank; Cha, Elizabeth; Jax, Steven A.; Buxbaum, Laurel J.; Kuchenbecker, Katherine J.
2015-01-01
Tactile cues generated from lightweight, wearable actuators can help users learn new motions by providing immediate feedback on when and how to correct their movements. We present a vibrotactile motion guidance system that measures arm motions and provides vibration feedback when the user deviates from a desired trajectory. A study was conducted to test the effects of vibrotactile guidance on a subject’s ability to learn arm motions. Twenty-six subjects learned motions of varying difficulty with both visual (V), and visual and vibrotactile (VVT) feedback over the course of four days of training. After four days of rest, subjects returned to perform the motions from memory with no feedback. We found that augmenting visual feedback with vibrotactile feedback helped subjects reduce the root mean square (rms) angle error of their limb significantly while they were learning the motions, particularly for 1DOF motions. Analysis of the retention data showed no significant difference in rms angle errors between feedback conditions. PMID:25486644
Takamuku, Shinya; Forbes, Paul A G; Hamilton, Antonia F de C; Gomi, Hiroaki
2018-05-07
There is increasing evidence for motor difficulties in many people with autism spectrum condition (ASC). These difficulties could be linked to differences in the use of internal models which represent relations between motions and forces/efforts. The use of these internal models may be dependent on the cerebellum which has been shown to be abnormal in autism. Several studies have examined internal computations of forward dynamics (motion from force information) in autism, but few have tested the inverse dynamics computation, that is, the determination of force-related information from motion information. Here, we examined this ability in autistic adults by measuring two perceptual biases which depend on the inverse computation. First, we asked participants whether they experienced a feeling of resistance when moving a delayed cursor, which corresponds to the inertial force of the cursor implied by its motion-both typical and ASC participants reported similar feelings of resistance. Second, participants completed a psychophysical task in which they judged the velocity of a moving hand with or without a visual cue implying inertial force. Both typical and ASC participants perceived the hand moving with the inertial cue to be slower than the hand without it. In both cases, the magnitude of the effects did not differ between the two groups. Our results suggest that the neural systems engaged in the inverse dynamics computation are preserved in ASC, at least in the observed conditions. Autism Res 2018. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. We tested the ability to estimate force information from motion information, which arises from a specific "inverse dynamics" computation. Autistic adults and a matched control group reported feeling a resistive sensation when moving a delayed cursor and also judged a moving hand to be slower when it was pulling a load. These findings both suggest that the ability to estimate force information from motion information is intact in autism. © 2018 International Society for Autism Research, Wiley Periodicals, Inc.
Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning
Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka
2012-01-01
Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849
Beck, Cornelia; Ognibeni, Thilo; Neumann, Heiko
2008-01-01
Background Optic flow is an important cue for object detection. Humans are able to perceive objects in a scene using only kinetic boundaries, and can perform the task even when other shape cues are not provided. These kinetic boundaries are characterized by the presence of motion discontinuities in a local neighbourhood. In addition, temporal occlusions appear along the boundaries as the object in front covers the background and the objects that are spatially behind it. Methodology/Principal Findings From a technical point of view, the detection of motion boundaries for segmentation based on optic flow is a difficult task. This is due to the problem that flow detected along such boundaries is generally not reliable. We propose a model derived from mechanisms found in visual areas V1, MT, and MSTl of human and primate cortex that achieves robust detection along motion boundaries. It includes two separate mechanisms for both the detection of motion discontinuities and of occlusion regions based on how neurons respond to spatial and temporal contrast, respectively. The mechanisms are embedded in a biologically inspired architecture that integrates information of different model components of the visual processing due to feedback connections. In particular, mutual interactions between the detection of motion discontinuities and temporal occlusions allow a considerable improvement of the kinetic boundary detection. Conclusions/Significance A new model is proposed that uses optic flow cues to detect motion discontinuities and object occlusion. We suggest that by combining these results for motion discontinuities and object occlusion, object segmentation within the model can be improved. This idea could also be applied in other models for object segmentation. In addition, we discuss how this model is related to neurophysiological findings. The model was successfully tested both with artificial and real sequences including self and object motion. PMID:19043613
Visuomotor Transformation in the Fly Gaze Stabilization System
Huston, Stephen J; Krapp, Holger G
2008-01-01
For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that—like the tangential cells—NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information. PMID:18651791
Medendorp, W. P.
