Event-related potentials and secondary task performance during simulated driving.
Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L
2008-01-01
Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.
Liao, Hsin-I; Yoneya, Makoto; Kidani, Shunsuke; Kashino, Makio; Furukawa, Shigeto
2016-01-01
A unique sound that deviates from a repetitive background sound induces signature neural responses, such as mismatch negativity and novelty P3 response in electro-encephalography studies. Here we show that a deviant auditory stimulus induces a human pupillary dilation response (PDR) that is sensitive to the stimulus properties and irrespective whether attention is directed to the sounds or not. In an auditory oddball sequence, we used white noise and 2000-Hz tones as oddballs against repeated 1000-Hz tones. Participants' pupillary responses were recorded while they listened to the auditory oddball sequence. In Experiment 1, they were not involved in any task. Results show that pupils dilated to the noise oddballs for approximately 4 s, but no such PDR was found for the 2000-Hz tone oddballs. In Experiments 2, two types of visual oddballs were presented synchronously with the auditory oddballs. Participants discriminated the auditory or visual oddballs while trying to ignore stimuli from the other modality. The purpose of this manipulation was to direct attention to or away from the auditory sequence. In Experiment 3, the visual oddballs and the auditory oddballs were always presented asynchronously to prevent residuals of attention on to-be-ignored oddballs due to the concurrence with the attended oddballs. Results show that pupils dilated to both the noise and 2000-Hz tone oddballs in all conditions. Most importantly, PDRs to noise were larger than those to the 2000-Hz tone oddballs regardless of the attention condition in both experiments. The overall results suggest that the stimulus-dependent factor of the PDR appears to be independent of attention. PMID:26924959
Affective ERP Processing in a Visual Oddball Task: Arousal, Valence, and Gender
Rozenkrants, Bella; Polich, John
2008-01-01
Objective To assess affective event-related brain potentials (ERPs) using visual pictures that were highly distinct on arousal level/valence category ratings and a response task. Methods Images from the International Affective Pictures System (IAPS) were selected to obtain distinct affective arousal (low, high) and valence (negative, positive) rating levels. The pictures were used as target stimuli in an oddball paradigm, with a visual pattern as the standard stimulus. Participants were instructed to press a button whenever a picture occurred and to ignore the standard. Task performance and response time did not differ across conditions. Results High-arousal compared to low-arousal stimuli produced larger amplitudes for the N2, P3, early slow wave, and late slow wave components. Valence amplitude effects were weak overall and originated primarily from the later waveform components and interactions with electrode position. Gender differences were negligible. Conclusion The findings suggest that arousal level is the primary determinant of affective oddball processing, and valence minimally influences ERP amplitude. Significance Affective processing engages selective attentional mechanisms that are primarily sensitive to the arousal properties of emotional stimuli. The application and nature of task demands are important considerations for interpreting these effects. PMID:18783987
Proulx, Nicole; Samadani, Ali-Akbar; Chau, Tom
2018-05-16
Event-related potentials (ERPs) have previously been used to confirm the existence of the fast optical signal (FOS) but validation methods have mainly been limited to exploring the temporal correspondence of FOS peaks to those of ERPs. The purpose of this study was to systematically quantify the relationship between FOS and ERP responses to a visual oddball task in both time and frequency domains. Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) sensors were co-located over the prefrontal cortex while participants performed a visual oddball task. Fifteen participants completed 2 data collection sessions each, where they were instructed to keep a mental count of oddball images. The oddball condition produced a positive ERP at 200 ms followed by a negativity 300-500 ms after image onset in the frontal electrodes. In contrast to previous FOS studies, a FOS response was identified only in DC intensity signals and not in phase delay signals. A decrease in DC intensity was found 150-250 ms after oddball image onset with a 400-trial average in 10 of 15 participants. The latency of the positive 200 ms ERP and the FOS DC intensity decrease were significantly correlated for only 6 (out of 15) participants due to the low signal-to-noise ratio of the FOS response. Coherence values between the FOS and ERP oddball responses were found to be significant in the 3-5 Hz frequency band for 10 participants. A significant Granger causal influence of the ERP on the FOS oddball response was uncovered in the 2-6 Hz frequency band for 7 participants. Collectively, our findings suggest that, for a majority of participants, the ERP and the DC intensity signal of the FOS are spectrally coherent, specifically in narrow frequency bands previously associated with event-related oscillations in the prefrontal cortex. However, these electro-optical relationships were only found in a subset of participants. Further research on enhancing the quality of the event-related FOS signal is required before it can be practically exploited in applications such as brain-computer interfacing. Copyright © 2018. Published by Elsevier Inc.
Distraction and Facilitation--Two Faces of the Same Coin?
ERIC Educational Resources Information Center
Wetzel, Nicole; Widmann, Andreas; Schroger, Erich
2012-01-01
Unexpected and task-irrelevant sounds can capture our attention and may cause distraction effects reflected by impaired performance in a primary task unrelated to the perturbing sound. The present auditory-visual oddball study examines the effect of the informational content of a sound on the performance in a visual discrimination task. The…
Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.
2012-01-01
The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG–FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19% reduction over grey matter). We were able to identify vascular effects and hence altered neurovascular coupling through the alteration of low-level task FMRI responses in the face of a preserved visual evoked potential. However, our data also suggest a cognitive effect of caffeine through its positive effect on the frontal BOLD signal consistent with the shortening of oddball EEG response latency. The combined use of EEG–FMRI is a promising methodology for investigating alterations in brain function in drug and disease studies where neurovascular coupling may be altered on a regional basis. PMID:22561357
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea
2013-01-01
Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444
Cortical activity and children's rituals, habits and other repetitive behavior: a visual P300 study.
Evans, David W; Maliken, Ashley
2011-10-10
This study examines the link between children's repetitive, ritualistic, behavior and cortical brain activity. Twelve typically developing children between the ages of 6 and 12 years were administered two visual P300, oddball tasks with a 32-electrode electroencephalogram (EEG) system. One of the oddball tasks was specifically designed to reflect sensitivity to asymmetry, a phenomenon common in children and in a variety of disorders involving compulsive behavior. Parents completed the Childhood Routines Inventory. Children's repetitive, compulsive-like behaviors were strongly associated with faster processing of an asymmetrical target stimulus, even when accounting for their P300 latencies on a control task. The research punctuates the continuity between observed brain-behavior links in clinical disorders such as OCD and autism spectrum disorders, and normative variants of repetitive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.
Swallow, Khena M; Jiang, Yuhong V
2010-04-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). Copyright 2009 Elsevier B.V. All rights reserved.
Swallow, Khena M.; Jiang, Yuhong V.
2009-01-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). PMID:20080232
Kiiski, Hanni; Jollans, Lee; Donnchadha, Seán Ó; Nolan, Hugh; Lonergan, Róisín; Kelly, Siobhán; O'Brien, Marie Claire; Kinsella, Katie; Bramham, Jessica; Burke, Teresa; Hutchinson, Michael; Tubridy, Niall; Reilly, Richard B; Whelan, Robert
2018-05-01
Event-related potentials (ERPs) show promise to be objective indicators of cognitive functioning. The aim of the study was to examine if ERPs recorded during an oddball task would predict cognitive functioning and information processing speed in Multiple Sclerosis (MS) patients and controls at the individual level. Seventy-eight participants (35 MS patients, 43 healthy age-matched controls) completed visual and auditory 2- and 3-stimulus oddball tasks with 128-channel EEG, and a neuropsychological battery, at baseline (month 0) and at Months 13 and 26. ERPs from 0 to 700 ms and across the whole scalp were transformed into 1728 individual spatio-temporal datapoints per participant. A machine learning method that included penalized linear regression used the entire spatio-temporal ERP to predict composite scores of both cognitive functioning and processing speed at baseline (month 0), and months 13 and 26. The results showed ERPs during the visual oddball tasks could predict cognitive functioning and information processing speed at baseline and a year later in a sample of MS patients and healthy controls. In contrast, ERPs during auditory tasks were not predictive of cognitive performance. These objective neurophysiological indicators of cognitive functioning and processing speed, and machine learning methods that can interrogate high-dimensional data, show promise in outcome prediction.
Happiness increases distraction by auditory deviant stimuli.
Pacheco-Unguetti, Antonia Pilar; Parmentier, Fabrice B R
2016-08-01
Rare and unexpected changes (deviants) in an otherwise repeated stream of task-irrelevant auditory distractors (standards) capture attention and impair behavioural performance in an ongoing visual task. Recent evidence indicates that this effect is increased by sadness in a task involving neutral stimuli. We tested the hypothesis that such effect may not be limited to negative emotions but reflect a general depletion of attentional resources by examining whether a positive emotion (happiness) would increase deviance distraction too. Prior to performing an auditory-visual oddball task, happiness or a neutral mood was induced in participants by means of the exposure to music and the recollection of an autobiographical event. Results from the oddball task showed significantly larger deviance distraction following the induction of happiness. Interestingly, the small amount of distraction typically observed on the standard trial following a deviant trial (post-deviance distraction) was not increased by happiness. We speculate that happiness might interfere with the disengagement of attention from the deviant sound back towards the target stimulus (through the depletion of cognitive resources and/or mind wandering) but help subsequent cognitive control to recover from distraction. © 2015 The British Psychological Society.
Cycowicz, Yael M; Friedman, David
2007-01-01
The orienting response, the brain's reaction to novel and/or out of context familiar events, is reflected by the novelty P3 of the ERP. Contextually novel events also engender high rates of recognition memory. We examined, under incidental and intentional conditions, the effects of visual symbol familiarity on the novelty P3 recorded during an oddball task and on the parietal episodic memory (EM) effect, an index of recollection. Repetition of familiar, but not unfamiliar, symbols elicited a reduction in the novelty P3. Better recognition performance for the familiar symbols was associated with a robust parietal EM effect, which was absent for the unfamiliar symbols in the incidental task. These data demonstrate that processing of novel events depends on expectation and whether stimuli have preexisting representations in long-term semantic memory.
Characterizing the roles of alpha and theta oscillations in multisensory attention.
Keller, Arielle S; Payne, Lisa; Sekuler, Robert
2017-05-01
Cortical alpha oscillations (8-13Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4-7Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta's association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterizing the roles of alpha and theta oscillations in multisensory attention
Keller, Arielle S.; Payne, Lisa; Sekuler, Robert
2017-01-01
Cortical alpha oscillations (8–13 Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4–7 Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta’s association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. PMID:28259771
An fMRI investigation into the effect of preceding stimuli during visual oddball tasks.
Fajkus, Jiří; Mikl, Michal; Shaw, Daniel Joel; Brázdil, Milan
2015-08-15
This study investigates the modulatory effect of stimulus sequence on neural responses to novel stimuli. A group of 34 healthy volunteers underwent event-related functional magnetic resonance imaging while performing a three-stimulus visual oddball task, involving randomly presented frequent stimuli and two types of infrequent stimuli - targets and distractors. We developed a modified categorization of rare stimuli that incorporated the type of preceding rare stimulus, and analyzed the event-related functional data according to this sequence categorization; specifically, we explored hemodynamic response modulation associated with increasing rare-to-rare stimulus interval. For two consecutive targets, a modulation of brain function was evident throughout posterior midline and lateral temporal cortex, while responses to targets preceded by distractors were modulated in a widely distributed fronto-parietal system. As for distractors that follow targets, brain function was modulated throughout a set of posterior brain structures. For two successive distractors, however, no significant modulation was observed, which is consistent with previous studies and our primary hypothesis. The addition of the aforementioned technique extends the possibilities of conventional oddball task analysis, enabling researchers to explore the effects of the whole range of rare stimuli intervals. This methodology can be applied to study a wide range of associated cognitive mechanisms, such as decision making, expectancy and attention. Copyright © 2015 Elsevier B.V. All rights reserved.
Reward alters the perception of time.
Failing, Michel; Theeuwes, Jan
2016-03-01
Recent findings indicate that monetary rewards have a powerful effect on cognitive performance. In order to maximize overall gain, the prospect of earning reward biases visual attention to specific locations or stimulus features improving perceptual sensitivity and processing. The question we addressed in this study is whether the prospect of reward also affects the subjective perception of time. Here, participants performed a prospective timing task using temporal oddballs. The results show that temporal oddballs, displayed for varying durations, presented in a sequence of standard stimuli were perceived to last longer when they signaled a relatively high reward compared to when they signaled no or low reward. When instead of the oddball the standards signaled reward, the perception of the temporal oddball remained unaffected. We argue that by signaling reward, a stimulus becomes subjectively more salient thereby modulating its attentional deployment and distorting how it is perceived in time. Copyright © 2015 Elsevier B.V. All rights reserved.
Sugimoto, Fumie; Kimura, Motohiro; Takeda, Yuji; Katayama, Jun'ichi
2017-08-16
In a three-stimulus oddball task, the amplitude of P3a elicited by deviant stimuli increases with an increase in the difficulty of discriminating between standard and target stimuli (i.e. task-difficulty effect on P3a), indicating that attentional capture by deviant stimuli is enhanced with an increase in task difficulty. This enhancement of attentional capture may be explained in terms of the modulation of modality-nonspecific temporal attention; that is, the participant's attention directed to the predicted timing of stimulus presentation is stronger when the task difficulty increases, which results in enhanced attentional capture. The present study examined this possibility with a modified three-stimulus oddball task consisting of a visual standard, a visual target, and four types of deviant stimuli defined by a combination of two modalities (visual and auditory) and two presentation timings (predicted and unpredicted). We expected that if the modulation of temporal attention is involved in enhanced attentional capture, then the task-difficulty effect on P3a should be reduced for unpredicted compared with predicted deviant stimuli irrespective of their modality; this is because the influence of temporal attention should be markedly weaker for unpredicted compared with predicted deviant stimuli. The results showed that the task-difficulty effect on P3a was significantly reduced for unpredicted compared with predicted deviant stimuli in both the visual and the auditory modalities. This result suggests that the modulation of modality-nonspecific temporal attention induced by the increase in task difficulty is at least partly involved in the enhancement of attentional capture by deviant stimuli.
Verleger, Rolf; Śmigasiewicz, Kamila
2016-01-01
The P3 component of event-related potentials increases when stimuli are rarely presented. It has been assumed that this oddball effect (rare-frequent difference) reflects the unexpectedness of rare stimuli. The assumption of unexpectedness and its link to P3 amplitude were tested here. A standard- oddball task requiring alternative key-press responses to frequent and rare stimuli was compared with an oddball-prediction task where stimuli had to be first predicted and then confirmed by key-pressing. Oddball effects in the prediction task depended on whether the frequent or the rare stimulus had been predicted. Oddball effects on P3 amplitudes and error rates in the standard oddball task closely resembled effects after frequent predictions. This corroborates the notion that these effects occur because frequent stimuli are expected and rare stimuli are unexpected. However, a closer look at the prediction task put this notion into doubt because the modifications of oddball effects on P3 by expectancies were entirely due to effects on frequent stimuli, whereas the large P3 amplitudes evoked by rare stimuli were insensitive to predictions (unlike response times and error rates). Therefore, rare stimuli cannot be said to evoke large P3 amplitudes because they are unexpected. We discuss these diverging effects of frequency and expectancy, as well as general differences between tasks, with respect to concepts and hypotheses about P3b’s function and conclude that each discussed concept or hypothesis encounters some problems, with a conception in terms of subjective relevance assigned to stimuli offering the most consistent account of these basic effects. PMID:27512527
Cannabis cue reactivity and craving among never, infrequent and heavy cannabis users.
Henry, Erika A; Kaye, Jesse T; Bryan, Angela D; Hutchison, Kent E; Ito, Tiffany A
2014-04-01
Substance cue reactivity is theorized as having a significant role in addiction processes, promoting compulsive patterns of drug-seeking and drug-taking behavior. However, research extending this phenomenon to cannabis has been limited. To that end, the goal of the current work was to examine the relationship between cannabis cue reactivity and craving in a sample of 353 participants varying in self-reported cannabis use. Participants completed a visual oddball task whereby neutral, exercise, and cannabis cue images were presented, and a neutral auditory oddball task while event-related brain potentials (ERPs) were recorded. Consistent with past research, greater cannabis use was associated with greater reactivity to cannabis images, as reflected in the P300 component of the ERP, but not to neutral auditory oddball cues. The latter indicates the specificity of cue reactivity differences as a function of substance-related cues and not generalized cue reactivity. Additionally, cannabis cue reactivity was significantly related to self-reported cannabis craving as well as problems associated with cannabis use. Implications for cannabis use and addiction more generally are discussed.
Cannabis Cue Reactivity and Craving Among Never, Infrequent and Heavy Cannabis Users
Henry, Erika A; Kaye, Jesse T; Bryan, Angela D; Hutchison, Kent E; Ito, Tiffany A
2014-01-01
Substance cue reactivity is theorized as having a significant role in addiction processes, promoting compulsive patterns of drug-seeking and drug-taking behavior. However, research extending this phenomenon to cannabis has been limited. To that end, the goal of the current work was to examine the relationship between cannabis cue reactivity and craving in a sample of 353 participants varying in self-reported cannabis use. Participants completed a visual oddball task whereby neutral, exercise, and cannabis cue images were presented, and a neutral auditory oddball task while event-related brain potentials (ERPs) were recorded. Consistent with past research, greater cannabis use was associated with greater reactivity to cannabis images, as reflected in the P300 component of the ERP, but not to neutral auditory oddball cues. The latter indicates the specificity of cue reactivity differences as a function of substance-related cues and not generalized cue reactivity. Additionally, cannabis cue reactivity was significantly related to self-reported cannabis craving as well as problems associated with cannabis use. Implications for cannabis use and addiction more generally are discussed. PMID:24264815
Neurophysiological Evidence for Categorical Perception of Color
ERIC Educational Resources Information Center
Holmes, Amanda; Franklin, Anna; Clifford, Alexandra; Davies, Ian
2009-01-01
The aim of this investigation was to examine the time course and the relative contributions of perceptual and post-perceptual processes to categorical perception (CP) of color. A visual oddball task was used with standard and deviant stimuli from same (within-category) or different (between-category) categories, with chromatic separations for…
Event-related potentials (ERPs) in ecstasy (MDMA) users during a visual oddball task.
Mejias, S; Rossignol, M; Debatisse, D; Streel, E; Servais, L; Guérit, J M; Philippot, P; Campanella, S
2005-07-01
Ecstasy is the common name for a drug mainly containing a substance identified as 3,4-methylenedioxymethamphetamine (MDMA). It has become popular with participants in "raves", because it enhances energy, endurance and sexual arousal, together with the widespread belief that MDMA is a safe drug [Byard, R.W., Gilbert, J., James, R., Lokan, R.J., 1998. Amphetamine derivative fatalities in South Australia. Is "ecstasy" the culprit? Am. J. Forensic Med. Pathol. 19, 261-265]. However, it is suggested that this drug causes a neurotoxicity to the serotonergic system that could lead to permanent physical and cognitive problems. In order to investigate this issue, and during an ERP recording with 32 channels, we used a visual oddball design, in which subjects (14 MDMA abusers and 14 paired normal controls) saw frequent stimuli (neutral faces) while they had to detect as quickly as possible rare stimuli with happy or fearful expression. At a behavioral level, MDMA users imply longer latencies than normal controls to detect rare stimuli. At the neurophysiological level, ERP data suggest as main result that the N200 component, which is involved in attention orienting associated to the detection of stimulus novelty (e.g. [Campanella, S., Gaspard, C., Debatisse, D., Bruyer, R., Crommelinck, M., Guerit, J.M., 2002. Discrimination of emotional facial expression in a visual oddball task: an ERP study. Biol. Psychol. 59, 171-186]), shows shorter latencies for fearful rare stimuli (as compared to happy ones), but only for normal controls. This absence of delay was interpreted as an attentional deficit due to MDMA consumption.
Melcher, Tobias; Gruber, Oliver
2006-11-22
The aim of this fMRI study was to investigate and compare the neural mechanisms of selective attention during two different operationalizations of competition between task-relevant and task-irrelevant information: Stroop-incongruity and oddballs. For this purpose, we employed a Stroop-like oddball task in which subjects responded to the font size of presented word stimuli. Stroop-incongruity was created by (response-)incongruent word information while oddballs comprised low-frequency events in a task-irrelevant, unattended dimension. Thereby, in order to elucidate the influence of processing domain from which competition emanates, oddball conditions were created in two different attribute dimensions, color and word meaning. Either oddball condition was expected to evoke an orienting response, which participants would have to override in order to maintain adequate performance. Incongruent Stroop trials were expected to produce Stroop-interference so that subjects would have to override the predominant tendency to read and respond to word meaning. All competition conditions exhibited significantly prolonged reaction times compared to control trials, demonstrating that our experimental manipulation was indeed effective. fMRI data analyses delineated two discriminative components of competition: one component mainly related to motor preparation and another, primarily attentional component. Regarding the first, Stroop-interference increased activation mainly in regions implicated in motor control or response preparation. Regarding the second, Word-oddballs increased activation in a frontoparietal "attention network". Furthermore, Word-oddballs and Color-oddballs exhibited striking activation overlap mainly in prefrontal regions but also in posterior processing areas. Here, the data emphasized a prominent role of posterior lateral PFC in implementing top-down attentional control.
The remains of the trial: goal-determined inter-trial suppression of selective attention.
Lleras, Alejandro; Levinthal, Brian R; Kawahara, Jun
2009-01-01
When an observer is searching through the environment for a target, what are the consequences of not finding a target in a given environment? We examine this issue in detail and propose that the visual system systematically tags environmental information during a search, in an effort to improve performance in future search events. Information that led to search successes is positively tagged, so as to favor future deployments of attention toward that type of information, whereas information that led to search failures is negatively tagged, so as to discourage future deployments of attention toward such failed information. To study this, we use an oddball-search task, where participants search for one item that differs from all others along one feature or belongs to a different visual category, from the other stimuli in the display. We find that when participants perform oddball-search tasks, the absence of a target delays identification of future targets containing the feature or category that was shared by all distractors in the target-absent trial. We interpret this effect as reflecting an implicit assessment of performance: target-absent trials can be viewed as processing "failures" insofar as they do not provide the visual system with the information needed to complete the task. Here, we study the goal-oriented nature of this bias in three ways. First, we show that the direction of the bias is determined by the experimental task. Second, we show that the effect is independent of the mode of presentation of stimuli: it happens with both serial and simultaneous stimuli presentation. Third, we show that, when using categorically defined oddballs as the search stimuli (find the face among houses or vice versa), the bias generalizes to unseen members of the "failed" category. Together, these findings support the idea that this inter-trial attentional biases arise from high-level, task-constrained, implicit assessments of performance, involving categorical associations between classes of stimuli and behavioral outcomes (success/failure), which are independent of attentional modality (temporal vs. spatial attention).
2011-01-01
Background The electrical signals measuring method is recommended to examine the relationship between neuronal activities and measure with the event related potentials (ERPs) during an auditory and a visual oddball paradigm between schizophrenic patients and normal subjects. The aim of this study is to discriminate the activation changes of different stimulations evoked by auditory and visual ERPs between schizophrenic patients and normal subjects. Methods Forty-three schizophrenic patients were selected as experimental group patients, and 40 healthy subjects with no medical history of any kind of psychiatric diseases, neurological diseases, or drug abuse, were recruited as a control group. Auditory and visual ERPs were studied with an oddball paradigm. All the data were analyzed by SPSS statistical software version 10.0. Results In the comparative study of auditory and visual ERPs between the schizophrenic and healthy patients, P300 amplitude at Fz, Cz, and Pz and N100, N200, and P200 latencies at Fz, Cz, and Pz were shown significantly different. The cognitive processing reflected by the auditory and the visual P300 latency to rare target stimuli was probably an indicator of the cognitive function in schizophrenic patients. Conclusions This study shows the methodology of application of auditory and visual oddball paradigm identifies task-relevant sources of activity and allows separation of regions that have different response properties. Our study indicates that there may be slowness of automatic cognitive processing and controlled cognitive processing of visual ERPs compared to auditory ERPs in schizophrenic patients. The activation changes of visual evoked potentials are more regionally specific than auditory evoked potentials. PMID:21542917
Warbrick, Tracy; Reske, Martina; Shah, N Jon
2014-09-22
As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.
Single Trial EEG Patterns for the Prediction of Individual Differences in Fluid Intelligence.
Qazi, Emad-Ul-Haq; Hussain, Muhammad; Aboalsamh, Hatim; Malik, Aamir Saeed; Amin, Hafeez Ullah; Bamatraf, Saeed
2016-01-01
Assessing a person's intelligence level is required in many situations, such as career counseling and clinical applications. EEG evoked potentials in oddball task and fluid intelligence score are correlated because both reflect the cognitive processing and attention. A system for prediction of an individual's fluid intelligence level using single trial Electroencephalography (EEG) signals has been proposed. For this purpose, we employed 2D and 3D contents and 34 subjects each for 2D and 3D, which were divided into low-ability (LA) and high-ability (HA) groups using Raven's Advanced Progressive Matrices (RAPM) test. Using visual oddball cognitive task, neural activity of each group was measured and analyzed over three midline electrodes (Fz, Cz, and Pz). To predict whether an individual belongs to LA or HA group, features were extracted using wavelet decomposition of EEG signals recorded in visual oddball task and support vector machine (SVM) was used as a classifier. Two different types of Haar wavelet transform based features have been extracted from the band (0.3 to 30 Hz) of EEG signals. Statistical wavelet features and wavelet coefficient features from the frequency bands 0.0-1.875 Hz (delta low) and 1.875-3.75 Hz (delta high), resulted in the 100 and 98% prediction accuracies, respectively, both for 2D and 3D contents. The analysis of these frequency bands showed clear difference between LA and HA groups. Further, discriminative values of the features have been validated using statistical significance tests and inter-class and intra-class variation analysis. Also, statistical test showed that there was no effect of 2D and 3D content on the assessment of fluid intelligence level. Comparisons with state-of-the-art techniques showed the superiority of the proposed system.
Age, Intelligence, and Event-Related Brain Potentials during Late Childhood: A Longitudinal Study.
ERIC Educational Resources Information Center
Stauder, Johannes E. A.; van der Molen, Maurits W.; Molenaar, Peter C. M.
2003-01-01
Studied the relationship between event-related brain activity, age, and intelligence using a visual oddball task presented to girls at 9, 10, and 11 years of age. Findings for 26 girls suggest a qualitative shift in the relation between event-related brain activity and intelligence between 9 and 10 years of age. (SLD)
Sata, Yoshimi; Inagaki, Masumi; Shirane, Seiko; Kaga, Makiko
2002-07-01
In order to evaluate developmental change of visual perception, the P300 event-related potentials (ERPs) of visual oddball task were recorded in 34 healthy volunteers ranging from 7 to 37 years of age. The latency and amplitude of visual P300 in response to the Japanese ideogram stimuli (a pair of familiar Kanji characters or unfamiliar Kanji characters) and a pair of meaningless complicated figures were measured. Visual P300 was dominant at parietal area in almost all subjects. There was a significant difference of P300 latency among the three tasks. Reaction time to the both kind of Kanji tasks were significantly shorter than those to the complicated figure task. P300 latencies to the familiar Kanji, unfamiliar Kanji and figure stimuli decreased until 25.8, 26.9 and 29.4 years of age, respectively, and regression analysis revealed that a positive quadratic function could be fitted to the data. Around 9 years of age, the P300 latency/age slope was largest in the unfamiliar Kanji task. These findings suggest that visual P300 development depends on both the complexity of the tasks and specificity of the stimuli, which might reflect the variety in visual information processing.
Morey, Rajendra A; Inan, Seniha; Mitchell, Teresa V; Perkins, Diana O; Lieberman, Jeffrey A; Belger, Aysenil
2005-03-01
Individuals experiencing prodromal symptoms of schizophrenia (ultra-high-risk group) demonstrate impaired performance on tasks of executive function, attention, and working memory. The neurobiological underpinnings of such executive deficits in ultra-high-risk individuals remains unclear. We assessed frontal and striatal functions during a visual oddball continuous performance task, in ultra-high-risk, early, and chronic schizophrenic patients with the use of functional magnetic resonance imaging. Cross-sectional case-control design. Community; outpatient clinic. Patients Fifty-two individuals (control, n = 16; ultra-high risk, n = 10; early, n = 15; chronic, n = 11) from a referred clinical sample and age- and sex-matched control volunteers underwent scanning. Percentage of active voxels and percentage signal change calculated for the anterior cingulate gyrus (ACG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), basal ganglia, and thalamus. Performance on the visual oddball task was measured with percentage of hits and d' (a measure based on the hit rate and the false-alarm rate). The ultra-high-risk group showed significantly smaller differential activation between task-relevant and task-irrelevant stimuli in the frontal regions (ACG, IFG, MFG) than the control group. Frontostriatal activation associated with target stimuli in the early and chronic groups was significantly lower than the control group, while the ultra-high-risk group showed a trend toward the early group. Our findings suggest that prefrontal function begins to decline before the onset of syndromally defined illness and hence may represent a vulnerability marker in assessing the risk of developing psychotic disorders among ultra-high-risk individuals.
Brázdil, Milan; Janeček, Jiří; Klimeš, Petr; Mareček, Radek; Roman, Robert; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Rektor, Ivan; Halámek, Josef; Plešinger, Filip; Jirsa, Viktor
2013-01-01
Using intracerebral EEG recordings in a large cohort of human subjects, we investigate the time course of neural cross-talk during a simple cognitive task. Our results show that human brain dynamics undergo a characteristic sequence of synchronization patterns across different frequency bands following a visual oddball stimulus. In particular, an initial global reorganization in the delta and theta bands (2–8 Hz) is followed by gamma (20–95 Hz) and then beta band (12–20 Hz) synchrony. PMID:23696809
Maclin, Edward L; Mathewson, Kyle E; Low, Kathy A; Boot, Walter R; Kramer, Arthur F; Fabiani, Monica; Gratton, Gabriele
2011-09-01
Changes in attention allocation with complex task learning reflect processing automatization and more efficient control. We studied these changes using ERP and EEG spectral analyses in subjects playing Space Fortress, a complex video game comprising standard cognitive task components. We hypothesized that training would free up attentional resources for a secondary auditory oddball task. Both P3 and delta EEG showed a processing trade-off between game and oddball tasks, but only some game events showed reduced attention requirements with practice. Training magnified a transient increase in alpha power following both primary and secondary task events. This contrasted with alpha suppression observed when the oddball task was performed alone, suggesting that alpha may be related to attention switching. Hence, P3 and EEG spectral data are differentially sensitive to changes in attentional processing occurring with complex task training. Copyright © 2011 Society for Psychophysiological Research.
Liu, Pan; Rigoulot, Simon; Pell, Marc D
2017-12-01
To explore how cultural immersion modulates emotion processing, this study examined how Chinese immigrants to Canada process multisensory emotional expressions, which were compared to existing data from two groups, Chinese and North Americans. Stroop and Oddball paradigms were employed to examine different stages of emotion processing. The Stroop task presented face-voice pairs expressing congruent/incongruent emotions and participants actively judged the emotion of one modality while ignoring the other. A significant effect of cultural immersion was observed in the immigrants' behavioral performance, which showed greater interference from to-be-ignored faces, comparable with what was observed in North Americans. However, this effect was absent in their N400 data, which retained the same pattern as the Chinese. In the Oddball task, where immigrants passively viewed facial expressions with/without simultaneous vocal emotions, they exhibited a larger visual MMN for faces accompanied by voices, again mirroring patterns observed in Chinese. Correlation analyses indicated that the immigrants' living duration in Canada was associated with neural patterns (N400 and visual mismatch negativity) more closely resembling North Americans. Our data suggest that in multisensory emotion processing, adopting to a new culture first leads to behavioral accommodation followed by alterations in brain activities, providing new evidence on human's neurocognitive plasticity in communication.
Bhattacharyya, Sagnik; Crippa, José Alexandre; Allen, Paul; Martin-Santos, Rocio; Borgwardt, Stefan; Fusar-Poli, Paolo; Rubia, Katya; Kambeitz, Joseph; O'Carroll, Colin; Seal, Marc L; Giampietro, Vincent; Brammer, Michael; Zuardi, Antonio Waldo; Atakan, Zerrin; McGuire, Philip K
2012-01-01
The aberrant processing of salience is thought to be a fundamental factor underlying psychosis. Cannabis can induce acute psychotic symptoms, and its chronic use may increase the risk of schizophrenia. We investigated whether its psychotic effects are mediated through an influence on attentional salience processing. To examine the effects of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) on regional brain function during salience processing. Volunteers were studied using event-related functional magnetic resonance imaging on 3 occasions after administration of Δ9-THC, CBD, or placebo while performing a visual oddball detection paradigm that involved allocation of attention to infrequent (oddball) stimuli within a string of frequent (standard) stimuli. University center. Fifteen healthy men with minimal previous cannabis use. Symptom ratings, task performance, and regional brain activation. During the processing of oddball stimuli, relative to placebo, Δ9-THC attenuated activation in the right caudate but augmented it in the right prefrontal cortex. Δ9-Tetrahydrocannabinol also reduced the response latency to standard relative to oddball stimuli. The effect of Δ9-THC in the right caudate was negatively correlated with the severity of the psychotic symptoms it induced and its effect on response latency. The effects of CBD on task-related activation were in the opposite direction of those of Δ9-THC; relative to placebo, CBD augmented left caudate and hippocampal activation but attenuated right prefrontal activation. Δ9-Tetrahydrocannabinol and CBD differentially modulate prefrontal, striatal, and hippocampal function during attentional salience processing. These effects may contribute to the effects of cannabis on psychotic symptoms and on the risk of psychotic disorders.
Parmentier, Fabrice B R; Pacheco-Unguetti, Antonia P; Valero, Sara
2018-01-01
Rare changes in a stream of otherwise repeated task-irrelevant sounds break through selective attention and disrupt performance in an unrelated visual task by triggering shifts of attention to and from the deviant sound (deviance distraction). Evidence indicates that the involuntary orientation of attention to unexpected sounds is followed by their semantic processing. However, past demonstrations relied on tasks in which the meaning of the deviant sounds overlapped with features of the primary task. Here we examine whether such processing is observed when no such overlap is present but sounds carry some relevance to the participants' biological need to eat when hungry. We report the results of an experiment in which hungry and satiated participants partook in a cross-modal oddball task in which they categorized visual digits (odd/even) while ignoring task-irrelevant sounds. On most trials the irrelevant sound was a sinewave tone (standard sound). On the remaining trials, deviant sounds consisted of spoken words related to food (food deviants) or control words (control deviants). Questionnaire data confirmed state (but not trait) differences between the two groups with respect to food craving, as well as a greater desire to eat the food corresponding to the food-related words in the hungry relative to the satiated participants. The results of the oddball task revealed that food deviants produced greater distraction (longer response times) than control deviants in hungry participants while the reverse effect was observed in satiated participants. This effect was observed in the first block of trials but disappeared thereafter, reflecting semantic saturation. Our results suggest that (1) the semantic content of deviant sounds is involuntarily processed even when sharing no feature with the primary task; and that (2) distraction by deviant sounds can be modulated by the participants' biological needs.
Pacheco-Unguetti, Antonia P.; Valero, Sara
2018-01-01
Rare changes in a stream of otherwise repeated task-irrelevant sounds break through selective attention and disrupt performance in an unrelated visual task by triggering shifts of attention to and from the deviant sound (deviance distraction). Evidence indicates that the involuntary orientation of attention to unexpected sounds is followed by their semantic processing. However, past demonstrations relied on tasks in which the meaning of the deviant sounds overlapped with features of the primary task. Here we examine whether such processing is observed when no such overlap is present but sounds carry some relevance to the participants’ biological need to eat when hungry. We report the results of an experiment in which hungry and satiated participants partook in a cross-modal oddball task in which they categorized visual digits (odd/even) while ignoring task-irrelevant sounds. On most trials the irrelevant sound was a sinewave tone (standard sound). On the remaining trials, deviant sounds consisted of spoken words related to food (food deviants) or control words (control deviants). Questionnaire data confirmed state (but not trait) differences between the two groups with respect to food craving, as well as a greater desire to eat the food corresponding to the food-related words in the hungry relative to the satiated participants. The results of the oddball task revealed that food deviants produced greater distraction (longer response times) than control deviants in hungry participants while the reverse effect was observed in satiated participants. This effect was observed in the first block of trials but disappeared thereafter, reflecting semantic saturation. Our results suggest that (1) the semantic content of deviant sounds is involuntarily processed even when sharing no feature with the primary task; and that (2) distraction by deviant sounds can be modulated by the participants’ biological needs. PMID:29300763
ERIC Educational Resources Information Center
Hessler, Dorte; Jonkers, Roel; Stowe, Laurie; Bastiaanse, Roelien
2013-01-01
In the current ERP study, an active oddball task was carried out, testing pure tones and auditory, visual and audiovisual syllables. For pure tones, an MMN, an N2b, and a P3 were found, confirming traditional findings. Auditory syllables evoked an N2 and a P3. We found that the amplitude of the P3 depended on the distance between standard and…
Noradrenergic mechanisms of arousal's bidirectional effects on episodic memory.
Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara
2017-01-01
Arousal's selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal's bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball-1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball-1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball-1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. Copyright © 2016 Elsevier Inc. All rights reserved.
Color categories affect pre-attentive color perception.
Clifford, Alexandra; Holmes, Amanda; Davies, Ian R L; Franklin, Anna
2010-10-01
Categorical perception (CP) of color is the faster and/or more accurate discrimination of colors from different categories than equivalently spaced colors from the same category. Here, we investigate whether color CP at early stages of chromatic processing is independent of top-down modulation from attention. A visual oddball task was employed where frequent and infrequent colored stimuli were either same- or different-category, with chromatic differences equated across conditions. Stimuli were presented peripheral to a central distractor task to elicit an event-related potential (ERP) known as the visual mismatch negativity (vMMN). The vMMN is an index of automatic and pre-attentive visual change detection arising from generating loci in visual cortices. The results revealed a greater vMMN for different-category than same-category change detection when stimuli appeared in the lower visual field, and an absence of attention-related ERP components. The findings provide the first clear evidence for an automatic and pre-attentive categorical code for color. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Beauchamp, Chris M.; Stelmack, Robert M.
2006-01-01
The relation between intelligence and speed of auditory discrimination was investigated during an auditory oddball task with backward masking. In target discrimination conditions that varied in the interval between the target and the masking stimuli and in the tonal frequency of the target and masking stimuli, higher ability participants (HA)…
Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis
Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.
2016-01-01
Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815
NASA Astrophysics Data System (ADS)
Ye, Peng; Wu, Xiang; Gao, Dingguo; Liang, Haowen; Wang, Jiahui; Deng, Shaozhi; Xu, Ningsheng; She, Juncong; Chen, Jun
2017-02-01
The horizontal binocular disparity is a critical factor for the visual fatigue induced by watching stereoscopic TVs. Stereoscopic images that possess the disparity within the ‘comfort zones’ and remain still in the depth direction are considered comfortable to the viewers as 2D images. However, the difference in brain activities between processing such comfortable stereoscopic images and 2D images is still less studied. The DP3 (differential P3) signal refers to an event-related potential (ERP) component indicating attentional processes, which is typically evoked by odd target stimuli among standard stimuli in an oddball task. The present study found that the DP3 signal elicited by the comfortable 3D images exhibits the delayed peak latency and enhanced peak amplitude over the anterior and central scalp regions compared to the 2D images. The finding suggests that compared to the processing of the 2D images, more attentional resources are involved in the processing of the stereoscopic images even though they are subjectively comfortable.
An information theory account of late frontoparietal ERP positivities in cognitive control.
Barceló, Francisco; Cooper, Patrick S
2018-03-01
ERP research on task switching has revealed distinct transient and sustained positive waveforms (latency circa 300-900 ms) while shifting task rules or stimulus-response (S-R) mappings. However, it remains unclear whether such switch-related positivities show similar scalp topography and index context-updating mechanisms akin to those posed for domain-general (i.e., classic P300) positivities in many task domains. To examine this question, ERPs were recorded from 31 young adults (18-30 years) while they were intermittently cued to switch or repeat their perceptual categorization of Gabor gratings varying in color and thickness (switch task), or else they performed two visually identical control tasks (go/no-go and oddball). Our task cueing paradigm examined two temporarily distinct stages of proactive rule updating and reactive rule execution. A simple information theory model helped us gauge cognitive demands under distinct temporal and task contexts in terms of low-level S-R pathways and higher-order rule updating operations. Task demands modulated domain-general (indexed by classic oddball P3) and switch positivities-indexed by both a cue-locked late positive complex and a sustained positivity ensuing task transitions. Topographic scalp analyses confirmed subtle yet significant split-second changes in the configuration of neural sources for both domain-general P3s and switch positivities as a function of both the temporal and task context. These findings partly meet predictions from information estimates, and are compatible with a family of P3-like potentials indexing functionally distinct neural operations within a common frontoparietal "multiple demand" system during the preparation and execution of simple task rules. © 2016 Society for Psychophysiological Research.
Sata, Yoshimi; Inagaki, Masumi; Shirane, Seiko; Kaga, Makiko
2002-11-01
In order to objectively evaluate visual perception of patients with mental retardation (MR), the P300 event-related potentials (ERPs) for visual oddball tasks were recorded in 26 patients and 13 age-matched healthy volunteers. The latency and amplitude of visual P300 in response to the Japanese ideogram stimuli (a pair of familiar Kanji characters or unfamiliar Kanji characters) and a pair of meaningless complicated figures were measured. In almost all MR patients visual P300 was observed, however, the peak latency was significantly prolonged compared to control subjects. There was no significant difference of P300 latency among the three tasks. The distribution pattern of P300 in MR patients was different from that in the controls and the amplitudes in the frontal region was larger in MR patients. The latency decreased with age even in both groups. The developmental change of P300 latency corresponded to developmental age rather than the chronological age. These findings suggest that MR patients have impairment in processing of visual perception. Assessment of P300 latencies to the visual stimuli may be useful as an objective indicator of mental deficit.
do Vale, Sónia; Selinger, Lenka; Martins, João Martin; Bicho, Manuel; do Carmo, Isabel; Escera, Carles
2016-11-10
Several studies have suggested that dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) may enhance working memory and attention, yet current evidence is still inconclusive. The balance between both forms of the hormone might be crucial regarding the effects that DHEA and DHEAS exert on the central nervous system. To test the hypothesis that higher DHEAS-to-DHEA ratios might enhance working memory and/or involuntary attention, we studied the DHEAS-to-DHEA ratio in relation to involuntary attention and working memory processing by recording the electroencephalogram of 22 young women while performing a working memory load task and a task without working memory load in an audio-visual oddball paradigm. DHEA and DHEAS were measured in saliva before each task. We found that a higher DHEAS-to-DHEA ratio was related to enhanced auditory novelty-P3 amplitudes during performance of the working memory task, indicating an increased processing of the distracter, while on the other hand there was no difference in the processing of the visual target. These results suggest that the balance between DHEAS and DHEA levels modulates involuntary attention during the performance of a task with cognitive load without interfering with the processing of the task-relevant visual stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Electrophysiological revelations of trial history effects in a color oddball search task.
Shin, Eunsam; Chong, Sang Chul
2016-12-01
In visual oddball search tasks, viewing a no-target scene (i.e., no-target selection trial) leads to the facilitation or delay of the search time for a target in a subsequent trial. Presumably, this selection failure leads to biasing attentional set and prioritizing stimulus features unseen in the no-target scene. We observed attention-related ERP components and tracked the course of attentional biasing as a function of trial history. Participants were instructed to identify color oddballs (i.e., targets) shown in varied trial sequences. The number of no-target scenes preceding a target scene was increased from zero to two to reinforce attentional biasing, and colors presented in two successive no-target scenes were repeated or changed to systematically bias attention to specific colors. For the no-target scenes, the presentation of a second no-target scene resulted in an early selection of, and sustained attention to, the changed colors (mirrored in the frontal selection positivity, the anterior N2, and the P3b). For the target scenes, the N2pc indicated an earlier allocation of attention to the targets with unseen or remotely seen colors. Inhibitory control of attention, shown in the anterior N2, was greatest when the target scene was followed by repeated no-target scenes with repeated colors. Finally, search times and the P3b were influenced by both color previewing and its history. The current results demonstrate that attentional biasing can occur on a trial-by-trial basis and be influenced by both feature previewing and its history. © 2016 Society for Psychophysiological Research.
Yaguchi, Chie; Fujiwara, Katsuo; Kiyota, Naoe
2017-12-22
Activation timings of postural muscles of lower legs and prediction of postural disturbance were investigated in young and older adults during bilateral arm flexion in a self-timing task and an oddball task with different probabilities of target presentation. Arm flexion was started from a standing posture with hands suspended 10 cm below the horizontal level in front of the body, in which postural control focused on the ankles is important. Fourteen young and 14 older adults raised the arms in response to the target sound signal. Three task conditions were used: 15 and 45% probabilities of the target in the oddball task and self-timing. Analysis items were activation timing of postural muscles (erector spinae, biceps femoris, and gastrocnemius) with respect to the anterior deltoid (AD), and latency and amplitude of the P300 component of event-related brain potential. For young adults, all postural muscles were activated significantly earlier than AD under each condition, and time of preceding gastrocnemius activation was significantly longer in the order of the self-timing, 45 and 15% conditions. P300 latency was significantly shorter, and P300 amplitude was significantly smaller under the 45% condition than under the 15% condition. For older adults, although all postural muscles, including gastrocnemius, were activated significantly earlier than AD in the self-timing condition, only activation timing of gastrocnemius was not significantly earlier than that of AD in oddball tasks, regardless of target probability. No significant differences were found between 15 and 45% conditions in onset times of all postural muscles, and latency and amplitude of P300. These results suggest that during arm movement, young adults can achieve sufficient postural preparation in proportion to the probability of target presentation in the oddball task. Older adults can achieve postural control using ankle joints in the self-timing task. However, in the oddball task, older adults experience difficulty predicting the timing of target presentation, which could be related to deteriorated cognitive function, resulting in reduced use of the ankle joints for postural control.
Heart rate variability and cognitive processing: The autonomic response to task demands.
Luque-Casado, Antonio; Perales, José C; Cárdenas, David; Sanabria, Daniel
2016-01-01
This study investigated variations in heart rate variability (HRV) as a function of cognitive demands. Participants completed an execution condition including the psychomotor vigilance task, a working memory task and a duration discrimination task. The control condition consisted of oddball versions (participants had to detect the rare event) of the tasks from the execution condition, designed to control for the effect of the task parameters (stimulus duration and stimulus rate) on HRV. The NASA-TLX questionnaire was used as a subjective measure of cognitive workload across tasks and conditions. Three major findings emerged from this study. First, HRV varied as a function of task demands (with the lowest values in the working memory task). Second, and crucially, we found similar HRV values when comparing each of the tasks with its oddball control equivalent, and a significant decrement in HRV as a function of time-on-task. Finally, the NASA-TLX results showed larger cognitive workload in the execution condition than in the oddball control condition, and scores variations as a function of task. Taken together, our results suggest that HRV is highly sensitive to overall demands of sustained attention over and above the influence of other cognitive processes suggested by previous literature. In addition, our study highlights a potential dissociation between objective and subjective measures of mental workload, with important implications in applied settings. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Chao; Xu, Jin; Zhao, Songzhen; Lou, Wutao
2016-01-01
The study was dedicated to investigating the change in information processing in brain networks of vascular dementia (VaD) patients during the process of decision making. EEG was recorded from 18 VaD patients and 19 healthy controls when subjects were performing a visual oddball task. The whole task was divided into several stages by using global field power analysis. In the stage related to the decision-making process, graph theoretical analysis was applied to the binary directed network derived from EEG signals at nine electrodes in the frontal, central, and parietal regions in δ (0.5-3.5Hz), θ (4-7Hz), α1 (8-10Hz), α2 (11-13Hz), and β (14-30Hz) frequency bands based on directed transfer function. A weakened outgoing information flow, a decrease in out-degree, and an increase in in-degree were found in the parietal region in VaD patients, compared to healthy controls. In VaD patients, the parietal region may also lose its hub status in brain networks. In addition, the clustering coefficient was significantly lower in VaD patients. Impairment might be present in the parietal region or its connections with other regions, and it may serve as one of the causes for cognitive decline in VaD patients. The brain networks of VaD patients were significantly altered toward random networks. The present study extended our understanding of VaD from the perspective of brain functional networks, and it provided possible interpretations for cognitive deficits in VaD patients. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research
Krigolson, Olave E.; Williams, Chad C.; Norton, Angela; Hassall, Cameron D.; Colino, Francisco L.
2017-01-01
In recent years there has been an increase in the number of portable low-cost electroencephalographic (EEG) systems available to researchers. However, to date the validation of the use of low-cost EEG systems has focused on continuous recording of EEG data and/or the replication of large system EEG setups reliant on event-markers to afford examination of event-related brain potentials (ERP). Here, we demonstrate that it is possible to conduct ERP research without being reliant on event markers using a portable MUSE EEG system and a single computer. Specifically, we report the results of two experiments using data collected with the MUSE EEG system—one using the well-known visual oddball paradigm and the other using a standard reward-learning task. Our results demonstrate that we could observe and quantify the N200 and P300 ERP components in the visual oddball task and the reward positivity (the mirror opposite component to the feedback-related negativity) in the reward-learning task. Specifically, single sample t-tests of component existence (all p's < 0.05), computation of Bayesian credible intervals, and 95% confidence intervals all statistically verified the existence of the N200, P300, and reward positivity in all analyses. We provide with this research paper an open source website with all the instructions, methods, and software to replicate our findings and to provide researchers with an easy way to use the MUSE EEG system for ERP research. Importantly, our work highlights that with a single computer and a portable EEG system such as the MUSE one can conduct ERP research with ease thus greatly extending the possible use of the ERP methodology to a variety of novel contexts. PMID:28344546
Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research.
Krigolson, Olave E; Williams, Chad C; Norton, Angela; Hassall, Cameron D; Colino, Francisco L
2017-01-01
In recent years there has been an increase in the number of portable low-cost electroencephalographic (EEG) systems available to researchers. However, to date the validation of the use of low-cost EEG systems has focused on continuous recording of EEG data and/or the replication of large system EEG setups reliant on event-markers to afford examination of event-related brain potentials (ERP). Here, we demonstrate that it is possible to conduct ERP research without being reliant on event markers using a portable MUSE EEG system and a single computer. Specifically, we report the results of two experiments using data collected with the MUSE EEG system-one using the well-known visual oddball paradigm and the other using a standard reward-learning task. Our results demonstrate that we could observe and quantify the N200 and P300 ERP components in the visual oddball task and the reward positivity (the mirror opposite component to the feedback-related negativity) in the reward-learning task. Specifically, single sample t -tests of component existence (all p 's < 0.05), computation of Bayesian credible intervals, and 95% confidence intervals all statistically verified the existence of the N200, P300, and reward positivity in all analyses. We provide with this research paper an open source website with all the instructions, methods, and software to replicate our findings and to provide researchers with an easy way to use the MUSE EEG system for ERP research. Importantly, our work highlights that with a single computer and a portable EEG system such as the MUSE one can conduct ERP research with ease thus greatly extending the possible use of the ERP methodology to a variety of novel contexts.
Menzel, Claudia; Kovács, Gyula; Amado, Catarina; Hayn-Leichsenring, Gregor U; Redies, Christoph
2018-05-06
In complex abstract art, image composition (i.e., the artist's deliberate arrangement of pictorial elements) is an important aesthetic feature. We investigated whether the human brain detects image composition in abstract artworks automatically (i.e., independently of the experimental task). To this aim, we studied whether a group of 20 original artworks elicited a visual mismatch negativity when contrasted with a group of 20 images that were composed of the same pictorial elements as the originals, but in shuffled arrangements, which destroy artistic composition. We used a passive oddball paradigm with parallel electroencephalogram recordings to investigate the detection of image type-specific properties. We observed significant deviant-standard differences for the shuffled and original images, respectively. Furthermore, for both types of images, differences in amplitudes correlated with the behavioral ratings of the images. In conclusion, we show that the human brain can detect composition-related image properties in visual artworks in an automatic fashion. Copyright © 2018 Elsevier B.V. All rights reserved.
Cultural differences in on-line sensitivity to emotional voices: comparing East and West
Liu, Pan; Rigoulot, Simon; Pell, Marc D.
2015-01-01
Evidence that culture modulates on-line neural responses to the emotional meanings encoded by vocal and facial expressions was demonstrated recently in a study comparing English North Americans and Chinese (Liu et al., 2015). Here, we compared how individuals from these two cultures passively respond to emotional cues from faces and voices using an Oddball task. Participants viewed in-group emotional faces, with or without simultaneous vocal expressions, while performing a face-irrelevant visual task as the EEG was recorded. A significantly larger visual Mismatch Negativity (vMMN) was observed for Chinese vs. English participants when faces were accompanied by voices, suggesting that Chinese were influenced to a larger extent by task-irrelevant vocal cues. These data highlight further differences in how adults from East Asian vs. Western cultures process socio-emotional cues, arguing that distinct cultural practices in communication (e.g., display rules) shape neurocognitive activity associated with the early perception and integration of multi-sensory emotional cues. PMID:26074808
Distraction by emotional sounds: Disentangling arousal benefits and orienting costs.
Max, Caroline; Widmann, Andreas; Kotz, Sonja A; Schröger, Erich; Wetzel, Nicole
2015-08-01
Unexpectedly occurring task-irrelevant stimuli have been shown to impair performance. They capture attention away from the main task leaving fewer resources for target processing. However, the actual distraction effect depends on various variables; for example, only target-informative distractors have been shown to cause costs of attentional orienting. Furthermore, recent studies have shown that high arousing emotional distractors, as compared with low arousing neutral distractors, can improve performance by increasing alertness. We aimed to separate costs of attentional orienting and benefits of arousal by presenting negative and neutral environmental sounds (novels) as oddballs in an auditory-visual distraction paradigm. Participants categorized pictures while task-irrelevant sounds preceded visual targets in two conditions: (a) informative sounds reliably signaled onset and occurrence of visual targets, and (b) noninformative sounds occurred unrelated to visual targets. Results confirmed that only informative novels yield distraction. Importantly, irrespective of sounds' informational value participants responded faster in trials with high arousing negative as compared with moderately arousing neutral novels. That is, costs related to attentional orienting are modulated by information, whereas benefits related to emotional arousal are independent of a sound's informational value. This favors a nonspecific facilitating cross-modal influence of emotional arousal on visual task performance and suggests that behavioral distraction by noninformative novels is controlled after their motivational significance has been determined. (c) 2015 APA, all rights reserved).
Event-related wave activity in the EEG provides new marker of ADHD.
Alexander, David M; Hermens, Daniel F; Keage, Hannah A D; Clark, C Richard; Williams, Leanne M; Kohn, Michael R; Clarke, Simon D; Lamb, Chris; Gordon, Evian
2008-01-01
This study examines the utility of new measures of event-related spatio-temporal waves in the EEG as a marker of ADHD, previously shown to be closely related to the P3 ERP in an adult sample. Wave activity in the EEG was assessed during both an auditory Oddball and a visual continuous performance task (CPT) for an ADHD group ranging in age from 6 to 18 years and comprising mostly Combined and Inattentive subtypes, and for an age and gender matched control group. The ADHD subjects had less wave activity at low frequencies ( approximately 1 Hz) during both tasks. For auditory Oddball targets, this effect was shown to be related to smaller P3 ERP amplitudes. During CPT, the approximately 1 Hz wave activity in the ADHD subjects was inversely related to clinical and behavioral measures of hyperactivity and impulsivity. CPT wave activity at approximately 1 Hz was seen to "normalise" following treatment with stimulant medication. The results identify a deficit in low frequency wave activity as a new marker for ADHD associated with levels of hyperactivity and impulsivity. The marker is evident across a range of tasks and may be specific to ADHD. While lower approximately 1 Hz activity partly accounts for reduced P3 ERPs in ADHD, the effect also arises for tasks that do not elicit a P3. Deficits in behavioral inhibition are hypothesized to arise from underlying dysregulation of cortical inhibition.
Shirane, Seiko; Inagaki, Masumi; Sata, Yoshimi; Kaga, Makiko
2004-07-01
In order to evaluate visual perception, the P300 event-related potentials (ERPs) for visual oddball tasks were recorded in 11 patients with attention deficit/hyperactivity disorders (AD/HD), 12 with mental retardation (MR) and 14 age-matched healthy controls. With the aim of revealing trial-to-trial variabilities which are neglected by investigating averaged ERPs, single sweep P300s (ss-P300s) were assessed in addition to averaged P300. There were no significant differences of averaged P300 latency and amplitude between controls and AD/HD patients. AD/HD patients showed an increased variability in the amplitude of ss-P300s, while MR patient showed an increased variability in latency. These findings suggest that in AD/HD patients general attention is impaired to a larger extent than selective attention and visual perception.
Approximate entropy analysis of event-related potentials in patients with early vascular dementia.
Xu, Jin; Sheng, Hengsong; Lou, Wutao; Zhao, Songzhen
2012-06-01
This study investigated differences in event-related potential (ERP) parameters among early vascular dementia (VD) patients, healthy elder controls (ECs), and young controls (YCs). A visual "oddball" color identification task was performed while individuals' electroencephalograms (EEGs) were recorded. Approximate entropy (ApEn), a nonlinear measure, along with P300 latencies and amplitudes were used to analyze ERP data and compare these three groups. The patients with VD showed more complex ERP waveforms and higher ApEn values than did ECs while performing the visual task. It was further found that patients with VD showed reduced P300 amplitudes and increased latencies. The results indicate that patients with VD have fewer attention resources to devote to processing stimuli, lower speed of stimulus classification, and lower synchrony in their cortical activity during the response period. We suggest that ApEn, as a measure of ERP complexity, is a promising marker for early diagnosis of VD.
Combaz, Adrien; Van Hulle, Marc M
2015-01-01
We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.
Noradrenergic Mechanisms of Arousal’s Bidirectional Effects on Episodic Memory
Clewett, David; Sakaki, Michiko; Nielsen, Shawn; Petzinger, Giselle; Mather, Mara
2016-01-01
Arousal’s selective effects on cognition go beyond the simple enhancement of emotional stimuli, sometimes enhancing and other times impairing processing of proximal neutral information. Past work shows that arousal impairs encoding of subsequent neutral stimuli regardless of their top-down priority via the engagement of β-adrenoreceptors. In contrast, retrograde amnesia induced by emotional arousal can flip to enhancement when preceding neutral items are prioritized in top-down attention. Whether β-adrenoreceptors also contribute to this retrograde memory enhancement of goal-relevant neutral stimuli is unclear. In this pharmacological study, we administered 40mg of propranolol or 40mg of placebo to healthy young adults to examine whether emotional arousal’s bidirectional effects on declarative memory relies on β-adrenoreceptor activation. Following pill intake, participants completed an emotional oddball task in which they were asked to prioritize a neutral object appearing just before an emotional or neutral oddball image within a sequence of 7 neutral objects. Under placebo, emotional oddballs impaired memory for lower priority oddball+1 objects but had no effect on memory for high priority oddball−1 objects. Propranolol blocked this anterograde amnesic effect of arousal. Emotional oddballs also enhanced selective memory trade-offs significantly more in the placebo than drug condition, such that high priority oddball−1 objects were more likely to be remembered at the cost of their corresponding lower priority oddball+1 objects under arousal. Lastly, those who recalled more high priority oddball−1 objects preceding an emotional versus neutral oddball image showed greater increases in salivary alpha-amylase, a biomarker of noradrenergic system activation, across the task. Together these findings suggest that different noradrenergic mechanisms contribute to the anterograde and retrograde mnemonic effects of arousal on proximal neutral memoranda. PMID:27815214
Emri, Miklós; Glaub, Teodóra; Berecz, Roland; Lengyel, Zsolt; Mikecz, Pál; Repa, Imre; Bartók, Eniko; Degrell, István; Trón, Lajos
2006-05-01
Cognitive deficit is an essential feature of schizophrenia. One of the generally used simple cognitive tasks to characterize specific cognitive dysfunctions is the auditory "oddball" paradigm. During this task, two different tones are presented with different repetition frequencies and the subject is asked to pay attention and to respond to the less frequent tone. The aim of the present study was to apply positron emission tomography (PET) to measure the regional brain blood flow changes induced by an auditory oddball task in healthy volunteers and in stable schizophrenic patients in order to detect activation differences between the two groups. Eight healthy volunteers and 11 schizophrenic patients were studied. The subjects carried out a specific auditory oddball task, while cerebral activation measured via the regional distribution of [15O]-butanol activity changes in the PET camera was recorded. Task-related activation differed significantly across the patients and controls. The healthy volunteers displayed significant activation in the anterior cingulate area (Brodman Area - BA32), while in the schizophrenic patients the area was wider, including the mediofrontal regions (BA32 and BA10). The distance between the locations of maximal activation of the two populations were 33 mm and the cluster size was about twice as large in the patient group. The present results demonstrate that the perfusion changes induced in the schizophrenic patients by this cognitive task extends over a larger part of the mediofrontal cortex than in the healthy volunteers. The different pattern of activation observed during the auditory oddball task in the schizophrenic patients suggests that a larger cortical area - and consequently a larger variety of neuronal networks--is involved in the cognitive processes in these patients. The dispersion of stimulus processing during a cognitive task requiring sustained attention and stimulus discrimination may play an important role in the pathomechanism of the disorder.
Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA.
Labounek, René; Bridwell, David A; Mareček, Radek; Lamoš, Martin; Mikl, Michal; Slavíček, Tomáš; Bednařík, Petr; Baštinec, Jaromír; Hluštík, Petr; Brázdil, Milan; Jan, Jiří
2018-01-01
Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.
Electrophysiological measurement of interest during walking in a simulated environment.
Takeda, Yuji; Okuma, Takashi; Kimura, Motohiro; Kurata, Takeshi; Takenaka, Takeshi; Iwaki, Sunao
2014-09-01
A reliable neuroscientific technique for objectively estimating the degree of interest in a real environment is currently required in the research fields of neuroergonomics and neuroeconomics. Toward the development of such a technique, the present study explored electrophysiological measures that reflect an observer's interest in a nearly-real visual environment. Participants were asked to walk through a simulated shopping mall and the attractiveness of the shopping mall was manipulated by opening and closing the shutters of stores. During the walking task, participants were exposed to task-irrelevant auditory probes (two-stimulus oddball sequence). The results showed a smaller P2/early P3a component of task-irrelevant auditory event-related potentials and a larger lambda response of eye-fixation-related potentials in an interesting environment (i.e., open-shutter condition) than in a boring environment (i.e., closed-shutter condition); these findings can be reasonably explained by supposing that participants allocated more attentional resources to visual information in an interesting environment than in a boring environment, and thus residual attentional resources that could be allocated to task-irrelevant auditory probes were reduced. The P2/early P3a component and the lambda response may be useful measures of interest in a real visual environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Calhoun, V D; Adali, T; Giuliani, N R; Pekar, J J; Kiehl, K A; Pearlson, G D
2006-01-01
The acquisition of both structural MRI (sMRI) and functional MRI (fMRI) data for a given study is a very common practice. However, these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform independent component analysis across image modalities, specifically, gray matter images and fMRI activation images as well as a joint histogram visualization technique. Joint independent component analysis (jICA) is used to decompose a matrix with a given row consisting of an fMRI activation image resulting from auditory oddball target stimuli and an sMRI gray matter segmentation image, collected from the same individual. We analyzed data collected on a group of schizophrenia patients and healthy controls using the jICA approach. Spatially independent joint-components are estimated and resulting components were further analyzed only if they showed a significant difference between patients and controls. The main finding was that group differences in bilateral parietal and frontal as well as posterior temporal regions in gray matter were associated with bilateral temporal regions activated by the auditory oddball target stimuli. A finding of less patient gray matter and less hemodynamic activity for target detection in these bilateral anterior temporal lobe regions was consistent with previous work. An unexpected corollary to this finding was that, in the regions showing the largest group differences, gray matter concentrations were larger in patients vs. controls, suggesting that more gray matter may be related to less functional connectivity in the auditory oddball fMRI task. Hum Brain Mapp, 2005. (c) 2005 Wiley-Liss, Inc.
Wester, Anne E; Verster, Joris C; Volkerts, Edmund R; Böcker, Koen B E; Kenemans, J Leon
2010-09-01
Driving is a complex task and is susceptible to inattention and distraction. Moreover, alcohol has a detrimental effect on driving performance, possibly due to alcohol-induced attention deficits. The aim of the present study was to assess the effects of alcohol on simulated driving performance and attention orienting and allocation, as assessed by event-related potentials (ERPs). Thirty-two participants completed two test runs in the Divided Attention Steering Simulator (DASS) with blood alcohol concentrations (BACs) of 0.00%, 0.02%, 0.05%, 0.08% and 0.10%. Sixteen participants performed the second DASS test run with a passive auditory oddball to assess alcohol effects on involuntary attention shifting. Sixteen other participants performed the second DASS test run with an active auditory oddball to assess alcohol effects on dual-task performance and active attention allocation. Dose-dependent impairments were found for reaction times, the number of misses and steering error, even more so in dual-task conditions, especially in the active oddball group. ERP amplitudes to novel irrelevant events were also attenuated in a dose-dependent manner. The P3b amplitude to deviant target stimuli decreased with blood alcohol concentration only in the dual-task condition. It is concluded that alcohol increases distractibility and interference from secondary task stimuli, as well as reduces attentional capacity and dual-task integrality.
Aliakbaryhosseinabadi, Susan; Kostic, Vladimir; Pavlovic, Aleksandra; Radovanovic, Sasa; Nlandu Kamavuako, Ernest; Jiang, Ning; Petrini, Laura; Dremstrup, Kim; Farina, Dario; Mrachacz-Kersting, Natalie
2017-01-01
In this study, we analyzed the influence of artificially imposed attention variations using the auditory oddball paradigm on the cortical activity associated to motor preparation/execution. EEG signals from Cz and its surrounding channels were recorded during three sets of ankle dorsiflexion movements. Each set was interspersed with either a complex or a simple auditory oddball task for healthy participants and a complex auditory oddball task for stroke patients. The amplitude of the movement-related cortical potentials (MRCPs) decreased with the complex oddball paradigm, while MRCP variability increased. Both oddball paradigms increased the detection latency significantly (p<0.05) and the complex paradigm decreased the true positive rate (TPR) (p=0.04). In patients, the negativity of the MRCP decreased while pre-phase variability increased, and the detection latency and accuracy deteriorated with attention diversion. Attention diversion has a significant influence on MRCP features and detection parameters, although these changes were counteracted by the application of the laplacian method. Brain-computer interfaces for neuromodulation that use the MRCP as the control signal are robust to changes in attention. However, attention must be monitored since it plays a key role in plasticity induction. Here we demonstrate that this can be achieved using the single channel Cz. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie
2017-11-01
Dual tasking is defined as performing two tasks concurrently and has been shown to have a significant effect on attention directed to the performance of the main task. In this study, an attention diversion task with two different levels was administered while participants had to complete a cue-based motor task consisting of foot dorsiflexion. An auditory oddball task with two levels of complexity was implemented to divert the user's attention. Electroencephalographic (EEG) recordings were made from nine single channels. Event-related potentials (ERPs) confirmed that the oddball task of counting a sequence of two tones decreased the auditory P300 amplitude more than the oddball task of counting one target tone among three different tones. Pre-movement features quantified from the movement-related cortical potential (MRCP) were changed significantly between single and dual-task conditions in motor and fronto-central channels. There was a significant delay in movement detection for the case of single tone counting in two motor channels only (237.1-247.4ms). For the task of sequence counting, motor cortex and frontal channels showed a significant delay in MRCP detection (232.1-250.5ms). This study investigated the effect of attention diversion in dual-task conditions by analysing both ERPs and MRCPs in single channels. The higher attention diversion lead to a significant reduction in specific MRCP features of the motor task. These results suggest that attention division in dual-tasking situations plays an important role in movement execution and detection. This has important implications in designing real-time brain-computer interface systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Brain correlates of automatic visual change detection.
Cléry, H; Andersson, F; Fonlupt, P; Gomot, M
2013-07-15
A number of studies support the presence of visual automatic detection of change, but little is known about the brain generators involved in such processing and about the modulation of brain activity according to the salience of the stimulus. The study presented here was designed to locate the brain activity elicited by unattended visual deviant and novel stimuli using fMRI. Seventeen adult participants were presented with a passive visual oddball sequence while performing a concurrent visual task. Variations in BOLD signal were observed in the modality-specific sensory cortex, but also in non-specific areas involved in preattentional processing of changing events. A degree-of-deviance effect was observed, since novel stimuli elicited more activity in the sensory occipital regions and at the medial frontal site than small changes. These findings could be compared to those obtained in the auditory modality and might suggest a "general" change detection process operating in several sensory modalities. Copyright © 2013 Elsevier Inc. All rights reserved.
The relationship between sustained attention and aerobic fitness in a group of young adults.
Ciria, Luis F; Perakakis, Pandelis; Luque-Casado, Antonio; Morato, Cristina; Sanabria, Daniel
2017-01-01
A growing set of studies has shown a positive relationship between aerobic fitness and a broad array of cognitive functions. However, few studies have focused on sustained attention, which has been considered a fundamental cognitive process that underlies most everyday activities. The purpose of this study was to investigate the role of aerobic fitness as a key factor in sustained attention capacities in young adults. Forty-four young adults (18-23 years) were divided into two groups as a function of the level of aerobic fitness (high-fit and low-fit). Participants completed the Psychomotor Vigilance Task (PVT) and an oddball task where they had to detect infrequent targets presented among frequent non-targets. The analysis of variance (ANOVA) showed faster responses for the high-fit group than for the low-fit group in the PVT, replicating previous accounts. In the oddball task, the high-fit group maintained their accuracy (ACC) rate of target detection over time, while the low-fit group suffered a significant decline of response ACC throughout the task. Importantly, the results show that the greater sustained attention capacity of high-fit young adults is not specific to a reaction time (RT) sustained attention task like the PVT, but it is also evident in an ACC oddball task. In sum, the present findings point to the important role of aerobic fitness on sustained attention capacities in young adults.
Effects of task demands on the early neural processing of fearful and happy facial expressions
Itier, Roxane J.; Neath-Tavares, Karly N.
2017-01-01
Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200–350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150–350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. PMID:28315309
Identifying a "default" visual search mode with operant conditioning.
Kawahara, Jun-ichiro
2010-09-01
The presence of a singleton in a task-irrelevant domain can impair visual search. This impairment, known as the attentional capture depends on the set of participants. When narrowly searching for a specific feature (the feature search mode), only matching stimuli capture attention. When searching broadly (the singleton detection mode), any oddball captures attention. The present study examined which strategy represents the "default" mode using an operant conditioning approach in which participants were trained, in the absence of explicit instructions, to search for a target in an ambiguous context in which one of two modes was available. The results revealed that participants behaviorally adopted the singleton detection as the default mode but reported using the feature search mode. Conscious strategies did not eliminate capture. These results challenge the view that a conscious set always modulates capture, suggesting that the visual system tends to rely on stimulus salience to deploy attention.
Forder, Lewis; He, Xun; Franklin, Anna
2017-01-01
Debate exists about the time course of the effect of colour categories on visual processing. We investigated the effect of colour categories for two groups who differed in whether they categorised a blue-green boundary colour as the same- or different-category to a reliably-named blue colour and a reliably-named green colour. Colour differences were equated in just-noticeable differences to be equally discriminable. We analysed event-related potentials for these colours elicited on a passive visual oddball task and investigated the time course of categorical effects on colour processing. Support for category effects was found 100 ms after stimulus onset, and over frontal sites around 250 ms, suggesting that colour naming affects both early sensory and later stages of chromatic processing.
He, Xun; Franklin, Anna
2017-01-01
Debate exists about the time course of the effect of colour categories on visual processing. We investigated the effect of colour categories for two groups who differed in whether they categorised a blue-green boundary colour as the same- or different-category to a reliably-named blue colour and a reliably-named green colour. Colour differences were equated in just-noticeable differences to be equally discriminable. We analysed event-related potentials for these colours elicited on a passive visual oddball task and investigated the time course of categorical effects on colour processing. Support for category effects was found 100 ms after stimulus onset, and over frontal sites around 250 ms, suggesting that colour naming affects both early sensory and later stages of chromatic processing. PMID:28542426
Anderson, Nathaniel E; Maurer, J Michael; Steele, Vaughn R; Kiehl, Kent A
2018-06-01
Psychopathy is a personality disorder accompanied by abnormalities in emotional processing and attention. Recent theoretical applications of network-based models of cognition have been used to explain the diverse range of abnormalities apparent in psychopathy. Still, the physiological basis for these abnormalities is not well understood. A significant body of work has examined psychopathy-related abnormalities in simple attention-based tasks, but these studies have largely been performed using electrocortical measures, such as event-related potentials (ERPs), and they often have been carried out among individuals with low levels of psychopathic traits. In this study, we examined neural activity during an auditory oddball task using functional magnetic resonance imaging (fMRI) during a simple auditory target detection (oddball) task among 168 incarcerated adult males, with psychopathic traits assessed via the Hare Psychopathy Checklist-Revised (PCL-R). Event-related contrasts demonstrated that the largest psychopathy-related effects were apparent between the frequent standard stimulus condition and a task-off, implicit baseline. Negative correlations with interpersonal-affective dimensions (Factor 1) of the PCL-R were apparent in regions comprising default mode and salience networks. These findings support models of psychopathy describing impaired integration across functional networks. They additionally corroborate reports which have implicated failures of efficient transition between default mode and task-positive networks. Finally, they demonstrate a neurophysiological basis for abnormal mobilization of attention and reduced engagement with stimuli that have little motivational significance among those with high psychopathic traits.
A dual contribution to the involuntary semantic processing of unexpected spoken words.
Parmentier, Fabrice B R; Turner, Jacqueline; Perez, Laura
2014-02-01
Sounds are a major cause of distraction. Unexpected to-be-ignored auditory stimuli presented in the context of an otherwise repetitive acoustic background ineluctably break through selective attention and distract people from an unrelated visual task (deviance distraction). This involuntary capture of attention by deviant sounds has been hypothesized to trigger their semantic appraisal and, in some circumstances, interfere with ongoing performance, but it remains unclear how such processing compares with the automatic processing of distractors in classic interference tasks (e.g., Stroop, flanker, Simon tasks). Using a cross-modal oddball task, we assessed the involuntary semantic processing of deviant sounds in the presence and absence of deviance distraction. The results revealed that some involuntary semantic analysis of spoken distractors occurs in the absence of deviance distraction but that this processing is significantly greater in its presence. We conclude that the automatic processing of spoken distractors reflects 2 contributions, one that is contingent upon deviance distraction and one that is independent from it.
Mo, Lei; Xu, Guiping; Kay, Paul; Tan, Li-Hai
2011-01-01
Previous studies have shown that the effect of language on categorical perception of color is stronger when stimuli are presented in the right visual field than in the left. To examine whether this lateralized effect occurs preattentively at an early stage of processing, we monitored the visual mismatch negativity, which is a component of the event-related potential of the brain to an unfamiliar stimulus among a temporally presented series of stimuli. In the oddball paradigm we used, the deviant stimuli were unrelated to the explicit task. A significant interaction between color-pair type (within-category vs. between-category) and visual field (left vs. right) was found. The amplitude of the visual mismatch negativity component evoked by the within-category deviant was significantly smaller than that evoked by the between-category deviant when displayed in the right visual field, but no such difference was observed for the left visual field. This result constitutes electroencephalographic evidence that the lateralized Whorf effect per se occurs out of awareness and at an early stage of processing. PMID:21844340
Morlet, Dominique; Ruby, Perrine; André-Obadia, Nathalie; Fischer, Catherine
2017-11-01
Active paradigms requiring subjects to engage in a mental task on request have been developed to detect consciousness in behaviorally unresponsive patients. Using auditory ERPs, the active condition consists in orienting patient's attention toward oddball stimuli. In comparison with passive listening, larger P300 in the active condition identifies voluntary processes. However, contrast between these two conditions is usually too weak to be detected at the individual level. To improve test sensitivity, we propose as a control condition to actively divert the subject's attention from the auditory stimuli with a mental imagery task that has been demonstrated to be within the grasp of the targeted patients: navigate in one's home. Twenty healthy subjects were presented with a two-tone oddball paradigm in the three following condition: (a) passive listening, (b) mental imagery, (c) silent counting of deviant stimuli. Mental imagery proved to be more efficient than passive listening to lessen P300 response to deviant tones as compared with the active counting condition. An effect of attention manipulation (oriented vs. diverted) was observed in 19/20 subjects, of whom 18 showed the expected P300 effect and 1 showed an effect restricted to the N2 component. The only subject showing no effect also proved insufficient engagement in the tasks. Our study demonstrated the efficiency of diverting attention using mental imagery to improve the sensitivity of the active oddball paradigm. Using recorded instructions and requiring a small number of electrodes, the test was designed to be conveniently and economically used at the patient's bedside. © 2017 Society for Psychophysiological Research.
Emotionally negative pictures increase attention to a subsequent auditory stimulus.
Tartar, Jaime L; de Almeida, Kristen; McIntosh, Roger C; Rosselli, Monica; Nash, Allan J
2012-01-01
Emotionally negative stimuli serve as a mechanism of biological preparedness to enhance attention. We hypothesized that emotionally negative stimuli would also serve as motivational priming to increase attention resources for subsequent stimuli. To that end, we tested 11 participants in a dual sensory modality task, wherein emotionally negative pictures were contrasted with emotionally neutral pictures and each picture was followed 600 ms later by a tone in an auditory oddball paradigm. Each trial began with a picture displayed for 200 ms; half of the trials began with an emotionally negative picture and half of the trials began with an emotionally neutral picture; 600 ms following picture presentation, the participants heard either an oddball tone or a standard tone. At the end of each trial (picture followed by tone), the participants categorized, with a button press, the picture and tone combination. As expected, and consistent with previous studies, we found an enhanced visual late positive potential (latency range=300-700 ms) to the negative picture stimuli. We further found that compared to neutral pictures, negative pictures resulted in early attention and orienting effects to subsequent tones (measured through an enhanced N1 and N2) and sustained attention effects only to the subsequent oddball tones (measured through late processing negativity, latency range=400-700 ms). Number pad responses to both the picture and tone category showed the shortest response latencies and greatest percentage of correct picture-tone categorization on the negative picture followed by oddball tone trials. Consistent with previous work on natural selective attention, our results support the idea that emotional stimuli can alter attention resource allocation. This finding has broad implications for human attention and performance as it specifically shows the conditions in which an emotionally negative stimulus can result in extended stimulus evaluation. Copyright © 2011 Elsevier B.V. All rights reserved.
Effects of task demands on the early neural processing of fearful and happy facial expressions.
Itier, Roxane J; Neath-Tavares, Karly N
2017-05-15
Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200 to 350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150 to 350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. Copyright © 2017 Elsevier B.V. All rights reserved.
Steiner, Genevieve Z.; Barry, Robert J.; Gonsalvez, Craig J.
2016-01-01
In oddball tasks, increasing the time between stimuli within a particular condition (target-to-target interval, TTI; nontarget-to-nontarget interval, NNI) systematically enhances N1, P2, and P300 event-related potential (ERP) component amplitudes. This study examined the mechanism underpinning these effects in ERP components recorded from 28 adults who completed a conventional three-tone oddball task. Bivariate correlations, partial correlations and multiple regression explored component changes due to preceding ERP component amplitudes and intervals found within the stimulus series, rather than constraining the task with experimentally constructed intervals, which has been adequately explored in prior studies. Multiple regression showed that for targets, N1 and TTI predicted N2, TTI predicted P3a and P3b, and Processing Negativity (PN), P3b, and TTI predicted reaction time. For rare nontargets, P1 predicted N1, NNI predicted N2, and N1 predicted Slow Wave (SW). Findings show that the mechanism is operating on separate stages of stimulus-processing, suggestive of either increased activation within a number of stimulus-specific pathways, or very long component generator recovery cycles. These results demonstrate the extent to which matching-stimulus intervals influence ERP component amplitudes and behavior in a three-tone oddball task, and should be taken into account when designing similar studies. PMID:27445774
Steiner, Genevieve Z; Barry, Robert J; Gonsalvez, Craig J
2016-01-01
In oddball tasks, increasing the time between stimuli within a particular condition (target-to-target interval, TTI; nontarget-to-nontarget interval, NNI) systematically enhances N1, P2, and P300 event-related potential (ERP) component amplitudes. This study examined the mechanism underpinning these effects in ERP components recorded from 28 adults who completed a conventional three-tone oddball task. Bivariate correlations, partial correlations and multiple regression explored component changes due to preceding ERP component amplitudes and intervals found within the stimulus series, rather than constraining the task with experimentally constructed intervals, which has been adequately explored in prior studies. Multiple regression showed that for targets, N1 and TTI predicted N2, TTI predicted P3a and P3b, and Processing Negativity (PN), P3b, and TTI predicted reaction time. For rare nontargets, P1 predicted N1, NNI predicted N2, and N1 predicted Slow Wave (SW). Findings show that the mechanism is operating on separate stages of stimulus-processing, suggestive of either increased activation within a number of stimulus-specific pathways, or very long component generator recovery cycles. These results demonstrate the extent to which matching-stimulus intervals influence ERP component amplitudes and behavior in a three-tone oddball task, and should be taken into account when designing similar studies.
Demirci, Oguz; Stevens, Michael C.; Andreasen, Nancy C.; Michael, Andrew; Liu, Jingyu; White, Tonya; Pearlson, Godfrey D.; Clark, Vincent P.; Calhoun, Vince D.
2009-01-01
Functional network connectivity (FNC) is an approach that examines the relationships between brain networks (as opposed to functional connectivity (FC) that focuses upon the relationships between single voxels). FNC may help explain the complex relationships between distributed cerebral sites in the brain and possibly provide new understanding of neurological and psychiatric disorders such as schizophrenia. In this paper, we use independent component analysis (ICA) to extract the time courses of spatially independent components and then use these in Granger causality test (GCT) to investigate causal relationships between brain activation networks. We present results using both simulations and fMRI data of 155 subjects obtained during two different tasks. Unlike previous research, causal relationships are presented over different portions of the frequency spectrum in order to differentiate high and low frequency effects and not merged in a scalar. The results obtained using Sternberg item recognition paradigm (SIRP) and auditory oddball (AOD) tasks showed FNC differentiations between schizophrenia and control groups, and explained how the two groups differed during these tasks. During the SIRP task, secondary visual and cerebellum activation networks served as hubs and included most complex relationships between the activated regions. Secondary visual and temporal lobe activations replaced these components during the AOD task. PMID:19245841
P300 component of event-related potentials in persons with asperger disorder.
Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Yamagata, Bun; Hashimoto, Ryuichiro; Kanai, Chieko; Takashio, Osamu; Inamoto, Atsuko; Ono, Taisei; Takayama, Yukiko; Kato, Nobumasa
2014-10-01
In the present study, we investigated auditory event-related potentials in adults with Asperger disorder and normal controls using an auditory oddball task and a novelty oddball task. Task performance and the latencies of P300 evoked by both target and novel stimuli in the two tasks did not differ between the two groups. Analysis of variance revealed that there was a significant interaction effect between group and electrode site on the mean amplitude of the P300 evoked by novel stimuli, which indicated that there was an altered distribution of the P300 in persons with Asperger disorder. In contrast, there was no significant interaction effect on the mean P300 amplitude elicited by target stimuli. Considering that P300 comprises two main subcomponents, frontal-central-dominant P3a and parietal-dominant P3b, our results suggested that persons with Asperger disorder have enhanced amplitude of P3a, which indicated activated prefrontal function in this task.
Neural correlates of emotional intelligence in a visual emotional oddball task: an ERP study.
Raz, Sivan; Dan, Orrie; Zysberg, Leehu
2014-11-01
The present study was aimed at identifying potential behavioral and neural correlates of Emotional Intelligence (EI) by using scalp-recorded Event-Related Potentials (ERPs). EI levels were defined according to both self-report questionnaire and a performance-based ability test. We identified ERP correlates of emotional processing by using a visual-emotional oddball paradigm, in which subjects were confronted with one frequent standard stimulus (a neutral face) and two deviant stimuli (a happy and an angry face). The effects of these faces were then compared across groups with low and high EI levels. The ERP results indicate that participants with high EI exhibited significantly greater mean amplitudes of the P1, P2, N2, and P3 ERP components in response to emotional and neutral faces, at frontal, posterior-parietal and occipital scalp locations. P1, P2 and N2 are considered indexes of attention-related processes and have been associated with early attention to emotional stimuli. The later P3 component has been thought to reflect more elaborative, top-down, emotional information processing including emotional evaluation and memory encoding and formation. These results may suggest greater recruitment of resources to process all emotional and non-emotional faces at early and late processing stages among individuals with higher EI. The present study underscores the usefulness of ERP methodology as a sensitive measure for the study of emotional stimuli processing in the research field of EI. Copyright © 2014 Elsevier Inc. All rights reserved.
Diminished n1 auditory evoked potentials to oddball stimuli in misophonia patients.
Schröder, Arjan; van Diepen, Rosanne; Mazaheri, Ali; Petropoulos-Petalas, Diamantis; Soto de Amesti, Vicente; Vulink, Nienke; Denys, Damiaan
2014-01-01
Misophonia (hatred of sound) is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study, we investigated if a dysfunction in the brain's early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs) during an oddball task. Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1, and P2 components locked to the onset of the tones. For misophonia patients, the N1 peak evoked by the oddball tones had smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones. The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients.
He, Xun; Witzel, Christoph; Forder, Lewis; Clifford, Alexandra; Franklin, Anna
2014-04-01
Prior claims that color categories affect color perception are confounded by inequalities in the color space used to equate same- and different-category colors. Here, we equate same- and different-category colors in the number of just-noticeable differences, and measure event-related potentials (ERPs) to these colors on a visual oddball task to establish if color categories affect perceptual or post-perceptual stages of processing. Category effects were found from 200 ms after color presentation, only in ERP components that reflect post-perceptual processes (e.g., N2, P3). The findings suggest that color categories affect post-perceptual processing, but do not affect the perceptual representation of color.
Holgado, Darías; Zandonai, Thomas; Zabala, Mikel; Hopker, James; Perakakis, Pandelis; Luque-Casado, Antonio; Ciria, Luis; Guerra-Hernandez, Eduardo; Sanabria, Daniel
2018-07-01
To investigate the effect of tramadol on performance during a 20-min cycling time-trial (Experiment 1), and to test whether sustained attention would be impaired during cycling after tramadol intake (Experiment 2). Randomized, double-blind, placebo controlled trial. In Experiment 1, participants completed a cycling time-trial, 120-min after they ingested either tramadol or placebo. In Experiment 2, participants performed a visual oddball task during the time-trial. Electroencephalography measures (EEG) were recorded throughout the session. In Experiment 1, average time-trial power output was higher in the tramadol vs. placebo condition (tramadol: 220W vs. placebo: 209W; p<0.01). In Experiment 2, no differences between conditions were observed in the average power output (tramadol: 234W vs. placebo: 230W; p>0.05). No behavioural differences were found between conditions in the oddball task. Crucially, the time frequency analysis in Experiment 2 revealed an overall lower target-locked power in the beta-band (p<0.01), and higher alpha suppression (p<0.01) in the tramadol vs. placebo condition. At baseline, EEG power spectrum was higher under tramadol than under placebo in Experiment 1 while the reverse was true for Experiment 2. Tramadol improved cycling power output in Experiment 1, but not in Experiment 2, which may be due to the simultaneous performance of a cognitive task. Interestingly enough, the EEG data in Experiment 2 pointed to an impact of tramadol on stimulus processing related to sustained attention. EudraCT number: 2015-005056-96. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Vera, Jesús; Jiménez, Raimundo; García, José Antonio; Perales, José Cesar; Cárdenas, David
2018-03-01
The purposes of this study were to (a) investigate the effect of physical effort (cycling for 60 min at 60 ± 5% of individually computed reserve heart-rate capacity), combined with 2 different levels of cognitive demand (2-back, oddball), on intraocular pressure (IOP) and subjective judgments of perceived exertion (ratings of perceived exertion [RPE]), affect (Affective Valence subscale of the Self-Assessment Manikin [SAM]), and mental workload (National Aeronautics and Space Administration Task Load Index [NASA-TLX]); and (b) ascertain whether baseline IOP, measured before exercise, is associated with individual differences in subjective assessments of effort and affective response during exercise. Seventeen participants (M age = 23.28 ± 2.37 years) performed 2 physical/cognitive dual tasks, matched in physical demand but with different mental requirements (2-back, oddball). We assessed IOP before exercise, after 2 min of active recovery, and after 15 min of passive recovery, and we also collected RPE and SAM measures during the sessions (28 measurement points). We used NASA-TLX and cognitive performance as checks of the mental manipulation. (a) Intraocular pressure increased after concomitant physical/mental effort, with the effect reaching statistical significance after the 2-back task (p = .002, d = 0.35) but not after the oddball condition (p = .092, d = 0.29). (b) Baseline IOP was associated with subjective sensitivity to effort and showed statistical significance for the oddball condition (p = .03, ƞ p 2 = .622) but not for the 2-back task (F < 1). Results suggest a relationship between IOP and physical/cognitive effort, which could have implications for the management of glaucoma. Additionally, a rapid measure of IOP could be used as a marker of individual effort sensitivity in applied settings.
Rossion, Bruno; Torfs, Katrien; Jacques, Corentin; Liu-Shuang, Joan
2015-01-16
We designed a fast periodic visual stimulation approach to identify an objective signature of face categorization incorporating both visual discrimination (from nonface objects) and generalization (across widely variable face exemplars). Scalp electroencephalographic (EEG) data were recorded in 12 human observers viewing natural images of objects at a rapid frequency of 5.88 images/s for 60 s. Natural images of faces were interleaved every five stimuli, i.e., at 1.18 Hz (5.88/5). Face categorization was indexed by a high signal-to-noise ratio response, specifically at an oddball face stimulation frequency of 1.18 Hz and its harmonics. This face-selective periodic EEG response was highly significant for every participant, even for a single 60-s sequence, and was generally localized over the right occipitotemporal cortex. The periodicity constraint and the large selection of stimuli ensured that this selective response to natural face images was free of low-level visual confounds, as confirmed by the absence of any oddball response for phase-scrambled stimuli. Without any subtraction procedure, time-domain analysis revealed a sequence of differential face-selective EEG components between 120 and 400 ms after oddball face image onset, progressing from medial occipital (P1-faces) to occipitotemporal (N1-faces) and anterior temporal (P2-faces) regions. Overall, this fast periodic visual stimulation approach provides a direct signature of natural face categorization and opens an avenue for efficiently measuring categorization responses of complex visual stimuli in the human brain. © 2015 ARVO.
Task difficulty modulates brain activation in the emotional oddball task.
Siciliano, Rachel E; Madden, David J; Tallman, Catherine W; Boylan, Maria A; Kirste, Imke; Monge, Zachary A; Packard, Lauren E; Potter, Guy G; Wang, Lihong
2017-06-01
Previous functional magnetic resonance imaging (fMRI) studies have reported that task-irrelevant, emotionally salient events can disrupt target discrimination, particularly when attentional demands are low, while others demonstrate alterations in the distracting effects of emotion in behavior and neural activation in the context of attention-demanding tasks. We used fMRI, in conjunction with an emotional oddball task, at different levels of target discrimination difficulty, to investigate the effects of emotional distractors on the detection of subsequent targets. In addition, we distinguished different behavioral components of target detection representing decisional, nondecisional, and response criterion processes. Results indicated that increasing target discrimination difficulty led to increased time required for both the decisional and nondecisional components of the detection response, as well as to increased target-related neural activation in frontoparietal regions. The emotional distractors were associated with activation in ventral occipital and frontal regions and dorsal frontal regions, but this activation was attenuated with increased difficulty. Emotional distraction did not alter the behavioral measures of target detection, but did lead to increased target-related frontoparietal activation for targets following emotional images as compared to those following neutral images. This latter effect varied with target discrimination difficulty, with an increased influence of the emotional distractors on subsequent target-related frontoparietal activation in the more difficult discrimination condition. This influence of emotional distraction was in addition associated specifically with the decisional component of target detection. These findings indicate that emotion-cognition interactions, in the emotional oddball task, vary depending on the difficulty of the target discrimination and the associated limitations on processing resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Expectation, information processing, and subjective duration.
Simchy-Gross, Rhimmon; Margulis, Elizabeth Hellmuth
2018-01-01
In research on psychological time, it is important to examine the subjective duration of entire stimulus sequences, such as those produced by music (Teki, Frontiers in Neuroscience, 10, 2016). Yet research on the temporal oddball illusion (according to which oddball stimuli seem longer than standard stimuli of the same duration) has examined only the subjective duration of single events contained within sequences, not the subjective duration of sequences themselves. Does the finding that oddballs seem longer than standards translate to entire sequences, such that entire sequences that contain oddballs seem longer than those that do not? Is this potential translation influenced by the mode of information processing-whether people are engaged in direct or indirect temporal processing? Two experiments aimed to answer both questions using different manipulations of information processing. In both experiments, musical sequences either did or did not contain oddballs (auditory sliding tones). To manipulate information processing, we varied the task (Experiment 1), the sequence event structure (Experiments 1 and 2), and the sequence familiarity (Experiment 2) independently within subjects. Overall, in both experiments, the sequences that contained oddballs seemed shorter than those that did not when people were engaged in direct temporal processing, but longer when people were engaged in indirect temporal processing. These findings support the dual-process contingency model of time estimation (Zakay, Attention, Perception & Psychophysics, 54, 656-664, 1993). Theoretical implications for attention-based and memory-based models of time estimation, the pacemaker accumulator and coding efficiency hypotheses of time perception, and dynamic attending theory are discussed.
Diminished N1 Auditory Evoked Potentials to Oddball Stimuli in Misophonia Patients
Schröder, Arjan; van Diepen, Rosanne; Mazaheri, Ali; Petropoulos-Petalas, Diamantis; Soto de Amesti, Vicente; Vulink, Nienke; Denys, Damiaan
2014-01-01
Misophonia (hatred of sound) is a newly defined psychiatric condition in which ordinary human sounds, such as breathing and eating, trigger impulsive aggression. In the current study, we investigated if a dysfunction in the brain’s early auditory processing system could be present in misophonia. We screened 20 patients with misophonia with the diagnostic criteria for misophonia, and 14 matched healthy controls without misophonia, and investigated any potential deficits in auditory processing of misophonia patients using auditory event-related potentials (ERPs) during an oddball task. Subjects watched a neutral silent movie while being presented a regular frequency of beep sounds in which oddball tones of 250 and 4000 Hz were randomly embedded in a stream of repeated 1000 Hz standard tones. We examined the P1, N1, and P2 components locked to the onset of the tones. For misophonia patients, the N1 peak evoked by the oddball tones had smaller mean peak amplitude than the control group. However, no significant differences were found in P1 and P2 components evoked by the oddball tones. There were no significant differences between the misophonia patients and their controls in any of the ERP components to the standard tones. The diminished N1 component to oddball tones in misophonia patients suggests an underlying neurobiological deficit in misophonia patients. This reduction might reflect a basic impairment in auditory processing in misophonia patients. PMID:24782731
Prediction of P300 BCI Aptitude in Severe Motor Impairment
Halder, Sebastian; Ruf, Carolin Anne; Furdea, Adrian; Pasqualotto, Emanuele; De Massari, Daniele; van der Heiden, Linda; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea; Matuz, Tamara
2013-01-01
Brain-computer interfaces (BCIs) provide a non-muscular communication channel for persons with severe motor impairments. Previous studies have shown that the aptitude with which a BCI can be controlled varies from person to person. A reliable predictor of performance could facilitate selection of a suitable BCI paradigm. Eleven severely motor impaired participants performed three sessions of a P300 BCI web browsing task. Before each session auditory oddball data were collected to predict the BCI aptitude of the participants exhibited in the current session. We found a strong relationship of early positive and negative potentials around 200 ms (elicited with the auditory oddball task) with performance. The amplitude of the P2 (r = −0.77) and of the N2 (r = −0.86) had the strongest correlations. Aptitude prediction using an auditory oddball was successful. The finding that the N2 amplitude is a stronger predictor of performance than P3 amplitude was reproduced after initially showing this effect with a healthy sample of BCI users. This will reduce strain on the end-users by minimizing the time needed to find suitable paradigms and inspire new approaches to improve performance. PMID:24204597
Neural Substrates for Processing Task-Irrelevant Sad Images in Adolescents
ERIC Educational Resources Information Center
Wang, Lihong; Huettel, Scott; De Bellis, Michael D.
2008-01-01
Neural systems related to cognitive and emotional processing were examined in adolescents using event-related functional magnetic resonance imaging (fMRI). Ten healthy adolescents performed an emotional oddball task. Subjects detected infrequent circles (targets) within a continual stream of phase-scrambled images (standards). Sad and neutral…
Park, M; Choi, J-S; Park, S M; Lee, J-Y; Jung, H Y; Sohn, B K; Kim, S N; Kim, D J; Kwon, J S
2016-01-01
Internet gaming disorder (IGD) leading to serious impairments in cognitive, psychological and social functions has gradually been increasing. However, very few studies conducted to date have addressed issues related to the event-related potential (ERP) patterns in IGD. Identifying the neurobiological characteristics of IGD is important to elucidate the pathophysiology of this condition. P300 is a useful ERP component for investigating electrophysiological features of the brain. The aims of the present study were to investigate differences between patients with IGD and healthy controls (HCs), with regard to the P300 component of the ERP during an auditory oddball task, and to examine the relationship of this component to the severity of IGD symptoms in identifying the relevant neurophysiological features of IGD. Twenty-six patients diagnosed with IGD and 23 age-, sex-, education- and intelligence quotient-matched HCs participated in this study. During an auditory oddball task, participants had to respond to the rare, deviant tones presented in a sequence of frequent, standard tones. The IGD group exhibited a significant reduction in response to deviant tones compared with the HC group in the P300 amplitudes at the midline centro-parietal electrode regions. We also found a negative correlation between the severity of IGD and P300 amplitudes. The reduced amplitude of the P300 component in an auditory oddball task may reflect dysfunction in auditory information processing and cognitive capabilities in IGD. These findings suggest that reduced P300 amplitudes may be candidate neurobiological marker for IGD. PMID:26812042
Park, M; Choi, J-S; Park, S M; Lee, J-Y; Jung, H Y; Sohn, B K; Kim, S N; Kim, D J; Kwon, J S
2016-01-26
Internet gaming disorder (IGD) leading to serious impairments in cognitive, psychological and social functions has gradually been increasing. However, very few studies conducted to date have addressed issues related to the event-related potential (ERP) patterns in IGD. Identifying the neurobiological characteristics of IGD is important to elucidate the pathophysiology of this condition. P300 is a useful ERP component for investigating electrophysiological features of the brain. The aims of the present study were to investigate differences between patients with IGD and healthy controls (HCs), with regard to the P300 component of the ERP during an auditory oddball task, and to examine the relationship of this component to the severity of IGD symptoms in identifying the relevant neurophysiological features of IGD. Twenty-six patients diagnosed with IGD and 23 age-, sex-, education- and intelligence quotient-matched HCs participated in this study. During an auditory oddball task, participants had to respond to the rare, deviant tones presented in a sequence of frequent, standard tones. The IGD group exhibited a significant reduction in response to deviant tones compared with the HC group in the P300 amplitudes at the midline centro-parietal electrode regions. We also found a negative correlation between the severity of IGD and P300 amplitudes. The reduced amplitude of the P300 component in an auditory oddball task may reflect dysfunction in auditory information processing and cognitive capabilities in IGD. These findings suggest that reduced P300 amplitudes may be candidate neurobiological marker for IGD.
Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.
Smith, Ryan M; Beversdorf, David Q
2008-07-01
Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall.
Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings
Singh, Nilkamal; Telles, Shirley
2015-01-01
Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control. PMID:26137479
Neurophysiological Effects of Meditation Based on Evoked and Event Related Potential Recordings.
Singh, Nilkamal; Telles, Shirley
2015-01-01
Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control.
NASA Astrophysics Data System (ADS)
Bachiller, Alejandro; Poza, Jesús; Gómez, Carlos; Molina, Vicente; Suazo, Vanessa; Hornero, Roberto
2015-02-01
Objective. The aim of this research is to explore the coupling patterns of brain dynamics during an auditory oddball task in schizophrenia (SCH). Approach. Event-related electroencephalographic (ERP) activity was recorded from 20 SCH patients and 20 healthy controls. The coupling changes between auditory response and pre-stimulus baseline were calculated in conventional EEG frequency bands (theta, alpha, beta-1, beta-2 and gamma), using three coupling measures: coherence, phase-locking value and Euclidean distance. Main results. Our results showed a statistically significant increase from baseline to response in theta coupling and a statistically significant decrease in beta-2 coupling in controls. No statistically significant changes were observed in SCH patients. Significance. Our findings support the aberrant salience hypothesis, since SCH patients failed to change their coupling dynamics between stimulus response and baseline when performing an auditory cognitive task. This result may reflect an impaired communication among neural areas, which may be related to abnormal cognitive functions.
Barham, Michael P; Clark, Gillian M; Hayden, Melissa J; Enticott, Peter G; Conduit, Russell; Lum, Jarrad A G
2017-09-01
This study compared the performance of a low-cost wireless EEG system to a research-grade EEG system on an auditory oddball task designed to elicit N200 and P300 ERP components. Participants were 15 healthy adults (6 female) aged between 19 and 40 (M = 28.56; SD = 6.38). An auditory oddball task was presented comprising 1,200 presentations of a standard tone interspersed by 300 trials comprising a deviant tone. EEG was simultaneously recorded from a modified Emotiv EPOC and a NeuroScan SynAmps RT EEG system. The modifications made to the Emotiv system included attaching research grade electrodes to the Bluetooth transmitter. Additional modifications enabled the Emotiv system to connect to a portable impedance meter. The cost of these modifications and portable impedance meter approached the purchase value of the Emotiv system. Preliminary analyses revealed significantly more trials were rejected from data acquired by the modified Emotiv compared to the SynAmps system. However, the ERP waveforms captured by the Emotiv system were found to be highly similar to the corresponding waveform from the SynAmps system. The latency and peak amplitude of N200 and P300 components were also found to be similar between systems. Overall, the results indicate that, in the context of an oddball task, the ERP acquired by a low-cost wireless EEG system can be of comparable quality to research-grade EEG acquisition equipment. © 2017 Society for Psychophysiological Research.
Hisagi, Miwako; Shafer, Valerie L.; Strange, Winifred; Sussman, Elyse S.
2015-01-01
This study examined automaticity of discrimination of a Japanese length contrast for consonants (miʃi vs. miʃʃi) in native (Japanese) and non-native (American-English) listeners using behavioral measures and the event-related potential (ERP) mismatch negativity (MMN). Attention to the auditory input was manipulated either away from the auditory input via a visual oddball task (Visual Attend), or to the input by asking the listeners to count auditory deviants (Auditory Attend). Results showed a larger MMN when attention was focused on the consonant contrast than away from it for both groups. The MMN was larger for consonant duration increments than decrements. No difference in MMN between the language groups was observed, but the Japanese listeners did show better behavioral discrimination than the American English listeners. In addition, behavioral responses showed a weak, but significant correlation with MMN amplitude. These findings suggest that both acoustic-phonetic properties and phonological experience affects automaticity of speech processing. PMID:26119918
Stress improves selective attention towards emotionally neutral left ear stimuli.
Hoskin, Robert; Hunter, M D; Woodruff, P W R
2014-09-01
Research concerning the impact of psychological stress on visual selective attention has produced mixed results. The current paper describes two experiments which utilise a novel auditory oddball paradigm to test the impact of psychological stress on auditory selective attention. Participants had to report the location of emotionally-neutral auditory stimuli, while ignoring task-irrelevant changes in their content. The results of the first experiment, in which speech stimuli were presented, suggested that stress improves the ability to selectively attend to left, but not right ear stimuli. When this experiment was repeated using tonal stimuli the same result was evident, but only for female participants. Females were also found to experience greater levels of distraction in general across the two experiments. These findings support the goal-shielding theory which suggests that stress improves selective attention by reducing the attentional resources available to process task-irrelevant information. The study also demonstrates, for the first time, that this goal-shielding effect extends to auditory perception. Copyright © 2014 Elsevier B.V. All rights reserved.
Geladé, Katleen; Bink, Marleen; Janssen, Tieme W P; van Mourik, Rosa; Maras, Athanasios; Oosterlaan, Jaap
2017-04-01
Neurofeedback (NFB) is a potential alternative treatment for children with ADHD that aims to optimize brain activity. Whereas most studies into NFB have investigated behavioral effects, less attention has been paid to the effects on neurocognitive functioning. The present randomized controlled trial (RCT) compared neurocognitive effects of NFB to (1) optimally titrated methylphenidate (MPH) and (2) a semi-active control intervention, physical activity (PA), to control for non-specific effects. Using a multicentre three-way parallel group RCT design, children with ADHD, aged 7-13, were randomly allocated to NFB (n = 39), MPH (n = 36) or PA (n = 37) over a period of 10-12 weeks. NFB comprised theta/beta training at CZ. The PA intervention was matched in frequency and duration to NFB. MPH was titrated using a double-blind placebo controlled procedure to determine the optimal dose. Neurocognitive functioning was assessed using parameters derived from the auditory oddball-, stop-signal- and visual spatial working memory task. Data collection took place between September 2010 and March 2014. Intention-to-treat analyses showed improved attention for MPH compared to NFB and PA, as reflected by decreased response speed during the oddball task [η p 2 = 0.21, p < 0.001], as well as improved inhibition, impulsivity and attention, as reflected by faster stop signal reaction times, lower commission and omission error rates during the stop-signal task (range η p 2 = 0.09-0.18, p values <0.008). Working memory improved over time, irrespective of received treatment (η p 2 = 0.17, p < 0.001). Overall, stimulant medication showed superior effects over NFB to improve neurocognitive functioning. Hence, the findings do not support theta/beta training applied as a stand-alone treatment in children with ADHD.
Role of Basal Ganglia Circuits in Resisting Interference by Distracters: A swLORETA Study
Bocquillon, Perrine; Bourriez, Jean-Louis; Palmero-Soler, Ernesto; Destée, Alain; Defebvre, Luc; Derambure, Philippe; Dujardin, Kathy
2012-01-01
Background The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear, despite the fact that the striatum interacts significantly with the frontal cortex via frontostriatal loops. One means of investigating the basal ganglia's contributions to attention is to examine the features of P300 components (i.e. amplitude, latency, and generators) in patients with basal ganglia damage (such as in Parkinson's disease (PD), in which attention is often impaired). Three-stimulus oddball paradigms can be used to study distracter-elicited and target-elicited P300 subcomponents. Methodology/Principal Findings In order to compare distracter- and target-elicited P300 components, high-density (128-channel) electroencephalograms were recorded during a three-stimulus visual oddball paradigm in 15 patients with early PD and 15 matched healthy controls. For each subject, the P300 sources were localized using standardized weighted low-resolution electromagnetic tomography (swLORETA). Comparative analyses (one-sample and two-sample t-tests) were performed using SPM5® software. The swLORETA analyses showed that PD patients displayed fewer dorsolateral prefrontal (DLPF) distracter-P300 generators but no significant differences in target-elicited P300 sources; this suggests dysfunction of the DLPF cortex when the executive frontostriatal loop is disrupted by basal ganglia damage. Conclusions/Significance Our results suggest that the cortical attention frontoparietal networks (mainly the dorsal one) are modulated by the basal ganglia. Disruption of this network in PD impairs resistance to distracters, which results in attention disorders. PMID:22470542
Implicit and explicit selective attention to smoking cues in smokers indexed by brain potentials.
Littel, Marianne; Franken, Ingmar H A
2011-04-01
Substance use disorders are characterized by cognitive processing biases, such as automatically detecting and orienting attention towards drug-related stimuli. However, it is unclear how, when and what kind of attention (i.e. implicit, explicit) interacts with the processing of these stimuli. In addition, it is unclear whether smokers are hypersensitive to emotionally significant cues in general or to smoking-related cues in particular. The present event-related potential study aimed to enhance insight in drug-related processing biases by manipulating attention for smoking and other motivationally relevant (emotional) cues in smokers and non-smokers using a visual oddball task. Each of the stimulus categories served as a target (explicit attention; counting) or as a non-target (implicit attention; oddball) category. Compared with non-smokers, smokers' P300 (350-600 ms) was enhanced to smoking pictures under both attentional conditions. P300 amplitude did not differ between groups in response to positive, negative, and neutral cues. It can be concluded from this study that attention manipulation affects the P300 differently in smokers and non-smokers. Smokers display a specific bias to smoking-related cues, and this bias is present during both explicit and implicit attentional processing. Overall, it can be concluded that both explicit and implicit attentional processes appear to play an important role in drug-related processing bias.
An auditory oddball brain-computer interface for binary choices.
Halder, S; Rea, M; Andreoni, R; Nijboer, F; Hammer, E M; Kleih, S C; Birbaumer, N; Kübler, A
2010-04-01
Brain-computer interfaces (BCIs) provide non-muscular communication for individuals diagnosed with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)). In the final stages of the disease, a BCI cannot rely on the visual modality. This study examined a method to achieve high accuracies using auditory stimuli only. We propose an auditory BCI based on a three-stimulus paradigm. This paradigm is similar to the standard oddball but includes an additional target (i.e. two target stimuli, one frequent stimulus). Three versions of the task were evaluated in which the target stimuli differed in loudness, pitch or direction. Twenty healthy participants achieved an average information transfer rate (ITR) of up to 2.46 bits/min and accuracies of 78.5%. Most subjects (14 of 20) achieved their best performance with targets differing in pitch. With this study, the viability of the paradigm was shown for healthy participants and will next be evaluated with individuals diagnosed with ALS or locked-in syndrome (LIS) after stroke. The here presented BCI offers communication with binary choices (yes/no) independent of vision. As it requires only little time per selection, it may constitute a reliable means of communication for patients who lost all motor function and have a short attention span. 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Valence and arousal of emotional stimuli impact cognitive-motor performance in an oddball task.
Lu, Yingzhi; Jaquess, Kyle J; Hatfield, Bradley D; Zhou, Chenglin; Li, Hong
2017-04-01
It is widely recognized that emotions impact an individual's ability to perform in a given task. However, little is known about how emotion impacts the various aspects of cognitive -motor performance. We recorded event-related potentials (ERPs) and chronometric responses from twenty-six participants while they performed a cognitive-motor oddball task in regard to four categories of emotional stimuli (high-arousing positive-valence, low-arousing positive-valence, high-arousing negative-valence, and low-arousing negative-valence) as "deviant" stimuli. Six chronometric responses (reaction time, press time, return time, choice time, movement time, and total time) and three ERP components (P2, N2 and late positive potential) were measured. Results indicated that reaction time was significantly affected by the presentation of emotional stimuli. Also observed was a negative relationship between N2 amplitude and elements of performance featuring reaction time in the low-arousing positive-valence condition. This study provides further evidence that emotional stimuli influence cognitive-motor performance in a specific manner. Copyright © 2017 Elsevier B.V. All rights reserved.
Expansion and Compression of Time Correlate with Information Processing in an Enumeration Task.
Wutz, Andreas; Shukla, Anuj; Bapi, Raju S; Melcher, David
2015-01-01
Perception of temporal duration is subjective and is influenced by factors such as attention and context. For example, unexpected or emotional events are often experienced as if time subjectively expands, suggesting that the amount of information processed in a unit of time can be increased. Time dilation effects have been measured with an oddball paradigm in which an infrequent stimulus is perceived to last longer than standard stimuli in the rest of the sequence. Likewise, time compression for the oddball occurs when the duration of the standard items is relatively brief. Here, we investigated whether the amount of information processing changes when time is perceived as distorted. On each trial, an oddball stimulus of varying numerosity (1-14 items) and duration was presented along with standard items that were either short (70 ms) or long (1050 ms). Observers were instructed to count the number of dots within the oddball stimulus and to judge its relative duration with respect to the standards on that trial. Consistent with previous results, oddballs were reliably perceived as temporally distorted: expanded for longer standard stimuli blocks and compressed for shorter standards. The occurrence of these distortions of time perception correlated with perceptual processing; i.e. enumeration accuracy increased when time was perceived as expanded and decreased with temporal compression. These results suggest that subjective time distortions are not epiphenomenal, but reflect real changes in sensory processing. Such short-term plasticity in information processing rate could be evolutionarily advantageous in optimizing perception and action during critical moments.
NASA Astrophysics Data System (ADS)
Li, Ting; Zhao, Yue; Sun, Yunlong; Gao, Yuan; Su, Yu; Hetian, Yiyi; Chen, Min
2015-03-01
Driver fatigue is one of the leading causes of traffic accidents. It is imperative to develop a technique to monitor fatigue of drivers in real situation. Near-infrared spectroscopy (fNIRS) is now capable of measuring brain functional activity noninvasively in terms of hemodynamic responses sensitively, which shed a light to us that it may be possible to detect fatigue-specified brain functional activity signal. We developed a sensitive, portable and absolute-measure fNIRS, and utilized it to monitor cerebral hemodynamics on car drivers during prolonged true driving. An odd-ball protocol was employed to trigger the drivers' visual divided attention, which is a critical function in safe driving. We found that oxyhemoglobin concentration and blood volume in prefrontal lobe dramatically increased with driving duration (stand for fatigue degree; 2-10 hours), while deoxyhemoglobin concentration increased to the top at 4 hours then decreased slowly. The behavior performance showed clear decrement only after 6 hours. Our study showed the strong potential of fNIRS combined with divided visual attention protocol in driving fatigue degree monitoring. Our findings indicated the fNIRS-measured hemodynamic parameters were more sensitive than behavior performance evaluation.
Visual target modulation of functional connectivity networks revealed by self-organizing group ICA.
van de Ven, Vincent; Bledowski, Christoph; Prvulovic, David; Goebel, Rainer; Formisano, Elia; Di Salle, Francesco; Linden, David E J; Esposito, Fabrizio
2008-12-01
We applied a data-driven analysis based on self-organizing group independent component analysis (sogICA) to fMRI data from a three-stimulus visual oddball task. SogICA is particularly suited to the investigation of the underlying functional connectivity and does not rely on a predefined model of the experiment, which overcomes some of the limitations of hypothesis-driven analysis. Unlike most previous applications of ICA in functional imaging, our approach allows the analysis of the data at the group level, which is of particular interest in high order cognitive studies. SogICA is based on the hierarchical clustering of spatially similar independent components, derived from single subject decompositions. We identified four main clusters of components, centered on the posterior cingulate, bilateral insula, bilateral prefrontal cortex, and right posterior parietal and prefrontal cortex, consistently across all participants. Post hoc comparison of time courses revealed that insula, prefrontal cortex and right fronto-parietal components showed higher activity for targets than for distractors. Activation for distractors was higher in the posterior cingulate cortex, where deactivation was observed for targets. While our results conform to previous neuroimaging studies, they also complement conventional results by showing functional connectivity networks with unique contributions to the task that were consistent across subjects. SogICA can thus be used to probe functional networks of active cognitive tasks at the group-level and can provide additional insights to generate new hypotheses for further study. Copyright 2007 Wiley-Liss, Inc.
Muñoz-Ruata, J; Caro-Martínez, E; Martínez Pérez, L; Borja, M
2010-12-01
Perception disorders are frequently observed in persons with intellectual disability (ID) and their influence on cognition has been discussed. The objective of this study is to clarify the mechanisms behind these alterations by analysing the visual event related potentials early component, the N1 wave, which is related to perception alterations in several pathologies. Additionally, the relationship between N1 and neuropsychological visual tests was studied with the aim to understand its functional significance in ID persons. A group of 69 subjects, with etiologically heterogeneous mild ID, performed an odd-ball task of active discrimination of geometric figures. N1a (frontal) and N1b (post-occipital) waves were obtained from the evoked potentials. They also performed several neuropsychological tests. Only component N1a, produced by the target stimulus, showed significant correlations with the visual integration, visual semantic association, visual analogical reasoning tests, Perceptual Reasoning Index (Wechsler Intelligence Scale for Children Fourth Edition) and intelligence quotient. The systematic correlations, produced by the target stimulus in perceptual abilities tasks, with the N1a (frontal) and not with N1b (posterior), suggest that the visual perception process involves frontal participation. These correlations support the idea that the N1a and N1b are not equivalent. The relationship between frontal functions and early stages of visual perception is revised and discussed, as well as the frontal contribution with the neuropsychological tests used. A possible relationship between the frontal activity dysfunction in ID and perceptive problems is suggested. Perceptive alteration observed in persons with ID could indeed be because of altered sensory areas, but also to a failure in the frontal participation of perceptive processes conceived as elaborations inside reverberant circuits of perception-action. © 2010 The Authors. Journal of Intellectual Disability Research © 2010 Blackwell Publishing Ltd.
Triple dissociation of duration perception regulating mechanisms: Top-down attention is inherent.
Lin, Yong-Jun; Shimojo, Shinsuke
2017-01-01
The brain constantly adjusts perceived duration based on the recent event history. One such lab phenomenon is subjective time expansion induced in an oddball paradigm ("oddball chronostasis"), where the duration of a distinct item (oddball) appears subjectively longer when embedded in a series of other repeated items (standards). Three hypotheses have been separately proposed but it remains unresolved which or all of them are true: 1) attention prolongs oddball duration, 2) repetition suppression reduces standards duration, and 3) accumulative temporal preparation (anticipation) expedites the perceived item onset so as to lengthen its duration. We thus conducted critical systematic experiments to dissociate the relative contribution of all hypotheses, by orthogonally manipulating sequences types (repeated, ordered, or random) and target serial positions. Participants' task was to judge whether a target lasts shorter or longer than its reference. The main finding was that a random item sequence still elicited significant chronostasis even though each item was odd. That is, simply being a target draws top-down attention and induces chronostasis. In Experiments 1 (digits) and 2 (orientations), top-down attention explained about half of the effect while saliency/adaptation explained the other half. Additionally, for non-repeated (ordered and random) sequence types, a target with later serial position still elicited stronger chronostasis, favoring a temporal preparation over a repetition suppression account. By contrast, in Experiment 3 (colors), top-down attention was likely the sole factor. Consequently, top-down attention is necessary and sometimes sufficient to explain oddball chronostasis; saliency/adaptation and temporal preparation are contingent factors. These critical boundary conditions revealed in our study serve as quantitative constraints for neural models of duration perception.
Vinken, Kasper; Vogels, Rufin; Op de Beeck, Hans
2017-03-20
From an ecological point of view, it is generally suggested that the main goal of vision in rats and mice is navigation and (aerial) predator evasion [1-3]. The latter requires fast and accurate detection of a change in the visual environment. An outstanding question is whether there are mechanisms in the rodent visual system that would support and facilitate visual change detection. An experimental protocol frequently used to investigate change detection in humans is the oddball paradigm, in which a rare, unexpected stimulus is presented in a train of stimulus repetitions [4]. A popular "predictive coding" theory of cortical responses states that neural responses should decrease for expected sensory input and increase for unexpected input [5, 6]. Despite evidence for response suppression and enhancement in noninvasive scalp recordings in humans with this paradigm [7, 8], it has proven challenging to observe both phenomena in invasive action potential recordings in other animals [9-11]. During a visual oddball experiment, we recorded multi-unit spiking activity in rat primary visual cortex (V1) and latero-intermediate area (LI), which is a higher area of the rodent ventral visual stream. In rat V1, there was only evidence for response suppression related to stimulus-specific adaptation, and not for response enhancement. However, higher up in area LI, spiking activity showed clear surprise-based response enhancement in addition to stimulus-specific adaptation. These results show that neural responses along the rat ventral visual stream become increasingly sensitive to changes in the visual environment, suggesting a system specialized in the detection of unexpected events. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stefanics, G; Thuróczy, G; Kellényi, L; Hernádi, I
2008-11-19
We investigated the potential effects of 20 min irradiation from a new generation Universal Mobile Telecommunication System (UMTS) 3G mobile phone on human event related potentials (ERPs) in an auditory oddball paradigm. In a double-blind task design, subjects were exposed to either genuine or sham irradiation in two separate sessions. Before and after irradiation subjects were presented with a random series of 50 ms tone burst (frequent standards: 1 kHz, P=0.8, rare deviants: 1.5 kHz, P=0.2) at a mean repetition rate of 1500 ms while electroencephalogram (EEG) was recorded. The subjects' task was to silently count the appearance of targets. The amplitude and latency of the N100, N200, P200 and P300 components for targets and standards were analyzed in 29 subjects. We found no significant effects of electromagnetic field (EMF) irradiation on the amplitude and latency of the above ERP components. In order to study possible effects of EMF on attentional processes, we applied a wavelet-based time-frequency method to analyze the early gamma component of brain responses to auditory stimuli. We found that the early evoked gamma activity was insensitive to UMTS RF exposition. Our results support the notion, that a single 20 min irradiation from new generation 3G mobile phones does not induce measurable changes in latency or amplitude of ERP components or in oscillatory gamma-band activity in an auditory oddball paradigm.