2015-01-01
It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289
Visual event-related potentials to biological motion stimuli in autism spectrum disorders
Bletsch, Anke; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz A.; Freitag, Christine M.; Bender, Stephan
2014-01-01
Atypical visual processing of biological motion contributes to social impairments in autism spectrum disorders (ASD). However, the exact temporal sequence of deficits of cortical biological motion processing in ASD has not been studied to date. We used 64-channel electroencephalography to study event-related potentials associated with human motion perception in 17 children and adolescents with ASD and 21 typical controls. A spatio-temporal source analysis was performed to assess the brain structures involved in these processes. We expected altered activity already during early stimulus processing and reduced activity during subsequent biological motion specific processes in ASD. In response to both, random and biological motion, the P100 amplitude was decreased suggesting unspecific deficits in visual processing, and the occipito-temporal N200 showed atypical lateralization in ASD suggesting altered hemispheric specialization. A slow positive deflection after 400 ms, reflecting top-down processes, and human motion-specific dipole activation differed slightly between groups, with reduced and more diffuse activation in the ASD-group. The latter could be an indicator of a disrupted neuronal network for biological motion processing in ADS. Furthermore, early visual processing (P100) seems to be correlated to biological motion-specific activation. This emphasizes the relevance of early sensory processing for higher order processing deficits in ASD. PMID:23887808
Mercier, Manuel R; Schwartz, Sophie; Spinelli, Laurent; Michel, Christoph M; Blanke, Olaf
2017-03-01
The main model of visual processing in primates proposes an anatomo-functional distinction between the dorsal stream, specialized in spatio-temporal information, and the ventral stream, processing essentially form information. However, these two pathways also communicate to share much visual information. These dorso-ventral interactions have been studied using form-from-motion (FfM) stimuli, revealing that FfM perception first activates dorsal regions (e.g., MT+/V5), followed by successive activations of ventral regions (e.g., LOC). However, relatively little is known about the implications of focal brain damage of visual areas on these dorso-ventral interactions. In the present case report, we investigated the dynamics of dorsal and ventral activations related to FfM perception (using topographical ERP analysis and electrical source imaging) in a patient suffering from a deficit in FfM perception due to right extrastriate brain damage in the ventral stream. Despite the patient's FfM impairment, both successful (observed for the highest level of FfM signal) and absent/failed FfM perception evoked the same temporal sequence of three processing states observed previously in healthy subjects. During the first period, brain source localization revealed cortical activations along the dorsal stream, currently associated with preserved elementary motion processing. During the latter two periods, the patterns of activity differed from normal subjects: activations were observed in the ventral stream (as reported for normal subjects), but also in the dorsal pathway, with the strongest and most sustained activity localized in the parieto-occipital regions. On the other hand, absent/failed FfM perception was characterized by weaker brain activity, restricted to the more lateral regions. This study shows that in the present case report, successful FfM perception, while following the same temporal sequence of processing steps as in normal subjects, evoked different patterns of brain activity. By revealing a brain circuit involving the most rostral part of the dorsal pathway, this study provides further support for neuro-imaging studies and brain lesion investigations that have suggested the existence of different brain circuits associated with different profiles of interaction between the dorsal and the ventral streams.
ERIC Educational Resources Information Center
Samar, Vincent J.; Parasnis, Ila
2007-01-01
Studies have reported a right visual field (RVF) advantage for coherent motion detection by deaf and hearing signers but not non-signers. Yet two studies [Bosworth R. G., & Dobkins, K. R. (2002). Visual field asymmetries for motion processing in deaf and hearing signers. "Brain and Cognition," 49, 170-181; Samar, V. J., & Parasnis, I. (2005).…
Norman, Joseph; Hock, Howard; Schöner, Gregor
2014-07-01
It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers' ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.
Re-examining overlap between tactile and visual motion responses within hMT+ and STS
Jiang, Fang; Beauchamp, Michael S.; Fine, Ione
2015-01-01
Here we examine overlap between tactile and visual motion BOLD responses within the human MT+ complex. Although several studies have reported tactile responses overlapping with hMT+, many used group average analyses, leaving it unclear whether these responses were restricted to sub-regions of hMT+. Moreover, previous studies either employed a tactile task or passive stimulation, leaving it unclear whether or not tactile responses in hMT+ are simply the consequence of visual imagery. Here we carried out a replication of one of the classic papers finding tactile responses in hMT+ (Hagen et al. 2002). We mapped MT and MST in individual subjects using visual field localizers. We then examined responses to tactile motion on the arm, either presented passively or in the presence of a visual task performed at fixation designed to minimize visualization of the concurrent tactile stimulation. To our surprise, without a visual task, we found only weak tactile motion responses in MT (6% of voxels showing tactile responses) and MST (2% of voxels). With an unrelated visual task designed to withdraw attention from the tactile modality, responses in MST reduced to almost nothing (<1% regions). Consistent with previous results, we did observe tactile responses in STS regions superior and anterior to hMT+. Despite the lack of individual overlap, group averaged responses produced strong spurious overlap between tactile and visual motion responses within hMT+ that resembled those observed in previous studies. The weak nature of tactile responses in hMT+ (and their abolition by withdrawal of attention) suggests that hMT+ may not serve as a supramodal motion processing module. PMID:26123373
Larcombe, Stephanie J.; Kennard, Chris
2017-01-01
Abstract Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145–156, 2018. © 2017 Wiley Periodicals, Inc. PMID:28963815
The cost of parallel consolidation into visual working memory.
Rideaux, Reuben; Edwards, Mark
2016-01-01
A growing body of evidence indicates that information can be consolidated into visual working memory in parallel. Initially, it was suggested that color information could be consolidated in parallel while orientation was strictly limited to serial consolidation (Liu & Becker, 2013). However, we recently found evidence suggesting that both orientation and motion direction items can be consolidated in parallel, with different levels of accuracy (Rideaux, Apthorp, & Edwards, 2015). Here we examine whether there is a cost associated with parallel consolidation of orientation and direction information by comparing performance, in terms of precision and guess rate, on a target recall task where items are presented either sequentially or simultaneously. The results compellingly indicate that motion direction can be consolidated in parallel, but the evidence for orientation is less conclusive. Further, we find that there is a twofold cost associated with parallel consolidation of direction: Both the probability of failing to consolidate one (or both) item/s increases and the precision at which representations are encoded is reduced. Additionally, we find evidence indicating that the increased consolidation failure may be due to interference between items presented simultaneously, and is moderated by item similarity. These findings suggest that a biased competition model may explain differences in parallel consolidation between features.
Slushy weightings for the optimal pilot model. [considering visual tracking task
NASA Technical Reports Server (NTRS)
Dillow, J. D.; Picha, D. G.; Anderson, R. O.
1975-01-01
A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.
Curvilinear approach to an intersection and visual detection of a collision.