Mayas, Julia; Parmentier, Fabrice B R; Andrés, Pilar; Ballesteros, Soledad
2014-01-01
A major goal of recent research in aging has been to examine cognitive plasticity in older adults and its capacity to counteract cognitive decline. The aim of the present study was to investigate whether older adults could benefit from brain training with video games in a cross-modal oddball task designed to assess distraction and alertness. Twenty-seven healthy older adults participated in the study (15 in the experimental group, 12 in the control group. The experimental group received 20 1-hr video game training sessions using a commercially available brain-training package (Lumosity) involving problem solving, mental calculation, working memory and attention tasks. The control group did not practice this package and, instead, attended meetings with the other members of the study several times along the course of the study. Both groups were evaluated before and after the intervention using a cross-modal oddball task measuring alertness and distraction. The results showed a significant reduction of distraction and an increase of alertness in the experimental group and no variation in the control group. These results suggest neurocognitive plasticity in the old human brain as training enhanced cognitive performance on attentional functions. ClinicalTrials.gov NCT02007616.
Luck, Steven J.; Kappenman, Emily S.; Fuller, Rebecca L.; Robinson, Benjamin; Summerfelt, Ann; Gold, James M.
2008-01-01
Reaction times (RTs) are substantially prolonged in schizophrenia patients, but the latency of the P3 component is not. This suggests that the RT slowing arises from impairments in a late stage of processing. To test this hypothesis, 20 schizophrenia patients and 20 control subjects were tested in a visual oddball paradigm that was modified to allow measurement of the lateralized readiness potential (LRP), an index of stimulus-response translation processes. Difference waves were used to isolate the LRP and the P3 wave. Patients and control subjects exhibited virtually identical P3 difference waves, whereas the LRP difference wave was reduced in amplitude and delayed in latency in the patients. These results indicate that, at least in simple tasks, the delayed RTs observed in schizophrenia are primarily a consequence of impairments in the response selection and preparation processes that follow perception and categorization. PMID:19386044
Venables, Noah C; Patrick, Christopher J
2014-05-01
We sought to address inconsistencies in the literature on amplitude of P3 brain potential response in offenders diagnosed with psychopathy. These inconsistencies contrast with the reliable finding of reduced P3 in relation to externalizing tendencies, which overlap with impulsive-antisocial features of psychopathy, as distinguished from the affective-interpersonal features. Employing a sample of incarcerated male offenders (N = 154) who completed the Psychopathy Checklist-Revised along with a three-stimulus visual oddball task, we tested the hypothesis that impulsive-antisocial features of psychopathy would selectively exhibit an inverse relationship with P3 amplitude. Clear support for this hypothesis was obtained. Our findings clarify the discrepant findings regarding psychopathy and P3, and establish P3 as a neurophysiological point of contact between psychopathy and externalizing proneness from the broader psychopathology literature. Copyright © 2014 Society for Psychophysiological Research.
P300 amplitude as an indicator of externalizing in adolescent males
PATRICK, CHRISTOPHER J.; BERNAT, EDWARD M.; MALONE, STEPHEN M.; IACONO, WILLIAM G.; KRUEGER, ROBERT F.; MCGUE, MATT
2008-01-01
Reduced P300 amplitude is reliably found in individuals with a personal or family history of alcohol problems. However, alcoholism is part of a broader externalizing spectrum that includes other substance use and antisocial disorders. We hypothesized that reduced P300 is an indicator of the common factor that underlies disorders within this spectrum. Community males (N=969) were assessed at age 17 in a visual oddball task. Externalizing was defined as the common factor underlying symptoms of alcohol dependence, drug dependence, nicotine dependence, conduct disorder, and adult antisocial behavior. A robust association was found between reduced P300 amplitude and the externalizing factor, and this relation accounted for links between specific externalizing disorders and P300. Our findings indicate that reduced P300 amplitude is an indicator of the broad neurobiological vulnerability that underlies disorders within the externalizing spectrum. PMID:16629688
Venables, Noah C.; Patrick, Christopher J.
2014-01-01
We sought to address inconsistencies in the literature on amplitude of P3 brain potential response in offenders diagnosed with psychopathy. These inconsistencies contrast with the reliable finding of reduced P3 in relation to externalizing tendencies, which overlap with impulsive-antisocial features of psychopathy, as distinguished from the affective-interpersonal features. Employing a sample of incarcerated male offenders (N=154) who completed Hare’s (2003) Psychopathy Checklist-Revised along with a three-stimulus visual oddball task, we tested the hypothesis that impulsive-antisocial features of psychopathy would selectively exhibit an inverse relationship with P3 amplitude. Clear support for this hypothesis was obtained. Our findings clarify the discrepant findings regarding psychopathy and P3, and establish P3 as a neurophysiological point of contact between psychopathy and externalizing proneness from the broader psychopathology literature. PMID:24579849
Visual adaptation and novelty responses in the superior colliculus
Boehnke, Susan E.; Berg, David J.; Marino, Robert M.; Baldi, Pierre F.; Itti, Laurent; Munoz, Douglas P.
2011-01-01
The brain's ability to ignore repeating, often redundant, information while enhancing novel information processing is paramount to survival. When stimuli are repeatedly presented, the response of visually-sensitive neurons decreases in magnitude, i.e. neurons adapt or habituate, although the mechanism is not yet known. We monitored activity of visual neurons in the superior colliculus (SC) of rhesus monkeys who actively fixated while repeated visual events were presented. We dissociated adaptation from habituation as mechanisms of the response decrement by using a Bayesian model of adaptation, and by employing a paradigm including rare trials that included an oddball stimulus that was either brighter or dimmer. If the mechanism is adaptation, response recovery should be seen only for the brighter stimulus; if habituation, response recovery (‘dishabituation’) should be seen for both the brighter and dimmer stimulus. We observed a reduction in the magnitude of the initial transient response and an increase in response onset latency with stimulus repetition for all visually responsive neurons in the SC. Response decrement was successfully captured by the adaptation model which also predicted the effects of presentation rate and rare luminance changes. However, in a subset of neurons with sustained activity to visual stimuli, a novelty signal akin to dishabituation was observed late in the visual response profile to both brighter and dimmer stimuli and was not captured by the model. This suggests that SC neurons integrate both rapidly discounted information about repeating stimuli and novelty information about oddball events, to support efficient selection in a cluttered dynamic world. PMID:21864319
Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin
2016-01-01
The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = -2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = -1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders.
Tsai, Li-Ting; Hsu, Jung-Lung; Wu, Chien-Te; Chen, Chia-Ching; Su, Yu-Chin
2016-01-01
The purpose of this study was to investigate the effectiveness of visual rehabilitation of a computer-based visual stimulation (VS) program combining checkerboard pattern reversal (passive stimulation) with oddball stimuli (attentional modulation) for improving the visual acuity (VA) of visually impaired (VI) children and children with amblyopia and additional developmental problems. Six children (three females, three males; mean age = 3.9 ± 2.3 years) with impaired VA caused by deficits along the anterior and/or posterior visual pathways were recruited. Participants received eight rounds of VS training (two rounds per week) of at least eight sessions per round. Each session consisted of stimulation with 200 or 300 pattern reversals. Assessments of VA (assessed with the Lea symbol VA test or Teller VA cards), visual evoked potential (VEP), and functional vision (assessed with the Chinese-version Functional Vision Questionnaire, FVQ) were carried out before and after the VS program. Significant gains in VA were found after the VS training [VA = 1.05 logMAR ± 0.80 to 0.61 logMAR ± 0.53, Z = –2.20, asymptotic significance (2-tailed) = 0.028]. No significant changes were observed in the FVQ assessment [92.8 ± 12.6 to 100.8 ±SD = 15.4, Z = –1.46, asymptotic significance (2-tailed) = 0.144]. VEP measurement showed improvement in P100 latency and amplitude or integration of the waveform in two participants. Our results indicate that a computer-based VS program with passive checkerboard stimulation, oddball stimulus design, and interesting auditory feedback could be considered as a potential intervention option to improve the VA of a wide age range of VI children and children with impaired VA combined with other neurological disorders. PMID:27148014
Functional Neuroimaging of Social and Nonsocial Cognitive Control in Autism
ERIC Educational Resources Information Center
Sabatino, Antoinette; Rittenberg, Alison; Sasson, Noah J.; Turner-Brown, Lauren; Bodfish, James W.; Dichter, Gabriel S.
2013-01-01
This study investigated cognitive control of social and nonsocial information in autism using functional magnetic resonance imaging. Individuals with autism spectrum disorders (ASDs) and a neurotypical control group completed an oddball target detection task where target stimuli were either faces or nonsocial objects previously shown to be related…
Effects of Alcohol on Performance on a Distraction Task During Simulated Driving
Allen, Allyssa J.; Meda, Shashwath A.; Skudlarski, Pawel; Calhoun, Vince; Astur, Robert; Ruopp, Kathryn C.; Pearlson, Godfrey D.
2009-01-01
Background Prior studies report that accidents involving intoxicated drivers are more likely to occur during performance of secondary tasks. We studied this phenomenon, using a dual-task paradigm, involving performance of a visual oddball (VO) task while driving in an alcohol challenge paradigm. Previous functional MRI (fMRI) studies of the VO task have shown activation in the anterior cingulate, hippocampus, and prefrontal cortex. Thus, we predicted dose-dependent decreases in activation of these areas during VO performance. Methods Forty healthy social drinkers were administered 3 different doses of alcohol, individually tailored to their gender and weight. Participants performed a VO task while operating a virtual reality driving simulator in a 3T fMRI scanner. Results Analysis showed a dose-dependent linear decrease in Blood Oxygen Level Dependent activation during task performance, primarily in hippocampus, anterior cingulate, and dorsolateral prefrontal areas, with the least activation occurring during the high dose. Behavioral analysis showed a dose-dependent linear increase in reaction time, with no effects associated with either correct hits or false alarms. In all dose conditions, driving speed decreased significantly after a VO stimulus. However, at the high dose this decrease was significantly less. Passenger-side line crossings significantly increased at the high dose. Conclusions These results suggest that driving impairment during secondary task performance may be associated with alcohol-related effects on the above brain regions, which are involved with attentional processing/decision-making. Drivers with high blood alcohol concentrations may be less able to orient or detect novel or sudden stimuli during driving. PMID:19183133
Individual Differences in Face Identity Processing with Fast Periodic Visual Stimulation.
Xu, Buyun; Liu-Shuang, Joan; Rossion, Bruno; Tanaka, James
2017-08-01
A growing body of literature suggests that human individuals differ in their ability to process face identity. These findings mainly stem from explicit behavioral tasks, such as the Cambridge Face Memory Test (CFMT). However, it remains an open question whether such individual differences can be found in the absence of an explicit face identity task and when faces have to be individualized at a single glance. In the current study, we tested 49 participants with a recently developed fast periodic visual stimulation (FPVS) paradigm [Liu-Shuang, J., Norcia, A. M., & Rossion, B. An objective index of individual face discrimination in the right occipitotemporal cortex by means of fast periodic oddball stimulation. Neuropsychologia, 52, 57-72, 2014] in EEG to rapidly, objectively, and implicitly quantify face identity processing. In the FPVS paradigm, one face identity (A) was presented at the frequency of 6 Hz, allowing only one gaze fixation, with different face identities (B, C, D) presented every fifth face (1.2 Hz; i.e., AAAABAAAACAAAAD…). Results showed a face individuation response at 1.2 Hz and its harmonics, peaking over occipitotemporal locations. The magnitude of this response showed high reliability across different recording sequences and was significant in all but two participants, with the magnitude and lateralization differing widely across participants. There was a modest but significant correlation between the individuation response amplitude and the performance of the behavioral CFMT task, despite the fact that CFMT and FPVS measured different aspects of face identity processing. Taken together, the current study highlights the FPVS approach as a promising means for studying individual differences in face identity processing.
The perceptual processing capacity of summary statistics between and within feature dimensions
Attarha, Mouna; Moore, Cathleen M.
2015-01-01
The simultaneous–sequential method was used to test the processing capacity of statistical summary representations both within and between feature dimensions. Sixteen gratings varied with respect to their size and orientation. In Experiment 1, the gratings were equally divided into four separate smaller sets, one of which with a mean size that was larger or smaller than the other three sets, and one of which with a mean orientation that was tilted more leftward or rightward. The task was to report the mean size and orientation of the oddball sets. This therefore required four summary representations for size and another four for orientation. The sets were presented at the same time in the simultaneous condition or across two temporal frames in the sequential condition. Experiment 1 showed evidence of a sequential advantage, suggesting that the system may be limited with respect to establishing multiple within-feature summaries. Experiment 2 eliminates the possibility that some aspect of the task, other than averaging, was contributing to this observed limitation. In Experiment 3, the same 16 gratings appeared as one large superset, and therefore the task only required one summary representation for size and another one for orientation. Equal simultaneous–sequential performance indicated that between-feature summaries are capacity free. These findings challenge the view that within-feature summaries drive a global sense of visual continuity across areas of the peripheral visual field, and suggest a shift in focus to seeking an understanding of how between-feature summaries in one area of the environment control behavior. PMID:26360153
Electrophysiological Evidence for Hyperfocusing of Spatial Attention in Schizophrenia.
Kreither, Johanna; Lopez-Calderon, Javier; Leonard, Carly J; Robinson, Benjamin M; Ruffle, Abigail; Hahn, Britta; Gold, James M; Luck, Steven J
2017-04-05
A recently proposed hyperfocusing hypothesis of cognitive dysfunction in schizophrenia proposes that people with schizophrenia (PSZ) tend to concentrate processing resources more narrowly but more intensely than healthy control subjects (HCS). The present study tests a key prediction of this hypothesis, namely, that PSZ will hyperfocus on information presented at the center of gaze. This should lead to greater filtering of peripheral stimuli when the task requires focusing centrally but reduced filtering of central stimuli when the task requires attending broadly in the periphery. These predictions were tested in a double oddball paradigm, in which frequent standard stimuli and rare oddball stimuli were presented at central and peripheral locations while event-related potentials were recorded. Participants were instructed to discriminate between the standard and oddball stimuli at either the central location or at the peripheral locations. PSZ and HCS showed opposite patterns of spatial bias at the level of early sensory processing, as assessed with the P1 component: PSZ exhibited stronger sensory suppression of peripheral stimuli when the task required attending narrowly to the central location, whereas HCS exhibited stronger sensory suppression of central stimuli when the task required attending broadly to the peripheral locations. Moreover, PSZ exhibited a stronger stimulus categorization response than HCS, as assessed with the P3b component, for central stimuli when the task required attending to the peripheral region. These results provide strong evidence of hyperfocusing in PSZ, which may provide a unified mechanistic account of multiple aspects of cognitive dysfunction in schizophrenia. SIGNIFICANCE STATEMENT Schizophrenia clearly involves impaired attention, but attention is complex, and delineating the precise nature of attentional dysfunction in schizophrenia has been difficult. The present study tests a new hyperfocusing hypothesis, which proposes that people with schizophrenia (PSZ) tend to concentrate processing resources more intensely but more narrowly than healthy control subjects (HCS). Using electrophysiological measures of sensory and cognitive processing, we found that PSZ were actually superior to HCS in focusing attention at the point of gaze and filtering out peripheral distractors when the task required a narrow focusing of attention. This finding of superior filtering in PSZ supports the hyperfocusing hypothesis, which may provide the mechanism underlying a broad range of cognitive impairments in schizophrenia. Copyright © 2017 the authors 0270-6474/17/373813-11$15.00/0.
Electrophysiological Evidence for Hyperfocusing of Spatial Attention in Schizophrenia
Kreither, Johanna; Lopez-Calderon, Javier; Leonard, Carly J.; Robinson, Benjamin M.; Ruffle, Abigail; Hahn, Britta; Gold, James M.
2017-01-01
A recently proposed hyperfocusing hypothesis of cognitive dysfunction in schizophrenia proposes that people with schizophrenia (PSZ) tend to concentrate processing resources more narrowly but more intensely than healthy control subjects (HCS). The present study tests a key prediction of this hypothesis, namely, that PSZ will hyperfocus on information presented at the center of gaze. This should lead to greater filtering of peripheral stimuli when the task requires focusing centrally but reduced filtering of central stimuli when the task requires attending broadly in the periphery. These predictions were tested in a double oddball paradigm, in which frequent standard stimuli and rare oddball stimuli were presented at central and peripheral locations while event-related potentials were recorded. Participants were instructed to discriminate between the standard and oddball stimuli at either the central location or at the peripheral locations. PSZ and HCS showed opposite patterns of spatial bias at the level of early sensory processing, as assessed with the P1 component: PSZ exhibited stronger sensory suppression of peripheral stimuli when the task required attending narrowly to the central location, whereas HCS exhibited stronger sensory suppression of central stimuli when the task required attending broadly to the peripheral locations. Moreover, PSZ exhibited a stronger stimulus categorization response than HCS, as assessed with the P3b component, for central stimuli when the task required attending to the peripheral region. These results provide strong evidence of hyperfocusing in PSZ, which may provide a unified mechanistic account of multiple aspects of cognitive dysfunction in schizophrenia. SIGNIFICANCE STATEMENT Schizophrenia clearly involves impaired attention, but attention is complex, and delineating the precise nature of attentional dysfunction in schizophrenia has been difficult. The present study tests a new hyperfocusing hypothesis, which proposes that people with schizophrenia (PSZ) tend to concentrate processing resources more intensely but more narrowly than healthy control subjects (HCS). Using electrophysiological measures of sensory and cognitive processing, we found that PSZ were actually superior to HCS in focusing attention at the point of gaze and filtering out peripheral distractors when the task required a narrow focusing of attention. This finding of superior filtering in PSZ supports the hyperfocusing hypothesis, which may provide the mechanism underlying a broad range of cognitive impairments in schizophrenia. PMID:28283557
Okazaki, Kosuke; Yamamuro, Kazuhiko; Iida, Junzo; Ota, Toyosaku; Nakanishi, Yoko; Matsuura, Hiroki; Uratani, Mitsuhiro; Sawada, Satomi; Azechi, Takahiro; Kishimoto, Naoko; Kishimoto, Toshifumi
2018-06-01
Attention deficit is commonly observed in several psychiatric conditions. In particular, patients with attention deficit hyperactivity disorder exhibit not only attention deficit, but also intra-individual variability in response times (IIV-RT) during the performance of cognitive tasks related to attention span and sustained attention. Although obsessive compulsive disorder (OCD) is commonly observed across childhood, little is known about abnormalities in IIV-RT during the auditory odd-ball task, and how these changes relate to event-related potentials (ERPs) components. In the present study, we compared the ERPs of 15 adolescent and pediatric patients with OCD with 15 healthy age, sex, and IQ-matched controls. We found that tau of IIV-TR was not significantly different between the OCD group and controls, whereas the OCD group exhibited lower mu and sigma compared to controls. Furthermore, we revealed that P300 amplitude was significantly attenuated in the OCD group at Fz, C3, and C4, compared with controls. The present study thereby provided the first evidence that individuals with pediatric or adolescent OCD exhibit lower variability in reaction time in IIV-RT during an auditory odd-ball task than controls. These results suggest that there are no impairments in attention span and sustained attention in pediatric and adolescent patients with OCD. Copyright © 2018 Elsevier B.V. All rights reserved.
Webb, Taylor W.; Kelly, Yin T.; Graziano, Michael S. A.
2016-01-01
Abstract The temporoparietal junction (TPJ) is activated in association with a large range of functions, including social cognition, episodic memory retrieval, and attentional reorienting. An ongoing debate is whether the TPJ performs an overarching, domain-general computation, or whether functions reside in domain-specific subdivisions. We scanned subjects with fMRI during five tasks known to activate the TPJ, probing social, attentional, and memory functions, and used data-driven parcellation (independent component analysis) to isolate task-related functional processes in the bilateral TPJ. We found that one dorsal component in the right TPJ, which was connected with the frontoparietal control network, was activated in all of the tasks. Other TPJ subregions were specific for attentional reorienting, oddball target detection, or social attribution of belief. The TPJ components that participated in attentional reorienting and oddball target detection appeared spatially separated, but both were connected with the ventral attention network. The TPJ component that participated in the theory-of-mind task was part of the default-mode network. Further, we found that the BOLD response in the domain-general dorsal component had a longer latency than responses in the domain-specific components, suggesting an involvement in distinct, perhaps postperceptual, computations. These findings suggest that the TPJ performs both domain-general and domain-specific computations that reside within spatially distinct functional components. PMID:27280153
Auditory attention strategy depends on target linguistic properties and spatial configurationa)
McCloy, Daniel R.; Lee, Adrian K. C.
2015-01-01
Whether crossing a busy intersection or attending a large dinner party, listeners sometimes need to attend to multiple spatially distributed sound sources or streams concurrently. How they achieve this is not clear—some studies suggest that listeners cannot truly simultaneously attend to separate streams, but instead combine attention switching with short-term memory to achieve something resembling divided attention. This paper presents two oddball detection experiments designed to investigate whether directing attention to phonetic versus semantic properties of the attended speech impacts listeners' ability to divide their auditory attention across spatial locations. Each experiment uses four spatially distinct streams of monosyllabic words, variation in cue type (providing phonetic or semantic information), and requiring attention to one or two locations. A rapid button-press response paradigm is employed to minimize the role of short-term memory in performing the task. Results show that differences in the spatial configuration of attended and unattended streams interact with linguistic properties of the speech streams to impact performance. Additionally, listeners may leverage phonetic information to make oddball detection judgments even when oddballs are semantically defined. Both of these effects appear to be mediated by the overall complexity of the acoustic scene. PMID:26233011
Mayas, Julia; Parmentier, Fabrice B. R.; Andrés, Pilar; Ballesteros, Soledad
2014-01-01
A major goal of recent research in aging has been to examine cognitive plasticity in older adults and its capacity to counteract cognitive decline. The aim of the present study was to investigate whether older adults could benefit from brain training with video games in a cross-modal oddball task designed to assess distraction and alertness. Twenty-seven healthy older adults participated in the study (15 in the experimental group, 12 in the control group. The experimental group received 20 1-hr video game training sessions using a commercially available brain-training package (Lumosity) involving problem solving, mental calculation, working memory and attention tasks. The control group did not practice this package and, instead, attended meetings with the other members of the study several times along the course of the study. Both groups were evaluated before and after the intervention using a cross-modal oddball task measuring alertness and distraction. The results showed a significant reduction of distraction and an increase of alertness in the experimental group and no variation in the control group. These results suggest neurocognitive plasticity in the old human brain as training enhanced cognitive performance on attentional functions. Trial Registration ClinicalTrials.gov NCT02007616 PMID:24647551
Mood Modulates Auditory Laterality of Hemodynamic Mismatch Responses during Dichotic Listening
Schock, Lisa; Dyck, Miriam; Demenescu, Liliana R.; Edgar, J. Christopher; Hertrich, Ingo; Sturm, Walter; Mathiak, Klaus
2012-01-01
Hemodynamic mismatch responses can be elicited by deviant stimuli in a sequence of standard stimuli even during cognitive demanding tasks. Emotional context is known to modulate lateralized processing. Right-hemispheric negative emotion processing may bias attention to the right and enhance processing of right-ear stimuli. The present study examined the influence of induced mood on lateralized pre-attentive auditory processing of dichotic stimuli using functional magnetic resonance imaging (fMRI). Faces expressing emotions (sad/happy/neutral) were presented in a blocked design while a dichotic oddball sequence with consonant-vowel (CV) syllables in an event-related design was simultaneously administered. Twenty healthy participants were instructed to feel the emotion perceived on the images and to ignore the syllables. Deviant sounds reliably activated bilateral auditory cortices and confirmed attention effects by modulation of visual activity. Sad mood induction activated visual, limbic and right prefrontal areas. A lateralization effect of emotion-attention interaction was reflected in a stronger response to right-ear deviants in the right auditory cortex during sad mood. This imbalance of resources may be a neurophysiological correlate of laterality in sad mood and depression. Conceivably, the compensatory right-hemispheric enhancement of resources elicits increased ipsilateral processing. PMID:22384105
Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter
2018-05-01
Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.
Tracking the Sensory Environment: An ERP Study of Probability and Context Updating in ASD
ERIC Educational Resources Information Center
Westerfield, Marissa A.; Zinni, Marla; Vo, Khang; Townsend, Jeanne
2015-01-01
We recorded visual event-related brain potentials from 32 adult male participants (16 high-functioning participants diagnosed with autism spectrum disorder (ASD) and 16 control participants, ranging in age from 18 to 53 years) during a three-stimulus oddball paradigm. Target and non-target stimulus probability was varied across three probability…
Identification of canonical neural events during continuous gameplay of an 8-bit style video game.
Cavanagh, James F; Castellanos, Joel
2016-06-01
Cognitive neuroscience suffers from a unique and pervasive problem of generalizability. Since neural findings are often interpreted in the context of a specific manipulation during a carefully controlled task, it is hard to transfer knowledge from one task to another. In this report we address problems of generalizability with two methodological advancements. First, we aimed to transcend status quo experimental procedures with a continuous, engaging task environment. To this end, we created a novel 8-bit style continuous space shooter video game that elicits a multitude of goal-oriented events, such as crashing into a wall or blowing up an enemy with a missile. Second, we aimed to objectively define the psychological significance of these events. To achieve this aim, we used pattern classification of EEG data to derive predictive weights from carefully controlled pre-game exemplar events (oddball target detection and gambling wins and losses) and transferred those weights to EEG activities during video game events. All major goal-oriented events (crashes into the wall, crashes into an enemy, missile hit on an enemy) had a significant between-task transfer bias towards oddball target weights in the time range of the canonical P3, indicating the presence of similar salience detection processes. Missile hits on an enemy were specifically identified as gambling wins, confirming the hypothesis that this goal-oriented event was appetitive. These findings suggest that it is possible to identify the contribution of canonical neural activities during otherwise ambiguous and uncontrolled task performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Neural correlates of audiovisual integration in music reading.
Nichols, Emily S; Grahn, Jessica A
2016-10-01
Integration of auditory and visual information is important to both language and music. In the linguistic domain, audiovisual integration alters event-related potentials (ERPs) at early stages of processing (the mismatch negativity (MMN)) as well as later stages (P300(Andres et al., 2011)). However, the role of experience in audiovisual integration is unclear, as reading experience is generally confounded with developmental stage. Here we tested whether audiovisual integration of music appears similar to reading, and how musical experience altered integration. We compared brain responses in musicians and non-musicians on an auditory pitch-interval oddball task that evoked the MMN and P300, while manipulating whether visual pitch-interval information was congruent or incongruent with the auditory information. We predicted that the MMN and P300 would be largest when both auditory and visual stimuli deviated, because audiovisual integration would increase the neural response when the deviants were congruent. The results indicated that scalp topography differed between musicians and non-musicians for both the MMN and P300 response to deviants. Interestingly, musicians' musical training modulated integration of congruent deviants at both early and late stages of processing. We propose that early in the processing stream, visual information may guide interpretation of auditory information, leading to a larger MMN when auditory and visual information mismatch. At later attentional stages, integration of the auditory and visual stimuli leads to a larger P300 amplitude. Thus, experience with musical visual notation shapes the way the brain integrates abstract sound-symbol pairings, suggesting that musicians can indeed inform us about the role of experience in audiovisual integration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rossignol, M; Philippot, P; Crommelinck, M; Campanella, S
2008-10-01
Controversy remains about the existence and the nature of a specific bias in emotional facial expression processing in mixed anxious-depressed state (MAD). Event-related potentials were recorded in the following three types of groups defined by the Spielberger state and trait anxiety inventory (STAI) and the Beck depression inventory (BDI): a group of anxious participants (n=12), a group of participants with depressive and anxious tendencies (n=12), and a control group (n=12). Participants were confronted with a visual oddball task in which they had to detect, as quickly as possible, deviant faces amongst a train of standard neutral faces. Deviant stimuli changed either on identity, or on emotion (happy or sad expression). Anxiety facilitated emotional processing and the two anxious groups produced quicker responses than control participants; these effects were correlated with an earlier decisional wave (P3b) for anxious participants. Mixed anxious-depressed participants showed enhanced visual processing of deviant stimuli and produced higher amplitude in attentional complex (N2b/P3a), both for identity and emotional trials. P3a was also particularly increased for emotional faces in this group. Anxious state mainly influenced later decision processes (shorter latency of P3b), whereas mixed anxious-depressed state acted on earlier steps of emotional processing (enhanced N2b/P3a complex). Mixed anxious-depressed individuals seemed more reactive to any visual change, particularly emotional change, without displaying any valence bias.
Leiva, Alicia; Andrés, Pilar; Servera, Mateu; Verbruggen, Frederick; Parmentier, Fabrice B R
2016-09-01
Sounds deviating from an otherwise repeated or structured sequence capture attention and affect performance in an ongoing visual task negatively, testament to the balance between selective attention and change detection. Although deviance distraction has been the object of much research, its modulation across the life span has been more scarcely addressed. Recent findings suggest possible connections with working memory and response inhibition. In this study we measured the performance of children and young and older adults in a cross-modal oddball task (deviance distraction), a working memory task (working memory capacity), and a response inhibition task (ability to voluntarily inhibit an already planned action) with the aim to establish the contribution of the latter 2 to the first. Older adults exhibited significantly more deviance distraction than children and young adults (who did not differ from each other). Working memory capacity mediated deviance distraction in children and older adults (though in opposite directions) but not in young adults. Response inhibition capacities did not mediate deviance distraction in any of the age groups. Altogether the results suggest that although the increase in deviance distraction observed in old age may partly reflect the relative impairment of working memory mechanisms, there is no straightforward and stable relation between working memory capacity and deviance distraction across the life span. Furthermore, our results indicate that deviance distraction is unlikely to reflect the temporary inhibition of responses. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Bentin, S; Mouchetant-Rostaing, Y; Giard, M H; Echallier, J F; Pernier, J
1999-05-01
The aim of the present study was to examine the time course and scalp distribution of electrophysiological manifestations of the visual word recognition mechanism. Event-related potentials (ERPs) elicited by visually presented lists of words were recorded while subjects were involved in a series of oddball tasks. The distinction between the designated target and nontarget stimuli was manipulated to induce a different level of processing in each session (visual, phonological/phonetic, phonological/lexical, and semantic). The ERPs of main interest in this study were those elicited by nontarget stimuli. In the visual task the targets were twice as big as the nontargets. Words, pseudowords, strings of consonants, strings of alphanumeric symbols, and strings of forms elicited a sharp negative peak at 170 msec (N170); their distribution was limited to the occipito-temporal sites. For the left hemisphere electrode sites, the N170 was larger for orthographic than for nonorthographic stimuli and vice versa for the right hemisphere. The ERPs elicited by all orthographic stimuli formed a clearly distinct cluster that was different from the ERPs elicited by nonorthographic stimuli. In the phonological/phonetic decision task the targets were words and pseudowords rhyming with the French word vitrail, whereas the nontargets were words, pseudowords, and strings of consonants that did not rhyme with vitrail. The most conspicuous potential was a negative peak at 320 msec, which was similarly elicited by pronounceable stimuli but not by nonpronounceable stimuli. The N320 was bilaterally distributed over the middle temporal lobe and was significantly larger over the left than over the right hemisphere. In the phonological/lexical processing task we compared the ERPs elicited by strings of consonants (among which words were selected), pseudowords (among which words were selected), and by words (among which pseudowords were selected). The most conspicuous potential in these tasks was a negative potential peaking at 350 msec (N350) elicited by phonologically legal but not by phonologically illegal stimuli. The distribution of the N350 was similar to that of the N320, but it was broader and including temporo-parietal areas that were not activated in the "rhyme" task. Finally, in the semantic task the targets were abstract words, and the nontargets were concrete words, pseudowords, and strings of consonants. The negative potential in this task peaked at 450 msec. Unlike the lexical decision, the negative peak in this task significantly distinguished not only between phonologically legal and illegal words but also between meaningful (words) and meaningless (pseudowords) phonologically legal structures. The distribution of the N450 included the areas activated in the lexical decision task but also areas in the fronto-central regions. The present data corroborated the functional neuroanatomy of word recognition systems suggested by other neuroimaging methods and described their timecourse, supporting a cascade-type process that involves different but interconnected neural modules, each responsible for a different level of processing word-related information.
Kornmeier, Juergen; Wörner, Rike; Riedel, Andreas; Bach, Michael; Tebartz van Elst, Ludger
2014-01-01
Background Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. Methods In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. Results We found an early (100–200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. Discussion The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis. PMID:24632708
Kornmeier, Juergen; Wörner, Rike; Riedel, Andreas; Bach, Michael; Tebartz van Elst, Ludger
2014-01-01
Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. We found an early (100-200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.
Psychopathy, attention, and oddball target detection: New insights from PCL-R facet scores.
Anderson, Nathaniel E; Steele, Vaughn R; Maurer, J Michael; Bernat, Edward M; Kiehl, Kent A
2015-09-01
Psychopathy is a disorder accompanied by cognitive deficits including abnormalities in attention. Prior studies examining cognitive features of psychopaths using ERPs have produced some inconsistent results. We examined psychopathy-related differences in ERPs during an auditory oddball task in a sample of incarcerated adult males. We extend previous work by deriving ERPs with principal component analysis (PCA) and relate these to the four facets of Hare's Psychopathy Checklist Revised (PCL-R). Features of psychopathy were associated with increased target N1 amplitude (facets 1, 4), decreased target P3 amplitude (facet 1), and reduced slow wave amplitude for frequent standard stimuli (facets 1, 3, 4). We conclude that employing PCA and examining PCL-R facets improve sensitivity and help clarify previously reported associations. Furthermore, attenuated slow wave during standards may be a novel marker for psychopaths' abnormalities in attention. © 2015 Society for Psychophysiological Research.
Detection of P300 waves in single trials by the wavelet transform (WT).
Demiralp, T; Ademoglu, A; Schürmann, M; Başar-Eroglu, C; Başar, E
1999-01-01
The P300 response is conventionally obtained by averaging the responses to the task-relevant (target) stimuli of the oddball paradigm. However, it is well known that cognitive ERP components show a high variability due to changes of cognitive state during an experimental session. With simple tasks such changes may not be demonstrable by the conventional method of averaging the sweeps chosen according to task-relevance. Therefore, the present work employed a response-based classification procedure to choose the trials containing the P300 component from the whole set of sweeps of an auditory oddball paradigm. For this purpose, the most significant response property reflecting the P300 wave was identified by using the wavelet transform (WT). The application of a 5 octave quadratic B-spline-WT on single sweeps yielded discrete coefficients in each octave with an appropriate time resolution for each frequency range. The main feature indicating a P300 response was the positivity of the 4th delta (0.5-4 Hz) coefficient (310-430 ms) after stimulus onset. The average of selected single sweeps from the whole set of data according to this criterion yielded more enhanced P300 waves compared with the average of the target responses, and the average of the remaining sweeps showed a significantly smaller positivity in the P300 latency range compared with the average of the non-target responses. The combination of sweeps classified according to the task-based and response-based criteria differed significantly. This suggests an influence of changes in cognitive state on the presence of the P300 wave which cannot be assessed by task performance alone. Copyright 1999 Academic Press.
Altered salience processing in attention deficit hyperactivity disorder.
Tegelbeckers, Jana; Bunzeck, Nico; Duzel, Emrah; Bonath, Björn; Flechtner, Hans-Henning; Krauel, Kerstin
2015-06-01
Attentional problems in patients with attention deficit hyperactivity disorder (ADHD) have often been linked with deficits in cognitive control. Whether these deficits are associated with increased sensitivity to external salient stimuli remains unclear. To address this issue, we acquired functional brain images (fMRI) in 38 boys with and without ADHD (age: 11-16 years). To differentiate the effects of item novelty, contextual rareness and task relevance, participants performed a visual oddball task including four stimulus categories: a frequent standard picture (62.5%), unique novel pictures (12.5%), one repeated rare picture (12.5%), and a target picture (12.5%) that required a specific motor response. As a main finding, we can show considerable overlap in novelty-related BOLD responses between both groups, but only healthy participants showed neural deactivation in temporal as well as frontal regions in response to novel pictures. Furthermore, only ADHD patients, but not healthy controls, engaged wide parts of the novelty network when processing the rare but familiar picture. Our results provide first evidence that ADHD patients show enhanced neural activity in response to novel but behaviorally irrelevant stimuli as well as reduced habituation to familiar items. These findings suggest an inefficient use of neuronal resources in children with ADHD that could be closely linked to increased distractibility. © 2015 Wiley Periodicals, Inc.
Crozier, Joseph C.; Wang, Lihong; Huettel, Scott A.; De Bellis, Michael D.
2014-01-01
We investigated the relationship of gender to cognitive and affective processing in maltreated youth with posttraumatic stress disorder (PTSD) symptoms using functional magnetic resonance imaging. Maltreated (N=29; n=13 females, n=16 males) and non-maltreated participants (N=45; n=26 females, n=19 males) performed an emotional oddball task that involved detection of targets with fear or scrambled face distractors. Results were moderated by gender. During the executive component of this task, left precuneus/posterior middle cingulate hypoactivation to fear versus calm or scrambled face targets were seen in maltreated versus control males and may represent dysfunction and less resilience in attentional networks. Maltreated males also showed decreased activation in the inferior frontal gyrus compared to control males. No differences were found in females. Posterior cingulate activations positively correlated with PTSD symptoms. While viewing fear faces, maltreated females exhibited decreased activity in dorsomedial prefrontal cortex and cerebellum I–VI; whereas maltreated males exhibited increased activity in left hippocampus, fusiform cortex, right cerebellar crus I, and visual cortex compared to their same gender controls. Gender by maltreatment effects were not attributable to demographic, clinical, or maltreatment parameters. Maltreated girls and boys exhibited distinct patterns of neural activations during executive and affective processing, a new finding in the maltreatment literature. PMID:24621958
Crozier, Joseph C; Wang, Lihong; Huettel, Scott A; De Bellis, Michael D
2014-05-01
We investigated the relationship of gender to cognitive and affective processing in maltreated youth with posttraumatic stress disorder symptoms using functional magnetic resonance imaging. Maltreated (N = 29, 13 females, 16 males) and nonmaltreated participants (N = 45, 26 females, 19 males) performed an emotional oddball task that involved detection of targets with fear or scrambled face distractors. Results were moderated by gender. During the executive component of this task, left precuneus/posterior middle cingulate hypoactivation to fear versus calm or scrambled face targets were seen in maltreated versus control males and may represent dysfunction and less resilience in attentional networks. Maltreated males also showed decreased activation in the inferior frontal gyrus compared to control males. No differences were found in females. Posterior cingulate activations positively correlated with posttraumatic stress disorder symptoms. While viewing fear faces, maltreated females exhibited decreased activity in the dorsomedial prefrontal cortex and cerebellum I-VI, whereas maltreated males exhibited increased activity in the left hippocampus, fusiform cortex, right cerebellar crus I, and visual cortex compared to their same-gender controls. Gender by maltreatment effects were not attributable to demographic, clinical, or maltreatment parameters. Maltreated girls and boys exhibited distinct patterns of neural activations during executive and affective processing, a new finding in the maltreatment literature.
Berryman, Carolyn; Wise, Vikki; Stanton, Tasha R; McFarlane, Alexander; Moseley, G Lorimer
2017-02-01
Somatic hypervigilance describes a clinical presentation in which people report more, and more intense, bodily sensations than is usual. Most explanations of somatic hypervigilance implicate altered information processing, but strong empirical data are lacking. Attention and working memory are critical for information processing, and we aimed to evaluate brain activity during attention/working memory tasks in people with and without somatic hypervigilance. Data from 173 people with somatic hypervigilance and 173 controls matched for age, gender, handedness, and years of education were analyzed. Event-related potential (ERP) data, extracted from the continuous electroencephalograph recordings obtained during performance of the Auditory Oddball task, and the Two In A Row (TIAR) task, for N1, P2, N2, and P3, were used in the analysis. Between-group differences for P3 amplitude and N2 amplitude and latency were assessed with two-tailed independent t tests. Between-group differences for N1 and P2 amplitude and latency were assessed using mixed, repeated measures analyses of variance (ANOVAs) with group and Group × Site factors. Linear regression analysis investigated the relationship between anxiety and depression and any outcomes of significance. People with somatic hypervigilance showed smaller P3 amplitudes-Auditory Oddball task: t(285) = 2.32, 95% confidence interval, CI [3.48, 4.47], p = .026, d = 0.27; Two-In-A-Row (TIAR) task: t(334) = 2.23, 95% CI [2.20; 3.95], p = .021, d = 0.24-than case-matched controls. N2 amplitude was also smaller in people with somatic hypervigilance-TIAR task: t(318) = 2.58, 95% CI [0.33, 2.47], p = .010, d = 0.29-than in case-matched controls. Neither depression nor anxiety was significantly associated with any outcome. People with somatic hypervigilance demonstrated an event-related potential response to attention/working memory tasks that is consistent with altered information processing.
Kirchner, Elsa A; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.
Kirchner, Elsa A.; Kim, Su Kyoung
2018-01-01
Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660
Leung, S; Croft, R J; McKenzie, R J; Iskra, S; Silber, B; Cooper, N R; O'Neill, B; Cropley, V; Diaz-Trujillo, A; Hamblin, D; Simpson, D
2011-11-01
This study examined sensory and cognitive processing in adolescents, young adults and older adults, when exposed to 2nd (2G) and 3rd (3G) generation mobile phone signals. Tests employed were the auditory 3-stimulus oddball and the N-back. Forty-one 13-15 year olds, forty-two 19-40 year olds and twenty 55-70 year olds were tested using a double-blind cross-over design, where each participant received Sham, 2G and 3G exposures, separated by at least 4 days. 3-Stimulus oddball task: Behavioural: accuracy and reaction time of responses to targets were not affected by exposure. Electrophysiological: augmented N1 was found in the 2G condition (independent of age group). N-back task: Behavioural: the combined groups performed less accurately during the 3G exposure (compared to Sham), with post hoc tests finding this effect separately in the adolescents only. Electrophysiological: delayed ERD/ERS responses of the alpha power were found in both 3G and 2G conditions (compared to Sham; independent of age group). Employing tasks tailored to each individual's ability level, this study provides support for an effect of acute 2G and 3G exposure on human cognitive function. The subtlety of mobile phone effect on cognition in our study suggests that it is important to account for individual differences in future mobile phone research. Copyright © 2011 International Federation of Clinical Neurophysiology. All rights reserved.
Weckesser, Lisa J; Enge, Sören; Riedel, Philipp; Kirschbaum, Clemens; Miller, Robert
2017-10-01
Proceeding from a biophysical network model, the present study hypothesized that glutamatergic neurotransmission across the NMDA receptor (NMDAR) plays a key role in visual perception and its modulation by acute stress. To investigate these hypotheses, behavioral and electroencephalographic (EEG) indicators of partial report task processing were assessed in twenty-four healthy young men who randomly received a non-competitive NMDAR antagonist (0.8 mg/kg dextromethorphan, DXM) or a placebo, and concurrently accomplished a stress-induction (MAST) or control protocol in three consecutive sessions. Saliva samples served to quantify cortisol responses to the MAST, whereas a passive auditory oddball paradigm was implemented to verify the impact of DXM on the EEG-derived mismatch negativity component (MMN). DXM administration significantly increased MMN amplitudes but not salivary cortisol concentrations. By contrast, concurrent MAST exposure significantly reduced MMN latencies but also increased cortisol concentrations. With regard to EEG indicators, DXM administration reduced visually "evoked" (30Hz to 50Hz) and "induced" occipital gamma-band activity (70Hz to 100Hz), which was partly compensated by additional MAST exposure. However, neither the interventions nor EEG activity were significantly associated with behavioral partial report sensitivities. In summary, the present data suggest that glutamatergic neurotransmission across the NMDAR is only one among many determinants of intact visual perception. Accordingly, therapeutic doses of DXM and their inhibitory modulation by stress probably yield more pronounced electroencephalographic as compared with behavioural effects. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
Ledwidge, Patrick S; Molfese, Dennis L
2016-12-01
This study investigated the effects of a past concussion on electrophysiological indices of attention in college athletes. Forty-four varsity football athletes (22 with at least one past concussion) participated in three neuropsychological tests and a two-tone auditory oddball task while undergoing high-density event-related potential (ERP) recording. Athletes previously diagnosed with a concussion experienced their most recent injury approximately 4 years before testing. Previously concussed and control athletes performed equivalently on three neuropsychological tests. Behavioral accuracy and reaction times on the oddball task were also equivalent across groups. However, athletes with a concussion history exhibited significantly larger N2 and P3b amplitudes and longer P3b latencies. Source localization using standardized low-resolution brain electromagnetic tomography indicated that athletes with a history of concussion generated larger electrical current density in the left inferior parietal gyrus compared to control athletes. These findings support the hypothesis that individuals with a past concussion recruit compensatory neural resources in order to meet executive functioning demands. High-density ERP measures combined with source localization provide an important method to detect long-term neural consequences of concussion in the absence of impaired neuropsychological performance.
Molfese, Dennis L.
2016-01-01
Abstract This study investigated the effects of a past concussion on electrophysiological indices of attention in college athletes. Forty-four varsity football athletes (22 with at least one past concussion) participated in three neuropsychological tests and a two-tone auditory oddball task while undergoing high-density event-related potential (ERP) recording. Athletes previously diagnosed with a concussion experienced their most recent injury approximately 4 years before testing. Previously concussed and control athletes performed equivalently on three neuropsychological tests. Behavioral accuracy and reaction times on the oddball task were also equivalent across groups. However, athletes with a concussion history exhibited significantly larger N2 and P3b amplitudes and longer P3b latencies. Source localization using standardized low-resolution brain electromagnetic tomography indicated that athletes with a history of concussion generated larger electrical current density in the left inferior parietal gyrus compared to control athletes. These findings support the hypothesis that individuals with a past concussion recruit compensatory neural resources in order to meet executive functioning demands. High-density ERP measures combined with source localization provide an important method to detect long-term neural consequences of concussion in the absence of impaired neuropsychological performance. PMID:27025905
Solís-Marcos, Ignacio; Galvao-Carmona, Alejandro; Kircher, Katja
2017-01-01
Research on partially automated driving has revealed relevant problems with driving performance, particularly when drivers’ intervention is required (e.g., take-over when automation fails). Mental fatigue has commonly been proposed to explain these effects after prolonged automated drives. However, performance problems have also been reported after just a few minutes of automated driving, indicating that other factors may also be involved. We hypothesize that, besides mental fatigue, an underload effect of partial automation may also affect driver attention. In this study, such potential effect was investigated during short periods of partially automated and manual driving and at different speeds. Subjective measures of mental demand and vigilance and performance to a secondary task (an auditory oddball task) were used to assess driver attention. Additionally, modulations of some specific attention-related event-related potentials (ERPs, N1 and P3 components) were investigated. The mental fatigue effects associated with the time on task were also evaluated by using the same measurements. Twenty participants drove in a fixed-base simulator while performing an auditory oddball task that elicited the ERPs. Six conditions were presented (5–6 min each) combining three speed levels (low, comfortable and high) and two automation levels (manual and partially automated). The results showed that, when driving partially automated, scores in subjective mental demand and P3 amplitudes were lower than in the manual conditions. Similarly, P3 amplitude and self-reported vigilance levels decreased with the time on task. Based on previous studies, these findings might reflect a reduction in drivers’ attention resource allocation, presumably due to the underload effects of partial automation and to the mental fatigue associated with the time on task. Particularly, such underload effects on attention could explain the performance decrements after short periods of automated driving reported in other studies. However, further studies are needed to investigate this relationship in partial automation and in other automation levels. PMID:29163112
Cognitive processing of orientation discrimination in anisometropic amblyopia.
Wang, Jianglan; Zhao, Jiao; Wang, Shoujing; Gong, Rui; Zheng, Zhong; Liu, Longqian
2017-01-01
Cognition is very important in our daily life. However, amblyopia has abnormal visual cognition. Physiological changes of the brain during processes of cognition could be reflected with ERPs. So the purpose of this study was to investigate the speed and the capacity of resource allocation in visual cognitive processing in orientation discrimination task during monocular and binocular viewing conditions of amblyopia and normal control as well as the corresponding eyes of the two groups with ERPs. We also sought to investigate whether the speed and the capacity of resource allocation in visual cognitive processing vary with target stimuli at different spatial frequencies (3, 6 and 9 cpd) in amblyopia and normal control as well as between the corresponding eyes of the two groups. Fifteen mild to moderate anisometropic amblyopes and ten normal controls were recruited. Three-stimulus oddball paradigms of three different spatial frequency orientation discrimination tasks were used in monocular and binocular conditions in amblyopes and normal controls to elicit event-related potentials (ERPs). Accuracy (ACC), reaction time (RT), the latency of novelty P300 and P3b, and the amplitude of novelty P300 and P3b were measured. Results showed that RT was longer in the amblyopic eye than in both eyes of amblyopia and non-dominant eye in control. Novelty P300 amplitude was largest in the amblyopic eye, followed by the fellow eye, and smallest in both eyes of amblyopia. Novelty P300 amplitude was larger in the amblyopic eye than non-dominant eye and was larger in fellow eye than dominant eye. P3b latency was longer in the amblyopic eye than in the fellow eye, both eyes of amblyopia and non-dominant eye of control. P3b latency was not associated with RT in amblyopia. Neural responses of the amblyopic eye are abnormal at the middle and late stages of cognitive processing, indicating that the amblyopic eye needs to spend more time or integrate more resources to process the same visual task. Fellow eye and both eyes in amblyopia are slightly different from the dominant eye and both eyes in normal control at the middle and late stages of cognitive processing. Meanwhile, abnormal extents of amblyopic eye do not vary with three different spatial frequencies used in our study.
Cognitive processing of orientation discrimination in anisometropic amblyopia
Wang, Jianglan; Zhao, Jiao; Wang, Shoujing; Gong, Rui; Zheng, Zhong; Liu, Longqian
2017-01-01
Cognition is very important in our daily life. However, amblyopia has abnormal visual cognition. Physiological changes of the brain during processes of cognition could be reflected with ERPs. So the purpose of this study was to investigate the speed and the capacity of resource allocation in visual cognitive processing in orientation discrimination task during monocular and binocular viewing conditions of amblyopia and normal control as well as the corresponding eyes of the two groups with ERPs. We also sought to investigate whether the speed and the capacity of resource allocation in visual cognitive processing vary with target stimuli at different spatial frequencies (3, 6 and 9 cpd) in amblyopia and normal control as well as between the corresponding eyes of the two groups. Fifteen mild to moderate anisometropic amblyopes and ten normal controls were recruited. Three-stimulus oddball paradigms of three different spatial frequency orientation discrimination tasks were used in monocular and binocular conditions in amblyopes and normal controls to elicit event-related potentials (ERPs). Accuracy (ACC), reaction time (RT), the latency of novelty P300 and P3b, and the amplitude of novelty P300 and P3b were measured. Results showed that RT was longer in the amblyopic eye than in both eyes of amblyopia and non-dominant eye in control. Novelty P300 amplitude was largest in the amblyopic eye, followed by the fellow eye, and smallest in both eyes of amblyopia. Novelty P300 amplitude was larger in the amblyopic eye than non-dominant eye and was larger in fellow eye than dominant eye. P3b latency was longer in the amblyopic eye than in the fellow eye, both eyes of amblyopia and non-dominant eye of control. P3b latency was not associated with RT in amblyopia. Neural responses of the amblyopic eye are abnormal at the middle and late stages of cognitive processing, indicating that the amblyopic eye needs to spend more time or integrate more resources to process the same visual task. Fellow eye and both eyes in amblyopia are slightly different from the dominant eye and both eyes in normal control at the middle and late stages of cognitive processing. Meanwhile, abnormal extents of amblyopic eye do not vary with three different spatial frequencies used in our study. PMID:29023501
Visual event-related potential changes in two subtypes of multiple system atrophy, MSA-C and MSA-P.
Kamitani, Toshiaki; Kuroiwa, Yoshiyuki; Wang, Lihong; Li, Mei; Suzuki, Yume; Takahashi, Tatsuya; Ikegami, Tadashi; Matsubara, Sho
2002-08-01
We investigated the visual event-related potentials (ERPs) in two subtypes of multisystem atrophy (MSA) in 15 MSA-C patients, 12 MSA-P patients, and 21 normal control (NC) subjects. We used a visual oddball task to elicit ERPs. No significant changes were seen in N1 or N2 latency, in either MSA-C or MSA-P, compared with the NC group. An early stage of visual information process related to N1 and a visual discrimination process related to N2 might be preserved in both MSA-C and MSA-P. The P3a peak was more frequently undetectable in MSA than in the NC group. Significant P3a amplitude reduction in both MSA-C and MSA-P suggests impairment of the automatic cognitive processing in both MSA-C and MSA-P. Significant difference was found in P3b latency and P3b amplitude only in MSA-C, compared with the NC group. The result suggests the impairment of the controlled cognitive processing after the visual discrimination process in the MSA-C group. We further investigated the correlation between visual ERP changes and magnetic resonance imaging (MRI) data. Quantitative MRI measurements showed reduced size of the pons, cerebellum, perisylvian cerebral area, and deep cerebral gray matter in both MSA-C and MSA-P, and of the corpus callosum only in MSA-P, as compared to NC group. In both MSA-C and MSA-P, P3b latency was significantly correlated with the size on MRI of the pons and the cerebellum. P3b latency in the whole MSA group was also significantly correlated with the size of the pons and the cerebellum. These results indicate that P3b latency changes in parallel with the volume of the pons and the cerebellum in both MSA-C and MSA-P.
Perdikis, Dionysios; Müller, Viktor; Blanc, Jean-Luc; Huys, Raoul; Temprado, Jean-Jacques
2015-01-01
Abstract The present work focused on the study of fluctuations of cortical activity across time scales in young and older healthy adults. The main objective was to offer a comprehensive characterization of the changes of brain (cortical) signal variability during aging, and to make the link with known underlying structural, neurophysiological, and functional modifications, as well as aging theories. We analyzed electroencephalogram (EEG) data of young and elderly adults, which were collected at resting state and during an auditory oddball task. We used a wide battery of metrics that typically are separately applied in the literature, and we compared them with more specific ones that address their limits. Our procedure aimed to overcome some of the methodological limitations of earlier studies and verify whether previous findings can be reproduced and extended to different experimental conditions. In both rest and task conditions, our results mainly revealed that EEG signals presented systematic age-related changes that were time-scale-dependent with regard to the structure of fluctuations (complexity) but not with regard to their magnitude. Namely, compared with young adults, the cortical fluctuations of the elderly were more complex at shorter time scales, but less complex at longer scales, although always showing a lower variance. Additionally, the elderly showed signs of spatial, as well as between, experimental conditions dedifferentiation. By integrating these so far isolated findings across time scales, metrics, and conditions, the present study offers an overview of age-related changes in the fluctuation electrocortical activity while making the link with underlying brain dynamics. PMID:26464983
Mid-Task Break Improves Global Integration of Functional Connectivity in Lower Alpha Band
Li, Junhua; Lim, Julian; Chen, Yu; Wong, Kianfoong; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu
2016-01-01
Numerous efforts have been devoted to revealing neurophysiological mechanisms of mental fatigue, aiming to find an effective way to reduce the undesirable fatigue-related outcomes. Until recently, mental fatigue is thought to be related to functional dysconnectivity among brain regions. However, the topological representation of brain functional connectivity altered by mental fatigue is only beginning to be revealed. In the current study, we applied a graph theoretical approach to analyse such topological alterations in the lower alpha band (8~10 Hz) of EEG data from 20 subjects undergoing a two-session experiment, in which one session includes four successive blocks with visual oddball tasks (session 1) whereas a mid-task break was introduced in the middle of four task blocks in the other session (session 2). Phase lag index (PLI) was then employed to measure functional connectivity strengths for all pairs of EEG channels. Behavior and connectivity maps were compared between the first and last task blocks in both sessions. Inverse efficiency scores (IES = reaction time/response accuracy) were significantly increased in the last task block, showing a clear effect of time-on-task in participants. Furthermore, a significant block-by-session interaction was revealed in the IES, suggesting the effectiveness of the mid-task break on maintaining task performance. More importantly, a significant session-independent deficit of global integration and an increase of local segregation were found in the last task block across both sessions, providing further support for the presence of a reshaped topology in functional brain connectivity networks under fatigue state. Moreover, a significant block-by-session interaction was revealed in the characteristic path length, small-worldness, and global efficiency, attributing to the significantly disrupted network topology in session 1 in comparison of the maintained network structure in session 2. Specifically, we found increased nodal betweenness centrality in several channels resided in frontal regions in session 1, resembling the observations of more segregated global architecture under fatigue state. Taken together, our findings provide insights into the substrates of brain functional dysconnectivity patterns for mental fatigue and reiterate the effectiveness of the mid-task break on maintaining brain network efficiency. PMID:27378894
Apathy, Novelty Processing, and the P3 Potential in Parkinson’s Disease
Kaufman, David A. S.; Bowers, Dawn; Okun, Michael S.; Van Patten, Ryan; Perlstein, William M.
2016-01-01
Parkinson’s disease (PD) is characterized by deficits in goal-directed behavior as well as mood and motivational symptoms, including apathy, depression, and anxiety. The present study investigated novelty processing in PD, using event-related potentials (ERPs) to characterize electrophysiological reflections of visual novelty processing. Since apathy has been associated with decreased novelty processing (P3 potentials) in highly apathetic PD patients, we were particularly interested to see if this relationship exists in a sample of PD patients with heterogeneous levels of apathy. Non-demented patients with PD receiving dopaminergic treatment (n = 14) and healthy control participants (n = 12) completed a three-stimulus oddball task while EEG was recorded. Relative to controls, the PD patients exhibited reductions in centrofrontally distributed P3 potentials when viewing novel distracters during this task. Distracter-related P3 amplitudes evoked by novel distracters were strongly associated with apathy symptoms, even after controlling for the effects of depression, anxiety, and executive function. Executive dysfunction was also predictive of novelty-related P3 processing, yet this relationship was independent from that of apathy. These findings suggest that the brain’s electrophysiological response to novelty is closely related to both motivational and cognitive symptoms in PD, even for patients whose apathy symptoms are not excessive. These results have significant implications for our understanding of non-motor symptoms in this clinical population. PMID:27445962
NASA Astrophysics Data System (ADS)
Núñez, Pablo; Poza, Jesús; Bachiller, Alejandro; Gomez-Pilar, Javier; Lubeiro, Alba; Molina, Vicente; Hornero, Roberto
2017-08-01
Objective. The aim of this paper was to characterize brain non-stationarity during an auditory oddball task in schizophrenia (SCH). The level of non-stationarity was measured in the baseline and response windows of relevant tones in SCH patients and healthy controls. Approach. Event-related potentials were recorded from 28 SCH patients and 51 controls. Non-stationarity was estimated in the conventional electroencephalography frequency bands by means of Kullback-Leibler divergence (KLD). Relative power (RP) was also computed to assess a possible complementarity with KLD. Main results. Results showed a widespread statistically significant increase in the level of non-stationarity from baseline to response in all frequency bands for both groups. Statistically significant differences in non-stationarity were found between SCH patients and controls in beta-2 and in the alpha band. SCH patients showed more non-stationarity in the left parieto-occipital region during the baseline window in the beta-2 band. A leave-one-out cross validation classification study with feature selection based on binary stepwise logistic regression to discriminate between SCH patients and controls provided a positive predictive value of 72.73% and negative predictive value of 78.95%. Significance. KLD can characterize transient neural reorganization during an attentional task in response to novelty and relevance. Our findings suggest anomalous reorganization of neural dynamics in SCH during an oddball task. The abnormal frequency-dependent modulation found in SCH patients during relevant tones is in agreement with the hypothesis of aberrant salience detection in SCH. The increase in non-stationarity in the alpha band during the active task supports the notion that this band is involved in top-down processing. The baseline differences in the beta-2 band suggest that hyperactivation of the default mode network during attention tasks may be related to SCH symptoms. Furthermore, the classification improved when features from both KLD and RP were used, supporting the idea that these measures can be complementary.
Han, Changwoo; Park, Minkyung; Lee, Jun-Young; Jung, Hee Yeon; Park, Su Mi; Choi, Jung-Seok
2018-06-01
Acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) may occur after traumatic event and also cause significant life time impairment. P300 event-related potential (ERP) is a potential biological marker for PTSD and can reflect cognitive impairment in information processing and attention. Despite the usefulness of ERP, there are few attempts to reveal relationships between ASD and P300. In the present study, we aimed to determine if the P300 of the patients who were the victims of sexual abuse reflected the quantitative trait of ASD or if P300 is applicable as a state marker for predicting the risk of PTSD.Fifteen female victims of sexual abuse diagnosed with ASD and 18 healthy controls (HCs) without trauma exposure participated in this study. We investigated the P300 ERPs in patients with ASD to compare them with those of HCs. ERPs were acquired from female adults during an auditory oddball task. Between-group differences in amplitudes or latencies of P300 were investigated using repeated-measures analysis of variance.The ASD groups showed reduced P300 amplitudes at the midline centroparietal site as well as reduced accuracy rates during an auditory oddball task compared with the HCs.These results indicate that ASD have abnormalities in the P300 compared to those in HCs. Moreover, the reduction in P300 could be considered a candidate neurophysiological marker for ASD.
Harjunen, Ville J; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M
2017-01-01
Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver's body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements.
Harjunen, Ville J.; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M.
2017-01-01
Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver’s body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements. PMID:28275346
Decomposing delta, theta, and alpha time–frequency ERP activity from a visual oddball task using PCA
Bernat, Edward M.; Malone, Stephen M.; Williams, William J.; Patrick, Christopher J.; Iacono, William G.
2008-01-01
Objective Time–frequency (TF) analysis has become an important tool for assessing electrical and magnetic brain activity from event-related paradigms. In electrical potential data, theta and delta activities have been shown to underlie P300 activity, and alpha has been shown to be inhibited during P300 activity. Measures of delta, theta, and alpha activity are commonly taken from TF surfaces. However, methods for extracting relevant activity do not commonly go beyond taking means of windows on the surface, analogous to measuring activity within a defined P300 window in time-only signal representations. The current objective was to use a data driven method to derive relevant TF components from event-related potential data from a large number of participants in an oddball paradigm. Methods A recently developed PCA approach was employed to extract TF components [Bernat, E. M., Williams, W. J., and Gehring, W. J. (2005). Decomposing ERP time-frequency energy using PCA. Clin Neurophysiol, 116(6), 1314–1334] from an ERP dataset of 2068 17 year olds (979 males). TF activity was taken from both individual trials and condition averages. Activity including frequencies ranging from 0 to 14 Hz and time ranging from stimulus onset to 1312.5 ms were decomposed. Results A coordinated set of time–frequency events was apparent across the decompositions. Similar TF components representing earlier theta followed by delta were extracted from both individual trials and averaged data. Alpha activity, as predicted, was apparent only when time–frequency surfaces were generated from trial level data, and was characterized by a reduction during the P300. Conclusions Theta, delta, and alpha activities were extracted with predictable time-courses. Notably, this approach was effective at characterizing data from a single-electrode. Finally, decomposition of TF data generated from individual trials and condition averages produced similar results, but with predictable differences. Specifically, trial level data evidenced more and more varied theta measures, and accounted for less overall variance. PMID:17027110
Bocquillon, Perrine; Bourriez, Jean-Louis; Palmero-Soler, Ernesto; Defebvre, Luc; Derambure, Philippe; Dujardin, Kathy
2015-01-01
Introduction The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. A previous study using the P3 component of the event-related potentials suggested that a reduced ability to resist interference could be responsible for attention disorders at early stages of Parkinson’s disease (PD), with a possible role of the dorsolateral prefrontal cortex (DLPFC). Methods Our objective was to better determine the origin of this impairment, by studying an earlier ERP component, the N2, and its subcomponents, as they reflect early inhibition processes and as they are known to have sources in the anterior cingulate cortex (ACC), which is involved together with the DLPFC in inhibition processes. Fifteen early-stage PD patients and 15 healthy controls (HCs) performed a three-stimulus visual oddball paradigm, consisting in detecting target inputs amongst standard stimuli, while resisting interference from distracter ones. A 128-channel electroencephalogram was recorded during this task and the generators of the N2 subcomponents were identified using standardized weighted low-resolution electromagnetic tomography (swLORETA). Results PD patients displayed fewer N2 generators than HCs in both the DLPFC and the ACC, for all types of stimuli. In contrast to controls, PD patients did not show any differences between their generators for different N2 subcomponents. Conclusion Our data suggest that impaired inhibition in PD results from dysfunction of the DLPFC and the ACC during the early stages of attentional processes. PMID:26135906
Farquhar, J; Hill, N J
2013-04-01
Detecting event related potentials (ERPs) from single trials is critical to the operation of many stimulus-driven brain computer interface (BCI) systems. The low strength of the ERP signal compared to the noise (due to artifacts and BCI irrelevant brain processes) makes this a challenging signal detection problem. Previous work has tended to focus on how best to detect a single ERP type (such as the visual oddball response). However, the underlying ERP detection problem is essentially the same regardless of stimulus modality (e.g., visual or tactile), ERP component (e.g., P300 oddball response, or the error-potential), measurement system or electrode layout. To investigate whether a single ERP detection method might work for a wider range of ERP BCIs we compare detection performance over a large corpus of more than 50 ERP BCI datasets whilst systematically varying the electrode montage, spectral filter, spatial filter and classifier training methods. We identify an interesting interaction between spatial whitening and regularised classification which made detection performance independent of the choice of spectral filter low-pass frequency. Our results show that pipeline consisting of spectral filtering, spatial whitening, and regularised classification gives near maximal performance in all cases. Importantly, this pipeline is simple to implement and completely automatic with no expert feature selection or parameter tuning required. Thus, we recommend this combination as a "best-practice" method for ERP detection problems.
Fujimoto, Toshiro; Okumura, Eiichi; Kodabashi, Atsushi; Takeuchi, Kouzou; Otsubo, Toshiaki; Nakamura, Katsumi; Yatsushiro, Kazutaka; Sekine, Masaki; Kamiya, Shinichiro; Shimooki, Susumu; Tamura, Toshiyo
2016-01-01
We studied sex-related differences in gamma oscillation during an auditory oddball task, using magnetoencephalography and electroencephalography assessment of imaginary coherence (IC). We obtained a statistical source map of event-related desynchronization (ERD) / event-related synchronization (ERS), and compared females and males regarding ERD / ERS. Based on the results, we chose respectively seed regions for IC determinations in low (30-50 Hz), mid (50-100 Hz) and high gamma (100-150 Hz) bands. In males, ERD was increased in the left posterior cingulate cortex (CGp) at 500 ms in the low gamma band, and in the right caudal anterior cingulate cortex (cACC) at 125 ms in the mid-gamma band. ERS was increased in the left rostral anterior cingulate cortex (rACC) at 375 ms in the high gamma band. We chose the CGp, cACC and rACC as seeds, and examined IC between the seed and certain target regions using the IC map. IC changes depended on the height of the gamma frequency and the time window in the gamma band. Although IC in the mid and high gamma bands did not show sex-specific differences, IC at 30-50 Hz in males was increased between the left rACC and the frontal, orbitofrontal, inferior temporal and fusiform target regions. Increased IC in males suggested that males may acomplish the task constructively, analysingly, emotionally, and by perfoming analysis, and that information processing was more complicated in the cortico-cortical circuit. On the other hand, females showed few differences in IC. Females planned the task with general attention and economical well-balanced processing, which was explained by the higher overall functional cortical connectivity. CGp, cACC and rACC were involved in sex differences in information processing and were likely related to differences in neuroanatomy, hormones and neurotransmitter systems.
Social and nonsocial affective processing in schizophrenia - An ERP study.
Okruszek, Ł; Wichniak, A; Jarkiewicz, M; Schudy, A; Gola, M; Jednoróg, K; Marchewka, A; Łojek, E
2016-09-01
Despite social cognitive dysfunction that may be observed in patients with schizophrenia, the knowledge about social and nonsocial affective processing in schizophrenia is scant. The aim of this study was to examine neurophysiological and behavioural responses to neutral and negative stimuli with (faces, people) and without (animals, objects) social content in schizophrenia. Twenty-six patients with schizophrenia (SCZ) and 21 healthy controls (HC) completed a visual oddball paradigm with either negative or neutral pictures from the Nencki Affective Picture System (NAPS) as targets while EEG was recorded. Half of the stimuli within each category presented social content (faces, people). Negative stimuli with social content produced lower N2 amplitude and higher mean LPP than any other type of stimuli in both groups. Despite differences in behavioural ratings and alterations in ERP processing of affective stimuli (lack of EPN differentiation, decreased P3 to neutral stimuli) SCZ were still able to respond to specific categories of stimuli similarly to HC. The pattern of results suggests that with no additional emotion-related task demands patients with schizophrenia may present similar attentional engagement with negative social stimuli as healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.
Transitioning EEG experiments away from the laboratory using a Raspberry Pi 2.
Kuziek, Jonathan W P; Shienh, Axita; Mathewson, Kyle E
2017-02-01
Electroencephalography (EEG) experiments are typically performed in controlled laboratory settings to minimise noise and produce reliable measurements. These controlled conditions also reduce the applicability of the obtained results to more varied environments and may limit their relevance to everyday situations. Advances in computer portability may increase the mobility and applicability of EEG results while decreasing costs. In this experiment we show that stimulus presentation using a Raspberry Pi 2 computer provides a low cost, reliable alternative to a traditional desktop PC in the administration of EEG experimental tasks. Significant and reliable MMN and P3 activity, typical event-related potentials (ERPs) associated with an auditory oddball paradigm, were measured while experiments were administered using the Raspberry Pi 2. While latency differences in ERP triggering were observed between systems, these differences reduced power only marginally, likely due to the reduced processing power of the Raspberry Pi 2. An auditory oddball task administered using the Raspberry Pi 2 produced similar ERPs to those derived from a desktop PC in a laboratory setting. Despite temporal differences and slight increases in trials needed for similar statistical power, the Raspberry Pi 2 can be used to design and present auditory experiments comparable to a PC. Our results show that the Raspberry Pi 2 is a low cost alternative to the desktop PC when administering EEG experiments and, due to its small size and low power consumption, will enable mobile EEG experiments unconstrained by a traditional laboratory setting. Copyright © 2016 Elsevier B.V. All rights reserved.
A semi-learning algorithm for noise rejection: an fNIRS study on ADHD children
NASA Astrophysics Data System (ADS)
Sutoko, Stephanie; Funane, Tsukasa; Katura, Takusige; Sato, Hiroki; Kiguchi, Masashi; Maki, Atsushi; Monden, Yukifumi; Nagashima, Masako; Yamagata, Takanori; Dan, Ippeita
2017-02-01
In pediatrics studies, the quality of functional near infrared spectroscopy (fNIRS) signals is often reduced by motion artifacts. These artifacts likely mislead brain functionality analysis, causing false discoveries. While noise correction methods and their performance have been investigated, these methods require several parameter assumptions that apparently result in noise overfitting. In contrast, the rejection of noisy signals serves as a preferable method because it maintains the originality of the signal waveform. Here, we describe a semi-learning algorithm to detect and eliminate noisy signals. The algorithm dynamically adjusts noise detection according to the predetermined noise criteria, which are spikes, unusual activation values (averaged amplitude signals within the brain activation period), and high activation variances (among trials). Criteria were sequentially organized in the algorithm and orderly assessed signals based on each criterion. By initially setting an acceptable rejection rate, particular criteria causing excessive data rejections are neglected, whereas others with tolerable rejections practically eliminate noises. fNIRS data measured during the attention response paradigm (oddball task) in children with attention deficit/hyperactivity disorder (ADHD) were utilized to evaluate and optimize the algorithm's performance. This algorithm successfully substituted the visual noise identification done in the previous studies and consistently found significantly lower activation of the right prefrontal and parietal cortices in ADHD patients than in typical developing children. Thus, we conclude that the semi-learning algorithm confers more objective and standardized judgment for noise rejection and presents a promising alternative to visual noise rejection
Tamayo-Orrego, Lukas; Osorio Forero, Alejandro; Quintero Giraldo, Lina Paola; Parra Sánchez, José Hernán; Varela, Vilma; Restrepo, Francia
2015-01-01
To better understand the neurophysiological substrates in attention deficit/hyperactivity disorder (ADHD), a study was performed on of event-related potentials (ERPs) in Colombian patients with inattentive and combined ADHD. A case-control, cross-sectional study was designed. The sample was composed of 180 subjects between 5 and 15 years of age (mean, 9.25±2.6), from local schools in Manizales. The sample was divided equally in ADHD or control groups and the subjects were paired by age and gender. The diagnosis was made using the DSM-IV-TR criteria, the Conners and WISC-III test, a psychiatric interview (MINIKID), and a medical evaluation. ERPs were recorded in a visual and auditory passive oddball paradigm. Latency and amplitude of N100, N200 and P300 components for common and rare stimuli were used for statistical comparisons. ADHD subjects show differences in the N200 amplitude and P300 latency in the auditory task. The N200 amplitude was reduced in response to visual stimuli. ADHD subjects with combined symptoms show a delayed P300 in response to auditory stimuli, whereas inattentive subjects exhibited differences in the amplitude of N100 and N200. Combined ADHD patients showed longer N100 latency and smaller N200-P300 amplitude compared to inattentive ADHD subjects. The results show differences in the event-related potentials between combined and inattentive ADHD subjects. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
Impaired modulation of attention and emotion in schizophrenia.
Dichter, Gabriel S; Bellion, Carolyn; Casp, Michael; Belger, Aysenil
2010-05-01
Fronto-limbic interactions facilitate the generation of task-relevant responses while inhibiting interference from emotionally distracting information. Schizophrenia is associated with deficits in both executive attention and affective regulation. This study aims to elucidate the neural correlates of emotion-attention regulation and shifting in schizophrenia. We employed functional magnetic resonance imaging to probe the fronto-limbic regions in 16 adults with schizophrenia and 13 matched adults with no history of psychiatric illness. Subjects performed a forced-choice visual oddball task where they detected infrequent target circles embedded in a series of infrequent nontarget aversive and neutral pictures and frequent squares. In control participants, target events activated a dorsal frontoparietal network, whereas these regions were deactivated by aversive stimuli. Conversely, ventral frontolimbic brain regions were activated by aversive stimuli and deactivated by target events. In the patient group, regional hemodynamic timecourses revealed not only reduced activation to target and aversive events in dorsal executive and ventral limbic regions, respectively, but also reduced deactivation to target and aversive stimuli in ventral and dorsal regions, respectively, relative to the control group. Patients further showed reduced spatial extent of activation in the right inferior frontal gyrus during the target and aversive conditions. Activation of the anterior cingulate to aversive images was inversely related to severity of avolition and anhedonia symptoms in the schizophrenia group. These results suggest both frontal and limbic dysfunction in schizophrenia as well as aberrant reciprocal inhibitions between these regions during attention-emotion modulation in this disorder.
Chen, Andrew C H; Tang, Yongqiang; Rangaswamy, Madhavi; Wang, Jen C; Almasy, Laura; Foroud, Tatiana; Edenberg, Howard J; Hesselbrock, Victor; Nurnberger, John; Kuperman, Samuel; O'Connor, Sean J; Schuckit, Marc A; Bauer, Lance O; Tischfield, Jay; Rice, John P; Bierut, Laura; Goate, Alison; Porjesz, Bernice
2009-04-05
Evidence suggests the P3 amplitude of the event-related potential and its underlying superimposed event-related oscillations (EROs), primarily in the theta (4-5 Hz) and delta (1-3 Hz) frequencies, as endophenotypes for the risk of alcoholism and other disinhibitory disorders. Major neurochemical substrates contributing to theta and delta rhythms and P3 involve strong GABAergic, cholinergic and glutamatergic system interactions. The aim of this study was to test the potential associations between single nucleotide polymorphisms (SNPs) in glutamate receptor genes and ERO quantitative traits. GRM8 was selected because it maps at chromosome 7q31.3-q32.1 under the peak region where we previously identified significant linkage (peak LOD = 3.5) using a genome-wide linkage scan of the same phenotype (event-related theta band for the target visual stimuli). Neural activities recorded from scalp electrodes during a visual oddball task in which rare target elicited P3s were analyzed in a subset of the Collaborative Study on the Genetics of Alcoholism (COGA) sample comprising 1,049 Caucasian subjects from 209 families (with 472 DSM-IV alcohol dependent individuals). The family-based association test (FBAT) detected significant association (P < 0.05) with multiple SNPs in the GRM8 gene and event-related theta power to target visual stimuli, and also with alcohol dependence, even after correction for multiple comparisons by false discovery rate (FDR). Our results suggest that variation in GRM8 may be involved in modulating event-related theta oscillations during information processing and also in vulnerability to alcoholism. These findings underscore the utility of electrophysiology and the endophenotype approach in the genetic study of psychiatric disorders. (c) 2008 Wiley-Liss, Inc.
Chládek, J; Brázdil, M; Halámek, J; Plešinger, F; Jurák, P
2013-01-01
We present an off-line analysis procedure for exploring brain activity recorded from intra-cerebral electroencephalographic data (SEEG). The objective is to determine the statistical differences between different types of stimulations in the time-frequency domain. The procedure is based on computing relative signal power change and subsequent statistical analysis. An example of characteristic statistically significant event-related de/synchronization (ERD/ERS) detected across different frequency bands following different oddball stimuli is presented. The method is used for off-line functional classification of different brain areas.
A KCNJ6 gene polymorphism modulates theta oscillations during reward processing.
Kamarajan, Chella; Pandey, Ashwini K; Chorlian, David B; Manz, Niklas; Stimus, Arthur T; Edenberg, Howard J; Wetherill, Leah; Schuckit, Marc; Wang, Jen-Chyong; Kuperman, Samuel; Kramer, John; Tischfield, Jay A; Porjesz, Bernice
2017-05-01
Event related oscillations (EROs) are heritable measures of neurocognitive function that have served as useful phenotype in genetic research. A recent family genome-wide association study (GWAS) by the Collaborative Study on the Genetics of Alcoholism (COGA) found that theta EROs during visual target detection were associated at genome-wide levels with several single nucleotide polymorphisms (SNPs), including a synonymous SNP, rs702859, in the KCNJ6 gene that encodes GIRK2, a G-protein inward rectifying potassium channel that regulates excitability of neuronal networks. The present study examined the effect of the KCNJ6 SNP (rs702859), previously associated with theta ERO to targets in a visual oddball task, on theta EROs during reward processing in a monetary gambling task. The participants were 1601 adolescent and young adult offspring within the age-range of 17-25years (800 males and 801 females) from high-dense alcoholism families as well as control families of the COGA prospective study. Theta ERO power (3.5-7.5Hz, 200-500ms post-stimulus) was compared across genotype groups. ERO theta power at central and parietal regions increased as a function of the minor allele (A) dose in the genotype (AA>AG>GG) in both loss and gain conditions. These findings indicate that variations in the KCNJ6 SNP influence magnitude of theta oscillations at posterior loci during the evaluation of loss and gain, reflecting a genetic influence on neuronal circuits involved in reward-processing. Increased theta power as a function of minor allele dose suggests more efficient cognitive processing in those carrying the minor allele of the KCNJ6 SNPs. Future studies are needed to determine the implications of these genetic effects on posterior theta EROs as possible "protective" factors, or as indices of delays in brain maturation (i.e., lack of frontalization). Copyright © 2016 Elsevier B.V. All rights reserved.
Briggs, Kate E; Martin, Frances H
2009-06-01
There are two dominant theories of affective picture processing; one that attention is more deeply engaged by motivationally relevant stimuli (i.e., stimuli that activate both the appetitive and aversive systems), and two that attention is more deeply engaged by aversive stimuli described as the negativity bias. In order to identify the theory that can best account for affective picture processing, event-related potentials (ERPs) were recorded from 34 participants during a modified oddball paradigm in which levels of stimulus valence, arousal, and motivational relevance were systematically varied. Results were partially consistent with motivated attention models of emotional perception, as P3b amplitude was enhanced in response to highly arousing and motivationally relevant sexual and unpleasant stimuli compared to respective low arousing and less motivationally relevant stimuli. However P3b amplitudes were significantly larger in response to the highly arousing sexual stimuli compared to all other affective stimuli, which is not consistent with either dominant theory. The current study therefore highlights the need for a revised model of affective picture processing and provides a platform for further research investigating the independent effects of sexual arousal on cognitive processing.
Judah, Matt R; Grant, DeMond M; Mills, Adam C; Lechner, William V
2013-12-01
Cognitive models of social anxiety disorder posit that maladaptive thought processes play an etiological role in symptoms. The current study tested whether socially anxious individuals (HSAs) demonstrated impaired processing efficiency at the neural and behavioral level, and whether this was exacerbated by self-focused attention. Thirty-two (16 socially anxious, 16 nonanxious controls) subjects completed a mixed-antisaccade task with an oddball instructional cue. To manipulate self-focus, participants were told that the oddball cue indicated elevated heart rate. The HSA group demonstrated delayed saccade onset compared with controls, but made fewer errors. HSAs also had lower P3b amplitude compared with controls, suggesting reduced availability of resources for discriminating cues, and later P3b latency during self-focus trials, suggesting delayed cue categorization. Additionally, HSAs had greater CNV negativity compared with controls, suggesting greater effort in response preparation, and this negativity was reduced during self-focus trials, supporting the hypothesis that self-focused attention preoccupies executive resources. The current study supports and expands cognitive theories by documenting impaired neural and behavioral functioning in social anxiety and the role of self-focused attention in these deficits.
Beta oscillatory responses in healthy subjects and subjects with mild cognitive impairment☆
Güntekin, Bahar; Emek-Savaş, Derya Durusu; Kurt, Pınar; Yener, Görsev Gülmen; Başar, Erol
2013-01-01
The aim of the present study was to investigate the role of beta oscillatory responses upon cognitive load in healthy subjects and in subjects with mild cognitive impairment (MCI). The role of beta oscillations upon cognitive stimulation is least studied in comparison to other frequency bands. The study included 17 consecutive patients with MCI (mean age = 70.8 ± 5.6 years) according to Petersen's criteria, and 17 age- and education-matched normal elderly controls (mean age = 68.5 ± 5.5 years). The experiments used a visual oddball paradigm. EEG was recorded at 30 cortical locations. EEG-evoked power, inter-trial phase synchronization, and event-related beta responses filtered in 15–20 Hz were obtained in response to target and non-target stimuli for both groups of subjects. In healthy subjects, EEG-evoked beta power, inter-trial phase synchronization of beta responses and event-related filtered beta responses were significantly higher in responses to target than non-target stimuli (p < 0.05). In MCI patients, there were no differences in evoked beta power between target and non-target stimuli. Furthermore, upon presentation of visual oddball paradigm, occipital electrodes depict higher beta response in comparison to other electrode sites. The increased beta response upon presentation of target stimuli in healthy subjects implies that beta oscillations could shift the system to an attention state, and had important function in cognitive activity. This may, in future, open the way to consider beta activity as an important operator in brain cognitive processes. PMID:24179847
(C)overt attention and visual speller design in an ERP-based brain-computer interface.
Treder, Matthias S; Blankertz, Benjamin
2010-05-28
In a visual oddball paradigm, attention to an event usually modulates the event-related potential (ERP). An ERP-based brain-computer interface (BCI) exploits this neural mechanism for communication. Hitherto, it was unclear to what extent the accuracy of such a BCI requires eye movements (overt attention) or whether it is also feasible for targets in the visual periphery (covert attention). Also unclear was how the visual design of the BCI can be improved to meet peculiarities of peripheral vision such as low spatial acuity and crowding. Healthy participants (N = 13) performed a copy-spelling task wherein they had to count target intensifications. EEG and eye movements were recorded concurrently. First, (c)overt attention was investigated by way of a target fixation condition and a central fixation condition. In the latter, participants had to fixate a dot in the center of the screen and allocate their attention to a target in the visual periphery. Second, the effect of visual speller layout was investigated by comparing the symbol Matrix to an ERP-based Hex-o-Spell, a two-levels speller consisting of six discs arranged on an invisible hexagon. We assessed counting errors, ERP amplitudes, and offline classification performance. There is an advantage (i.e., less errors, larger ERP amplitude modulation, better classification) of overt attention over covert attention, and there is also an advantage of the Hex-o-Spell over the Matrix. Using overt attention, P1, N1, P2, N2, and P3 components are enhanced by attention. Using covert attention, only N2 and P3 are enhanced for both spellers, and N1 and P2 are modulated when using the Hex-o-Spell but not when using the Matrix. Consequently, classifiers rely mainly on early evoked potentials in overt attention and on later cognitive components in covert attention. Both overt and covert attention can be used to drive an ERP-based BCI, but performance is markedly lower for covert attention. The Hex-o-Spell outperforms the Matrix, especially when eye movements are not permitted, illustrating that performance can be increased if one accounts for peculiarities of peripheral vision.
(C)overt attention and visual speller design in an ERP-based brain-computer interface
2010-01-01
Background In a visual oddball paradigm, attention to an event usually modulates the event-related potential (ERP). An ERP-based brain-computer interface (BCI) exploits this neural mechanism for communication. Hitherto, it was unclear to what extent the accuracy of such a BCI requires eye movements (overt attention) or whether it is also feasible for targets in the visual periphery (covert attention). Also unclear was how the visual design of the BCI can be improved to meet peculiarities of peripheral vision such as low spatial acuity and crowding. Method Healthy participants (N = 13) performed a copy-spelling task wherein they had to count target intensifications. EEG and eye movements were recorded concurrently. First, (c)overt attention was investigated by way of a target fixation condition and a central fixation condition. In the latter, participants had to fixate a dot in the center of the screen and allocate their attention to a target in the visual periphery. Second, the effect of visual speller layout was investigated by comparing the symbol Matrix to an ERP-based Hex-o-Spell, a two-levels speller consisting of six discs arranged on an invisible hexagon. Results We assessed counting errors, ERP amplitudes, and offline classification performance. There is an advantage (i.e., less errors, larger ERP amplitude modulation, better classification) of overt attention over covert attention, and there is also an advantage of the Hex-o-Spell over the Matrix. Using overt attention, P1, N1, P2, N2, and P3 components are enhanced by attention. Using covert attention, only N2 and P3 are enhanced for both spellers, and N1 and P2 are modulated when using the Hex-o-Spell but not when using the Matrix. Consequently, classifiers rely mainly on early evoked potentials in overt attention and on later cognitive components in covert attention. Conclusions Both overt and covert attention can be used to drive an ERP-based BCI, but performance is markedly lower for covert attention. The Hex-o-Spell outperforms the Matrix, especially when eye movements are not permitted, illustrating that performance can be increased if one accounts for peculiarities of peripheral vision. PMID:20509913
The cortical generators of P3a and P3b: a LORETA study.
Volpe, U; Mucci, A; Bucci, P; Merlotti, E; Galderisi, S; Maj, M
2007-07-12
The P3 is probably the most well known component of the brain event-related potentials (ERPs). Using a three-tone oddball paradigm two different components can be identified: the P3b elicited by rare target stimuli and the P3a elicited by the presentation of rare non-target stimuli. Although the two components may partially overlap in time and space, they have a different scalp topography suggesting different neural generators. The present study is aimed at defining the scalp topography of the two P3 components by means of reference-independent methods and identifying their electrical cortical generators by using the low-resolution electromagnetic tomography (LORETA). ERPs were recorded during a three-tone oddball task in 32 healthy, right-handed university students. The scalp topography of the P3 components was assessed by means of the brain electrical microstates technique and their cortical sources were evaluated by LORETA. P3a and P3b showed different scalp topography and cortical sources. The P3a electrical field had a more anterior distribution as compared to the P3b and its generators were localized in cingulate, frontal and right parietal areas. P3b sources included bilateral frontal, parietal, limbic, cingulate and temporo-occipital regions. Differences in scalp topography and cortical sources suggest that the two components reflect different neural processes. Our findings on cortical generators are in line with the hypothesis that P3a reflects the automatic allocation of attention, while P3b is related to the effortful processing of task-relevant events.
Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman
2016-01-01
Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.
Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman
2016-01-01
Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies. PMID:27799906
Intraocular pressure is sensitive to cumulative and instantaneous mental workload.
Vera, Jesús; Jiménez, Raimundo; García, José Antonio; Cárdenas, David
2017-04-01
We used a repeated-measures design to assess the impact of mental-task complexity on intraocular pressure (IOP). Fourteen participants performed three continuous 11-min blocks of a mental-workload task (3-back) and an oddball version of this task. Also, heart-rate variability (HRV), cognitive-performance scores, and subjective measure of mental load (NASA-TLX) were determined. IOP was taken before each block and afterwards as well as after recovery from mental tasks. We found that IOP increased during heavy mental workloads (p < 0.01). Consistent with this finding, the autonomic control (HRV) and the cognitive performance were significantly lower (p < 0.045, and p < 0.01, respectively), and the NASA-TLX scores were higher during the 3-back task (p < 0.01). We conclude that IOP is sensitive to mental workload, and it could provide a novel neuroergonomic tool to assess mental workload. Our study highlights a potential association between IOP and the nervous system's state of activation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tillman, Gail D.; Calley, Clifford S.; Green, Timothy A.; Buhl, Virginia I.; Biggs, Melanie M.; Spence, Jeffrey S.; Briggs, Richard W.; Haley, Robert W.; Kraut, Michael A.; Hart, John
2012-01-01
An exaggerated response to emotional stimuli is among the many symptoms widely reported by veterans of the 1991 Persian Gulf War. These symptomologies have been attributed to damage and dysfunction associated with deployment-related exposures. We collected event-related potential data from 22 veterans meeting Haley criteria for Gulf War (GW) Syndromes 1-3 and from 8 matched GW veteran controls, who were deployed but not symptomatic, while they performed a visual three-condition oddball task where images authenticated to be associated with the 1991 Persian Gulf War were the distractor stimuli. Hyperarousal reported by ill veterans was significantly greater than that by control veterans, but this was not paralleled by higher amplitude P3a in their ERP responses to GW-related distractor stimuli. Whereas previous studies of PTSD patients have shown higher amplitude P3b responses to target stimuli that are placed amid trauma-related nontarget stimuli, ill veterans in this study showed P3b amplitudes to target stimuli—placed amid GW-related nontarget stimuli—that were significantly lower than those of the control group. Hyperarousal scores reliably predicted P3b, but not P3a, amplitudes. Although many factors may contribute to P3b amplitude differences—most notably depression and poor sleep quality, symptoms that are prevalent in the GW syndrome groups—our findings in context of previous studies on this population are consistent with the contention that dysfunction in cholinergic and dopaminergic neurotransmitter systems, and in white matter and basal ganglia may be contributing to impairments in GW veterans. PMID:23149040
Neural correlates of restrained eaters' high susceptibility to food cues: An fMRI study.
Wang, Yu; Dong, Debo; Todd, Jackson; Du, Jie; Yang, Zhou; Lu, Hui; Chen, Hong
2016-09-19
Many studies have reported that specific susceptibility to food cues plays an important role in disordered eating behavior. However, whether restraint status modulates the neural bases of attentional bias to different types of food cues remains unknown. Thus, functional magnetic resonance imaging (fMRI) was conducted in individuals (12 restraint eaters, 12 unrestraint eaters) exposed to high/low-energy food and neutral images while performing a two-choice oddball task. The results indicated that restrained eaters responded more quickly to high-energy food images than to neutral and low-energy food images. More notably, compared with unrestrained eaters, restrained eaters showed faster reaction times, hyper-activation in a much wider array of reward (e.g., insula/orbitofrontal cortex), attention (superior frontal gyrus) and visual processing (e.g., superior temporal gyrus) regions, and hypo-activation in cognitive control areas (e.g., anterior cingulate) in response to high-energy food cues. Furthermore, among restrained eaters, the longest reaction times were found for low-energy food images, and activation of the attention and visual-related cortex (e.g., superior parietal gyrus) in the low-neutral contrast condition was significantly stronger than in unrestrained eaters. These findings contribute to our understanding of susceptibility to food cues: in addition to the special sensitivity (attentional bias) to high-energy food images, restrained eaters may also be more sensitive (allocate more attentional resources) to low-energy food images. These potential neural bases of restrained eaters may help clarify why dieting to lose or maintain weight is so often unsuccessful. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Andrés, Pilar; Parmentier, Fabrice B R; Escera, Carles
2006-01-01
The aim of this study was to examine the effects of aging on the involuntary capture of attention by irrelevant sounds (distraction) and the use of these sounds as warning cues (alertness) in an oddball paradigm. We compared the performance of older and younger participants on a well-characterized auditory-visual distraction task. Based on the dissociations observed in aging between attentional processes sustained by the anterior and posterior attentional networks, our prediction was that distraction by irrelevant novel sounds would be stronger in older adults than in young adults while both groups would be equally able to use sound as an alert to prepare for upcoming stimuli. The results confirmed both predictions: there was a larger distraction effect in the older participants, but the alert effect was equivalent in both groups. These results give support to the frontal hypothesis of aging [Raz, N. (2000). Aging of the brain and its impact on cognitive performance: integration of structural and functional finding. In F.I.M. Craik & T.A. Salthouse (Eds.) Handbook of aging and cognition (pp. 1-90). Mahwah, NJ: Erlbaum; West, R. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272-292].
Global Image Dissimilarity in Macaque Inferotemporal Cortex Predicts Human Visual Search Efficiency
Sripati, Arun P.; Olson, Carl R.
2010-01-01
Finding a target in a visual scene can be easy or difficult depending on the nature of the distractors. Research in humans has suggested that search is more difficult the more similar the target and distractors are to each other. However, it has not yielded an objective definition of similarity. We hypothesized that visual search performance depends on similarity as determined by the degree to which two images elicit overlapping patterns of neuronal activity in visual cortex. To test this idea, we recorded from neurons in monkey inferotemporal cortex (IT) and assessed visual search performance in humans using pairs of images formed from the same local features in different global arrangements. The ability of IT neurons to discriminate between two images was strongly predictive of the ability of humans to discriminate between them during visual search, accounting overall for 90% of the variance in human performance. A simple physical measure of global similarity – the degree of overlap between the coarse footprints of a pair of images – largely explains both the neuronal and the behavioral results. To explain the relation between population activity and search behavior, we propose a model in which the efficiency of global oddball search depends on contrast-enhancing lateral interactions in high-order visual cortex. PMID:20107054
Event-related potential study to aversive auditory stimuli.
Czigler, István; Cox, Trevor J; Gyimesi, Kinga; Horváth, János
2007-06-15
In an auditory oddball task emotionally negative (aversive) sounds (e.g. rubbing together of polystyrene) and everyday sounds (e.g. ringing of a bicycle bell) were presented as task-irrelevant (novel) sounds. Both the aversive and the everyday sounds elicited the orientation-related P3a component of the event-related potentials (ERPs). In the 154-250 ms range the ERPs for the aversive sounds were more negative than the ERP of the everyday sounds. For the aversive sounds, this negativity was followed by a frontal positive wave (372-456 ms). The aversive sounds elicited larger late positive shift than the everyday sounds. The early negativity is considered as an initial effect in a broad neural network including limbic structures, while the later is related to the cognitive assessment of the stimuli and to memory-related processes.
Do resting brain dynamics predict oddball evoked-potential?
2011-01-01
Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP) is still not clear. This study explored the relationship between resting electroencephalography (EEG) and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS) was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection. PMID:22114868
Delorme, Arnaud; Polich, John
2013-01-01
Long-term Vipassana meditators sat in meditation vs. a control (instructed mind wandering) states for 25 min, electroencephalography (EEG) was recorded and condition order counterbalanced. For the last 4 min, a three-stimulus auditory oddball series was presented during both meditation and control periods through headphones and no task imposed. Time-frequency analysis demonstrated that meditation relative to the control condition evinced decreased evoked delta (2–4 Hz) power to distracter stimuli concomitantly with a greater event-related reduction of late (500–900 ms) alpha-1 (8–10 Hz) activity, which indexed altered dynamics of attentional engagement to distracters. Additionally, standard stimuli were associated with increased early event-related alpha phase synchrony (inter-trial coherence) and evoked theta (4–8 Hz) phase synchrony, suggesting enhanced processing of the habituated standard background stimuli. Finally, during meditation, there was a greater differential early-evoked gamma power to the different stimulus classes. Correlation analysis indicated that this effect stemmed from a meditation state-related increase in early distracter-evoked gamma power and phase synchrony specific to longer-term expert practitioners. The findings suggest that Vipassana meditation evokes a brain state of enhanced perceptual clarity and decreased automated reactivity. PMID:22648958
Neath-Tavares, Karly N.; Itier, Roxane J.
2017-01-01
Research suggests an important role of the eyes and mouth for discriminating facial expressions of emotion. A gaze-contingent procedure was used to test the impact of fixation to facial features on the neural response to fearful, happy and neutral facial expressions in an emotion discrimination (Exp.1) and an oddball detection (Exp.2) task. The N170 was the only eye-sensitive ERP component, and this sensitivity did not vary across facial expressions. In both tasks, compared to neutral faces, responses to happy expressions were seen as early as 100–120ms occipitally, while responses to fearful expressions started around 150ms, on or after the N170, at both occipital and lateral-posterior sites. Analyses of scalp topographies revealed different distributions of these two emotion effects across most of the epoch. Emotion processing interacted with fixation location at different times between tasks. Results suggest a role of both the eyes and mouth in the neural processing of fearful expressions and of the mouth in the processing of happy expressions, before 350ms. PMID:27430934
P3 event-related potential impairments in antisocial and psychopathic individuals: a meta-analysis.
Gao, Yu; Raine, Adrian
2009-12-01
Prior findings on P3 event-related potential deficits in antisocial populations are mixed and it has been suggested that these abnormalities may not apply to psychopaths. A meta-analysis of 38 studies (total N=2616) was conducted to investigate the relationship of P3 measures to antisocial behavior. Reduced P3 amplitudes (d=0.252, p<.001) and longer P3 latencies (d=0.130, p=.019) were significantly associated with antisocial behavior across all electrode sites, and when using both normal and non-normal control groups. A significant moderating effect of electrode site indicated longer latencies at Fz but not Pz. Compared to non-psychopathic offenders, psychopathic offenders showed P3 amplitudes impairments in standard oddball tasks, but not other tasks. Findings suggest that reduced P3 amplitudes and prolonged P3 latencies may reflect inefficient deployment of neural resources in processing cognitive task-relevant information in individuals characterized with generic antisocial behavior (i.e., aggression, antisocial personality disorder, conduct disorder/oppositional-defiant disorder, and psychopathy), whereas this association in psychopaths may be moderated by the type of tasks.
Neurophysiological and Behavioral Responses of Mandarin Lexical Tone Processing
Yu, Yan H.; Shafer, Valerie L.; Sussman, Elyse S.
2017-01-01
Language experience enhances discrimination of speech contrasts at a behavioral- perceptual level, as well as at a pre-attentive level, as indexed by event-related potential (ERP) mismatch negativity (MMN) responses. The enhanced sensitivity could be the result of changes in acoustic resolution and/or long-term memory representations of the relevant information in the auditory cortex. To examine these possibilities, we used a short (ca. 600 ms) vs. long (ca. 2,600 ms) interstimulus interval (ISI) in a passive, oddball discrimination task while obtaining ERPs. These ISI differences were used to test whether cross-linguistic differences in processing Mandarin lexical tone are a function of differences in acoustic resolution and/or differences in long-term memory representations. Bisyllabic nonword tokens that differed in lexical tone categories were presented using a passive listening multiple oddball paradigm. Behavioral discrimination and identification data were also collected. The ERP results revealed robust MMNs to both easy and difficult lexical tone differences for both groups at short ISIs. At long ISIs, there was either no change or an enhanced MMN amplitude for the Mandarin group, but reduced MMN amplitude for the English group. In addition, the Mandarin listeners showed a larger late negativity (LN) discriminative response than the English listeners for lexical tone contrasts in the long ISI condition. Mandarin speakers outperformed English speakers in the behavioral tasks, especially under the long ISI conditions with the more similar lexical tone pair. These results suggest that the acoustic correlates of lexical tone are fairly robust and easily discriminated at short ISIs, when the auditory sensory memory trace is strong. At longer ISIs beyond 2.5 s language-specific experience is necessary for robust discrimination. PMID:28321179
The human auditory evoked response
NASA Technical Reports Server (NTRS)
Galambos, R.
1974-01-01
Figures are presented of computer-averaged auditory evoked responses (AERs) that point to the existence of a completely endogenous brain event. A series of regular clicks or tones was administered to the ear, and 'odd-balls' of different intensity or frequency respectively were included. Subjects were asked either to ignore the sounds (to read or do something else) or to attend to the stimuli. When they listened and counted the odd-balls, a P3 wave occurred at 300msec after stimulus. When the odd-balls consisted of omitted clicks or tone bursts, a similar response was observed. This could not have come from auditory nerve, but only from cortex. It is evidence of recognition, a conscious process.
Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance
ERIC Educational Resources Information Center
Muller, Viktor; Lindenberger, Ulman
2012-01-01
Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…
Neural correlates of target selection for reaching movements in superior colliculus
McPeek, Robert M.
2014-01-01
We recently demonstrated that inactivation of the primate superior colliculus (SC) causes a deficit in target selection for arm-reaching movements when the reach target is located in the inactivated field (Song JH, Rafal RD, McPeek RM. Proc Natl Acad Sci USA 108: E1433–E1440, 2011). This is consistent with the notion that the SC is part of a general-purpose target selection network beyond eye movements. To understand better the role of SC activity in reach target selection, we examined how individual SC neurons in the intermediate layers discriminate a reach target from distractors. Monkeys reached to touch a color oddball target among distractors while maintaining fixation. We found that many SC neurons robustly discriminate the goal of the reaching movement before the onset of the reach even though no saccade is made. To identify these cells in the context of conventional SC cell classification schemes, we also recorded visual, delay-period, and saccade-related responses in a delayed saccade task. On average, SC cells that discriminated the reach target from distractors showed significantly higher visual and delay-period activity than nondiscriminating cells, but there was no significant difference in saccade-related activity. Whereas a majority of SC neurons that discriminated the reach target showed significant delay-period activity, all nondiscriminating cells lacked such activity. We also found that some cells without delay-period activity did discriminate the reach target from distractors. We conclude that the majority of intermediate-layer SC cells discriminate a reach target from distractors, consistent with the idea that the SC contains a priority map used for effector-independent target selection. PMID:25505107
Change detection and difference detection of tone duration discrimination.
Okazaki, Shuntaro; Kanoh, Shin'ichiro; Takaura, Kana; Tsukada, Minoru; Oka, Kotaro
2006-03-20
An event-related potential called mismatch negativity is known to exhibit physiological evidence of sensory memory. Mismatch negativity is believed to represent complicated neuronal mechanisms in a variety of animals and in humans. We employed the auditory oddball paradigm varying sound durations and observed two types of duration mismatch negativity in anesthetized guinea pigs. One was a duration mismatch negativity whose increase in peak amplitude occurred immediately after onset of the stimulus difference in a decrement oddball paradigm. The other exhibited a peak amplitude increase closer to the offset of the longer stimulus in an increment oddball paradigm. These results demonstrated a mechanism to percept the difference of duration change and revealed the importance of the end of a stimulus for this perception.
2014-01-01
Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900
Savill, Nicola J; Thierry, Guillaume
2012-06-01
Whilst there is general consensus that phonological processing is deficient in developmental dyslexia, recent research also implicates visuo-attentional contributions. Capitalising on the P3a wave of event-related potentials as an index of attentional capture, we tested dyslexic and normal readers on a novel variant of a visual oddball task to examine the interplay of orthographic-phonological integration and attentional engagement. Targets were animal words (10% occurrence). Amongst nontarget stimuli were two critical conditions: pseudohomophones of targets (10%) and control pseudohomophones (of fillers; 10%). Pseudohomophones of targets (but not control pseudohomophones) elicited a large P3 wave in normal readers only, revealing a lack of attentional engagement with these phonologically salient stimuli in dyslexic participants. Critically, both groups showed similar early phonological discrimination as indexed by posterior P2 modulations. Furthermore, phonological engagement, as indexed by P3a differences between pseudohomophone conditions, correlated with several measures of reading. Meanwhile, an analogous experiment using coloured shapes instead of orthographic stimuli failed to show group differences between experimental modulations in the P2 or P3 ranges. Overall, our results show that, whilst automatic aspects of phonological processing appear intact in developmental dyslexia, the breakdown in pseudoword reading occurs at a later stage, when attention is oriented to orthographic-phonological information. Copyright © 2012 Elsevier Ltd. All rights reserved.
Music training and working memory: an ERP study.
George, Elyse M; Coch, Donna
2011-04-01
While previous research has suggested that music training is associated with improvements in various cognitive and linguistic skills, the mechanisms mediating or underlying these associations are mostly unknown. Here, we addressed the hypothesis that previous music training is related to improved working memory. Using event-related potentials (ERPs) and a standardized test of working memory, we investigated both neural and behavioral aspects of working memory in college-aged, non-professional musicians and non-musicians. Behaviorally, musicians outperformed non-musicians on standardized subtests of visual, phonological, and executive memory. ERPs were recorded in standard auditory and visual oddball paradigms (participants responded to infrequent deviant stimuli embedded in lists of standard stimuli). Electrophysiologically, musicians demonstrated faster updating of working memory (shorter latency P300s) in both the auditory and visual domains and musicians allocated more neural resources to auditory stimuli (larger amplitude P300), showing increased sensitivity to the auditory standard/deviant difference and less effortful updating of auditory working memory. These findings demonstrate that long-term music training is related to improvements in working memory, in both the auditory and visual domains and in terms of both behavioral and ERP measures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Associated Information Increases Subjective Perception of Duration.
Schweitzer, Richard; Trapp, Sabrina; Bar, Moshe
2017-08-01
Our sense of time is prone to various biases. For instance, one factor that can dilate an event's perceived duration is the violation of predictions; when a series of repeated stimuli is interrupted by an unpredictable oddball. On the other hand, when the probability of a repetition itself is manipulated, predictable conditions can also increase estimated duration. This suggests that manipulations of expectations have different or even opposing effects on time perception. In previous studies, expectations were generated because stimuli were repeated or because the likelihood of a sequence or a repetition was varied. In the natural environment, however, expectations are often built via associative processes, for example, the context of a kitchen promotes the expectation of plates, appliances, and other associated objects. Here, we manipulated such association-based expectations by using oddballs that were either contextually associated or nonassociated with the standard items. We find that duration was more strongly overestimated for contextually associated oddballs. We reason that top-down attention is biased toward associated information, and thereby dilates subjective duration for associated oddballs. Based on this finding, we propose an interplay between top-down attention and predictive processing in the perception of time.
P300 Source Localization Contrasts in Body-Focused Repetitive Behaviors and Tic Disorders
Sauvé, Geneviève; O’Connor, Kieron P.; Blanchet, Pierre J.
2017-01-01
Tic disorders (TD) and body-focused repetitive behaviors (BFRB) have similar phenotypes that can be challenging to distinguish in clinical settings. Both disorders show high rates of comorbid psychiatric conditions, dysfunctional basal ganglia activity, atypical cortical functioning in the prefrontal and motor cortical regions, and cognitive deficits. Clinicians frequently confound the two disorders and it is important to find reliable objective methods to discriminate TD and BFRB. Neuropsychological tests and event-related potential (ERP) studies have yielded inconsistent results regarding a possible context updating deficit in TD and BFRB patients. However, most previous studies did not control for the presence of comorbid psychiatric condition and medication status, which might have confounded the findings reported to date. Hence, we aimed to investigate the psychophysiology of working memory using ERP in carefully screened TD and BFRB patients excluding those with psychiatric comorbidity and those taking psychoactive medication. The current study compared 12 TD patients, 12 BRFB patients, and 15 healthy control participants using a motor oddball task (button press). The P300 component was analyzed as an index of working memory functioning. Results showed that BFRB patients had decreased P300 oddball effect amplitudes over the right hemisphere compared to the TD and control groups. Clinical groups presented different scalp distributions compared to controls, which could represent a potential endophenotype candidate of BFRB and TD. PMID:28671557
Shim, Miseon; Hwang, Han-Jeong; Kim, Do-Won; Lee, Seung-Hwan; Im, Chang-Hwan
2016-10-01
Recently, an increasing number of researchers have endeavored to develop practical tools for diagnosing patients with schizophrenia using machine learning techniques applied to EEG biomarkers. Although a number of studies showed that source-level EEG features can potentially be applied to the differential diagnosis of schizophrenia, most studies have used only sensor-level EEG features such as ERP peak amplitude and power spectrum for machine learning-based diagnosis of schizophrenia. In this study, we used both sensor-level and source-level features extracted from EEG signals recorded during an auditory oddball task for the classification of patients with schizophrenia and healthy controls. EEG signals were recorded from 34 patients with schizophrenia and 34 healthy controls while each subject was asked to attend to oddball tones. Our results demonstrated higher classification accuracy when source-level features were used together with sensor-level features, compared to when only sensor-level features were used. In addition, the selected sensor-level features were mostly found in the frontal area, and the selected source-level features were mostly extracted from the temporal area, which coincide well with the well-known pathological region of cognitive processing in patients with schizophrenia. Our results suggest that our approach would be a promising tool for the computer-aided diagnosis of schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Neath-Tavares, Karly N; Itier, Roxane J
2016-09-01
Research suggests an important role of the eyes and mouth for discriminating facial expressions of emotion. A gaze-contingent procedure was used to test the impact of fixation to facial features on the neural response to fearful, happy and neutral facial expressions in an emotion discrimination (Exp.1) and an oddball detection (Exp.2) task. The N170 was the only eye-sensitive ERP component, and this sensitivity did not vary across facial expressions. In both tasks, compared to neutral faces, responses to happy expressions were seen as early as 100-120ms occipitally, while responses to fearful expressions started around 150ms, on or after the N170, at both occipital and lateral-posterior sites. Analyses of scalp topographies revealed different distributions of these two emotion effects across most of the epoch. Emotion processing interacted with fixation location at different times between tasks. Results suggest a role of both the eyes and mouth in the neural processing of fearful expressions and of the mouth in the processing of happy expressions, before 350ms. Copyright © 2016 Elsevier B.V. All rights reserved.
Harris, Jill; Kamke, Marc R
2014-11-01
Selective attention fundamentally alters sensory perception, but little is known about the functioning of attention in individuals who use a cochlear implant. This study aimed to investigate visual and auditory attention in adolescent cochlear implant users. Event related potentials were used to investigate the influence of attention on visual and auditory evoked potentials in six cochlear implant users and age-matched normally-hearing children. Participants were presented with streams of alternating visual and auditory stimuli in an oddball paradigm: each modality contained frequently presented 'standard' and infrequent 'deviant' stimuli. Across different blocks attention was directed to either the visual or auditory modality. For the visual stimuli attention boosted the early N1 potential, but this effect was larger for cochlear implant users. Attention was also associated with a later P3 component for the visual deviant stimulus, but there was no difference between groups in the later attention effects. For the auditory stimuli, attention was associated with a decrease in N1 latency as well as a robust P3 for the deviant tone. Importantly, there was no difference between groups in these auditory attention effects. The results suggest that basic mechanisms of auditory attention are largely normal in children who are proficient cochlear implant users, but that visual attention may be altered. Ultimately, a better understanding of how selective attention influences sensory perception in cochlear implant users will be important for optimising habilitation strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Deviance detection by a P3-like response in rat posterior parietal cortex
Imada, Allicia; Morris, Allyn; Wiest, Michael C.
2013-01-01
To better understand sensory processing in frontal and parietal cortex of the rat, and to further assess the rat as a model of human frontal-parietal processing, we recorded local field potentials (LFPs) from microelectrode arrays implanted in medio-dorsal frontal, and posterior parietal cortex of awake rats as they were presented with a succession of frequent “standard” tones and infrequent “oddball” tones. Extending previous results from surface recordings we found, after controlling for the frequencies of the standard and oddball tones, that rat frontal and parietal-evoked LFPs (eLFPs) exhibit significantly larger N1 (~40 ms latency), P2 (~100 ms), N2 (~160 ms), P3E (~200–240 ms), and P3L (~300–500 ms) amplitudes after an oddball tone. These neural oddball effects could contribute to the automatic allocation of attention to rare stimuli. To determine whether these enhanced responses to rare stimuli could be accounted for in terms of stimulus-specific neural adaptation (SSA), we also recorded during single-tone control sessions involving frequent standard, or infrequent oddball beeps alone. We compared the difference between rare-tone and frequent-tone response amplitudes in the two-tone context (oddball effect) or single-tone context which isolates the contribution of SSA (SSA effect). An analysis of variance (ANOVA) revealed a significant main effect of tone context on rare-tone response enhancements, showing that the rare-tone enhancements were stronger in the two-tone context than the single-tone context. This difference between tone contexts was greatest at the early P3E peak (200–240 ms post-beep) in parietal cortex, suggesting true deviance detection by this evoked response component, which cannot be accounted for in terms of simple models of SSA. PMID:23316147
Hippocampus duality: Memory and novelty detection are subserved by distinct mechanisms.
Barbeau, Emmanuel J; Chauvel, Patrick; Moulin, Christopher J A; Regis, Jean; Liégeois-Chauvel, Catherine
2017-04-01
The hippocampus plays a pivotal role both in novelty detection and in long-term memory. The physiological mechanisms underlying these behaviors have yet to be understood in humans. We recorded intracerebral evoked potentials within the hippocampus of epileptic patients (n = 10) during both memory and novelty detection tasks (targets in oddball tasks). We found that memory and detection tasks elicited late local field potentials in the hippocampus during the same period, but of opposite polarity (negative during novelty detection tasks, positive during memory tasks, ∼260-600 ms poststimulus onset, P < 0.05). Critically, these potentials had maximal amplitude on the same contact in the hippocampus for each patient. This pattern did not depend on the task as different types of memory and novelty detection tasks were used. It did not depend on the novelty of the stimulus or the difficulty of the task either. Two different hypotheses are discussed to account for this result: it is either due to the activation of CA1 pyramidal neurons by two different pathways such as the monosynaptic and trisynaptic entorhinal-hippocampus pathways, or to the activation of different neuronal populations, that is, differing either functionally (e.g., novelty/familiarity neurons) or located in different regions of the hippocampus (e.g., CA1/subiculum). In either case, these activities may integrate the activity of two distinct large-scale networks implementing externally or internally oriented, mutually exclusive, brain states. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Infant feeding effects on early neurocognitive development in Asian children.
Cai, Shirong; Pang, Wei Wei; Low, Yen Ling; Sim, Lit Wee; Sam, Suet Chian; Bruntraeger, Michaela Bianka; Wong, Eric Qinlong; Fok, Doris; Broekman, Birit F P; Singh, Leher; Richmond, Jenny; Agarwal, Pratibha; Qiu, Anqi; Saw, Seang Mei; Yap, Fabian; Godfrey, Keith M; Gluckman, Peter D; Chong, Yap-Seng; Meaney, Michael J; Kramer, Michael S; Rifkin-Graboi, Anne
2015-02-01
Breastfeeding has been shown to enhance global measures of intelligence in children. However, few studies have examined associations between breastfeeding and specific cognitive task performance in the first 2 y of life, particularly in an Asian population. We assessed associations between early infant feeding and detailed measures of cognitive development in the first 2 y of life in healthy Asian children born at term. In a prospective cohort study, neurocognitive testing was performed in 408 healthy children (aged 6, 18, and 24 mo) from uncomplicated pregnancies (i.e., birth weight >2500 and <4000 g, gestational age ≥37 wk, and 5-min Apgar score ≥9). Tests included memory (deferred imitation, relational binding, habituation) and attention tasks (visual expectation, auditory oddball) as well as the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III). Children were stratified into 3 groups (low, intermediate, and high) on the basis of breastfeeding duration and exclusivity. After potential confounding variables were controlled for, significant associations and dose-response relations were observed for 4 of the 15 tests. Higher breastfeeding exposure was associated with better memory at 6 mo, demonstrated by greater preferential looking toward correctly matched items during early portions of a relational memory task (i.e., relational binding task: P-trend = 0.015 and 0.050 for the first two 1000-ms time bins, respectively). No effects of breastfeeding were observed at 18 mo. At 24 mo, breastfed children were more likely to display sequential memory during a deferred imitation memory task (P-trend = 0.048), and toddlers with more exposure to breastfeeding scored higher in receptive language [+0.93 (0.23, 1.63) and +1.08 (0.10, 2.07) for intermediate- and high-breastfeeding groups, respectively, compared with the low-breastfeeding group], as well as expressive language [+0.58 (-0.06, 1.23) and +1.22 (0.32, 2.12) for intermediate- and high-breastfeeding groups, respectively] assessed via the BSID-III. Our findings suggest small but significant benefits of breastfeeding for some aspects of memory and language development in the first 2 y of life, with significant improvements in only 4 of 15 indicators. Whether the implicated processes confer developmental advantages is unknown and represents an important area for future research. This trial was registered at www.clinicaltrials.gov as NCT01174875. © 2015 American Society for Nutrition.
Di Giorgio Silva, Luiza Wanick; Aprigio, Danielle; Di Giacomo, Jesse; Gongora, Mariana; Budde, Henning; Bittencourt, Juliana; Cagy, Mauricio; Teixeira, Silmar; Ribeiro, Pedro; de Carvalho, Marcele Regine; Freire, Rafael; Nardi, Antonio Egidio; Basile, Luis Fernando; Velasques, Bruna
2017-12-01
Panic disorder (PD) is characterized by repeated and unexpected attacks of intense anxiety, which are not restricted to a determined situation or circumstance. The coherence function has been used to investigate the communication among brain structures through the quantitative EEG (qEEG). The objective of this study is to analyze if there is a difference in frontoparietal gamma coherence (GC) between panic disorder patients (PDP) and healthy controls (HC) during the Visual oddball paradigm; and verify if high levels of anxiety (produced by a computer simulation) affect PDP's working memory. Nine PDP (9 female with average age of 48.8, SD: 11.16) and ten HC (1 male and 9 female with average age of 38.2, SD: 13.69) were enrolled in this study. The subjects performed the visual oddball paradigm simultaneously to the EEG record before and after the presentation of computer simulation (CS). A two-way ANOVA was applied to analyze the factors Group and the Moment for each pair of electrodes separately, and another one to analyze the reaction time variable. We verified a F3-P3 GC increased after the CS movie, demonstrating the left hemisphere participation during the anxiety processing. The greater GC in HC observed in the frontal and parietal areas (P3-Pz, F4-F8 and Fp2-F4) points to the participation of these areas with the expected behavior. The greater GC in PDP for F7-F3 and F4-P4 pairs of electrodes assumes that it produces a prejudicial "noise" during information processing, and can be associated to interference on the communication between frontal and parietal areas. This "noise" during information processing is related to PD symptoms, which should be better known in order to develop effective treatment strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Boucher, Olivier; Bastien, Célyne H; Saint-Amour, Dave; Dewailly, Eric; Ayotte, Pierre; Jacobson, Joseph L; Jacobson, Sandra W; Muckle, Gina
2010-08-01
Methylmercury (MeHg) and polychlorinated biphenyls (PCBs) are seafood contaminants known for their adverse effects on neurodevelopment. This study examines the relation of developmental exposure to these contaminants to information processing assessed with event-related potentials (ERPs) in school-aged Inuit children from Nunavik (Arctic Québec). In a prospective longitudinal study on child development, exposure to contaminants was measured at birth and 11 years of age. An auditory oddball protocol was administered at 11 years to measure ERP components N1 and P3b. Multiple regression analyses were performed to examine the associations of levels of the contaminants to auditory oddball performance (mean reaction time, omission errors and false alarms) and ERP parameters (latency and amplitude) after control for potential confounding variables. A total of 118 children provided useable ERP data. Prenatal MeHg exposure was associated with slower reaction times and fewer false alarms during the oddball task. Analyses of the ERP parameters revealed that prenatal MeHg exposure was related to greater amplitude and delayed latency of the N1 wave in the target condition but not to the P3b component. MeHg effects on the N1 were stronger after control for seafood nutrients. Prenatal PCB exposure was not related to any endpoint for sample as a whole but was associated with a decrease in P3b amplitude in the subgroup of children who had been breast-fed for less than 3 months. Body burdens of MeHg and PCBs at 11 years were not related to any of the behavioural or ERP measures. These data suggest that prenatal MeHg exposure alters attentional mechanisms modulating early processing of sensory information. By contrast, prenatal PCB exposure appears to affect information processing at later stages, when the information is being consciously evaluated. These effects seem to be mitigated in children who are breast-fed for a more extended period. (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji
2012-04-01
The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.