Berthelon, C; Mestre, D
1993-09-01
Visual motion perception plays a fundamental role in vehicle control. Recent studies have shown that the pattern of optical flow resulting from the observer's self-motion through a stable environment is used by the observer to accurately control his or her movements. However, little is known about the perception of another vehicle during self-motion--for instance, when a car driver approaches an intersection with traffic. In a series of experiments using visual simulations of car driving, we show that observers are able to detect the presence of a moving object during self-motion. However, the perception of the other car's trajectory appears to be strongly dependent on environmental factors, such as the presence of a road sign near the intersection or the shape of the road. These results suggest that local and global visual factors determine the perception of a car's trajectory during self-motion.
Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia
ERIC Educational Resources Information Center
Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue
2011-01-01
Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…
Synthetic perspective optical flow: Influence on pilot control tasks
NASA Technical Reports Server (NTRS)
Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.
1989-01-01
One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.
Gaze control for an active camera system by modeling human pursuit eye movements
NASA Astrophysics Data System (ADS)
Toelg, Sebastian
1992-11-01
The ability to stabilize the image of one moving object in the presence of others by active movements of the visual sensor is an essential task for biological systems, as well as for autonomous mobile robots. An algorithm is presented that evaluates the necessary movements from acquired visual data and controls an active camera system (ACS) in a feedback loop. No a priori assumptions about the visual scene and objects are needed. The algorithm is based on functional models of human pursuit eye movements and is to a large extent influenced by structural principles of neural information processing. An intrinsic object definition based on the homogeneity of the optical flow field of relevant objects, i.e., moving mainly fronto- parallel, is used. Velocity and spatial information are processed in separate pathways, resulting in either smooth or saccadic sensor movements. The program generates a dynamic shape model of the moving object and focuses its attention to regions where the object is expected. The system proved to behave in a stable manner under real-time conditions in complex natural environments and manages general object motion. In addition it exhibits several interesting abilities well-known from psychophysics like: catch-up saccades, grouping due to coherent motion, and optokinetic nystagmus.
Visualization of 3D elbow kinematics using reconstructed bony surfaces
NASA Astrophysics Data System (ADS)
Lalone, Emily A.; McDonald, Colin P.; Ferreira, Louis M.; Peters, Terry M.; King, Graham J. W.; Johnson, James A.
2010-02-01
An approach for direct visualization of continuous three-dimensional elbow kinematics using reconstructed surfaces has been developed. Simulation of valgus motion was achieved in five cadaveric specimens using an upper arm simulator. Direct visualization of the motion of the ulna and humerus at the ulnohumeral joint was obtained using a contact based registration technique. Employing fiducial markers, the rendered humerus and ulna were positioned according to the simulated motion. The specific aim of this study was to investigate the effect of radial head arthroplasty on restoring elbow joint stability after radial head excision. The position of the ulna and humerus was visualized for the intact elbow and following radial head excision and replacement. Visualization of the registered humerus/ulna indicated an increase in valgus angulation of the ulna with respect to the humerus after radial head excision. This increase in valgus angulation was restored to that of an elbow with a native radial head following radial head arthroplasty. These findings were consistent with previous studies investigating elbow joint stability following radial head excision and arthroplasty. The current technique was able to visualize a change in ulnar position in a single DoF. Using this approach, the coupled motion of ulna undergoing motion in all 6 degrees-of-freedom can also be visualized.
Examining the Effect of Age on Visual-Vestibular Self-Motion Perception Using a Driving Paradigm.
Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L
2017-05-01
Previous psychophysical research has examined how younger adults and non-human primates integrate visual and vestibular cues to perceive self-motion. However, there is much to be learned about how multisensory self-motion perception changes with age, and how these changes affect performance on everyday tasks involving self-motion. Evidence suggests that older adults display heightened multisensory integration compared with younger adults; however, few previous studies have examined this for visual-vestibular integration. To explore age differences in the way that visual and vestibular cues contribute to self-motion perception, we had younger and older participants complete a basic driving task containing visual and vestibular cues. We compared their performance against a previously established control group that experienced visual cues alone. Performance measures included speed, speed variability, and lateral position. Vestibular inputs resulted in more precise speed control among older adults, but not younger adults, when traversing curves. Older adults demonstrated more variability in lateral position when vestibular inputs were available versus when they were absent. These observations align with previous evidence of age-related differences in multisensory integration and demonstrate that they may extend to visual-vestibular integration. These findings may have implications for vehicle and simulator design when considering older users.
Fan, Zhao; Harris, John
2010-10-12
In a recent study (Fan, Z., & Harris, J. (2008). Perceived spatial displacement of motion-defined contours in peripheral vision. Vision Research, 48(28), 2793-2804), we demonstrated that virtual contours defined by two regions of dots moving in opposite directions were displaced perceptually in the direction of motion of the dots in the more eccentric region when the contours were viewed in the right visual field. Here, we show that the magnitude and/or direction of these displacements varies in different quadrants of the visual field. When contours were presented in the lower visual field, the direction of perceived contour displacement was consistent with that when both contours were presented in the right visual field. However, this illusory motion-induced spatial displacement disappeared when both contours were presented in the upper visual field. Also, perceived contour displacement in the direction of the more eccentric dots was larger in the right than in the left visual field, perhaps because of a hemispheric asymmetry in attentional allocation. Quadrant-based analyses suggest that the pattern of results arises from opposite directions of perceived contour displacement in the upper-left and lower-right visual quadrants, which depend on the relative strengths of two effects: a greater sensitivity to centripetal motion, and an asymmetry in the allocation of spatial attention. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effects of visual motion consistent or inconsistent with gravity on postural sway.
Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo
2017-07-01
Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.
A functional video-based anthropometric measuring system
NASA Technical Reports Server (NTRS)
Nixon, J. H.; Cater, J. P.
1982-01-01
A high-speed anthropometric three dimensional measurement system using the Selcom Selspot motion tracking instrument for visual data acquisition is discussed. A three-dimensional scanning system was created which collects video, audio, and performance data on a single standard video cassette recorder. Recording rates of 1 megabit per second for periods of up to two hours are possible with the system design. A high-speed off-the-shelf motion analysis system for collecting optical information as used. The video recording adapter (VRA) is interfaced to the Selspot data acquisition system.
1988-04-01
solution to a information. There is thus a biological motivation for investi- specific problem, e.g., solving the visual obstacle avoidance gating the...narticular practically motivated aspect of the image, known as the optical flow, does not necessarily the general problem. correspond to the 2-D motion...on (Z Z * "inexact" vision jThom8fi] The obvious motivation stems from a = X tancosa b - Z tan3sina; (1) the fact that an obstacle in relative motion
Pellicano, Elizabeth; Gibson, Lisa; Maybery, Murray; Durkin, Kevin; Badcock, David R
2005-01-01
Frith and Happe (Frith, U., & Happe, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115-132) argue that individuals with autism exhibit 'weak central coherence': an inability to integrate elements of information into coherent wholes. Some authors have speculated that a high-level impairment might be present in the dorsal visual pathway in autism, and furthermore, that this might account for weak central coherence, at least at the visuospatial level. We assessed the integrity of the dorsal visual pathway in children diagnosed with an autism spectrum disorder (ASD), and in typically developing children, using two visual tasks, one examining functioning at higher levels of the dorsal cortical stream (Global Dot Motion (GDM)), and the other assessing lower-level dorsal stream functioning (Flicker Contrast Sensitivity (FCS)). Central coherence was tested using the Children's Embedded Figures Test (CEFT). Relative to the typically developing children, the children with ASD had shorter CEFT latencies and higher GDM thresholds but equivalent FCS thresholds. Additionally, CEFT latencies were inversely related to GDM thresholds in the ASD group. These outcomes indicate that the elevated global motion thresholds in autism are the result of high-level impairments in dorsal cortical regions. Weak visuospatial coherence in autism may be in the form of abnormal cooperative mechanisms in extra-striate cortical areas, which might contribute to differential performance when processing stimuli as Gestalts, including both dynamic (i.e., global motion perception) and static (i.e., disembedding performance) stimuli.
Edirisinghe, Y; Troupis, J M; Patel, M; Smith, J; Crossett, M
2014-05-01
We used a dynamic three-dimensional (3D) mapping method to model the wrist in dynamic unrestricted dart throwers motion in three men and four women. With the aid of precision landmark identification, a 3D coordinate system was applied to the distal radius and the movement of the carpus was described. Subsequently, with dynamic 3D reconstructions and freedom to position the camera viewpoint anywhere in space, we observed the motion pathways of all carpal bones in dart throwers motion and calculated its axis of rotation. This was calculated to lie in 27° of anteversion from the coronal plane and 44° of varus angulation relative to the transverse plane. This technique is a safe and a feasible carpal imaging method to gain key information for decision making in future hand surgical and rehabilitative practices.
NASA Technical Reports Server (NTRS)
Hosman, R. J. A. W.; Vandervaart, J. C.
1984-01-01
An experiment to investigate visual roll attitude and roll rate perception is described. The experiment was also designed to assess the improvements of perception due to cockpit motion. After the onset of the motion, subjects were to make accurate and quick estimates of the final magnitude of the roll angle step response by pressing the appropriate button of a keyboard device. The differing time-histories of roll angle, roll rate and roll acceleration caused by a step response stimulate the different perception processes related the central visual field, peripheral visual field and vestibular organs in different, yet exactly known ways. Experiments with either of the visual displays or cockpit motion and some combinations of these were run to asses the roles of the different perception processes. Results show that the differences in response time are much more pronounced than the differences in perception accuracy.
High-level, but not low-level, motion perception is impaired in patients with schizophrenia.
Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia
2013-01-01
Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.
ERIC Educational Resources Information Center
Monaghan, James M.; Clement, John
1999-01-01
Presents evidence for students' qualitative and quantitative difficulties with apparently simple one-dimensional relative-motion problems, students' spontaneous visualization of relative-motion problems, the visualizations facilitating solution of these problems, and students' memories of the online computer simulation used as a framework for…
Flight-path estimation in passive low-altitude flight by visual cues
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.
1993-01-01
A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.
Sunglasses with thick temples and frame constrict temporal visual field.
Denion, Eric; Dugué, Audrey Emmanuelle; Augy, Sylvain; Coffin-Pichonnet, Sophie; Mouriaux, Frédéric
2013-12-01
Our aim was to compare the impact of two types of sunglasses on visual field and glare: one ("thick sunglasses") with a thick plastic frame and wide temples and one ("thin sunglasses") with a thin metal frame and thin temples. Using the Goldmann perimeter, visual field surface areas (cm²) were calculated as projections on a 30-cm virtual cupola. A V4 test object was used, from seen to unseen, in 15 healthy volunteers in the primary position of gaze ("base visual field"), then allowing eye motion ("eye motion visual field") without glasses, then with "thin sunglasses," followed by "thick sunglasses." Visual field surface area differences greater than the 14% reproducibility error of the method and having a p < 0.05 were considered significant. A glare test was done using a surgical lighting system pointed at the eye(s) at different incidence angles. No significant "base visual field" or "eye motion visual field" surface area variations were noted when comparing tests done without glasses and with the "thin sunglasses." In contrast, a 22% "eye motion visual field" surface area decrease (p < 0.001) was noted when comparing tests done without glasses and with "thick sunglasses." This decrease was most severe in the temporal quadrant (-33%; p < 0.001). All subjects reported less lateral glare with the "thick sunglasses" than with the "thin sunglasses" (p < 0.001). The better protection from lateral glare offered by "thick sunglasses" is offset by the much poorer ability to use lateral space exploration; this results in a loss of most, if not all, of the additional visual field gained through eye motion.