Neuronal correlates of a virtual-reality-based passive sensory P300 network.
Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching
2014-01-01
P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person's intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients' analytic results with this study. For example, the task presented here is not applicable to incommunicative patients.
Neuronal Correlates of a Virtual-Reality-Based Passive Sensory P300 Network
Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching
2014-01-01
P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task presented here is not applicable to incommunicative patients. PMID:25401520
Phillips, Holly N; Blenkmann, Alejandro; Hughes, Laura E; Kochen, Silvia; Bekinschtein, Tristan A; Cam-Can; Rowe, James B
2016-09-01
We propose that sensory inputs are processed in terms of optimised predictions and prediction error signals within hierarchical neurocognitive models. The combination of non-invasive brain imaging and generative network models has provided support for hierarchical frontotemporal interactions in oddball tasks, including recent identification of a temporal expectancy signal acting on prefrontal cortex. However, these studies are limited by the need to invert magnetoencephalographic or electroencephalographic sensor signals to localise activity from cortical 'nodes' in the network, or to infer neural responses from indirect measures such as the fMRI BOLD signal. To overcome this limitation, we examined frontotemporal interactions estimated from direct cortical recordings from two human participants with cortical electrode grids (electrocorticography - ECoG). Their frontotemporal network dynamics were compared to those identified by magnetoencephalography (MEG) in forty healthy adults. All participants performed the same auditory oddball task with standard tones interspersed with five deviant tone types. We normalised post-operative electrode locations to standardised anatomic space, to compare across modalities, and inverted the MEG to cortical sources using the estimated lead field from subject-specific head models. A mismatch negativity signal in frontal and temporal cortex was identified in all subjects. Generative models of the electrocorticographic and magnetoencephalographic data were separately compared using the free-energy estimate of the model evidence. Model comparison confirmed the same critical features of hierarchical frontotemporal networks in each patient as in the group-wise MEG analysis. These features included bilateral, feedforward and feedback frontotemporal modulated connectivity, in addition to an asymmetric expectancy driving input on left frontal cortex. The invasive ECoG provides an important step in construct validation of the use of neural generative models of MEG, which in turn enables generalisation to larger populations. Together, they give convergent evidence for the hierarchical interactions in frontotemporal networks for expectation and processing of sensory inputs. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Influence of cognitive control and mismatch on the N2 component of the ERP: A review
Folstein, Jonathan R.; Van Petten, Cyma
2008-01-01
Recent years have seen an explosion of research on the N2 component of the event-related potential, a negative wave peaking between 200 and 350 ms after stimulus onset. This research has focused on the influence of “cognitive control,” a concept that covers strategic monitoring and control of motor responses. However, rich research traditions focus on attention and novelty or mismatch as determinants of N2 amplitude. We focus on paradigms that elicit N2 components with an anterior scalp distribution, namely, cognitive control, novelty, and sequential matching, and argue that the anterior N2 should be divided into separate control- and mismatch-related subcomponents. We also argue that the oddball N2 belongs in the family of attention-related N2 components that, in the visual modality, have a posterior scalp distribution. We focus on the visual modality for which components with frontocentral and more posterior scalp distributions can be readily distinguished. PMID:17850238
Lifespan differences in nonlinear dynamics during rest and auditory oddball performance.
Müller, Viktor; Lindenberger, Ulman
2012-07-01
Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an indicator of cortical reactivity. During rest, both nonlinear coupling and spectral alpha power decreased with age, whereas dimensional complexity increased. In contrast, when attending to the deviant stimulus, nonlinear coupling increased with age, and complexity decreased. Correlational analyses showed that nonlinear measures assessed during auditory oddball performance were reliably related to an independently assessed measure of perceptual speed. We conclude that cortical dynamics during rest and stimulus processing undergo substantial reorganization from childhood to old age, and propose that lifespan age differences in nonlinear dynamics during stimulus processing reflect lifespan changes in the functional organization of neuronal cell assemblies. © 2012 Blackwell Publishing Ltd.
Pinheiro, Ana P; Barros, Carla; Dias, Marcelo; Kotz, Sonja A
2017-12-01
In social interactions, emotionally salient and sudden changes in vocal expressions attract attention. However, only a few studies examined how emotion and attention interact in voice processing. We investigated neutral, happy (laughs) and angry (growls) vocalizations in a modified oddball task. Participants silently counted the targets in each block and rated the valence and arousal of the vocalizations. A combined event-related potential and time-frequency analysis focused on the P3 and pre-stimulus alpha power to capture attention effects in response to unexpected events. Whereas an early differentiation between emotionally salient and neutral vocalizations was reflected in the P3a response, the P3b was selectively enhanced for happy voices. The P3b modulation was predicted by pre-stimulus frontal alpha desynchronization, and by the perceived pleasantness of the targets. These findings indicate that vocal emotions may be differently processed based on task relevance and valence. Increased anticipation and attention to positive vocal cues (laughter) may reflect their high social relevance. Copyright © 2017 Elsevier B.V. All rights reserved.
Working memory capacity affects the interference control of distractors at auditory gating.
Tsuchida, Yukio; Katayama, Jun'ichi; Murohashi, Harumitsu
2012-05-10
It is important to understand the role of individual differences in working memory capacity (WMC). We investigated the relation between differences in WMC and N1 in event-related brain potentials as a measure of early selective attention for an auditory distractor in three-stimulus oddball tasks that required minimum memory. A high-WMC group (n=13) showed a smaller N1 in response to a distractor and target than did a low-WMC group (n=13) in the novel condition with high distraction. However, in the simple condition with low distraction, there was no difference in N1 between the groups. For all participants (n=52), the correlation between the scores for WMC and N1 peak amplitude was strong for distractors in the novel condition, whereas there was no relation in the simple condition. These results suggest that WMC can predict the interference control for a salient distractor at auditory gating even during a selective attention task. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Inferior Frontal Cortex Modulation with an Acute Dose of Heroin During Cognitive Control
Schmidt, André; Walter, Marc; Gerber, Hana; Schmid, Otto; Smieskova, Renata; Bendfeldt, Kerstin; Wiesbeck, Gerhard A; Riecher-Rössler, Anita; Lang, Undine E; Rubia, Katya; McGuire, Philip; Borgwardt, Stefan
2013-01-01
Impairments in inhibitory control and in stimulus-driven attention are hallmarks of drug addiction and are associated with decreased activation in the right inferior frontal gyrus (IFG). Although previous studies indicate that the response inhibition function is impaired in abstinent heroin dependents, and that this is mediated by reduced IFG activity, it remains completely unknown whether and how an acute dose of heroin modulates IFG activity during cognitive control in heroin-dependent patients. This study investigates the acute effects of heroin administration on IFG activity during response inhibition and stimulus-driven attention in heroin-dependent patients. Using a cross-over, double-blind, placebo-controlled design, saline and heroin were administered to 26 heroin-dependent patients from stable heroin-assisted treatment, while performing a Go/No–Go event-related functional magnetic resonance imaging task to assess right IFG activity during motor response inhibition, as well as during oddball-driven attention allocation. Relative to saline, heroin significantly reduced right IFG activity during both successful response inhibition and oddball-driven attention allocation, whereas it did not change right IFG activity during response inhibition after correction for the effect of attention allocation. These heroin-induced effects were not related to changes in drug craving, state anxiety, behavioral performance, or co-consumption of psychostimulant drugs. This study demonstrates that heroin administration acutely impairs stimulus-driven attention allocation, as indicated by reduced IFG activity in response to infrequently presented stimuli, and does not specifically modulate IFG activity during response inhibition. PMID:23673865
Functional neuroimaging of Social and Nonsocial Cognitive Control in Autism
Sabatino, Antoinette; Rittenberg, Alison; Sasson, Noah J.; Turner-Brown, Lauren; Bodfish, James W.; Dichter, Gabriel S.
2013-01-01
This study investigated cognitive control of social and nonsocial information in autism using functional magnetic resonance imaging. Individuals with autism spectrum disorders (ASDs) and a neurotypical control group completed an oddball target detection task where target stimuli were either faces or nonsocial objects previously shown to be related to circumscribed interests in autism. The ASD group demonstrated relatively increased activation to social targets in right insular cortex and in left superior frontal gyrus and relatively decreased activation to nonsocial targets related to circumscribed interests in multiple frontostriatal brain regions. Findings suggest that frontostriatal recruitment during cognitive control in ASD is contingent on stimulus type, with increased activation for social stimuli and decreased activation for nonsocial stimuli related to circumscribed interests. PMID:23636715
Schultheiss, Oliver C; Wirth, Michelle M; Waugh, Christian E; Stanton, Steven J; Meier, Elizabeth A; Reuter-Lorenz, Patricia
2008-12-01
This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.
The contributions of visual and central attention to visual working memory.
Souza, Alessandra S; Oberauer, Klaus
2017-10-01
We investigated the role of two kinds of attention-visual and central attention-for the maintenance of visual representations in working memory (WM). In Experiment 1 we directed attention to individual items in WM by presenting cues during the retention interval of a continuous delayed-estimation task, and instructing participants to think of the cued items. Attending to items improved recall commensurate with the frequency with which items were attended (0, 1, or 2 times). Experiments 1 and 3 further tested which kind of attention-visual or central-was involved in WM maintenance. We assessed the dual-task costs of two types of distractor tasks, one tapping sustained visual attention and one tapping central attention. Only the central attention task yielded substantial dual-task costs, implying that central attention substantially contributes to maintenance of visual information in WM. Experiment 2 confirmed that the visual-attention distractor task was demanding enough to disrupt performance in a task relying on visual attention. We combined the visual-attention and the central-attention distractor tasks with a multiple object tracking (MOT) task. Distracting visual attention, but not central attention, impaired MOT performance. Jointly, the three experiments provide a double dissociation between visual and central attention, and between visual WM and visual object tracking: Whereas tracking multiple targets across the visual filed depends on visual attention, visual WM depends mostly on central attention.
Electro-cortical implicit race bias does not vary with participants’ race or sex
Mallan, Kimberley M.; Martin, Frances H.; Terry, Deborah J.; Smith, Joanne R.
2011-01-01
Earlier research found evidence for electro-cortical race bias towards black target faces in white American participants irrespective of the task relevance of race. The present study investigated whether an implicit race bias generalizes across cultural contexts and racial in- and out-groups. An Australian sample of 56 Chinese and Caucasian males and females completed four oddball tasks that required sex judgements for pictures of male and female Chinese and Caucasian posers. The nature of the background (across task) and of the deviant stimuli (within task) was fully counterbalanced. Event-related potentials (ERPs) to deviant stimuli recorded from three midline sites were quantified in terms of mean amplitude for four components: N1, P2, N2 and a late positive complex (LPC; 350–700 ms). Deviants that differed from the backgrounds in sex or race elicited enhanced LPC activity. These differences were not modulated by participant race or sex. The current results replicate earlier reports of effects of poser race relative to background race on the LPC component of the ERP waveform. In addition, they indicate that an implicit race bias occurs regardless of participant’s or poser’s race and is not confined to a particular cultural context. PMID:21097957
Read My Lips: Brain Dynamics Associated with Audiovisual Integration and Deviance Detection.
Tse, Chun-Yu; Gratton, Gabriele; Garnsey, Susan M; Novak, Michael A; Fabiani, Monica
2015-09-01
Information from different modalities is initially processed in different brain areas, yet real-world perception often requires the integration of multisensory signals into a single percept. An example is the McGurk effect, in which people viewing a speaker whose lip movements do not match the utterance perceive the spoken sounds incorrectly, hearing them as more similar to those signaled by the visual rather than the auditory input. This indicates that audiovisual integration is important for generating the phoneme percept. Here we asked when and where the audiovisual integration process occurs, providing spatial and temporal boundaries for the processes generating phoneme perception. Specifically, we wanted to separate audiovisual integration from other processes, such as simple deviance detection. Building on previous work employing ERPs, we used an oddball paradigm in which task-irrelevant audiovisually deviant stimuli were embedded in strings of non-deviant stimuli. We also recorded the event-related optical signal, an imaging method combining spatial and temporal resolution, to investigate the time course and neuroanatomical substrate of audiovisual integration. We found that audiovisual deviants elicit a short duration response in the middle/superior temporal gyrus, whereas audiovisual integration elicits a more extended response involving also inferior frontal and occipital regions. Interactions between audiovisual integration and deviance detection processes were observed in the posterior/superior temporal gyrus. These data suggest that dynamic interactions between inferior frontal cortex and sensory regions play a significant role in multimodal integration.
[Factorial division of the visual N1 wave and functional significance].
Munoz-Ruata, J; Caro-Martinez, E
2011-05-16
It has been argued if the frontal, N1a, is the early part of the occipito-temporal, N1b, or there are two different waves. It is also not clear whether the N1 of distractor is equivalent to the target N1, neither to distinguish these four waves has some functional value. We performed a principal component analysis of latencies and amplitudes of N1 derived from an oddball visual paradigm in a sample of 82 persons with intellectual disability, and factor scores were correlated with measures of intellectual performance on the Wechsler Intelligence Scale for Children-Fourth Edition. There is not significant dependency between N1a and N1b waves. The N1 from the target stimulus is functionally different to the N1 from the distractor. The N1a 'target' is related to the perceptual reasoning while the N1a 'distractor' is related to the working memory. The correlation between latencies and amplitudes of the target stimuli in posterior locations suggests that, similar to as observed in auditory areas, there is a visual synchronization with the prefrontal cortex; its dysfunction may explain some of the perceptual problems of people with intellectual disabilities.
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Pomplun, M; Reingold, E M; Shen, J
2001-09-01
In three experiments, participants' visual span was measured in a comparative visual search task in which they had to detect a local match or mismatch between two displays presented side by side. Experiment 1 manipulated the difficulty of the comparative visual search task by contrasting a mismatch detection task with a substantially more difficult match detection task. In Experiment 2, participants were tested in a single-task condition involving only the visual task and a dual-task condition in which they concurrently performed an auditory task. Finally, in Experiment 3, participants performed two dual-task conditions, which differed in the difficulty of the concurrent auditory task. Both the comparative search task difficulty (Experiment 1) and the divided attention manipulation (Experiments 2 and 3) produced strong effects on visual span size.
Liu, Tongran; Xiao, Tong; Shi, Jiannong
2013-02-13
Response inhibition and preattentive processing are two important cognitive abilities for child development, and the current study adopted both behavioral and electrophysiological protocols to examine whether young children's response inhibition correlated with their preattentive processing. A Go/Nogo task was used to explore young children's response inhibition performances and an Oddball task with event-related potential recordings was used to measure their preattentive processing. The behavioral results showed that girls committed significantly fewer commission error rates, which showed that girls had stronger inhibition control abilities than boys. Girls also achieved higher d' scores in the Go/Nogo task, which indicated that they were more sensitive to the stimulus signals than boys. Although the electrophysiological results of preattentive processing did not show any sex differences, the correlation patterns between children's response inhibition and preattentive processing were different between these two groups: the neural response speed of preattentive processing (mismatch negativity peak latency) negatively correlated with girls' commission error rates and positively correlated with boys' correct hit rates. The current findings supported that the preattentive processing correlated with human inhibition control performances, and further showed that girls' better inhibition responses might be because of the influence of their preattentive processing.
Kudo, Noriko; Nakagome, Kazuyuki; Kasai, Kiyoto; Araki, Tsuyoshi; Fukuda, Masato; Kato, Nobumasa; Iwanami, Akira
2004-01-01
Corollary discharge is a brain electrical activity associated with self-monitoring, which distinguishes self from others in thoughts or behaviors. Corollary discharge can be non-invasively assessed using event-related potential (ERP) recordings in humans. Previous studies have revealed that the amplitude of the N100 component elicited during an "odd-ball" task is reduced while a healthy subject is vocalizing, which may index the effect of corollary discharge on auditory ERPs. In this study, we attempted to assess the effect of vocalization on ERP components including N100, mismatch negativity (MMN), negative difference wave (Nd), and P300 during a selective attention task in 22 healthy adults. We also evaluated the possible contribution of gender to these effects. N100 amplitudes elicited by unattended standard stimuli were reduced under the vocalization condition compared with those under the baseline condition. However, there were no significant effects of vocalization on MMN, Nd or P300. Moreover, there was no significant effect of gender to the corollary discharge. These results suggest that the effect of corollary discharge on auditory ERPs is limited to the perceptual stage of information processing in healthy men and women.
Calhoun, V. D.; Pearlson, G. D.
2011-01-01
Naturalistic paradigms such as movie watching or simulated driving that mimic closely real-world complex activities are becoming more widely used in functional magnetic resonance imaging (fMRI) studies both because of their ability to robustly stimulate brain connectivity and the availability of analysis methods which are able to capitalize on connectivity within and among intrinsic brain networks identified both during a task and in resting fMRI data. In this paper we review over a decade of work from our group and others on the use of simulated driving paradigms to study both the healthy brain as well as the effects of acute alcohol administration on functional connectivity during such paradigms. We briefly review our initial work focused on the configuration of the driving simulator and the analysis strategies. We then describe in more detail several recent studies from our group including a hybrid study examining distracted driving and compare resulting data with those from a separate visual oddball task. The analysis of these data were performed primarily using a combination of group independent component analysis (ICA) and the general linear model (GLM) and in the various studies we highlight novel findings which result from an analysis of either 1) within-network connectivity, 2) inter-network connectivity, also called functional network connectivity, or 3) the degree to which the modulation of the various intrinsic networks were associated with the alcohol administration and the task context. Despite the fact that the behavioral effects of alcohol intoxication are relatively well known, there is still much to discover on how acute alcohol exposure modulates brain function in a selective manner, associated with behavioral alterations. Through the above studies, we have learned more regarding the impact of acute alcohol intoxication on organization of the brain’s intrinsic connectivity networks during performance of a complex, real-world cognitive operation. Lessons learned from the above studies have broader applicability to designing ecologically valid, complex, functional MRI cognitive paradigms and incorporating pharmacologic challenges into such studies. Overall, the use of hybrid driving studies is a particularly promising area of neuroscience investigation. PMID:21718791
Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.
Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A
2006-04-01
Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.
Sui, Jing; Pearlson, Godfrey; Adali, Tülay; Kiehl, Kent A.; Caprihan, Arvind; Liu, Jingyu; Yamamoto, Jeremy; Calhoun, Vince D.
2011-01-01
Diverse structural and functional brain alterations have been identified in both schizophrenia and bipolar disorder, but with variable replicability, significant overlap and often in limited number of subjects. In this paper, we aimed to clarify differences between bipolar disorder and schizophrenia by combining fMRI (collected during an auditory oddball task) and diffusion tensor imaging (DTI) data. We proposed a fusion method, “multimodal CCA+ joint ICA’, which increases flexibility in statistical assumptions beyond existing approaches and can achieve higher estimation accuracy. The data collected from 164 participants (62 healthy controls, 54 schizophrenia and 48 bipolar) were extracted into “features” (contrast maps for fMRI and fractional anisotropy (FA) for DTI) and analyzed in multiple facets to investigate the group differences for each pair-wised groups and each modality. Specifically, both patient groups shared significant dysfunction in dorsolateral prefrontal cortex and thalamus, as well as reduced white matter (WM) integrity in anterior thalamic radiation and uncinate fasciculus. Schizophrenia and bipolar subjects were separated by functional differences in medial frontal and visual cortex, as well as WM tracts associated with occipital and frontal lobes. Both patients and controls showed similar spatial distributions in motor and parietal regions, but exhibited significant variations in temporal lobe. Furthermore, there were different group trends for age effects on loading parameters in motor cortex and multiple WM regions, suggesting brain dysfunction and WM disruptions occurred in identified regions for both disorders. Most importantly, we can visualize an underlying function-structure network by evaluating the joint components with strong links between DTI and fMRI. Our findings suggest that although the two patient groups showed several distinct brain patterns from each other and healthy controls, they also shared common abnormalities in prefrontal thalamic WM integrity and in frontal brain mechanisms. PMID:21640835
Effects of age and sex on developmental neural networks of visual-spatial attention allocation.
Rubia, Katya; Hyde, Zoe; Halari, Rozmin; Giampietro, Vincent; Smith, Anna
2010-06-01
Compared to our understanding of the functional maturation of brain networks underlying complex cognitive abilities, hardly anything is known of the neurofunctional development of simpler cognitive abilities such as visuo-spatial attention allocation. Furthermore, nothing is known on the effect of gender on the functional development of attention allocation. This study employed event related functional magnetic resonance imaging to investigate effects of age, sex, and sex by age interactions on the brain activation of 63 males and females, between 13 to 38years, during a visual-spatial oddball task. Behaviourally, with increasing age, speed was traded for accuracy, indicative of a less impulsive performance style in older subjects. Increasing age was associated with progressively increased activation in typical areas of selective attention of lateral fronto-striatal and temporo-parietal brain regions. Sex difference analysis showed enhanced activation in right-hemispheric inferior frontal and superior temporal regions in females, and in left-hemispheric inferior temporo-parietal regions in males. Importantly, the age by sex interaction findings showed that these sex-dimorphic patterns of brain activation may be the result of underlying sex differences in the functional maturation of these brain regions, as females had sex-specific progressive age-correlations in the same right inferior fronto-striato-temporal areas, while male-specific age-correlations were in left medial temporal and parietal areas. The findings demonstrate progressive functional maturation of fronto-striato-parieto-temporal networks of the relatively simple function of attention allocation between early adolescence and mid-adulthood. They furthermore show that sex-dimorphic patterns of enhanced reliance on right inferior frontal, striatal and superior temporal regions in females and of left temporo-parietal regions in males during attention allocation may be the result of underlying sex differences in the functional maturation of these brain regions. Copyright 2010 Elsevier Inc. All rights reserved.
Xin, Zhao; Ting, Liu X.; Yi, Zan X.; Li, Dai; Bao, Zhou A.
2015-01-01
Behavioral inhibitory control has been shown to play an important role in a variety of addictive behaviors. A number of studies involving the use of Go/NoGo and stop-signal paradigms have shown that smokers have reduced response inhibition for cigarette-related cues. However, it is not known whether male light smokers’ response inhibition for cigarette-related cues is lower than that of non-smokers in the two-choice oddball paradigm. The objective of the current study was to provide further behavioral evidence of male light smokers’ impaired response inhibition for cigarette-related cues, using the two-choice oddball paradigm. Sixty-two male students (31 smokers, 31 non-smokers), who were recruited via an advertisement, took part in this two-choice oddball experiment. Cigarette-related pictures (deviant stimuli) and pictures unrelated to cigarettes (standard stimuli) were used. Response inhibition for cigarette-related cues was measured by comparing accuracy (ACC) and reaction time (RT) for deviant and standard stimuli in the two groups of subjects. An analysis of variance (ANOVA) showed that in all the participants, ACC was significantly lower for deviant stimuli than for standard stimuli. For deviant stimuli, the RTs were significantly longer for male light smokers than for male non-smokers; however, there was no significant difference in RTs for standard stimuli. Compared to male non-smokers, male light smokers seem to have a reduced ability to inhibit responses to cigarette-related cues. PMID:26528200
Classification of EEG signals to identify variations in attention during motor task execution.
Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie
2017-06-01
Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external devices. User status such as attention affects BCI performance; thus detecting the user's attention drift due to internal or external factors is essential for high detection accuracy. An auditory oddball task was applied to divert the users' attention during a simple ankle dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and time-frequency features were projected to a lower dimension space and used to analyze the effect of two attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Time-frequency features led to significantly better classification results with respect to the temporal features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy in comparison to other channels in the global discrimination of attention level. Previous methods have used the attention to a task to drive external devices, such as the P300 speller. However, here we focus for the first time on the effect of attention drift while performing a motor task. It is possible to explore user's attention variation when performing motor tasks in synchronous BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task. Copyright © 2017 Elsevier B.V. All rights reserved.
Geladé, Katleen; Janssen, Tieme W P; Bink, Marleen; Twisk, Jos W R; van Mourik, Rosa; Maras, Athanasios; Oosterlaan, Jaap
2018-05-01
To assess the long-term effects of neurofeedback (NFB) in children with attention deficit hyperactivity disorder (ADHD), we compared behavioral and neurocognitive outcomes at a 6-month naturalistic follow-up of a randomized controlled trial on NFB, methylphenidate (MPH), and physical activity (PA). Ninety-two children with a DSM-IV-TR ADHD diagnosis, aged 7-13, receiving NFB (n = 33), MPH (n = 28), or PA (n = 31), were re-assessed 6-months after the interventions. NFB comprised theta/beta training on the vertex (cortical zero). PA comprised moderate to vigorous intensity exercises. Outcome measures included parent and teacher behavioral reports, and neurocognitive measures (auditory oddball, stop-signal, and visual spatial working memory tasks). At follow-up, longitudinal hierarchical multilevel model analyses revealed no significant group differences for parent reports and neurocognitive measures (p = .058-.997), except for improved inhibition in MPH compared to NFB (p = .040) and faster response speed in NFB compared to PA (p = .012) during the stop-signal task. These effects, however, disappeared after controlling for medication use at follow-up. Interestingly, teacher reports showed less inattention and hyperactivity/impulsivity at follow-up for NFB than PA (p = .004-.010), even after controlling for medication use (p = .013-.036). Our findings indicate that the superior results previously found for parent reports and neurocognitive outcome measures obtained with MPH compared to NFB and PA post intervention became smaller or non-significant at follow-up. Teacher reports suggested superior effects of NFB over PA; however, some children had different teachers at follow-up. Therefore, this finding should be interpreted with caution. Clinical trial registration Train your brain and exercise your heart? Advancing the treatment for Attention Deficit Hyperactivity Disorder (ADHD), Ref. no. NCT01363544, https://clinicaltrials.gov/show/NCT01363544 .
Gender Difference in Event Related Potentials to Masked Emotional Stimuli in the Oddball Task
Kim, Eun Young; Park, Gewnhi; Kim, Sangrae; Kim, Imyel; Chae, Jeong-Ho; Kim, Hyun Taek
2013-01-01
Objective We investigated gender differences in event-related potential (ERP) responses to subliminally presented threat-related stimuli. Methods Twenty-four participants were presented with threat-related and neutral pictures for a very brief period of time (17 ms). To explore gender differences in ERP responses to subliminally presented stimuli, we examined six ERP components [P1, N170, N250, P300, Early Posterior Negativity (EPN) and Late Positive Potential (LPP)]. Results The result revealed that only female participants showed significant increases in the N170 and the EPN in response to subliminally presented threat-related stimuli compared to neutral stimuli. Conclusion Our results suggest that female participants exhibit greater cortical processing of subliminally presented threat-related stimuli than male participants. PMID:23798965
Opposite brain laterality in analogous auditory and visual tests.
Oltedal, Leif; Hugdahl, Kenneth
2017-11-01
Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.
NASA Astrophysics Data System (ADS)
Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten
2016-08-01
Objective. In the past few years there has been a growing interest in studying brain functioning in natural, real-life situations. Mobile EEG allows to study the brain in real unconstrained environments but it faces the intrinsic challenge that it is impossible to disentangle observed changes in brain activity due to increase in cognitive demands by the complex natural environment or due to the physical involvement. In this work we aim to disentangle the influence of cognitive demands and distractions that arise from such outdoor unconstrained recordings. Approach. We evaluate the ERP and single trial characteristics of a three-class auditory oddball paradigm recorded in outdoor scenario’s while peddling on a fixed bike or biking freely around. In addition we also carefully evaluate the trial specific motion artifacts through independent gyro measurements and control for muscle artifacts. Main results. A decrease in P300 amplitude was observed in the free biking condition as compared to the fixed bike conditions. Above chance P300 single-trial classification in highly dynamic real life environments while biking outdoors was achieved. Certain significant artifact patterns were identified in the free biking condition, but neither these nor the increase in movement (as derived from continuous gyrometer measurements) can explain the differences in classification accuracy and P300 waveform differences with full clarity. The increased cognitive load in real-life scenarios is shown to play a major role in the observed differences. Significance. Our findings suggest that auditory oddball results measured in natural real-life scenarios are influenced mainly by increased cognitive load due to being in an unconstrained environment.
Zink, Rob; Hunyadi, Borbála; Huffel, Sabine Van; Vos, Maarten De
2016-08-01
In the past few years there has been a growing interest in studying brain functioning in natural, real-life situations. Mobile EEG allows to study the brain in real unconstrained environments but it faces the intrinsic challenge that it is impossible to disentangle observed changes in brain activity due to increase in cognitive demands by the complex natural environment or due to the physical involvement. In this work we aim to disentangle the influence of cognitive demands and distractions that arise from such outdoor unconstrained recordings. We evaluate the ERP and single trial characteristics of a three-class auditory oddball paradigm recorded in outdoor scenario's while peddling on a fixed bike or biking freely around. In addition we also carefully evaluate the trial specific motion artifacts through independent gyro measurements and control for muscle artifacts. A decrease in P300 amplitude was observed in the free biking condition as compared to the fixed bike conditions. Above chance P300 single-trial classification in highly dynamic real life environments while biking outdoors was achieved. Certain significant artifact patterns were identified in the free biking condition, but neither these nor the increase in movement (as derived from continuous gyrometer measurements) can explain the differences in classification accuracy and P300 waveform differences with full clarity. The increased cognitive load in real-life scenarios is shown to play a major role in the observed differences. Our findings suggest that auditory oddball results measured in natural real-life scenarios are influenced mainly by increased cognitive load due to being in an unconstrained environment.
Justen, Christoph; Herbert, Cornelia
2018-04-19
Numerous studies have investigated the neural underpinnings of passive and active deviance and target detection in the well-known auditory oddball paradigm by means of event-related potentials (ERPs) or functional magnetic resonance imaging (fMRI). The present auditory oddball study investigates the spatio-temporal dynamics of passive versus active deviance and target detection by analyzing amplitude modulations of early and late ERPs while at the same time exploring the neural sources underling this modulation with standardized low-resolution brain electromagnetic tomography (sLORETA) . A 64-channel EEG was recorded from twelve healthy right-handed participants while listening to 'standards' and 'deviants' (500 vs. 1000 Hz pure tones) during a passive (block 1) and an active (block 2) listening condition. During passive listening, participants had to simply listen to the tones. During active listening they had to attend and press a key in response to the deviant tones. Passive and active listening elicited an N1 component, a mismatch negativity (MMN) as difference potential (whose amplitudes were temporally overlapping with the N1) and a P3 component. N1/MMN and P3 amplitudes were significantly more pronounced for deviants as compared to standards during both listening conditions. Active listening augmented P3 modulation to deviants significantly compared to passive listening, whereas deviance detection as indexed by N1/MMN modulation was unaffected by the task. During passive listening, sLORETA contrasts (deviants > standards) revealed significant activations in the right superior temporal gyrus (STG) and the lingual gyri bilaterally (N1/MMN) as well as in the left and right insulae (P3). During active listening, significant activations were found for the N1/MMN in the right inferior parietal lobule (IPL) and for the P3 in multiple cortical regions (e.g., precuneus). The results provide evidence for the hypothesis that passive as well as active deviance and target detection elicit cortical activations in spatially distributed brain regions and neural networks including the ventral attention network (VAN), dorsal attention network (DAN) and salience network (SN). Based on the temporal activation of the neural sources underlying ERP modulations, a neurophysiological model of passive and active deviance and target detection is proposed which can be tested in future studies.
Anderson, Afrouz A; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Dashtestani, Hadis; Chowdhry, Fatima A; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H
2018-01-01
Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.
Anderson, Afrouz A.; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Chowdhry, Fatima A.; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H.
2018-01-01
Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing. PMID:29870536
Vera, Jesús; Perales, José C; Jiménez, Raimundo; Cárdenas, David
2018-04-24
This study aimed to test the effects of mental (i.e. executive) load during a dual physical-mental task on ratings of perceived exertion (RPE), affective valence, and arousal. The protocol included two dual tasks with matched physical demands but different executive demands (2-back and oddball), carried out on different days. The procedure was run twice to assess the sensitivity and stability of RPE, valence and arousal across the two trials. Linear mixed-effects analyses showed less positive valence (-0.44 points on average in a 1-9 scale; R β 2 = 0.074 [CI90%, 0.052-0.098]), and heightened arousal (+0.13 points on average in a 1-9 scale; R β 2 = 0.006 [CI90%, 0.001-0.015]), for the high executive load condition, but showed no effect of mental load on RPE. Separated analyses for the two task trials yielded best-fitting models that were identical across trials for RPE and valence, but not for arousal. Model fitting was improved by assuming a 1-level autoregressive covariance structure for all analyses. In conclusion, executive load during a dual physical-mental task modulates the emotional response to effort, but not RPE. The autoregressive covariance suggests that people tend to anchor estimates on prior ones, which imposes certain limits on scales' usability.
A task-dependent causal role for low-level visual processes in spoken word comprehension.
Ostarek, Markus; Huettig, Falk
2017-08-01
It is well established that the comprehension of spoken words referring to object concepts relies on high-level visual areas in the ventral stream that build increasingly abstract representations. It is much less clear whether basic low-level visual representations are also involved. Here we asked in what task situations low-level visual representations contribute functionally to concrete word comprehension using an interference paradigm. We interfered with basic visual processing while participants performed a concreteness task (Experiment 1), a lexical-decision task (Experiment 2), and a word class judgment task (Experiment 3). We found that visual noise interfered more with concrete versus abstract word processing, but only when the task required visual information to be accessed. This suggests that basic visual processes can be causally involved in language comprehension, but that their recruitment is not automatic and rather depends on the type of information that is required in a given task situation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Reimer, Christina B; Strobach, Tilo; Schubert, Torsten
2017-12-01
Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.
Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H
2015-06-01
To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.
Beyond the real world: attention debates in auditory mismatch negativity.
Chung, Kyungmi; Park, Jin Young
2018-04-11
The aim of this study was to address the potential for the auditory mismatch negativity (aMMN) to be used in applied event-related potential (ERP) studies by determining whether the aMMN would be an attention-dependent ERP component and could be differently modulated across visual tasks or virtual reality (VR) stimuli with different visual properties and visual complexity levels. A total of 80 participants, aged 19-36 years, were assigned to either a reading-task (21 men and 19 women) or a VR-task (22 men and 18 women) group. Two visual-task groups of healthy young adults were matched in age, sex, and handedness. All participants were instructed to focus only on the given visual tasks and ignore auditory change detection. While participants in the reading-task group read text slides, those in the VR-task group viewed three 360° VR videos in a random order and rated how visually complex the given virtual environment was immediately after each VR video ended. Inconsistent with the finding of a partial significant difference in perceived visual complexity in terms of brightness of virtual environments, both visual properties of distance and brightness showed no significant differences in the modulation of aMMN amplitudes. A further analysis was carried out to compare elicited aMMN amplitudes of a typical MMN task and an applied VR task. No significant difference in the aMMN amplitudes was found across the two groups who completed visual tasks with different visual-task demands. In conclusion, the aMMN is a reliable ERP marker of preattentive cognitive processing for auditory deviance detection.
A feasibility study of using event-related potential as a biometrics.
Yih-Choung Yu; Sicheng Wang; Gabel, Lisa A
2016-08-01
The use of an individual's neural response to stimuli (the event-related potential or ERP) has potential as a biometric because it is highly resistant to fraud relative to other conventional authentication systems. P300 is an ERP in human electroencephalography (EEG) that occurs in response to an oddball stimulus when an individual is actively engaged in a target detection task. Because P300 is consistently detectable from almost every subject, it is considered a potential signal for biometric applications. This paper presents a feasibility study of using topological plots of P300 as a biometric in subject authentication. The variation in latency and location of P300 response of 24 participants performing the P300Speller task were studied. Data sets from four participants were used for algorithm training; data from the other 20 participants were used as imposters for algorithm validation. The result showed that the algorithm was able to correctly identify three out of these four participants. Validation test also proved that the algorithm was able to reject 95% of the imposters for those three authenticated participants.
ERIC Educational Resources Information Center
Alvarez, George A.; Horowitz, Todd S.; Arsenio, Helga C.; DiMase, Jennifer S.; Wolfe, Jeremy M.
2005-01-01
Multielement visual tracking and visual search are 2 tasks that are held to require visual-spatial attention. The authors used the attentional operating characteristic (AOC) method to determine whether both tasks draw continuously on the same attentional resource (i.e., whether the 2 tasks are mutually exclusive). The authors found that observers…
NASA Astrophysics Data System (ADS)
Iramina, Keiji; Ge, Sheng; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo
2009-04-01
In this study, we applied a transcranial magnetic stimulation (TMS) to investigate the temporal aspect for the functional processing of visual attention. Although it has been known that right posterior parietal cortex (PPC) in the brain has a role in certain visual search tasks, there is little knowledge about the temporal aspect of this area. Three visual search tasks that have different difficulties of task execution individually were carried out. These three visual search tasks are the "easy feature task," the "hard feature task," and the "conjunction task." To investigate the temporal aspect of the PPC involved in the visual search, we applied various stimulus onset asynchronies (SOAs) and measured the reaction time of the visual search. The magnetic stimulation was applied on the right PPC or the left PPC by the figure-eight coil. The results show that the reaction times of the hard feature task are longer than those of the easy feature task. When SOA=150 ms, compared with no-TMS condition, there was a significant increase in target-present reaction time when TMS pulses were applied. We considered that the right PPC was involved in the visual search at about SOA=150 ms after visual stimulus presentation. The magnetic stimulation to the right PPC disturbed the processing of the visual search. However, the magnetic stimulation to the left PPC gives no effect on the processing of the visual search.
Colin, C; Radeau, M; Soquet, A; Demolin, D; Colin, F; Deltenre, P
2002-04-01
The McGurk-MacDonald illusory percept is obtained by dubbing an incongruent articulatory movement on an auditory phoneme. This type of audiovisual speech perception contributes to the assessment of theories of speech perception. The mismatch negativity (MMN) reflects the detection of a deviant stimulus within the auditory short-term memory and besides an acoustic component, possesses, under certain conditions, a phonetic one. The present study assessed the existence of an MMN evoked by McGurk-MacDonald percepts elicited by audiovisual stimuli with constant auditory components. Cortical evoked potentials were recorded using the oddball paradigm on 8 adults in 3 experimental conditions: auditory alone, visual alone and audiovisual stimulation. Obtaining illusory percepts was confirmed in an additional psychophysical condition. The auditory deviant syllables and the audiovisual incongruent syllables elicited a significant MMN at Fz. In the visual condition, no negativity was observed either at Fz, or at O(z). An MMN can be evoked by visual articulatory deviants, provided they are presented in a suitable auditory context leading to a phonetically significant interaction. The recording of an MMN elicited by illusory McGurk percepts suggests that audiovisual integration mechanisms in speech take place rather early during the perceptual processes.
Lavigne, Katie M; Woodward, Todd S
2018-04-01
Hypercoupling of activity in speech-perception-specific brain networks has been proposed to play a role in the generation of auditory-verbal hallucinations (AVHs) in schizophrenia; however, it is unclear whether this hypercoupling extends to nonverbal auditory perception. We investigated this by comparing schizophrenia patients with and without AVHs, and healthy controls, on task-based functional magnetic resonance imaging (fMRI) data combining verbal speech perception (SP), inner verbal thought generation (VTG), and nonverbal auditory oddball detection (AO). Data from two previously published fMRI studies were simultaneously analyzed using group constrained principal component analysis for fMRI (group fMRI-CPCA), which allowed for comparison of task-related functional brain networks across groups and tasks while holding the brain networks under study constant, leading to determination of the degree to which networks are common to verbal and nonverbal perception conditions, and which show coordinated hyperactivity in hallucinations. Three functional brain networks emerged: (a) auditory-motor, (b) language processing, and (c) default-mode (DMN) networks. Combining the AO and sentence tasks allowed the auditory-motor and language networks to separately emerge, whereas they were aggregated when individual tasks were analyzed. AVH patients showed greater coordinated activity (deactivity for DMN regions) than non-AVH patients during SP in all networks, but this did not extend to VTG or AO. This suggests that the hypercoupling in AVH patients in speech-perception-related brain networks is specific to perceived speech, and does not extend to perceived nonspeech or inner verbal thought generation. © 2017 Wiley Periodicals, Inc.
Yener, Görsev G; Emek-Savaş, Derya Durusu; Güntekin, Bahar; Başar, Erol
2014-10-17
Mild Cognitive Impairment (MCI) is considered in many as prodromal stage of Alzheimer's disease (AD). Event-related oscillations (ERO) reflect cognitive responses of brain whereas sensory-evoked oscillations (SEO) inform about sensory responses. For this study, we compared visual SEO and ERO responses in MCI to explore brain dynamics (BACKGROUND). Forty-three patients with MCI (mean age=74.0 year) and 41 age- and education-matched healthy-elderly controls (HC) (mean age=71.1 year) participated in the study. The maximum peak-to-peak amplitudes for each subject's averaged delta response (0.5-3.0 Hz) were measured from two conditions (simple visual stimulation and classical visual oddball paradigm target stimulation) (METHOD). Overall, amplitudes of target ERO responses were higher than SEO amplitudes. The preferential location for maximum amplitude values was frontal lobe for ERO and occipital lobe for SEO. The ANOVA for delta responses showed significant results for the group Xparadigm. Post-hoc tests indicated that (1) the difference between groups were significant for target delta responses, but not for SEO, (2) ERO elicited higher responses for HC than MCI patients, and (3) females had higher target ERO than males and this difference was pronounced in the control group (RESULTS). Overall, cognitive responses display almost double the amplitudes of sensory responses over frontal regions. The topography of oscillatory responses differs depending on stimuli: visualsensory responses are highest over occipitals and -cognitive responses over frontal regions. A group effect is observed in MCI indicating that visual sensory and cognitive circuits behave differently indicating preserved visual sensory responses, but decreased cognitive responses (CONCLUSION). Copyright © 2014 Elsevier B.V. All rights reserved.
Task-specific reorganization of the auditory cortex in deaf humans
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-01
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964
Task-specific reorganization of the auditory cortex in deaf humans.
Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin
2017-01-24
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.
Interference with olfactory memory by visual and verbal tasks.
Annett, J M; Cook, N M; Leslie, J C
1995-06-01
It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.
Applicability of the "Emotiv EEG Neuroheadset" as a user-friendly input interface.
Boutani, Hidenori; Ohsuga, Mieko
2013-01-01
We aimed to develop an input interface by using the P3 component of visual event-related potentials (ERPs). When using electroencephalography (EEG) in daily applications, coping with ocular-motor artifacts and ensuring that the equipment is user-friendly are both important. To address the first issue, we applied a previously proposed method that applies an unmixing matrix to acquire independent components (ICs) obtained from another dataset. For the second issue, we introduced a 14-channel EEG commercial headset called the "Emotiv EEG Neuroheadset". An advantage of the Emotiv headset is that users can put it on by themselves within 1 min without any specific skills. However, only a few studies have investigated whether EEG and ERP signals are accurately measured by Emotiv. Additionally, no electrodes of the Emotiv headset are located over the centroparietal area of the head where P3 components are reported to show large amplitudes. Therefore, we first demonstrated that the P3 components obtained by the headset and by commercial plate electrodes and a multipurpose bioelectric amplifier during an oddball task were comparable. Next, we confirmed that eye-blink and ocular movement components could be decomposed by independent component analysis (ICA) using the 14-channel signals measured by the headset. We also demonstrated that artifacts could be removed with an unmixing matrix, as long as the matrix was obtained from the same person, even if they were measured on different days. Finally, we confirmed that the fluctuation of the sampling frequency of the Emotiv headset was not a major problem.
Non-visual spatial tasks reveal increased interactions with stance postural control.
Woollacott, Marjorie; Vander Velde, Timothy
2008-05-07
The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.
The role of early visual cortex in visual short-term memory and visual attention.
Offen, Shani; Schluppeck, Denis; Heeger, David J
2009-06-01
We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.
Secondary visual workload capability with primary visual and kinesthetic-tactual displays
NASA Technical Reports Server (NTRS)
Gilson, R. D.; Burke, M. W.; Jagacinski, R. J.
1978-01-01
Subjects performed a cross-adaptive tracking task with a visual secondary display and either a visual or a quickened kinesthetic-tactual (K-T) primary display. The quickened K-T display resulted in superior secondary task performance. Comparisons of secondary workload capability with integrated and separated visual displays indicated that the superiority of the quickened K-T display was not simply due to the elimination of visual scanning. When subjects did not have to perform a secondary task, there was no significant difference between visual and quickened K-T displays in performing a critical tracking task.
Visual cue-specific craving is diminished in stressed smokers.
Cochran, Justinn R; Consedine, Nathan S; Lee, John M J; Pandit, Chinmay; Sollers, John J; Kydd, Robert R
2017-09-01
Craving among smokers is increased by stress and exposure to smoking-related visual cues. However, few experimental studies have tested both elicitors concurrently and considered how exposures may interact to influence craving. The current study examined craving in response to stress and visual cue exposure, separately and in succession, in order to better understand the relationship between craving elicitation and the elicitor. Thirty-nine smokers (21 males) who forwent smoking for 30 minutes were randomized to complete a stress task and a visual cue task in counterbalanced orders (creating the experimental groups); for the cue task, counterbalanced blocks of neutral, motivational control, and smoking images were presented. Self-reported craving was assessed after each block of visual stimuli and stress task, and after a recovery period following each task. As expected, the stress and smoking images generated greater craving than neutral or motivational control images (p < .001). Interactions indicated craving in those who completed the stress task first differed from those who completed the visual cues task first (p < .05), such that stress task craving was greater than all image type craving (all p's < .05) only if the visual cue task was completed first. Conversely, craving was stable across image types when the stress task was completed first. Findings indicate when smokers are stressed, visual cues have little additive effect on craving, and different types of visual cues elicit comparable craving. These findings may imply that once stressed, smokers will crave cigarettes comparably notwithstanding whether they are exposed to smoking image cues.
Task relevance induces momentary changes in the functional visual field during reading.
Kaakinen, Johanna K; Hyönä, Jukka
2014-02-01
In the research reported here, we examined whether task demands can induce momentary tunnel vision during reading. More specifically, we examined whether the size of the functional visual field depends on task relevance. Forty participants read an expository text with a specific task in mind while their eye movements were recorded. A display-change paradigm with random-letter strings as preview masks was used to study the size of the functional visual field within sentences that contained task-relevant and task-irrelevant information. The results showed that orthographic parafoveal-on-foveal effects and preview benefits were observed for words within task-irrelevant but not task-relevant sentences. The results indicate that the size of the functional visual field is flexible and depends on the momentary processing demands of a reading task. The higher cognitive processing requirements experienced when reading task-relevant text rather than task-irrelevant text induce momentary tunnel vision, which narrows the functional visual field.
Visual perspective taking impairment in children with autistic spectrum disorder.
Hamilton, Antonia F de C; Brindley, Rachel; Frith, Uta
2009-10-01
Evidence from typical development and neuroimaging studies suggests that level 2 visual perspective taking - the knowledge that different people may see the same thing differently at the same time - is a mentalising task. Thus, we would expect children with autism, who fail typical mentalising tasks like false belief, to perform poorly on level 2 visual perspective taking as well. However, prior data on this issue are inconclusive. We re-examined this question, testing a group of 23 young autistic children, aged around 8years with a verbal mental age of around 4years and three groups of typical children (n=60) ranging in age from 4 to 8years on a level 2 visual perspective task and a closely matched mental rotation task. The results demonstrate that autistic children have difficulty with visual perspective taking compared to a task requiring mental rotation, relative to typical children. Furthermore, performance on the level 2 visual perspective taking task correlated with theory of mind performance. These findings resolve discrepancies in previous studies of visual perspective taking in autism, and demonstrate that level 2 visual perspective taking is a mentalising task.
Tracking the Sensory Environment: An ERP Study of Probability and Context Updating in ASD
Westerfield, Marissa A.; Zinni, Marla; Vo, Khang; Townsend, Jeanne
2014-01-01
We recorded visual event-related brain potentials (ERPs) from 32 adult male participants (16 high-functioning participants diagnosed with Autism Spectrum Disorder (ASD) and 16 control participants, ranging in age from 18–53 yrs) during a three-stimulus oddball paradigm. Target and non-target stimulus probability was varied across three probability conditions, whereas the probability of a third non-target stimulus was held constant in all conditions. P3 amplitude to target stimuli was more sensitive to probability in ASD than in TD participants, whereas P3 amplitude to non-target stimuli was less responsive to probability in ASD participants. This suggests that neural responses to changes in event probability are attention-dependant in high-functioning ASD. The implications of these findings for higher-level behaviors such as prediction and planning are discussed. PMID:24488156
A method for multitask fMRI data fusion applied to schizophrenia.
Calhoun, Vince D; Adali, Tulay; Kiehl, Kent A; Astur, Robert; Pekar, James J; Pearlson, Godfrey D
2006-07-01
It is becoming common to collect data from multiple functional magnetic resonance imaging (fMRI) paradigms on a single individual. The data from these experiments are typically analyzed separately and sometimes directly subtracted from one another on a voxel-by-voxel basis. These comparative approaches, although useful, do not directly attempt to examine potential commonalities between tasks and between voxels. To remedy this we propose a method to extract maximally spatially independent maps for each task that are "coupled" together by a shared loading parameter. We first compute an activation map for each task and each individual as "features," which are then used to perform joint independent component analysis (jICA) on the group data. We demonstrate our approach on a data set derived from healthy controls and schizophrenia patients, each of which carried out an auditory oddball task and a Sternberg working memory task. Our analysis approach revealed two interesting findings in the data that were missed with traditional analyses. First, consistent with our hypotheses, schizophrenia patients demonstrate "decreased" connectivity in a joint network including portions of regions implicated in two prevalent models of schizophrenia. A second finding is that for the voxels identified by the jICA analysis, the correlation between the two tasks was significantly higher in patients than in controls. This finding suggests that schizophrenia patients activate "more similarly" for both tasks than do controls. A possible synthesis of both findings is that patients are activating less, but also activating with a less-unique set of regions for these very different tasks. Both of the findings described support the claim that examination of joint activation across multiple tasks can enable new questions to be posed about fMRI data. Our approach can also be applied to data using more than two tasks. It thus provides a way to integrate and probe brain networks using a variety of tasks and may increase our understanding of coordinated brain networks and the impact of pathology upon them. 2005 Wiley-Liss, Inc.
Multi-modal information processing for visual workload relief
NASA Technical Reports Server (NTRS)
Burke, M. W.; Gilson, R. D.; Jagacinski, R. J.
1980-01-01
The simultaneous performance of two single-dimensional compensatory tracking tasks, one with the left hand and one with the right hand, is discussed. The tracking performed with the left hand was considered the primary task and was performed with a visual display or a quickened kinesthetic-tactual (KT) display. The right-handed tracking was considered the secondary task and was carried out only with a visual display. Although the two primary task displays had afforded equivalent performance in a critical tracking task performed alone, in the dual-task situation the quickened KT primary display resulted in superior secondary visual task performance. Comparisons of various combinations of primary and secondary visual displays in integrated or separated formats indicate that the superiority of the quickened KT display is not simply due to the elimination of visual scanning. Additional testing indicated that quickening per se also is not the immediate cause of the observed KT superiority.
The modality effect of ego depletion: Auditory task modality reduces ego depletion.
Li, Qiong; Wang, Zhenhong
2016-08-01
An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J; Wilson, Timothy D
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among learners beyond the classification of spatial visualization ability alone, and help elucidate what, if anything, high- and low-spatial visualization ability learners do differently while solving spatial anatomy task problems. Forty-two students completed a standardized measure of spatial visualization ability, a novel spatial anatomy task, and a questionnaire involving personal self-analysis of the processes and strategies used while performing the spatial anatomy task. Strategy reports revealed that there were different ways students approached answering the spatial anatomy task problems. However, chi-square test analyses established that differences in problem-solving strategies did not contribute to differences in task performance. Therefore, underlying spatial visualization ability is the main source of variation in spatial anatomy task performance, irrespective of strategy. In addition to scoring higher and spending less time on the anatomy task, participants with high spatial visualization ability were also more accurate when solving the task problems. © 2013 American Association of Anatomists.
The Use of Computer-Generated Fading Materials to Teach Visual-Visual Non-Identity Matching Tasks
ERIC Educational Resources Information Center
Murphy, Colleen; Figueroa, Maria; Martin, Garry L.; Yu, C. T.; Figueroa, Josue
2008-01-01
Many everyday matching tasks taught to persons with developmental disabilities are visual-visual non-identity matching (VVNM) tasks, such as matching the printed word DOG to a picture of a dog, or matching a sock to a shoe. Research has shown that, for participants who have failed a VVNM prototype task, it is very difficult to teach them various…
Distinct Effects of Trial-Driven and Task Set-Related Control in Primary Visual Cortex
Vaden, Ryan J.; Visscher, Kristina M.
2015-01-01
Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of intermodal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors—portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and does not differ among eccentricity sectors. These results are discussed in the context of previous literature examining top-down control of visual cortical areas. PMID:26163806
Classification of visual and linguistic tasks using eye-movement features.
Coco, Moreno I; Keller, Frank
2014-03-07
The role of the task has received special attention in visual-cognition research because it can provide causal explanations of goal-directed eye-movement responses. The dependency between visual attention and task suggests that eye movements can be used to classify the task being performed. A recent study by Greene, Liu, and Wolfe (2012), however, fails to achieve accurate classification of visual tasks based on eye-movement features. In the present study, we hypothesize that tasks can be successfully classified when they differ with respect to the involvement of other cognitive domains, such as language processing. We extract the eye-movement features used by Greene et al. as well as additional features from the data of three different tasks: visual search, object naming, and scene description. First, we demonstrated that eye-movement responses make it possible to characterize the goals of these tasks. Then, we trained three different types of classifiers and predicted the task participants performed with an accuracy well above chance (a maximum of 88% for visual search). An analysis of the relative importance of features for classification accuracy reveals that just one feature, i.e., initiation time, is sufficient for above-chance performance (a maximum of 79% accuracy in object naming). Crucially, this feature is independent of task duration, which differs systematically across the three tasks we investigated. Overall, the best task classification performance was obtained with a set of seven features that included both spatial information (e.g., entropy of attention allocation) and temporal components (e.g., total fixation on objects) of the eye-movement record. This result confirms the task-dependent allocation of visual attention and extends previous work by showing that task classification is possible when tasks differ in the cognitive processes involved (purely visual tasks such as search vs. communicative tasks such as scene description).
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
Demirci, Oguz; Clark, Vincent P; Calhoun, Vince D
2008-02-15
Schizophrenia is diagnosed based largely upon behavioral symptoms. Currently, no quantitative, biologically based diagnostic technique has yet been developed to identify patients with schizophrenia. Classification of individuals into patient with schizophrenia and healthy control groups based on quantitative biologically based data is of great interest to support and refine psychiatric diagnoses. We applied a novel projection pursuit technique on various components obtained with independent component analysis (ICA) of 70 subjects' fMRI activation maps obtained during an auditory oddball task. The validity of the technique was tested with a leave-one-out method and the detection performance varied between 80% and 90%. The findings suggest that the proposed data reduction algorithm is effective in classifying individuals into schizophrenia and healthy control groups and may eventually prove useful as a diagnostic tool.
Use of nontraditional flight displays for the reduction of central visual overload in the cockpit
NASA Technical Reports Server (NTRS)
Weinstein, Lisa F.; Wickens, Christopher D.
1992-01-01
The use of nontraditional flight displays to reduce visual overload in the cockpit was investigated in a dual-task paradigm. Three flight displays (central, peripheral, and ecological) were used between subjects for the primary tasks, and the type of secondary task (object identification or motion judgment) and the presentation of the location of the task in the visual field (central or peripheral) were manipulated with groups. The two visual-spatial tasks were time-shared to study the possibility of a compatibility mapping between task type and task location. The ecological display was found to allow for the most efficient time-sharing.
MacLean, Mary H; Giesbrecht, Barry
2015-07-01
Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.
Dementia alters standing postural adaptation during a visual search task in older adult men.
Jor'dan, Azizah J; McCarten, J Riley; Rottunda, Susan; Stoffregen, Thomas A; Manor, Brad; Wade, Michael G
2015-04-23
This study investigated the effects of dementia on standing postural adaptation during performance of a visual search task. We recruited 16 older adults with dementia and 15 without dementia. Postural sway was assessed by recording medial-lateral (ML) and anterior-posterior (AP) center-of-pressure when standing with and without a visual search task; i.e., counting target letter frequency within a block of displayed randomized letters. ML sway variability was significantly higher in those with dementia during visual search as compared to those without dementia and compared to both groups during the control condition. AP sway variability was significantly greater in those with dementia as compared to those without dementia, irrespective of task condition. In the ML direction, the absolute and percent change in sway variability between the control condition and visual search (i.e., postural adaptation) was greater in those with dementia as compared to those without. In contrast, postural adaptation to visual search was similar between groups in the AP direction. As compared to those without dementia, those with dementia identified fewer letters on the visual task. In the non-dementia group only, greater increases in postural adaptation in both the ML and AP direction, correlated with lower performance on the visual task. The observed relationship between postural adaptation during the visual search task and visual search task performance--in the non-dementia group only--suggests a critical link between perception and action. Dementia reduces the capacity to perform a visual-based task while standing and thus, appears to disrupt this perception-action synergy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Milner, Rafał; Rusiniak, Mateusz; Lewandowska, Monika; Wolak, Tomasz; Ganc, Małgorzata; Piątkowska-Janko, Ewa; Bogorodzki, Piotr; Skarżyński, Henryk
2014-01-01
Background The neural underpinnings of auditory information processing have often been investigated using the odd-ball paradigm, in which infrequent sounds (deviants) are presented within a regular train of frequent stimuli (standards). Traditionally, this paradigm has been applied using either high temporal resolution (EEG) or high spatial resolution (fMRI, PET). However, used separately, these techniques cannot provide information on both the location and time course of particular neural processes. The goal of this study was to investigate the neural correlates of auditory processes with a fine spatio-temporal resolution. A simultaneous auditory evoked potentials (AEP) and functional magnetic resonance imaging (fMRI) technique (AEP-fMRI), together with an odd-ball paradigm, were used. Material/Methods Six healthy volunteers, aged 20–35 years, participated in an odd-ball simultaneous AEP-fMRI experiment. AEP in response to acoustic stimuli were used to model bioelectric intracerebral generators, and electrophysiological results were integrated with fMRI data. Results fMRI activation evoked by standard stimuli was found to occur mainly in the primary auditory cortex. Activity in these regions overlapped with intracerebral bioelectric sources (dipoles) of the N1 component. Dipoles of the N1/P2 complex in response to standard stimuli were also found in the auditory pathway between the thalamus and the auditory cortex. Deviant stimuli induced fMRI activity in the anterior cingulate gyrus, insula, and parietal lobes. Conclusions The present study showed that neural processes evoked by standard stimuli occur predominantly in subcortical and cortical structures of the auditory pathway. Deviants activate areas non-specific for auditory information processing. PMID:24413019
Seemüller, Anna; Fiehler, Katja; Rösler, Frank
2011-01-01
The present study investigated whether visual and kinesthetic stimuli are stored as multisensory or modality-specific representations in unimodal and crossmodal working memory tasks. To this end, angle-shaped movement trajectories were presented to 16 subjects in delayed matching-to-sample tasks either visually or kinesthetically during encoding and recognition. During the retention interval, a secondary visual or kinesthetic interference task was inserted either immediately or with a delay after encoding. The modality of the interference task interacted significantly with the encoding modality. After visual encoding, memory was more impaired by a visual than by a kinesthetic secondary task, while after kinesthetic encoding the pattern was reversed. The time when the secondary task had to be performed interacted with the encoding modality as well. For visual encoding, memory was more impaired, when the secondary task had to be performed at the beginning of the retention interval. In contrast, memory after kinesthetic encoding was more affected, when the secondary task was introduced later in the retention interval. The findings suggest that working memory traces are maintained in a modality-specific format characterized by distinct consolidation processes that take longer after kinesthetic than after visual encoding. Copyright © 2010 Elsevier B.V. All rights reserved.