General visual robot controller networks via artificial evolution
NASA Astrophysics Data System (ADS)
Cliff, David; Harvey, Inman; Husbands, Philip
1993-08-01
We discuss recent results from our ongoing research concerning the application of artificial evolution techniques (i.e., an extended form of genetic algorithm) to the problem of developing `neural' network controllers for visually guided robots. The robot is a small autonomous vehicle with extremely low-resolution vision, employing visual sensors which could readily be constructed from discrete analog components. In addition to visual sensing, the robot is equipped with a small number of mechanical tactile sensors. Activity from the sensors is fed to a recurrent dynamical artificial `neural' network, which acts as the robot controller, providing signals to motors governing the robot's motion. Prior to presentation of new results, this paper summarizes our rationale and past work, which has demonstrated that visually guided control networks can arise without any explicit specification that visual processing should be employed: the evolutionary process opportunistically makes use of visual information if it is available.
How vision and movement combine in the hippocampal place code.
Chen, Guifen; King, John A; Burgess, Neil; O'Keefe, John
2013-01-02
How do external environmental and internal movement-related information combine to tell us where we are? We examined the neural representation of environmental location provided by hippocampal place cells while mice navigated a virtual reality environment in which both types of information could be manipulated. Extracellular recordings were made from region CA1 of head-fixed mice navigating a virtual linear track and running in a similar real environment. Despite the absence of vestibular motion signals, normal place cell firing and theta rhythmicity were found. Visual information alone was sufficient for localized firing in 25% of place cells and to maintain a local field potential theta rhythm (but with significantly reduced power). Additional movement-related information was required for normally localized firing by the remaining 75% of place cells. Trials in which movement and visual information were put into conflict showed that they combined nonlinearly to control firing location, and that the relative influence of movement versus visual information varied widely across place cells. However, within this heterogeneity, the behavior of fully half of the place cells conformed to a model of path integration in which the presence of visual cues at the start of each run together with subsequent movement-related updating of position was sufficient to maintain normal fields.
The search for instantaneous vection: An oscillating visual prime reduces vection onset latency.
Palmisano, Stephen; Riecke, Bernhard E
2018-01-01
Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion ("vection"). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone. In the main experiments, visual self-motion simulations were presented to observers via either a large external display or a head-mounted display (HMD). Priming observers with visually simulated viewpoint oscillation for just ten seconds before the main self-motion display was found to markedly reduce vection onset latencies (and also increase ratings of vection strength) in both experiments. As in earlier studies, incorporating this simulated viewpoint oscillation into the self-motion displays themselves was also found to improve vection. Average onset latencies were reduced from 8-9s in the no oscillating control condition to as little as 4.6 s (for external displays) or 1.7 s (for HMDs) in the combined oscillation condition (when both the visual prime and the main self-motion display were oscillating). As these display manipulations did not appear to increase the likelihood or severity of motion sickness in the current study, they could possibly be used to enhance computer generated simulation experiences and training in the future, at no additional cost.
The search for instantaneous vection: An oscillating visual prime reduces vection onset latency
Riecke, Bernhard E.
2018-01-01
Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion (“vection”). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone. In the main experiments, visual self-motion simulations were presented to observers via either a large external display or a head-mounted display (HMD). Priming observers with visually simulated viewpoint oscillation for just ten seconds before the main self-motion display was found to markedly reduce vection onset latencies (and also increase ratings of vection strength) in both experiments. As in earlier studies, incorporating this simulated viewpoint oscillation into the self-motion displays themselves was also found to improve vection. Average onset latencies were reduced from 8-9s in the no oscillating control condition to as little as 4.6 s (for external displays) or 1.7 s (for HMDs) in the combined oscillation condition (when both the visual prime and the main self-motion display were oscillating). As these display manipulations did not appear to increase the likelihood or severity of motion sickness in the current study, they could possibly be used to enhance computer generated simulation experiences and training in the future, at no additional cost. PMID:29791445
Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong
2014-09-01
To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.
Schindler, Andreas; Bartels, Andreas
2017-05-01
Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
New insights into the role of motion and form vision in neurodevelopmental disorders.