Defever, Emmy; Reynvoet, Bert; Gebuis, Titia
2013-10-01
Researchers investigating numerosity processing manipulate the visual stimulus properties (e.g., surface). This is done to control for the confound between numerosity and its visual properties and should allow the examination of pure number processes. Nevertheless, several studies have shown that, despite different visual controls, visual cues remained to exert their influence on numerosity judgments. This study, therefore, investigated whether the impact of the visual stimulus manipulations on numerosity judgments is dependent on the task at hand (comparison task vs. same-different task) and whether this impact changes throughout development. In addition, we examined whether the influence of visual stimulus manipulations on numerosity judgments plays a role in the relation between performance on numerosity tasks and mathematics achievement. Our findings confirmed that the visual stimulus manipulations affect numerosity judgments; more important, we found that these influences changed with increasing age and differed between the comparison and the same-different tasks. Consequently, direct comparisons between numerosity studies using different tasks and age groups are difficult. No meaningful relationship between the performance on the comparison and same-different tasks and mathematics achievement was found in typically developing children, nor did we find consistent differences between children with and without mathematical learning disability (MLD). Copyright © 2013 Elsevier Inc. All rights reserved.
Visual search in a forced-choice paradigm
NASA Technical Reports Server (NTRS)
Holmgren, J. E.
1974-01-01
The processing of visual information was investigated in the context of two visual search tasks. The first was a forced-choice task in which one of two alternative letters appeared in a visual display of from one to five letters. The second task included trials on which neither of the two alternatives was present in the display. Search rates were estimated from the slopes of best linear fits to response latencies plotted as a function of the number of items in the visual display. These rates were found to be much slower than those estimated in yes-no search tasks. This result was interpreted as indicating that the processes underlying visual search in yes-no and forced-choice tasks are not the same.
Su, Bobo; Wang, Sha; Sumich, Alexander; Li, Shaomei; Yang, Ling; Cai, Yueyue; Wang, Grace Y
2017-11-01
Chronic heroin use can cause deficits in response inhibition, leading to a loss of control over drug use, particularly in the context of drug-related cues. Unfortunately, heightened incentive salience and motivational bias in response to drug-related cues may exist following abstinence from heroin use. The present study aimed to examine the effect of drug-related cues on response inhibition in long-term heroin abstainers. Sixteen long-term (8-24 months) male heroin abstainers and 16 male healthy controls completed a modified two-choice oddball paradigm, in which a neutral "chair" picture served as frequent standard stimuli; the neutral and drug-related pictures served as infrequent deviant stimuli of different conditions respectively. Event-related potentials were compared across groups and conditions. Our results showed that heroin abstainers exhibited smaller N2d amplitude (deviant minus standard) in the drug cue condition compared to the neutral condition, due to smaller drug-cue deviant-N2 amplitude compared to neutral deviant-N2. Moreover, heroin abstainers had smaller N2d amplitude compared with the healthy controls in the drug cue condition, due to the heroin abstainers having reduced deviant-N2 amplitude compared to standard-N2 in the drug cue condition, which reversed in the healthy controls. Our findings suggested that heroin addicts still show response inhibition deficits specifically for drug-related cues after longer-term abstinence. The inhibition-related N2 modulation for drug-related could be used as a novel electrophysiological index with clinical implications for assessing the risk of relapse and treatment outcome for heroin users.
Shibasaki, Manabu; Namba, Mari; Oshiro, Misaki; Crandall, Craig G; Nakata, Hiroki
2016-07-01
The effect of hyperthermia on cognitive function remains equivocal, perhaps because of methodological discrepancy. Using electroencephalographic event-related potentials (ERPs), we tested the hypothesis that a passive heat stress impairs cognitive processing. Thirteen volunteers performed repeated auditory oddball paradigms under two thermal conditions, normothermic time control and heat stress, on different days. For the heat stress trial, these paradigms were performed at preheat stress (i.e., normothermic) baseline, when esophageal temperature had increased by ∼0.8°C, when esophageal temperature had increased by ∼2.0°C, and during cooling following the heat stress. The reaction time and ERPs were recorded in each session. For the time control trial, subjects performed the auditory oddball paradigms at approximately the same time interval as they did in the heat stress trial. The peak latency and amplitude of an indicator of auditory processing (N100) were not altered regardless of thermal conditions. An indicator of stimulus classification/evaluation time (latency of P300) and the reaction time were shortened during heat stress; moreover an indicator of cognitive processing (the amplitude of P300) was significantly reduced during severe heat stress (8.3 ± 1.3 μV) relative to the baseline (12.2 ± 1.0 μV, P < 0.01). No changes in these indexes occurred during the time control trial. During subsequent whole body cooling, the amplitude of P300 remained reduced, and the reaction time and latency of P300 remained shortened. These results suggest that excessive elevations in internal temperature reduce cognitive processing but promote classification time. Copyright © 2016 the American Physiological Society.
Controlling the spotlight of attention: visual span size and flexibility in schizophrenia.
Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M
2011-10-01
The current study investigated the size and flexible control of visual span among patients with schizophrenia during visual search performance. Visual span is the region of the visual field from which one extracts information during a single eye fixation, and a larger visual span size is linked to more efficient search performance. Therefore, a reduced visual span may explain patients' impaired performance on search tasks. The gaze-contingent moving window paradigm was used to estimate the visual span size of patients and healthy participants while they performed two different search tasks. In addition, changes in visual span size were measured as a function of two manipulations of task difficulty: target-distractor similarity and stimulus familiarity. Patients with schizophrenia searched more slowly across both tasks and conditions. Patients also demonstrated smaller visual span sizes on the easier search condition in each task. Moreover, healthy controls' visual span size increased as target discriminability or distractor familiarity increased. This modulation of visual span size, however, was reduced or not observed among patients. The implications of the present findings, with regard to previously reported visual search deficits, and other functional and structural abnormalities associated with schizophrenia, are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Observers' cognitive states modulate how visual inputs relate to gaze control.
Kardan, Omid; Henderson, John M; Yourganov, Grigori; Berman, Marc G
2016-09-01
Previous research has shown that eye-movements change depending on both the visual features of our environment, and the viewer's top-down knowledge. One important question that is unclear is the degree to which the visual goals of the viewer modulate how visual features of scenes guide eye-movements. Here, we propose a systematic framework to investigate this question. In our study, participants performed 3 different visual tasks on 135 scenes: search, memorization, and aesthetic judgment, while their eye-movements were tracked. Canonical correlation analyses showed that eye-movements were reliably more related to low-level visual features at fixations during the visual search task compared to the aesthetic judgment and scene memorization tasks. Different visual features also had different relevance to eye-movements between tasks. This modulation of the relationship between visual features and eye-movements by task was also demonstrated with classification analyses, where classifiers were trained to predict the viewing task based on eye movements and visual features at fixations. Feature loadings showed that the visual features at fixations could signal task differences independent of temporal and spatial properties of eye-movements. When classifying across participants, edge density and saliency at fixations were as important as eye-movements in the successful prediction of task, with entropy and hue also being significant, but with smaller effect sizes. When classifying within participants, brightness and saturation were also significant contributors. Canonical correlation and classification results, together with a test of moderation versus mediation, suggest that the cognitive state of the observer moderates the relationship between stimulus-driven visual features and eye-movements. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Task set induces dynamic reallocation of resources in visual short-term memory.
Sheremata, Summer L; Shomstein, Sarah
2017-08-01
Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field.
Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.
Gabbard, Carl; Ammar, Diala; Cordova, Alberto
2009-01-01
We examined the distinctiveness of motor imagery (MI) and visual imagery (VI) in the context of perceived reachability. The aim was to explore the notion that the two visual modes have distinctive processing properties tied to the two-visual-system hypothesis. The experiment included an interference tactic whereby participants completed two tasks at the same time: a visual or motor-interference task combined with a MI or VI-reaching task. We expected increased error would occur when the imaged task and the interference task were matched (e.g., MI with the motor task), suggesting an association based on the assumption that the two tasks were in competition for space on the same processing pathway. Alternatively, if there were no differences, dissociation could be inferred. Significant increases in the number of errors were found when the modalities for the imaged (both MI and VI) task and the interference task were matched. Therefore, it appears that MI and VI in the context of perceived reachability recruit different processing mechanisms.
Multitasking During Degraded Speech Recognition in School-Age Children
Ward, Kristina M.; Brehm, Laurel
2017-01-01
Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children’s multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unprocessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children’s accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children’s dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children’s proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition. PMID:28105890
Multitasking During Degraded Speech Recognition in School-Age Children.
Grieco-Calub, Tina M; Ward, Kristina M; Brehm, Laurel
2017-01-01
Multitasking requires individuals to allocate their cognitive resources across different tasks. The purpose of the current study was to assess school-age children's multitasking abilities during degraded speech recognition. Children (8 to 12 years old) completed a dual-task paradigm including a sentence recognition (primary) task containing speech that was either unprocessed or noise-band vocoded with 8, 6, or 4 spectral channels and a visual monitoring (secondary) task. Children's accuracy and reaction time on the visual monitoring task was quantified during the dual-task paradigm in each condition of the primary task and compared with single-task performance. Children experienced dual-task costs in the 6- and 4-channel conditions of the primary speech recognition task with decreased accuracy on the visual monitoring task relative to baseline performance. In all conditions, children's dual-task performance on the visual monitoring task was strongly predicted by their single-task (baseline) performance on the task. Results suggest that children's proficiency with the secondary task contributes to the magnitude of dual-task costs while multitasking during degraded speech recognition.
Carpentier, Sarah M.; Moreno, Sylvain; McIntosh, Anthony R.
2016-01-01
Musical training is frequently associated with benefits to linguistic abilities, and recent focus has been placed on possible benefits of bilingualism to lifelong executive functions; however, the neural mechanisms for such effects are unclear. The aim of this study was to gain better understanding of the whole-brain functional effects of music and second-language training that could support such previously observed cognitive transfer effects. We conducted a 28-day longitudinal study of monolingual English-speaking 4- to 6-year-old children randomly selected to receive daily music or French language training, excluding weekends. Children completed passive EEG music note and French vowel auditory oddball detection tasks before and after training. Brain signal complexity was measured on source waveforms at multiple temporal scales as an index of neural information processing and network communication load. Comparing pretraining with posttraining, musical training was associated with increased EEG complexity at coarse temporal scales during the music and French vowel tasks in widely distributed cortical regions. Conversely, very minimal decreases in complexity at fine scales and trends toward coarse-scale increases were displayed after French training during the tasks. Spectral analysis failed to distinguish between training types and found overall theta (3.5–7.5 Hz) power increases after all training forms, with spatially fewer decreases in power at higher frequencies (>10 Hz). These findings demonstrate that musical training increased diversity of brain network states to support domain-specific music skill acquisition and music-to-language transfer effects. PMID:27243611
Carpentier, Sarah M; Moreno, Sylvain; McIntosh, Anthony R
2016-10-01
Musical training is frequently associated with benefits to linguistic abilities, and recent focus has been placed on possible benefits of bilingualism to lifelong executive functions; however, the neural mechanisms for such effects are unclear. The aim of this study was to gain better understanding of the whole-brain functional effects of music and second-language training that could support such previously observed cognitive transfer effects. We conducted a 28-day longitudinal study of monolingual English-speaking 4- to 6-year-old children randomly selected to receive daily music or French language training, excluding weekends. Children completed passive EEG music note and French vowel auditory oddball detection tasks before and after training. Brain signal complexity was measured on source waveforms at multiple temporal scales as an index of neural information processing and network communication load. Comparing pretraining with posttraining, musical training was associated with increased EEG complexity at coarse temporal scales during the music and French vowel tasks in widely distributed cortical regions. Conversely, very minimal decreases in complexity at fine scales and trends toward coarse-scale increases were displayed after French training during the tasks. Spectral analysis failed to distinguish between training types and found overall theta (3.5-7.5 Hz) power increases after all training forms, with spatially fewer decreases in power at higher frequencies (>10 Hz). These findings demonstrate that musical training increased diversity of brain network states to support domain-specific music skill acquisition and music-to-language transfer effects.
Task-Driven Evaluation of Aggregation in Time Series Visualization
Albers, Danielle; Correll, Michael; Gleicher, Michael
2014-01-01
Many visualization tasks require the viewer to make judgments about aggregate properties of data. Recent work has shown that viewers can perform such tasks effectively, for example to efficiently compare the maximums or means over ranges of data. However, this work also shows that such effectiveness depends on the designs of the displays. In this paper, we explore this relationship between aggregation task and visualization design to provide guidance on matching tasks with designs. We combine prior results from perceptual science and graphical perception to suggest a set of design variables that influence performance on various aggregate comparison tasks. We describe how choices in these variables can lead to designs that are matched to particular tasks. We use these variables to assess a set of eight different designs, predicting how they will support a set of six aggregate time series comparison tasks. A crowd-sourced evaluation confirms these predictions. These results not only provide evidence for how the specific visualizations support various tasks, but also suggest using the identified design variables as a tool for designing visualizations well suited for various types of tasks. PMID:25343147
Surgical simulation tasks challenge visual working memory and visual-spatial ability differently.
Schlickum, Marcus; Hedman, Leif; Enochsson, Lars; Henningsohn, Lars; Kjellin, Ann; Felländer-Tsai, Li
2011-04-01
New strategies for selection and training of physicians are emerging. Previous studies have demonstrated a correlation between visual-spatial ability and visual working memory with surgical simulator performance. The aim of this study was to perform a detailed analysis on how these abilities are associated with metrics in simulator performance with different task content. The hypothesis is that the importance of visual-spatial ability and visual working memory varies with different task contents. Twenty-five medical students participated in the study that involved testing visual-spatial ability using the MRT-A test and visual working memory using the RoboMemo computer program. Subjects were also trained and tested for performance in three different surgical simulators. The scores from the psychometric tests and the performance metrics were then correlated using multivariate analysis. MRT-A score correlated significantly with the performance metrics Efficiency of screening (p = 0.006) and Total time (p = 0.01) in the GI Mentor II task and Total score (p = 0.02) in the MIST-VR simulator task. In the Uro Mentor task, both the MRT-A score and the visual working memory 3-D cube test score as presented in the RoboMemo program (p = 0.02) correlated with Total score (p = 0.004). In this study we have shown that some differences exist regarding the impact of visual abilities and task content on simulator performance. When designing future cognitive training programs and testing regimes, one might have to consider that the design must be adjusted in accordance with the specific surgical task to be trained in mind.
Beurskens, Rainer; Bock, Otmar
2013-12-01
Previous literature suggests that age-related deficits of dual-task walking are particularly pronounced with second tasks that require continuous visual processing. Here we evaluate whether the difficulty of the walking task matters as well. To this end, participants were asked to walk along a straight pathway of 20m length in four different walking conditions: (a) wide path and preferred pace; (b) narrow path and preferred pace, (c) wide path and fast pace, (d) obstacled wide path and preferred pace. Each condition was performed concurrently with a task requiring visual processing or fine motor control, and all tasks were also performed alone which allowed us to calculate the dual-task costs (DTC). Results showed that the age-related increase of DTC is substantially larger with the visually demanding than with the motor-demanding task, more so when walking on a narrow or obstacled path. We attribute these observations to the fact that visual scanning of the environment becomes more crucial when walking in difficult terrains: the higher visual demand of those conditions accentuates the age-related deficits in coordinating them with a visual non-walking task. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.
2016-01-01
Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630
Visual scanning behavior and pilot workload
NASA Technical Reports Server (NTRS)
Harris, R. L., Sr.; Tole, J. R.; Stephens, A. T.; Ephrath, A. R.
1982-01-01
This paper describes an experimental paradigm and a set of results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary with the difficulty of a verbal mental loading task. The average dwell time of each fixation on the pilot's primary instrument increased with the estimated skill level of the pilots, with novices being affected by the loading task much more than experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.
Statistical learning of multisensory regularities is enhanced in musicians: An MEG study.
Paraskevopoulos, Evangelos; Chalas, Nikolas; Kartsidis, Panagiotis; Wollbrink, Andreas; Bamidis, Panagiotis
2018-07-15
The present study used magnetoencephalography (MEG) to identify the neural correlates of audiovisual statistical learning, while disentangling the differential contributions of uni- and multi-modal statistical mismatch responses in humans. The applied paradigm was based on a combination of a statistical learning paradigm and a multisensory oddball one, combining an audiovisual, an auditory and a visual stimulation stream, along with the corresponding deviances. Plasticity effects due to musical expertise were investigated by comparing the behavioral and MEG responses of musicians to non-musicians. The behavioral results indicated that the learning was successful for both musicians and non-musicians. The unimodal MEG responses are consistent with previous studies, revealing the contribution of Heschl's gyrus for the identification of auditory statistical mismatches and the contribution of medial temporal and visual association areas for the visual modality. The cortical network underlying audiovisual statistical learning was found to be partly common and partly distinct from the corresponding unimodal networks, comprising right temporal and left inferior frontal sources. Musicians showed enhanced activation in superior temporal and superior frontal gyrus. Connectivity and information processing flow amongst the sources comprising the cortical network of audiovisual statistical learning, as estimated by transfer entropy, was reorganized in musicians, indicating enhanced top-down processing. This neuroplastic effect showed a cross-modal stability between the auditory and audiovisual modalities. Copyright © 2018 Elsevier Inc. All rights reserved.
Portella, Claudio; Machado, Sergio; Arias-Carrión, Oscar; Sack, Alexander T.; Silva, Julio Guilherme; Orsini, Marco; Leite, Marco Antonio Araujo; Silva, Adriana Cardoso; Nardi, Antonio E.; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro
2012-01-01
The brain is capable of elaborating and executing different stages of information processing. However, exactly how these stages are processed in the brain remains largely unknown. This study aimed to analyze the possible correlation between early and late stages of information processing by assessing the latency to, and amplitude of, early and late event-related potential (ERP) components, including P200, N200, premotor potential (PMP) and P300, in healthy participants in the context of a visual oddball paradigm. We found a moderate positive correlation among the latency of P200 (electrode O2), N200 (electrode O2), PMP (electrode C3), P300 (electrode PZ) and the reaction time (RT). In addition, moderate negative correlation between the amplitude of P200 and the latencies of N200 (electrode O2), PMP (electrode C3), P300 (electrode PZ) was found. Therefore, we propose that if the secondary processing of visual input (P200 latency) occurs faster, the following will also happen sooner: discrimination and classification process of this input (N200 latency), motor response processing (PMP latency), reorganization of attention and working memory update (P300 latency), and RT. N200, PMP, and P300 latencies are also anticipated when higher activation level of occipital areas involved in the secondary processing of visual input rise (P200 amplitude). PMID:23355929
Advanced Video Activity Analytics (AVAA): Human Factors Evaluation
2015-05-01
video, and 3) creating and saving annotations (Fig. 11). (The logging program was updated after the pilot to also capture search clicks.) Playing and... visual search task and the auditory task together and thus automatically focused on the visual task. Alternatively, the operator may have intentionally...affect performance on the primary task; however, in the current test there was no apparent effect on the operator’s performance in the visual search task
Boyle, Gregory J; Neumann, David L; Furedy, John J; Westbury, H Rae
2010-04-01
This paper reports sex differences in cognitive task performance that emerged when 39 Australian university undergraduates (19 men, 20 women) were asked to solve verbal (lexical) and visual-spatial cognitive matching tasks which varied in difficulty and visual field of presentation. Sex significantly interacted with task type, task difficulty, laterality, and changes in performance across trials. The results revealed that the significant individual-differences' variable of sex does not always emerge as a significant main effect, but instead in terms of significant interactions with other variables manipulated experimentally. Our results show that sex differences must be taken into account when conducting experiments into human cognitive-task performance.
Lu, Sara A; Wickens, Christopher D; Prinet, Julie C; Hutchins, Shaun D; Sarter, Nadine; Sebok, Angelia
2013-08-01
The aim of this study was to integrate empirical data showing the effects of interrupting task modality on the performance of an ongoing visual-manual task and the interrupting task itself. The goal is to support interruption management and the design of multimodal interfaces. Multimodal interfaces have been proposed as a promising means to support interruption management.To ensure the effectiveness of this approach, their design needs to be based on an analysis of empirical data concerning the effectiveness of individual and redundant channels of information presentation. Three meta-analyses were conducted to contrast performance on an ongoing visual task and interrupting tasks as a function of interrupting task modality (auditory vs. tactile, auditory vs. visual, and single modality vs. redundant auditory-visual). In total, 68 studies were included and six moderator variables were considered. The main findings from the meta-analyses are that response times are faster for tactile interrupting tasks in case of low-urgency messages.Accuracy is higher with tactile interrupting tasks for low-complexity signals but higher with auditory interrupting tasks for high-complexity signals. Redundant auditory-visual combinations are preferable for communication tasks during high workload and with a small visual angle of separation. The three meta-analyses contribute to the knowledge base in multimodal information processing and design. They highlight the importance of moderator variables in predicting the effects of interruption task modality on ongoing and interrupting task performance. The findings from this research will help inform the design of multimodal interfaces in data-rich, event-driven domains.
A design space of visualization tasks.
Schulz, Hans-Jörg; Nocke, Thomas; Heitzler, Magnus; Schumann, Heidrun
2013-12-01
Knowledge about visualization tasks plays an important role in choosing or building suitable visual representations to pursue them. Yet, tasks are a multi-faceted concept and it is thus not surprising that the many existing task taxonomies and models all describe different aspects of tasks, depending on what these task descriptions aim to capture. This results in a clear need to bring these different aspects together under the common hood of a general design space of visualization tasks, which we propose in this paper. Our design space consists of five design dimensions that characterize the main aspects of tasks and that have so far been distributed across different task descriptions. We exemplify its concrete use by applying our design space in the domain of climate impact research. To this end, we propose interfaces to our design space for different user roles (developers, authors, and end users) that allow users of different levels of expertise to work with it.
ERIC Educational Resources Information Center
Liu, Duo; Chen, Xi; Chung, Kevin K. H.
2015-01-01
This study examined the relation between the performance in a visual search task and reading ability in 92 third-grade Hong Kong Chinese children. The visual search task, which is considered a measure of visual-spatial attention, accounted for unique variance in Chinese character reading after controlling for age, nonverbal intelligence,…
ERIC Educational Resources Information Center
Soemer, Alexander; Schwan, Stephan
2016-01-01
In a series of experiments, we tested a recently proposed hypothesis stating that the degree of alignment between the form of a mental representation resulting from learning with a particular visualization format and the specific requirements of a learning task determines learning performance (task-appropriateness). Groups of participants were…
Influence of social presence on eye movements in visual search tasks.
Liu, Na; Yu, Ruifeng
2017-12-01
This study employed an eye-tracking technique to investigate the influence of social presence on eye movements in visual search tasks. A total of 20 male subjects performed visual search tasks in a 2 (target presence: present vs. absent) × 2 (task complexity: complex vs. simple) × 2 (social presence: alone vs. a human audience) within-subject experiment. Results indicated that the presence of an audience could evoke a social facilitation effect on response time in visual search tasks. Compared with working alone, the participants made fewer and shorter fixations, larger saccades and shorter scan path in simple search tasks and more and longer fixations, smaller saccades and longer scan path in complex search tasks when working with an audience. The saccade velocity and pupil diameter in the audience-present condition were larger than those in the working-alone condition. No significant change in target fixation number was observed between two social presence conditions. Practitioner Summary: This study employed an eye-tracking technique to examine the influence of social presence on eye movements in visual search tasks. Results clarified the variation mechanism and characteristics of oculomotor scanning induced by social presence in visual search.
Attention effects on the processing of task-relevant and task-irrelevant speech sounds and letters
Mittag, Maria; Inauri, Karina; Huovilainen, Tatu; Leminen, Miika; Salo, Emma; Rinne, Teemu; Kujala, Teija; Alho, Kimmo
2013-01-01
We used event-related brain potentials (ERPs) to study effects of selective attention on the processing of attended and unattended spoken syllables and letters. Participants were presented with syllables randomly occurring in the left or right ear and spoken by different voices and with a concurrent foveal stream of consonant letters written in darker or lighter fonts. During auditory phonological (AP) and non-phonological tasks, they responded to syllables in a designated ear starting with a vowel and spoken by female voices, respectively. These syllables occurred infrequently among standard syllables starting with a consonant and spoken by male voices. During visual phonological and non-phonological tasks, they responded to consonant letters with names starting with a vowel and to letters written in dark fonts, respectively. These letters occurred infrequently among standard letters with names starting with a consonant and written in light fonts. To examine genuine effects of attention and task on ERPs not overlapped by ERPs associated with target processing or deviance detection, these effects were studied only in ERPs to auditory and visual standards. During selective listening to syllables in a designated ear, ERPs to the attended syllables were negatively displaced during both phonological and non-phonological auditory tasks. Selective attention to letters elicited an early negative displacement and a subsequent positive displacement (Pd) of ERPs to attended letters being larger during the visual phonological than non-phonological task suggesting a higher demand for attention during the visual phonological task. Active suppression of unattended speech during the AP and non-phonological tasks and during the visual phonological tasks was suggested by a rejection positivity (RP) to unattended syllables. We also found evidence for suppression of the processing of task-irrelevant visual stimuli in visual ERPs during auditory tasks involving left-ear syllables. PMID:24348324
Method matters: Systematic effects of testing procedure on visual working memory sensitivity
Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.
2010-01-01
Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This study presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the testing procedure, supporting the idea that representations in visual WM are susceptible to interference from testing. In this study, participants were shown an array of colors to remember. After a short retention interval, memory for one of the items was tested with either a same-different task or a 2-alternative-forced-choice (2AFC) task. Memory sensitivity was much lower in the 2AFC task than in the same-different task. This difference was found regardless of encoding similarity or whether visual WM required a fine memory resolution or a coarse resolution. The 2AFC disadvantage was reduced when participants were informed shortly before testing which item would be probed. The 2AFC disadvantage diminished in perceptual tasks and was not found in tasks probing visual long-term memory. These results support memory models that acknowledge the labile nature of visual WM, and have implications for the format of visual WM and its assessment. PMID:20854011
Bokde, Arun L W; Karmann, Michaela; Teipel, Stefan J; Born, Christine; Lieb, Martin; Reiser, Maximilian F; Möller, Hans-Jürgen; Hampel, Harald
2009-04-01
Visual perception has been shown to be altered in Alzheimer disease (AD) patients, and it is associated with decreased cognitive function. Galantamine is an active cholinergic agent, which has been shown to lead to improved cognition in mild to moderate AD patients. This study examined brain activation in a group of mild AD patients after a 3-month open-label treatment with galantamine. The objective was to examine the changes in brain activation due to treatment. There were 2 tasks to visual perception. The first task was a face-matching task to test the activation along the ventral visual pathway, and the second task was a location-matching task to test neuronal function along the dorsal pathway. Brain activation was measured using functional magnetic resonance imaging. There were 5 mild AD patients in the study. There were no differences in the task performance and in the cognitive scores of the Consortium to Establish a Registry for Alzheimer's Disease battery before and after treatment. In the location-matching task, we found a statistically significant decrease in activation along the dorsal visual pathway after galantamine treatment. A previous study found that AD patients had higher activation in the location-matching task compared with healthy controls. There were no differences in activation for the face-matching task after treatment. Our data indicate that treatment with galantamine leads to more efficient visual processing of stimuli or changes the compensatory mechanism in the AD patients. A visual perception task recruiting the dorsal visual system may be useful as a biomarker of treatment effects.
Enhanced sensitivity to rare, emotion-irrelevant stimuli in females: neural correlates.
Yuan, J J; Yang, J M; Chen, J; Meng, X X; Li, H
2010-09-15
Numerous studies showed enhanced sensitivity of females to emotional stimuli relative to males using multiple tasks. However, in the present study, two event-related potential (ERP) experiments targeting the impact of gender on rare stimulus processing both showed enhanced sensitivity of females to rare stimulus that is neutral, irrelevant to emotion. Subjects were required to press different keys for standard and rare pictures in Experiment 1, and to do nothing but to passively view the pictures in Experiment 2. Rare pictures elicited more intense pop-out effects in females, at both neuroelectrical (multiple levels of ERP analyses) and behavioral (response latencies and pop-out assessment) levels across experiments. Thus, females are equipped with enhanced sensitivity to rare, emotion-irrelevant stimuli relative to males, probably as a result of evolutionary adaptation. This effect is ought to be considered in studies that use an oddball paradigm. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.
Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael
2015-01-01
Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.
Habeych, Miguel E; Sclabassi, Robert J; Charles, Prophete J; Kirisci, Levent; Tarter, Ralph E
2005-06-01
The P300 amplitude of the event-related potential as a mediator of the association between parental substance use disorder (SUD) and child's neurobehavioral disinhibition was assessed. The P300 amplitude was recorded using an oddball task in sons of fathers having either lifetime SUD (n = 105) or no psychiatric disorder (n = 160). Neurobehavioral disinhibition was assessed using measures of affect regulation, behavior control, and executive cognitive function. Parental SUD and child's P300 amplitude accounted for, respectively, 16.6% and 16.8% of neurobehavioral disinhibition variance. Controlling for parental and child psychopathology, an association between parental SUD and child's P300 amplitude was not observed. It was concluded that the P300 amplitude does not mediate the association between parental SUD and child's neurobehavioral disinhibition. Copyright 2005 APA, all rights reserved.
Donkers, Franc C.L.; Schipul, Sarah E.; Baranek, Grace T.; Cleary, Katherine M.; Willoughby, Michael T.; Evans, Anna M.; Bulluck, John C.; Lovmo, Jeanne E.; Belger, Aysenil
2015-01-01
Neurobiological underpinnings of unusual sensory features in individuals with autism are unknown. Event-related potentials (ERPs) elicited by task-irrelevant sounds were used to elucidate neural correlates of auditory processing and associations with three common sensory response patterns (hyperresponsiveness; hyporesponsiveness; sensory seeking). Twenty-eight children with autism and 39 typically developing children (4–12 year-olds) completed an auditory oddball paradigm. Results revealed marginally attenuated P1 and N2 to standard tones and attenuated P3a to novel sounds in autism versus controls. Exploratory analyses suggested that within the autism group, attenuated N2 and P3a amplitudes were associated with greater sensory seeking behaviors for specific ranges of P1 responses. Findings suggest that attenuated early sensory as well as later attention-orienting neural responses to stimuli may underlie selective sensory features via complex mechanisms. PMID:24072639
P3 event-related potentials and childhood maltreatment in successful and unsuccessful psychopaths
Gao, Yu; Raine, Adrian; Schug, Robert A.
2011-01-01
Although P3 event-related potential abnormalities have been found in psychopathic individuals, it is unknown whether successful (uncaught) psychopaths and unsuccessful (caught) psychopaths show similar deficits. In this study, P3 amplitude and latency were assessed from a community sample of 121 male adults using an auditory three-stimulus oddball task. Psychopathy was assessed using the Psychopathy Checklist-Revised (Hare, 2003) while childhood physical maltreatment was assessed using the Conflict Tactic Scale (Strauss, 1979). Results revealed that compared to normal controls, unsuccessful psychopaths showed reduced parietal P3 amplitudes to target stimuli and reported experienced more physical abuse in childhood. In contrast, successful psychopaths exhibited larger parietal P3 amplitude and shorter frontal P3 latency to irrelevant nontarget stimuli than unsuccessful psychopaths. This is the first report of electrophysiological processing differences between successful and unsuccessful psychopaths, possibly indicating neurocognitive and psychosocial distinctions between these two subtypes of psychopathy. PMID:21820788
Attention modulates the dorsal striatum response to love stimuli.
Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H
2014-02-01
In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. Copyright © 2012 Wiley Periodicals, Inc.
Visual scanning behavior and pilot workload
NASA Technical Reports Server (NTRS)
Harris, R. L., Sr.; Tole, J. R.; Stephens, A. T.; Ephrath, A. R.
1981-01-01
An experimental paradigm and a set of results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary as a function of the level of difficulty of a verbal mental loading task. The average dwell time of each fixation on the pilot's primary instrument increased as a function of the estimated skill level of the pilots, with novices being affected by the loading task much more than the experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.
Task-relevant perceptual features can define categories in visual memory too.
Antonelli, Karla B; Williams, Carrick C
2017-11-01
Although Konkle, Brady, Alvarez, and Oliva (2010, Journal of Experimental Psychology: General, 139(3), 558) claim that visual long-term memory (VLTM) is organized on underlying conceptual, not perceptual, information, visual memory results from visual search tasks are not well explained by this theory. We hypothesized that when viewing an object, any task-relevant visual information is critical to the organizational structure of VLTM. In two experiments, we examined the organization of VLTM by measuring the amount of retroactive interference created by objects possessing different combinations of task-relevant features. Based on task instructions, only the conceptual category was task relevant or both the conceptual category and a perceptual object feature were task relevant. Findings indicated that when made task relevant, perceptual object feature information, along with conceptual category information, could affect memory organization for objects in VLTM. However, when perceptual object feature information was task irrelevant, it did not contribute to memory organization; instead, memory defaulted to being organized around conceptual category information. These findings support the theory that a task-defined organizational structure is created in VLTM based on the relevance of particular object features and information.
EEG source analysis of data from paralysed subjects
NASA Astrophysics Data System (ADS)
Carabali, Carmen A.; Willoughby, John O.; Fitzgibbon, Sean P.; Grummett, Tyler; Lewis, Trent; DeLosAngeles, Dylan; Pope, Kenneth J.
2015-12-01
One of the limitations of Encephalography (EEG) data is its quality, as it is usually contaminated with electric signal from muscle. This research intends to study results of two EEG source analysis methods applied to scalp recordings taken in paralysis and in normal conditions during the performance of a cognitive task. The aim is to determinate which types of analysis are appropriate for dealing with EEG data containing myogenic components. The data used are the scalp recordings of six subjects in normal conditions and during paralysis while performing different cognitive tasks including the oddball task which is the object of this research. The data were pre-processed by filtering it and correcting artefact, then, epochs of one second long for targets and distractors were extracted. Distributed source analysis was performed in BESA Research 6.0, using its results and information from the literature, 9 ideal locations for source dipoles were identified. The nine dipoles were used to perform discrete source analysis, fitting them to the averaged epochs for obtaining source waveforms. The results were statistically analysed comparing the outcomes before and after the subjects were paralysed. Finally, frequency analysis was performed for better explain the results. The findings were that distributed source analysis could produce confounded results for EEG contaminated with myogenic signals, conversely, statistical analysis of the results from discrete source analysis showed that this method could help for dealing with EEG data contaminated with muscle electrical signal.
Münte, Thomas F; Joppich, Gregor; Däuper, Jan; Schrader, Christoph; Dengler, Reinhard; Heldmann, Marcus
2015-01-01
The generation of random sequences is considered to tax executive functions and has been reported to be impaired in Parkinson's disease (PD) previously. To assess the neurophysiological markers of random number generation in PD. Event-related potentials (ERP) were recorded in 12 PD patients and 12 age-matched normal controls (NC) while either engaging in random number generation (RNG) by pressing the number keys on a computer keyboard in a random sequence or in ordered number generation (ONG) necessitating key presses in the canonical order. Key presses were paced by an external auditory stimulus at a rate of 1 tone every 1800 ms. As a secondary task subjects had to monitor the tone-sequence for a particular target tone to which the number "0" key had to be pressed. This target tone occurred randomly and infrequently, thus creating a secondary oddball task. Behaviorally, PD patients showed an increased tendency to count in steps of one as well as a tendency towards repetition avoidance. Electrophysiologically, the amplitude of the P3 component of the ERP to the target tone of the secondary task was reduced during RNG in PD but not in NC. The behavioral findings indicate less random behavior in PD while the ERP findings suggest that this impairment comes about, because attentional resources are depleted in PD.
Prolongation of ERP latency and reaction time (RT) in simultaneous EEG/fMRI data acquisition.
Chun, Jinsoo; Peltier, Scott J; Yoon, Daehyun; Manschreck, Theo C; Deldin, Patricia J
2016-08-01
Recording EEG and fMRI data simultaneously inside a fully-operating scanner has been recognized as a novel approach in human brain research. Studies have demonstrated high concordance between the EEG signals and hemodynamic response. However, a few studies reported altered cognitive process inside the fMRI scanner such as delayed reaction time (RT) and reduced and/or delayed N100 and P300 event-related brain potential (ERP) components. The present study investigated the influence of electromagnetic field (static magnetic field, radio frequency (RF) pulse, and gradient switching) and experimental environment on posterior N100 and P300 ERP components in four different settings with six healthy subjects using a visual oddball task: (1) classic fMRI acquisition inside the scanner (e.g., supine position, mirror glasses for stimulus presentation), (2) standard behavioral experiment outside the scanner (e.g., seated position, keyboard response), (3) controlled fMRI acquisition inside the scanner (e.g., organic light-emitting diode (OLED) goggles for stimulus presentation) inside; and (4) modified behavioral experiment outside the scanner (e.g., supine position, OLED goggles). The study findings indicated that the experimental environment in simultaneous EEG/fMRI acquisition could substantially delay N1P, P300 latency, and RT inside the scanner, and was associated with a reduced N1P amplitude. There was no effect of electromagnetic field in the prolongation of RT, N1P and P300 latency inside the scanner. N1P, but not P300, latency was sensitive to stimulus presentation method inside the scanner. Future simultaneous EEG/fMRI data collection should consider experimental environment in both design and analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Retest reliability of individual alpha ERD topography assessed by human electroencephalography.
Vázquez-Marrufo, Manuel; Galvao-Carmona, Alejandro; Benítez Lugo, María Luisa; Ruíz-Peña, Juan Luis; Borges Guerra, Mónica; Izquierdo Ayuso, Guillermo
2017-01-01
Despite the immense literature related to diverse human electroencephalographic (EEG) parameters, very few studies have focused on the reliability of these measures. Some of the most studied components (i.e., P3 or MMN) have received more attention regarding the stability of their main parameters, such as latency, amplitude or topography. However, spectral modulations have not been as extensively evaluated considering that different analysis methods are available. The main aim of the present study is to assess the reliability of the latency, amplitude and topography of event-related desynchronization (ERD) for the alpha band (10-14 Hz) observed in a cognitive task (visual oddball). Topography reliability was analysed at different levels (for the group, within-subjects individually and between-subjects individually). The latency for alpha ERD showed stable behaviour between two sessions, and the amplitude exhibited an increment (more negative) in the second session. Alpha ERD topography exhibited a high correlation score between sessions at the group level (r = 0.903, p<0.001). The mean value for within-subject correlations was 0.750 (with a range from 0.391 to 0.954). Regarding between-subject topography comparisons, some subjects showed a highly specific topography, whereas other subjects showed topographies that were more similar to those of other subjects. ERD was mainly stable between the two sessions with the exception of amplitude, which exhibited an increment in the second session. Topography exhibits excellent reliability at the group level; however, it exhibits highly heterogeneous behaviour at the individual level. Considering that the P3 was previously evaluated for this group of subjects, a direct comparison of the correlation scores was possible, and it showed that the ERD component is less reliable in individual topography than in the ERP component (P3).
Retest reliability of individual alpha ERD topography assessed by human electroencephalography
Vázquez-Marrufo, Manuel; Benítez Lugo, María Luisa; Ruíz-Peña, Juan Luis; Borges Guerra, Mónica; Izquierdo Ayuso, Guillermo
2017-01-01
Background Despite the immense literature related to diverse human electroencephalographic (EEG) parameters, very few studies have focused on the reliability of these measures. Some of the most studied components (i.e., P3 or MMN) have received more attention regarding the stability of their main parameters, such as latency, amplitude or topography. However, spectral modulations have not been as extensively evaluated considering that different analysis methods are available. The main aim of the present study is to assess the reliability of the latency, amplitude and topography of event-related desynchronization (ERD) for the alpha band (10–14 Hz) observed in a cognitive task (visual oddball). Topography reliability was analysed at different levels (for the group, within-subjects individually and between-subjects individually). Results The latency for alpha ERD showed stable behaviour between two sessions, and the amplitude exhibited an increment (more negative) in the second session. Alpha ERD topography exhibited a high correlation score between sessions at the group level (r = 0.903, p<0.001). The mean value for within-subject correlations was 0.750 (with a range from 0.391 to 0.954). Regarding between-subject topography comparisons, some subjects showed a highly specific topography, whereas other subjects showed topographies that were more similar to those of other subjects. Conclusion ERD was mainly stable between the two sessions with the exception of amplitude, which exhibited an increment in the second session. Topography exhibits excellent reliability at the group level; however, it exhibits highly heterogeneous behaviour at the individual level. Considering that the P3 was previously evaluated for this group of subjects, a direct comparison of the correlation scores was possible, and it showed that the ERD component is less reliable in individual topography than in the ERP component (P3). PMID:29088307
Task-set inertia and memory-consolidation bottleneck in dual tasks.
Koch, Iring; Rumiati, Raffaella I
2006-11-01
Three dual-task experiments examined the influence of processing a briefly presented visual object for deferred verbal report on performance in an unrelated auditory-manual reaction time (RT) task. RT was increased at short stimulus-onset asynchronies (SOAs) relative to long SOAs, showing that memory consolidation processes can produce a functional processing bottleneck in dual-task performance. In addition, the experiments manipulated the spatial compatibility of the orientation of the visual object and the side of the speeded manual response. This cross-task compatibility produced relative RT benefits only when the instruction for the visual task emphasized overlap at the level of response codes across the task sets (Experiment 1). However, once the effective task set was in place, it continued to produce cross-task compatibility effects even in single-task situations ("ignore" trials in Experiment 2) and when instructions for the visual task did not explicitly require spatial coding of object orientation (Experiment 3). Taken together, the data suggest a considerable degree of task-set inertia in dual-task performance, which is also reinforced by finding costs of switching task sequences (e.g., AC --> BC vs. BC --> BC) in Experiment 3.
Visual Search in ASD: Instructed Versus Spontaneous Local and Global Processing.
Van der Hallen, Ruth; Evers, Kris; Boets, Bart; Steyaert, Jean; Noens, Ilse; Wagemans, Johan
2016-09-01
Visual search has been used extensively to investigate differences in mid-level visual processing between individuals with ASD and TD individuals. The current study employed two visual search paradigms with Gaborized stimuli to assess the impact of task distractors (Experiment 1) and task instruction (Experiment 2) on local-global visual processing in ASD versus TD children. Experiment 1 revealed both groups to be equally sensitive to the absence or presence of a distractor, regardless of the type of target or type of distractor. Experiment 2 revealed a differential effect of task instruction for ASD compared to TD, regardless of the type of target. Taken together, these results stress the importance of task factors in the study of local-global visual processing in ASD.
Benefits of interhemispheric integration on the Japanese Kana script-matching tasks.
Yoshizaki, K; Tsuji, Y
2000-02-01
We tested Banich's hypothesis that the benefits of bihemispheric processing were enhanced as task complexity increased, when some procedural shortcomings in the previous studies were overcome by using Japanese Kana script-matching tasks. In Exp. 1, the 20 right-handed subjects were given the Physical-Identity task (Katakana-Katakana scripts matching) and the Name-Identity task (Katakana-Hiragana scripts matching). On both tasks, a pair of Kana scripts was tachistoscopically presented in the left, right, and bilateral visual fields. Distractor stimuli were also presented with target Kana scripts on both tasks to equate the processing load between the hemispheres. Analysis showed that, while a bilateral visual-field advantage was found on the name-identity task, a unilateral visual-field advantage was found on the physical-identity task, suggesting that, as the computational complexity of the encoding stage was enhanced, the benefits of bilateral hemispheric processing increased. In Exp. 2, the 16 right-handed subjects were given the same physical-identity task as in Exp. 1, except Hiragana scripts were used as distractors instead of digits to enhance task difficulty. Analysis showed no differences in performance between the unilateral and bilateral visual fields. Taking into account these results of physical-identity tasks for both Exps. 1 and 2, enhancing task demand in the stage of ignoring distractors made the unilateral visual-field advantage obtained in Exp. 1 disappear in Exp. 2. These results supported Banich's hypothesis.
Fengler, Ineke; Nava, Elena; Röder, Brigitte
2015-01-01
Several studies have suggested that neuroplasticity can be triggered by short-term visual deprivation in healthy adults. Specifically, these studies have provided evidence that visual deprivation reversibly affects basic perceptual abilities. The present study investigated the long-lasting effects of short-term visual deprivation on emotion perception. To this aim, we visually deprived a group of young healthy adults, age-matched with a group of non-deprived controls, for 3 h and tested them before and after visual deprivation (i.e., after 8 h on average and at 4 week follow-up) on an audio–visual (i.e., faces and voices) emotion discrimination task. To observe changes at the level of basic perceptual skills, we additionally employed a simple audio–visual (i.e., tone bursts and light flashes) discrimination task and two unimodal (one auditory and one visual) perceptual threshold measures. During the 3 h period, both groups performed a series of auditory tasks. To exclude the possibility that changes in emotion discrimination may emerge as a consequence of the exposure to auditory stimulation during the 3 h stay in the dark, we visually deprived an additional group of age-matched participants who concurrently performed unrelated (i.e., tactile) tasks to the later tested abilities. The two visually deprived groups showed enhanced affective prosodic discrimination abilities in the context of incongruent facial expressions following the period of visual deprivation; this effect was partially maintained until follow-up. By contrast, no changes were observed in affective facial expression discrimination and in the basic perception tasks in any group. These findings suggest that short-term visual deprivation per se triggers a reweighting of visual and auditory emotional cues, which seems to possibly prevail for longer durations. PMID:25954166
Psycho acoustical Measures in Individuals with Congenital Visual Impairment.
Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh
2017-12-01
In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.
Semantic and Visual Memory After Alcohol Abuse.
ERIC Educational Resources Information Center
Donat, Dennis C.
1986-01-01
Compared the relative performance of 40 patients with a history of alcohol abuse on tasks of short-term semantic and visual memory. Performance on the visual memory tasks was impaired significantly relative to the semantic memory task in a within-subjects analysis of variance. Semantic memory was unimpaired. (Author/ABB)
Visual scanning with or without spatial uncertainty and time-sharing performance
NASA Technical Reports Server (NTRS)
Liu, Yili; Wickens, Christopher D.
1989-01-01
An experiment is reported that examines the pattern of task interference between visual scanning as a sequential and selective attention process and other concurrent spatial or verbal processing tasks. A distinction is proposed between visual scanning with or without spatial uncertainty regarding the possible differential effects of these two types of scanning on interference with other concurrent processes. The experiment required the subject to perform a simulated primary tracking task, which was time-shared with a secondary spatial or verbal decision task. The relevant information that was needed to perform the decision tasks were displayed with or without spatial uncertainty. The experiment employed a 2 x 2 x 2 design with types of scanning (with or without spatial uncertainty), expected scanning distance (low/high), and codes of concurrent processing (spatial/verbal) as the three experimental factors. The results provide strong evidence that visual scanning as a spatial exploratory activity produces greater task interference with concurrent spatial tasks than with concurrent verbal tasks. Furthermore, spatial uncertainty in visual scanning is identified to be the crucial factor in producing this differential effect.
Effects of speech intelligibility level on concurrent visual task performance.
Payne, D G; Peters, L J; Birkmire, D P; Bonto, M A; Anastasi, J S; Wenger, M J
1994-09-01
Four experiments were performed to determine if changes in the level of speech intelligibility in an auditory task have an impact on performance in concurrent visual tasks. The auditory task used in each experiment was a memory search task in which subjects memorized a set of words and then decided whether auditorily presented probe items were members of the memorized set. The visual tasks used were an unstable tracking task, a spatial decision-making task, a mathematical reasoning task, and a probability monitoring task. Results showed that performance on the unstable tracking and probability monitoring tasks was unaffected by the level of speech intelligibility on the auditory task, whereas accuracy in the spatial decision-making and mathematical processing tasks was significantly worse at low speech intelligibility levels. The findings are interpreted within the framework of multiple resource theory.
A comparison of tracking with visual and kinesthetic-tactual displays
NASA Technical Reports Server (NTRS)
Jagacinski, R. J.; Flach, J. M.; Gilson, R. D.
1981-01-01
Recent research on manual tracking with a kinesthetic-tactual (KT) display suggests that under appropriate conditions it may be an effective means of providing visual workload relief. In order to better understand how KT tracking differs from visual tracking, both a critical tracking task and stationary single-axis tracking tasks were conducted with and without velocity quickening. On the critical tracking task, the visual displays were superior; however, the KT quickened display was approximately equal to the visual unquickened display. Mean squared error scores in the stationary tracking tasks for the visual and KT displays were approximately equal in the quickened conditions, and the describing functions were very similar. In the unquickened conditions, the visual display was superior. Subjects using the unquickened KT display exhibited a low frequency lead-lag that may be related to sensory adaptation.
Hassan, Auwal Bello; Begum, Tahamina; Reza, Mohammed Faruque; Yusoff, Nasir
2016-11-01
Previous studies have revealed that self-related tasks (items) receive more attention than non-self-related, and that they elicit event-related potential (ERP) components with larger amplitudes. Since personality has been reported as one of the biological correlates influencing these components, as well as our behavioural differences, it is important to examine how it affects our self-consciousness in relation to tasks of varied relevance and the neurological basis. A total of 33 male and female undergraduate Malaysian medical students of Universiti Sains Malaysia (USM) participated in the study. The participants were divided into two groups, Ambivert ( n = 18) and Extravert ( n = 15) groups, using the USM personality inventory questionnaire. In the ERP experiment, squares containing standard stimuli of any word other than self and non-self-related nouns (e.g., Bola , Gigi , Anak , etc.; in English: Ball, Teeth, Kids, etc., respectively), those containing self-related pronouns ( Saya , Kami or Kita ; in English: I, Us or We, respectively), and non-self-related pronouns ( Dia , Anda or Mereka ; in English: He/She, You or They, respectively), were shown 58%, 21% and 21% of the time, respectively, in a three-stimulus visual oddball paradigm. All words were presented in Bahasa Melayu. The participants were instructed to press 1 for self and 2 for non-self, and ignore standard stimuli. Comparison of both N200 and P300 amplitudes for self-related and non-self-related pronouns in the Extravert group revealed significant differences at seven electrode sites, with self-related having larger amplitude at anterior electrodes and less at posterior. This was not seen in the Ambivert group. The present study suggests that self-relevant pronouns are psychologically more important to extraverts than to ambiverts; hence, they have more self-awareness. This may be due to large amount of dopamine in the brains of extraverts, which is more concentrated in the frontal lobe.
Hassan, Auwal Bello; Begum, Tahamina; Reza, Mohammed Faruque; Yusoff, Nasir
2016-01-01
Background Previous studies have revealed that self-related tasks (items) receive more attention than non-self-related, and that they elicit event-related potential (ERP) components with larger amplitudes. Since personality has been reported as one of the biological correlates influencing these components, as well as our behavioural differences, it is important to examine how it affects our self-consciousness in relation to tasks of varied relevance and the neurological basis. Methods A total of 33 male and female undergraduate Malaysian medical students of Universiti Sains Malaysia (USM) participated in the study. The participants were divided into two groups, Ambivert (n = 18) and Extravert (n = 15) groups, using the USM personality inventory questionnaire. In the ERP experiment, squares containing standard stimuli of any word other than self and non-self-related nouns (e.g., Bola, Gigi, Anak, etc.; in English: Ball, Teeth, Kids, etc., respectively), those containing self-related pronouns (Saya, Kami or Kita; in English: I, Us or We, respectively), and non-self-related pronouns (Dia, Anda or Mereka; in English: He/She, You or They, respectively), were shown 58%, 21% and 21% of the time, respectively, in a three-stimulus visual oddball paradigm. All words were presented in Bahasa Melayu. The participants were instructed to press 1 for self and 2 for non-self, and ignore standard stimuli. Results Comparison of both N200 and P300 amplitudes for self-related and non-self-related pronouns in the Extravert group revealed significant differences at seven electrode sites, with self-related having larger amplitude at anterior electrodes and less at posterior. This was not seen in the Ambivert group. Conclusion The present study suggests that self-relevant pronouns are psychologically more important to extraverts than to ambiverts; hence, they have more self-awareness. This may be due to large amount of dopamine in the brains of extraverts, which is more concentrated in the frontal lobe. PMID:28090181
The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.
Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan
2013-09-01
Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm. © 2013 Elsevier Ltd. All rights reserved.
Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Visscher, Kristina M.
2015-01-01
Attention facilitates the processing of task-relevant visual information and suppresses interference from task-irrelevant information. Modulations of neural activity in visual cortex depend on attention, and likely result from signals originating in fronto-parietal and cingulo-opercular regions of cortex. Here, we tested the hypothesis that attentional facilitation of visual processing is accomplished in part by changes in how brain networks involved in attentional control interact with sectors of V1 that represent different retinal eccentricities. We measured the strength of background connectivity between fronto-parietal and cingulo-opercular regions with different eccentricity sectors in V1 using functional MRI data that were collected while participants performed tasks involving attention to either a centrally presented visual stimulus or a simultaneously presented auditory stimulus. We found that when the visual stimulus was attended, background connectivity between V1 and the left frontal eye fields (FEF), left intraparietal sulcus (IPS), and right IPS varied strongly across different eccentricity sectors in V1 so that foveal sectors were more strongly connected than peripheral sectors. This retinotopic gradient was weaker when the visual stimulus was ignored, indicating that it was driven by attentional effects. Greater task-driven differences between foveal and peripheral sectors in background connectivity to these regions were associated with better performance on the visual task and faster response times on correct trials. These findings are consistent with the notion that attention drives the configuration of task-specific functional pathways that enable the prioritized processing of task-relevant visual information, and show that the prioritization of visual information by attentional processes may be encoded in the retinotopic gradient of connectivty between V1 and fronto-parietal regions. PMID:26106320
Owsley, Cynthia
2013-09-20
Older adults commonly report difficulties in visual tasks of everyday living that involve visual clutter, secondary task demands, and time sensitive responses. These difficulties often cannot be attributed to visual sensory impairment. Techniques for measuring visual processing speed under divided attention conditions and among visual distractors have been developed and have established construct validity in that those older adults performing poorly in these tests are more likely to exhibit daily visual task performance problems. Research suggests that computer-based training exercises can increase visual processing speed in older adults and that these gains transfer to enhancement of health and functioning and a slowing in functional and health decline as people grow older. Copyright © 2012 Elsevier Ltd. All rights reserved.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374
Visual selective attention and reading efficiency are related in children.
Casco, C; Tressoldi, P E; Dellantonio, A
1998-09-01
We investigated the relationship between visual selective attention and linguistic performance. Subjects were classified in four categories according to their accuracy in a letter cancellation task involving selective attention. The task consisted in searching a target letter in a set of background letters and accuracy was measured as a function of set size. We found that children with the lowest performance in the cancellation task present a significantly slower reading rate and a higher number of reading visual errors than children with highest performance. Results also show that these groups of searchers present significant differences in a lexical search task whereas their performance did not differ in lexical decision and syllables control task. The relationship between letter search and reading, as well as the finding that poor readers-searchers perform poorly lexical search tasks also involving selective attention, suggest that the relationship between letter search and reading difficulty may reflect a deficit in a visual selective attention mechanisms which is involved in all these tasks. A deficit in visual attention can be linked to the problems that disabled readers present in the function of magnocellular stream which culminates in posterior parietal cortex, an area which plays an important role in guiding visual attention.
Tavakoli, Paniz; Campbell, Kenneth
2016-10-01
A rarely occurring and highly relevant auditory stimulus occurring outside of the current focus of attention can cause a switching of attention. Such attention capture is often studied in oddball paradigms consisting of a frequently occurring "standard" stimulus which is changed at odd times to form a "deviant". The deviant may result in the capturing of attention. An auditory ERP, the P3a, is often associated with this process. To collect a sufficient amount of data is however very time-consuming. A more multi-feature "optimal" paradigm has been proposed but it is not known if it is appropriate for the study of attention capture. An optimal paradigm was run in which 6 different rare deviants (p=.08) were separated by a standard stimulus (p=.50) and compared to results when 4 oddball paradigms were also run. A large P3a was elicited by some of the deviants in the optimal paradigm but not by others. However, very similar results were observed when separate oddball paradigms were run. The present study indicates that the optimal paradigm provides a very time-saving method to study attention capture and the P3a. Copyright © 2016 Elsevier B.V. All rights reserved.
Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela
2013-01-01
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Visual processing affects the neural basis of auditory discrimination.
Kislyuk, Daniel S; Möttönen, Riikka; Sams, Mikko
2008-12-01
The interaction between auditory and visual speech streams is a seamless and surprisingly effective process. An intriguing example is the "McGurk effect": The acoustic syllable /ba/ presented simultaneously with a mouth articulating /ga/ is typically heard as /da/ [McGurk, H., & MacDonald, J. Hearing lips and seeing voices. Nature, 264, 746-748, 1976]. Previous studies have demonstrated the interaction of auditory and visual streams at the auditory cortex level, but the importance of these interactions for the qualitative perception change remained unclear because the change could result from interactions at higher processing levels as well. In our electroencephalogram experiment, we combined the McGurk effect with mismatch negativity (MMN), a response that is elicited in the auditory cortex at a latency of 100-250 msec by any above-threshold change in a sequence of repetitive sounds. An "odd-ball" sequence of acoustic stimuli consisting of frequent /va/ syllables (standards) and infrequent /ba/ syllables (deviants) was presented to 11 participants. Deviant stimuli in the unisensory acoustic stimulus sequence elicited a typical MMN, reflecting discrimination of acoustic features in the auditory cortex. When the acoustic stimuli were dubbed onto a video of a mouth constantly articulating /va/, the deviant acoustic /ba/ was heard as /va/ due to the McGurk effect and was indistinguishable from the standards. Importantly, such deviants did not elicit MMN, indicating that the auditory cortex failed to discriminate between the acoustic stimuli. Our findings show that visual stream can qualitatively change the auditory percept at the auditory cortex level, profoundly influencing the auditory cortex mechanisms underlying early sound discrimination.
Finke, Mareike; Büchner, Andreas; Ruigendijk, Esther; Meyer, Martin; Sandmann, Pascale
2016-07-01
There is a high degree of variability in speech intelligibility outcomes across cochlear-implant (CI) users. To better understand how auditory cognition affects speech intelligibility with the CI, we performed an electroencephalography study in which we examined the relationship between central auditory processing, cognitive abilities, and speech intelligibility. Postlingually deafened CI users (N=13) and matched normal-hearing (NH) listeners (N=13) performed an oddball task with words presented in different background conditions (quiet, stationary noise, modulated noise). Participants had to categorize words as living (targets) or non-living entities (standards). We also assessed participants' working memory (WM) capacity and verbal abilities. For the oddball task, we found lower hit rates and prolonged response times in CI users when compared with NH listeners. Noise-related prolongation of the N1 amplitude was found for all participants. Further, we observed group-specific modulation effects of event-related potentials (ERPs) as a function of background noise. While NH listeners showed stronger noise-related modulation of the N1 latency, CI users revealed enhanced modulation effects of the N2/N4 latency. In general, higher-order processing (N2/N4, P3) was prolonged in CI users in all background conditions when compared with NH listeners. Longer N2/N4 latency in CI users suggests that these individuals have difficulties to map acoustic-phonetic features to lexical representations. These difficulties seem to be increased for speech-in-noise conditions when compared with speech in quiet background. Correlation analyses showed that shorter ERP latencies were related to enhanced speech intelligibility (N1, N2/N4), better lexical fluency (N1), and lower ratings of listening effort (N2/N4) in CI users. In sum, our findings suggest that CI users and NH listeners differ with regards to both the sensory and the higher-order processing of speech in quiet as well as in noisy background conditions. Our results also revealed that verbal abilities are related to speech processing and speech intelligibility in CI users, confirming the view that auditory cognition plays an important role for CI outcome. We conclude that differences in auditory-cognitive processing contribute to the variability in speech performance outcomes observed in CI users. Copyright © 2016 Elsevier Ltd. All rights reserved.