Johnston, Richard; Pitchford, Nicola J; Roach, Neil W; Ledgeway, Timothy
2017-12-01
A selective deficit in processing the global (overall) motion, but not form, of spatially extensive objects in the visual scene is frequently associated with several neurodevelopmental disorders, including preterm birth. Existing theories that proposed to explain the origin of this visual impairment are, however, challenged by recent research. In this review, we explore alternative hypotheses for why deficits in the processing of global motion, relative to global form, might arise. We describe recent evidence that has utilised novel tasks of global motion and global form to elucidate the underlying nature of the visual deficit reported in different neurodevelopmental disorders. We also examine the role of IQ and how the sex of an individual can influence performance on these tasks, as these are factors that are associated with performance on global motion tasks, but have not been systematically controlled for in previous studies exploring visual processing in clinical populations. Finally, we suggest that a new theoretical framework is needed for visual processing in neurodevelopmental disorders and present recommendations for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Shabbott, Britne A; Sainburg, Robert L
2010-05-01
Visuomotor adaptation is mediated by errors between intended and sensory-detected arm positions. However, it is not clear whether visual-based errors that are shown during the course of motion lead to qualitatively different or more efficient adaptation than errors shown after movement. For instance, continuous visual feedback mediates online error corrections, which may facilitate or inhibit the adaptation process. We addressed this question by manipulating the timing of visual error information and task instructions during a visuomotor adaptation task. Subjects were exposed to a visuomotor rotation, during which they received continuous visual feedback (CF) of hand position with instructions to correct or not correct online errors, or knowledge-of-results (KR), provided as a static hand-path at the end of each trial. Our results showed that all groups improved performance with practice, and that online error corrections were inconsequential to the adaptation process. However, in contrast to the CF groups, the KR group showed relatively small reductions in mean error with practice, increased inter-trial variability during rotation exposure, and more limited generalization across target distances and workspace. Further, although the KR group showed improved performance with practice, after-effects were minimal when the rotation was removed. These findings suggest that simultaneous visual and proprioceptive information is critical in altering neural representations of visuomotor maps, although delayed error information may elicit compensatory strategies to offset perturbations.
McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M
2017-10-01
Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of 1 ) delayed and 2 ) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information. Copyright © 2017 the American Physiological Society.
Helicopter flight simulation motion platform requirements
NASA Astrophysics Data System (ADS)
Schroeder, Jeffery Allyn
Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.
The notion of the motion: the neurocognition of motion lines in visual narratives.
Cohn, Neil; Maher, Stephen
2015-03-19
Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the "streaks" appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the "vocabulary" of the visual language of comics. Copyright © 2015 Elsevier B.V. All rights reserved.
The notion of the motion: The neurocognition of motion lines in visual narratives
Cohn, Neil; Maher, Stephen
2015-01-01
Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the “streaks” appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the “vocabulary” of the visual language of comics. PMID:25601006
Oculomotor Reflexes as a Test of Visual Dysfunctions in Cognitively Impaired Observers
2013-09-01
right. Gaze horizontal position is plotted along the y-axis. The red bar indicates a visual nystagmus event detected by the filter. (d) A mild curse word...experimental conditions were chosen to simulate testing cognitively impaired observers. Reflex Stimulus Functions Visual Nystagmus luminance grating low-level...developed a new stimulus for visual nystagmus to 8 test visual motion processing in the presence of incoherent motion noise. The drifting equiluminant
Analysis of motion in speed skating
NASA Astrophysics Data System (ADS)
Koga, Yuzo; Nishimura, Tetsu; Watanabe, Naoki; Okamoto, Kousuke; Wada, Yuhei
1997-03-01
A motion on sports has been studied by many researchers from the view of the medical, psychological and mechanical fields. Here, we try to analyze a speed skating motion dynamically for an aim of performing the best record. As an official competition of speed skating is performed on the round rink, the skating motion must be studied on the three phases, that is, starting phase, straight and curved course skating phase. It is indispensable to have a visual data of a skating motion in order to analyze kinematically. So we took a several subject's skating motion by 8 mm video cameras in order to obtain three dimensional data. As the first step, the movement of the center of gravity of skater (abbreviate to C. G.) is discussed in this paper, because a skating motion is very complicated. The movement of C. G. will give an information of the reaction force to a skate blade from the surface of ice. We discuss the discrepancy of several skating motion by studied subjects. Our final goal is to suggest the best skating form for getting the finest record.
Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.
2016-01-01
During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908
Effects of Spatio-Temporal Aliasing on Out-the-Window Visual Systems
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.; Stone, Leland S.; Liston, Dorion B.; Hebert, Tim M.
2014-01-01
Designers of out-the-window visual systems face a challenge when attempting to simulate the outside world as viewed from a cockpit. Many methodologies have been developed and adopted to aid in the depiction of particular scene features, or levels of static image detail. However, because aircraft move, it is necessary to also consider the quality of the motion in the simulated visual scene. When motion is introduced in the simulated visual scene, perceptual artifacts can become apparent. A particular artifact related to image motion, spatiotemporal aliasing, will be addressed. The causes of spatio-temporal aliasing will be discussed, and current knowledge regarding the impact of these artifacts on both motion perception and simulator task performance will be reviewed. Methods of reducing the impact of this artifact are also addressed
Senot, Patrice; Zago, Myrka; Lacquaniti, Francesco; McIntyre, Joseph
2005-12-01
Intercepting an object requires a precise estimate of its time of arrival at the interception point (time to contact or "TTC"). It has been proposed that knowledge about gravitational acceleration can be combined with first-order, visual-field information to provide a better estimate of TTC when catching falling objects. In this experiment, we investigated the relative role of visual and nonvisual information on motor-response timing in an interceptive task. Subjects were immersed in a stereoscopic virtual environment and asked to intercept with a virtual racket a ball falling from above or rising from below. The ball moved with different initial velocities and could accelerate, decelerate, or move at a constant speed. Depending on the direction of motion, the acceleration or deceleration of the ball could therefore be congruent or not with the acceleration that would be expected due to the force of gravity acting on the ball. Although the best success rate was observed for balls moving at a constant velocity, we systematically found a cross-effect of ball direction and acceleration on success rate and response timing. Racket motion was triggered on average 25 ms earlier when the ball fell from above than when it rose from below, whatever the ball's true acceleration. As visual-flow information was the same in both cases, this shift indicates an influence of the ball's direction relative to gravity on response timing, consistent with the anticipation of the effects of gravity on the flight of the ball.
Bio-inspired optical rotation sensor
NASA Astrophysics Data System (ADS)
O'Carroll, David C.; Shoemaker, Patrick A.; Brinkworth, Russell S. A.
2007-01-01
Traditional approaches to calculating self-motion from visual information in artificial devices have generally relied on object identification and/or correlation of image sections between successive frames. Such calculations are computationally expensive and real-time digital implementation requires powerful processors. In contrast flies arrive at essentially the same outcome, the estimation of self-motion, in a much smaller package using vastly less power. Despite the potential advantages and a few notable successes, few neuromorphic analog VLSI devices based on biological vision have been employed in practical applications to date. This paper describes a hardware implementation in aVLSI of our recently developed adaptive model for motion detection. The chip integrates motion over a linear array of local motion processors to give a single voltage output. Although the device lacks on-chip photodetectors, it includes bias circuits to use currents from external photodiodes, and we have integrated it with a ring-array of 40 photodiodes to form a visual rotation sensor. The ring configuration reduces pattern noise and combined with the pixel-wise adaptive characteristic of the underlying circuitry, permits a robust output that is proportional to image rotational velocity over a large range of speeds, and is largely independent of either mean luminance or the spatial structure of the image viewed. In principle, such devices could be used as an element of a velocity-based servo to replace or augment inertial guidance systems in applications such as mUAVs.
Gender Recognition from Point-Light Walkers
ERIC Educational Resources Information Center
Pollick, Frank E.; Kay, Jim W.; Heim, Katrin; Stringer, Rebecca
2005-01-01
Point-light displays of human gait provide information sufficient to recognize the gender of a walker and are taken as evidence of the exquisite tuning of the visual system to biological motion. The authors revisit this topic with the goals of quantifying human efficiency at gender recognition. To achieve this, the authors first derive an ideal…
1985-04-01
evaluation is predominantly based on the impressions he gets from the stimulation of his sensual receptors, i.e. visual, motional and auditorial cues. For...Exchanging of scientific and technical information; - Continuously stimulating advances in the aerospace sciences relevant to strengthening the...extented. International cooperation has always been stimulating . Strong technology transfer restrictions could result in a technical isolation with
Crawling and walking infants see the world differently
Kretch, Kari S.; Franchak, John M.; Adolph, Karen E.
2013-01-01
How does visual experience change over development? To investigate changes in visual input over the developmental transition from crawling to walking, thirty 13-month-olds crawled or walked down a straight path wearing a head-mounted eye-tracker that recorded gaze direction and head-centered field of view. Thirteen additional infants wore a motion-tracker that recorded head orientation. Compared with walkers, crawlers’ field of view contained less walls and more floor. Walkers directed gaze straight ahead at caregivers, whereas crawlers looked down at the floor. Crawlers obtained visual information about targets at higher elevations—caregivers and toys—by craning their heads upward and sitting up to bring the room into view. Findings indicate that visual experiences are intimately tied to infants’ posture. PMID:24341362
Video quality assessment method motivated by human visual perception
NASA Astrophysics Data System (ADS)
He, Meiling; Jiang, Gangyi; Yu, Mei; Song, Yang; Peng, Zongju; Shao, Feng
2016-11-01
Research on video quality assessment (VQA) plays a crucial role in improving the efficiency of video coding and the performance of video processing. It is well acknowledged that the motion energy model generates motion energy responses in a middle temporal area by simulating the receptive field of neurons in V1 for the motion perception of the human visual system. Motivated by the biological evidence for the visual motion perception, a VQA method is proposed in this paper, which comprises the motion perception quality index and the spatial index. To be more specific, the motion energy model is applied to evaluate the temporal distortion severity of each frequency component generated from the difference of Gaussian filter bank, which produces the motion perception quality index, and the gradient similarity measure is used to evaluate the spatial distortion of the video sequence to get the spatial quality index. The experimental results of the LIVE, CSIQ, and IVP video databases demonstrate that the random forests regression technique trained by the generated quality indices is highly correspondent to human visual perception and has many significant improvements than comparable well-performing methods. The proposed method has higher consistency with subjective perception and higher generalization capability.
Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.
Ibbotson, M R
2017-01-23
The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rideaux, Reuben; Apthorp, Deborah; Edwards, Mark
2015-02-12
Recent findings have indicated the capacity to consolidate multiple items into visual short-term memory in parallel varies as a function of the type of information. That is, while color can be consolidated in parallel, evidence suggests that orientation cannot. Here we investigated the capacity to consolidate multiple motion directions in parallel and reexamined this capacity using orientation. This was achieved by determining the shortest exposure duration necessary to consolidate a single item, then examining whether two items, presented simultaneously, could be consolidated in that time. The results show that parallel consolidation of direction and orientation information is possible, and that parallel consolidation of direction appears to be limited to two. Additionally, we demonstrate the importance of adequate separation between feature intervals used to define items when attempting to consolidate in parallel, suggesting that when multiple items are consolidated in parallel, as opposed to serially, the resolution of representations suffer. Finally, we used facilitation of spatial attention to show that the deterioration of item resolution occurs during parallel consolidation, as opposed to storage. © 2015 ARVO.
Multisensory Self-Motion Compensation During Object Trajectory Judgments
Dokka, Kalpana; MacNeilage, Paul R.; DeAngelis, Gregory C.; Angelaki, Dora E.