Harbluk, Joanne L; Noy, Y Ian; Trbovich, Patricia L; Eizenman, Moshe
2007-03-01
In this on-road experiment, drivers performed demanding cognitive tasks while driving in city traffic. All task interactions were carried out in hands-free mode so that the 21 drivers were not required to take their visual attention away from the road or to manually interact with a device inside the vehicle. Visual behavior and vehicle control were assessed while they drove an 8 km city route under three conditions: no additional task, easy cognitive task and difficult cognitive task. Changes in visual behavior were most apparent when performance between the No Task and Difficult Task conditions were compared. When looking outside of the vehicle, drivers spent more time looking centrally ahead and spent less time looking to the areas in the periphery. Drivers also reduced their visual monitoring of the instruments and mirrors, with some drivers abandoning these tasks entirely. When approaching and driving through intersections, drivers made fewer inspection glances to traffic lights compared to the No Task condition and their scanning of intersection areas to the right was also reduced. Vehicle control was also affected; during the most difficult cognitive tasks there were more occurrences of hard braking. Although hands-free designs for telematics devices are intended to reduce or eliminate the distraction arising from manual operation of these units, the potential for cognitive distraction associated with their use must also be considered and appropriately assessed. These changes are captured in measures of drivers' visual behavior.
A Method for Multitask fMRI Data Fusion Applied to Schizophrenia
Calhoun, Vince D.; Adali, Tulay; Kiehl, Kent A.; Astur, Robert; Pekar, James J.; Pearlson, Godfrey D.
2009-01-01
It is becoming common to collect data from multiple functional magnetic resonance imaging (fMRI) paradigms on a single individual. The data from these experiments are typically analyzed separately and sometimes directly subtracted from one another on a voxel-by-voxel basis. These comparative approaches, although useful, do not directly attempt to examine potential commonalities between tasks and between voxels. To remedy this we propose a method to extract maximally spatially independent maps for each task that are “coupled” together by a shared loading parameter. We first compute an activation map for each task and each individual as “features, ” which are then used to perform joint independent component analysis (jICA) on the group data. We demonstrate our approach on a data set derived from healthy controls and schizophrenia patients, each of which carried out an auditory oddball task and a Sternberg working memory task. Our analysis approach revealed two interesting findings in the data that were missed with traditional analyses. First, consistent with our hypotheses, schizophrenia patients demonstrate “decreased” connectivity in a joint network including portions of regions implicated in two prevalent models of schizophrenia. A second finding is that for the voxels identified by the jICA analysis, the correlation between the two tasks was significantly higher in patients than in controls. This finding suggests that schizophrenia patients activate “more similarly” for both tasks than do controls. A possible synthesis of both findings is that patients are activating less, but also activating with a less-unique set of regions for these very different tasks. Both of the findings described support the claim that examination of joint activation across multiple tasks can enable new questions to be posed about fMRI data. Our approach can also be applied to data using more than two tasks. It thus provides a way to integrate and probe brain networks using a variety of tasks and may increase our understanding of coordinated brain networks and the impact of pathology upon them. PMID:16342150
Yang, Ming-Tao; Hsu, Chun-Hsien; Yeh, Pei-Wen; Lee, Wang-Tso; Liang, Jao-Shwann; Fu, Wen-Mei; Lee, Chia-Ying
2015-01-01
Inattention (IA) has been a major problem in children with attention deficit/hyperactivity disorder (ADHD), accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN), P3a, and late discriminative negativity (LDN) as event-related potential (ERP) markers, under the passive auditory oddball paradigm. Two types of stimuli-pure tones and Mandarin lexical tones-were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years). Two passive auditory oddball paradigms (lexical tones and pure tones) were applied. The pure tone oddball paradigm included a standard stimulus (1000 Hz, 80%) and two deviant stimuli (1015 and 1090 Hz, 10% each). The Mandarin lexical tone oddball paradigm's standard stimulus was /yi3/ (80%) and two deviant stimuli were /yi1/ and /yi2/ (10% each). The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents' and teachers' ratings on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for the evaluation of anti-ADHD drugs that aim to alleviate these dysfunctions.
Ballesteros, Soledad; Mayas, Julia; Prieto, Antonio; Ruiz-Marquez, Eloísa; Toril, Pilar; Reales, José M
2017-01-01
Video game training with older adults potentially enhances aspects of cognition that decline with aging and could therefore offer a promising training approach. Although, previous published studies suggest that training can produce transfer, many of them have certain shortcomings. This randomized controlled trial (RCT; Clinicaltrials.gov ID: NCT02796508) tried to overcome some of these limitations by incorporating an active control group and the assessment of motivation and expectations. Seventy-five older volunteers were randomly assigned to the experimental group trained for 16 sessions with non-action video games from Lumosity , a commercial platform (http://www.lumosity.com/) or to an active control group trained for the same number of sessions with simulation strategy games. The final sample included 55 older adults (30 in the experimental group and 25 in the active control group). Participants were tested individually before and after training to assess working memory (WM) and selective attention and also reported their perceived improvement, motivation and engagement. The results showed improved performance across the training sessions. The main results were: (1) the experimental group did not show greater improvements in measures of selective attention and working memory than the active control group (the opposite occurred in the oddball task); (2) a marginal training effect was observed for the N -back task, but not for the Stroop task while both groups improved in the Corsi Blocks task. Based on these results, one can conclude that training with non-action games provide modest benefits for untrained tasks. The effect is not specific for that kind of training as a similar effect was observed for strategy video games. Groups did not differ in motivation, engagement or expectations.
Ballesteros, Soledad; Mayas, Julia; Prieto, Antonio; Ruiz-Marquez, Eloísa; Toril, Pilar; Reales, José M.
2017-01-01
Video game training with older adults potentially enhances aspects of cognition that decline with aging and could therefore offer a promising training approach. Although, previous published studies suggest that training can produce transfer, many of them have certain shortcomings. This randomized controlled trial (RCT; Clinicaltrials.gov ID: NCT02796508) tried to overcome some of these limitations by incorporating an active control group and the assessment of motivation and expectations. Seventy-five older volunteers were randomly assigned to the experimental group trained for 16 sessions with non-action video games from Lumosity, a commercial platform (http://www.lumosity.com/) or to an active control group trained for the same number of sessions with simulation strategy games. The final sample included 55 older adults (30 in the experimental group and 25 in the active control group). Participants were tested individually before and after training to assess working memory (WM) and selective attention and also reported their perceived improvement, motivation and engagement. The results showed improved performance across the training sessions. The main results were: (1) the experimental group did not show greater improvements in measures of selective attention and working memory than the active control group (the opposite occurred in the oddball task); (2) a marginal training effect was observed for the N-back task, but not for the Stroop task while both groups improved in the Corsi Blocks task. Based on these results, one can conclude that training with non-action games provide modest benefits for untrained tasks. The effect is not specific for that kind of training as a similar effect was observed for strategy video games. Groups did not differ in motivation, engagement or expectations. PMID:29163136
To speak or not to speak - A multiple resource perspective
NASA Technical Reports Server (NTRS)
Tsang, P. S.; Hartzell, E. J.; Rothschild, R. A.
1985-01-01
The desirability of employing speech response in a dynamic dual task situation was discussed from a multiple resource perspective. A secondary task technique was employed to examine the time-sharing performance of five dual tasks with various degrees of resource overlap according to the structure-specific resource model of Wickens (1980). The primary task was a visual/manual tracking task which required spatial processing. The secondary task was either another tracking task or a spatial transformation task with one of four input (visual or auditory) and output (manual or speech) configurations. The results show that the dual task performance was best when the primary tracking task was paired with the visual/speech transformation task. This finding was explained by an interaction of the stimulus-central processing-response compatibility of the transformation task and the degree of resource competition between the time-shared tasks. Implications on the utility of speech response were discussed.
Dong, Guangheng; Yang, Lizhu; Shen, Yue
2009-08-21
The present study investigated the course of visual searching to a target in a fixed location, using an emotional flanker task. Event-related potentials (ERPs) were recorded while participants performed the task. Emotional facial expressions were used as emotion-eliciting triggers. The course of visual searching was analyzed through the emotional effects arising from these emotion-eliciting stimuli. The flanker stimuli showed effects at about 150-250 ms following the stimulus onset, while the effect of target stimuli showed effects at about 300-400 ms. The visual search sequence in an emotional flanker task moved from a whole overview to a specific target, even if the target always appeared at a known location. The processing sequence was "parallel" in this task. The results supported the feature integration theory of visual search.
Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G
2017-03-01
We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.
A Closer Look at Visual Manuals.
ERIC Educational Resources Information Center
van der Meij, Hans
1996-01-01
Examines the visual manual genre, discussing main forms and functions of step-by-step and guided tour manuals in detail. Examines whether a visual manual helps computer users realize tasks faster and more accurately than a non-visual manual. Finds no effects on accuracy, but speedier task execution by 35% for visual manuals. Concludes there is no…
Visual scanning behavior and mental workload in aircraft pilots
NASA Technical Reports Server (NTRS)
Tole, J. R.; Harris, R. L., Sr.; Stephens, A. T.; Ephrath, A. R.
1982-01-01
This paper describes an experimental paradigm and a set of preliminary results which demonstrate a relationship between the level of performance on a skilled man-machine control task, the skill of the operator, the level of mental difficulty induced by an additional task imposed on the basic control task, and visual scanning performance. During a constant, simulated piloting task, visual scanning of instruments was found to vary as a function of the level of difficulty of a verbal loading task. The average dwell time of each fixation on the pilot's primary instrument increased as a function of the loading. The scanning behavior was also a function of the estimated skill level of the pilots, with novices being affected by the loading task much more than experts. The results suggest that visual scanning of instruments in a controlled task may be an indicator of both workload and skill.
Early Visual Word Processing Is Flexible: Evidence from Spatiotemporal Brain Dynamics.
Chen, Yuanyuan; Davis, Matthew H; Pulvermüller, Friedemann; Hauk, Olaf
2015-09-01
Visual word recognition is often described as automatic, but the functional locus of top-down effects is still a matter of debate. Do task demands modulate how information is retrieved, or only how it is used? We used EEG/MEG recordings to assess whether, when, and how task contexts modify early retrieval of specific psycholinguistic information in occipitotemporal cortex, an area likely to contribute to early stages of visual word processing. Using a parametric approach, we analyzed the spatiotemporal response patterns of occipitotemporal cortex for orthographic, lexical, and semantic variables in three psycholinguistic tasks: silent reading, lexical decision, and semantic decision. Task modulation of word frequency and imageability effects occurred simultaneously in ventral occipitotemporal regions-in the vicinity of the putative visual word form area-around 160 msec, following task effects on orthographic typicality around 100 msec. Frequency and typicality also produced task-independent effects in anterior temporal lobe regions after 200 msec. The early task modulation for several specific psycholinguistic variables indicates that occipitotemporal areas integrate perceptual input with prior knowledge in a task-dependent manner. Still, later task-independent effects in anterior temporal lobes suggest that word recognition eventually leads to retrieval of semantic information irrespective of task demands. We conclude that even a highly overlearned visual task like word recognition should be described as flexible rather than automatic.
The effect of changing the secondary task in dual-task paradigms for measuring listening effort.
Picou, Erin M; Ricketts, Todd A
2014-01-01
The purpose of this study was to evaluate the effect of changing the secondary task in dual-task paradigms that measure listening effort. Specifically, the effects of increasing the secondary task complexity or the depth of processing on a paradigm's sensitivity to changes in listening effort were quantified in a series of two experiments. Specific factors investigated within each experiment were background noise and visual cues. Participants in Experiment 1 were adults with normal hearing (mean age 23 years) and participants in Experiment 2 were adults with mild sloping to moderately severe sensorineural hearing loss (mean age 60.1 years). In both experiments, participants were tested using three dual-task paradigms. These paradigms had identical primary tasks, which were always monosyllable word recognition. The secondary tasks were all physical reaction time measures. The stimulus for the secondary task varied by paradigm and was a (1) simple visual probe, (2) a complex visual probe, or (3) the category of word presented. In this way, the secondary tasks mainly varied from the simple paradigm by either complexity or depth of speech processing. Using all three paradigms, participants were tested in four conditions, (1) auditory-only stimuli in quiet, (2) auditory-only stimuli in noise, (3) auditory-visual stimuli in quiet, and (4) auditory-visual stimuli in noise. During auditory-visual conditions, the talker's face was visible. Signal-to-noise ratios used during conditions with background noise were set individually so word recognition performance was matched in auditory-only and auditory-visual conditions. In noise, word recognition performance was approximately 80% and 65% for Experiments 1 and 2, respectively. For both experiments, word recognition performance was stable across the three paradigms, confirming that none of the secondary tasks interfered with the primary task. In Experiment 1 (listeners with normal hearing), analysis of median reaction times revealed a significant main effect of background noise on listening effort only with the paradigm that required deep processing. Visual cues did not change listening effort as measured with any of the three dual-task paradigms. In Experiment 2 (listeners with hearing loss), analysis of median reaction times revealed expected significant effects of background noise using all three paradigms, but no significant effects of visual cues. None of the dual-task paradigms were sensitive to the effects of visual cues. Furthermore, changing the complexity of the secondary task did not change dual-task paradigm sensitivity to the effects of background noise on listening effort for either group of listeners. However, the paradigm whose secondary task involved deeper processing was more sensitive to the effects of background noise for both groups of listeners. While this paradigm differed from the others in several respects, depth of processing may be partially responsible for the increased sensitivity. Therefore, this paradigm may be a valuable tool for evaluating other factors that affect listening effort.
Lambert, Anthony J; Wootton, Adrienne
2017-08-01
Different patterns of high density EEG activity were elicited by the same peripheral stimuli, in the context of Landmark Cueing and Perceptual Discrimination tasks. The C1 component of the visual event-related potential (ERP) at parietal - occipital electrode sites was larger in the Landmark Cueing task, and source localisation suggested greater activation in the superior parietal lobule (SPL) in this task, compared to the Perceptual Discrimination task, indicating stronger early recruitment of the dorsal visual stream. In the Perceptual Discrimination task, source localisation suggested widespread activation of the inferior temporal gyrus (ITG) and fusiform gyrus (FFG), structures associated with the ventral visual stream, during the early phase of the P1 ERP component. Moreover, during a later epoch (171-270ms after stimulus onset) increased temporal-occipital negativity, and stronger recruitment of ITG and FFG were observed in the Perceptual Discrimination task. These findings illuminate the contrasting functions of the dorsal and ventral visual streams, to support rapid shifts of attention in response to contextual landmarks, and conscious discrimination, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze
Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.
2014-01-01
Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057
Speed effects of deep brain stimulation for Parkinson's disease.
Klostermann, Fabian; Wahl, Michael; Marzinzik, Frank; Vesper, Jan; Sommer, Werner; Curio, Gabriel
2010-12-15
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) accelerates reaction time (RT) in patients with Parkinson's disease (PD), particularly in tasks in which decisions on the response side have to be made. This might indicate that DBS speeds up both motor and nonmotor operations. Therefore, we studied the extent to which modifications of different processing streams could explain changes of RT under subthalamic DBS. Ten PD patients on-DBS and off-DBS and 10 healthy subjects performed a choice-response task (CRT), requiring either right or left finger button presses. At the same time, EEG recordings were performed, so that RTs could be assessed together with lateralized readiness potentials (LRP), indicative of movement preparation. Additionally, an oddball task (OT) was run, in which right finger responses to target stimuli were recorded along with cognitive P300 responses. Generally, PD patients off-DBS had longer RTs than controls. Subthalamic DBS accelerated RT only in CRT. This could largely be explained by analog shortenings of LRP. No DBS-dependent changes were identified in OT, neither on the level of RT nor on the level of P300 latencies. It follows that RT accelerations under DBS of the STN are predominantly due to effects on the timing of motor instead of nonmotor processes. This starting point explains why DBS gains of response speed are low in tasks in which reactions are initiated from an advanced level of movement preparation (as in OT), and high whenever motor responses have to be raised from scratch (as in CRT). © 2010 Movement Disorder Society.
Improved Discrimination of Visual Stimuli Following Repetitive Transcranial Magnetic Stimulation
Waterston, Michael L.; Pack, Christopher C.
2010-01-01
Background Repetitive transcranial magnetic stimulation (rTMS) at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a “virtual lesion” in stimulated brain regions, with correspondingly diminished behavioral performance. Methodology/Principal Findings Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz) stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. Conclusions/Significance Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception. PMID:20442776
Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B
2012-07-16
Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.
Salient sounds activate human visual cortex automatically.
McDonald, John J; Störmer, Viola S; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A
2013-05-22
Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, this study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2-4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of colocalized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task.
Salient sounds activate human visual cortex automatically
McDonald, John J.; Störmer, Viola S.; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A.
2013-01-01
Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, the present study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2, 3, and 4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of co-localized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task. PMID:23699530
The development of organized visual search
Woods, Adam J.; Goksun, Tilbe; Chatterjee, Anjan; Zelonis, Sarah; Mehta, Anika; Smith, Sabrina E.
2013-01-01
Visual search plays an important role in guiding behavior. Children have more difficulty performing conjunction search tasks than adults. The present research evaluates whether developmental differences in children's ability to organize serial visual search (i.e., search organization skills) contribute to performance limitations in a typical conjunction search task. We evaluated 134 children between the ages of 2 and 17 on separate tasks measuring search for targets defined by a conjunction of features or by distinct features. Our results demonstrated that children organize their visual search better as they get older. As children's skills at organizing visual search improve they become more accurate at locating targets with conjunction of features amongst distractors, but not for targets with distinct features. Developmental limitations in children's abilities to organize their visual search of the environment are an important component of poor conjunction search in young children. In addition, our findings provide preliminary evidence that, like other visuospatial tasks, exposure to reading may influence children's spatial orientation to the visual environment when performing a visual search. PMID:23584560
Attainment of Developmental Tasks by Adolescents with Visual Impairments and Sighted Adolescents
ERIC Educational Resources Information Center
Pfeiffer, Jens P.; Pinquart, Martin
2011-01-01
This study compared the achievement of developmental tasks by 158 adolescents with visual impairments to that of 158 sighted adolescents. The groups did not differ in the fulfillment of 9 of 11 tasks. However, those with visual impairments were less successful in peer-group integration and forming intimate relationships. (Contains 4 tables.)
The Spatial Resolution of Visual Attention.
ERIC Educational Resources Information Center
Intriligator, James; Cavanaugh, Patrick
2001-01-01
Used two tasks to evaluate the grain of visual attention, the minimum spacing at which attention can select individual items. Results for eight adults on a tracking task and five adults on an individuation task show that selection has a coarser grain than visual resolution and suggest that the parietal area is the most likely locus of the…
Reimer, Christina B; Schubert, Torsten
2017-09-15
Both response selection and visual attention are limited in capacity. According to the central bottleneck model, the response selection processes of two tasks in a dual-task situation are performed sequentially. In conjunction search, visual attention is required to select the items and to bind their features (e.g., color and form), which results in a serial search process. Search time increases as items are added to the search display (i.e., set size effect). When the search display is masked, visual attention deployment is restricted to a brief period of time and target detection decreases as a function of set size. Here, we investigated whether response selection and visual attention (i.e., feature binding) rely on a common or on distinct capacity limitations. In four dual-task experiments, participants completed an auditory Task 1 and a conjunction search Task 2 that were presented with an experimentally modulated temporal interval between them (Stimulus Onset Asynchrony, SOA). In Experiment 1, Task 1 was a two-choice discrimination task and the conjunction search display was not masked. In Experiment 2, the response selection difficulty in Task 1 was increased to a four-choice discrimination and the search task was the same as in Experiment 1. We applied the locus-of-slack method in both experiments to analyze conjunction search time, that is, we compared the set size effects across SOAs. Similar set size effects across SOAs (i.e., additive effects of SOA and set size) would indicate sequential processing of response selection and visual attention. However, a significantly smaller set size effect at short SOA compared to long SOA (i.e., underadditive interaction of SOA and set size) would indicate parallel processing of response selection and visual attention. In both experiments, we found underadditive interactions of SOA and set size. In Experiments 3 and 4, the conjunction search display in Task 2 was masked. Task 1 was the same as in Experiments 1 and 2, respectively. In both experiments, the d' analysis revealed that response selection did not affect target detection. Overall, Experiments 1-4 indicated that neither the response selection difficulty in the auditory Task 1 (i.e., two-choice vs. four-choice) nor the type of presentation of the search display in Task 2 (i.e., not masked vs. masked) impaired parallel processing of response selection and conjunction search. We concluded that in general, response selection and visual attention (i.e., feature binding) rely on distinct capacity limitations.
Is improved contrast sensitivity a natural consequence of visual training?
Levi, Aaron; Shaked, Danielle; Tadin, Duje; Huxlin, Krystel R.
2015-01-01
Many studies have shown that training and testing conditions modulate specificity of visual learning to trained stimuli and tasks. In visually impaired populations, generalizability of visual learning to untrained stimuli/tasks is almost always reported, with contrast sensitivity (CS) featuring prominently among these collaterally-improved functions. To understand factors underlying this difference, we measured CS for direction and orientation discrimination in the visual periphery of three groups of visually-intact subjects. Group 1 trained on an orientation discrimination task with static Gabors whose luminance contrast was decreased as performance improved. Group 2 trained on a global direction discrimination task using high-contrast random dot stimuli previously used to recover motion perception in cortically blind patients. Group 3 underwent no training. Both forms of training improved CS with some degree of specificity for basic attributes of the trained stimulus/task. Group 1's largest enhancement was in CS around the trained spatial/temporal frequencies; similarly, Group 2's largest improvements occurred in CS for discriminating moving and flickering stimuli. Group 3 saw no significant CS changes. These results indicate that CS improvements may be a natural consequence of multiple forms of visual training in visually intact humans, albeit with some specificity to the trained visual domain(s). PMID:26305736
Visual selective attention in amnestic mild cognitive impairment.
McLaughlin, Paula M; Anderson, Nicole D; Rich, Jill B; Chertkow, Howard; Murtha, Susan J E
2014-11-01
Subtle deficits in visual selective attention have been found in amnestic mild cognitive impairment (aMCI). However, few studies have explored performance on visual search paradigms or the Simon task, which are known to be sensitive to disease severity in Alzheimer's patients. Furthermore, there is limited research investigating how deficiencies can be ameliorated with exogenous support (auditory cues). Sixteen individuals with aMCI and 14 control participants completed 3 experimental tasks that varied in demand and cue availability: visual search-alerting, visual search-orienting, and Simon task. Visual selective attention was influenced by aMCI, auditory cues, and task characteristics. Visual search abilities were relatively consistent across groups. The aMCI participants were impaired on the Simon task when working memory was required, but conflict resolution was similar to controls. Spatially informative orienting cues improved response times, whereas spatially neutral alerting cues did not influence performance. Finally, spatially informative auditory cues benefited the aMCI group more than controls in the visual search task, specifically at the largest array size where orienting demands were greatest. These findings suggest that individuals with aMCI have working memory deficits and subtle deficiencies in orienting attention and rely on exogenous information to guide attention. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
McCrea, Simon M.; Robinson, Thomas P.
2011-01-01
In this study, five consecutive patients with focal strokes and/or cortical excisions were examined with the Wechsler Adult Intelligence Scale and Wechsler Memory Scale—Fourth Editions along with a comprehensive battery of other neuropsychological tasks. All five of the lesions were large and typically involved frontal, temporal, and/or parietal lobes and were lateralized to one hemisphere. The clinical case method was used to determine the cognitive neuropsychological correlates of mental rotation (Visual Puzzles), Piagetian balance beam (Figure Weights), and visual search (Cancellation) tasks. The pattern of results on Visual Puzzles and Figure Weights suggested that both subtests involve predominately right frontoparietal networks involved in visual working memory. It appeared that Visual Puzzles could also critically rely on the integrity of the left temporoparietal junction. The left temporoparietal junction could be involved in temporal ordering and integration of local elements into a nonverbal gestalt. In contrast, the Figure Weights task appears to critically involve the right temporoparietal junction involved in numerical magnitude estimation. Cancellation was sensitive to left frontotemporal lesions and not right posterior parietal lesions typical of other visual search tasks. In addition, the Cancellation subtest was sensitive to verbal search strategies and perhaps object-based attention demands, thereby constituting a unique task in comparison with previous visual search tasks. PMID:22389807
Evidence for unlimited capacity processing of simple features in visual cortex
White, Alex L.; Runeson, Erik; Palmer, John; Ernst, Zachary R.; Boynton, Geoffrey M.
2017-01-01
Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level–dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. PMID:28654964
Wahn, Basil; König, Peter
2015-01-01
Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.
Kim, Elizabeth B; Chen, Chuansheng; Smetana, Judith G; Greenberger, Ellen
2016-10-01
The current study tested whether preschoolers' moral and social-conventional judgments change under social pressure using Asch's conformity paradigm. A sample of 132 preschoolers (Mage=3.83years, SD=0.85) rated the acceptability of moral and social-conventional events and also completed a visual judgment task (i.e., comparing line length) both independently and after having viewed two peers who consistently made immoral, unconventional, or visually inaccurate judgments. Results showed evidence of conformity on all three tasks, but conformity was stronger on the social-conventional task than on the moral and visual tasks. Older children were less susceptible to pressure for social conformity for the moral and visual tasks but not for the conventional task. Copyright © 2016 Elsevier Inc. All rights reserved.
Beyond simple charts: Design of visualizations for big health data
Ola, Oluwakemi; Sedig, Kamran
2016-01-01
Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data’s utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data. PMID:28210416
Beyond simple charts: Design of visualizations for big health data.
Ola, Oluwakemi; Sedig, Kamran
2016-01-01
Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data's utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data.
Spatial Scaling of the Profile of Selective Attention in the Visual Field.
Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A
2016-01-01
Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.
Comparing capacity coefficient and dual task assessment of visual multitasking workload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaha, Leslie M.
Capacity coefficient analysis could offer a theoretically grounded alternative approach to subjective measures and dual task assessment of cognitive workload. Workload capacity or workload efficiency is a human information processing modeling construct defined as the amount of information that can be processed by the visual cognitive system given a specified of amount of time. In this paper, I explore the relationship between capacity coefficient analysis of workload efficiency and dual task response time measures. To capture multitasking performance, I examine how the relatively simple assumptions underlying the capacity construct generalize beyond the single visual decision making tasks. The fundamental toolsmore » for measuring workload efficiency are the integrated hazard and reverse hazard functions of response times, which are defined by log transforms of the response time distribution. These functions are used in the capacity coefficient analysis to provide a functional assessment of the amount of work completed by the cognitive system over the entire range of response times. For the study of visual multitasking, capacity coefficient analysis enables a comparison of visual information throughput as the number of tasks increases from one to two to any number of simultaneous tasks. I illustrate the use of capacity coefficients for visual multitasking on sample data from dynamic multitasking in the modified Multi-attribute Task Battery.« less
Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne
2011-09-01
Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.
Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang
2015-02-01
It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.
DOT National Transportation Integrated Search
1985-10-01
The present study examined the effect of differing levels of visual taskload on critical flicker frequency (CFF) change during performance of a complex monitoring task. The task employed was designed to functionally simulate the general task characte...
The effects of perceptual priming on 4-year-olds' haptic-to-visual cross-modal transfer.
Kalagher, Hilary
2013-01-01
Four-year-old children often have difficulty visually recognizing objects that were previously experienced only haptically. This experiment attempts to improve their performance in these haptic-to-visual transfer tasks. Sixty-two 4-year-old children participated in priming trials in which they explored eight unfamiliar objects visually, haptically, or visually and haptically together. Subsequently, all children participated in the same haptic-to-visual cross-modal transfer task. In this task, children haptically explored the objects that were presented in the priming phase and then visually identified a match from among three test objects, each matching the object on only one dimension (shape, texture, or color). Children in all priming conditions predominantly made shape-based matches; however, the most shape-based matches were made in the Visual and Haptic condition. All kinds of priming provided the necessary memory traces upon which subsequent haptic exploration could build a strong enough representation to enable subsequent visual recognition. Haptic exploration patterns during the cross-modal transfer task are discussed and the detailed analyses provide a unique contribution to our understanding of the development of haptic exploratory procedures.
Age-Related Differences in Listening Effort During Degraded Speech Recognition.
Ward, Kristina M; Shen, Jing; Souza, Pamela E; Grieco-Calub, Tina M
The purpose of the present study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Twenty-five younger adults (YA; 18-24 years) and 21 older adults (OA; 56-82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants' responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners' performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (single task vs. dual task); and (3) per group (YA vs. OA). Speech recognition declined with increasing spectral degradation for both YA and OA when they performed the task in isolation or concurrently with the visual monitoring task. OA were slower and less accurate than YA on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared with single-task performance, OA experienced greater declines in secondary-task accuracy, but not reaction time, than YA. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. OA experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than YA. These findings are interpreted as suggesting that OA expended greater listening effort than YA, which may be partially attributed to age-related differences in executive control.
Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.
Talis, V L; Kazennikov, O V; Castellote, J M; Grishin, A A; Ioffe, M E
2014-03-01
Motor evoked potentials (MEPs) in the right first dorsal interosseous (FDI) muscle elicited by transcranial magnetic stimulation of left motor cortex were assessed in ten healthy subjects during maintenance of a fixed FDI contraction level. Subjects maintained an integrated EMG (IEMG) level with visual feedback and reproduced this level by memory afterwards in the following tasks: stationary FDI muscle contraction at the level of 40 ± 5 % of its maximum voluntary contraction (MVC; 40 % task), at the level of 20 ± 5 % MVC (20 % task), and also when 20 % MVC was preceded by either no contraction (0-20 task), by stronger muscle contraction (40-20 task) or by no contraction with a previous strong contraction (40-0-20 task). The results show that the IEMG level was within the prescribed limits when 20 and 40 % stationary tasks were executed with and without visual feedback. In 0-20, 40-20, and 40-0-20 tasks, 20 % IEMG level was precisely controlled in the presence of visual feedback, but without visual feedback the IEMG and force during 20 % IEMG maintenance were significantly higher in the 40-0-20 task than those in 0-20 and 40-20 tasks. That is, without visual feedback, there were significant variations in muscle activity due to different prehistory of contraction. In stationary tasks, MEP amplitudes in 40 % task were higher than in 20 % task. MEPs did not differ significantly during maintenance of the 20 % level in tasks with different prehistory of muscle contraction with and without visual feedback. Thus, in spite of variations in muscle background activity due to different prehistory of contraction MEPs did not vary significantly. This dissociation suggests that the voluntary maintenance of IEMG level is determined not only by cortical mechanisms, as reflected by corticospinal excitability, but also by lower levels of CNS, where afferent signals and influences from other brain structures and spinal cord are convergent.
Nieuwenstein, Mark; Wyble, Brad
2014-06-01
While studies on visual memory commonly assume that the consolidation of a visual stimulus into working memory is interrupted by a trailing mask, studies on dual-task interference suggest that the consolidation of a stimulus can continue for several hundred milliseconds after a mask. As a result, estimates of the time course of working memory consolidation differ more than an order of magnitude. Here, we contrasted these opposing views by examining if and for how long the processing of a masked display of visual stimuli can be disturbed by a trailing 2-alternative forced choice task (2-AFC; a color discrimination task or a visual or auditory parity judgment task). The results showed that the presence of the 2-AFC task produced a pronounced retroactive interference effect that dissipated across stimulus onset asynchronies of 250-1,000 ms, indicating that the processing elicited by the 2-AFC task interfered with the gradual consolidation of the earlier shown stimuli. Furthermore, this interference effect occurred regardless of whether the to-be-remembered stimuli comprised a string of letters or an unfamiliar complex visual shape, and it occurred regardless of whether these stimuli were masked. Conversely, the interference effect was reduced when the memory load for the 1st task was reduced, or when the 2nd task was a color detection task that did not require decision making. Taken together, these findings show that the formation of a durable and consciously accessible working memory trace for a briefly shown visual stimulus can be disturbed by a trailing 2-AFC task for up to several hundred milliseconds after the stimulus has been masked. By implication, the current findings challenge the common view that working memory consolidation involves an immutable central processing bottleneck, and they also make clear that consolidation does not stop when a stimulus is masked. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Raised visual detection thresholds depend on the level of complexity of cognitive foveal loading.
Plainis, S; Murray, I J; Chauhan, K
2001-01-01
The objective of the study was to measure the interactions between visual thresholds for a simple light (the secondary task) presented peripherally and a simultaneously performed cognitive task (the primary task) presented foveally The primary task was highly visible but varied according to its cognitive complexity. Interactions between the tasks were determined by measuring detection thresholds for the peripheral task and accuracy of performance of the foveal task. Effects were measured for 5, 10, 20, and 30 deg eccentricity of the peripherally presented light and for three levels of cognitive complexity. Mesopic conditions (0.5 lx) were used. As expected, the concurrent presentation of the foveal cognitive task reduced peripheral sensitivity. Moreover, performance of the foveal task was adversely affected when conducting the peripheral task. Performance on both tasks was reduced as the level of complexity of the cognitive task increased. There were qualitative differences in task interactions between the central 10 deg and at greater eccentricities. Within 10 deg there was a disproportionate effect of eccentricity, previously interpreted as the 'tunnel-vision' model of visual field narrowing. Interactions outside 10 deg were less affected by eccentricity. These results are discussed in terms of the known neurophysiological characteristics of the primary visual pathway.
Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun
2016-01-01
Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer.
Zhao, Jing; Kwok, Rosa K. W.; Liu, Menglian; Liu, Hanlong; Huang, Chen
2017-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency. PMID:28119663
Zhao, Jing; Kwok, Rosa K W; Liu, Menglian; Liu, Hanlong; Huang, Chen
2016-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency.
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L
2018-06-12
Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Larcombe, Stephanie J.; Kennard, Chris
2017-01-01
Abstract Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145–156, 2018. © 2017 Wiley Periodicals, Inc. PMID:28963815
ERIC Educational Resources Information Center
Reed, Taffy; Peterson, Candida
1990-01-01
This study found that 13 autistic subjects performed less well on cognitive than on visual perspective-taking tasks at two levels of difficulty. Autistic subjects performed as well as 13 intellectually handicapped controls and 13 normal controls on visual perspective-taking tasks but more poorly than controls on cognitive perspective-taking tasks.…
Age, Sex, and Verbal Abilities Affect Location of Linguistic Connectivity in Ventral Visual Pathway
ERIC Educational Resources Information Center
Burman, Douglas D.; Minas, Taylor; Bolger, Donald J.; Booth, James R.
2013-01-01
Previous studies have shown that the "strength" of connectivity between regions can vary depending upon the cognitive demands of a task. In this study, the "location" of task-dependent connectivity from the primary visual cortex (V1) was examined in 43 children (ages 9-15) performing visual tasks; connectivity maxima were identified for a visual…
Visual and skill effects on soccer passing performance, kinematics, and outcome estimations
Basevitch, Itay; Tenenbaum, Gershon; Land, William M.; Ward, Paul
2015-01-01
The role of visual information and action representations in executing a motor task was examined from a mental representations approach. High-skill (n = 20) and low-skill (n = 20) soccer players performed a passing task to two targets at distances of 9.14 and 18.29 m, under three visual conditions: normal, occluded, and distorted vision (i.e., +4.0 corrective lenses, a visual acuity of approximately 6/75) without knowledge of results. Following each pass, participants estimated the relative horizontal distance from the target as the ball crossed the target plane. Kinematic data during each pass were also recorded for the shorter distance. Results revealed that performance on the motor task decreased as a function of visual information and task complexity (i.e., distance from target) regardless of skill level. High-skill players performed significantly better than low-skill players on both the actual passing and estimation tasks, at each target distance and visual condition. In addition, kinematic data indicated that high-skill participants were more consistent and had different kinematic movement patterns than low-skill participants. Findings contribute to the understanding of the underlying mechanisms required for successful performance in a self-paced, discrete and closed motor task. PMID:25784886
Shared filtering processes link attentional and visual short-term memory capacity limits.
Bettencourt, Katherine C; Michalka, Samantha W; Somers, David C
2011-09-30
Both visual attention and visual short-term memory (VSTM) have been shown to have capacity limits of 4 ± 1 objects, driving the hypothesis that they share a visual processing buffer. However, these capacity limitations also show strong individual differences, making the degree to which these capacities are related unclear. Moreover, other research has suggested a distinction between attention and VSTM buffers. To explore the degree to which capacity limitations reflect the use of a shared visual processing buffer, we compared individual subject's capacities on attentional and VSTM tasks completed in the same testing session. We used a multiple object tracking (MOT) and a VSTM change detection task, with varying levels of distractors, to measure capacity. Significant correlations in capacity were not observed between the MOT and VSTM tasks when distractor filtering demands differed between the tasks. Instead, significant correlations were seen when the tasks shared spatial filtering demands. Moreover, these filtering demands impacted capacity similarly in both attention and VSTM tasks. These observations fail to support the view that visual attention and VSTM capacity limits result from a shared buffer but instead highlight the role of the resource demands of underlying processes in limiting capacity.
ERIC Educational Resources Information Center
Imhof, Birgit; Scheiter, Katharina; Edelmann, Jorg; Gerjets, Peter
2012-01-01
Two studies investigated the effectiveness of dynamic and static visualizations for a perceptual learning task (locomotion pattern classification). In Study 1, seventy-five students viewed either dynamic, static-sequential, or static-simultaneous visualizations. For tasks of intermediate difficulty, dynamic visualizations led to better…
Preschoolers Benefit from Visually Salient Speech Cues
ERIC Educational Resources Information Center
Lalonde, Kaylah; Holt, Rachael Frush
2015-01-01
Purpose: This study explored visual speech influence in preschoolers using 3 developmentally appropriate tasks that vary in perceptual difficulty and task demands. They also examined developmental differences in the ability to use visually salient speech cues and visual phonological knowledge. Method: Twelve adults and 27 typically developing 3-…
The visual attention span deficit in dyslexia is visual and not verbal.
Lobier, Muriel; Zoubrinetzky, Rachel; Valdois, Sylviane
2012-06-01
The visual attention (VA) span deficit hypothesis of dyslexia posits that letter string deficits are a consequence of impaired visual processing. Alternatively, some have interpreted this deficit as resulting from a visual-to-phonology code mapping impairment. This study aims to disambiguate between the two interpretations by investigating performance in a non-verbal character string visual categorization task with verbal and non-verbal stimuli. Results show that VA span ability predicts performance for the non-verbal visual processing task in normal reading children. Furthermore, VA span impaired dyslexic children are also impaired for the categorization task independently of stimuli type. This supports the hypothesis that the underlying impairment responsible for the VA span deficit is visual, not verbal. Copyright © 2011 Elsevier Srl. All rights reserved.
RAVE: Rapid Visualization Environment
NASA Technical Reports Server (NTRS)
Klumpar, D. M.; Anderson, Kevin; Simoudis, Avangelos
1994-01-01
Visualization is used in the process of analyzing large, multidimensional data sets. However, the selection and creation of visualizations that are appropriate for the characteristics of a particular data set and the satisfaction of the analyst's goals is difficult. The process consists of three tasks that are performed iteratively: generate, test, and refine. The performance of these tasks requires the utilization of several types of domain knowledge that data analysts do not often have. Existing visualization systems and frameworks do not adequately support the performance of these tasks. In this paper we present the RApid Visualization Environment (RAVE), a knowledge-based system that interfaces with commercial visualization frameworks and assists a data analyst in quickly and easily generating, testing, and refining visualizations. RAVE was used for the visualization of in situ measurement data captured by spacecraft.
Effects of age and auditory and visual dual tasks on closed-road driving performance.
Chaparro, Alex; Wood, Joanne M; Carberry, Trent
2005-08-01
This study investigated how driving performance of young and old participants is affected by visual and auditory secondary tasks on a closed driving course. Twenty-eight participants comprising two age groups (younger, mean age = 27.3 years; older, mean age = 69.2 years) drove around a 5.1-km closed-road circuit under both single and dual task conditions. Measures of driving performance included detection and identification of road signs, detection and avoidance of large low-contrast road hazards, gap judgment, lane keeping, and time to complete the course. The dual task required participants to verbally report the sums of pairs of single-digit numbers presented through either a computer speaker (auditorily) or a dashboard-mounted monitor (visually) while driving. Participants also completed a vision and cognitive screening battery, including LogMAR visual acuity, Pelli-Robson letter contrast sensitivity, the Trails test, and the Digit Symbol Substitution (DSS) test. Drivers reported significantly fewer signs, hit more road hazards, misjudged more gaps, and increased their time to complete the course under the dual task (visual and auditory) conditions compared with the single task condition. The older participants also reported significantly fewer road signs and drove significantly more slowly than the younger participants, and this was exacerbated for the visual dual task condition. The results of the regression analysis revealed that cognitive aging (measured by the DSS and Trails test) rather than chronologic age was a better predictor of the declines seen in driving performance under dual task conditions. An overall z score was calculated, which took into account both driving and the secondary task (summing) performance under the two dual task conditions. Performance was significantly worse for the auditory dual task compared with the visual dual task, and the older participants performed significantly worse than the young subjects. These findings demonstrate that multitasking had a significant detrimental impact on driving performance and that cognitive aging was the best predictor of the declines seen in driving performance under dual task conditions. These results have implications for use of mobile phones or in-vehicle navigational devices while driving, especially for older adults.
NASA Technical Reports Server (NTRS)
Phillips, Rachel; Madhavan, Poornima
2010-01-01
The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.
Effect of visual feedback on brain activation during motor tasks: an FMRI study.
Noble, Jeremy W; Eng, Janice J; Boyd, Lara A
2013-07-01
This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.
Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex
Freedman, David J.
2014-01-01
Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703
The effect of haptic guidance and visual feedback on learning a complex tennis task.
Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert
2013-11-01
While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical tasks.
Visual Working Memory Capacity and Proactive Interference
Hartshorne, Joshua K.
2008-01-01
Background Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals. PMID:18648493
Visual working memory capacity and proactive interference.
Hartshorne, Joshua K
2008-07-23
Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.
Do visually salient stimuli reduce children's risky decisions?
Schwebel, David C; Lucas, Elizabeth K; Pearson, Alana
2009-09-01
Children tend to overestimate their physical abilities, and that tendency is related to risk for unintentional injury. This study tested whether or not children estimate their physical ability differently when exposed to stimuli that were highly visually salient due to fluorescent coloring. Sixty-nine 6-year-olds judged physical ability to complete laboratory-based physical tasks. Half judged ability using tasks that were painted black; the other half judged the same tasks, but the stimuli were striped black and fluorescent lime-green. Results suggest the two groups judged similarly, but children took longer to judge perceptually ambiguous tasks when those tasks were visually salient. In other words, visual salience increased decision-making time but not accuracy of judgment. These findings held true after controlling for demographic and temperament characteristics.
Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition.
Díaz, Begoña; Blank, Helen; von Kriegstein, Katharina
2018-05-14
The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition. Copyright © 2018. Published by Elsevier Inc.
Choi, HeeSun; Geden, Michael; Feng, Jing
2017-01-01
Mind wandering has been considered as a mental process that is either independent from the concurrent task or regulated like a secondary task. These accounts predict that the form of mind wandering (i.e., images or words) should be either unaffected by or different from the modality form (i.e., visual or auditory) of the concurrent task. Findings from this study challenge these accounts. We measured the rate and the form of mind wandering in three task conditions: fixation, visual 2-back, and auditory 2-back. Contrary to the general expectation, we found that mind wandering was more likely in the same form as the task. This result can be interpreted in light of recent findings on overlapping brain activations during internally- and externally-oriented processes. Our result highlights the importance to consider the unique interplay between the internal and external mental processes and to measure mind wandering as a multifaceted rather than a unitary construct.
Choi, HeeSun; Geden, Michael
2017-01-01
Mind wandering has been considered as a mental process that is either independent from the concurrent task or regulated like a secondary task. These accounts predict that the form of mind wandering (i.e., images or words) should be either unaffected by or different from the modality form (i.e., visual or auditory) of the concurrent task. Findings from this study challenge these accounts. We measured the rate and the form of mind wandering in three task conditions: fixation, visual 2-back, and auditory 2-back. Contrary to the general expectation, we found that mind wandering was more likely in the same form as the task. This result can be interpreted in light of recent findings on overlapping brain activations during internally- and externally-oriented processes. Our result highlights the importance to consider the unique interplay between the internal and external mental processes and to measure mind wandering as a multifaceted rather than a unitary construct. PMID:29240817
Birkett, Emma E; Talcott, Joel B
2012-01-01
Motor timing tasks have been employed in studies of neurodevelopmental disorders such as developmental dyslexia and ADHD, where they provide an index of temporal processing ability. Investigations of these disorders have used different stimulus parameters within the motor timing tasks that are likely to affect performance measures. Here we assessed the effect of auditory and visual pacing stimuli on synchronised motor timing performance and its relationship with cognitive and behavioural predictors that are commonly used in the diagnosis of these highly prevalent developmental disorders. Twenty-one children (mean age 9.6 years) completed a finger tapping task in two stimulus conditions, together with additional psychometric measures. As anticipated, synchronisation to the beat (ISI 329 ms) was less accurate in the visually paced condition. Decomposition of timing variance indicated that this effect resulted from differences in the way that visual and auditory paced tasks are processed by central timekeeping and associated peripheral implementation systems. The ability to utilise an efficient processing strategy on the visual task correlated with both reading and sustained attention skills. Dissociations between these patterns of relationship across task modality suggest that not all timing tasks are equivalent.
Recording Visual Evoked Potentials and Auditory Evoked P300 at 9.4T Static Magnetic Field
Hahn, David; Boers, Frank; Shah, N. Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4T were not different from those recorded at 0T. The amplitudes of ERPs were higher at 9.4T when compared to recordings at 0T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses. PMID:23650538
Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.
Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.
Paladini, Rebecca E.; Diana, Lorenzo; Zito, Giuseppe A.; Nyffeler, Thomas; Wyss, Patric; Mosimann, Urs P.; Müri, René M.; Nef, Tobias
2018-01-01
Cross-modal spatial cueing can affect performance in a visual search task. For example, search performance improves if a visual target and an auditory cue originate from the same spatial location, and it deteriorates if they originate from different locations. Moreover, it has recently been postulated that multisensory settings, i.e., experimental settings, in which critical stimuli are concurrently presented in different sensory modalities (e.g., visual and auditory), may trigger asymmetries in visuospatial attention. Thereby, a facilitation has been observed for visual stimuli presented in the right compared to the left visual space. However, it remains unclear whether auditory cueing of attention differentially affects search performance in the left and the right hemifields in audio-visual search tasks. The present study investigated whether spatial asymmetries would occur in a search task with cross-modal spatial cueing. Participants completed a visual search task that contained no auditory cues (i.e., unimodal visual condition), spatially congruent, spatially incongruent, and spatially non-informative auditory cues. To further assess participants’ accuracy in localising the auditory cues, a unimodal auditory spatial localisation task was also administered. The results demonstrated no left/right asymmetries in the unimodal visual search condition. Both an additional incongruent, as well as a spatially non-informative, auditory cue resulted in lateral asymmetries. Thereby, search times were increased for targets presented in the left compared to the right hemifield. No such spatial asymmetry was observed in the congruent condition. However, participants’ performance in the congruent condition was modulated by their tone localisation accuracy. The findings of the present study demonstrate that spatial asymmetries in multisensory processing depend on the validity of the cross-modal cues, and occur under specific attentional conditions, i.e., when visual attention has to be reoriented towards the left hemifield. PMID:29293637
Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location
Zachariou, Valentinos; Klatzky, Roberta; Behrmann, Marlene
2017-01-01
Growing evidence suggests that the functional specialization of the two cortical visual pathways may not be as distinct as originally proposed. Here, we explore possible contributions of the dorsal “where/how” visual stream to shape perception and, conversely, contributions of the ventral “what” visual stream to location perception in human adults. Participants performed a shape detection task and a location detection task while undergoing fMRI. For shape detection, comparable BOLD activation in the ventral and dorsal visual streams was observed, and the magnitude of this activation was correlated with behavioral performance. For location detection, cortical activation was significantly stronger in the dorsal than ventral visual pathway and did not correlate with the behavioral outcome. This asymmetry in cortical profile across tasks is particularly noteworthy given that the visual input was identical and that the tasks were matched for difficulty in performance. We confirmed the asymmetry in a subsequent psychophysical experiment in which participants detected changes in either object location or shape, while ignoring the other, task-irrelevant dimension. Detection of a location change was slowed by an irrelevant shape change matched for difficulty, but the reverse did not hold. We conclude that both ventral and dorsal visual streams contribute to shape perception, but that location processing appears to be essentially a function of the dorsal visual pathway. PMID:24001005
ERIC Educational Resources Information Center
Cubilo, Justin; Winke, Paula
2013-01-01
Researchers debate whether listening tasks should be supported by visuals. Most empirical research in this area has been conducted on the effects of visual support on listening comprehension tasks employing multiple-choice questions. The present study seeks to expand this research by investigating the effects of video listening passages (vs.…
Huang, Liqiang
2015-05-01
Basic visual features (e.g., color, orientation) are assumed to be processed in the same general way across different visual tasks. Here, a significant deviation from this assumption was predicted on the basis of the analysis of stimulus spatial structure, as characterized by the Boolean-map notion. If a task requires memorizing the orientations of a set of bars, then the map consisting of those bars can be readily used to hold the overall structure in memory and will thus be especially useful. If the task requires visual search for a target, then the map, which contains only an overall structure, will be of little use. Supporting these predictions, the present study demonstrated that in comparison to stimulus colors, bar orientations were processed more efficiently in change-detection tasks but less efficiently in visual search tasks (Cohen's d = 4.24). In addition to offering support for the role of the Boolean map in conscious access, the present work also throws doubts on the generality of processing visual features. © The Author(s) 2015.
Accurate expectancies diminish perceptual distraction during visual search
Sy, Jocelyn L.; Guerin, Scott A.; Stegman, Anna; Giesbrecht, Barry
2014-01-01
The load theory of visual attention proposes that efficient selective perceptual processing of task-relevant information during search is determined automatically by the perceptual demands of the display. If the perceptual demands required to process task-relevant information are not enough to consume all available capacity, then the remaining capacity automatically and exhaustively “spills-over” to task-irrelevant information. The spill-over of perceptual processing capacity increases the likelihood that task-irrelevant information will impair performance. In two visual search experiments, we tested the automaticity of the allocation of perceptual processing resources by measuring the extent to which the processing of task-irrelevant distracting stimuli was modulated by both perceptual load and top-down expectations using behavior, functional magnetic resonance imaging, and electrophysiology. Expectations were generated using a trial-by-trial cue that provided information about the likely load of the upcoming visual search task. When the cues were valid, behavioral interference was eliminated and the influence of load on frontoparietal and visual cortical responses was attenuated relative to when the cues were invalid. In conditions in which task-irrelevant information interfered with performance and modulated visual activity, individual differences in mean blood oxygenation level dependent responses measured from the left intraparietal sulcus were negatively correlated with individual differences in the severity of distraction. These results are consistent with the interpretation that a top-down biasing mechanism interacts with perceptual load to support filtering of task-irrelevant information. PMID:24904374
Callow, Nichola; Roberts, Ross; Hardy, Lew; Jiang, Dan; Edwards, Martin Gareth
2013-01-01
We report three experiments investigating the hypothesis that use of internal visual imagery (IVI) would be superior to external visual imagery (EVI) for the performance of different slalom-based motor tasks. In Experiment 1, three groups of participants (IVI, EVI, and a control group) performed a driving-simulation slalom task. The IVI group achieved significantly quicker lap times than EVI and the control group. In Experiment 2, participants performed a downhill running slalom task under both IVI and EVI conditions. Performance was again quickest in the IVI compared to EVI condition, with no differences in accuracy. Experiment 3 used the same group design as Experiment 1, but with participants performing a downhill ski-slalom task. Results revealed the IVI group to be significantly more accurate than the control group, with no significant differences in time taken to complete the task. These results support the beneficial effects of IVI for slalom-based tasks, and significantly advances our knowledge related to the differential effects of visual imagery perspectives on motor performance. PMID:24155710
Binocular Glaucomatous Visual Field Loss and Its Impact on Visual Exploration - A Supermarket Study
Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena
2014-01-01
Advanced glaucomatous visual field loss may critically interfere with quality of life. The purpose of this study was to (i) assess the impact of binocular glaucomatous visual field loss on a supermarket search task as an example of everyday living activities, (ii) to identify factors influencing the performance, and (iii) to investigate the related compensatory mechanisms. Ten patients with binocular glaucoma (GP), and ten healthy-sighted control subjects (GC) were asked to collect twenty different products chosen randomly in two supermarket racks as quickly as possible. The task performance was rated as “passed” or “failed” with regard to the time per correctly collected item. Based on the performance of control subjects, the threshold value for failing the task was defined as μ+3σ (in seconds per correctly collected item). Eye movements were recorded by means of a mobile eye tracker. Eight out of ten patients with glaucoma and all control subjects passed the task. Patients who failed the task needed significantly longer time (111.47 s ±12.12 s) to complete the task than patients who passed (64.45 s ±13.36 s, t-test, p<0.001). Furthermore, patients who passed the task showed a significantly higher number of glances towards the visual field defect (VFD) area than patients who failed (t-test, p<0.05). According to these results, glaucoma patients with defects in the binocular visual field display on average longer search times in a naturalistic supermarket task. However, a considerable number of patients, who compensate by frequent glancing towards the VFD, showed successful task performance. Therefore, systematic exploration of the VFD area seems to be a “time-effective” compensatory mechanism during the present supermarket task. PMID:25162522
Binocular glaucomatous visual field loss and its impact on visual exploration--a supermarket study.
Sippel, Katrin; Kasneci, Enkelejda; Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena
2014-01-01
Advanced glaucomatous visual field loss may critically interfere with quality of life. The purpose of this study was to (i) assess the impact of binocular glaucomatous visual field loss on a supermarket search task as an example of everyday living activities, (ii) to identify factors influencing the performance, and (iii) to investigate the related compensatory mechanisms. Ten patients with binocular glaucoma (GP), and ten healthy-sighted control subjects (GC) were asked to collect twenty different products chosen randomly in two supermarket racks as quickly as possible. The task performance was rated as "passed" or "failed" with regard to the time per correctly collected item. Based on the performance of control subjects, the threshold value for failing the task was defined as μ+3σ (in seconds per correctly collected item). Eye movements were recorded by means of a mobile eye tracker. Eight out of ten patients with glaucoma and all control subjects passed the task. Patients who failed the task needed significantly longer time (111.47 s ±12.12 s) to complete the task than patients who passed (64.45 s ±13.36 s, t-test, p < 0.001). Furthermore, patients who passed the task showed a significantly higher number of glances towards the visual field defect (VFD) area than patients who failed (t-test, p < 0.05). According to these results, glaucoma patients with defects in the binocular visual field display on average longer search times in a naturalistic supermarket task. However, a considerable number of patients, who compensate by frequent glancing towards the VFD, showed successful task performance. Therefore, systematic exploration of the VFD area seems to be a "time-effective" compensatory mechanism during the present supermarket task.
Cogito ergo video: Task-relevant information is involuntarily boosted into awareness.
Gayet, Surya; Brascamp, Jan W; Van der Stigchel, Stefan; Paffen, Chris L E
2015-01-01
Only part of the visual information that impinges on our retinae reaches visual awareness. In a series of three experiments, we investigated how the task relevance of incoming visual information affects its access to visual awareness. On each trial, participants were instructed to memorize one of two presented hues, drawn from different color categories (e.g., red and green), for later recall. During the retention interval, participants were presented with a differently colored grating in each eye such as to elicit binocular rivalry. A grating matched either the task-relevant (memorized) color category or the task-irrelevant (nonmemorized) color category. We found that the rivalrous stimulus that matched the task-relevant color category tended to dominate awareness over the rivalrous stimulus that matched the task-irrelevant color category. This effect of task relevance persisted when participants reported the orientation of the rivalrous stimuli, even though in this case color information was completely irrelevant for the task of reporting perceptual dominance during rivalry. When participants memorized the shape of a colored stimulus, however, its color category did not affect predominance of rivalrous stimuli during retention. Taken together, these results indicate that the selection of task-relevant information is under volitional control but that visual input that matches this information is boosted into awareness irrespective of whether this is useful for the observer.
Visual Search in ASD: Instructed versus Spontaneous Local and Global Processing
ERIC Educational Resources Information Center
Van der Hallen, Ruth; Evers, Kris; Boets, Bart; Steyaert, Jean; Noens, Ilse; Wagemans, Johan
2016-01-01
Visual search has been used extensively to investigate differences in mid-level visual processing between individuals with ASD and TD individuals. The current study employed two visual search paradigms with Gaborized stimuli to assess the impact of task distractors (Experiment 1) and task instruction (Experiment 2) on local-global visual…
Aging and feature search: the effect of search area.
Burton-Danner, K; Owsley, C; Jackson, G R
2001-01-01
The preattentive system involves the rapid parallel processing of visual information in the visual scene so that attention can be directed to meaningful objects and locations in the environment. This study used the feature search methodology to examine whether there are aging-related deficits in parallel-processing capabilities when older adults are required to visually search a large area of the visual field. Like young subjects, older subjects displayed flat, near-zero slopes for the Reaction Time x Set Size function when searching over a broad area (30 degrees radius) of the visual field, implying parallel processing of the visual display. These same older subjects exhibited impairment in another task, also dependent on parallel processing, performed over the same broad field area; this task, called the useful field of view test, has more complex task demands. Results imply that aging-related breakdowns of parallel processing over a large visual field area are not likely to emerge when required responses are simple, there is only one task to perform, and there is no limitation on visual inspection time.
Development of an Age Band on the ManuVis for 3-Year-Old Children with Visual Impairments.
Reimer, A M; Barsingerhorn, A D; Overvelde, A; Nijhuis-Van der Sanden, M W G; Boonstra, F N; Cox, R F A
2017-08-01
To compare fine motor performance of 3-year-old children with visual impairment with peers having normal vision, to provide reference scores for 3-year-old children with visual impairment on the ManuVis, and to assess inter-rater reliability. 26 children with visual impairment (mean age: 3 years 7 months (SD 3 months); 17 boys) and 28 children with normal vision (mean age: 3 years 7 months (SD 4 months); 14 boys) participated in the study. The ManuVis age band for 3-year-old children comprised two one-handed tasks, two two-handed tasks, and a pre-writing task. Children with visual impairment needed more time on all tasks (p < .01) and performed the pre-writing task less accurately than children with normal vision (p < .001). Children aged 42-47 months performed significantly faster on two tasks and had better total scores than children aged 36-41 months (p < .05). Inter-rater reliability was excellent (Intra-class Correlation Coefficient = 0.96-0.99). The ManuVis age band for 3-year-old children is appropriate to assess fine motor skills, and is sensitive to differences between children with visual impairment and normal vision and between half-year age groups. Reference scores are provided for 3-year-old children with visual impairment to identify delayed fine motor development.
Mirel, Barbara; Eichinger, Felix; Keller, Benjamin J; Kretzler, Matthias
2011-03-21
Bioinformatics visualization tools are often not robust enough to support biomedical specialists’ complex exploratory analyses. Tools need to accommodate the workflows that scientists actually perform for specific translational research questions. To understand and model one of these workflows, we conducted a case-based, cognitive task analysis of a biomedical specialist’s exploratory workflow for the question: What functional interactions among gene products of high throughput expression data suggest previously unknown mechanisms of a disease? From our cognitive task analysis four complementary representations of the targeted workflow were developed. They include: usage scenarios, flow diagrams, a cognitive task taxonomy, and a mapping between cognitive tasks and user-centered visualization requirements. The representations capture the flows of cognitive tasks that led a biomedical specialist to inferences critical to hypothesizing. We created representations at levels of detail that could strategically guide visualization development, and we confirmed this by making a trial prototype based on user requirements for a small portion of the workflow. Our results imply that visualizations should make available to scientific users “bundles of features†consonant with the compositional cognitive tasks purposefully enacted at specific points in the workflow. We also highlight certain aspects of visualizations that: (a) need more built-in flexibility; (b) are critical for negotiating meaning; and (c) are necessary for essential metacognitive support.
Validating a visual version of the metronome response task.
Laflamme, Patrick; Seli, Paul; Smilek, Daniel
2018-02-12
The metronome response task (MRT)-a sustained-attention task that requires participants to produce a response in synchrony with an audible metronome-was recently developed to index response variability in the context of studies on mind wandering. In the present studies, we report on the development and validation of a visual version of the MRT (the visual metronome response task; vMRT), which uses the rhythmic presentation of visual, rather than auditory, stimuli. Participants completed the vMRT (Studies 1 and 2) and the original (auditory-based) MRT (Study 2) while also responding to intermittent thought probes asking them to report the depth of their mind wandering. The results showed that (1) individual differences in response variability during the vMRT are highly reliable; (2) prior to thought probes, response variability increases with increasing depth of mind wandering; (3) response variability is highly consistent between the vMRT and the original MRT; and (4) both response variability and depth of mind wandering increase with increasing time on task. Our results indicate that the original MRT findings are consistent across the visual and auditory modalities, and that the response variability measured in both tasks indexes a non-modality-specific tendency toward behavioral variability. The vMRT will be useful in the place of the MRT in experimental contexts in which researchers' designs require a visual-based primary task.
Body sway at sea for two visual tasks and three stance widths.
Stoffregen, Thomas A; Villard, Sebastien; Yu, Yawen
2009-12-01
On land, body sway is influenced by stance width (the distance between the feet) and by visual tasks engaged in during stance. While wider stance can be used to stabilize the body against ship motion and crewmembers are obliged to carry out many visual tasks while standing, the influence of these factors on the kinematics of body sway has not been studied at sea. Crewmembers of the RN Atlantis stood on a force plate from which we obtained data on the positional variability of the center of pressure (COP). The sea state was 2 on the Beaufort scale. We varied stance width (5 cm, 17 cm, and 30 cm) and the nature of the visual tasks. In the Inspection task, participants viewed a plain piece of white paper, while in the Search task they counted the number of target letters that appeared in a block of text. Search task performance was similar to reports from terrestrial studies. Variability of the COP position was reduced during the Search task relative to the Inspection task. Variability was also reduced during wide stance relative to narrow stance. The influence of stance width was greater than has been observed in terrestrial studies. These results suggest that two factors that influence postural sway on land (variations in stance width and in the nature of visual tasks) also influence sway at sea. We conclude that--in mild sea states--the influence of these factors is not suppressed by ship motion.
Task alters category representations in prefrontal but not high-level visual cortex.
Bugatus, Lior; Weiner, Kevin S; Grill-Spector, Kalanit
2017-07-15
A central question in neuroscience is how cognitive tasks affect category representations across the human brain. Regions in lateral occipito-temporal cortex (LOTC), ventral temporal cortex (VTC), and ventro-lateral prefrontal cortex (VLFPC) constitute the extended "what" pathway, which is considered instrumental for visual category processing. However, it is unknown (1) whether distributed responses across LOTC, VTC, and VLPFC explicitly represent category, task, or some combination of both, and (2) in what way representations across these subdivisions of the extended 'what' pathway may differ. To fill these gaps in knowledge, we scanned 12 participants using fMRI to test the effect of category and task on distributed responses across LOTC, VTC, and VLPFC. Results reveal that task and category modulate responses in both high-level visual regions, as well as prefrontal cortex. However, we found fundamentally different types of representations across the brain. Distributed responses in high-level visual regions are more strongly driven by category than task, and exhibit task-independent category representations. In contrast, distributed responses in prefrontal cortex are more strongly driven by task than category, and contain task-dependent category representations. Together, these findings of differential representations across the brain support a new idea that LOTC and VTC maintain stable category representations allowing efficient processing of visual information, while prefrontal cortex contains flexible representations in which category information may emerge only when relevant to the task. Copyright © 2017 Elsevier Inc. All rights reserved.
Age, gesture span, and dissociations among component subsystems of working memory.
Dolman, R; Roy, E A; Dimeck, P T; Hall, C R
2000-01-01
Working memory was examined in old and young adults using a series of span tasks, including the forward versions of the visual-spatial and digit span tasks from the Wechsler Memory Scale-Revised, and comparable hand gesture and visual design span tasks. The observation that the young participants performed significantly better on all the tasks except digit span suggested that aging has an impact on some component subsystems of working memory but not others. Analyses of intercorrelations in span performance supports the dissociation among three component subsystems, one for auditory verbal information (the articulatory loop), one for visual-spatial information (visual-spatial scratch-pad), and one for hand/body postural configuration.
Mental workload while driving: effects on visual search, discrimination, and decision making.
Recarte, Miguel A; Nunes, Luis M
2003-06-01
The effects of mental workload on visual search and decision making were studied in real traffic conditions with 12 participants who drove an instrumented car. Mental workload was manipulated by having participants perform several mental tasks while driving. A simultaneous visual-detection and discrimination test was used as performance criteria. Mental tasks produced spatial gaze concentration and visual-detection impairment, although no tunnel vision occurred. According to ocular behavior analysis, this impairment was due to late detection and poor identification more than to response selection. Verbal acquisition tasks were innocuous compared with production tasks, and complex conversations, whether by phone or with a passenger, are dangerous for road safety.
Grubert, Anna; Eimer, Martin
2015-11-11
During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.
Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly
2018-01-01
Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Pina Rodrigues, Ana; Rebola, José; Jorge, Helena; Ribeiro, Maria José; Pereira, Marcelino; van Asselen, Marieke; Castelo-Branco, Miguel
2017-01-01
The specificity of visual channel impairment in dyslexia has been the subject of much controversy. The purpose of this study was to determine if a differential pattern of impairment can be verified between visual channels in children with developmental dyslexia, and in particular, if the pattern of deficits is more conspicuous in tasks where the magnocellular-dorsal system recruitment prevails. Additionally, we also aimed at investigating the association between visual perception thresholds and reading. In the present case-control study, we compared perception thresholds of 33 children diagnosed with developmental dyslexia and 34 controls in a speed discrimination task, an achromatic contrast sensitivity task, and a chromatic contrast sensitivity task. Moreover, we addressed the correlation between the different perception thresholds and reading performance, as assessed by means of a standardized reading test (accuracy and fluency). Group comparisons were performed by the Mann-Whitney U test, and Spearman's rho was used as a measure of correlation. Results showed that, when compared to controls, children with dyslexia were more impaired in the speed discrimination task, followed by the achromatic contrast sensitivity task, with no impairment in the chromatic contrast sensitivity task. These results are also consistent with the magnocellular theory since the impairment profile of children with dyslexia in the visual threshold tasks reflected the amount of magnocellular-dorsal stream involvement. Moreover, both speed and achromatic thresholds were significantly correlated with reading performance, in terms of accuracy and fluency. Notably, chromatic contrast sensitivity thresholds did not correlate with any of the reading measures. Our evidence stands in favor of a differential visual channel deficit in children with developmental dyslexia and contributes to the debate on the pathophysiology of reading impairments.
Effects of visual attention on chromatic and achromatic detection sensitivities.
Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko
2014-05-01
Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.
Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi
2015-03-01
This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand.
Wehner, Daniel T.; Ahlfors, Seppo P.; Mody, Maria
2007-01-01
Poor readers perform worse than their normal reading peers on a variety of speech perception tasks, which may be linked to their phonological processing abilities. The purpose of the study was to compare the brain activation patterns of normal and impaired readers on speech perception to better understand the phonological basis in reading disability. Whole-head magnetoencephalography (MEG) was recorded as good and poor readers, 7-13 years of age, performed an auditory word discrimination task. We used an auditory oddball paradigm in which the ‘deviant’ stimuli (/bat/, /kat/, /rat/) differed in the degree of phonological contrast (1 vs. 3 features) from a repeated standard word (/pat/). Both good and poor readers responded more slowly to deviants that were phonologically similar compared to deviants that were phonologically dissimilar to the standard word. Source analysis of the MEG data using Minimum Norm Estimation (MNE) showed that compared to good readers, poor readers had reduced left-hemisphere activation to the most demanding phonological condition reflecting their difficulties with phonological processing. Furthermore, unlike good readers, poor readers did not show differences in activation as a function of the degree of phonological contrast. These results are consistent with a phonological account of reading disability. PMID:17675109
Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex
Poort, Jasper; Khan, Adil G.; Pachitariu, Marius; Nemri, Abdellatif; Orsolic, Ivana; Krupic, Julija; Bauza, Marius; Sahani, Maneesh; Keller, Georg B.; Mrsic-Flogel, Thomas D.; Hofer, Sonja B.
2015-01-01
Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli. PMID:26051421
Thinking in Pictures as a cognitive account of autism.
Kunda, Maithilee; Goel, Ashok K
2011-09-01
We analyze the hypothesis that some individuals on the autism spectrum may use visual mental representations and processes to perform certain tasks that typically developing individuals perform verbally. We present a framework for interpreting empirical evidence related to this "Thinking in Pictures" hypothesis and then provide comprehensive reviews of data from several different cognitive tasks, including the n-back task, serial recall, dual task studies, Raven's Progressive Matrices, semantic processing, false belief tasks, visual search, spatial recall, and visual recall. We also discuss the relationships between the Thinking in Pictures hypothesis and other cognitive theories of autism including Mindblindness, Executive Dysfunction, Weak Central Coherence, and Enhanced Perceptual Functioning.
Cong, Lin-Juan; Wang, Ru-Jie; Yu, Cong; Zhang, Jun-Yun
2016-01-01
Visual perceptual learning is known to be specific to the trained retinal location, feature, and task. However, location and feature specificity can be eliminated by double-training or TPE training protocols, in which observers receive additional exposure to the transfer location or feature dimension via an irrelevant task besides the primary learning task Here we tested whether these new training protocols could even make learning transfer across different tasks involving discrimination of basic visual features (e.g., orientation and contrast). Observers practiced a near-threshold orientation (or contrast) discrimination task. Following a TPE training protocol, they also received exposure to the transfer task via performing suprathreshold contrast (or orientation) discrimination in alternating blocks of trials in the same sessions. The results showed no evidence for significant learning transfer to the untrained near-threshold contrast (or orientation) discrimination task after discounting the pretest effects and the suprathreshold practice effects. These results thus do not support a hypothetical task-independent component in perceptual learning of basic visual features. They also set the boundary of the new training protocols in their capability to enable learning transfer. PMID:26873777
The effect of compression and attention allocation on speech intelligibility. II
NASA Astrophysics Data System (ADS)
Choi, Sangsook; Carrell, Thomas
2004-05-01
Previous investigations of the effects of amplitude compression on measures of speech intelligibility have shown inconsistent results. Recently, a novel paradigm was used to investigate the possibility of more consistent findings with a measure of speech perception that is not based entirely on intelligibility (Choi and Carrell, 2003). That study exploited a dual-task paradigm using a pursuit rotor online visual-motor tracking task (Dlhopolsky, 2000) along with a word repetition task. Intensity-compressed words caused reduced performance on the tracking task as compared to uncompressed words when subjects engaged in a simultaneous word repetition task. This suggested an increased cognitive load when listeners processed compressed words. A stronger result might be obtained if a single resource (linguistic) is required rather than two (linguistic and visual-motor) resources. In the present experiment a visual lexical decision task and an auditory word repetition task were used. The visual stimuli for the lexical decision task were blurred and presented in a noise background. The compressed and uncompressed words for repetition were placed in speech-shaped noise. Participants with normal hearing and vision conducted word repetition and lexical decision tasks both independently and simultaneously. The pattern of results is discussed and compared to the previous study.
Williams, Isla M; Schofield, Peter; Khade, Neha; Abel, Larry A
2016-12-01
Multiple sclerosis (MS) frequently causes impairment of cognitive function. We compared patients with MS with controls on divided visual attention tasks. The MS patients' and controls' stare optokinetic nystagmus (OKN) was recorded in response to a 24°/s full field stimulus. Suppression of the OKN response, judged by the gain, was measured during tasks dividing visual attention between the fixation target and a second stimulus, central or peripheral, static or dynamic. All participants completed the Audio Recorded Cognitive Screen. MS patients had lower gain on the baseline stare OKN. OKN suppression in divided attention tasks was the same in MS patients as in controls but in both groups was better maintained in static than in dynamic tasks. In only dynamic tasks, older age was associated with less effective OKN suppression. MS patients had lower scores on a timed attention task and on memory. There was no significant correlation between attention or memory and eye movement parameters. Attention, a complex multifaceted construct, has different neural combinations for each task. Despite impairments on some measures of attention, MS patients completed the divided visual attention tasks normally. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thomson, Eric E.; Zea, Ivan; França, Wendy
2017-01-01
Abstract Adult rats equipped with a sensory prosthesis, which transduced infrared (IR) signals into electrical signals delivered to somatosensory cortex (S1), took approximately 4 d to learn a four-choice IR discrimination task. Here, we show that when such IR signals are projected to the primary visual cortex (V1), rats that are pretrained in a visual-discrimination task typically learn the same IR discrimination task on their first day of training. However, without prior training on a visual discrimination task, the learning rates for S1- and V1-implanted animals converged, suggesting there is no intrinsic difference in learning rate between the two areas. We also discovered that animals were able to integrate IR information into the ongoing visual processing stream in V1, performing a visual-IR integration task in which they had to combine IR and visual information. Furthermore, when the IR prosthesis was implanted in S1, rats showed no impairment in their ability to use their whiskers to perform a tactile discrimination task. Instead, in some rats, this ability was actually enhanced. Cumulatively, these findings suggest that cortical sensory neuroprostheses can rapidly augment the representational scope of primary sensory areas, integrating novel sources of information into ongoing processing while incurring minimal loss of native function. PMID:29279860
Bokde, Arun L W; Cavedo, Enrica; Lopez-Bayo, Patricia; Lista, Simone; Meindl, Thomas; Born, Christine; Galluzzi, Samantha; Faltraco, Frank; Dubois, Bruno; Teipel, Stefan J; Reiser, Maximilian; Möller, Hans-Jürgen; Hampel, Harald
2016-03-30
A pilot study to investigate the effects of rivastigmine on the brain activation pattern due to visual attention tasks in a group of amnestic Mild Cognitive Impaired patients (aMCI). The design was an initial three-month double blind period with a rivastigmine and placebo arms, followed by a nine-month open-label period. All patients underwent serial functional magnetic resonance imaging (fMRI) at baseline, and after three and six months of follow-up. Primary endpoint was the effect of rivastigmine on functional brain changes during visual attention (face and location matching) tasks. There were five in the rivastigmine arm and two in the placebo arm. The face matching task showed higher activation of visual areas after three months of treatment but no differences compared to baseline at six months. The location matching task showed a higher activation along the dorsal visual pathway at both three and six months follow ups. Treatment with rivastigmine demonstrates a significant effect on brain activation of the dorsal visual pathway during a location matching task in patients with aMCI. Our data support the potential use of task fMRI to map specific treatment effects of cholinergic drugs during prodromal stages of Alzheimer's disease (AD). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Components of working memory and visual selective attention.
Burnham, Bryan R; Sabia, Matthew; Langan, Catherine
2014-02-01
Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Parks, Nathan A; Hilimire, Matthew R; Corballis, Paul M
2011-05-01
The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus.
Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.
Andrews, T J; Coppola, D M
1999-08-01
Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.
Visual Search Deficits Are Independent of Magnocellular Deficits in Dyslexia
ERIC Educational Resources Information Center
Wright, Craig M.; Conlon, Elizabeth G.; Dyck, Murray
2012-01-01
The aim of this study was to investigate the theory that visual magnocellular deficits seen in groups with dyslexia are linked to reading via the mechanisms of visual attention. Visual attention was measured with a serial search task and magnocellular function with a coherent motion task. A large group of children with dyslexia (n = 70) had slower…
ERIC Educational Resources Information Center
Hsiao, Janet H.; Lam, Sze Man
2013-01-01
Through computational modeling, here we examine whether visual and task characteristics of writing systems alone can account for lateralization differences in visual word recognition between different languages without assuming influence from left hemisphere (LH) lateralized language processes. We apply a hemispheric processing model of face…
Developing a Very Low Vision Orientation and Mobility Test Battery (O&M-VLV).
Finger, Robert P; Ayton, Lauren N; Deverell, Lil; O'Hare, Fleur; McSweeney, Shane C; Luu, Chi D; Fenwick, Eva K; Keeffe, Jill E; Guymer, Robyn H; Bentley, Sharon A
2016-09-01
This study aimed to determine the feasibility of an assessment of vision-related orientation and mobility (O&M) tasks in persons with severe vision loss. These tasks may be used for future low vision rehabilitation clinical assessments or as outcome measures in vision restoration trials. Forty legally blind persons (mean visual acuity logMAR 2.3, or hand movements) with advanced retinitis pigmentosa participated in the Orientation & Mobility-Very Low Vision (O&M-VLV) subtests from the Low Vision Assessment of Daily Activities (LoVADA) protocol. Four categories of tasks were evaluated: route travel in three indoor hospital environments, a room orientation task (the "cafe"), a visual exploration task (the "gallery"), and a modified version of the Timed Up and Go (TUG) test, which assesses re-orientation and route travel. Spatial cognition was assessed using the Stuart Tactile Maps test. Visual acuity and visual fields were measured. A generalized linear regression model showed that a number of measures in the O&M-VLV tasks were related to residual visual function. The percentage of preferred walking speed without an aid on three travel routes was associated with visual field (p < 0.01 for all routes) whereas the number of contacts with obstacles during route travel was associated with acuity (p = 0.001). TUG-LV task time was associated with acuity (p = 0.003), as was the cafe time and distance traveled (p = 0.006 and p < 0.001, respectively). The gallery score was the only measure that was significantly associated with both residual acuity and fields (p < 0.001 and p = 0.001, respectively). The O&M-VLV was designed to capture key elements of O&M performance in persons with severe vision loss, which is a population not often studied previously. Performance on these tasks was associated with both binocular visual acuity and visual field. This new protocol includes assessments of orientation, which may be of benefit in vision restoration clinical trials.
Seeing tones and hearing rectangles - Attending to simultaneous auditory and visual events
NASA Technical Reports Server (NTRS)
Casper, Patricia A.; Kantowitz, Barry H.
1985-01-01
The allocation of attention in dual-task situations depends on both the overall and the momentary demands associated with both tasks. Subjects in an inclusive- or reaction-time task responded to changes in simultaneous sequences of discrete auditory and visual stimuli. Performance on individual trials was affected by (1) the ratio of stimuli in the two tasks, (2) response demands of the two tasks, and (3) patterns inherent in the demands of one task.
Spatial Frequency Requirements and Gaze Strategy in Visual-Only and Audiovisual Speech Perception
Wilson, Amanda H.; Paré, Martin; Munhall, Kevin G.
2016-01-01
Purpose The aim of this article is to examine the effects of visual image degradation on performance and gaze behavior in audiovisual and visual-only speech perception tasks. Method We presented vowel–consonant–vowel utterances visually filtered at a range of frequencies in visual-only, audiovisual congruent, and audiovisual incongruent conditions (Experiment 1; N = 66). In Experiment 2 (N = 20), participants performed a visual-only speech perception task and in Experiment 3 (N = 20) an audiovisual task while having their gaze behavior monitored using eye-tracking equipment. Results In the visual-only condition, increasing image resolution led to monotonic increases in performance, and proficient speechreaders were more affected by the removal of high spatial information than were poor speechreaders. The McGurk effect also increased with increasing visual resolution, although it was less affected by the removal of high-frequency information. Observers tended to fixate on the mouth more in visual-only perception, but gaze toward the mouth did not correlate with accuracy of silent speechreading or the magnitude of the McGurk effect. Conclusions The results suggest that individual differences in silent speechreading and the McGurk effect are not related. This conclusion is supported by differential influences of high-resolution visual information on the 2 tasks and differences in the pattern of gaze. PMID:27537379
Carlson, Abby G; Rowe, Ellen; Curby, Timothy W
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.
A localized model of spatial cognition in chemistry
NASA Astrophysics Data System (ADS)
Stieff, Mike
This dissertation challenges the assumption that spatial cognition, particularly visualization, is the key component to problem solving in chemistry. In contrast to this assumption, I posit a localized, or task-specific, model of spatial cognition in chemistry problem solving to locate the exact tasks in a traditional organic chemistry curriculum that require students to use visualization strategies to problem solve. Instead of assuming that visualization is required for most chemistry tasks simply because chemistry concerns invisible three-dimensional entities, I instead use the framework of the localized model to identify how students do and do not make use of visualization strategies on a wide variety of assessment tasks regardless of each task's explicit demand for spatial cognition. I establish the dimensions of the localized model with five studies. First, I designed two novel psychometrics to reveal how students selectively use visualization strategies to interpret and analyze molecular structures. The third study comprised a document analysis of the organic chemistry assessments that empirically determined only 12% of these tasks explicitly require visualization. The fourth study concerned a series of correlation analyses between measures of visuo-spatial ability and chemistry performance to clarify the impact of individual differences. Finally, I performed a series of micro-genetic analyses of student problem solving that confirmed the earlier findings and revealed students prefer to visualize molecules from alternative perspectives without using mental rotation. The results of each study reveal that occurrences of sophisticated spatial cognition are relatively infrequent in chemistry, despite instructors' ostensible emphasis on the visualization of three-dimensional structures. To the contrary, students eschew visualization strategies and instead rely on the use of molecular diagrams to scaffold spatial cognition. Visualization does play a key role, however, in problem solving on a select group of chemistry tasks that require students to translate molecular representations or fundamentally alter the morphology of a molecule. Ultimately, this dissertation calls into question the assumption that individual differences in visuo-spatial ability play a critical role in determining who succeeds in chemistry. The results of this work establish a foundation for defining the precise manner in which visualization tools can best support problem solving.
Venables, Noah C.; Patrick, Christopher J.; Hall, Jason R.; Bernat, Edward M.
2011-01-01
Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. PMID:21262318
P300 brain computer interface: current challenges and emerging trends
Fazel-Rezai, Reza; Allison, Brendan Z.; Guger, Christoph; Sellers, Eric W.; Kleih, Sonja C.; Kübler, Andrea
2012-01-01
A brain-computer interface (BCI) enables communication without movement based on brain signals measured with electroencephalography (EEG). BCIs usually rely on one of three types of signals: the P300 and other components of the event-related potential (ERP), steady state visual evoked potential (SSVEP), or event related desynchronization (ERD). Although P300 BCIs were introduced over twenty years ago, the past few years have seen a strong increase in P300 BCI research. This closed-loop BCI approach relies on the P300 and other components of the ERP, based on an oddball paradigm presented to the subject. In this paper, we overview the current status of P300 BCI technology, and then discuss new directions: paradigms for eliciting P300s; signal processing methods; applications; and hybrid BCIs. We conclude that P300 BCIs are quite promising, as several emerging directions have not yet been fully explored and could lead to improvements in bit rate, reliability, usability, and flexibility. PMID:22822397
Cognitive programs: software for attention's executive
Tsotsos, John K.; Kruijne, Wouter
2014-01-01
What are the computational tasks that an executive controller for visual attention must solve? This question is posed in the context of the Selective Tuning model of attention. The range of required computations go beyond top-down bias signals or region-of-interest determinations, and must deal with overt and covert fixations, process timing and synchronization, information routing, memory, matching control to task, spatial localization, priming, and coordination of bottom-up with top-down information. During task execution, results must be monitored to ensure the expected results. This description includes the kinds of elements that are common in the control of any kind of complex machine or system. We seek a mechanistic integration of the above, in other words, algorithms that accomplish control. Such algorithms operate on representations, transforming a representation of one kind into another, which then forms the input to yet another algorithm. Cognitive Programs (CPs) are hypothesized to capture exactly such representational transformations via stepwise sequences of operations. CPs, an updated and modernized offspring of Ullman's Visual Routines, impose an algorithmic structure to the set of attentional functions and play a role in the overall shaping of attentional modulation of the visual system so that it provides its best performance. This requires that we consider the visual system as a dynamic, yet general-purpose processor tuned to the task and input of the moment. This differs dramatically from the almost universal cognitive and computational views, which regard vision as a passively observing module to which simple questions about percepts can be posed, regardless of task. Differing from Visual Routines, CPs explicitly involve the critical elements of Visual Task Executive (vTE), Visual Attention Executive (vAE), and Visual Working Memory (vWM). Cognitive Programs provide the software that directs the actions of the Selective Tuning model of visual attention. PMID:25505430
Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.
Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara
2017-01-01
Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.
Begum, Tahamina; Reza, Faruque; Ahmed, Izmer; Abdullah, Jafri Malin
2014-03-01
Simple geometric and organic shapes and their arrangement are being used in different neuropsychology tests for the assessment of cognitive function, special memory and also for the therapy purpose in different patient groups. Until now there is no electrophysiological evidence of cognitive function determination for simple geometric, organic shapes and their arrangement. Then the main objective of this study is to know the cortical processing and amplitude, latency of visual induced N170 and P300 event related potential components on different geometric, organic shapes and their arrangement and different educational influence on it, which is worthwhile to know for the early and better treatment for those patient groups. While education influenced on cognitive function by using auditory oddball task, little is known about the influence of education on cognitive function induced by visual attention task in case of the choice of geometric, organic shapes and their arrangements. Using a 128-electrode sensor net, we studied the responses of the choice of the different geometric and organic shapes randomly in experiment 1 and their arrangements in experiment 2 in the high, medium and low education groups. In both experiments, subjects push the button "1" or "2" if like or dislike, respectively. Total 45 healthy subjects (15 in each group) were recruited. ERPs were measured from 11 electrode sites and analyzed to see the evoked N170/N240 and P300 ERP components. There were no differences between like and dislike in amplitudes even in latencies in every stimulus in both experiments. We fixed geometric shapes and organic shapes stimuli only, not like and dislike. Upon the stimulus types, N170 ERP component was found instead of N240, in occipito-temporal (T5, T6, O1 and O2) locations where the amplitude is the highest at O2 location and P300 was distributed in the central (Cz and Pz) locations in both experiments in all groups. In experiment 1, significant low amplitude and non-significant larger latency of the N170 component are found out at O1 location for both stimuli in low education group comparing medium education groups, but in experiment 2, there is no significant difference between stimuli among groups in amplitude and latency. In both experiments, P300 component was found in Cz and Pz locations though the amplitudes are higher at Cz than Pz areas. In experiment 1, medium education group evoked significantly (geometric shape stimuli, P = 0.05; organic shape stimuli, P = 0.02) higher amplitude of P300 component comparing low education group at Cz location. Whereas, there is no significant difference of amplitudes among groups across stimuli in Cz and Pz locations in experiment 2. Latencies have no significant differences in both experiments among groups also, but longer latency are found in low education group at Cz location comparing medium education group, though not significant. We conclude that simple geometric shapes, organic shapes and their arrangements evoked visual N170 component at temporo-occipital areas with right lateralization and P300 ERP component at centro-parietal areas. Significant low amplitude of N170 and P300 ERP components and longer latencies during different shape stimuli in low education group prove that, low education significantly influence on visual cognitive functions in low education group.
The case against specialized visual-spatial short-term memory.
Morey, Candice C
2018-05-24
The dominant paradigm for understanding working memory, or the combination of the perceptual, attentional, and mnemonic processes needed for thinking, subdivides short-term memory (STM) according to whether memoranda are encoded in aural-verbal or visual formats. This traditional dissociation has been supported by examples of neuropsychological patients who seem to selectively lack STM for either aural-verbal, visual, or spatial memoranda, and by experimental research using dual-task methods. Though this evidence is the foundation of assumptions of modular STM systems, the case it makes for a specialized visual STM system is surprisingly weak. I identify the key evidence supporting a distinct verbal STM system-patients with apparent selective damage to verbal STM and the resilience of verbal short-term memories to general dual-task interference-and apply these benchmarks to neuropsychological and experimental investigations of visual-spatial STM. Contrary to the evidence on verbal STM, patients with apparent visual or spatial STM deficits tend to experience a wide range of additional deficits, making it difficult to conclude that a distinct short-term store was damaged. Consistently with this, a meta-analysis of dual-task visual-spatial STM research shows that robust dual-task costs are consistently observed regardless of the domain or sensory code of the secondary task. Together, this evidence suggests that positing a specialized visual STM system is not necessary. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Age-related differences in listening effort during degraded speech recognition
Ward, Kristina M.; Shen, Jing; Souza, Pamela E.; Grieco-Calub, Tina M.
2016-01-01
Objectives The purpose of the current study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Design Twenty-five younger adults (18–24 years) and twenty-one older adults (56–82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants’ responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners’ performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (baseline vs. dual task); and (3) per group (younger vs. older adults). Results Speech recognition declined with increasing spectral degradation for both younger and older adults when they performed the task in isolation or concurrently with the visual monitoring task. Older adults were slower and less accurate than younger adults on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared to single-task performance, older adults experienced greater declines in secondary-task accuracy, but not reaction time, than younger adults. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. Conclusions Older adults experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than younger adults. These findings are interpreted as suggesting that older listeners expended greater listening effort than younger listeners, and may be partially attributed to age-related differences in executive control. PMID:27556526
Campagne, Aurélie; Fradcourt, Benoit; Pichat, Cédric; Baciu, Monica; Kauffmann, Louise; Peyrin, Carole
2016-01-01
Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task's demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF) and high spatial frequencies (HSF). Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA) and parietal regions (e.g. superior and inferior parietal lobules). Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of personal emotional experiences. It also illustrates flexible use of the spatial frequencies contained in scenes depending on their emotional valence and on task demands.
Samaha, Jason; Postle, Bradley R
2017-11-29
Adaptive behaviour depends on the ability to introspect accurately about one's own performance. Whether this metacognitive ability is supported by the same mechanisms across different tasks is unclear. We investigated the relationship between metacognition of visual perception and metacognition of visual short-term memory (VSTM). Experiments 1 and 2 required subjects to estimate the perceived or remembered orientation of a grating stimulus and rate their confidence. We observed strong positive correlations between individual differences in metacognitive accuracy between the two tasks. This relationship was not accounted for by individual differences in task performance or average confidence, and was present across two different metrics of metacognition and in both experiments. A model-based analysis of data from a third experiment showed that a cross-domain correlation only emerged when both tasks shared the same task-relevant stimulus feature. That is, metacognition for perception and VSTM were correlated when both tasks required orientation judgements, but not when the perceptual task was switched to require contrast judgements. In contrast with previous results comparing perception and long-term memory, which have largely provided evidence for domain-specific metacognitive processes, the current findings suggest that metacognition of visual perception and VSTM is supported by a domain-general metacognitive architecture, but only when both domains share the same task-relevant stimulus feature. © 2017 The Author(s).
Allon, Ayala S.; Balaban, Halely; Luria, Roy
2014-01-01
In three experiments we manipulated the resolution of novel complex objects in visual working memory (WM) by changing task demands. Previous studies that investigated the trade-off between quantity and resolution in visual WM yielded mixed results for simple familiar stimuli. We used the contralateral delay activity as an electrophysiological marker to directly track the deployment of visual WM resources while participants preformed a change-detection task. Across three experiments we presented the same novel complex items but changed the task demands. In Experiment 1 we induced a medium resolution task by using change trials in which a random polygon changed to a different type of polygon and replicated previous findings showing that novel complex objects are represented with higher resolution relative to simple familiar objects. In Experiment 2 we induced a low resolution task that required distinguishing between polygons and other types of stimulus categories, but we failed in finding a corresponding decrease in the resolution of the represented item. Finally, in Experiment 3 we induced a high resolution task that required discriminating between highly similar polygons with somewhat different contours. This time, we observed an increase in the item’s resolution. Our findings indicate that the resolution for novel complex objects can be increased but not decreased according to task demands, suggesting that minimal resolution is required in order to maintain these items in visual WM. These findings support studies claiming that capacity and resolution in visual WM reflect different mechanisms. PMID:24734026
Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.
Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio
2015-07-08
When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.
A comparison of visual and kinesthetic-tactual displays for compensatory tracking
NASA Technical Reports Server (NTRS)
Jagacinski, R. J.; Flach, J. M.; Gilson, R. D.
1983-01-01
Recent research on manual tracking with a kinesthetic-tactual (KT) display suggests that under certain conditions it can be an effective alternative or supplement to visual displays. In order to understand better how KT tracking compares with visual tracking, both a critical tracking and stationary single-axis tracking tasks were conducted with and without velocity quickening. In the critical tracking task, the visual displays were superior, however, the quickened KT display was approximately equal to the unquickened visual display. In stationary tracking tasks, subjects adopted lag equalization with the quickened KT and visual displays, and mean-squared error scores were approximately equal. With the unquickened displays, subjects adopted lag-lead equalization, and the visual displays were superior. This superiority was partly due to the servomotor lag in the implementation of the KT display and partly due to modality differences.
Ogden, Ruth S; Jones, Luke A
2009-05-01
The ability of the perturbation model (Jones & Wearden, 2003) to account for reference memory function in a visual temporal generalization task and auditory and visual reproduction tasks was examined. In all tasks the number of presentations of the standard was manipulated (1, 3, or 5), and its effect on performance was compared. In visual temporal generalization the number of presentations of the standard did not affect the number of times the standard was correctly identified, nor did it affect the overall temporal generalization gradient. In auditory reproduction there was no effect of the number of times the standard was presented on mean reproductions. In visual reproduction mean reproductions were shorter when the standard was only presented once; however, this effect was reduced when a visual cue was provided before the first presentation of the standard. Whilst the results of all experiments are best accounted for by the perturbation model there appears to be some attentional benefit to multiple presentations of the standard in visual reproduction.
Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane
2013-07-01
The simultaneous auditory processing skills of 17 dyslexic children and 17 skilled readers were measured using a dichotic listening task. Results showed that the dyslexic children exhibited difficulties reporting syllabic material when presented simultaneously. As a measure of simultaneous visual processing, visual attention span skills were assessed in the dyslexic children. We presented the dyslexic children with a phonological short-term memory task and a phonemic awareness task to quantify their phonological skills. Visual attention spans correlated positively with individual scores obtained on the dichotic listening task while phonological skills did not correlate with either dichotic scores or visual attention span measures. Moreover, all the dyslexic children with a dichotic listening deficit showed a simultaneous visual processing deficit, and a substantial number of dyslexic children exhibited phonological processing deficits whether or not they exhibited low dichotic listening scores. These findings suggest that processing simultaneous auditory stimuli may be impaired in dyslexic children regardless of phonological processing difficulties and be linked to similar problems in the visual modality.
Visual Search Elicits the Electrophysiological Marker of Visual Working Memory
Emrich, Stephen M.; Al-Aidroos, Naseem; Pratt, Jay; Ferber, Susanne
2009-01-01
Background Although limited in capacity, visual working memory (VWM) plays an important role in many aspects of visually-guided behavior. Recent experiments have demonstrated an electrophysiological marker of VWM encoding and maintenance, the contralateral delay activity (CDA), which has been shown in multiple tasks that have both explicit and implicit memory demands. Here, we investigate whether the CDA is evident during visual search, a thoroughly-researched task that is a hallmark of visual attention but has no explicit memory requirements. Methodology/Principal Findings The results demonstrate that the CDA is present during a lateralized search task, and that it is similar in amplitude to the CDA observed in a change-detection task, but peaks slightly later. The changes in CDA amplitude during search were strongly correlated with VWM capacity, as well as with search efficiency. These results were paralleled by behavioral findings showing a strong correlation between VWM capacity and search efficiency. Conclusions/Significance We conclude that the activity observed during visual search was generated by the same neural resources that subserve VWM, and that this activity reflects the maintenance of previously searched distractors. PMID:19956663
Visual Associative Learning in Restrained Honey Bees with Intact Antennae
Dobrin, Scott E.; Fahrbach, Susan E.
2012-01-01
A restrained honey bee can be trained to extend its proboscis in response to the pairing of an odor with a sucrose reward, a form of olfactory associative learning referred to as the proboscis extension response (PER). Although the ability of flying honey bees to respond to visual cues is well-established, associative visual learning in restrained honey bees has been challenging to demonstrate. Those few groups that have documented vision-based PER have reported that removing the antennae prior to training is a prerequisite for learning. Here we report, for a simple visual learning task, the first successful performance by restrained honey bees with intact antennae. Honey bee foragers were trained on a differential visual association task by pairing the presentation of a blue light with a sucrose reward and leaving the presentation of a green light unrewarded. A negative correlation was found between age of foragers and their performance in the visual PER task. Using the adaptations to the traditional PER task outlined here, future studies can exploit pharmacological and physiological techniques to explore the neural circuit basis of visual learning in the honey bee. PMID:22701575
Burton, Harold; McLaren, Donald G
2006-01-09
Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example.
Burton, Harold; McLaren, Donald G.
2013-01-01
Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example. PMID:16198053
Automation trust and attention allocation in multitasking workspace.
Karpinsky, Nicole D; Chancey, Eric T; Palmer, Dakota B; Yamani, Yusuke
2018-07-01
Previous research suggests that operators with high workload can distrust and then poorly monitor automation, which has been generally inferred from automation dependence behaviors. To test automation monitoring more directly, the current study measured operators' visual attention allocation, workload, and trust toward imperfect automation in a dynamic multitasking environment. Participants concurrently performed a manual tracking task with two levels of difficulty and a system monitoring task assisted by an unreliable signaling system. Eye movement data indicate that operators allocate less visual attention to monitor automation when the tracking task is more difficult. Participants reported reduced levels of trust toward the signaling system when the tracking task demanded more focused visual attention. Analyses revealed that trust mediated the relationship between the load of the tracking task and attention allocation in Experiment 1, an effect that was not replicated in Experiment 2. Results imply a complex process underlying task load, visual attention allocation, and automation trust during multitasking. Automation designers should consider operators' task load in multitasking workspaces to avoid reduced automation monitoring and distrust toward imperfect signaling systems. Copyright © 2018. Published by Elsevier Ltd.
Alfimova, M V; Golimbet, V E; Lebedeva, I S; Korovaĭtseva, G I; Lezheĭko, T V
2014-01-01
We studied influence of the anxiety-related trait Harm Avoidance and the COMT gene, which is an important modulator of prefrontal functioning, on event-related potentials in oddball paradigm and performance effectiveness of selective attention. For 50 individuals accuracy and time of searching words among letters at any desired rate and then under an instruction to perform the task as quickly and accurate as possible were measured. Scores on the Harm Avoidance scale from Cloninger's Temperament and Character Inventory, N100 and P300 parameters, and COMTVa1158Met genotypes were obtained for them as well. Searching accuracy and time were mainly related to N100 amplitude. The COMT genotype and Harm Avoidance did not affect N100 amplitude; however, the N100 amplitude modulated their effects on accuracy and time dynamics. Harm Avoidance was positively correlated with P300 latency. The results suggest that anxiety and the COMT gene effects on performance effectiveness of selective attention depend on cognitive processes reflected in N100 parameters.
A frontal cortex event-related potential driven by the basal forebrain
Nguyen, David P; Lin, Shih-Chieh
2014-01-01
Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497
Electrophysiology of Memory-Updating Differs with Age
Steiner, Genevieve Z.; Gonsalvez, Craig J.; De Blasio, Frances M.; Barry, Robert J.
2016-01-01
In oddball tasks, the P3 component of the event-related potential systematically varies with the time between target stimuli—the target-to-target interval (TTI). Longer TTIs result in larger P3 amplitudes and shorter latencies, and this pattern of results has been linked with working memory-updating processes. Given that working memory and the P3 have both been shown to diminish with age, the current study aimed to determine whether the linear relationship between P3 and TTI is compromised in healthy aging by comparing TTI effects on P3 amplitudes and latencies, and reaction time (RT), in young and older adults. Older adults were found to have an overall reduction in P3 amplitudes, longer latencies, an anterior shift in topography, a trend toward slower RTs, and a flatter linear relationship between P3 and TTI than young adults. Results suggest that the ability to maintain templates in working memory required for stimulus categorization decreases with age, and that as a result, neural compensatory mechanisms are employed. PMID:27378908
Electrophysiology of Memory-Updating Differs with Age.
Steiner, Genevieve Z; Gonsalvez, Craig J; De Blasio, Frances M; Barry, Robert J
2016-01-01
In oddball tasks, the P3 component of the event-related potential systematically varies with the time between target stimuli-the target-to-target interval (TTI). Longer TTIs result in larger P3 amplitudes and shorter latencies, and this pattern of results has been linked with working memory-updating processes. Given that working memory and the P3 have both been shown to diminish with age, the current study aimed to determine whether the linear relationship between P3 and TTI is compromised in healthy aging by comparing TTI effects on P3 amplitudes and latencies, and reaction time (RT), in young and older adults. Older adults were found to have an overall reduction in P3 amplitudes, longer latencies, an anterior shift in topography, a trend toward slower RTs, and a flatter linear relationship between P3 and TTI than young adults. Results suggest that the ability to maintain templates in working memory required for stimulus categorization decreases with age, and that as a result, neural compensatory mechanisms are employed.
Investigating Deviance Distraction and the Impact of the Modality of the To-Be-Ignored Stimuli.
Marsja, Erik; Neely, Gregory; Ljungberg, Jessica K
2018-03-01
It has been suggested that deviance distraction is caused by unexpected sensory events in the to-be-ignored stimuli violating the cognitive system's predictions of incoming stimuli. The majority of research has used methods where the to-be-ignored expected (standards) and the unexpected (deviants) stimuli are presented within the same modality. Less is known about the behavioral impact of deviance distraction when the to-be-ignored stimuli are presented in different modalities (e.g., standard and deviants presented in different modalities). In three experiments using cross-modal oddball tasks with mixed-modality to-be-ignored stimuli, we examined the distractive role of unexpected auditory deviants presented in a continuous stream of expected standard vibrations. The results showed that deviance distraction seems to be dependent upon the to-be-ignored stimuli being presented within the same modality, and that the simplest omission of something expected; in this case, a standard vibration may be enough to capture attention and distract performance.
Sui, Jing; Adali, Tülay; Pearlson, Godfrey D.; Calhoun, Vince D.
2013-01-01
Extraction of relevant features from multitask functional MRI (fMRI) data in order to identify potential biomarkers for disease, is an attractive goal. In this paper, we introduce a novel feature-based framework, which is sensitive and accurate in detecting group differences (e.g. controls vs. patients) by proposing three key ideas. First, we integrate two goal-directed techniques: coefficient-constrained independent component analysis (CC-ICA) and principal component analysis with reference (PCA-R), both of which improve sensitivity to group differences. Secondly, an automated artifact-removal method is developed for selecting components of interest derived from CC-ICA, with an average accuracy of 91%. Finally, we propose a strategy for optimal feature/component selection, aiming to identify optimal group-discriminative brain networks as well as the tasks within which these circuits are engaged. The group-discriminating performance is evaluated on 15 fMRI feature combinations (5 single features and 10 joint features) collected from 28 healthy control subjects and 25 schizophrenia patients. Results show that a feature from a sensorimotor task and a joint feature from a Sternberg working memory (probe) task and an auditory oddball (target) task are the top two feature combinations distinguishing groups. We identified three optimal features that best separate patients from controls, including brain networks consisting of temporal lobe, default mode and occipital lobe circuits, which when grouped together provide improved capability in classifying group membership. The proposed framework provides a general approach for selecting optimal brain networks which may serve as potential biomarkers of several brain diseases and thus has wide applicability in the neuroimaging research community. PMID:19457398
Experimental system for measurement of radiologists' performance by visual search task.
Maeda, Eriko; Yoshikawa, Takeharu; Nakashima, Ryoichi; Kobayashi, Kazufumi; Yokosawa, Kazuhiko; Hayashi, Naoto; Masutani, Yoshitaka; Yoshioka, Naoki; Akahane, Masaaki; Ohtomo, Kuni
2013-01-01
Detective performance of radiologists for "obvious" targets should be evaluated by visual search task instead of ROC analysis, but visual task have not been applied to radiology studies. The aim of this study was to set up an environment that allows visual search task in radiology, to evaluate its feasibility, and to preliminarily investigate the effect of career on the performance. In a darkroom, ten radiologists were asked to answer the type of lesion by pressing buttons, when images without lesions, with bulla, ground-glass nodule, and solid nodule were randomly presented on a display. Differences in accuracy and reaction times depending on board certification were investigated. The visual search task was successfully and feasibly performed. Radiologists were found to have high sensitivity, specificity, positive predictive values and negative predictive values in non-board and board groups. Reaction time was under 1 second for all target types in both groups. Board radiologists were significantly faster in answering for bulla, but there were no significant differences for other targets and values. We developed an experimental system that allows visual search experiment in radiology. Reaction time for detection of bulla was shortened with experience.
A taxonomy of visualization tasks for the analysis of biological pathway data.
Murray, Paul; McGee, Fintan; Forbes, Angus G
2017-02-15
Understanding complicated networks of interactions and chemical components is essential to solving contemporary problems in modern biology, especially in domains such as cancer and systems research. In these domains, biological pathway data is used to represent chains of interactions that occur within a given biological process. Visual representations can help researchers understand, interact with, and reason about these complex pathways in a number of ways. At the same time, these datasets offer unique challenges for visualization, due to their complexity and heterogeneity. Here, we present taxonomy of tasks that are regularly performed by researchers who work with biological pathway data. The generation of these tasks was done in conjunction with interviews with several domain experts in biology. These tasks require further classification than is provided by existing taxonomies. We also examine existing visualization techniques that support each task, and we discuss gaps in the existing visualization space revealed by our taxonomy. Our taxonomy is designed to support the development and design of future biological pathway visualization applications. We conclude by suggesting future research directions based on our taxonomy and motivated by the comments received by our domain experts.
Attentional Capture of Objects Referred to by Spoken Language
ERIC Educational Resources Information Center
Salverda, Anne Pier; Altmann, Gerry T. M.
2011-01-01
Participants saw a small number of objects in a visual display and performed a visual detection or visual-discrimination task in the context of task-irrelevant spoken distractors. In each experiment, a visual cue was presented 400 ms after the onset of a spoken word. In experiments 1 and 2, the cue was an isoluminant color change and participants…
Visual Tasks and Postural Sway in Children with and without Autism Spectrum Disorders
ERIC Educational Resources Information Center
Chang, Chih-Hui; Wade, Michael G.; Stoffregen, Thomas A.; Hsu, Chin-Yu; Pan, Chien-Yu
2010-01-01
We investigated the influences of two different suprapostural visual tasks, visual searching and visual inspection, on the postural sway of children with and without autism spectrum disorder (ASD). Sixteen ASD children (age=8.75 [plus or minus] 1.34 years; height=130.34 [plus or minus] 11.03 cm) were recruited from a local support group.…
Factors influencing self-reported vision-related activity limitation in the visually impaired.
Tabrett, Daryl R; Latham, Keziah
2011-07-15
The use of patient-reported outcome (PRO) measures to assess self-reported difficulty in visual activities is common in patients with impaired vision. This study determines the visual and psychosocial factors influencing patients' responses to self-report measures, to aid in understanding what is being measured. One hundred visually impaired participants completed the Activity Inventory (AI), which assesses self-reported, vision-related activity limitation (VRAL) in the task domains of reading, mobility, visual information, and visual motor tasks. Participants also completed clinical tests of visual function (distance visual acuity and near reading performance both with and without low vision aids [LVAs], contrast sensitivity, visual fields, and depth discrimination), and questionnaires assessing depressive symptoms, social support, adjustment to visual loss, and personality. Multiple regression analyses identified that an acuity measure (distance or near), and, to a lesser extent, near reading performance without LVAs, visual fields, and contrast sensitivity best explained self-reported VRAL (28%-50% variance explained). Significant psychosocial correlates were depression and adjustment, explaining an additional 6% to 19% unique variance. Dependent on task domain, the parameters assessed explained 59% to 71% of the variance in self-reported VRAL. Visual function, most notably acuity without LVAs, is the best predictor of self-reported VRAL assessed by the AI. Depression and adjustment to visual loss also significantly influence self-reported VRAL, largely independent of the severity of visual loss and most notably in the less vision-specific tasks. The results suggest that rehabilitation strategies addressing depression and adjustment could improve perceived visual disability.
2017-04-01
ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms
Slushy weightings for the optimal pilot model. [considering visual tracking task
NASA Technical Reports Server (NTRS)
Dillow, J. D.; Picha, D. G.; Anderson, R. O.
1975-01-01
A pilot model is described which accounts for the effect of motion cues in a well defined visual tracking task. The effect of visual and motion cues are accounted for in the model in two ways. First, the observation matrix in the pilot model is structured to account for the visual and motion inputs presented to the pilot. Secondly, the weightings in the quadratic cost function associated with the pilot model are modified to account for the pilot's perception of the variables he considers important in the task. Analytic results obtained using the pilot model are compared to experimental results and in general good agreement is demonstrated. The analytic model yields small improvements in tracking performance with the addition of motion cues for easily controlled task dynamics and large improvements in tracking performance with the addition of motion cues for difficult task dynamics.
Visual Experience Enhances Infants' Use of Task-Relevant Information in an Action Task
ERIC Educational Resources Information Center
Wang, Su-hua; Kohne, Lisa
2007-01-01
Four experiments examined whether infants' use of task-relevant information in an action task could be facilitated by visual experience in the laboratory. Twelve- but not 9-month-old infants spontaneously used height information and chose an appropriate (taller) cover in search of a hidden tall toy. After watching examples of covering events in a…
Rosemann, Stephanie; Thiel, Christiane M
2018-07-15
Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing accompanied by changes in brain activation particularly involving frontal areas. These changes are modulated by the extent of hearing loss. Copyright © 2018 Elsevier Inc. All rights reserved.
Preschoolers Benefit From Visually Salient Speech Cues
Holt, Rachael Frush
2015-01-01
Purpose This study explored visual speech influence in preschoolers using 3 developmentally appropriate tasks that vary in perceptual difficulty and task demands. They also examined developmental differences in the ability to use visually salient speech cues and visual phonological knowledge. Method Twelve adults and 27 typically developing 3- and 4-year-old children completed 3 audiovisual (AV) speech integration tasks: matching, discrimination, and recognition. The authors compared AV benefit for visually salient and less visually salient speech discrimination contrasts and assessed the visual saliency of consonant confusions in auditory-only and AV word recognition. Results Four-year-olds and adults demonstrated visual influence on all measures. Three-year-olds demonstrated visual influence on speech discrimination and recognition measures. All groups demonstrated greater AV benefit for the visually salient discrimination contrasts. AV recognition benefit in 4-year-olds and adults depended on the visual saliency of speech sounds. Conclusions Preschoolers can demonstrate AV speech integration. Their AV benefit results from efficient use of visually salient speech cues. Four-year-olds, but not 3-year-olds, used visual phonological knowledge to take advantage of visually salient speech cues, suggesting possible developmental differences in the mechanisms of AV benefit. PMID:25322336
2017-01-01
Recent studies have challenged the ventral/“what” and dorsal/“where” two-visual-processing-pathway view by showing the existence of “what” and “where” information in both pathways. Is the two-pathway distinction still valid? Here, we examined how goal-directed visual information processing may differentially impact visual representations in these two pathways. Using fMRI and multivariate pattern analysis, in three experiments on human participants (57% females), by manipulating whether color or shape was task-relevant and how they were conjoined, we examined shape-based object category decoding in occipitotemporal and parietal regions. We found that object category representations in all the regions examined were influenced by whether or not object shape was task-relevant. This task effect, however, tended to decrease as task-relevant and irrelevant features were more integrated, reflecting the well-known object-based feature encoding. Interestingly, task relevance played a relatively minor role in driving the representational structures of early visual and ventral object regions. They were driven predominantly by variations in object shapes. In contrast, the effect of task was much greater in dorsal than ventral regions, with object category and task relevance both contributing significantly to the representational structures of the dorsal regions. These results showed that, whereas visual representations in the ventral pathway are more invariant and reflect “what an object is,” those in the dorsal pathway are more adaptive and reflect “what we do with it.” Thus, despite the existence of “what” and “where” information in both visual processing pathways, the two pathways may still differ fundamentally in their roles in visual information representation. SIGNIFICANCE STATEMENT Visual information is thought to be processed in two distinctive pathways: the ventral pathway that processes “what” an object is and the dorsal pathway that processes “where” it is located. This view has been challenged by recent studies revealing the existence of “what” and “where” information in both pathways. Here, we found that goal-directed visual information processing differentially modulates shape-based object category representations in the two pathways. Whereas ventral representations are more invariant to the demand of the task, reflecting what an object is, dorsal representations are more adaptive, reflecting what we do with the object. Thus, despite the existence of “what” and “where” information in both pathways, visual representations may still differ fundamentally in the two pathways. PMID:28821655
NASA Technical Reports Server (NTRS)
Jagacinski, R. J.; Miller, D. P.; Gilson, R. D.
1979-01-01
The feasibility of using the critical tracking task to evaluate kinesthetic-tactual displays was examined. The test subjects were asked to control a first-order unstable system with a continuously decreasing time constant by using either visual or tactual unidimensional displays. The results indicate that the critical tracking task is both a feasible and a reliable methodology for assessing tactual tracking. Further, that the critical tracking methodology is as sensitive and valid a measure of tactual tracking as visual tracking is demonstrated by the approximately equal effects of quickening for the tactual and visual displays.
Foxe, John J; Murphy, Jeremy W; De Sanctis, Pierfilippo
2014-06-01
We assessed the role of alpha-band oscillatory activity during a task-switching design that required participants to switch between an auditory and a visual task, while task-relevant audiovisual inputs were simultaneously presented. Instructional cues informed participants which task to perform on a given trial and we assessed alpha-band power in the short 1.35-s period intervening between the cue and the task-imperative stimuli, on the premise that attentional biasing mechanisms would be deployed to resolve competition between the auditory and visual inputs. Prior work had shown that alpha-band activity was differentially deployed depending on the modality of the cued task. Here, we asked whether this activity would, in turn, be differentially deployed depending on whether participants had just made a switch of task or were being asked to simply repeat the task. It is well established that performance speed and accuracy are poorer on switch than on repeat trials. Here, however, the use of instructional cues completely mitigated these classic switch-costs. Measures of alpha-band synchronisation and desynchronisation showed that there was indeed greater and earlier differential deployment of alpha-band activity on switch vs. repeat trials. Contrary to our hypothesis, this differential effect was entirely due to changes in the amount of desynchronisation observed during switch and repeat trials of the visual task, with more desynchronisation over both posterior and frontal scalp regions during switch-visual trials. These data imply that particularly vigorous, and essentially fully effective, anticipatory biasing mechanisms resolved the competition between competing auditory and visual inputs when a rapid switch of task was required. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Cognitive load effects on early visual perceptual processing.
Liu, Ping; Forte, Jason; Sewell, David; Carter, Olivia
2018-05-01
Contrast-based early visual processing has largely been considered to involve autonomous processes that do not need the support of cognitive resources. However, as spatial attention is known to modulate early visual perceptual processing, we explored whether cognitive load could similarly impact contrast-based perception. We used a dual-task paradigm to assess the impact of a concurrent working memory task on the performance of three different early visual tasks. The results from Experiment 1 suggest that cognitive load can modulate early visual processing. No effects of cognitive load were seen in Experiments 2 or 3. Together, the findings provide evidence that under some circumstances cognitive load effects can penetrate the early stages of visual processing and that higher cognitive function and early perceptual processing may not be as independent as was once thought.
Behavioral and Brain Measures of Phasic Alerting Effects on Visual Attention.
Wiegand, Iris; Petersen, Anders; Finke, Kathrin; Bundesen, Claus; Lansner, Jon; Habekost, Thomas
2017-01-01
In the present study, we investigated effects of phasic alerting on visual attention in a partial report task, in which half of the displays were preceded by an auditory warning cue. Based on the computational Theory of Visual Attention (TVA), we estimated parameters of spatial and non-spatial aspects of visual attention and measured event-related lateralizations (ERLs) over visual processing areas. We found that the TVA parameter sensory effectiveness a , which is thought to reflect visual processing capacity, significantly increased with phasic alerting. By contrast, the distribution of visual processing resources according to task relevance and spatial position, as quantified in parameters top-down control α and spatial bias w index , was not modulated by phasic alerting. On the electrophysiological level, the latencies of ERLs in response to the task displays were reduced following the warning cue. These results suggest that phasic alerting facilitates visual processing in a general, unselective manner and that this effect originates in early stages of visual information processing.
Kamiyama, Akikazu; Fujita, Kazuhisa; Kashimori, Yoshiki
2016-12-01
Visual recognition involves bidirectional information flow, which consists of bottom-up information coding from retina and top-down information coding from higher visual areas. Recent studies have demonstrated the involvement of early visual areas such as primary visual area (V1) in recognition and memory formation. V1 neurons are not passive transformers of sensory inputs but work as adaptive processor, changing their function according to behavioral context. Top-down signals affect tuning property of V1 neurons and contribute to the gating of sensory information relevant to behavior. However, little is known about the neuronal mechanism underlying the gating of task-relevant information in V1. To address this issue, we focus on task-dependent tuning modulations of V1 neurons in two tasks of perceptual learning. We develop a model of the V1, which receives feedforward input from lateral geniculate nucleus and top-down input from a higher visual area. We show here that the change in a balance between excitation and inhibition in V1 connectivity is necessary for gating task-relevant information in V1. The balance change well accounts for the modulations of tuning characteristic and temporal properties of V1 neuronal responses. We also show that the balance change of V1 connectivity is shaped by top-down signals with temporal correlations reflecting the perceptual strategies of the two tasks. We propose a learning mechanism by which synaptic balance is modulated. To conclude, top-down signal changes the synaptic balance between excitation and inhibition in V1 connectivity, enabling early visual area such as V1 to gate context-dependent information under multiple task performances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Perception Measurement in Clinical Trials of Schizophrenia: Promising Paradigms From CNTRICS
Green, Michael F.; Butler, Pamela D.; Chen, Yue; Geyer, Mark A.; Silverstein, Steven; Wynn, Jonathan K.; Yoon, Jong H.; Zemon, Vance
2009-01-01
The third meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) focused on selecting promising measures for each of the cognitive constructs selected in the first CNTRICS meeting. In the domain of perception, the 2 constructs of interest were gain control and visual integration. CNTRICS received 5 task nominations for gain control and three task nominations for visual integration. The breakout group for perception evaluated the degree to which each of these tasks met prespecified criteria. For gain control, the breakout group for perception believed that 2 of the tasks (prepulse inhibition of startle and mismatch negativity) were already mature and in the process of being incorporated into multisite clinical trials. However, the breakout group recommended that steady-state visual-evoked potentials be combined with contrast sensitivity to magnocellular vs parvocellular biased stimuli and that this combined task and the contrast-contrast effect task be recommended for translation for use in clinical trial contexts in schizophrenia research. For visual integration, the breakout group recommended the Contour Integration and Coherent Motion tasks for translation for use in clinical trials. This manuscript describes the ways in which each of these tasks met the criteria used by the breakout group to evaluate and recommend tasks for further development. PMID:19023123
Oehl, M; Sutter, C
2015-05-01
With aging visual feedback becomes increasingly relevant in action control. Consequently, visual device and task characteristics should more and more affect tool use. Focussing on late working age, the present study aims to investigate age-related differences in processing task irrelevant (display size) and task relevant visual information (task difficulty). Young and middle-aged participants (20-35 and 36-64 years of age, respectively) sat in front of a touch screen with differently sized active touch areas (4″ to 12″) and performed pointing tasks with differing task difficulties (1.8-5 bits). Both display size and age affected pointing performance, but the two variables did not interact and aiming duration moderated both effects. Furthermore, task difficulty affected the pointing durations of middle-aged adults moreso than those of young adults. Again, aiming duration accounted for the variance in the data. The onset of an age-related decline in aiming duration can be clearly located in middle adulthood. Thus, the fine psychomotor ability "aiming" is a moderator and predictor for age-related differences in pointing tasks. The results support a user-specific design for small technical devices with touch interfaces. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.
Debats, Nienke B; Ridderikhoff, Arne; de Boer, Betteco J; Peper, C Lieke E
2013-08-01
Sensorimotor biases were examined for intentional (tracking task) and unintentional (distractor task) rhythmic coordination. The tracking task involved unimanual tracking of either an oscillating visual signal or the passive movements of the contralateral hand (proprioceptive signal). In both conditions the required coordination patterns (isodirectional and mirror-symmetric) were defined relative to the body midline and the hands were not visible. For proprioceptive tracking the two patterns did not differ in stability, whereas for visual tracking the isodirectional pattern was performed more stably than the mirror-symmetric pattern. However, when visual feedback about the unimanual hand movements was provided during visual tracking, the isodirectional pattern ceased to be dominant. Together these results indicated that the stability of the coordination patterns did not depend on the modality of the target signal per se, but on the combination of sensory signals that needed to be processed (unimodal vs. cross-modal). The distractor task entailed rhythmic unimanual movements during which a rhythmic visual or proprioceptive distractor signal had to be ignored. The observed biases were similar as for intentional coordination, suggesting that intentionality did not affect the underlying sensorimotor processes qualitatively. Intentional tracking was characterized by active sensory pursuit, through muscle activity in the passively moved arm (proprioceptive tracking task) and rhythmic eye movements (visual tracking task). Presumably this pursuit afforded predictive information serving the coordination process. Copyright © 2013 Elsevier B.V. All rights reserved.