2015-01-01
Judging object trajectory during self-motion is a fundamental ability for mobile organisms interacting with their environment. This fundamental ability requires the nervous system to compensate for the visual consequences of self-motion in order to make accurate judgments, but the mechanisms of this compensation are poorly understood. We comprehensively examined both the accuracy and precision of observers' ability to judge object trajectory in the world when self-motion was defined by vestibular, visual, or combined visual–vestibular cues. Without decision feedback, subjects demonstrated no compensation for self-motion that was defined solely by vestibular cues, partial compensation (47%) for visually defined self-motion, and significantly greater compensation (58%) during combined visual–vestibular self-motion. With decision feedback, subjects learned to accurately judge object trajectory in the world, and this generalized to novel self-motion speeds. Across conditions, greater compensation for self-motion was associated with decreased precision of object trajectory judgments, indicating that self-motion compensation comes at the cost of reduced discriminability. Our findings suggest that the brain can flexibly represent object trajectory relative to either the observer or the world, but a world-centered representation comes at the cost of decreased precision due to the inclusion of noisy self-motion signals. PMID:24062317
NASA Astrophysics Data System (ADS)
Sousa, Teresa; Amaral, Carlos; Andrade, João; Pires, Gabriel; Nunes, Urbano J.; Castelo-Branco, Miguel
2017-08-01
Objective. The achievement of multiple instances of control with the same type of mental strategy represents a way to improve flexibility of brain-computer interface (BCI) systems. Here we test the hypothesis that pure visual motion imagery of an external actuator can be used as a tool to achieve three classes of electroencephalographic (EEG) based control, which might be useful in attention disorders. Approach. We hypothesize that different numbers of imagined motion alternations lead to distinctive signals, as predicted by distinct motion patterns. Accordingly, a distinct number of alternating sensory/perceptual signals would lead to distinct neural responses as previously demonstrated using functional magnetic resonance imaging (fMRI). We anticipate that differential modulations should also be observed in the EEG domain. EEG recordings were obtained from twelve participants using three imagery tasks: imagery of a static dot, imagery of a dot with two opposing motions in the vertical axis (two motion directions) and imagery of a dot with four opposing motions in vertical or horizontal axes (four directions). The data were analysed offline. Main results. An increase of alpha-band power was found in frontal and central channels as a result of visual motion imagery tasks when compared with static dot imagery, in contrast with the expected posterior alpha decreases found during simple visual stimulation. The successful classification and discrimination between the three imagery tasks confirmed that three different classes of control based on visual motion imagery can be achieved. The classification approach was based on a support vector machine (SVM) and on the alpha-band relative spectral power of a small group of six frontal and central channels. Patterns of alpha activity, as captured by single-trial SVM closely reflected imagery properties, in particular the number of imagined motion alternations. Significance. We found a new mental task based on visual motion imagery with potential for the implementation of multiclass (3) BCIs. Our results are consistent with the notion that frontal alpha synchronization is related with high internal processing demands, changing with the number of alternation levels during imagery. Together, these findings suggest the feasibility of pure visual motion imagery tasks as a strategy to achieve multiclass control systems with potential for BCI and in particular, neurofeedback applications in non-motor (attentional) disorders.
Visualization of Kepler’s laws of planetary motion
NASA Astrophysics Data System (ADS)
Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong
2017-03-01
For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler’s laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler’s laws of planetary motion to be visualized and will contribute to improving the manipulative ability of middle school students and the accessibility of classroom education.
Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion
Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo
2017-01-01
In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time. PMID:28475145
Use of cues in virtual reality depends on visual feedback.
Fulvio, Jacqueline M; Rokers, Bas
2017-11-22
3D motion perception is of central importance to daily life. However, when tested in laboratory settings, sensitivity to 3D motion signals is found to be poor, leading to the view that heuristics and prior assumptions are critical for 3D motion perception. Here we explore an alternative: sensitivity to 3D motion signals is context-dependent and must be learned based on explicit visual feedback in novel environments. The need for action-contingent visual feedback is well-established in the developmental literature. For example, young kittens that are passively moved through an environment, but unable to move through it themselves, fail to develop accurate depth perception. We find that these principles also obtain in adult human perception. Observers that do not experience visual consequences of their actions fail to develop accurate 3D motion perception in a virtual reality environment, even after prolonged exposure. By contrast, observers that experience the consequences of their actions improve performance based on available sensory cues to 3D motion. Specifically, we find that observers learn to exploit the small motion parallax cues provided by head jitter. Our findings advance understanding of human 3D motion processing and form a foundation for future study of perception in virtual and natural 3D environments.
Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo
2017-05-05
In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time.
Spatiotopic updating of visual feature information.
Zimmermann, Eckart; Weidner, Ralph; Fink, Gereon R
2017-10-01
Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.
Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly
2018-01-01
Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Vision sensor and dual MEMS gyroscope integrated system for attitude determination on moving base
NASA Astrophysics Data System (ADS)
Guo, Xiaoting; Sun, Changku; Wang, Peng; Huang, Lu
2018-01-01
To determine the relative attitude between the objects on a moving base and the base reference system by a MEMS (Micro-Electro-Mechanical Systems) gyroscope, the motion information of the base is redundant, which must be removed from the gyroscope. Our strategy is to add an auxiliary gyroscope attached to the reference system. The master gyroscope is to sense the total motion, and the auxiliary gyroscope is to sense the motion of the moving base. By a generalized difference method, relative attitude in a non-inertial frame can be determined by dual gyroscopes. With the vision sensor suppressing accumulative drift of the MEMS gyroscope, the vision and dual MEMS gyroscope integration system is formed. Coordinate system definitions and spatial transform are executed in order to fuse inertial and visual data from different coordinate systems together. And a nonlinear filter algorithm, Cubature Kalman filter, is used to fuse slow visual data and fast inertial data together. A practical experimental setup is built up and used to validate feasibility and effectiveness of our proposed attitude determination system in the non-inertial frame on the moving base.
How virtual reality works: illusions of vision in "real" and virtual environments
NASA Astrophysics Data System (ADS)
Stark, Lawrence W.
1995-04-01
Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.